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A DIRECT EULERIAN MUOCL SCHEME FOR GAS DYNAMICS 

Abstract 

We present an extension to gas dynamics in Eulerian coordinates of MUSCL, 

van Leer's second order accurate generalization of Godunov's method for gas 

dynamics in Lagrangian coordinates. Unlike previous extensions to Eulerian 

coordinates, which calculated a Lagrangian step, followed by a remap, the 

present method performs the calculation in a single step by solving Riemann 

problems and characteristic equations for the fluxes in the Eulerian frame. We 

also make several simplifications in the formulation of the scheme, all aimed at 

making a more robust, and, in some ways, more accurate scheme. We present 

the results of test calculations in one and two space variables. 
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I. Introduction 

In[7], van Leer describedMUSCL, a second order accurate extension of Godunov's 

method ([ 4].,[5]) for solving the .gas dynamics in one space variable in Lagrangian coor­

dinates. Van Leer presented this Lagrangian scheme as the core of a multidimensional 

Eulerian code, developed by van Leer and Woodward [B]. One time step of a one dimen­

sional Eulerian calculation is done by performing a one dimensional Lagrangian step, 

then mapping the results back to a fixed Eulerian grid. The multidimensional algo­

rithm is obtained by using the one dimensional Eulerian algorithm with operator split­

ting. 

In this paper, we present a different MUSCL algorithm, based on some of the ideas 

in [7], for computing gas dynamics in Eulerian coordinates in one space dimension. 

The present algorithm is not formulated as a Lagrangian step, followed by a remap, but 

performs the Eulerian calculation in a single step. This direct Eulerian MUSCL bears 

the same relation to the nonlinear Eulerian Godunov algorithm discussed in [1],[5], as 

the Lagrangian MUSCL does to Godunov's method in Lagrangian coordip.ates. As in [7], 

the extension to multidimensional calculations is then performed using operator split­

ting. 

Because we work in Eulerian coordinates, the engineering details are substantially 

different for the direct Eulerian scheme than for the Lagrangian scheme. In particular, 

dissipative mechanisms present in the latter are strongly diminished, if not. totally 

absent, in the former, especially at places where one of the characteristic speeds van­

ishes. This, plus the additional logic involved.with both solving the Riemann problem 

and tracing characteristics in the Eulerian frame, make for a slightly more compli­

cated, but more accurate, algorithm than the simplest form of the 1D Lagrange plus 

remap MUSCL discussed in [7]. On tll_e other' hand, there is no remap to perform. 

Furthermore, we introduce some simplifications whose analogues are not present in 

the Lagrangian method In particular, we use- the simplified Riemann problem solver 
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discussed in [1]. Also, we derive the slopes of the distributions of the dependent vari-

ables from the average values, rather than treating them as separate dependent vari­

ables, as was done in the code which generated the results presented in [7]. The inter­

polation algorithm for deriving the slopes is slightly more complicated than the second 

order central difference algorithm discussed in [7], but again yields more accurate 

results. Thus the present one dimensional algorithm is compatible with any mUltidi-

mensional Eulerian code which performs its hydrodynamics calculation in a series of 

one-dimensional passes. In the end we find that the results obtained using the direct 

Eulerian algorithm are comparable to, if not somewhat better than, those obtained 

with the Lagrange plus remap code. 

·n, Description of the method 

We will be constructing approximate solutions to Euler's equations describing the 

motion of an inviscid compressible tluid in one space variable r: 

au + a(AF) .+ fJH = O 
at av or . 

u = [fi l 
F(U) = 

pu 
pu2 
puv 

puE+up 

H(U) = [i] 
dV 

Here V = V(r) is a generalized volume coordinate .. A(r) = dr. 

(2.1) 

These equations 

•3- J 

1...- ... J.· 

.•.. 
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describe one dimensional inviscid compressible fiow with either planar, cylindrical, or 

spherical symmetry, or fiow in a duct whose cross-section at r if A(r), depending on· 

2 3 T · 

whether V(r) = r, ~ , ~ , or J A(r)dr, respectively. Here p is the density, u is the 
ro 

component of velocity in the direction of the one-dimensional sweep, v is the com­

ponent of velocity orthogonal to u (hereafter, u and v will be referred to as the velocity 

and transverse velocity, respectively), and E is the total energy per unit mass. We 

define·e, the internal energy per unit mass, and p, the pressure, as· 

p = (y-1)pe 

where 1 is the ratio of specific heats. Throughout this paper, 1 will be assumed to be a 

constant, y>1 (polytropic gas); for a discussion of the modifications required for a 

more general equation of state, see Colella and Glaz [2]. · 

There are several other derived quantities whlch will be of interest: -r, the specific 

volume, c, the speed of sound, arid >..±.O• the three characteristic velocities: 

1 -r = -r(U) = -
p 

c=c(U)=~ 
P· 

>..o(U) = u . 

Let b.t be a time. increment, r 1 +* the boundary between zones j and j + 1, and 

define r1 = *(ri+M + r1"-*), t!.r1 = ri+*- ri--*·. We assume that, at time tn, we. know Uf, 

the averages of the conserved quantities across each zone: 

Tj+~ 

Uj = !!.~ J U(r,tn)dV. 
J TJ-M 
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We wish to compute UJ"+1, the averages of the conserved quantities at the new time 

tn+l = tn + !J.t: 

In.outline, the procedure followed by MUSCL for calculating Uj+l can be divided 

into five steps: 

1) Compute linear profiles of the dependent variables in each zone by interpolat­

ing slopes at the centers of zones, subject to certain monotonici~y constraints. This 

gives rise to a global distribution of the dependent variables which is piecewise linear, 

linear in each zone, With jump discontinuities at the edges of zones. 

2) Compute UJ"+}S., the soluti.on at the old time at the edges of zones, by solving the· 

Riemann problems which resolve the jump discontinuities at the edges of the zones. 

3) Compute Vf+~ , an approximation to the solution at the edge of the zones at the 

new time, by tracing approximate characteristics, and solving difference approxima­

tions to the characteristic equations. 

4) Compute time-averaged values of F and H, using the values computed in 2) and 

3), and the following formula: 

tn+l. ' 

H;+Yt = ~ (H( Vf+Yt) + H( UJ"+~)) = · f H( U(r;+}S. ,t))dt + 0(8t3+8t !J.rl) 
. tn 

5) Calculate the conserved quantities using divi.ded differences of the values cal­

culated in 4): 

( H; +Yt - H; --Yt) 
!J.r; 

(2.2) 
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Clearly, most of the work in this algorithm is in steps 1) - 3). We will proceed to 

describe those steps in more detail. 

Step 1: Interpolation of Slopes 

Given our discrete data llj. we will interpolate a global description for our depen­

dent variables at all points (r ,tn) which is piecewise linear, and linear in each zone: 

- n (r-:r;) 
q(r)-q; +6q; !:!.·. 

r; 
(2.3) 

Here q = q ( U) represents any useful flow variable, conserved or not. For q = p ,p,u ,v, 

we. will take qf = q ( Uf), and construct the slopes oq; by a suitable difference formula. 

The distributions of other quantities s = s(p,p,u,v) are then derived from those of 

p.,p,u ,v in the following fashion: 

(r-:r-) 
s(r)=s~+os· ' 

. . J J l:!.r· . J 
(2.4) 

In the case of equally spaced zones l:!.r1 = l:!.r, 6q1 is calculated using the following two­

step algorithm. We first calculate 61 q1 , a first guess to the slope using the 
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monotonized central difference algorithm discussed in [7]. 

6umq; =min( I qf+1 -qf I . I qf-qf-1 I) · 2 if (qf+l -qf)(qf-qf-1) > o 

= 0 otherwise 

(2.5) 

Finally, we calculate oq1 by differencing the values at two points on either side of r 

obtained by using the interpolant give11 using o 1 q as the slope: 

(2.6) 

To obtain oq1 in the case of unequal zones, calculate 6q1 = o(q1 _2 , ... ,q1+2), 

6r; = o(rj-2, ... ,Tj+2), USing (2.6) . Then We calculate 

In the case where the minima in (2.5)-(2. 7) are obtained in the first arguments, one 

obtains 

oq· -'-= 8r; 

which is a fourth order finite difference approximation to ~ I ri, and thus is well 

behaved in regions where the solution is smooth. The fact that oq; is obtained from 

o1 q, a monotonized first guess, gives rise to steeper profiles representing discontinui­

ties than those obtained using either the fourth-order accurate formula by itself, or by 

setting oq; = o,q;. as was sugges.ted in [7]. 

..... i 

·--· "; 
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There are situations, however, in which the above slope setting procedure leads to _ 

profiles which are too stee:e, in the sense that _the_ scheme-will-net-provide-sufiicient~-
--~--~- ~-~~ ---~--~- --- ~ 

f •• 

•,· 

dissipation to ensure that the correct amount of shock heating occurs. This situation 

arises when the speed of the characteristic of the family associated with the shock 

changes sign across the shock, i.e., where the shock .is nearly stagnant. In such situa­

tions, the calculation remains stable, but there is a small amplitude (~ 5% ), low fre-

quency error in the post shock values generated at the shock. In this case, we reduce 

the slopes computed by the above procedure by some fraction S;, 0 ~ S; ~ 1: 

oqjaucarJ. = oq; S;. We want S; to have the following properties If the jth zone is not 

·inside a shock, or if the jth zone is inside the shock, but the speed of the characteris-

tics of the family associated with that shock doesn't change sign, then S; = 1. If the jth 

zone is inside a shock having zero velocity, then S; = 0, thus reducing the method 

locally to Godunov's method. Intermediate cases should have an intermediate amount 

of flattening. Finally, S; = i if there is not the possibility of a s_ignitlcant amount of 

shock heating across the zone. The formula given below for S; satisfies the ~bove 

requirements. 

w~ = IP;+t -P;-tl 1 1-1 -- -
1 -1 

' P;+t P;-1 

W-
U· = _J_ + s. U· + 

J p. J ' •t 
J+ •t 
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= 1 otherwise 

sj = max(0,1-(1-Sj)l17). 

Here 0 < 17 ~ 1 and Ep is the minimum pressure jump which would be considered a 

shock; in the calculations presented here 17 = ~ , E:p = ! . 

Steps 2-3: Calculation of Interface Values 

We must calculate Vf+*-, u;:~, approximate. values to the solution at the old and 

new times, at the zone edges rj+*-· To obtain Vf+*-• we calculate the solution to ~he 

Riemann problem (for a detailed discussion, see Colella [ 1], and the references cited 

there). As is well known, the solution to the Riemann problem with left and right states 

U£, UR ish( ; , U£, UR ); i.e., it depends on r ,t only in the ratio ; . 

To calculate Vf+*-• we take our states 

(see figure 1), and set 

If un ( r, t) is the exact solution to the initial value problem given by t~ global piece~ 

wise linear distribution (2.3), then lime?(rj+*-•t) = Vf+*-·· 
· t.un 

As was the case for the Eulerian Godunov's method, the approximate Riemann 

problem solver described in [ 1] appears to be both inexpensive and sufficiently accu-

rate, without introducing rarefaction shocks into the solution. 

To calculate Uj+1, we solve a finite difference approximation to the characteristic 

equations, which we review briefly below. Given a solution U(x ,t) to (2.1), we say that a 

curve' a±.o --+ (r (a±.o).t (a±.o)) is a characteristic of the +,-,0 family if U is continuous in a 
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neighborhood of that curve, and if the following ordinary differential equations hold 

dr _A. a:;;--- ±,0 
±,0 

dt = 1 (2 8) 
da · ±.o 

1 d'" d:u A' - -=---± --+ -uc = 0 
pc da± da± .A 

d-r - - _1_ .!!:E_ ( ) 
d - ( )2 d 2.9 0 . a0 pc a0 

Here dd.s = dd (s (r(a),t (a))) and all functions of (r ,t) are evaluated at (r(a),t (a)). a a · 

The equations (2.8),(2.9) completely describe the solution in regions where U is 

continuous or near contact discontinuities. However, in the neighborhood of a shock, 

the equations (2.9) no longer hold along the curves described by (2.8), and some 

modification to the equations must be introduced which takes into account this fact. 

Our strategy for calculating Vf+~ proceeds as follows, considering, for the 

moment, the case ~~ = 0. First, we find approximations to the paths described by 

(2.8)±,o which intersect the point (r;+*,tn+l), taking due care to trace backwards to the 

origins of centered rarefaction fans if ( r1 +*• t) t > t n is inside such a fan. Then we cal­

culate Uj+}l in three stages. First, we solve a pair of nonlinear algebraic equations for 

pf+~ , uj+}l, given the values of the solution at th~ base of the +,- characteristics. 

These are the same. nonlinear algebraic equations as those for the values of p ,u 

between the two sonic waves in the Riemann problem with left and right states, given 

by, respectively, the values of the solution at the base of the + and - characteristics. 

Intuitively, what we are doing is lumping all the waves of the + (resp -)family which are 

crossed by the - (resp +) characteristic into a single shoc\c or rarefaction shock jump. 

In the case where the solution is continuously differentiable, we obtain a nonlinear 

finite difference approximation to (2.9h. If the solution is not smooth, this procedure 

gives values for PiN , uf+~ which are well behaved. We then solve an explicit equation 

for the Pf+~, given the value of the solution at time tn and that of Pi+~ , which again 
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lumps the pressure wave crossing the streamline into a single shock or rarefaction 

shock. In the limit that the pressure jump is small, we similarly obtain a solution to a 

finite difference approximation to (2.9)0. Finally, vf/~ is just set equal to its value at 

the base of the approximate .characteristic of the 0-family. 

We now give the details of the procedure outlined above. First, we want to deter­

mine points (r;t-Jt# ,tn) such that (r;t-Jt# ,tn) and (r;t-H•tnt-1) are connected by a straight 

line which approximates a solution to (2.B)n. To this end, we define ~rJ~H.# , str , rf+H.#: 

q}~H.#, oq}~Jt#, q = p,p,u,v,A,. as follows: 

= (q;.oq;.M;.r;.-1) if "An(UfN) < -e# 

These are the quantities which describe the linear distribution of the dependent 

variables in the zone which contains (r;+*-# ,tn ). Throughout this discussion, we will 

·take e± = e > 0 , e0 = 0, where e is chosen such that I A.11 ( Uf+H) I < e# implies that the 

value of the solution to the Riemann problem at (r;t-H•tn) being taken on inside a ceil., 

tered rarefaction fan of the # family. In that case, we use a different procedure, trac­

ing characteristics of the # family back to the Riemann problem originating at 

(2.10) 

In the case where the maxima and minima are obtained in their first arguments, 

this is a formula for the point where a straight line with slope ">-.11 ( r;t-*-H ) passing 

through the point (r;t-H•tnH) intersects the line ~t = tnJ (figure 2). If we were integrak 

ing a single conservation law, this line would coincide exactly with the characteristic 

through (r;+H,tn+ 1), given that the characteristic velocity had the linear .distribution 

\!;· 1 
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given by (2.4). To the extent that we use (2.10) for a system, we are neglecting the 

~---~ .-~ effecl-C>f the-interaction-between -waves-of different familte·suntne·wa.ve speeas in trac=---~-

.,. 

ing the characteristics. This introduces an 0(6.rJ~*.#llt) error into the value of r; +*-'#. 

The maxima and minima which appear in (2.10) constitute a convenient choice for 

r; +U for certain pathological cases which occasionally occur in the course of the cal­

culation. 

Given r; +*-.# we can also define q1 +*-.# , the value of the solution at the base of the # 

characteristic passing through (.,:;+*-•tn+l): 

q = p,p,u,v .: 

In the case where I A.l/.; +*- I < e#, we assume that the characteristic of that family 

passing through (r;+*-•tn> originates from the Riemann pr~blem at (r;+*-•tn>, and we 

definer;+*-.# , q;+*-.# accordingly: 

q=p,p,u,v. (2.11) 

Given qi+*-'ll, q = p,p,u,v, # = 0,+,-, we can now express Pi+)l ,pj+1f· uj/J, vJ"+V in 

terms of those quantities. First, we require that Pi++tf ,up+)! satisfy the pair of equations 

w(p·.p.p) = (f.Pp(1 + y2+1 p·-p~)*. 
?' p 

(2.12) 

If IP;+*-.+ - P;+*-1 . I u;+*-.+- ~i+*- I are O(fl.r; , fl.r;+l), then this isjust a finite difference 

approximation to (2.9)±. If either the quantities I Pi+*-+ - P;+*--1 , I u;+*--- ui+*-+ I is 

0(1), then we have the interpretationof the equations (2.12) given above. The equa­

tions (2.12) for pn+l,un+l are exactly the ones given in [1] for the central pressure and 

. velocity for the approximate Riemann problem solver given in [ 1], and the iteration 

-~·~ 
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scheme given there can be used to solve (2.12) for pn+I ,un+I. 

The values for pf/~,vj4( are given by the following explicit expressions: 

-1 

(2.13) 

In the case where A' # 0, we want to include the effect of the source terms in the 

calculation of pn+I,pn+I,un+I,vn+I. Let pn+I, u;n+I, be the values obtained by the pro-

cedure leading up to the equations (2.12) i.e., not including the effect of source terms. 

We obtain pJ"4l , uf+){ , by solving the following set of linear equations, which approxi­

mate (2.9)± 

1 · . A' (r; +*-±) 
-;f;-(pW f+){ -Pi+*-±) ± (uf+)/ - ui+*-±) + A(r· ) ui+*.±ci+*-± = 0 

± . . J +*,± 

Where W ± = W(:PNj{ ·Pi+*-±•Pi+*.±) and ci+*-± = c (r;+*-±) have already been obtained 

above in calculating the solution wit~out source terms.. After a little algebra, one finds 

(2.14) 

·u -n+l ~t W_A'(r;+*,-) . W+A'(r;+*.+) ]· 
uf+~ = ui+* + W W A( . ) ui+*.-ci+*--- A( ) ui+*.+ci+*.-+ + _ r3 +*.- r; +*.+ 

Givenpf+"jf , uf+ti the values for the other variables are obtained using (2.13) 

This completes the calculation of Uf+*• Uf+ti· These are then inserted into (2.2) to 

obtain the UJ"+ 1, the conserved quantities at the new time. The time step M must 

satisfy the usual CFL condition for in order to im;ure stability: 

[ 
l:!.r. 

M ::;:;; a m~x I n I ' n 
J Uj + Cj 

(2.15) 

Where 0 <a < 1. The smallest a for which (2.15) is satisfied is called the CFL number for 

that time step of the calculation. 

. ·. 

j. 
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ill. Numerical Results 

Boundary Conditions 

In order to calculate u1-n+t, j = ML .... , MR. it suffices .to specify qj, (oq)1, 

j = ML -1. ... , MR+ 1. Then one has sufficient data to calculate UJ'+Yt• UJ'N, 

j = ML -1, ... , MR. and the Uf+~>s. If we can specify qj, j = ML -3, ... , MR+3, then it 

follows from (2.6) that we can calculate oq1, j = ML ~1, ... , MR+ 1. In one dimension, 

or for two-dimensional problems for which the boundaries are aligned with the mesh 

directions, this is straightforward. For example, for the left boundary, we have 

Reflecting Wall: 

Continuation: 

Inflow: 

For a reflecting wall, we have chosen to change the slope limiting procedure 

slightly. We allow the values ·extrapolated to the wall to take on the values which are 

obtained at the wall by solving a Riemann problem with left and right states 

( UL, UR) = ( UJjc1 , Uu). This procedure seems to improve the resolution of shock 

reflections in multidimensional calculations. 

Specifically, if we define Plim to be one of the roots of 

(3.1) 

where Plimis the root~ Po if ugL ~ 0. Then we define 

1 Plim-pML . I ~-~ 
"tt]jm = {) . Plim = p ML - w2 
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These are used in the equations for 6nmq.ML,.ML-t' q = 'P ,p,u. 

= 0 otherwise 

= 0 otherwise 

The corresponding procedure for a reflecting wall at MR is obtained by exchanging 

>.<in choosing the root of (3.1), and replacing ML+l. ML, ML-1 with MR-1. MR, MR+l. 

If u.ML --M is the axis of symmetry for a cylindrically or spherically symmetric prob­

lem, then we treat it as a reflecting wall, except that the geometric source terms 

±uc ~ in the characteristic equations (2.9) are set equal to zero in calculating V]jt~, 
· -n+l - n+l. l.e., q.ML--Jf.-- qML-ti' 

Finally, in the diverging duct problem discussed below, we use a characte:i'istic 

boundary condition at the right-hand side of the duct., The density p0 is specified to be 

a constant at the right end of the duct. Then, as a function of time values of p ,u are 

specified using the characteristic equations, using the assumption that the -,0 charac-

teristics point to the right: 

(3.2) 

•. \ 
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Test Problems 

This method has been tested on a variety of test problems in one space dimension, 

including shock tubes in Cartesian, cylindrical and spherical geometry. Results were 

obtained for one dimensional problems whicl::i were indistinguishable from those shown 

in [7] and [1], obtained using the Lagrange plus remap MUSCL. This method has also 

been used to calculate the oblique reflection of a shock against an inclined plane in two 

space variables [11], successfully resolving multiple Mach stem configurations. 

We present here two test calculations. As a o'ne-dimensional test problem, we cal­

culated the steady state solution to the duct flow problem in Shubin, Stephens, and 

Glaz [6], marching in time until the steady state was reached. The duct is specified by 

A(r) =1.398 + .347 tanh(.8r - 4), 0 ~ r ~10, with boundary conditions 

p (O,t) =.3809 , p(O,t) = .502 , u(O,t) = 1.299 ; p( 10,t) = . 776 t '?:. 0 

The initial conditions are given by setting q(x,O) = q(O,O), i.e., impulsive start. 

Inflow boundary conditions are imposed at the left boundary, and the characteristic 

boundary conditions (3.2) are imposed at the right boundary. The density profiles at 

t = 200 are shown in figure 3, for l:!.r = 1~ and l:!.r = 3~, plotted as a dotted line, with 

circles at the data points. This is to be compared with the exact solution, plotted as a 

solid line. We obtain good agreement with the exact solution, even for the coarsely 

zoned calculation. 

We also calculated the two dimensional Cartesian shock reflection problem used by 

van Leer [7] as a test problem for the Lagrange plus remap versions of MUSCL; see also 

Woodward and. Colella [8]. The computational domain is a channel of length 3 in the x 

direction, and of width 1 at the left end in the y direction, with a step of height .2 

extending to the right beginning at x=.6. The step and the upper and lower walls of the 

channel are reflecting boundaries, with a Mach 3 uniform inflow on the left, and con­

tinuation boundary conditions on the right. The initial conditions are that of uniform 
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flow throughout the channel: 

p(x,y,0)=1, p(x,y,O) = 1.4, Uz(x,y,O) = 3, Uy(x,y,O) = 0 

In figures 4 and 5, · we show the pressure and 'density contours of the solution at 

t = 4 , with 6x = b.y = .1 a!fd .05 , respectively. The first shock reflection point along 

the upper wall has been seen in other calculations to be a Mach reflection, located 

directly above the edge of the step. The present calculations obtain the correct loca­

tion of the reflection point, although the Mach stem in the 6x = .1 is two zones long; 

consequently, the slip line extending to the right from the triple point is not resolved, 

as it is in the 6x :::: . 05 calculation. The other reflected shocks are well resolved in both 

calculations, even though they are quite weak. 

These results represent an improvement over the the results in [7] in two 

respects. First, the overall resolution of the shocks, particularly in the 6x = .1 calcula­

tion, is substantially better. Second, the numerical boundary layer generated at the 

corner along the upper surface of the step is far weaker than that generated in the 

Lagrange plus remap results. In the latter calculation, the boundary layer separates at 

x = 1, changing somewhat the shock pattern downstream. The numerical boundary 

layer does not separate in the present calculations. 

These two dimensional problems were run on the Cray I at LLNL using a fully vec­

torized implementation of the algorithm, the 6x = .1 calculation taking .066 minutes to 

run 194 time steps, and the 6x = .05 calculation taking .36 minutes to run 376 time 

steps. However, the vector lengths in these calculations were that of the number of 

zones in a one dimensional sweep, and .were hence too short to observe the full speed of 

a fully vectorized calculation on the Cray. A more typical speed for larger problems is 

20 J.J-S I zone I time step I dimension. 
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IV. Discussion and Conclusions 

The· direct Eulerian MUSCL ,algorithm described above follows the basic c"Onceptual 

framework given by van Leer for the Lagrangian MUSCL scheme. There are, however, 

substantial technical differences, all aimed at producing a more robust, and in certain 

ways, simpler scheme. A central feature to the engineering of the scheme is that of 

solving the characteristic equations (2.8)-(2.9) directly, rather, as in [7], than deriving 

a formula based on Taylor expansions, for the time derivative of the flux. The present· 

approach niakes it much easier to account correctly for sonic points in rarefaction 

waves (2.11), to introduce tracing characteristics forward in time (2.10): and to exploit 

the duality between the Riemann problem and the characteristic equations for gas 

dynamics by introducing the nonlinear algorithm for calculating Vf+}l· The latter two 

. procedures were essential for calculating strong shocks with CFL numbers close to 1, 

and appear to be necessary for Lagrangian calculations using MUSCL as well [10]. 

We have presented here the basic framework for extending the Lagrangian algo­

rithm of van Leer to Eulerian gas dynamics. This approach can be easily modified to an 

arbitrary moving coordinate system, in one dimension, or a moving rectangular coordi­

nate system in more than one dimension. A central issue which remains to be fully 

resolved for this method, as well as other higher order extensions of Godunov's method 

is controlling the behavior of such schemes when one of the characteristic speeds, 

measured relative to the mesh motion, vanishes. The treatment of sonic centered 

rarefaction waves and the flattening of slopes at stagnant shocks constitute a first step, 

but more work ts required. A fuller analysis of these problems will appear in [3], along 

with some proposals for ameliorating them. 
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Figure Captions 
Figure 1. Spatial distribution of q at initial time tn. 

Figure 2. Approodmate solution to the characteristic equation of the #family. 

Figure 3. Steady state density· profiles for one dimensional duct problem: a) 
1 1 

l:!.r = 16 b) l:!.r = 32 · 

Figure 4. Contour plots for two dimensional test problem, /j:z; = .1. a) Density, 
30 contours between .98 and 6.38. b) Pressure, 30 contour.s between 
1.11 and 11.6. · 

Figure 5. Contour plots for two dimensional test problem, /j:z; = . 05; a) Density. 
30 contours between .68 and 6.29. b) Pressure, 30 contours between . 
. 72 and 11.8. 
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