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Effect of Intensive versus Standard BP Control on
AKI and Subsequent Cardiovascular Outcomes and
Mortality: Findings from the SPRINT EHR Study
Paul E. Drawz ,1 Nayanjot Kaur Rai ,1 Kristin Macfarlane Lenoir ,2 Maritza Suarez ,3 James R. Powell,4

Dominic S. Raj,5 Srinivasan Beddhu,6 Anil K. Agarwal ,7 Sandeep Soman,8 Paul K. Whelton,9 James Lash,10

Frederic F. Rahbari-Oskoui,11 Mirela Dobre ,12 Mark A. Parkulo ,13 Michael V. Rocco ,14

Andrew McWilliams ,15 Jamie P. Dwyer ,16 George Thomas,17 Mahboob Rahman,18 Suzanne Oparil ,19

Edward Horwitz,20 Nicholas M. Pajewski ,2 and Areef Ishani 1,21

Key Points
� Identifying ways to prevent AKI may reduce mortality further in the setting of intensive BP control.
� Creatinine-based ascertainment of AKI, enabled by electronic health record data, may be more sensitive and

less biased than traditional serious adverse event adjudication.

Abstract
Background Adjudication of inpatient AKI in the Systolic Blood Pressure Intervention Trial (SPRINT) was based
on billing codes and admission and discharge notes. The purpose of this study was to evaluate the effect of
intensive versus standard BP control on creatinine-based inpatient and outpatient AKI, and whether AKI was
associated with cardiovascular disease (CVD) and mortality.

Methods We linked electronic health record (EHR) data from 47 clinic sites with trial data to enable creatinine-
based adjudication of AKI. Cox regression was used to evaluate the effect of intensive BP control on the
incidence of AKI, and the relationship between incident AKI and CVD and all-cause mortality.

Results A total of 3644 participants had linked EHR data. A greater number of inpatient AKI events were
identified using EHR data (187 on intensive versus 155 on standard treatment) as compared with serious adverse
event (SAE) adjudication in the trial (95 on intensive versus 61 on standard treatment). Intensive treatment
increased risk for SPRINT-adjudicated inpatient AKI (HR, 1.51; 95% CI, 1.09 to 2.08) and for creatinine-based
outpatient AKI (HR, 1.40; 95% CI, 1.15 to 1.70), but not for creatinine-based inpatient AKI (HR, 1.20; 95% CI, 0.97
to 1.48). Irrespective of the definition (SAE or creatinine based), AKI was associated with increased risk for all-
cause mortality, but only creatinine-based inpatient AKI was associated with increased risk for CVD.

Conclusions Creatinine-based ascertainment of AKI, enabled by EHR data, may be more sensitive and less
biased than traditional SAE adjudication. Identifying ways to prevent AKI may reduce mortality further in the
setting of intensive BP control.

KIDNEY360 3: 1253–1262, 2022. doi: https://doi.org/10.34067/KID.0001572022

Introduction
Intensive BP control increased risk for inpatient AKI
in the Systolic Blood Pressure Intervention Trial
(SPRINT) (1). In observational studies, AKI is associ-
ated with increased risk for multiple adverse out-
comes, including CKD, progression of CKD, ESKD,
cardiovascular disease (CVD), hypertension, and all-
cause mortality (2–8). Despite an increased rate of
AKI, intensive BP control in SPRINT reduced the risk
for cardiovascular morbidity and all-cause mortality,
as compared with standard treatment (1).

Adjudication of AKI in SPRINT was based on the
International Classification of Diseases diagnosis codes,

admission history and physicals, and discharge summa-
ries (9). A similar approach was shown to be only
approximately 20% sensitive for AKI in the Atheroscle-
rosis Risk in Communities (ARIC) study (10). In addi-
tion to the low sensitivity, AKI was likely selectively
ascertained in SPRINT, given that it was an open-label
trial. Although blinded adjudicators reviewed the dis-
charge summaries when available, clinicians and
patients were not blinded. It is possible that this bias
may have led to increased sensitivity to the presence of
AKI for patients in the intensive treatment group,
increasing the likelihood that AKI would appear on a
discharge summary. Finally, in SPRINT, AKI was only
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assessed in the emergency department (ED) and inpatient
settings. However, outpatient AKI is associated with a
similar increased risk for adverse outcomes as inpatient AKI,
and intensive BP control may increase risk for outpatient
AKI (11–14).
The unbiased rate of inpatient AKI and the effect of

intensive BP control on outpatient AKI in SPRINT are
unknown. Additionally, the effect of creatinine-based inpa-
tient and outpatient AKI on adverse outcomes is also
unknown. To evaluate the effect of intensive BP control on
creatinine-based AKI, we linked data from SPRINT with
electronic health record (EHR) data from 47 participating
clinic sites. The objectives of this project were to (1) evalu-
ate the effect of intensive versus standard BP targets on the
rate of inpatient and outpatient AKI, assessed via creatinine
values from SPRINT and linked EHR data; and (2) evaluate
the association of creatinine-based inpatient and outpatient
AKI on subsequent cardiovascular events and mortality.

Materials and Methods
SPRINT was a randomized, controlled, open-label clinical

trial. Between November 2010 and March 2013, 9361 partici-
pants were randomized to intensive versus standard BP
control, with target study visit systolic BPs of ,120 mm Hg
and ,140 mm Hg, respectively. The study was stopped
after a median follow-up of 3.26 years. EHR data from 47
clinic sites were linked with SPRINT data as part of the
SPRINT EHR ancillary study. Institutional review boards
approved the original SPRINT study and this SPRINT EHR
ancillary study protocol at each site. The SPRINT EHR ancil-
lary study adhered to the Declaration of Helsinki and was
conducted under a waiver of informed consent because it
only used existing trial and EHR data.

SPRINT Baseline and Follow-Up Data Collection
As previously described, data collected at baseline

included self-reported race and ethnicity (as required by the
National Institutes of Health [NIH]) along with other socio-
demographic information (1,15). Serum creatinine was
measured at the randomization visit; the 1-, 3-, 6-, 9-, and
12-month follow-up visits; and then every 6 months. The
2021 Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) study creatinine-based equation was used to cal-
culate eGFR (16). Trained study coordinators followed an
American Heart Association–adherent protocol to measure
BP (17). Participant reports of adverse events, including hos-
pitalizations, ED visits, and other health outcomes of inter-
est, were ascertained at quarterly visits (9).

EHR Data
We previously described this study’s methods for linking

the SPRINT and EHR data (15). The current analysis is on the
basis of patients with EHR data from 47 clinic sites (out of 102
SPRINT sites). Each site provided all vital signs, laboratory
results, and billing/procedure codes for all SPRINT partici-
pants within their health system. Creatinine measurements
were identified within the laboratory files on the basis of
names, codes, and result values. Creatinine measurements
were classified as outpatient if they were not concurrent with
a SPRINT-reported ED or hospitalization serious adverse

event (SAE), with the remaining creatinine measurements
classified as inpatient. In secondary analyses, we also classified
creatinine measurements on consecutive days as inpatient.

Inpatient AKI was defined using (1) the SPRINT defini-
tion, which used SAE reports on the basis of diagnosis codes
and review of admission and discharge notes (9); and (2) a
creatinine-based definition of a 50% or $0.3-mg/dl increase
in EHR creatinine values during an ED visit or hospitaliza-
tion, as compared with baseline. Outpatient AKI was
defined by a 50% increase in outpatient creatinine using trial
and EHR laboratory measurements. For both inpatient and
outpatient AKI, we defined the baseline as the most recent
creatinine measured as part of trial follow-up. AKI stage
was defined using the creatinine-based Kidney Disease
Improving Global Outcomes criteria (18). Cardiovascular
events were defined per the trial protocol as the first occur-
rence of fatal or nonfatal myocardial infarction (MI), non-MI
acute coronary syndrome (sometimes called unstable
angina), fatal or nonfatal stroke, fatal or nonfatal heart fail-
ure, or death attributable to CVD (1). Mortality was ascer-
tained in SPRINT using a standard protocol (19).

Statistical Analyses
We compared the incidence of AKI between treatment

groups using Cox proportional hazards regression with the
baseline hazard function stratified by clinic site (20). We
examined the proportionality assumption of the Cox model
using hypothesis tests on the basis of Schoenfeld residuals
(21). We examined the association of incident AKI with
subsequent CVD and all-cause mortality. These analyses
were also on the basis of Cox regression models with strati-
fied baseline hazard function, treating the occurrence of
AKI as a time-varying predictor. Models included treat-
ment group as a covariate, and the following baseline char-
acteristics: age, sex, race and ethnicity, smoking status
(current, former, or never smoker), history of CVD, systolic
and diastolic BP, eGFR on the basis of the 2021 CKD-EPI
study creatinine-based equation (16), log of urine albumin-
creatinine ratio (UACR), statin use, and use of either
angiotensin-converting enzyme inhibitors or angiotensin II
receptor blockers. To address a small amount of missing
data at baseline for eGFR (N510) and UACR (N5151), we
used chained multiple imputation on the basis of random
forests as a function of all baseline variables listed above,
first imputing eGFR and then imputing log UACR. Recov-
ery after inpatient AKI was previously reported (9). We
examined recovery of kidney function after outpatient AKI
in two ways. First, we modeled the trajectory of outpatient
eGFR in the year preceding and after an outpatient AKI
event using linear mixed models. In these analyses, we flex-
ibly modeled eGFR as a function of time using B-splines
separated by treatment group. Second, we defined partial
recovery as ever having an outpatient serum creatinine
within 30% of the pre-AKI serum creatinine concentration
(without subsequent elevation .30% of the pre-AKI serum
creatinine concentration); full recovery was similarly
defined, with a threshold at 20% of the pre-AKI serum
creatinine concentration. We compared the incidence of
partial and full recovery between the treatment groups
using the proportional subdistribution hazards model of
Fine and Gray (22), accounting for the competing risk
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of death. All analyses were performed using the R Statisti-
cal Computing Environment, using the timereg and mice
packages (23,24).

Results
Of the 5462 participants enrolled at the sites participating

in the SPRINT EHR ancillary study, 3644 (67%) had at least
one creatinine value in their EHR data (Figure 1). The
intensive and standard treatment groups were similar with
regards to baseline characteristics (Table 1). The mean6SD
age was 6969 years; 24% were female; 30% were Black par-
ticipants; and the mean6SD eGFR was 71620 ml/min per

1.73 m2. Compared with the trial participants not included
in these analyses, participants in these analyses were older,
less likely to be female, and more likely to be taking a statin
(Supplemental Table 1).
During a median of 4.01 years of follow-up, the median

number of outpatient EHR creatinine measurements from
routine care was six (interquartile range, 3–11), and this
was similar in the two treatment arms. The median number
of trial creatinine measurements was ten (interquartile
range, 9–12). Among the 3644 participants included in
these analyses, only 342 (9%) had creatinine-based inpa-
tient AKI, and 416 (11%) had creatinine-based outpatient
AKI. The majority of creatinine-based AKI was stage 1

14692 Patients assessed for eligibility

9361 Randomized

No EHR measurement of serum creatinine
883 Intensive Treatment
935 Standard Treatment

4678 Randomized to
Intensive Treatment

(SBP goal of <120 mm Hg)

2732 Clinic Site Participating in
EHR Ancillary Study

2730 Clinic Site Participating in
EHR Ancillary Study

1849 Included in primary analysis

4683 Randomized to
Standard Treatment

(SBP goal of <140 mm Hg)

1795 Included in primary analysis

5331 Excluded

718 Not at increased cardiovascular risk

653 Did not complete screening
352 Low SBP 1 min after standing

34 Aged <50 years

703 Other reasons

2284 Taking more than allowed number
of medications or SBP outside range

Figure 1. | Consolidated Standards of Reporting Trials diagram. EHR, electronic health record; SBP, systolic BP.
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for both inpatient (80%) and outpatient (87%) cases. Stage-2
AKI was seen in 13% and 11% and stage 3 in 7%
and 3% for inpatient and outpatient AKI, respectively
(Supplemental Table 2) (18).

More inpatient AKI events were identified using EHR
creatinine values compared with the number identified
through the trial adjudication process (187 versus 95 in the
intensive treatment group and 155 versus 61 in the

Table 1. Baseline characteristics at trial entry of participants included in the SPRINT electronic health record ancillary study by
treatment group

Characteristic
Intensive Treatment

(N51849)
Standard Treatment

(N51795)

Veterans Affairs site, n (%) 919 (50) 907 (51)
Age, yr
Mean6SD 69.169.2 68.769.4
$75, n (%) 590 (32) 568 (32)

Female sex, n (%) 464 (25) 413 (23)
Race and ethnicity, n (%)
Black 550 (30) 559 (31)
Hispanic 91 (5) 58 (3)
White 1179 (64) 1162 (65)
Othera 29 (2) 16 (0.9)

Smoking status, n (%)
Current smoker 239 (13) 237 (13)
Former smoker 898 (49) 878 (49)
Never smoker 712 (39) 680 (38)

BMI, kg/m2 (mean6SD) 30.165.8 30.065.7
History of cardiovascular disease, n (%) 434 (24) 447 (25)
Blood pressure, mm Hg (mean6SD)
Systolic 137.8615.2 137.67614.9
Diastolic 77.0611.4 76.9611.6

Orthostatic hypotension, n (%) 124 (7) 120 (7)
eGFR, ml/min per 1.73 m2 b

Mean6SD 71.0619.6 71.2619.3
,60, n (%) 548 (30) 518 (29)

Urine albumin-creatinine ratio, mg/g [median (IQR)] 9.9 (5.8–24.9) 9.7 (5.6–23.6)
HDL cholesterol, mg/dl (mean6SD) 51.8613.8 51.1613.8
Triglycerides, mg/dl, median (IQR) 106 (76–145) 109 (79–154)
Glucose, mg/dl (mean6SD) 99.5613.3 99.4613.4
Antihypertensive agents, n (mean6SD) 1.961.0 1.961.0
Statin use, n (%) 905 (49) 951 (53)
Use of ACE inhibitor or angiotensin receptor blocker, n (%) 1059 (57) 1066 (59)

SPRINT, Systolic Blood Pressure Intervention Trial; BMI, body mass index; IQR, interquartile range; ACE, angiotensin-converting
enzyme.
aIncludes self-reported American Indian, Alaska Native, Native Hawaiian, Pacific Islander, Asian, and other.
beGFR determined using the 2021 Chronic Kidney Disease Epidemiology Collaboration creatinine equation.

Table 2. Effect of intensive treatment on the incidence of AKI

Population Outcome
Intensive Events/Rate
per 1000 Person-Years

Standard Events/Rate
per 1000 Person-Years

Hazard Ratio
(95% Confidence

Interval)a P Value

All participants
(n59361)

Inpatient AKI on the
basis of SAE

179/10.4 109/6.3 1.65 (1.30 to 2.10) ,0.001

EHR ancillary study
(n53644)

Inpatient AKI on the
basis of SAE

95/13.6 61/9.0 1.51 (1.09 to 2.08) 0.01

EHR ancillary study
(n53644)

Inpatient AKI
(creatinine-based)

187/26.9 155/23 1.20 (0.97 to 1.48) 0.10

EHR ancillary study
(n53644)

Outpatient AKI
(creatinine based)

243/36.0 173/25.8 1.40 (1.15 to 1.70) 0.001

SAE serious adverse event as adjudicated in Systolic Blood Pressure Intervention Trial; EHR, electronic health record.
aHazard ratio determined using Cox proportional hazards regression with the baseline hazard function stratified by clinic site.
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standard treatment group; Table 2). There were also more
outpatient than inpatient creatinine-based AKI events
(Table 2). The change in outpatient eGFR relative to the
level at randomization among participants who experi-
enced an outpatient AKI event is shown in Figure 2. In the
12 months after outpatient AKI, approximately 90% of par-
ticipants had partial recovery of kidney function (creatinine
within 30% of pre-AKI SPRINT value) and approximately
70% of participants had full recovery to within 20% of base-
line; there was no difference in the incidence of recovery
between treatment groups (Figure 3). The subdistribution
hazard ratio (HR) for partial recovery (comparing intensive
with standard) was 0.99 (95% CI, 0.78 to 1.24); the subdistri-
bution HR for full recovery was 0.78 (95% CI, 0.59 to 1.03).
When the SPRINT-adjudicated AKI definition was

applied to this ancillary study population, the results mir-
rored the risk of AKI seen in the overall trial population:
intensive treatment was associated with an increased risk
of SPRINT-adjudicated inpatient AKI (HR, 1.51; 95% CI,
1.09 to 2.08; Table 2). However, for creatinine-based inpa-
tient AKI, intensive treatment was associated with an atten-
uated and nonsignificant increased risk (HR, 1.20; 95% CI,
0.97 to 1.48). For creatinine-based outpatient AKI, intensive
treatment was associated with an increased risk (HR, 1.40;
95% CI, 1.15 to 1.70; Figure 4, Table 2). Results were similar
in analyses accounting for the competing risk of mortality
(Supplemental Table 3).
Inpatient AKI was associated with an increased risk for

all-cause mortality when defined by SPRINT adjudication
(HR, 3.54; 95% CI, 2.27 to 5.52) and the EHR creatinine-

based definition (HR, 5.54; 95% CI, 3.94 to 7.80; Table 3).
However, creatinine-based inpatient AKI events were asso-
ciated with increased risk for cardiovascular events (HR,
1.74; 95% CI, 1.15 to 2.64), whereas SPRINT-adjudicated
inpatient AKI was not (HR, 1.10; 95% CI, 0.61 to 2.00).
Creatinine-based outpatient AKI was associated with an
increased risk for all-cause mortality (HR, 2.73; 95% CI,
1.86 to 4.01) but not cardiovascular events (HR, 1.43; 95%
CI, 0.97 to 2.13).

Discussion
By linking EHR data with trial data in SPRINT, we were

able to use the gold-standard definition of AKI (change in
serum creatinine) to demonstrate that intensive BP control
increased the risk for AKI. Notably, the risk for inpatient
AKI was attenuated with creatinine-based adjudication ver-
sus SPRINT document-based adjudication. Additionally,
assessment of outpatient AKI was possible by the availabil-
ity of EHR creatinine values. The majority of patients with
AKI recovered to within at least 30% of their baseline
kidney function. Despite the majority recovering, creatinine-
based AKI was associated with an increased risk for
all-cause mortality and incident CVD, whereas SPRINT-
adjudicated AKI was only associated with increased risk for
all-cause mortality.

This is the first large, multicenter study to evaluate the
effect of intensive BP control on AKI on the basis of Inter-
national Classification of Diseases/document-based adjudi-
cation compared with a creatinine-based definition of AKI.
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Figure 4. | Intensive treatment increased risk for outpatient AKI. Shaded areas denotes pointwise 95% CIs.
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Our results demonstrate the underascertainment of AKI
inherent to SAE reporting and potential bias with open-
label trials. Given that prior studies reported an increased
risk for a rise in creatinine and occurrence of AKI with
intensive BP control, providers may have been more likely
to identify and mention AKI in their admission and dis-
charge notes—the source of data for the SPRINT adjudica-
tion of AKI. Creatinine-based assessment of AKI, made
possible by linking EHR data with SPRINT data, indicated
a higher incidence of inpatient AKI in both treatment
groups. This finding is consistent with a study within
ARIC that demonstrated chart-based adjudication of AKI
has a sensitivity of only approximately 20% (10). The
increase in creatinine-based inpatient AKI events was rela-
tively greater in the standard treatment group, resulting in
a nonsignificant increased risk for creatinine-based inpa-
tient AKI with intensive BP control. However, intensive BP
control was associated with increased risk for creatinine-
based outpatient AKI, an outcome not evaluated in the
original SPRINT study.
Similar to prior observational studies, AKI was associ-

ated with an increased risk for adverse outcomes (2–8). In
our study, both inpatient and outpatient AKI were associ-
ated with increased risk for adverse outcomes. Most prior
research has focused on the inpatient setting, but at least
one study has demonstrated increased risk for all-cause
mortality and decline in kidney function with outpatient
AKI (14). The effect of AKI on CVD and mortality could be
due to short-term effects (e.g., acute health conditions lead
to AKI and adverse events) and long-term effects (e.g., AKI
results in CKD and elevated BP, which both result in
increased risk for cardiovascular events and mortality).
Despite the increased risk for AKI with intensive BP con-

trol and the increased risk for adverse outcomes associated
with AKI, intensive BP control still reduced overall risk for
cardiovascular outcomes and all-cause mortality (1). This
is, in part, due to the overall low incidence of AKI. Rather
than avoiding intensive BP control, strategies should be
developed to lower BP to a clinic target of ,120 mm Hg
while also reducing risk for AKI. Potential strategies to

reduce AKI with intensive BP control could include hold-
ing or modifying antihypertensive medications in the set-
ting of illness and more gradual lowering to target. Such
strategies may make intensive BP control even more effec-
tive at reducing risk for cardiovascular events and all-cause
mortality.
Strengths of this study include the linkage of EHR and

trial data from SPRINT in a study sample with a relatively
large sample size, diverse geographic representation, and
formal adjudication of CVD and mortality outcomes. A
number of limitations need to be considered. First, the
study included a subset of trial sites and only those partici-
pants with EHR data. Second, the clinical indication for
measuring creatinine in routine practice was unknown and
could lead to bias. Third, the study includes a higher per-
centage of men compared with the overall trial due to the
inclusion of EHR data from a large number of Veterans
Affairs Medical Centers.
Intensive BP control was associated with increased risk

for inpatient and outpatient AKI. Participants with AKI
were at increased risk for CVD events and all-cause mortal-
ity. Creatinine-based ascertainment of AKI, facilitated by
EHR data, may be more sensitive than traditional SAE
reporting, particularly for open-label trials and for detect-
ing outpatient AKI events. Routine collection of EHR data
should become standard for large explanatory and/or
pragmatic trials that include AKI as an outcome. Finally,
given that inpatient and outpatient AKI were associated
with increased risk for all-cause mortality, identifying ways
to prevent AKI in the setting of intensive BP control may
reduce cardiovascular events and mortality even further.
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