
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Testbed demonstration of optical reconfiguration by make before break approach in cloud
computing networks

Permalink
https://escholarship.org/uc/item/5bw08443

Author
Orozco Cifuentes, William Abel

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5bw08443
https://escholarship.org
http://www.cdlib.org/

Testbed demonstration of optical reconfiguration by make before break
approach in cloud computing networks

By

William Abel Orozco Cifuentes

Thesis

Submitted in partial satisfaction of the requirements for the degree of

Master of Science

in

Electrical and Computer Engineering

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

S.J Ben Yoo, Chair

Chen-Ne Chuah

Matthew Bishop

Committee in Charge

2022

-i-

Copyright © 2022 by

William Abel Orozco Cifuentes

All rights reserved.

To my family and friends.

-ii-

Contents

List of Figures . v

List of Tables . vii

Abstract . viii

Acknowledgments . ix

1 Introduction 1

1.1 Motivation . 1

1.2 Enabling technologies . 2

1.2.1 Optical switching technologies . 2

1.2.2 Centralized network management with SDN 3

1.2.3 TCP congestion control . 4

1.2.4 Make before break and hitless network reconfiguration 5

1.3 Related work . 6

1.4 Our goal and contribution . 7

2 Testbed architecture 8

2.1 Management network . 11

2.2 Control network . 11

2.3 Data plane . 12

2.4 SDN approach . 13

2.4.1 Ryu controller . 13

2.4.2 OVS mode . 14

2.4.3 The concept of flow . 15

3 Testbed infrastructure and software tools 16

3.1 Computing servers . 17

3.2 Electronic packet switches . 17

3.3 Optical switch . 18

3.4 Fibers and transceivers . 19

-iii-

3.5 Traffic generators . 20

3.6 Packet sampling and network monitoring 20

4 Experiments 22

4.1 Testbed delays . 22

4.1.1 Optical switching: Transceiver locking, EPS polling and Optical

switch delay . 23

4.1.2 EPS per flow insertion delay . 27

4.1.3 Orchestrator to controller RTT 27

4.1.4 EPS Layer 3 switching delay . 28

4.2 Optical switching and make before break 31

4.2.1 Data rate sweep . 32

4.2.2 RTO sweep . 35

4.2.3 Make before break approach . 38

4.2.4 Comparison between Make Before Break (MBB) and Optical swit-

ching (OST) . 40

4.3 Bandwidth Steering experiments . 43

5 Conclusions and future work 48

-iv-

List of Figures

2.1 Testbed architecture . 10

2.2 Management network . 11

2.3 Control network . 12

2.4 Experimental network . 13

3.1 Testbed hardware . 16

3.2 Virtual Machines . 18

3.3 Virtual bridges . 19

4.1 Optical reconfiguration - single data stream 24

4.2 SFP delay boxplot . 26

4.3 Orchestrator to controller RTT . 27

4.4 Path reconfiguration with flow table updates 29

4.5 EPS L3 switching delay boxplot . 30

4.6 Multiple bandwidth throughput . 33

4.7 RTT comparison at different data rates 34

4.8 Throughput at 10 Gbps traffic rate, RTOmin = 800ms 36

4.9 Throughput at 10G, RTOmin = 900ms 37

4.10 Throughput at 10 Gbps traffic rate, RTOmin = 2s 37

4.11 Make before break - single data stream 39

4.12 OST and MBB, throughput comparison 41

4.13 OST and MBB, RTT comparison . 41

4.14 OST and MBB, packet loss comparison 42

4.15 OST and MBB, link unavailability comparison 42

4.16 Optical reconfiguration - dual data stream 45

4.17 Make before break - dual data stream . 45

4.18 OST and MBB dual stream, throughput comparison 46

4.19 OST and MBB dual stream, RTT comparison 46

-v-

4.20 OST and MBB dual stream, packet loss comparison 47

4.21 OST and MBB dual stream, Link unavavilability 47

-vi-

List of Tables

2.1 Relevant fields in the flow table [1] . 14

4.1 Testbed latencies summary . 23

4.2 Optical reconfiguration steps . 24

4.3 SFP delay statistics of 485 experiments 26

4.4 Steps for path reconfiguration with flow updates 29

4.5 EPS L3 switching delay statistics of 50 experiments 30

4.6 Definition of metrics . 31

4.7 Optical reconfiguration steps . 39

-vii-

Abstract

Testbed demonstration of optical reconfiguration by make before break

approach in cloud computing networks

Datacenter and high-performance computing systems demand for interconnections be-

tween computing hosts with low latency, low-power consumption and traffic-aware adapt-

ability. Researchers have demonstrated in recent years that all-optical networks can of-

fer these characteristics by leveraging technologies such as microring resonators, Mach-

Zehnder switches and wavelength routers interconnecting top-of-rack electronic packet

switches (EPSs). One of the challenges in optical switching is the lack of optical buffers,

which makes it difficult to perform optical reconfiguration without significant packet loss.

In this thesis, we study the benefit of using a reconfigurable optical network with a make

before break (MBB) approach to improve network performance and reduce packet loss

when we perform a reconfiguration operation. We compare a plain optical reconfiguration

(OST) against a MBB approach in terms of packet loss, latency and throughput as we

attempt to achieve hitless reconfiguration. Understanding the transport protocol (TCP)

is relevant in our experiments because the path reconfiguration triggers congestion control

timers that pause traffic between hosts. Thus, a general analysis of the retransmission

timeout (RTO) is presented when studying our performance metrics. Our testbed com-

bines the advantages of electronic and optical networks: buffers, SDN integration, flexible

topology and optical links. Our design is modular, hence more servers or switches can

be added on demand and configured with software for faster deployments in future ex-

periments. On average, when we tested a single stream of data between two servers, the

packet loss decreased from 2.8% in OST to 0.93% in MBB. The link unavailability due

to RTO events went from 598 ms down to 121 ms (80% reduction). With MBB, the

throughput also improved as it dropped only by 0.6 Gbps instead of a 6Gbps hit in the

case of OST.

-viii-

Acknowledgments

Throughout my Master degree, I always felt supported by UC Davis. There are plenty

of resources for students and all the staff in the Electrical and Computer Engineering

department assisted me whenever I needed help. I am so grateful to my research group,

the Next Generation Networking and Computing Systems lab. In particular, I would

like to thank Dr. Roberto Proietti and Dr. Sandeep Singh for their help and guidance

during the execution of the project. This thesis would not have been possible without the

trust of Professor S.J. Ben Yoo, my major advisor who selected me for the project and

provided me with access to the labs, equipment and all the necessary devices to deploy

the testbed and run the experiments. I appreciate the time and dedication of the other

members of my committee in charge, Professor Chen-ne Chuah and Professor Matthew

Bishop, for evaluating my thesis. My parents Abel and Elda, my brother Luis Gerardo

and Dr. Ricardo Prado have been a fundamental part of my life. They have been always

motivating me to pursue my dreams. And finally, my friends and my family deserve an

acknowledgement since they never left me alone, but they supported me and made me

feel better during challenging circumstances. Thanks to all who have been part of this, I

could not have achieved my Master without you.

-ix-

Chapter 1

Introduction

1.1 Motivation

In recent years, data centers and high-performance computing systems (HPC) have been

adopting heterogeneous memory and processor nodes to allow scientists to run large scale

experiments and achieve important advances and discoveries in fields like engineering,

science, healthcare and astronomy [2]. As of November 2021, supercomputers are closer

to achieve Exascale performance (1 Exaflop per second - 1018 floating point operations).

The first place is for Fugaku (Fujitsu, Japan) with 442 Pflops/s. In second place, Summit

(IBM, United States of America) shows a performance of 148.8 Pflops/s [3]. In the USA,

the Exascale Computing Project (ECP) is an effort of the US department of Energy,

managed by leaders of different national laboratories [4]. ECP’s principal mission is to

accelerate the delivery of the first nation’s exascale system [5]. The ECP also helps the

missions of other agencies like the National Institutes of Health (NIH), National Science

Foundation (NSF), National Oceanic and Atmospheric Administration (NOAA), and the

National Aeronautics and Space Administration (NASA) [6].

Such large-scale systems require interconnections between thousands of computing

nodes. Traditional networks offer fixed links where optical fibers connect electronic packet

switches (EPS) with high-speed point-to-point optical links. Standard topologies to in-

terconnect computing nodes include 3D and 4D Torus [7] and fat-trees, [8]. where the

network architecture is hierarchical. At the bottom in the edge layer, hosts are connected

1

to Top-of-rack (ToR) switches [9].

It is important to highlight that the network traffic in these systems is typically non-

uniform. Spots in the network can be barely or heavily loaded, and throughput bottle-

necks may occur. [10]. Hence, the necessity of reconfigurable networks for bandwidth

steering arises, to allocate higher bandwidth resources in hotspots on demand [11] [12].

To enable these flexible networks, we combine traditional electronic packet switches with

optical switching technologies. In that way, we get the benefits of both fabrics to develop

a reconfigurable optical network. The topology can be dynamically modified with an

optical switch. Finally, routing and forwarding is managed with flow updates, so we can

orchestrate the traffic to go through the newly configured physical links. We do not use

traditional routing protocols, but a Software Defined Networking (SDN) control plane

that allows more flexibility in the definition of the routing schemes and forwarding rules.

In the following subsections we briefly introduce the related work and enabling tech-

nologies relevant to different modules of the testbed that was implemented in this research.

Finally, we discuss the purpose and contribution of our investigation.

1.2 Enabling technologies

1.2.1 Optical switching technologies

All-optical switches, such as optical micro electro mechanical systems (MEMS)[13], Mach-

Zehnder switches [14], microresonator ring [15] and wavelength routing [16] [17] are alter-

natives to electronic switches. They offer lower power consumption, scalability, fast recon-

figuration, low latency and cost savings with silicon photonics integration [18]. However,

optical switching technologies have not been commercially deployed in datacenters and

HPC systems due to several challenges, including the lack of optical buffers, the scalability

limitation posed by physical layer technology (loss, polarization dependence, etc.), and the

design of a scalable control plane that can orchestrate fast reconfiguration operations at

large scale (between thousands of racks) to follow the bursty nature of the traffic. There-

fore, it is necessary to investigate hybrid switching systems that combine the benefits of

traditional electronic devices and optical technologies [19] [20].Our testbed combines a

2

MEMS optical switch and SDN-enabled electronic packet switches, as described later in

Chapter 3.

1.2.2 Centralized network management with SDN

In the Software Defined Networking (SDN) approach, the control plane is decoupled

from the hardware. It leaves only the data plane in the chassis, while the controller is

software-based and uses Application Programming Interfaces (APIs) to send instructions

to the hardware to handle network traffic [21]. A centralized control plane is useful to

manage complex networks. Google’s Software Defined Wide Area Network (SD WAN),

B4, which connects their datacenters globally, is an example of a successful deployment of

a commercial Software Defined Network (SDN). B4 maximizes the average bandwidth, and

gives complete management across all network. It also enables traffic engineering, which

derives in other benefits. One is multipath routing, that leverages resources based on

application priority, and assigns bandwidth on demand. Google reports an improvement of

3× in link utilization efficiency compared to previous standard practices (that is, networks

driven by conventional routing protocols). On average, links run at 70% of their capacity

in the long term [22]. In addition, Google adopted SDN in their datacenters when they

realized that traditional decentralized routing protocols (like OSPF and BGP) were not

the solution to challenges such as creating routes through a broad, fixed and multipath

network. Management in such systems is easier to achieve if the network is modeled as

a single device with multiple ports instead of a collection of several individual switches

running routing protocols [23].

LIGHTNESS is one example of research project that explored and demonstrated the

integration of SDN control plane, virtualization of network resources, and an all-optical

dynamic data center network. With a modified version of OpenFlow, a customized con-

troller and the abstraction of the Optical Packet Switch node, which was implemented

with an FPGA, they achieved optical packet switching [24]. Furthermore, by assign-

ing priority to flows of different applications, Quality of Service (QoS) can be guaranteed.

Real-time monitoring is another feature that was implemented by collecting statistics from

the network agents through OpenFlow [25]. From these case studies we can conclude that

3

SDN is the key to control and to use resources efficiently in complex networks.

1.2.3 TCP congestion control

TCP/IP is the name commonly used to refer to the set of network protocols behind the

internet. TCP stands for Transmission Control Protocol and Internet Protocol. This

is a practical implementation of the theoretical reference model, OSI (Open Systems

Interconnection). Due to the complexity of computer networks, organizing the protocols

in independent layers with specific purposes makes it easier to implement, provision and

debug communication links all around the world. The OSI reference model has seven

layers, while TCP/IP condenses all in fewer layers. [26]. So far we have introduced

research projects in technologies for reconfigurable optical networks, with applications in

datacenters and High Performance Computing (HPC). Specifically in the physical layer.

Now we will cover the impact of link reconfiguration in upper layers. We focus on transport

layer, following the TCP congestion control mechanism and the reliable data transfer

between hosts when there is an event in the optical paths in the middle. A retransmission

timer is used to guarantee data delivery when the receiver does not confirm reception of

packets. It is defined as Retransmission Timeout, RTO, in internet standards [27]. We

discuss this timer in our results in Chapter 4.

Network traffic in our testbed is generated with iPerf [28], a tool that can be configured

with TCP or UDP. The first one is known for reliable communication among hosts, thus

we choose that protocol in our experiments. Nevertheless, it was originally designed for

WANs, where the data Round-Trip Time (RTT) is in the order of hundreds of millisecond

due to large geographic distances between nodes, but 2-3 orders of magnitude higher than

RTT in datacenters. Such a large RTO in this context impacts in latency and throughput.

Reducing the RTO might be a solution, but the challenge is that most systems do not have

high resolution timers [29]. Furthermore, varying the RTO helps to act fast against packet

loss, but it yields to spurious retransmissions [30] [31]. Researchers have found that optical

reconfigurations raise RTO events. RTT in datacenters is generally in the submillisecond

scale, while optical switching can reach tens of milliseconds if using MEMS technologies

[32]. TCP waits for a certain time (RTO), then it attempts to send data again. The

4

default RTO varies across operating systems. It is set to 200 ms in Linux, 300ms in

Windows [33] [34] [35].

A new trend in transport protocols points towards programmable NICs (Network

Interface Controller) and FPGAs, to leverage the optimized latency that state of the

art distributed datacenter applications require. The High Precision Congestion Control

[36] and NanoTransport [37] projects present transport protocols and congestion control

schemes in dedicated programmable hardware. This topic is out of the scope of this thesis,

and is left as future work to test novel transport protocol schemes in reconfigurable optical

networks.

1.2.4 Make before break and hitless network reconfiguration

An optical reconfiguration operation consists of the following steps: decide when to make

the reconfiguration, select a new topology based on specific optimization goals, and finally

migrate the traffic to the new path [38] [39]. Service halts arise amid topology migrations,

in particular when a new lightpath is provisioned dynamically. That is, when the old link

is removed and the new one is configured afterwards. To reduce the outage impact, which

depends on the link setup time, a make-before-break (MBB) approach is advised. If the

optical channels are placed in the network prior to the reconfiguration, they will be ready

to carry traffic instantly. However, this technique involves using additional resources,

because more links must be operational simultaneously [40]. Quality-of-Service (QoS)

and network performance in general are improved if bandwidth is reserved before the

traffic transition, since the length of disturbance is minimized [41] [42] [43].

Hitless reconfiguration in optical networks was defined in 1996 as the reconfiguration

process where not even a single ATM cell (payload) is lost. ATM stands for Asynchronous

Transfer Mode, a standard in telecommunications for data transfer between user-network

or network-network nodes, prior to the wide adoption of IP (Internet Protocol) based

networks [44]. Bit Error Rate (BER) and Forward Error Correction (FEC) are useful

metrics to monitor the quality of a link in an Optical Transport Network (OTN). Spe-

cific thresholds must be specified for minimizing or preventing packet loss. As long as

these metrics are within the desired range, the link is considered optimal [45]. Research

5

in hitless optical reconfiguration have demonstrated a switching of less than 1µs, with-

out deteriorating the real-time BER, using fast tunable lasers [46] [47]. Other studies

implemented a testbed as well, with commercial transceivers and a channel spacing of a

minimum frequency step of 0.5GHz to keep BER in a desired range [48]. By adding SDN

elements to manage reconfiguration in an AWGR-based optical network via wavelength

tuning, the total switching time reached only millisecond scale, and the packet loss was

reduced by 50% [49]. For the rest of this thesis, we consider hitless reconfiguration as the

update in the topology that generates 0% packet loss, end-to-end.

1.3 Related work

Reconfigurable optical networks have been studied in recent years, in both simulations

and testbeds. On the experimental side, we find that SDN-controlled systems are prac-

tical to prevent packet loss and throughput drop due to light path updates [50]. With

SDN in hybrid networks, we can perform the reconfiguration in different steps: take the

traffic from the ports to be updated, reconfigure the topology with the optical switch,

synchronizing the transceivers in the new physical routes, and finally route the traffic

through the new paths [51]. In terms of reconfiguration latency, we find systems with

delays of different orders of magnitude. In [52], researchers integrated silicon photonics

Mach-Zehnder Interferometer (MZI) based optical switches with a Ryu SDN controller

and electronic packet switches, along with computing nodes, to demonstrate an end-to-

end reconfiguration latency of 204 ms. OSA (Optical Switching Architecture) testbed was

introduced in [32], which consisted of ToRs, virtual machines (VMs) as hosts, a MEMS

Optical switch, a wavelength selective switch (WSS) and the OSA manager which is the

server that orchestrates the system. ProjecTor is another testbed with a similar archi-

tecture, with a reconfiguration latency of 12µs. In the nanosecond level we find Sirius

[16]. These projects are mainly prototypes that integrate several blocks to build a recon-

figurable optical network. Our testbed was built with commercial solutions such as an

EdgeCore electronic packet switch, DWDM transceivers, a Polatis MEMS optical switch,

along with Linux and a python-based SDN controller (Ryu).

6

An extensive survey on Software-Defined Optical Networks can be found in [53]. If

the reader is interested in the state of the art of optical technologies for datacenters and

future trends, I recommend the paper ”Prospects and Challenges of Photonic Switching

in Data Centers and Computing Systems” [20].

1.4 Our goal and contribution

The purpose of this thesis project is to implement an SDN computing network testbed

and investigate techniques to reduce and possibly eliminate packet loss during optical

reconfiguration events. The testbed will be used also in future projects of the NGNCS

research group at UC Davis. We list below specific tasks that we performed to achieve

our goal.

• To design the network architecture of the control plane, application plane and data

plane of our testbed.

• To install the hardware and software tools to build the testbed and granting remote

access for flexible management of experiments.

• To implement and test a make before break approach to update optical links.

• To achieve hitless reconfiguration and leveraging multipath routing.

In Chapter 2 we explain the testbed architecture in terms of control and data planes.

Chapter 3 covers the hardware and software tools that we used to build each block of our

design. Next, in Chapter 4, we compare a plain optical switching scenario (OST) with

our make before break approach (MBB). We also show the benefit of our design in terms

of network performance: link unavailability, throughput, packet loss and RTT. Finally, in

Chapter 5 we summarize the results of our project, the benefits and future work.

7

Chapter 2

Testbed architecture

Simulators are tools that researchers use to demonstrate models, algorithms, devices and

other elements of networking and computing systems to improve their performance for

large scale and high performance applications. To validate the simulation studies, it

becomes essential to execute testbed experiments(like VINI [54], ORBIT [55] [56], Emulab

[57] and reconfigurable optical networks discussed in chapter 1), which is the main focus

of this thesis.

We describe the testbed in terms of architecture, infrastructure and software tools.

First, we will discuss the general design of the system, the purpose of each block and

how they interact with others. Second, we will discuss how the system is implemented

with servers, switches, wires, fibers, racks and any other physical device. Third, we will

explain the software tools we used to orchestrate our experiments. We cover virtualization,

network monitoring and traffic generators that we used in our investigation. In this

chapter we start with the architecture of our testbed.

Similar to Emulab [58], we connected physical and virtual hosts to different networks

on top of a single infrastructure. The first is the management network, which helps to

connect remotely to our testbed elements from anywhere. It is practical as it allows

researchers from our team to handle experiments through the UC Davis VPN (Virtual

Private Network) and an internet access point without being connected with a wire to the

hosts nor restricted to UC Davis LAN (Local Area Network). The second is the control

network, which orchestrates our experiments and collect statistics from our computing

8

hosts and network nodes. The control and application planes are encompassed here. The

third is the experimental network data plane, a reconfigurable optical network composed

of electronic and optical switches with 10 Gbps transceivers and optical fibers connecting

our computing nodes and carrying data with rates up to 10 Gbps.

Figure 2.1 illustrates the general architecture of our testbed. The data plane incorpo-

rates four electronic packet switches (br1, br2, br3, br4), an optical switch (OST, optical

switch tray) and optical fibers that interconnect four computing nodes (vm1, vm2, vm3,

vm4). The control plane runs on the controller server, with the purpose of sending in-

structions to the network to update routes. Our orchestrator server set up applications

in the computing nodes and collects statistics to measure performance. The northbound

(REST API) and southbound (OpenFlow) interfaces enable the communication from the

SDN controller to the control plane and the orchestrator. We configured SNMP (Sim-

ple Network Management Protocol) and SCPI (Standard Commands for Programmable

Instruments) as well, for coarse-grain statistics and to send instructions to the optical

switch. To differentiate between host and guest machines for both servers and switches,

we use the terms host or physical when not referring to the virtualized elements.

9

Figure 2.1: Testbed architecture

10

2.1 Management network

UC Davis network plays an important role to access our servers remotely. Figure 2.2 is a

general diagram of our management network. The VPN grants access to our devices via

SSH. For security reasons, we are not sharing the public IP addressing. Our computing

nodes and electronic packet switches depicted in Figure 2.1 are virtualized in node1, node2

and EPS chassis. Our optical switch is not reachable directly through the VPN, so we do

not include it in this diagram.

Figure 2.2: Management network

2.2 Control network

The purpose of the control network is to create out-of-band links that facilitate experiment

orchestration and collecting data from the testbed, without sending instructions through

UC Davis network. In such manner, we have full control over the infrastructure, the

network design and we keep dedicated links without worrying for bandwidth availability

nor external outages. The individual clouds in Figure 2.3 illustrate different networks,

with their own IP addressing. Orchestrator, EPS chassis, controller, node1, and node2 are

connected with physical 1 Gbps ethernet links through an electronic switch. The Optical

11

switch (OST) is also connected with a 1 Gbps ethernet cable to the orchestrator. Our

computing nodes vm1, vm2, vm3 and vm4 are hosted in node1 and node2, interconnected

with virtual links.

Figure 2.3: Control network

2.3 Data plane

As we mentioned at the beginning of the chapter, our data plane is a reconfigurable optical

network driven by an optical switch and four electronic packet switches. Br1, br2, br3 and

br4 are hosted in an EPS chassis configured for running in OVS (Open VSwitch) mode,

which means that they are optimized for OpenFlow applications and receive instructions

12

from a centralized SDN controller. Each individual link can forward data at rates up to

10 Gbps. Figure 2.4 represent the general topology of our data plane. Nevertheless, the

physical links can be attached or removed with software to or from different bridges as a

consequence of the flexibility that OVS yields. We use the terms bridge, EPS and ToR

as synonyms.

Figure 2.4: Experimental network

2.4 SDN approach

2.4.1 Ryu controller

SDN-enabled devices communicate with a controller through a channel, using OpenFlow

protocol [59]. In our testbed, the SDN controller is the built-in application OFCTL

13

REST from Ryu framework [1] that runs on the controller server. It exposes a REST

API (Application Programming Interface) that can be consumed from the orchestrator

to send updates or retrieve statistics from the data plane. The URIs (Uniform Resource

Identifier) from the API that we employ are add, clear and delete strict. With add, flows

are installed in the flow table. Clear deletes all flows from the specified table. Finally,

delete strict removes flows that match specific fields like IP address origin, IP address

destination and interface.

2.4.2 OVS mode

OpenFlow switches use flow tables to route packets by matching one or more fields. to

achieve dynamic routing in a software defined network. The controller can modify flow

entries on demand to update the route for each packet [60]. Pica8 PICOS is the Network

Operating System (NOS) that runs in our physical EPS. It allows the chassis to run in

two modes: Traditional L2/L3 mode (layer 2 / layer 3 from the TCP/IP stack) and OVS.

We use the latter, as it fits in our SDN design. In our testbed, we handle the traffic as

needed without traditional routing protocols like OSPF. If there is any overlap in the flow

tables, the forwarding action will be random and this behavior is not desired. To avoid

that, the priority field is varied in our experiments [61]. We use a single flow table for

each bridge, and the addressing is done with IPv4. The relevant fields for our testbed are

described in Table 2.1.

Field Description

dpid Datapath ID (bridge unique identifier)

table id Table ID

priority Priority of the flow

nw src IP address, source

nw dst IP address, destination

in port Input port number

out port Output port number

Table 2.1: Relevant fields in the flow table [1]

14

An alternative to run tests with SDN is to use the L2/L3 mode in PICOS with cross-

flow enabled. This hybrid approach allows a combination of both networking paradigms.

Network operators interact with the switch with Linux commands (Linux shell) or a

CLI (command line interface) similar to Juniper Junos [62] interface (L2/L3 shell) [63].

The flexibility of having two consoles is useful for researchers with different backgrounds.

Some may be experienced with Linux servers, others with enterprise or service provider

networking. However, throughout our experiments we found issues while performing op-

tical reconfiguration in hybrid operation. We observed that the ports where we connect

the transceivers remained in down state after we execute the optical reconfiguration. We

had to reboot the Picos service and reinstall the flows to get the ports up, adding at least

one minute to the reconfiguration. Hence we decided to run OVS mode.

2.4.3 The concept of flow

So far, we have discussed the pertinence of flows in our testbed and how we use the

SDN controller to update routes from the orchestrator using a REST API. Now we will

introduce the concept of flow in computer networks. RFCs (Request for Comments)

are technical documents published by the IETF (Internet Engineering Task Force) after

being written and reviewed by interested parties. They cover foundations for computer

networks, namely transport, addressing and routing [64]. From RFCs 2722 and 3697, a

flow is defined as the packets sent from a source to a destination that may be unicast,

multicast or anycast, with specific attributes (source, destination, port, bytes, addresses,

etc.). An alternate definition for flow refers to the packets in a single physical media or

stream of data [65] [66]. In the context of our testbed, a flow is an entry in a table (flow

table) that is attached to a specific bridge, with different fields that will be matched to

follow the desired route towards their destination.

15

Chapter 3

Testbed infrastructure and software

tools

In this chapter we describe the infrastructure of our testbed, hardware and software tools

that support our experiments. The hardware is shown in Figure 3.1.

Figure 3.1: Testbed hardware

16

3.1 Computing servers

Two EXXACT chassis (32 GB RAM, AMD EPYC 7302P 16-Core Processor), node1 and

node2, host the virtual machines, vm1, vm2, vm3 and vm4. Each physical server has

an Intel X710 dual NIC which supports up to 10 Gbps per port [67]. The main issue

with this card was the transceiver compatibility, because it does not read generic devices

but only products listed in the Intel compatibility tool [68]. Every virtual server has its

own 10 Gbps dedicated port that connects to the data plane, as illustrated in Figure 2.4.

Additionally, we connected the virtual machines to the orchestrator with dedicated 1 Gbps

NICs apart from the 10 Gbps cards. Figure 3.2 represents the wired and virtual links

between the orchestrator, host servers and virtual machines. Virtual bridges inside node1

and node2 map the traffic from the guest servers to the exterior. These interconnections

enable the orchestration of applications in our experiments from a principal server. In the

rest of the thesis, we use virtual machines, virtual server, computing nodes, computing

servers as synonyms.

3.2 Electronic packet switches

Four virtual bridges are configured in the chassis Edgecore AS7312-54XS (tor), which

runs the Pica8 operating system in OVS mode optimized for OpenFlow applications.

All bridges reach the SDN controller through the physical switch management port, as

depicted in Figure 3.3. The bare metal switch has preinstalled the Open Network Install

Environment (ONIE) [69], a basic operating system that manages the installation and

load of commercial or open source Network Operating Systems (NOS) [70]. If 10-Gbps

transceivers are connected in any of the 48 25-Gbps-rated ports of this specific chassis,

the speed of the interfaces must be set in groups of 4 consecutive ports. For example, if

we require to use port te-1/1/3, all ports te-1/1/1, te-1/1/2, te-1/1/3, te-1/1/4 should

have the data rate configured at 10G. We refer to the virtual bridges br1, br2, br3 and

br4 as electronic packet switches or bridges.

17

Figure 3.2: Virtual Machines

3.3 Optical switch

Technologies for optical switches were introduced in chapter 1. In our testbed, optical

reconfigurations were performed with a Polatis optical switch tray (OST), a single-mode

MEMS device that takes up to 25 ms to steer the light beam to the new port [71]. Instruc-

tions for switching were sent from the orchestrator with SCPI commands through a TCP

socket. The ethernet interface of the switch speeds up the deployment and integration

with our testbed control network. The lack of an openflow agent in the OST does not

allow to seamlessly integrate the optical switch with an SDN controller. Nevertheless,

most recent chassis such as the Polatis 6000 and 7000 series come with openflow agents

to enable centralized management with SDN [72]. These products offer flexibility for the

18

Figure 3.3: Virtual bridges

industry. However, they are built on top of the same MEMS-based technology (Polatis

DirectLight [73]) and the switching latency is still in the order of tens of millisecond

3.4 Fibers and transceivers

Small Form-factor Pluggable (SFP) are defined by Cisco as compact optical transceivers

[74]. They create an interface between optical and electrical communications, with a

transmitter and a receiver in both sides of the link, and support several communication

standards like Ethernet, SONET (Synchronous Optical Network) and PON (Passive opti-

cal networking). They are manufactured for different purposes: single mode, multimode,

for short and long distances, fiber and copper. It is important to choose the appropriate

SFP for the application, otherwise the deployments could not work properly or the devices

19

could get damaged. We installed two types of 10 Gbps transceivers. The first works with

multi mode fiber (MMF) in the 850 nm band [75], and allow us to connect the computing

nodes with the electronic packet switches, as observed in Figure 2.4. The second kind is

10 Gbps DWDM SFP, operating in the C band (four transceivers at 1538, 1540, 1542 and

1543 nm) [76]. By using Single Mode Fiber (SMF) patch cords connecting our electronic

packet switches and optical switch, we created a reconfigurable optical network which

supports multiple wavelengths.

3.5 Traffic generators

Various tools are available to generate packets between hosts [77]. Some are packeth [78],

ostinato [79], D-ITG [80], MGEN [81] iperf [28] and TRex [82]. The latest is developed

and maintained by Cisco, and it offers scalability up to 200 Gbps per server. However, this

tool is made for a single server, that is, the transmitter and receiver are hosted in the same

physical machine, which must have at least two NICs from the supported models [83].

The Device Under Test (DUT) can be an external element or virtualized [84]. Codilime,

a company that specializes in software and computer networks, customized TRex to allow

testing a network from different start and end points [85] [86]. We tested this traffic

generator, but the installation, configuration and integration with our testbed was not

straightforward. In contrast, iPerf installation and execution is quick, it does not show

issues with drivers and the integration with our experiments was successful. This tool has

been widely used in research and generates synthetic packets to emulate traffic between

servers[52] [87] [88] [89] [90] [91] [92] [93] [94].

3.6 Packet sampling and network monitoring

Several studies have shown different approaches to gather statistics to analyze network

performance. Platforms like Netseer [95], Jetstream [96], Planck [97] have demonstrated

improvements in the detection of network performance anomalies, including packet drops,

decrease in throughput and increased latency, at different scales like data center [98] and

cloud. Zhang et al. [99] compare two ways of gathering data from computer networks,

fine and coarse sampling. To analyze testbed latencies and network performance metrics,

20

we used tcpdump [100] as we need end-to-end per-packet resolution. On the other hand,

SNMP counters work well to confirm that the data stream is going through the desired

route when we design the reconfiguration paths. Zabbix [101] is a popular tool in enter-

prises for monitoring systems, including SNMP statistics, and there are docker versions for

agile implementation [102]. With this software we observed how the traffic flows through

the EPSs interfaces. To monitor traffic per flow, we deployed an sflow collector and sflow

agents in the virtual bridges [103].

21

Chapter 4

Experiments

Recalling the first chapter, the goals for this research comprehend building a networking

and computing testbed with SDN capabilities to demonstrate the benefit of make before

break approach combining optical and electronic packet switches to achieve hitless re-

configuration. In Figure 2.1 we show the architecture of the testbed and the meaning of

each element in the network diagram. The data plane encompasses an optical switch and

four electronic packet switches (br1, br2, br3, br4), connected to an SDN control plane.

The topology can be modified as needed with Open vSwitch commands. Additionally, an

orchestrator sends the route updates to the controller and optical switch.

In the first subsection we analyze the hardware and software switching latency intro-

duced by our control plane. Next, we compare the throughput, round-trip time (RTT)

and packet loss of a single data stream between a pair of servers (sender and receiver). We

show the benefit of our make before break approach for updating the route, compared to

a plain optical reconfiguration. Finally, similar to the single data stream experiments, we

show the metrics of doing a route update with two data streams to demonstrate the benefit

of make before break. We refer to the last subsection as bandwidth steering experiments.

4.1 Testbed delays

Five main switching latencies were found in our testbed. A summary is shown in Table 4.1.

We discuss each one in the following subsections. Overall, the dominant latency of 605ms

is introduced by the transceivers and the operating system of the host electronic packet

22

switch. In later sections, we show how to avoid interrupting the data stream due to a link

unavailability caused by a path reconfiguration, by using our MBB approach.

Latency Source Value

Orchestrator to controller RTT Network 0.35ms

EPS per flow insertion delay Pica8 30µs

EPS Layer 3 switching delay Pica8 17.5ms

Optical switch delay Polatis OST 25ms

SFP locking and EPS polling delay SFP, Pica8 605ms

Table 4.1: Testbed latencies summary

4.1.1 Optical switching: Transceiver locking, EPS polling and

Optical switch delay

We define the optical switching latency as the time it takes from the beginning of the

reconfiguration performed by the optical switch, which leads the ports to go down, until

all the transceivers report operativity in the ToR chassis. The topology in Figure 4.1

shows a single data stream between servers vm2 and vm3. At the beginning, the data

transfer goes through EPS br2, br1, br4, and br3 (continuous orange arrow). Then we

perform the path reconfiguration with the optical switch ost1, and the new route (fewer

hops) between servers passes through switches br2 and br3 (dotted orange arrow). A

summary of steps performed in our experiment is shown in Table 4.2.

Server 2 and server 3 run iperf in server and client mode, respectively. The data

rate on the sender side is set at values from 5 Gbps to 10 Gbps, with a duration of 20s.

After 485 experiments, we obtained the logs from the physical electronic packet switch,

which hosts the virtual switches br1, br2, br3, br4. Then we identify all the interface

flapping events of the ports in the topology shown in Figure 4.1. Finally, we calculate the

time difference between these events, port down and port up, to obtain the summary of

statistics in Table 4.3 and Figure 4.2 as well.

23

Figure 4.1: Optical reconfiguration - single data stream

Time in seconds Steps

T=0

1. Set the route between vm2 and vm3 (continuous orange arrow):

1.1. Configure optical paths in ost1

1.2. Install flows in br1, br2, br3, br4

2. Start data transfer

T=10

1. Perform optical reconfiguration in OST (dotted orange arrow):

1.1 Update topology in ost1

1.2 Update flows in br1, br2, br3, br4

T=20 1. Finish data transfer

Table 4.2: Optical reconfiguration steps

24

The mean latency of our experiments is 0.605s, with a maximum value of 0.834s. This

delay has two main components: the operating system polling frequency and the time it

takes for transceivers to complete the fault recovery process, before ports come up and

data transfer can start or resume. PicOS polls the transceivers every 250ms; furthermore

it only supports duplex auto negotiation mode for SFP [104]. On the other hand, the SFP

vendor informed that the initialization delay varies across different brands, but it should

be consistent with the SFF8431 guidelines for SFP+ DWDM. After a fault is detected in

the link, in less than the maximum value of t start up (300ms) plus t reset (10 µs), the

optical transmitter reset the laser circuits and disable the tx fault flag [105, p. 15]. In

[52], this delay is defined as transceiver locking and switch polling delay.

Moreover, the Polatis optical switch (ost1 in Figure 4.1) takes 25ms at most to com-

plete the optical reconfiguration, as listed in the technical documentation [71].

25

Summary Value [ms]

Mean 605

Std 115

Min 529

25% 531

50% 532

75% 786

Max 834

Table 4.3: SFP delay statistics of 485 experiments

Figure 4.2: SFP delay boxplot

26

4.1.2 EPS per flow insertion delay

PicOS allows adding flows as bundles, with the ovs-ofctl bundle command [106]. We sent

100 flows in parallel, the maximum amount per bundle, to a flow table of an EPS, and it

took 3ms in total. We take the ratio of total time divided by number of flows, go calculate

that every flow is inserted on a single table after 30µs.

4.1.3 Orchestrator to controller RTT

Other latency in the flow update process is the RTT between our orchestrator and con-

troller servers. The orchestrator sends the path updates through the REST API. The

controller runs the OFCTL REST application, which receives the new routes and com-

municates with the bridges to update the flow tables (See Figure 2.1). We sent several

flow update requests to the controller, and the average RTT is 0.35 ms (see Figure 4.3).

Figure 4.3: Orchestrator to controller RTT

27

4.1.4 EPS Layer 3 switching delay

After the flows are inserted in the EPS tables and the reconfiguration is completed, traffic

takes additional time to start flowing through the new route. We call it layer 3 switching

delay of the EPS. Previous research has found a delay of 49.2 ms [52]. To determine

the parameter in our testbed, we ran 50 experiments of UDP data transfers between

servers vm2 and vm3, switching the route with flow table updates. In other words, TCP

congestion control and the optical switching delay were not included in these tests.

Figure 4.4 describes the initial (continuous orange arrow) and final (dotted orange

arrow) routes for the data stream. Table 4.4 lists the steps of the experiments. The

packet capture was executed in the receiver side to determine for how long the packets

are dropped due to changes in the flow tables of all the EPS. In steady state, no packets

are lost.

On average, the EPS in our testbed takes 17.5 ms to update the routes after the new

paths are stored in the flow tables. See Figure 4.5 and Table 4.5

28

Figure 4.4: Path reconfiguration with flow table updates

Time in seconds Steps

T=0

1. Set the route between vm2 and vm3 (continuous orange arrow):

1.1. Configure optical paths in ost1

1.2. Install flows in br1, br2, br3, br4

2. Start UDP data transfer

T=10
1. Perform reconfiguration (dotted orange arrow):

1.1 Update flows in br1, br2, br3, br4

T=20 1. Finish data transfer

Table 4.4: Steps for path reconfiguration with flow updates

29

Summary Value [ms]

Mean 17.5

Std 10.5

Min 10.6

25% 11.0

50% 12.7

75% 21.9

Max 78.0

Table 4.5: EPS L3 switching delay statistics of 50 experiments

Figure 4.5: EPS L3 switching delay boxplot

30

4.2 Optical switching and make before break

In this last section, we discussed the different latencies introduced by our control plane,

hardware and software, when we perform a route update. Table 4.1 helps as reference for

this section, as we are going to present the results of several experiments based on optical

switching and the make before break approach, with a single data stream between two

servers. In this subsection we are going to compare throughput, packet loss and RTT

between a plain optical reconfiguration, and the make before break approach. Further-

more, we are going to show first the effect the TCP retransmission timeout (RTO) on

the link unavailability as seen by the end hosts when running the route update, and the

throughput at different data rates to validate how the TCP congestion control handles

buffered data after the new route is ready.

In Table 4.6 there is a summary of metrics that we use in this chapter, to compare

the performance of two path reconfiguration approaches.

Metric Definition

Throughput Ratio between TCP payload and packet departure rate

RTT Round-trip time for the packets the stream

Packet loss Ratio between packets retransmitted and packets sent

Link unavailability
Time gap during the path reconfiguration

where packets were not observed by the sniffer

Table 4.6: Definition of metrics

The data was captured with the sniffer tcpdump on the sender side. For all TCP

data streams, we obtained the following fields for each packet: TCP payload, RTT, re-

transmission, and packet departure rate (∆t). All four values are calculated by tshark

[107], being retransmission a boolean value which is true if the packet was detected as

a retransmission, false otherwise. Packet departure rate (∆t) is obtained by taking the

difference between timestamps of all packets.

31

4.2.1 Data rate sweep

In this section, the experiments were performed with the topology in Figure 4.1, only one

stream of data between servers 2 and 3 over TCP using iperf, following similar steps to

those in Table 4.2. However, the path reconfiguration was performed after 30 seconds,

and the experiment was run for 1 minute instead.

Figure 4.6 shows the throughput of the stream at different rates. When the link is

unavailable due to the optical reconfiguration, the sender is unable to continue with the

data transfer, thus packets are buffered. Once the link becomes available again, the traffic

resumes but the rate reaches the maximum link capacity. That is, near 10Gbps. From

the plot we see that is actually 9.4 Gbps. Some streams restore 400 ms after the optical

reconfiguration (9Gbps stream), others take up to 800 ms. Throughput is almost steady

before path reconfiguration. After the route is modified with the optical switch and the

flows are updated in the EPS, we see the hit in throughput, which decreases to almost 1

Gbps. Then it raises, and stabilizes at the original data rate, just after the sender clears

the buffer by saturating the link for a few seconds. A factor of 200 ms is implicit in

the link unavailability. It is the minimum retransmission timeout, a TCP timer that we

discuss in the next subsection.

RTT is also affected by the optical reconfiguration. As shown in Figure 4.7, at T=30

seconds, RTT grows creating a discontinuity in the plots before returning again to the

original value. However, before returning to its original value, RTT shows a sawtooth

shape when the sender saturates the link to clear its buffer. This is related to TCP

congestion control, and we observe this behavior clearly in Figure 4.7f, where data is sent

at a fixed rate of 10Gbps, the maximum link capacity, causing link congestion during all

the experiment. When the link is not saturated, the average RTT remains between 0.4

and 0.6 ms, but when link is at maximum capacity, RTT oscillates around 2 ms.

32

Figure 4.6: Throughput, optical reconfiguration at different data transfer rates

(a) 5 Gbps (b) 6 Gbps

33

(c) 7 Gbps (d) 8 Gbps

(e) 9 Gbps (f) 10 Gbps

Figure 4.7: RTT comparison at different data rates

34

4.2.2 RTO sweep

Similar to subsection 4.2.1, the experiments were performed with the topology in Fig-

ure 4.1, only one stream of data between servers 2 and 3 over TCP using iperf, following

steps in Table 4.2. This time we did use a duration of 20 seconds and an optical reconfig-

uration after 10 seconds. We discuss below the parameters we varied in the TCP session.

The goal of sweeping the RTO is to show how the timer is triggered and increased when

we perform an optical reconfiguration, at different RTO values. Throughput decreases as

the link unavailability dictated by the RTO grows.

In subsection 1.2.3 of chapter 1, we introduced the TCP retransmission timeout. This

timer has a minimum value, which is a parameter that varies across implementations

of operating systems. Tuning RTOmin can lead to unexpected behavior in the way our

servers communicate with the rest of the network, in both control and data planes. It

enhances the speed response against packet loss, but can derive in spurious retransmissions

[31]. Nevertheless, it is possible to vary RTOmin per route [108], with the advantage of

leaving all other networks without modifications. We found that the TCP session between

servers had a default RTOmin of 204 milliseconds, and it doubles every time the congestion

control mechanism detects a link outage. The default congestion control algorithm in our

servers is cubic [109].

Table 4.3 shows an average of 605 ms and a maximum of 834 ms in the dominant

latency of our testbed, introduced by the transceivers locking and switch polling delay.

Our make before break (MBB) strategy considers this time to avoid the link unavailability

seen by the servers 2 and 3. It consists of taking the traffic out of the optical switch to

alternate links, then execute the optical reconfiguration, and finally, turn back the traffic

to the new path. We show more details in next subsection.

Figure 4.8 shows five experiments where we set RTOmin = 800ms, and the optical

reconfiguration was performed at T=10 seconds. In three of them, traffic raises at 10 +

RTOmin = 10.8s. Two streams raise at 10 + RTOmin + 2 ∗ RTOmin = 12.4s. In other

words, the timer expired once and doubled. This is consistent with our results in Table 4.3.

In some experiments, switching time took more than 800 ms, others took less than 800ms.

35

From these results, if we want the timer to be triggered once only, we should set the RTO

to be larger than 800 milliseconds. We tested with 900 ms and 2s.

Figure 4.9 shows ten experiments with RTOmin = 900ms, and the optical reconfigu-

ration at T=10 seconds. All streams show a throughput raise at 10 + RTOmin = 10.9s.

RTOmin expired once only, therefore the overall switching time took less than 900ms.

Figure 4.10 shows five experiments, with RTOmin = 2s, and the optical reconfiguration

at T=10 seconds. Again, only one RTOmin expired and the data transfer continued. In

conclusion, we can vary the RTO to be triggered once only if we set it to be larger than

900 milliseconds. However, the larger it is, the longer the link remains unavailable and

the larger the throughput decreases. We decided to run our next experiments with the

default RTO timer for Linux, 200 ms.

Figure 4.8: Throughput during optical reconfiguration at 10 Gbps traffic rate, RTOmin =
800ms

36

Figure 4.9: Throughput during optical reconfiguration at 10 Gbps traffic rate, RTOmin =
900ms

Figure 4.10: Throughput during optical reconfiguration at 10 Gbps traffic rate, RTOmin =
2s

37

4.2.3 Make before break approach

Last subsection is helpful to understand why a TCP stream becomes unavailable for a

certain period of time when updating the route between endpoints. The testbed latencies

in Table 4.1 and RTOmin play a main role. The goal of our make before break approach is

to achieve hitless reconfiguration when performing an update in the topology and change

the route of the traffic between servers. We take the traffic out of the optical switch for

1 second, to allow enough time for all the testbed latencies, before returning the packets

back to the new path through the optical switch.

The scenario in Figure 4.11 shows an initial route between servers vm2 and vm3

through optical switch ost1, and four electronic packet switches br2, br1, br4 and br3.

Our experiment update the route to a better one, with fewer hops, through EPSs br2

and br3. However, to avoid the reconfiguration time of the testbed introduced mainly by

the switch polling and transceiver locking delays, traffic is be switched for 1 second to

a temporary route (dotted black arrow) while the optical reconfiguration is performed,

between T=10 and T=11 seconds. Finally, we move back the traffic flow to the new

rote (dotted orange arrow). A summary of steps is in Table 4.7. One drawback of this

approach is that we need two more physical links compared to the plain optical switching

approach we introduced in Figure 4.1 and Table 4.2. We show the benefit in terms of link

unavailability, packet loss and throughput in the next subsections.

38

Figure 4.11: Make before break - single data stream

Time in seconds Steps

T=0

1. Set the route between vm2 and vm3 (continuous orange arrow):

1.1. Configure optical paths in ost1

1.2. Install flows in br1, br2, br3, br4

2. Start data transfer

T=10

1. Take the traffic out of the optical switch (dotted black arrow):

1.1 Update the flows in br1,br2,br3,br4

2. Perform optical reconfiguration in OST (dotted orange arrow):

2.1 Update topology in ost1

T=11
1. Move traffic back to the optical switch (dotted orange arrow)

1.1 Update the flows in br1,br2,br3,br4

T=20 1. Finish data transfer

Table 4.7: Optical reconfiguration steps

39

4.2.4 Comparison between Make Before Break (MBB) and Op-

tical switching (OST)

In subsection 4.2.3 we introduced our Make before break strategy, which consists of re-

configuring the network topology with the optical switch, and taking the traffic out to

alternate links to avoid the link unavailability during reconfiguration. Fifty experiments

for each approach, plain optical switching (OST) and make before break approach (MBB)

with a single data stream between servers vm2 and vm3, were performed. Steps for OST

and the network diagram are in Table 4.2 and Figure 4.1. For MBB, they are in Table 4.7

and Figure 4.11. Data was generated with iPerf configured at a fixed data rate on the

sender side, 10Gbps. Again, the goal was to route the traffic through a better path, with

fewer hops.

Figures 4.12 and 4.13 depict a representative experiment of each approach, in terms

of throughput and RTT. Throughput improves in MBB, because it drops roughly by

0.6 Gbps, not by 6Gbps as it does in OST. RTT also benefits from MBB approach,

because it does not grow up to hundreds of milliseconds due to link unavailability, but

only suffers from a smaller hit of 0.2ms. Both plots in Figure 4.15 helps to understand

the behavior described before. In 50 experiments, the link unavailability in terms of the

default RTOmin, 200ms for linux, is between two and three times in OST. It means that

the timer expired at most twice. This is consistent with our testbed latencies, where the

average value of the dominant time element (switch polling and transceiver locking) was

605ms, as listed in 4.3. On the other hand, the RTOmin timer expired at most once in

the MBB experiments. 75% of the link unavailability is below 200ms, one RTOmin, and

one half of the MBB experiments is below 20ms, which is in the order of magnitude of the

EPS L3 switching delay that we demonstrated in Table 4.5. Finally, packet loss decreases

in MBB compared to OST. In Figure 4.14 we observe that packet loss goes down from an

average of 2% and a maximum of 9.5% in OST, to an average of 0.9% and a maximum

of 3.4% in MBB. There is some packet loss of 0.01% in steady state, associated to scarce

retransmissions due to link congestion.

40

(a) OST, single stream (b) MBB, single stream

Figure 4.12: OST and MBB, throughput comparison

(a) OST, single stream (b) MBB, single stream

Figure 4.13: OST and MBB, RTT comparison

41

(a) OST, single stream (b) MBB, single stream

Figure 4.14: OST and MBB, packet loss comparison

(a) OST (b) MBB

Figure 4.15: OST and MBB, link unavailability comparison

42

4.3 Bandwidth Steering experiments

Data buffering was observed in Figures 4.6 and 4.7, as link utilization at 9.4 Gbps and

RTT increased while link was saturated. In the following experiments we configured iPerf

with automatic data rate adjustment depending on the link utilization, not at a fixed

rate. If there are 10 Gbps of bandwidth available in the route, then sender transmits

at 10 Gbps. if there are only 5Gbps available, then sender transmits at 5Gbps. In this

way, we reduced buffering on the transmitter side. Our goal with this configuration was

to avoid packet loss due to link congestion, leaving only packet loss due to either optical

switching or make before break.

We did 50 experiments of each MBB and OST reconfiguration approaches. This time

with two data streams going through the testbed. We followed steps in Tables 4.2 and 4.7,

but now we add a static flow of data between servers 1 and 4 through EPS br1 and br4, as

shown in Figures 4.16 and 4.17. Thus we create link congestion on the link between EPS

br1 and br4, because both senders try to adjust the data rate to the maximum possible,

but as it is a shared link (bottleneck on purpose), they send at 5Gbps each to achieve the

maximum link capacity of 10Gbps with both rates combined. As a result, we notice two

data streams at 5Gbps before T=10 seconds in Figure 4.18.

One benefit of reconfigurable optical networks is that we can allocate bandwidth re-

sources on demand. We allow larger data rates by separating flows and removing bottle-

necks associated to congested links. Our scenario changes the network topology to assign

a better path between servers vm2 and vm3, increasing the available bandwidth to both

data streams.

We measured performance metrics of throughput, packet loss, RTT and link unavail-

ability, and our MBB approach shows benefits in all of them. Figures 4.18 and 4.19

include a representative experiment of each approach. Throughput of the dynamic route

between vm2 and vm3 falls only 2Gbps in the MBB approach, compared to a hit of almost

4 Gbps in the OST experiment. Moreover, RTT of the dynamic data stream grows to the

order of hundreds of milliseconds in OST, compared to MBB where we barely see a hit of

0.2ms. For the fixed data stream between vm1 and vm4 we did not observe a difference

43

in the metrics before, during and after reconfiguration, compared to what we observed in

the dynamic data stream between servers vm2 and vm3. Considering this, for the packet

loss and link unavailability metrics of Figures 4.20 and 4.21 we only evaluated the stream

between vm2 and vm3 of each test. Packet loss decreased from an average of 1.28% in

OST to 0.44% in MBB. Similar to our results in previous subsection,there is packet loss of

0.01% in steady state, associated to scarce retransmissions due to link congestion, almost

negligible.

An interesting pattern was found in the link unavailability. OST strategy had between

two and four times RTOmin. That is, the timer expired between two and three times.

However, in MBB approach we noticed that the mean value of link unavailability is one

RTOmin with some outliers above and below. In other words, the link is unavailable for

an almost fixed value of 200ms with two data streams. Basically, this metric also improves

from OST to MBB when working with multiple data streams in the testbed. It will be of

interest to determine if faster optical switching technologies, in the submillisecond latency

level, trigger any RTO events in the TCP congestion control mechanism.

44

Figure 4.16: Optical reconfiguration - dual data stream

Figure 4.17: Make before break - dual data stream

45

(a) OST, dual stream (b) MBB, dual stream

Figure 4.18: OST and MBB dual stream, throughput comparison

(a) OST, dual stream (b) MBB, dual stream

Figure 4.19: OST and MBB dual stream, RTT comparison

46

(a) OST, dual stream (b) MBB, dual stream

Figure 4.20: OST and MBB dual stream, packet loss comparison

(a) OST, dual stream (b) MBB, dual stream

Figure 4.21: OST and MBB dual stream, Link unavavilability

47

Chapter 5

Conclusions and future work

The need for networks with lower power consumption, flexible topology, traffic awareness,

lower latency and scalability to thousands of nodes motivates research in reconfigurable

optical networks for datacenters and high performance computing. In Chapter 1 we pre-

sented an overview of large scale computing systems, current challenges, and related work

relevant to our project in topics such as testbeds, technologies for all to all optical net-

works, centralized management in research and the industry, make before break approach,

hitless network reconfiguration and timers in the transport layer congestion control mech-

anism. Overall we achieved the goals for this thesis, as we deployed a hybrid network with

10 Gbps optical links, optical and electronic packet switches, a centralized management

and computing nodes to demonstrate the benefit of a make before break approach for

updating routes compared to a plain optical reconfiguration (OST) with a MEMS switch.

The bottleneck of the testbed was the switching latency introduced by the transceiver lock-

ing and switch polling delay, 605 milliseconds, which triggered the retransmission timeout

timer (RTO) of the congestion control mechanism in the transport layer. As a result, the

link unavailability observed by the application impacted directly the performance met-

rics, raising RTT and packet loss, and decreasing throughput as well. To overcome these

drawbacks, we presented and tested our make before break approach which combines the

advantages of all elements in our testbed: a centralized control plane to update the routes

on demand, electronic packet switches with buffers to reduce packet loss and optimized

for OpenFlow applications, and an optical switch that enables flexibility in the topology.

48

With our MBB approach we first updated the flows in the EPS tables sending instruc-

tions from the controller, then we provisioned the new link with the optical switch, and

finally we updated the flow again in the EPS to force the traffic to pass through the new

path. In a single stream of data, RTT grows up to hundreds of millisecond in the OST

reconfiguration, but does not grow larger than 2.5 ms with the MBB mode. On average,

the packet loss decreases from 2.8% in OST to 0.93% in MBB. Link unavailability due to

RTO events went from 598 ms to 121 ms, 80% less. With MBB, throughput drops 0.6

Gbps, compared to the drop by 6 Gbps in OST.

Bandwidth steering was also improved with our MBB approach. This scenario was

recreated with two data streams at 20 Gbps in total, forcing a bottleneck of 10 Gbps in

the testbed. Comparing performance during reconfiguration, packet loss went from 1.28%

with OST to 0.44% MBB. Link unavailability decreased from 727 ms to 185 ms, 74% less.

RTT grows up to hundreds of millisecond in OST, but is not larger than 2.5 ms like in the

single data stream scenario. We did not achieve hitless reconfiguration, that is, 0% packet

loss, because there still was a link unavailability that generated packet drops. However,

we decreased packet loss with our MBB approach, getting closer to the ideal goal. The

first step to reach zero packet loss would be to decrease the transceiver locking and switch

polling latency, so we do not trigger the TCP RTO timer. Other options would be to play

with different RTO values, or to replace TCP with other protocols.

In the future, our testbed will be used for deploying optical networks with technologies

other than MEMS, and running experiments in different areas such as machine learning

and heterogeneous computing. The modular design allows modifying blocks of software

or hardware described in chapters of architecture and infrastructure, without affecting

other elements of the system.

49

References

[1] Ryu SDN Framework Community, “Ofctl rest.” [Online]. Available: https:

//ryu.readthedocs.io/en/latest/app/ofctl rest.html

[2] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley, S. Guru-

murthi, N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers, “Achieving exascale

capabilities through heterogeneous computing,” IEEE Micro, vol. 35, no. 4, pp.

26–36, 2015.

[3] Top500, “Top 500 the list november 2021.” [Online]. Available: https:

//top500.org/lists/top500/2021/11/

[4] US Department of Energy, “Exascale computing project.” [Online]. Available:

https://www.exascaleproject.org/

[5] ——, “Exascale computing project factsheet.” [Online].

Available: https://www.exascaleproject.org/wp-content/uploads/2020/01/

ECP-Factsheet-Update-1-2020.pdf

[6] T. M. Evans, A. Siegel, E. W. Draeger, J. Deslippe, M. M. Francois, T. C.

Germann, W. E. Hart, and D. F. Martin, “A survey of software implementations

used by application codes in the exascale computing project,” The International

Journal of High Performance Computing Applications, vol. 36, no. 1, pp. 5–12,

2022. [Online]. Available: https://doi.org/10.1177/10943420211028940

[7] K.-I. Kitayama, Y.-C. Huang, Y. Yoshida, R. Takahashi, T. Segawa, S. Ibrahim,

T. Nakahara, Y. Suzaki, M. Hayashitani, Y. Hasegawa, Y. Mizukoshi, and A. Hi-

ramatsu, “Torus-topology data center network based on optical packet/agile cir-

cuit switching with intelligent flow management,” Journal of Lightwave Technology,

vol. 33, no. 5, pp. 1063–1071, March 2015.

[8] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient supercomput-

ing,” IEEE Transactions on Computers, vol. C-34, no. 10, pp. 892–901, 1985.

50

https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
https://ryu.readthedocs.io/en/latest/app/ofctl_rest.html
https://top500.org/lists/top500/2021/11/
https://top500.org/lists/top500/2021/11/
https://www.exascaleproject.org/
https://www.exascaleproject.org/wp-content/uploads/2020/01/ECP-Factsheet-Update-1-2020.pdf
https://www.exascaleproject.org/wp-content/uploads/2020/01/ECP-Factsheet-Update-1-2020.pdf
https://doi.org/10.1177/10943420211028940

[9] Z. Cao, M. Kodialam, and T. V. Lakshman, “Joint static and dynamic traf-

fic scheduling in data center networks,” IEEE/ACM Transactions on Networking,

vol. 24, no. 3, pp. 1908–1918, 2016.

[10] A. Bhatele, N. Jain, Y. Livnat, V. Pascucci, and P.-T. Bremer, “Analyzing network

health and congestion in dragonfly-based supercomputers,” in 2016 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS), 2016, pp. 93–102.

[11] X. Xiao, R. Proietti, G. Liu, H. Lu, P. Fotouhi, S. Werner, Y. Zhang, and S. J. B.

Yoo, “Silicon photonic flex-lions for bandwidth-reconfigurable optical intercon-

nects,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, no. 2,

pp. 1–10, 2020.

[12] X. Xiao, R. Proietti, G. Liu, H. Lu, Y. Zhang, and S. J. B. Yoo, “Multi-fsr silicon

photonic flex-lions module for bandwidth-reconfigurable all-to-all optical intercon-

nects,” Journal of Lightwave Technology, vol. 38, no. 12, pp. 3200–3208, 2020.

[13] D. Bishop, C. Giles, and G. Austin, “The lucent lambdarouter: Mems technology of

the future here today,” IEEE Communications Magazine, vol. 40, no. 3, pp. 75–79,

2002.

[14] N. Dupuis, B. G. Lee, A. V. Rylyakov, D. M. Kuchta, C. W. Baks, J. S. Orcutt,

D. M. Gill, W. M. J. Green, and C. L. Schow, “Modeling and characterization of a

nonblocking 4x4 mach–zehnder silicon photonic switch fabric,” Journal of Lightwave

Technology, vol. 33, no. 20, pp. 4329–4337, 2015.

[15] A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix

switch for silicon on-chip optical interconnection,” Proceedings of the IEEE, vol. 97,

no. 7, pp. 1216–1238, 2009.

[16] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik, F. Karinou,

S. Lange, B. Thomsen, K. Shi, and H. Williams, “Sirius: A flat datacenter network

with nanosecond optical switching,” in SIGCOMM. ACM, August 2020.

51

[17] X. Xiao, R. Proietti, K. Zhang, G. Liu, H. Lu, J. Messig, and S. J. B.

Yoo, “Experimental demonstration of 64-port thin-clos architecture for all-

to-all optical interconnects,” in Conference on Lasers and Electro-Optics.

Optica Publishing Group, 2018, p. SW4C.3. [Online]. Available: http:

//opg.optica.org/abstract.cfm?URI=CLEO SI-2018-SW4C.3

[18] B. G. Lee and N. Dupuis, “Silicon photonic switch fabrics: Technology and archi-

tecture,” Journal of Lightwave Technology, vol. 37, no. 1, pp. 6–20, 2019.

[19] J. Wang, S. Basu, C. McArdle, and L. P. Barry, “Large-scale hybrid elec-

tronic/optical switching networks for datacenters and hpc systems,” in 2015 IEEE

4th International Conference on Cloud Networking (CloudNet), 2015, pp. 87–93.

[20] S. J. Ben Yoo, “Prospects and challenges of photonic switching in data centers and

computing systems,” Journal of Lightwave Technology, vol. 40, no. 8, pp. 2214–2243,

2022.

[21] VMware, “What is software-defined networking (sdn)?” [Online]. Available: https:

//www.vmware.com/topics/glossary/content/software-defined-networking.html

[22] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,

J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat,

“B4: Experience with a globally-deployed software defined wan,” in Proceedings of

the ACM SIGCOMM 2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New

York, NY, USA: Association for Computing Machinery, 2013, p. 3–14. [Online].

Available: https://doi.org/10.1145/2486001.2486019

[23] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,

S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, H. Liu, J. Provost,

J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and A. Vahdat, “Jupiter

rising: A decade of clos topologies and centralized control in google’s datacenter

network,” Commun. ACM, vol. 59, no. 9, p. 88–97, aug 2016. [Online]. Available:

https://doi.org/10.1145/2975159

52

http://opg.optica.org/abstract.cfm?URI=CLEO_SI-2018-SW4C.3
http://opg.optica.org/abstract.cfm?URI=CLEO_SI-2018-SW4C.3
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://www.vmware.com/topics/glossary/content/software-defined-networking.html
https://doi.org/10.1145/2486001.2486019
https://doi.org/10.1145/2975159

[24] G. M. Saridis, S. Peng, Y. Yan, A. Aguado, B. Guo, M. Arslan, C. Jackson, W. Miao,

N. Calabretta, F. Agraz, S. Spadaro, G. Bernini, N. Ciulli, G. Zervas, R. Nejabati,

and D. Simeonidou, “Lightness: A function-virtualizable software defined data cen-

ter network with all-optical circuit/packet switching,” Journal of Lightwave Tech-

nology, vol. 34, no. 7, pp. 1618–1627, 2016.

[25] W. Miao, F. Agraz, S. Peng, S. Spadaro, G. Bernini, J. Perelló, G. Zervas, R. Neja-

bati, N. Ciulli, D. Simeonidou, H. Dorren, and N. Calabretta, “Sdn-enabled ops with

qos guarantee for reconfigurable virtual data center networks,” Journal of Optical

Communications and Networking, vol. 7, no. 7, pp. 634–643, 2015.

[26] Oracle, “Introducing the internet protocol suite.” [Online]. Available: https:

//docs.oracle.com/cd/E19683-01/806-4075/6jd69oa75/index.html

[27] Internet Engineering Task Force, “Computing tcp’s retransmission timer.” [Online].

Available: https://datatracker.ietf.org/doc/html/rfc6298

[28] iPerf authors, “iperf - the ultimate speed test tool for tcp, udp and sctp.” [Online].

Available: https://iperf.fr/

[29] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph, “Understanding tcp

incast throughput collapse in datacenter networks,” in Proceedings of the 1st ACM

Workshop on Research on Enterprise Networking, ser. WREN ’09. New York, NY,

USA: Association for Computing Machinery, 2009, p. 73–82. [Online]. Available:

https://doi.org/10.1145/1592681.1592693

[30] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R. Ganger,

G. A. Gibson, and B. Mueller, “Safe and effective fine-grained tcp retransmissions

for datacenter communication,” in Proceedings of the ACM SIGCOMM 2009

Conference on Data Communication, ser. SIGCOMM ’09. New York, NY, USA:

Association for Computing Machinery, 2009, p. 303–314. [Online]. Available:

https://doi.org/10.1145/1592568.1592604

53

https://docs.oracle.com/cd/E19683-01/806-4075/6jd69oa75/index.html
https://docs.oracle.com/cd/E19683-01/806-4075/6jd69oa75/index.html
https://datatracker.ietf.org/doc/html/rfc6298
https://iperf.fr/
https://doi.org/10.1145/1592681.1592693
https://doi.org/10.1145/1592568.1592604

[31] M. Allman and V. Paxson, “On estimating end-to-end network path properties,”

SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, p. 263–274, aug 1999. [Online].

Available: https://doi.org/10.1145/316194.316230

[32] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu, Y. Zhang, X. Wen, and

Y. Chen, “Osa: An optical switching architecture for data center networks with

unprecedented flexibility,” IEEE/ACM Transactions on Networking, vol. 22, no. 2,

pp. 498–511, 2014.

[33] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “Mitigating incast-tcp congestion

in data centers with sdn,” Annals of Telecommunications, vol. 73, pp. 263–277,

2018.

[34] A. M. Abdelmoniem and B. Bensaou, “T-racks: A faster recovery mechanism for tcp

in data center networks,” IEEE/ACM Transactions on Networking, vol. 29, no. 3,

pp. 1074–1087, 2021.

[35] P. Sarolahti and A. Kuznetsov, “Congestion control in linux TCP,” in 2002

USENIX Annual Technical Conference (USENIX ATC 02). Monterey, CA:

USENIX Association, Jun. 2002. [Online]. Available: https://www.usenix.org/

conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp

[36] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang, Z. Cao, M. Zhang,

F. Kelly, M. Alizadeh, and M. Yu, “Hpcc: High precision congestion control,”

in Proceedings of the ACM Special Interest Group on Data Communication, ser.

SIGCOMM ’19. New York, NY, USA: Association for Computing Machinery,

2019, p. 44–58. [Online]. Available: https://doi.org/10.1145/3341302.3342085

[37] S. Arslan, S. Ibanez, A. Mallery, C. Kim, and N. McKeown, “Nanotransport: A

low-latency, programmable transport layer for nics,” in Proceedings of the ACM

SIGCOMM Symposium on SDN Research (SOSR), ser. SOSR ’21. New York, NY,

USA: Association for Computing Machinery, 2021, p. 13–26. [Online]. Available:

https://doi.org/10.1145/3482898.3483365

54

https://doi.org/10.1145/316194.316230
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://www.usenix.org/conference/2002-usenix-annual-technical-conference/congestion-control-linux-tcp
https://doi.org/10.1145/3341302.3342085
https://doi.org/10.1145/3482898.3483365

[38] W. Golab and R. Boutaba, “Policy-driven automated reconfiguration for perfor-

mance management in wdm optical networks,” IEEE Communications Magazine,

vol. 42, no. 1, pp. 44–51, 2004.

[39] B. Jaumard, H. Pouya, and D. Coudert, “Make-before-break wavelength defragmen-

tation,” in 2018 20th International Conference on Transparent Optical Networks

(ICTON), 2018, pp. 1–5.

[40] H. Li and J. Wu, “Survey of wdm network reconfiguration: topology migrations

and their impact on service disruptions,” Telecommunication Systems, vol. 60, pp.

349–366, 2015.

[41] B. Jaumard, H. Q. Duong, R. Armolavicius, T. Morris, and P. Djukic, “Efficient

real-time scalable make-before-break network re-routing,” Journal of Optical Com-

munications and Networking, vol. 11, no. 3, pp. 52–66, 2019.

[42] B. Jaumard, H. Pouya, and D. Coudert, “Wavelength defragmentation for seamless

migration,” Journal of Lightwave Technology, vol. 37, no. 17, pp. 4382–4393, 2019.

[43] H. Duong, B. Jaumard, and D. Coudert, “Minimum disturbance rerouting to op-

timize bandwidth usage,” in 2021 International Conference on Optical Network

Design and Modeling (ONDM), 2021, pp. 1–6.

[44] K. Bala, G. Ellinas, M. Post, C.-C. Shen, J. Wei, and N. Antoniades, “Towards

hitless reconfiguration in wdm optical networks for atm transport,” in Proceedings of

GLOBECOM’96. 1996 IEEE Global Telecommunications Conference, vol. 1, 1996,

pp. 316–320 vol.1.

[45] Juniper Networks, “Forward error correction (fec) and bit error rate (ber).” [On-

line]. Available: https://www.juniper.net/documentation/us/en/software/junos/

interfaces-ethernet/topics/topic-map/fec-ber-otn-interfaces.html

[46] R. Proietti, C. Qin, B. Guan, Y. Yin, R. P. Scott, R. Yu, and S. J. B.

Yoo, “Rapid and complete hitless defragmentation method using a coherent

55

https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet/topics/topic-map/fec-ber-otn-interfaces.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-ethernet/topics/topic-map/fec-ber-otn-interfaces.html

rx lo with fast wavelength tracking in elastic optical networks,” Opt.

Express, vol. 20, no. 24, pp. 26 958–26 968, Nov 2012. [Online]. Available:

http://opg.optica.org/oe/abstract.cfm?URI=oe-20-24-26958

[47] C. Qin, R. Proietti, B. Guan, Y. Yin, R. P. Scott, R. Yu, and S. J. B. Yoo,

“Demonstration of multi-channel hitless defragmentation with fast auto-tracking

coherent rx los,” in Optical Fiber Communication Conference/National Fiber Optic

Engineers Conference 2013. Optica Publishing Group, 2013, p. OW3A.1. [Online].

Available: http://opg.optica.org/abstract.cfm?URI=OFC-2013-OW3A.1

[48] M. Scaffardi, V. Vercesi, A. Sgambelluri, and A. Bogoni, “Hitless reconfiguration

of a ppln-based multiwavelength source for elastic optical networks,” J. Opt.

Commun. Netw., vol. 8, no. 2, pp. 85–92, Feb 2016. [Online]. Available:

http://opg.optica.org/jocn/abstract.cfm?URI=jocn-8-2-85

[49] J. Guo, S. Zhang, R. Proietti, Z. Cao, G. Yuan, and S. Yoo, “Fast and hitless

topology management of awgr-based optical networking for data centers,” in 2017

European Conference on Optical Communication (ECOC), 2017, pp. 1–3.

[50] W. Wang, S. Das, and T. S. E. Ng, “Abstractions for reconfigurable hybrid

network update and a consistent update approach,” in Proceedings of the ACM

SIGCOMM 2021 Workshop on Optical Systems, ser. OptSys ’21. New York, NY,

USA: Association for Computing Machinery, 2021, p. 6–11. [Online]. Available:

https://doi.org/10.1145/3473938.3474506

[51] M. Y. Teh, Z. Wu, M. Glick, S. Rumley, M. Ghobadi, and K. Bergman, “Perfor-

mance trade-offs in reconfigurable networks for hpc,” Journal of Optical Communi-

cations and Networking, vol. 14, no. 6, pp. 454–468, 2022.

[52] Y. Shen, M. H. N. Hattink, P. Samadi, Q. Cheng, Z. Hu, A. Gazman,

and K. Bergman, “Software-defined networking control plane for seamless

integration of multiple silicon photonic switches in datacom networks,” Opt.

56

http://opg.optica.org/oe/abstract.cfm?URI=oe-20-24-26958
http://opg.optica.org/abstract.cfm?URI=OFC-2013-OW3A.1
http://opg.optica.org/jocn/abstract.cfm?URI=jocn-8-2-85
https://doi.org/10.1145/3473938.3474506

Express, vol. 26, no. 8, pp. 10 914–10 929, Apr 2018. [Online]. Available:

http://opg.optica.org/oe/abstract.cfm?URI=oe-26-8-10914

[53] A. Thyagaturu, A. Mercian, M. McGarry, M. Reisslein, and W. Kellerer, “Software

defined optical networks (sdons): A comprehensive survey,” IEEE Communications

Surveys and Tutorials, vol. 18, no. 4, pp. 2738–2786, Oct. 2016, publisher Copyright:

© 2016 IEEE.

[54] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In vini

veritas: Realistic and controlled network experimentation,” SIGCOMM Comput.

Commun. Rev., vol. 36, no. 4, p. 3–14, aug 2006. [Online]. Available:

https://doi.org/10.1145/1151659.1159916

[55] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran, H. Kremo, R. Sira-

cusa, H. Liu, and M. Singh, “Overview of the orbit radio grid testbed for evaluation

of next-generation wireless network protocols,” in IEEE Wireless Communications

and Networking Conference, 2005, vol. 3, 2005, pp. 1664–1669 Vol. 3.

[56] G. C. Hadjichristofi, A. Brender, M. Gruteser, R. Mahindra, and I. Seskar, “A

wired-wireless testbed architecture for network layer experimentation based on

orbit and vini,” in Proceedings of the Second ACM International Workshop on

Wireless Network Testbeds, Experimental Evaluation and Characterization, ser.

WinTECH ’07. New York, NY, USA: Association for Computing Machinery,

2007, p. 83–90. [Online]. Available: https://doi.org/10.1145/1287767.1287783

[57] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar, “An integrated experimental environment for distributed

systems and networks,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, p. 255–270, dec

2003. [Online]. Available: https://doi.org/10.1145/844128.844152

[58] F. Hermenier and R. Ricci, “How to build a better testbed: Lessons from a decade

of network experiments on Emulab,” in Proceedings of the 8th International ICST

57

http://opg.optica.org/oe/abstract.cfm?URI=oe-26-8-10914
https://doi.org/10.1145/1151659.1159916
https://doi.org/10.1145/1287767.1287783
https://doi.org/10.1145/844128.844152

Conference on Testbeds and Research Infrastructures for the Development of Net-

works and Communities (Tridentcom), Jun. 2012.

[59] B. Lokesh and N. Rajagopalan, “Orchestrator for synchronizing network events in

sdns,” IEEE Transactions on Network and Service Management, vol. 18, no. 4, pp.

4365–4375, 2021.

[60] Pica8, “Openflow (open flow) switches in enterprise networks: Glossary definition.”

[Online]. Available: https://www.pica8.com/openflow-switch/

[61] ——, “Overlap flow.” [Online]. Available: https://docs.pica8.com/display/

PicOS21119sp/Overlap+flow

[62] Juniper Networks, “Junos operating system.” [Online]. Available: https:

//www.juniper.net/us/en/products/network-operating-system/junos-os.html

[63] Pica8, “Crossflow mode.” [Online]. Available: https://docs.pica8.com/display/

PICOS2111cg/Crossflow+Mode+Introduction

[64] IETF, “Rfcs.” [Online]. Available: https://www.ietf.org/standards/rfcs/

[65] ——, “Rfc 3697: Ipv6 flow label specification.” [Online]. Available: https:

//www.ietf.org/rfc/rfc3697.txt

[66] ——, “Rfc 2722: Traffic flow measurement: Architecture.” [Online]. Available:

https://www.ietf.org/rfc/rfc2722.txt

[67] Intel, “Intel ethernet converged network adapters x710 10 gbe.”

[Online]. Available: https://www.cisco.com/c/dam/en/us/products/collateral/

servers-unified-computing/ucs-c-series-rack-servers/intel-x710-product-brief.pdf

[68] ——, “Intel product compatibility tool find compatibility information for intel

products.” [Online]. Available: https://compatibleproducts.intel.com/

[69] Open Compute Project Foundation, “Open network install environment.” [Online].

Available: https://www.opencompute.org/wiki/Networking/ONIE

58

https://www.pica8.com/openflow-switch/
https://docs.pica8.com/display/PicOS21119sp/Overlap+flow
https://docs.pica8.com/display/PicOS21119sp/Overlap+flow
https://www.juniper.net/us/en/products/network-operating-system/junos-os.html
https://www.juniper.net/us/en/products/network-operating-system/junos-os.html
https://docs.pica8.com/display/PICOS2111cg/Crossflow+Mode+Introduction
https://docs.pica8.com/display/PICOS2111cg/Crossflow+Mode+Introduction
https://www.ietf.org/standards/rfcs/
https://www.ietf.org/rfc/rfc3697.txt
https://www.ietf.org/rfc/rfc3697.txt
https://www.ietf.org/rfc/rfc2722.txt
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/intel-x710-product-brief.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/servers-unified-computing/ucs-c-series-rack-servers/intel-x710-product-brief.pdf
https://compatibleproducts.intel.com/
https://www.opencompute.org/wiki/Networking/ONIE

[70] Edgecore, “As7312-54xs 3.6t data center switch.” [Online]. Available: https:

//www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=155&id=296

[71] . Polatis Inc, “Single mode network optical switch up to 32x32 ports,” Bedford,

MA, Datasheet, 2013.

[72] Polatis, “Data center networks - all optical

switches.” [Online]. Available: https://www.polatis.com/

data-center-colocation-network-optical-switch-solutions-cloud-computing-datacenter-low-loss-switches-cross-connect.

asp

[73] ——, “Polatis technology - directlight® beam-steering all-

optical switch.” [Online]. Available: https://www.polatis.com/

polatis-all-optical-switch-technology-lowest-loss-highest-performance-directlight-beam-steering.

asp

[74] Cisco, “Sfp.” [Online]. Available: https://community.cisco.com/t5/

networking-documents/sfp/ta-p/3116189

[75] Digikey, “Afbr-709smz 10gb ethernet, 850 nm, 10gbase-sr/sw, sfp+

transceiver.” [Online]. Available: https://media.digikey.com/pdf/Data%20Sheets/

Avago%20PDFs/AFBR-709SMZ.pdf

[76] ——, “Sfp10g-er 10gbase, sfp+, er, smf transceiver 1550nm, 40km reach, duplex

lc connector transceiver.” [Online]. Available: https://approvednetworks.com/

content/data%20sheets/transceivers/SFP%2010G/SFP10G-ER.pdf

[77] S. Srivastava, S. Anmulwar, A. Sapkal, T. Batra, A. K. Gupta, and V. Kumar,

“Comparative study of various traffic generator tools,” in 2014 Recent Advances in

Engineering and Computational Sciences (RAECS), 2014, pp. 1–6.

[78] “Packeth.” [Online]. Available: http://packeth.sourceforge.net/packeth/Home.html

[79] “Ostinato traffic generator for engineers.” [Online]. Available: https://ostinato.org/

59

https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=155&id=296
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=155&id=296
https://www.polatis.com/data-center-colocation-network-optical-switch-solutions-cloud-computing-datacenter-low-loss-switches-cross-connect.asp
https://www.polatis.com/data-center-colocation-network-optical-switch-solutions-cloud-computing-datacenter-low-loss-switches-cross-connect.asp
https://www.polatis.com/data-center-colocation-network-optical-switch-solutions-cloud-computing-datacenter-low-loss-switches-cross-connect.asp
https://www.polatis.com/polatis-all-optical-switch-technology-lowest-loss-highest-performance-directlight-beam-steering.asp
https://www.polatis.com/polatis-all-optical-switch-technology-lowest-loss-highest-performance-directlight-beam-steering.asp
https://www.polatis.com/polatis-all-optical-switch-technology-lowest-loss-highest-performance-directlight-beam-steering.asp
https://community.cisco.com/t5/networking-documents/sfp/ta-p/3116189
https://community.cisco.com/t5/networking-documents/sfp/ta-p/3116189
https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/AFBR-709SMZ.pdf
https://media.digikey.com/pdf/Data%20Sheets/Avago%20PDFs/AFBR-709SMZ.pdf
https://approvednetworks.com/content/data%20sheets/transceivers/SFP%2010G/SFP10G-ER.pdf
https://approvednetworks.com/content/data%20sheets/transceivers/SFP%2010G/SFP10G-ER.pdf
http://packeth.sourceforge.net/packeth/Home.html
https://ostinato.org/

[80] S. Avallone, S. Guadagno, D. Emma, A. Pescape, and G. Ventre, “D-itg distributed

internet traffic generator,” in First International Conference on the Quantitative

Evaluation of Systems, 2004. QEST 2004. Proceedings., 2004, pp. 316–317.

[81] U.S Navy, “Multi-generator (mgen) network test tool.” [On-

line]. Available: https://www.nrl.navy.mil/Our-Work/Areas-of-Research/

Information-Technology/NCS/MGEN/

[82] Cisco, “Trex realistic traffic generator.” [Online]. Available: https://trex-tgn.cisco.

com/trex/doc/trex vm manual.html

[83] ——, “Trex manual - hardware recommendations.” [Online]. Available: https:

//trex-tgn.cisco.com/trex/doc/trex manual.html# overview of trex

[84] Redhat, “Automated open vswitch pvp testing.” [On-

line]. Available: https://developers.redhat.com/blog/2017/09/28/

automated-open-vswitch-pvp-testing#create the loopback virtual machine

[85] Codilime, “A traffic generator for measuring net-

work performance.” [Online]. Available: https://codilime.com/blog/

a-traffic-generator-for-measuring-network-performance/

[86] ——, “Multinode trex wiki.” [Online]. Available: https://github.com/codilime/

trex-core/wiki

[87] N. Terzenidis, G. Giamougiannis, A. Tsakyridis, D. Spasopoulos, F. Yan, N. Cal-

abretta, C. Vagionas, and N. Pleros, “Performance analysis of a 1024-port hipoλaos

ops in dcn, hpc, and 5g fronthauling ethernet applications,” Journal of Optical

Communications and Networking, vol. 13, no. 7, pp. 182–192, 2021.

[88] A. A. M. Alraawi and S. A. N. Adam, “Performance evaluation of controller based

sdn network over non-controller based network in data center network,” in 2020

International Conference on Computer, Control, Electrical, and Electronics Engi-

neering (ICCCEEE), 2021, pp. 1–4.

60

https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/
https://www.nrl.navy.mil/Our-Work/Areas-of-Research/Information-Technology/NCS/MGEN/
https://trex-tgn.cisco.com/trex/doc/trex_vm_manual.html
https://trex-tgn.cisco.com/trex/doc/trex_vm_manual.html
https://trex-tgn.cisco.com/trex/doc/trex_manual.html#_overview_of_trex
https://trex-tgn.cisco.com/trex/doc/trex_manual.html#_overview_of_trex
https://developers.redhat.com/blog/2017/09/28/automated-open-vswitch-pvp-testing#create_the_loopback_virtual_machine
https://developers.redhat.com/blog/2017/09/28/automated-open-vswitch-pvp-testing#create_the_loopback_virtual_machine
https://codilime.com/blog/a-traffic-generator-for-measuring-network-performance/
https://codilime.com/blog/a-traffic-generator-for-measuring-network-performance/
https://github.com/codilime/trex-core/wiki
https://github.com/codilime/trex-core/wiki

[89] S. J. Arévalo-Cordero, P. L. Gallegos-Segovia, P. E. Vintimilla-Tapia, J. F. Bravo-

Torres, E. J. Cedillo-Elias, and V. M. Larios-Rosillo, “Data traffic management

in a hybrid cloud composed of openstack and azure,” in 2019 IEEE Colombian

Conference on Communications and Computing (COLCOM), 2019, pp. 1–6.

[90] B. Dwinanto and A. S. Arifin, “Integrated strategy framework to improve quality of

network on the bmkg communication network system,” in 2021 IEEE International

Conference on Communication, Networks and Satellite (COMNETSAT), 2021, pp.

244–251.

[91] R. Yunos, N. M. Noor, and S. A. Ahmad, “Performance evaluation between ipv4

and ipv6 on mpls linux platform,” in 2010 International Conference on Information

Retrieval Knowledge Management (CAMP), 2010, pp. 204–208.

[92] Y. Sharma, M. G. Khan, J. Taheri, and A. Kassler, “Performance benchmarking

of virtualized network functions to correlate key performance metrics with system

activity,” in 2020 11th International Conference on Network of the Future (NoF),

2020, pp. 73–81.

[93] V. J. D. Barayuga and W. E. S. Yu, “Packet level tcp performance of nat44, nat64

and ipv6 using iperf in the context of ipv6 migration,” in 2015 5th International

Conference on IT Convergence and Security (ICITCS), 2015, pp. 1–3.

[94] V. J. D. Barayuga and W. E. S. Y, “Study of packet level udp performance of nat44,

nat64 and ipv6 using iperf in the context of ipv6 migration,” in 2014 International

Conference on IT Convergence and Security (ICITCS), 2014, pp. 1–6.

[95] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng, L. Zhu, Z. Shen,

Y. Xi, P. Zhang, D. Cai, M. Zhang, and M. Xu, “Flow event telemetry on

programmable data plane,” in Proceedings of the Annual Conference of the ACM

Special Interest Group on Data Communication on the Applications, Technologies,

Architectures, and Protocols for Computer Communication, ser. SIGCOMM ’20.

61

New York, NY, USA: Association for Computing Machinery, 2020, p. 76–89.

[Online]. Available: https://doi.org/10.1145/3387514.3406214

[96] O. Michel, J. Sonchack, G. Cusack, M. Nazari, E. Keller, and J. M. Smith, “Software

packet-level network analytics at cloud scale,” IEEE Transactions on Network and

Service Management, vol. 18, no. 1, pp. 597–610, 2021.

[97] J. Rasley, B. Stephens, C. Dixon, E. Rozner, W. Felter, K. Agarwal, J. Carter,

and R. Fonseca, “Planck: Millisecond-scale monitoring and control for commodity

networks,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p. 407–418, aug

2014. [Online]. Available: https://doi.org/10.1145/2740070.2626310

[98] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics

of data centers in the wild,” in Proceedings of the 10th ACM SIGCOMM

Conference on Internet Measurement, ser. IMC ’10. New York, NY, USA:

Association for Computing Machinery, 2010, p. 267–280. [Online]. Available:

https://doi.org/10.1145/1879141.1879175

[99] Q. Zhang, V. Liu, H. Zeng, and A. Krishnamurthy, “High-resolution

measurement of data center microbursts,” in Proceedings of the 2017

Internet Measurement Conference, ser. IMC ’17. New York, NY, USA:

Association for Computing Machinery, 2017, p. 78–85. [Online]. Available:

https://doi.org/10.1145/3131365.3131375

[100] The tcpdump group, “Tcpdump and libpcap documentation.” [Online]. Available:

https://www.tcpdump.org/

[101] Zabbix LLC, “Zabbix - the enterprise-class open source network monitoring

solution.” [Online]. Available: https://www.zabbix.com/

[102] ——, “Zabbix docker containers.” [Online]. Available: https://blog.zabbix.com/

zabbix-docker-containers/7150/

[103] sFlow Org, “sflow.” [Online]. Available: https://sflow.org/

62

https://doi.org/10.1145/3387514.3406214
https://doi.org/10.1145/2740070.2626310
https://doi.org/10.1145/1879141.1879175
https://doi.org/10.1145/3131365.3131375
https://www.tcpdump.org/
https://www.zabbix.com/
https://blog.zabbix.com/zabbix-docker-containers/7150/
https://blog.zabbix.com/zabbix-docker-containers/7150/
https://sflow.org/

[104] Pica8, “Interface configuration commands.” [Online]. Available: https://docs.

pica8.com/display/PicOS37sp/set+interface+gigabit-ethernet+duplex+auto

[105] S. Committee, “SFF8431: Enhanced Small Form Factor Pluggable Module SFP+,”

Saratoga, CA, Standard, Jul. 2009.

[106] Pica8, “ovs-ofctl bundle.” [Online]. Available: https://docs.pica8.com/pages/

viewpage.action?pageId=3084115

[107] Wireshark, “tshark(1) manual page.” [Online]. Available: https://www.wireshark.

org/docs/man-pages/tshark.html

[108] Linux, “ip-route(8).” [Online]. Available: https://man7.org/linux/man-pages/

man8/ip-route.8.html

[109] S. Ha, I. Rhee, and L. Xu, “Cubic: A new tcp-friendly high-speed tcp variant,”

SIGOPS Oper. Syst. Rev., vol. 42, no. 5, p. 64–74, jul 2008. [Online]. Available:

https://doi.org/10.1145/1400097.1400105

63

https://docs.pica8.com/display/PicOS37sp/set+interface+gigabit-ethernet+duplex+auto
https://docs.pica8.com/display/PicOS37sp/set+interface+gigabit-ethernet+duplex+auto
https://docs.pica8.com/pages/viewpage.action?pageId=3084115
https://docs.pica8.com/pages/viewpage.action?pageId=3084115
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.wireshark.org/docs/man-pages/tshark.html
https://man7.org/linux/man-pages/man8/ip-route.8.html
https://man7.org/linux/man-pages/man8/ip-route.8.html
https://doi.org/10.1145/1400097.1400105

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Motivation
	Enabling technologies
	Optical switching technologies
	Centralized network management with SDN
	TCP congestion control
	Make before break and hitless network reconfiguration

	Related work
	Our goal and contribution

	Testbed architecture
	Management network
	Control network
	Data plane
	SDN approach
	Ryu controller
	OVS mode
	The concept of flow

	Testbed infrastructure and software tools
	Computing servers
	Electronic packet switches
	Optical switch
	Fibers and transceivers
	Traffic generators
	Packet sampling and network monitoring

	Experiments
	Testbed delays
	Optical switching: Transceiver locking, EPS polling and Optical switch delay
	EPS per flow insertion delay
	Orchestrator to controller RTT
	EPS Layer 3 switching delay

	Optical switching and make before break
	Data rate sweep
	RTO sweep
	Make before break approach
	Comparison between Make Before Break (MBB) and Optical switching (OST)

	Bandwidth Steering experiments

	Conclusions and future work

