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Abstract

In domains requiring complex relational represen-
tations, simply expressing a new problem may be
a complex, error-prone, and time-consuming task.
This paper presents an approach to problem formu-
lation, termed case-based formulation (CBF), that
uses previous cases as a model and a guide for ex-
pressing new cases. By expressing new problems
in terms of old, CBF can potentially increase the
speed and accuracy of problem formulation, reduce
the computational expense of retrieval, and deter-
mine the relevant similarities and differences be-
tween a new case and and the most similar old cases
as a side-effect of expressing the new case. Three
forms of CBF can be distinguished by the extent
to which the retrieval and adaptation of previous
cases are automated and the extent to which the
facts of multiple cases can be combined. An initial
implementation of one form of CBF is described
and its ability to use previous cases to increase the
efficiency and accuracy of new-case formalization is
illustrated with a complex relational case.

The Task of Problem Formulation

Problem formulation, the expression of a problem
in a representation amenable to manipulation by
a computer, is an essential step in every form of
automated problem solving. In systems that use
featural representations of cases, problem formula-
tion is typically quite straightforward. In MYCIN,
for example, a new case is described by specifying
values for parameters appearing in subgoals dur-
ing a consultation. Similarly, a new case is repre-
sented in Protos as a vector of feature-value pairs.
Problem formulation is easy in such systems be-
cause they use featural representations that have
been engineered to represent only those aspects of
cases known a priori to be relevant to the single
specific task for which the systems were designed.

However, there is a growing recognition that fea-
tural representations are inadequate for a wide va-
riety of applications. General-purpose knowledge
bases intended to support a variety of different
tasks clearly cannot use featural representation lan-
guages capable of expressing only case attributes
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relevant to a single task. Instead, such knowl-
edge bases require relational representations that
are capable of expressing a wide variety of rela-
tions among domain entities (Lenat and Feigen-
baum, 1991; Porter et al., 1988). Moreover, fea-
tural representations

cannot be used in areas requiring essentially
relational knowledge representations. These
areas include temporal reasoning, scheduling,
planning, qualitative reasoning, natural lan-
guage and spatial reasoning. Problems also oc-
cur in other areas involving arbitrarily complex
structural relationships such as prediction of
protein folding and DNA gene mapping (Mug-
gleton, 1991).

However, relational representations are typically
much more complex than featural representations
because relational information implicit in the lat-
ter is made explicit in the former. This complex-
ity can drastically complicate the process of formu-
lating new cases. For example, in the context of
a qualitative simulation program such as QSIM, a
case consists of a set of qualitative differential equa-
tions specifying the structure of a physical system
(Kuipers, 1989). Qualitative differential equations
are represented in a relational language capable of
expressing qualitative constraints among domain
variables. The price of the expressive power of this
representation is that creating and debugging qual-
itative differential equations is a complex, lengthy,
and error-prone process (Farquhar et al., 1990).

The practical consequences of the difficulty
of problem formulation in relational representa-
tion languages are illustrated by GREBE, a le-
gal reasoning system that integrated case-based
with rule-based reasoning (Branting and Porter,
1991; Branting, 1991a). GREBE used a represen-
tation language in which arbitrary causal, tempo-
ral, and intensional relations could be stated explic-
itly. This representation contributed significantly
to GREBE'’s performance: in a preliminary evalu-
ation, GREBE’s analysis of 18 worker’s compensa-
tion hypotheticals was found to compare well with
analyses by law students (Branting and Porter,
1991). However, the expressiveness of this represen-
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tation came at a cost. Representations of GREBE’s
test cases consisted on average of 89 propositions,
each of which had to be entered by hand. Entering
cases of this size was a lengthy process—typically
several orders of magnitude longer than GREBE's
run-time—and the resulting representation often
required considerable debugging. Moreover, it was
the experience of the legal reasoning group at the
University of Texas that different knowledge enter-
ers often chose to represent identical facts differ-
ently, creating the danger of inconsistent analyses
of equivalent cases. Limitations in problem for-
mulation, rather than problem solving, prevented
GREBE from being usable in any practical setting
(Branting, 1991a).

This paper proposes an approach to problem
formulation in which previous cases are used as
a model and a guide for expressing new cases.
The use of existing information as a model for ex-
pressing new information makes it possible to “use
what we know to help us process what we receive”
(Schank, 1982). I refer to this approach to problem
formulation as case-based formulation (CBF).

The Elements of Case-Based
Formulation

The fundamental assumption underlying CBF is
that new situations can be efficiently formalized us-
ing previous cases as models. CBF exploits the phe-
nomenon that useful knowledge seldom consists of
isolated facts, but instead tends to consist of collec-
tions of related facts. A simple example is a frame.
The object/slot/value triples constituting a frame
can be viewed as a collection of propositions that
are related because they all concern the same ob-
ject. In the context of CBF, a case can be any
fact-collection /abstract-description pair!. The fact
collection is referred to as the facts of the case, and
the abstract description is referred to as the conse-
quent of the case.

Although various approaches to case-based for-
mulation are possible, all share the following basic
steps:

1. Retrieval. Fetch an appropriate previous case
from memory. Let F' be the facts of the previous
case.

2. Substitution. Substitute the names of the enti-

ties to which the new facts apply for the entities
in F.

3. Adaptation. Add any necessary and delete any
superfluous facts from the resulting set of new
facts.

'This use of the term “case” is somewhat broader
than in traditional CBR usage, where the term usu-
ally refers either to reusable plans (Hammond, 1986)
or designs (Goel et al., 1991; Sycara and Navinchan-
dra, 1991) or to exemplars (Porter et al., 1990), distin-
guished points in an instance space.
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4. Match Refinement. If additions or deletions
make the facts of some other case more similar
to the new facts than the current case, refine the
match by fetching the more similar case and go
to step 2.

. Return the description of the new case together
with a record of all substitutions, additions, and
deletions, since these constitute the relevant simi-
larities and differences between the new facts and
the previous case.

Three different forms of case-based formaliza-
tion can be distinguished by the extent to which
the steps of retrieval, substitution, and match re-
finement are automated and the extent to which
the facts of multiple cases can be combined.

Copy and Edit

The simplest form of case-based formulation is the
copy and edit approach to knowledge entry used ex-
tensively in the development of the Cyc knowledge
base (Guha and Lenat, 1990). In the copy and edit
methodology, a frame is added to a knowledge base
by finding a similar frame, copying it, and modify-
ing the copy.

The copy and edit methodology can speed
knowledge entry and tends to enforce representa-
tional consistency. However, it doesn’t address the
potentially difficult task of retrieving the most ap-
propriate frame, and it requires that the correspon-
dence between entities in the new and old frames
be determined manually. Moreover, it provides no
mechanism for reuse of groupings of related knowl-
edge larger than individual frames.

Single-Case CBF

The shortcomings of copy and edit can be addressed
by automating the retrieval and substitution steps.
I will refer to case-based formulation in which re-
trieval and substitution are automated and in which
only a single case at a time can be used as a model
for the new facts as single-case CBF. Single-case
CBF begins when the user asserts some small num-
ber of facts. These facts are used by the system
as a cue or memory probe to retrieve the facts of
the most similar case. The system determines the
correspondence between the new entities and the
entities in the case that leads to the best match and
makes the appropriate substitutions. If the system
detects that the addition or deletion of facts makes
some other case more closely match the new facts,
the more similar case is automatically substituted
for the current case.

Multiple-Case CBF

A new collection of facts is often best represented
as a combination of several cases. In the domain
of law, for example, a new case may match por-
tions of several different precedents more closely



than it matches all the facts of any single prece-
dent (Branting, 1991b). Similarly, designs are of-
ten best modeled as combinations of portions of
multiple previous designs (Goel et al., 1991; Sycara
and Navinchandra, 1991). Moreover, a single fact
in a new case may itself be the consequent of some
other case. I refer to the extension of single-case
CBF to permit multiple cases to be combined as
multiple-case CBF.

An Implementation of Single-Case
CBF

CBF1 is an initial implementation of single-case
CBF that provides a set of utilities for creat-
ing, viewing, and manipulating relational repre-
sentations. CBF1 has been tested with a small
knowledge-base of vehicles and with GREBE’s
knowledge base of worker’s compensation prece-
dents and hypotheticals.
The algorithm of CBF1 is as follows:

GIVEN:

e A partial description D consisting of a collection
of propositions
(Pred; An = .A}m) 3 ..(P?‘Edn Anl

e Optionally, a goal (Pred,C,...Cp).

DO:

1. Retrieval. Fetch the case, C, whose facts, F
= (.Pred1 Bn e B;m) “en (Pred.— B.‘l v B,‘k),
most closely match D using structural congru-
ence (Winston, 1980; Branting, 1991a; Holyoak
and Thagard, 1989) as a similarity metric (lim-
iting the search to cases whose consequents have
the same predicate, Pred,, as the goal, if a goal
has been specified). F' will be the model for the
new description.

2. Substitution. Let M be the structurally most
consistent mapping from entities in F' to enti-
ties in D, that is, the mapping that maximizes
the number of corresponding relations. Let D be
the result of replacing each entity A;j in F with
M (A;;), creating a new variable name if M is not
defined for A,‘j.

3. Adaptation. Add any necessary and delete any
superfluous facts from D.

4. Match Refinement. If additions or deletions
make the facts of some other case C’ more similar
to the D than F, let F equal the facts of C’ and
go to step 2.

5. Return D, along with all substitutions, additions,
and deletions, since these constitute the relevant
similarities and differences between D and F, the
facts of the most similar case C.

The behavior of CBF1 is illustrated by the following
example in which CBF1 was used to represent a
case from GREBE’s domain.

. ..Aﬂt)
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One of the cases used to compare the per-
formance of GREBE to that of law students in
GREBE'’s evaluation (Branting, 1991a) concerned
Stanley, the head of a surveying crew at a large
construction site. Stanley performed some of his
duties—making architectural charts—at home dur-
ing hours he set himself. One day, after doing some
work at home, Stanley was injured in an accident
while driving to the construction site.

The manually-constructed representation of
Stanley’s case used in the evaluation of GREBE
consisted of 51 tuples. This representation took a
number of hours to construct, and it is likely that
a different knowledge-enterer (or even the same
knowledge enterer on a different occasion) would
have represented the case somewhat differently.
With CBF1, however, entry of the case is relatively
simple and the resulting representation is consistent
with the conventions of the cases that have already
been entered.

Representing Stanley’s case using CBF1 begins
with the assertion of the basic facts that Stanley
was employed by Tower Construction Company to
direct a surveying crew:

(employee Stanley-employment
Stanley)
(employer Stanley-employment
tower-construction-company)
(had-duties Stanley-employment
directing-surveying-crew)

CBF1 uses a user-specifiable retrieval technique to
determine the cases that most closely match these
facts.? The system retrieves three candidate cases,
each an instance of an employment-related activity:
the Vaughn case, the Brown case, and the Proto-
typical Work Case. For each of these cases, CBF1
displays:

e The mapping from the entities in the case to enti-
ties in the new case that leads to the best match.

e The facts of the case that are unmatched in the
new case. These facts constitute default conclu-
sions about the new case under the assumption
that the case is used as a model.

e The proportion of facts of the case that are
matched in the new case.

For example, the best mapping from the entities
in the Prototypical Work Case includes the follow-

ing:
typical-employee = Stanley
typical-employer = Tower-Construction-Co.

*Three techniques for retrieving cases represented
relationally were empirically compared in (Branting,
1991a). For convenience, the simplest of these al-
gorithms, retrieval by best-first incremental matching
(RBIM), is used in this example. Various alternative
approaches to retrieval of relationally represented cases
are discussed in (Branting, 1990).



typical-work-activity = directing-surveying-crew

Fourteen defaults are associated with the match
to the Prototypical Work Case, including the as-
sumptions that Stanley had some work hours and
received a salary, that Stanley’s being at the con-
struction site was a prerequisite for Stanley’s direct-
ing the surveying crew, and that Tower Construc-
tion Company had some goal that was achieved
by Stanley’s directing the surveying crew. Vari-
able names are gensymed for entities in the case
for which no corresponding entities exist in the new
case. For example, the default that Stanley’s being
at the construction site was a prerequisite for Stan-
ley’s directing the surveying crew is represented by
the tuple:

(prerequisite-for being-at-place.1635
directing-the surveying-crew)

All of the defaults of the Prototypical Work Case
are true of Stanley’s case, whereas each of the other
cases has defaults that are not true of Stanley’s
case. As a result, the user selects the Prototypical
Work Case as the initial model.

The adaptation step consists of the user enter-
ing the distinguishing facts of Stanley’s case that
are not true in the Prototypical Work Case. Such
facts include that Stanley had the additional duty
of making architectural charts, that he performed
this duty at home, that he set his own hours for
making the charts, and that he traveled from home
to the construction site:

(had-duties Stanley-employment
making-architectural-charts)
(activity-occurring-there Stanley-home
making-architectural-charts)
(prerequisite-for Stanley-being-at-home
making-architectural-charts)
(determined-by Stanley-work-hours
Stanley)
(destination traveling-to-the-construction-site
construction-site)
(source traveling-to-the-construction-site
Stanley-home)

CBF1 permits the user to specify a goal to con-
strain the matching process. In Stanley’s case,
we can specify the goal of determining whether
Stanley’s traveling to the construction site is
an employment-related activity (this determines
whether Stanley is entitled to worker’s compen-
sation for his injuries). This goal will constrain
matches only to cases of employment-related activ-
ities. Moreover, the mappings between each such
case and Stanley’s case will be constrained to pair
the employment-related activity in the case with
Stanley’s traveling to the construction site, and the
employment relation in the case with Stanley’s em-
ployment.
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After the user asserts the additional facts and
the goal, the system performs a match refinement
step in which the cases that most closely match
the description under construction are retrieved.
The closest match is with the Meyer case, which
involved a real estate broker who was injured while
traveling between his home, where he performed
part of his job duties, and his office. This match
provides an additional 11 defaults (e.g., that Stan-
ley was the driver in traveling to the construction
site). Two of these defaults are not true in Stanley’s
case (Meyer had an additional job duty). When the
user deletes these two tuples, the representation of
Stanley’s case is complete.

The representation of Stanley’s case produced
by CBF1 is more concise than the manual
representation—32 propositions as opposed to 51
propositions—because facts irrelevant to the goal
(i.e., facts not contributing to the match with the
controlling precedent) were omitted. Of these 32
propositions, only 9 tuples—28% —had to be ex-
plicitly asserted. The other tuples were obtained as
defaults from matches with the Prototypical Work
Case and the Meyer case. CFB1 reduces the time
required to represent Stanley’s case from hours to
minutes and insures that the resulting representa-
tion is consistent with previous cases. Moreover,
no additional retrieval or matching is necessary to
analyze Stanley’s case. This is because the most
relevant precedent, Meyer, has been found and the
relevant similarities and differences between Meyer
and Stanley’s case determined by the process of for-
mulating the case.

Integrating Problem Formulation
with Problem Solving

CBF is an application of case-based reasoning to
the task of problem formulation. In domains for
which problem formulation is complex enough to
impede system use, CBF can be the first part of a
two-step process: (1) case-based formulation of the
problem, followed by (2) applying the appropriate
problem-solving method to the problem thus for-
mulated.

However, there are many tasks, such as such
as precedent-based legal reasoning and case-based
heuristic classification, for which problem solving
consists at least in part of determining the relevant
similarities and differences between a new case and
the most similar past cases. CBF can perform these
tasks, in part or entirely, as a side-effect of problem
formulation. Problem solving in GREBE, for exam-
ple, consists of (1) determining the mapping from
the most similar precedents of the concept at issue
to the facts of a new case, and (2) using this infor-
mation to construct one or more explanation struc-
tures. As discussed in the previous section, CBF
performs the first of these steps in the very process
of formulating the facts of a new case. Thus, for



tasks amenable to case-based reasoning, CBF can
integrate problem formulation with problem solv-
ing.

This integration is desirable because a rigid
separation between problem formulation, retrieval,
and case comparison can exacerbate the difficulty
and computational expense of each of these steps.
The previous section illustrated how interleaving
case retrieval and comparison with problem for-
mulation can improve the accuracy and efficiency
of the latter. The converse relation holds as well:
interleaving these steps makes case retrieval and
comparison more tractable. The combinatorics of
matching relational cases makes the computational
expense of finding the structurally most consistent
case in memory steeply increase with the complex-
ity of the probe®. By using a small set of initial facts
as a probe and then incrementally refining the ini-
tial match as facts are added or deleted, CBF can
avoid the computational expense of using a com-
plete case description as a probe.

Range of Applicability of CBF
CBF as Knowledge Acquisition.

Problem formulation is a form of knowledge acquisi-
tion, the process of extracting knowledge from non-
computer sources and encoding that knowledge in
a form that is usable by a computer for problem
solving. CBF is not restricted to problem formula-
tion, but is applicable to acquisition of any type of
knowledge organized around collections of related
facts that can be manipulated as wholes. Viewed
as a knowledge-acquisition technique, CBF has the
virtue of being interactive, of automatically insur-
ing consistency with existing collections of related
facts, and of potentially improving, rather than
degrading, as the knowledge base expands and a
larger set of models for new cases becomes avail-
able.

Multiple-Case CBF

Extending the applicability of CBF to domains in
which problems are best described as compositions
of multiple previous cases will require implementing
multiple-case CBF. Two mechanisms are required
for multiple-case CBF. First, combining cases at
the same level of abstraction requires the ability to
partition the description under construction, apply
single-case CBF to the partitions, and combine the
results. Second, combining cases at different levels
of abstraction requires the ability to view a single
fact in a description under construction as the con-
sequent of a collection of facts at a lower level of

3While various approaches to retrieval of relationally
represented cases have been proposed, e.g., MAC/FAC
(Gentner and Forbus, 1991), ARCS (Thagard et al.,
1990), and MRSDL (Branting, 1992), no approach has
been shown both to guarantee a high level of accuracy
and to cost significantly less than exhaustive matching,.
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abstraction. For example, a swamp boat could be
represented by using a motor boat as a model at
a high level of abstraction (e.g., a motor boat con-
sists of a hull, a rudder, an engine, etc.) but, at
a lower level of abstraction, using an airplane en-
gine as a model of the swamp boat’s engine. Cur-
rent research is directed toward developing these
two mechanisms.

Limitations

The effectiveness of any case-based reasoning sys-
tem depends upon the existence of a library of cases
relevant to the task addressed by the system. As
an application of case-based reasoning to the task
of problem formulation, CBF depends on the exis-
tence of a library of cases that can serve as suitable
models for the problems that the system will en-
counter. If there is little similarity between new
problems and past problems, CBF can provide lit-
tle assistance.

Although CBF's use of past cases as models can
reduce the danger of inconsistent representations
of patterns of case facts, the current implementa-
tion of CBF nevertheless presupposes a consistent
vocabulary of representational primitives. For ex-
ample, if the initial description of Stanley’s Case

had been
(had-job Stanley Stanley-employment)

CBF1 would have failed to find any relevant past
case because had-job is not part of the vocabulary in
which the past cases were described. CBF1 would
be improved by some mechanism for detecting pos-
sible inconsistent uses of primitives while at the
same time permitting new primitives to be added
when necessary.

A second limitation of CBF1 is its rudimentary
knowledge presentation (Musen, 1988), i.e., the
conceptual model presented to the user. CBF1’s
knowledge presentation consists simply of the tu-
ples that constitute the facts of a case in GREBE’s
representation idiom. An iconic presentation or a
subset of English would greatly improve interaction

with CBF1.

Conclusion

Relational knowledge representations are necessary
for general-purpose knowledge bases intended for
multiple tasks and for any of a wide variety of in-
dividual tasks. However, the price of the increased
expressiveness of relational representations is that
they make the task of expressing new cases corre-
spondingly more complex. In domains involving
sufficiently complex cases, simply expressing the
facts of a problem in a relational representation
language can itself be a complex, error-prone, and
time-consuming task. This paper has presented an
approach to problem formulation that uses previ-
ous cases as a model and a guide for expressing new
cases.



CBF has a number of potential benefits. As il-
lustrated by the example of Stanley's case, CBF
can reduce the time necessary to pose new prob-
lems because modifying an existing representation
is often much simpler than creating a new repre-
sentation ab initio. CBF can reduce the danger of
representational inconsistency by reusing conven-
tions for representing particular patterns of facts
rather than requiring them to be recreated in every
new case. Moreover, when new cases are expressed
in terms of old, the relevant similarities and differ-
ences between new and old cases are determined
a fortiort by the very process of formulating each
new case. CBF can also simplify case retrieval. By
using a small set of facts as a probe and then in-
crementally refining the initial match as facts are
added or deleted, CBF can avoid the computational
expense of using a complete case description as a
probe.

Finally, psychological plausibility argues for
CBF over a rigid division between problem formu-
lation and problem solving. Previous experience is
not merely the yardstick by which new experiences
are measured, but is the very medium in which they
are expressed.
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