Lawrence Berkeley National Laboratory
LBL Publications

Title
A DIRECT EULERIAN MUSCL SCHEME FOR GAS DYNAMICS

Permalink
https://escholarship.org/uc/item/5bw563b0Q

Author
Colella, P.

Publication Date
1982-02-01

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5bw563b0
https://escholarship.org
http://www.cdlib.org/

LBL-14104
Preprint

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Physics, Computer Science &

Mathematics Division

Submitted for publication

A DIRECT EULERIAN MUSCL SCHEME FOR GAS DYNAMICS

Phillip Colella

February 1982

RECEIVED
LAWRENCE
BERKELEY LABORATORY

MAY F 1982

LIBRARY AND
N0 MENI,L;_;QN

- | A
TWO-WEEK LOAN COPY

ThIS is a L:brary Circulatmg Copy
whtch ‘may be borrowed for two weeks.
For a personal retention copy, call
Tech. Info. Division, Ext. 6782.

—A

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

—{Z—:

Lo1b—en



DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California. ' '




w8

LBL-14104

A DIRECT EULERIAN MUSCL SCHEME FOR GAS DYNAMICS

Phillip Colella

Lawrence Berkeley Laboratory
. University of California
Berkeley, California 94720

February 1982

This wbrk was supported in part by the Director, Office of Basic Energy Sciences,
Engineering, Mathematical, and Geosciences Division of the U.S. Department of
Energy under contract DE-AC03-76SF00098. '



o

A-4 4

A T NATMONG T -

A DIRECT EULERIAN MUSCL SCHEME FOR GAS DYNAMICS
. Abstract

We present an extension to gas dynamics in Fulerian coordinates of MUSCL,

van Leer's second order accurate generalization of Godunov's method for gas

dynamics in Lagrangian coordinates. Unlike previous' extensions to Fulerian -

coordinates, which calculated a Lagrangian step, followed by a remap, the

bpresent method performs the calculation in a single step by sclving Riemann

problems and characteristic equations for the ﬂuxeé in the Eulerian frame. We
also make several simplifications in the formulation of the scheme, all aimed at
making a more robust, and, in some ways, more accurate scheme. We present

the results of test calculations in one and two space variables.



1. Introduction

In [7], van Leer described MUSCL, a second order accurate extension of Godunov's
method ([4].[5]) foi‘ sblving the gas dynamics in one space variablé in Lagrangian coor-
dinaies. Van Leer presentgd this Lagrangian SC_heme as the core of a multidimensional
Eulerian code, developed by van Leer.and Woodward [8]. One time step of a one dimen-
sional Eulerian calculation is done by performing a one dimensional Lagrangian step,
then mapping thé results back to a fixed Eulerian grid. The multidimensional algo-
rithm is obtained by using the one dimensional Eulerian algorithm with operator s_plit;
ting.

In this paper, we present a different MUSCL algorithm, based on some of the ideas
in [7], for computing gas dynamics in Eulerian coordinates in one space dimension.
The present algorithm is not formulated as a Lagrangian step, followed by a remap, but
performs the Eulerian calculationv in a single step. This diréct Euleriaii MUSCL beérs '
‘the same relation to the nonliriear Eulerian Godunov algorithm discussed in [11.[5]. as
the Lagrangian MUSCL does to Godunciv's method in Lagrangianv’coordi,nateé. Asin (7],

| the extension to mliltidimensional calculations is then performed using operator split-
ting. | |

Because we work in Eulerian coord_inéites, the engineering details are substantially
different for the direct Eulérian scheme than for ihe Lagrangian scheme. In p‘grticular.
dissipative mechanisms present in the latter are strongly diminishé'd, if hot.tot'ally .
absent, in the former, especially at piacés where one of the characteristic speeds van-
ishes. This, plus the additioiial 1ogic_involved‘with_ both solving the Riemann problerri
and tracing characteristics in the Eulerian' ffame, make fof a slightly more compli-
cated, but more accurate, algorithm than the simplest form of the 1D Légrange plus
remap MUSCL discussed in [7]. On the other hand, there is no remap to perform.
Turthermore, we introduce some simphﬁcations whose analogues are not present in

the'Lagraingian method In particular, we use the ‘simpliﬁed Riemann problem solver



" discussed ih [1]. Also, we derive the slopes of the distribdtions of the dependent vari-
ables fz;om the average values, rather than treating them as separate dependent vari-
ables, as was dene in ihe code which generated the results presented in [7]. The inter-
polation algorithm for deriving the slopes is slightly more complieated than the second

order central difference algorithm discussed in [7], but again yields more accurate

results. Thus the present one dimensional algorithm is compatible with any multidi-

mensionel Eulerian code which performs its hydrodynamics calculation in a series of
one-dimensional passes. In the end we find that the results obtained using the direct
Eulerian algorithm are comparable to, if not somewhat better than, those obtained

with the _Lagrange plus remap code.

i 1 8 Descript.ioh of the method.

We will be constructing approximate solutions to Euler's equations describing the
motion of an inviscid compressible fluid in one space variable r:
aU | 8(AF) | 8H

st tov T ar C

| o
pE

(2.1)
pU

2
F(U) = ﬁ:fu
PUE +up

.
H(U) = 13 .
0

Here V= V(r) is a generalized volume coordinate, A(r) = % These equations

posy



describe one dimensional inviscid compressible flow with either planar, cylindrical, or
sphericai symmetry, or flow in a duct whose cross-section at r if A(r), vdepending on

. . 2 3 r ) . .
whether V(r) =, Zz-— 13— or fA(r)dr, respectively. Here p is the density, u is the
: Ty . ‘ : .

component of velocity in the direction of the one-dimensional sweep, v is the com- -
ponent of velocity orthogonal to u (hereafter, u and v will be referred to as the velocity
and transverse velocity, respectively), and E is the total energy per unit mass.' We

define e, the internal energy per unit mass, and p, the pressure, as -

e =B~ +(uiv?) p=(y-lpe

where v is the ratio of specific heats. Throughout this paper, ¥ will be assumed to be a
constant, y>1 (polytropic _gas); vao,r a. discussion of the modifications required for a
more general equation of state, see Colella and Glaz [2]. "

There are several other derived quantities Which will be of interest: T, the specific

‘volume, ¢, the speed of sound, and A, o, the three characteristic velocities: _

r=7(U) =1—

A;» = A\ (U) = 'u..‘i-‘c.
A(U)=u .

Let At be a time increment, 7.3 the bouhdary between zones j and j+1, and
define Ty = %(rﬂ*} Ti ), A'rJ- =Ty —'rj_x. ' Wg assume that, at time ¢, we know UF,

the averages of the conserved quantities across each zone:

1 Tih
Uf = — [ Ulr,i™)dV.



We wish to compute UP+1, the averages of the conservedquantities at the new time

tn¥l = fn 4 AL
1 Ti+4 '
U}wl f U r tn+l)dV
AV Ty %

In outline, the procedure followed by MUSCL for c_alc_uiat_ihg U}”% can be divided
into five steps: | | '

1) Compute linear profiles of the dependent variables in each zone by interpolat-
1ng slopes at the centers of zones, subject to certain monotomc1ty constraints. This
gives rise to a global dlstrlbutlon of the dependent variables which is piecewise linear,
linear in each zone, with jump discontinuities at the edges ef Zones.

2) Compute U,",% the solution at the old time at the edges of zones, by solving the
Riemann problems which resolve the jump discontinuities at the edges of the zones.

' 8) Compute U,"Jj{ an appr‘okinia‘tioh to the solution at tﬁe evdge of the zones at the
new time, by ‘tracing approximate ‘characteristi¢s, and solving difference approxima-
tions to the characteristic equations. "

4) Compute time-averaged values of F and H, using the values computed in 2) and
3), and the following formula: |

gntl

_ F;-m'_ (F(U“+”)+F(U"+’§{))— f F{U(7y .t)dt +0’(At3+Ar,-2At)
' At g+l a
Hyy= S-(H(Uny) + H(URY)) = J H(U(rj.y.t))dt + O(At3+AL ATE)
B ) ‘ﬁ '

5) Calculate the conserved quahtities using divided differences of the values cal-

culated in 4):

nvt_ rm A~ AaFiy  (Hjuy — Hiy) '
o= Y7 br; ‘ (2:2)



8% = Vi) = Virs-9)

Clearly, most of the work in this algorlthm is in steps 1) - B) We will proceed to

v describe those steps in more detall

_ Step 1: Interpolation’ of Slopes

Given our dlscrete data U}, we will 1nterpolate a global descrlptlon for our depen— -

dent variables at all points (r,£") which is piecewise linear, and linear in each zZone;

q(r) =g + 6g; (TA;:" ) (2.3)

TJ—% <r '< 'rj.,.%
Here q = q(U) representé any useful flow variable, conserved or not. Fdr g = p,p',:u,'z),
we will take g7 = g (UF), and construct. the slopes dg; by a suitable difference formula.

The_ distributions of other quantities s =vs(p,,.o,u,'u) are then derived from those of

p.p.4,v in the following fashion:

qﬁm—4,+%%,%%3—,ﬂ g g =Py

Sj+4s = SPjay.5.05 445 Uj s Vjsns) S =L.FE
0s; = (Sjuy1 — S;-uR)
po 1 ' |
7= 5 (Sir * Sj4R)

'('r—-'rj)'

s(’r)_=s}‘ + 6sz

7% <T <Tiu ‘ (2.4)

In the case of equally.spaced zones Ar; = Ar, dq; is 'calculétéd uSihg the following two-

step algorithm. We first calculate d,g9;, a first guess to the ‘slope using the

-
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monotonized central difference algorithm discussed in [7].

Gum@; = min(| gf—q*| . [ g7 ~gf 1) - R if (qf1 —g7)(9f'~q51) > O
=0 otherwise
| 1gin—g5l |
bpg; = mm[—’”z—L. Brim@; | X SGM(2511-5-1) - (2.5)
Finally, we calculate éq; by differencing the values at two points on either side of r .

obtained by using the interpolant given using 6 79 as the slope:
_ .18 1 1
6g; = min 3—| 9in— s 9j+17951~ ;07951 | Blim@; 1sgm (g1 — g5-1)

0g; = 6(qj-2.-. qj+2) _ (.8)

To obtain dq; in the case of unequal zones, calculate 3q,-=6(q,-_2,,..,qj+2).

ér; = 6(rj_z,....,Tj+2), using (2.6) . Then we calculate

|5‘b | 2] Qj+1"q1'| 2"1j“1j—1| 1 ' :

0g; = Ar; rmn[

In the case where the minima in (2.5)-(2.7) are obtained in the first arguments, one

obtains

2
[3 (@5 +1-95-1) ~ (q,+z q,-z)]

2 1,
[ 7‘;+1—”‘J a) = 1z ("'j+2—"'j—z)]

; and thus is well

which is a fourth order finite difference approximation to %—hj

behaved in regions‘ where the sblutioh is smooth. The fact that dq; is obtained from

6rq, a monotonized first guess, gives rise to steeper profiles representing discontinui-

" ties than those obtained using either the fourth-order accurate formula by itself, or by

setting dg; = 6, g;. as was suggested in [7].



There are situations, however, in which the above slope setting procedure leads to

profiles wk}ich are too steep, in the sense that the scheme will-not-provide-sufficient— ——

dissipation to ensure that the correct amount of shock heating occurs. This sitliation'
arises when the speed of the characteristic of the family associated with the shock

changes sign across the shock, i.e., where the shock is nearly stagnant. In such situa-
tions, the calculation remains stable, but there is a small amplitude (: 5% ), low fre-

quency error in the post shock values g‘enerated. at the shock. In this case, we reduce
the slopes computed by the above procedure by some fraction S;, 0<.S;<1:

8gedwed = 5q;S;. We want S; to have the following properties If the j% zone is not

‘inside a shock, or if the 7% zone is inside the shock, but the speed of the characteris-

tics of the family associated with that shock doesn't change sign, then S; = 1. If the f i
zone is inside a shock having zero velocity, then S; = 0, thus reducing the m'ethod
locally ﬁo Godunov's method. Intermediate cases should have an intermediate arﬁpunt
of ﬂéttening. Finally, Sj = 1 if there is not the possibility of a 's.igniﬁcani: amount of

shock heating across the zone. The formula given below for S; satisfies the above

requirements.
1 1
WE = |pje—pjal/ | - I
! d ! Pj+1 Pi-1
§; = sgn (Pj—t —Pj+1)
Aj'+ = uj+'1+sjcj+1f, >\J— - J-_1+SjCJ'_1
W;
U = s T SiUirey
J‘+ Bj
_ | Us |
J
Sj

T TG T Fmin(iAeT D)

| Pj+1—Dj—1 |
min (p; ¢ 1.0j-1)

if ép— ' Aj'.p'}\j'_“. and (uJ'+l“‘uJ'_1) <0



= 1 otherwise

S; = max(O,l—(l—gj)/’r}) .

Here 0 <® =<1 and &, is the minimum pressure jump which would be considered a

shock; in the calculations presented heren = é— &y = i—

Steps 2-3: Calculation of Interface Values

We must calculate Uy, URY, approximatevw}alues to the solution at the old and
new times, at the zone edges "rj,% To obtain Uf4y, we calculate the solution to the
Riemann problem (for a detailed discussion, see Colella [1], and the rreferences cited

there). As is well known, the solution to thé Riemann problem with left and right states

T

U, Up is h( %,UL,. Ug); i.e., it depends on 7.t only in the ratio 7

To calculate Ulyy, we take oﬁr states
UL 2« Up = Ulyr . Uliyr
(;ee figure 1), and set
Ul = h(0; UL, Up)-.

If U™(r.t) is the exact solution to the initial value problem given by the global piece:

wise linear distribution (2.3), then lim U™(r; t) = Ul
' - tatn

As was the case for the Fulerian Godunov's method, the app‘rbximate Riemann
problem solver described in [1] appears to be both inexpensive and sufficiently accu-

\

rate, without introducing rarefaction shocks into the solution.
To calculate UP'*!, we solve a finite difference approxirnation to the characteristic
"equations, which we review briefly below. Given a solution U(z,t) to (2.1), we say that a

curve 0.9 - (r(0.0).t (0.0)) is a characteristic of the +,-,0 family if U is continuous in a



s

neighborhood of that curve, and if the following ordinary differential equations hold

dr _ dt :
dore Aso e 1 (38)*'.0

1o dp , du A =
pc doiidai*-,A uc =0 (R.9),

dr _ __1 _dp
dO’g (pc)z dUo

(9o .

| Here ds__ —g—ts (r(0).t(0))) and-all functiorts of (r,t) are evaluated at (r (o).t (¢)).

do do
The equatione (2.8),(R.9) completely describe the solution in regions where U is
continuous or near contact discontinuities. However, in the neighborhood of a shock,
the equations (2.9) novlonger hold along the curves described by (2.8), and some

modification to the equations must be introduced which takes into account this fact.
-Our strategy for calculating UMY »proceeds as follows, considering, for the

moment, the case V%E-O. First, we find approximations to the paths described by

(2.8),,0 which 1ntersect the point (7;,3t™*?), taking due care to trace backwards to the
orlgms of centered rarefactlon fans 1f ('rJ apt) t > t" is inside such a fan. Then we cal-
culate U“;g‘ in three stages. First, we solve a pair of nonlinear algebram equations for
PRy uly . given the values of the solution at the base of the +,- characteristics.
These are the same 'non]inear algebraic equations ‘as those for the values of p,u
between the two sonic waves in the Riemann problem w1th left and rlght states, given
by, respectively, the values of the solution at the base of the + and - characteristics.
Intuitively, what we are doing is lumping all the waves S of the + (resp -) family which are
crossed by the - (resp +) ehafacteristic into a single shock or rarefaction shock jump.
In the case where the vsoluti-on is continuously differentiable, we obtain a nonlinear
finite difference atpproximation to (2.9)-1. If the solution is not smooth, this procedtlre
gives values for p2¥ | u}‘;‘,}_which ere well behat'ed. We then solve an explicit equation

for the p/tY}, given the value of the solution at time £® and that of pft}}, which again
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lumps the pressure wave crossing the streamline into a single shock or rarefaction
shock. In the limit that the pressure jump is small, we s1m11ar1y obtain a solution to a
finite difference approximation to (2.9)e. Finally, vJ%¥ is just set equal to its value at

the base of the apprommate characteristic of the O-famﬂy.

We now give the details of the procedure outlined above. First, we want to deter-
mine points (7;.y4.t™) such that (é’j%# ™) and (rj,y,t"*1) are connected by a straight
line which approximétes a solution to (2.8);. To this end, we define Ar{iy, . s'" ., iy,

(AT 6;}’;“ . g =p.pu,v Ny, as follows:

(@finp . 60finp . Orfiny . sfing) = (@5-1.8qbri.m5-01) it N(URY) = &t

= (g7.0q;.Ar5.15,—1) if Ng(URY) < —f

These are the quantities which describe the linear distribution of the dependent

variables in the zone which contains (r,-,%#,t"). Throughout thls discussion, we will

‘take £* = £ > 0, £2 = 0, where £ is chosen such that |A\y(U4y)| < &f implies that the

value of the solution to the Riemann problem at (r;.%t™) being taken on inside a cen-
tered rarefaction fan of the # family. In that case, we use a different procedure, trac-
irig characteristics of the # family back to the Riemann problem originating at

(Tj+%,tn). .

At
_% sJ"‘%# + }\Jt*"ﬁ# Ar tr
d =
At
1+ 6\F Y v
TRE A Ty thi
TJ’H&-# = m—s”*#max(m'm( d, %), H)arfiy, : (2.10)

In the case where the mamma and minima are obtamed in their first arguments,
this is a formula for the pomt where a straight line with slope Ag( 754 ) passmg.
through the point (r %t"“) intersects the line {f = £} (ﬁgure 2). If we were integrat-
ing a single conservation law, this line would coincide exactly with the characteristic

through (1‘,-+;€.f"+l), given that the characteristic velocity had the linear distribution
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given by (2.4). To the extent that we use (2.10) for a system;'we are neglecting the

______ ___ effectof the interaction-between waves-of different families on the wave speeds in trac- .

ing th_e characteristics. This introduces an O(Arfiy 4At) error into the value of Tishp

‘The maxima and minima which appear in (2.10) constitute a convenient choice for

Tj+4 for certain pathological cases which occasionally occur in the course.of the cal-
culation.

‘Given 7444 We can also define g;.y4, the value of the solution at the base of the #

characteristic passing through ('r;,-,,%,t"*‘):

' g — Ty,
Givpg = 9 (Tjang) = qfonp + ‘:+%;3# s I
: i 4

69 iuy

g =p.,puv

_In the case where | AR5l < ¢#, we assume that the characteristic of that family

pas's,ing‘vthro'ugh (rj+”,t") originates from the Riemann pr(;blem at ('rj,%t"), and we

define 7.4 . §j+u4 accordingly:
Tishp =Tivh. Gepp=qh% I =PPUY . o (211)

Given g4, 9 =P.p Y, # = 0,+,—, We can now express AT IS ATRETLATIETHATI
terms of thQSe quantities. First, we réquire that ptY .'u}‘,dgﬁl satisfy the pair of equations

(PJ"‘J}{1 "Pja%t) ‘
W(PJD;Z‘ -Pj+}§,bpj+}ﬁ,t)

t (UJ!?’;{‘ _ujf}ﬁ,i) =0 . (2-'12)

. o +1 p°
W p.p) = (ypp(l + % %)”-

I |Pjans —Pianl o | Ujsns — Ujsy| are O(Ar; , Ariy,), then this is just a finite difference

approximation to (2.9),. If either the quantities | Py —Pjp—| « 14— — Uy | is
O(1). then we -have the interpretation of the equations (2.12) given above. The equa-

tions (2.12) for p™*!,u™*! are exactly the ones given in [1] for the central pressure and

“velocity for the approximate Riemann problem solver given in [1], and the iteration



12

scheme given there can be used to solve (2.12) for p™*1 un+1,

- The values for p] “”‘ vty are given by the following explicit expressions:

(PrY —Pipo) |
P40 W(PJ" W Pj Py i) )

‘(2'.13)

Pl =

viY = Viapo -

In the case where A’ # 0, we waﬁt to include the effect of the source terms in the
calculation of p™*1,p "’;l.u'““l.'u"“”l Let p™*!, Z™*!, be the values obtained by the pro-
cedure leading up to the equations (2.12) i.e., not including the effect of source terms.
We obtain pY . ulY . by solving the following set of linear equations, which appr”oxi-

mate (2.9),

N, Alriegs)
(p;+§£1 pj+}£,;t) j: J+¥ j+%_,t) + A(?"J *:,i) u‘] +¥%, :tCJ+}$_,i-. 0

Where W, = W(p,,%’ ,p,,%i.p,,%t) and cjyy: = €(Tj4p+) have already been obtamed »

above in calculating the solution without source terms.. After a little algebra, one finds

. _ A ('rj.'.%'.'.) A’ (TJ +% ) W+ w_
Py =PIy - AT m0) Uik +Cisspr ¥ A(r k) Uik J+% At Wy + W-

(2.14)

_- At (W A(rjg) WA (ryape) |
n = qgntl It~/ .. . — J 7 . 3
'”'J+§€1 Uik Yy W- | Alrsepo) i +5%,-Cj+¥~ Alrsaps) U+ G

Given pltY . ultY the values for the other variables are obtained using (2.13)

This completes the calculation of Uly, UrY . These are then inserted into (2.2) to
obtain the U}*!, the conserved quantities at the new time. The time step Af must
satisfy the usual CFL condition for in order to insure stability:

Ar;

: - '(2.15)

At < 0 max
i [|u_,”| +cf

Where 0 <o < 1. The szﬁallest. o for which (2'.15) is satisfied is called the CFL numbef for

that time step of the calculation.
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III. Numerical Results

Bbundary Conditions .

vIn order to calculate U;™*', j = My, ..., Mg, it suffices to specify g7, (6g9);.
i=M-1, ... ,MR+'1." Then one has éufﬁcient data to calculate UJ"% U;‘,,*;{
j=M-1 ... , Mz, and the Uptl's. 1If we can specify qf, j = M3, . .. . . Mgp+3, then it
follows from (2.6)vthat we can caléulate 0g;. j = M-t ;MR+1. In one dimeﬁsion,

or for two-dimensional problems for which the boundaries are aligned with the mesh

directions, this is straightforward.‘ For example, for the léft boundary, we have

" Reflecting Wall: ~ gy, = quyu-1.0 = 123,9 =ppv iug = ~ Uy

Continuation: qHL_'; = QMLH.—lq’.: ppuv ,1.=123,

Inflow: . gl =go(t").1=123,9 =ppuv, got)given .

. .For__’a reflecting ‘wall, we have chosen to change the slope limiting progedgire
slightly. We allow the values extrapolated to the wall to _také ‘on the values which are
obtairied at the wall by solving a Riemann prdblem’ with left and right states
(U, Ur) = (UR, -1 . Un,)- This procedure seems to improve the resolution of shock
reflections in multidimensional calculations.

Specifically, if we define pyn, to be one of the roots of

ug W '(PuméPML'?ML.)z — (Prim—Px,)?> =0 ' , (3.1)

where phm;is the root §po if uy, ; 0. Then we define

. : »
1 DPim—PH, ]
P, we J '

Ulim =0, Piim =
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These are used in the equations for dliquL.ML—l’ g =p.pu.

OlimQu, = Vnin(élqy,,—'qg“xl + Aqu, ~qund) if (907, ~F1im)(Qltim—quz, +1) >0
= 0 otherwise | |
6hquL—l = min (Jqu, — 0, - -l ZI‘IHL—‘IhmD if (tm,, ~Qlim)(Ftim—9a,-1) > 0
. =0 othermse
The correspondmg procedure for a reﬁectmg wall at MR is obtamed by exchanglng
><in choosing the root of (‘3.1), and replacing ML+1, My, ML.—l with Mp—1, Mg, MR+1.
It 'u.y — is the axis of symmetry for a cyhndrlcally or sphemcally symmetrlc prob-

~lem, then we treat it as a reflecting wall except’ ‘that the geometnc source terms

tuc A—in the characteristic equations (2.9) are set equal _td zero in calculating UH:_I” ,

A
e g% = O

Finally, in the diveréing duct problémvdiscusse‘ci bélow we. use a charactefistic
boundary condition at the right-hand side of the duct The dens1ty Do is. spec1ﬁed to be
- a ‘constant at the right end of the duct. Then as a functmn of time values of pu are
speclﬁed usmg the characteristic equatlons usmg the assumptmn that the —,0 charac-

teristics pomt. to the mght

PHg+l = Po

(pMR+j _pﬂﬁ)

Uy +j = Uy, — —
lR+j R Pt

1 : :

(3.2)

©,
B
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Test Problems

Thié method has been tested on a x}ariety of test problems in one space dimension,
including shock tubes in Cartesian, cylindrical and spherical geometry. Results were
obtained for' one dimensional problems which were indistinguishable frofn those shown
in [7] and [1], obtained using the Lagrange plus remap MUSCL.k This method has also
been used to calculate the“oblique reflection ofla shock agaiﬁst an inclined plane in two |

space variables [11] , successfully resolving multiple Mach stem configurations.

We present here two test calculatioﬁs. As a one-dimensional test problem, we cal-
culated the steady state solution to the duct flow problem in Shubin, Stephens, énd
Glaz [6], marching in time until the steady state was reached. The duct is specified by
A7) %1.398 + .347 tanh(.Br — 4), 0 < r <10, with boundary conditions |

p(0,t) =.3809 , p(0,t) =502, w(0,t) = 1.299 ; p(10,t) = .776 t =0

‘The initial conditions are given by setting g (z,0) = q('0,0). i.e, impulsive start.
Inflow boundary conditions are imposed at the left boundary, and Ithe characteristic‘

boundary conditions (3.2) are imposed at the right' boundary. The density prdf_iles at

t = 200 are shown in. figure 3, for Ar = %and Ar = % plotted as a dotted line, with
circles at the data points. This is to be compared with the exact solution, plotted as a
solid line. We obtain good agreemernt with the exact solution, even for the coarsely v

zoned calculation.

We also calculated the two dimensional Cartesian shock reflection problem used by
van Leer [7] as a test problem for the Lagrange plu's'remap versions of MUSCL, see also
Woodward and_Colellé [8]. The computational domain is a channel of length 3 in the x
direction, and of width 1 at the left end in the y direction, with a step of height .2
extending to the right beginning at x=.6 . The step and the upper and lower walls of the
channei are reflecting boundaries, with a Mach 3 uniform inflow on the left, and con-

tinuation boundary conditions on the right. The initial conditions are that of uniform
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flow throughout the channel:

p(z,y.0)=1,p(z,y,0) = 1.4, u,(z,vy”.O) =3, u(zy0)=0

In figures 4 and 5, we show the pressure and density contours of the solution at
t =4, with Az = Ay = .1 and .05, respectively. The first shock reflection point along
the upper wall has been seen in other: calculations to be a Mach reflection, located
directly above the edge of the step. The present calculations obtain the correct; loca-
tion of the reflection pbint, although the Mach stém in the Az = .1 is two zones long;
consequently, the slip_line extending to the r_ight from the triple point is not resolved,
as it is in the Az = .05 calculation. The other reﬁeéted shocks are well resolved in both

calculations, even though they are quite weak.

These results represent an improvement. over - the fhe results in [7] in two
respects. First, the overall resolution of the shocks, particu_larl); in the Az = .1 calcula-
tion, is substantially better. Second, the numerical boundary layer generated at the
corner along the upper surface of the step is far weaker thaxi that generated in the
Lagrange plus remap results. In the latter calculation, the boundary layer separates at
z = 1, changing somewhat the shock pattern downstream. The numeérical boundary

" layer does not separate in the present calculations. -

These th dimensional problefns were run on the Cray I at LLNL using a fully vec-
torized implementation of the algorithm, the Az = .1 calculation taking .066 minutes to
run 194 time steps, and the Ar = .05 calculation taking .38 minutes to run 376 time
steps. However, the vector lengths in these calculations were that of the number of
~ zones in a one dimensional sweep, and were hence too short to observe the full speed of
a fully vectorized calculation on the -Cray. A more typical speed for larger problems ié

20 us / zone / time step / dimension.
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IV. Discussion and Conclusions

The direct Eulerian MUSCL ealgorithm described above follows the basic conceptual
framewark given by van Leer for the Lagrangian MUSCLvscheme. There are, however,
substantial tééhnical differences, ail aime'd‘at producing a.mere robust, and in certain
ways, simpler scheme. A central feature to the engineering of the scheme is that of v

solving the characteristic equations (2.8)-(2.9) directly, rather, as in [7], than deriving
a formula based on Taylof expansions, for. the tinie derivative of the flux. The present -
approach niakes it much easier to account correctly for sonic points in rarefaction
waves (2.11), to introduce tracing characteristics forward in time (2.10): and to exploit
the duality between thé Riemann problem and the characteristic equations for gas
dyfiamics by introducing the nonlinear algorithm for calculating UY . The latter two
_procedures were essential for calculating strong shocks with CFL numbers close to 1,

and appear to be necessary for Lagrangian calculations using MUSCL as well [10].

We have presentevdv hefe the basic framework for extenaing the Lagrangian algo-
‘rithm of van Leer to Eulariaa gasldynamic's.: ThlS approach can be easily modified to an _
arbitrary rrioving coardinate system, in one dimension, or a moving rectangular coordi-
nate system in more than one dimension. .A central issue which remains _to'be' fully
.r’esoived for this method, as well as other higher order extensions of Godunov's fnet.hod
1s controiling the behaViar of' such schenies when one of the characteristic speeds,
measured relative to the mesh 'm.otio'rll, vanishes. ".I‘he treatment of sonic centered
rarefactio_n waves alad the flattening of slopes at stagnant shocks constitute a first step,
: bﬁt more work is required.} A fuller analysis of these problems will appear in [3], along

with some proposals for ameliorating them.
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Figure Captions

Figure 1. Spatial distribution of ¢ at initial time ™.

Figure 2. Approximate solution to the characteristic equation of the # family.

Figure 3. Stead}lf state densilty' profiles for one dimensional duct problem: a)
Ar = E‘b) AT=§'

Figure 4. Contour plots for two dimensional test problem, Az = .1. a) Density,
30 contours between .98 and 6.38.- b) Pressure, 30 contours between
1.11 and 11.6. : C

Figure 5. Contour plots for two dimensional test problem; Ar = .05. a) Density,

30 contours between .68 and 6.29. b) Pressure, 30 contours between

.72 and 11.8.
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