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EPIGRAPH

One of the most striking paradoxes concerning timbre is that when we knew less

about it, it didn’t pose much of a problem.

—Philippe Manoury
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ABSTRACT OF THE DISSERTATION

Physical and Perceptual Aspects of Percussive Timbre

by

William Brent

Doctor of Philosophy in Music

University of California, San Diego, 2010

Professor Miller Puckette, Chair

This dissertation explores relationships between perceptual dimensions of

percussive timbres and measurements produced by several signal analysis algo-

rithms. The literature of psychophysical timbre experiments since 1941 is reviewed

with respect to two contrasting approaches. The earliest attempts at unraveling

the interdependent aspects of timbre perception employed multiple adjective scales

intended to describe various sonic features. Following developments in the tech-

nique of multidimensional scaling (MDS) in the 1960s, several researchers began to

apply scaling techniques to data sets of timbre similarity judgments. At present,

the majority of timbre studies are based on MDS. In spite of such advancements,

the range of musical timbres has only begun to be explored from a perceptual

viewpoint, and a significant gap exists in the literature for percussive instruments.

The signal analysis algorithms employed in this research are introduced in

the context of timbreID—a timbre analysis software library written by the author.

The library’s adaptability is illustrated with respect to several musical research

applications in Pure data. This flexibility is shown to be beneficial in the case of two

percussive instrument classification tests, in which the effectiveness of perceptually

xvi



weighted spectral features like mel- and Bark-frequency cepstrum are evaluated

alongside other standard analysis techniques from the music information retrieval

literature.

In the final chapter, a perceptual experiment involving 30 diverse percussion

timbres is carried out. The study confirms the importance of spectral centroid and

attack duration as predictors of perceptual dimensions, and reveals two additional

dimensions that may be unique to percussive timbres: “dryness” and “noisiness”.

A predictive model is generated using multiple linear regression, and results indi-

cate that the noisiness dimension cannot be predicted as accurately as dimensions

relating to spectral center of gravity and attack time. Thus, there is a clear need for

an effective measure of perceptual noisiness for accurate description of percussive

timbre.
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Chapter 1

Introduction

Defining the musical attribute of timbre has proven a consistently problem-

atic pursuit for more than a century. Part of the difficulty arises from the fact that

timbre is tied to the physical source of a sound (implying complex multi-modal

associations), but is also used to refer to any number of abstract qualities that are

purely sonic. Motivated by possibilities in the realm of audio synthesis, it is the

latter aspect that researchers have investigated in the most detail. Thus, timbre is

frequently referred to as a multidimensional characteristic, and salient aspects have

been identified that are at once spectral and temporal in nature. The discipline of

sound design stands to benefit considerably from the discovery of additional per-

ceptual dimensions that can be translated to reliable synthesis parameters. But the

referential nature of timbre must not be ignored, even in the case of completely in-

vented sounds. The ability to identify sound sources is fundamentally important to

our survival, and knowledge that a sound is artificial does not necessarily bring this

mechanism to a halt. Surely, the context of a musical performance is a special case,

but it is doubtful that we could ever completely suppress the tendency to evaluate

sounds around us in terms of what they may portend. With this in mind, it seems

that exploring the makeup of timbre perception from a purely sonic point of view

will never result in a complete picture. Thus, while the “multidimensional” label

is appropriate and useful in many respects, it must be remembered that timbre

might never be reliably represented numerically, even in high-dimensional spaces.

The precedents set by research relating amplitude to loudness, and frequency to

1
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pitch—connections that are not always as clear-cut as we assume they ought to

be—by no means guarantee that such strong relationships can be found between

what we are able to perceive and mechanically measure of sound quality.

As an alternative to “multidimensional”, the term “emergent” is adopted

by Stephen Handel in his writings on timbre [Han95]. The descriptor is used fre-

quently in artificial life studies to refer to behavior that arises from the complex

interaction of multitudes of simple objects. The classical artificial life example is

Craig Reynolds’ BOIDS algorithm that has been used to simulate flocking behavior

in animation since the 1980s [Rey87]. “Emergence” is also used by Frank Sibley in

an attempt to explain the relationship between aesthetic and non-aesthetic prop-

erties of art [Sib65]. When called upon to explain why we enjoy a particular piece

of music, we might point to several non-aesthetic properties, such as details of its

formal proportions, melodic contours, and rhythmic patterns. But such attributes

only begin to explain our aesthetic experience. Different pieces with similar non-

aesthetic properties could elicit radically divergent aesthetic responses. In short,

it can be said that emergence describes phenomena in which the whole is greater

than the sum of its parts. It also reserves the possibility that the phenomenon to

which it is applied might never be fully explained or understood. In this regard,

it is entirely appropriate to describe timbre as an emergent property of sound.

Although our understanding of timbre must extend beyond quantification,

timbre research from the past several decades is clearly skewed toward establishing

numerical representations. Those who pursue this goal are driven by the consid-

erable benefits associated with automation, generalization, and stability. With

the quantification of timbre properties, a number of possibilities open up. Vast

databases of sound can be analyzed completely automatically so that composers

and sound designers can easily retrieve sound materials with desired qualities.

Several projects of this sort are in development, with significant levels of success

[TC99][DAC07b]. An additional benefit of quantification in this area is long-term

stability. Large sound databases, like the BBC sample library, are often tagged

with several types of meta-data that verbally describe audio content. Though very

useful in search and retrieval tasks, such data is time-consuming to produce, re-
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quires translation into different languages, and must be maintained over time as

the language we use to describe sound evolves.

In the realm of composition, theorists have put forward the notion of tim-

bre hierarchies that can be used for large-scale musical organization of the type

normally associated with pitch and rhythm [Ler87]. Timbre has long been used

to clarify simultaneous streams of melodic constructs, and since the late 19th cen-

tury it has been used in orchestral settings with increasing sophistication [Bou87].

However, the idea of music utilizing timbre as a structural parameter in its own

right is still quite new. This possibility is supported by experiments that have

begun to establish the stability of timbre interval perception [Wes79][MC92]. In

these studies, it was shown that participants were able to consistently judge both

the magnitude and direction of changes along certain timbre dimensions. Such

abilities may not be as reliable as those in the domains of pitch and rhythm per-

ception, but it is conceivable that timbre sequences and inversions could be used as

effective compositional devices. Lerdahl proposes the idea of timbral dissonance,

consonance, and stability, and asserts that the reason timbre is not commonly used

as a principal bearer of compositional form is that “unlike pitch and rhythm, it

has lacked any substantial hierarchical organization.” [Ler87, p. 138] In reference

to percussion, Boulez confirms the need for such organization: “the percussion sec-

tion, for example, shows the most visible recent transformation of the body of the

orchestra . . . but these instruments don’t obey the hierarchy to which the others

belong and so a certain number of them is necessary to create another hierarchy

based essentially on timbre.” [Bou87, p. 165] The quantification of timbre makes

it possible to achieve timbre organization and manipulation in a controlled and

repeatable fashion.

For performers—and particularly, percussionists—it is not uncommon to be

faced with a piece of contemporary music that leaves instrumentation relatively

unspecified. A range of instrumental freedom exists across pieces like Xenakis’

Psappha, Ferneyhough’s Bone Alphabet, Feldman’s King of Denmark, and Cage’s

27’ 10.554”. In King of Denmark, the percussionist is called upon not only to

select instruments, but also to organize them into coherent sequences. It is ar-
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guable that such tasks are best accomplished based solely on the intuition of the

performer; however, software that is capable of automatically organizing sound

sets can provide a useful starting point, and bring up interesting relationships that

may not be immediately apparent. In other percussion repertoire, instruments are

very strictly specified, and text-based instrument descriptions do not always suf-

fice. For example, not all 18” cymbals sound alike. Stockhausen’s music is perhaps

the most notorious example of highly specified instrumentation, for which certain

percussion instruments (like the Glissentrommel) are manufactured specifically. In

such cases, the ability to quantify timbre characteristics can facilitate a level of

consistency that would otherwise be very difficult to obtain.

It is presently possible to implement many techniques for measuring tim-

bre characteristics in real time. In both composed and improvised performance

projects, this broadens the palette of available options for controlling aspects of live

electroacoustic accompaniment. Musical events can be triggered or manipulated

based on a performer’s subtle control over timbre as well as pitch and loudness.

All of the ideas above are made possible because some aspects of timbre clearly

are strongly related to quantifiable measurements, such as spectral envelope, spec-

tral centroid, and attack time. With these issues in mind, it is not difficult to

understand why the majority of research efforts are directed at the quantification

of timbre.

This dissertation explores the relationship between perceptual dimensions

of percussive timbres and measurements produced by several signal analysis algo-

rithms. In the second chapter, the literature of psychophysical timbre experiments

since 1941 is reviewed with respect to two contrasting approaches. The earliest

attempts at unraveling the interdependent aspects of timbre perception employed

multiple adjective scales intended to describe various sonic features. Following

developments in the technique of multidimensional scaling (MDS) in the 1960s,

several researchers began to apply scaling techniques to data sets of timbre simi-

larity judgments. At present, the majority of timbre studies are based on MDS.

Across both branches of research, at least two perceptual dimensions have been

repeatedly discovered in independent experiments. The first relates to spectral
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center of gravity, while the second is centered on attack characteristics. A third

dimension relating to spectral changes over time has also surfaced, though its in-

terpretation has not been nearly as well defined as the former dimensions. In

spite of such advancements, the range of musical timbres has only begun to be

explored from a perceptual viewpoint, and a significant gap exists in the literature

for percussive instruments.

Chapter 3 presents several approaches to timbre quantification. Many of

the techniques attempt to measure a single timbre characteristic, such as bright-

ness, and produce a single numeric value. This process is referred to as feature

extraction. Certain features are expressed as vectors in a multidimensional geo-

metric space. In fact, spectral data itself is a feature vector with a dimensionality

dependent on analysis window size. A typical number of dimensions for such

information is 1024. Other feature vectors have been devised to reduce this di-

mensionality in order to make it more manageable. The prevailing features of this

sort are the cepstrum and mel-frequency cepstrum, whose components are referred

to as MFCCs. MFCCs have been extremely important in the field of automatic

speech recognition, and their application to music is relatively recent [Log00].

The fourth chapter introduces a timbre analysis software library written by

the author. It is illustrated in the context of several musical research applications

in Pure data. The flexible analysis strategies made possible by the analysis package

are shown to be beneficial in the case of two percussive instrument classification

tests presented in the fifth chapter. In these tests, the effects of perceptually

weighted features like mel- and Bark-frequency cepstrum are evaluated alongside

other standard analysis techniques from the music information retrieval literature.

In the final chapter, a perceptual experiment involving 30 diverse percussion

timbres is carried out. The study confirms the importance of spectral centroid and

attack duration as predictors of perceptual dimensions, and reveals two additional

dimensions that may be unique to percussive timbres: “dryness” and “noisiness”.

A predictive model is generated using multiple linear regression, and results indi-

cate that the noisiness dimension cannot be predicted as accurately as dimensions

relating to spectral center of gravity and attack time. Thus, there is a clear need
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for an effective measure of perceptual noisiness for percussive timbre description.



Chapter 2

Historical Overview of Timbre

Studies

2.1 Experimental Design

There are two overlapping branches of psychophysical research devoted to

elucidating the process of timbre perception, reflecting the dual definition of tim-

bre noted by Handel, Hadja, and Donnadieu [Han95][Had07][Don07]. As an at-

tribute of acoustic phenomena, “timbre” is associated with the physical source of

a sound; yet it is also a catchall term that refers to all perceptual characteristics

(other than pitch, loudness, and duration) of sound considered in the abstract.

In connection with the former understanding of the term, the first branch of re-

search consists of experiments based on classification tasks (as in [SF64] [Ber64],

and [WG72] [CH78]), where participants’ ability to recognize instrument sounds is

measured with respect to various alterations of the stimuli. Berger, for instance,

found that recognition accuracy of wind instrument recordings was adversely af-

fected when using stimuli in which the attack and decay segments were removed

[Ber64, p. 1890]. Wedin & Goude reported similar consequences for removing

attacks, though the severity of classification impairment varied for different instru-

ments [WG72, p. 232]. The effect of fundamental frequency on classification was

explored in [HE01], where it was found that instrument recognition was severely

7



8

hampered when stimuli were separated in pitch by an octave or more. At the

most basic level, studies of this sort provide a measure of our ability to accurately

connect abstract sounds with their physical sources. However, the practice of sys-

tematically altering stimuli creates the potential for identifying specific aspects

of perception that contribute to such categorical judgments in the first place. In

this way, classification-based research could point out sonic cues that explain how

we are able to link the diverse set of sounds that a violin creates with a single

categorical label.

Referred to as “relational studies” [Had07, p. 251], a second branch of re-

search aims to identify the constituent sonic parameters from which timbre percep-

tion emerges. Relational studies can be further divided according to two distinct

approaches. Verbal attribute-based relational studies record judgments about a set

of sounds relative to a collection of words deemed appropriate for describing timbre.

This approach is exemplified by von Bismarck’s thorough experiment from 1974,

where groups of participants rated 35 sounds on 30 unique adjective scales, such

as “dull—sharp” and “dark—bright” [vB74b]. The participants’ ratings were then

further analyzed in order to identify the most salient adjective scales, and acousti-

cally measurable sonic features that correlated highly with these scales were sought.

Critics of this approach will be quick to point out an obvious weakness, which is

that the verbal attribute scales are prescribed by the experimenter, unjustifiably

limiting the information collected from participants to be relative to particular

aspects of timbre that are chosen in advance. This precludes the discovery of

unanticipated relevant features of timbre.

Many consider multidimensional scaling (MDS) algorithms to be an ideal

way to combat this type of bias. The second category of relational studies use dif-

ferent varieties of MDS algorithms to interpret timbre similarity judgments made

by participants relative to several pairs of timbres played in sequence. Though it

was not the first to employ MDS, John Grey’s 1975 study has come to exemplify

this experimental model [Gre75]. In Grey’s experiment, a set of sixteen different

instrument sounds playing an E-flat above middle C were arranged into all possible

pairwise combinations. Participants listened to these pairs and rated their tim-
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bral similarity. Results of multidimensional scaling returned a three-dimensional

solution that accounted for most of the data’s variance. Unlike the results of a

factor analysis performed on von Bismarck’s multiple adjective scales, MDS does

not give any indication as to the properties of sounds distributed along any partic-

ular axis. MDS usually produces 2-4 dimensions that explain a great deal of the

similarity data’s variance; however, these dimensions must be interpreted after the

fact by the experimenter. The three-dimensional MDS solution to Grey’s data was

interpreted as relating to three sonic characteristics. Along the first dimension, in-

struments were distributed according to spectral energy distribution. The second

dimension was taken to be related to the synchrony of attack and decay times of

upper partials, and the third dimension mapped sounds according to the presence

of low-amplitude inharmonic upper partials during the attack.

The advantages and disadvantages of verbal attribute- and MDS-based

studies are complementary. With both approaches, data reduction techniques—

including factor analysis, principal component analysis, and varieties of MDS al-

gorithms like MDSCAL, INDSCAL, and CLASCAL—are used in order to enable

more intuitive interpretation of complex data. Attribute-based experiments make

assumptions about the nature of timbre perception that threaten to push research

results in particular directions. MDS can be a corrective to this risk, although it is

important to recognize that interpretation is still required after the fact. In terms

of the size of the sound set being tested (N), the MDS approach is very restrictive

because it requires that participants evaluate all possible pairs in a set. If N = 12,

there are N(N − 1) = 132 possible pairings to listen to. With even a modestly

larger set of N = 20, there are 380 pairs. The adjective scale approach is much

less limited in this regard.

This chapter will review some of the most significant relational timbre stud-

ies that have followed these two experimental models. Many researchers have noted

a clear dominance of the MDS approach [Lak00][CMSW05]. Keeping the above

limitations in mind, there are nevertheless some consistencies emerging that call

for further experimentation using both strategies.
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2.2 Verbal Attribute Studies

The earliest studies to systematically explore connections between verbal

attributes and aspects of tone quality or timbre were [Lic41], [Sol58], and [Sol59].

Motivated by the extreme imbalance of understanding between timbre and other

sonic attributes like loudness and pitch, Lichte carried out a large scale investiga-

tion of the tone quality of different classes of complex tones. The spectra of the

tones were designed synthetically using a tone generator capable of producing up

to 16 partials. 255 participants rated pairs of tones from each of the tone classes

with respect to the terms “dull”, “bright”, “thin”, “full”, “smooth”, and “rough”.

Results indicated that there is a basis for “brightness”, “roughness”, and “fullness”

as independent attributes of tone quality.

Following Lichte, Solomon studied 50 common verbal attributes applied

to sonar recordings. His project was unique in that it used non-synthetic sound

stimuli, and the vocabulary used to create attribute scales was well established

semantically within the community of sonar experts that served as participants.

Rather than having participants rate one element of a stimulus pair as “duller” or

“brighter” than the other (as in [Lic41]), Solomon employed Osgood’s concept of

a semantic differential (SD) scale [OST57], where attributes are paired with their

semantic opposites to form scales such as “heavy—light” and “smooth—rough”.

50 participants rated the sounds individually on the collection of seven-point SD

scales, and results were highly consistent across participants. Factor analysis of

the data revealed seven important factors that accounted for 42% of the variance.

The primary factor was interpreted as a “magnitude” dimension, with the largest

loadings coming from the scales “heavy—light”, “large—small”, and “rumbling—

whining”.

2.2.1 Von Bismarck

Because it was the most comprehensive work of its time, the details of

von Bismarck’s study of 35 timbres must be described in more detail than given

above. Von Bismarck sought to correct three problems he identified in the early
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studies just mentioned. First, processes for choosing verbal attributes were not

systematic. Second, the sound stimuli were not normalized for pitch, loudness,

and time structure. Last, the studies did not offer many connections between the

SD ratings and measurable signal characteristics.

With regard to the selection of verbal attributes, von Bismarck began with

a list of 69 adjectives drawn from previous studies, and had participants rate the

appropriateness of each term on a seven-point scale ranging from “very unsuit-

able” to “highly suitable”. In von Bismarck’s opinion, participants’ ratings were

generally consistent, and the scales with the highest mean scores were compiled

to form a list of 28 SD scales. Scales for “soft—loud” and “low–high” were added

to test the effectiveness of pitch and loudness normalization. The final list of 30

scales is given in Table 2.1.

Table 2.1: Thirty SD scales used in von Bismarck’s 1974 experiment.

soft—loud wide—tight

weak—strong thick—thin

gentle—violent clean—dirty

fine—coarse full—empty

reserved—obtrusive solid—hollow

low—high colorful—colorless

soft—hard pure—mixed

dim—brilliant simple—complex

relaxed—tense compact—scattered

calm—restless interesting—boring

rounded—angular lively—dead

dampened—ringing pleasant—unpleasant

smooth—rough open—closed

heavy—light dark—bright

broad—narrow dull—sharp

The sound set consisted of 35 synthetically produced steady-state timbres,
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many of them based on vowels from the German language. They were generally

divided into “noise” and “tone” categories, with tonal timbres equalized in pitch

at 200 Hz. Using a chosen sound as a reference, all stimuli were equalized in loud-

ness. Participants were able to audition the entire set for context before making

any judgments on the SD scales. Two strategies were informally attempted for col-

lecting judgments. The first presented the sound set repeatedly in various random

orders, with participants rating only one SD scale per sound for each repetition.

The second presented the entire sound set only once, with each sound repeating

30 times to allow participants to rate it on every SD scale. No major difference in

consistency was found between the two strategies, so the official experiment was

carried out using the second approach, as it was preferred by most participants.

Participants were separated into two groups according to levels of musical training.

A factor analysis of the SD ratings revealed four factors that explained

more than 80% of the variance. The “stumpf—scharf”, or “dull—sharp” scale was

consistently connected with the first factor in all cases. There was no significant

difference between the ratings of musicians and non-musicians on this scale. It

must be noted that in English, usage of “sharp” in a musical context is connected

with pitch. “Dull—bright” may therefore be a more appropriate translation. Other

relevant scales for this sound set were “compact—scattered”, “full—empty”, and

“colorful—colorless”. Contrary to expectation, the control scales for “soft—loud”

and “low—high” were highly correlated with other scales, in spite of the fact that

participants were instructed to ignore pitch and loudness as much as possible.

Potential explanations for this unexpected result are offered, focusing on the pos-

sibility of participants misinterpreting the semantic meaning of the scales.

The multivalence of SD scales is definitely problematic. However, if scales

are chosen directly by the community of musicians participating in an experiment

and their judgments appear to be consistent, verbal attributes—whose meanings

are constantly evolving within languages that constantly evolve themselves—can

be mined for stable information. Regarding a physical correlate to the most im-

portant scale in his study, von Bismarck noted that “sharpness formation appears

to be characterized by the combined effects of (1) the position of energized spec-
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tral regions and (2) the magnitudes of energy in those regions” [vB74a, p. 169].

These parameters are tied to the measurement of spectral centroid. Several stud-

ies have identified either “brightness” or spectral centroid as important factors in

the perception of timbre [Lic41][Gre75][PD76][IK93][Lak00][CMSW05]. Von Bis-

marck’s subsequent article [vB74a] carefully examines the independence of sharp-

ness (brightness) from pitch or loudness. The logic is that any primary dimension

of timbre should be perceptually separable from pitch or loudness. Bismarck’s

study confirms this hypothesis, and further demonstrates that a quantitative dou-

bling or halving of sharpness by spectral design produces proportional perceptual

judgments [vB74a, p. 162].

2.2.2 Kendall & Carterette

Von Bismarck’s study improved upon prior work considerably, but certain

flaws remained. For example, the 69 SD scales used as a starting point were taken

from quite varied timbre studies that investigated not only musical sounds, but

speech and sonar events as well. Experiments originating from non-musical disci-

plines are built on assumptions that may or may not be appropriate for musical

contexts. Further, participants in von Bismarck’s experiment were not given the

advantage of listening to his sound set before evaluating the appropriateness of the

proposed SD scales. A more fundamental issue is the appropriateness of seman-

tic differential scales themselves: certain attributes, like “brightness”, have more

than one possible antonym (e.g., “dullness” and “darkness”). Finally, though it is

not necessarily a flaw, von Bismarck’s exclusive use of static synthesized timbres

situates the realm of influence of his results rather far from temporally evolving

instrumental sounds.

[KC93a] and [KC93b] are verbal attribute-based studies of combined wind

instrument timbres that address the issues above. Rather than looking only at

previous semantic differential timbre studies, Kendall and Carterette built their

list of candidate adjectives directly from a musically-oriented source: Walter Pis-

ton’s Orchestration. All of the adjectives Piston used in reference to timbre were

extracted from the book and the list was edited by the authors to eliminate re-
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dundancies, as well as terms that were too strongly tied to a manner of playing or

articulation (e.g., “plucked”). This resulted in a list of 61 adjectives that was to

be further reduced by a formal experiment.

The adjective selection experiment utilized a small participant pool that

was composed entirely of professional musicians. A subset of the full collection

of woodwind timbres was chosen based on a previous experiment that enabled

a perceptually-based mapping of the sounds in a three-dimensional space. The

most dissimilar sounds were chosen for the subset, and participants heard them

repeatedly while checking off the most appropriate adjectives from the full list of

61. Adjectives receiving two or more checks were preserved. The final list of 21

adjectives is shown in Table 2.2.

Table 2.2: Twenty-one adjectives used in Kendall & Carterette’s 1993 experiment.

brilliant brittle crisp edgy full fused light

mellow nasal reedy resonant rich ringing round

smooth soft strong tremulous tense warm weak

After the SD scales used in an initial experiment were not successfully used

by participants to distinguish between instrumental timbres [KC93a], Kendall and

Carterette concluded that bipolar scales were problematic. A second experiment

was carried out using verbal attribute magnitude estimates (VAME), i.e., single

adjective scales. For example, rather than choosing a value along a scale from

“dark—bright”, participants simply rated the degree of “brightness” that a sound

possessed. The follow-up experiment successfully differentiated timbres based on

these VAME ratings. Thus, this approach was adopted for the more carefully

selected set of musically-oriented adjectives in [KC93b].

A principal components analysis of VAME ratings produced four factors

explaining 86% of the data variance. Based on the VAME scales associated with

these factors, four dimensions were identified that were interpreted as related to

the terms “power” (summarizing “smooth”, “soft”, “light”, “weak”, and “mel-

low”), “strident” (summarizing “strong”, “tense”, and “tremulous”), “plangent”
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(summarizing “ringing”, “resonant”, “crisp”, and “brilliant”), and “reed” (sum-

marizing “reedy”, “fused”, and “warm”). Connections between these dimensions

and acoustical analyses were tentatively offered, including spectral energy distri-

bution for the “power” dimension, and spectral flux for the “strident” dimension.

As a preemptive response to criticism of these relatively inconclusive results, the

authors point out that decisions surrounding the interpretation of MDS-derived

dimensions are often made “arbitrarily, with little basis other than intuition, and

subject to biases of expectation.” [KC93b, p. 495]. Though the conclusion is less

satisfying, the caution Kendall and Carterette show is laudable: “The danger of

reification of meaning of the dimensions of MDS configurations is real. The at-

tribute or factor chosen to represent a dimension, such as nasal or rich, is only the

most salient feature in a fuzzy set of features.” [KC93b, p. 496].

2.2.3 Freed

A unique study by Daniel Freed focused on perceived mallet hardness

(PMH) in percussive timbres [Fre90]. Like Kendall and Carterette, Freed’s exper-

iment involved rating actual instrument timbres—in this case metal pans, which

are frequently used by contemporary percussionists as instruments. Where Kendall

and Carterette specifically avoided adjectives related to the mechanical production

of sound (e.g., “plucked”), Freed chose to make a single term of this type the main

object of his study. According to Freed, “PMH is the timbral property that evokes

an ‘image’ of a specific degree of mallet hardness.” [Fre90, p. 311] Such an adjec-

tive is quite different in nature from those studied by von Bismarck or Kendall and

Carterette. A potential criticism is that mallet hardness is only a secondary tim-

bral descriptor; however, its timbral consequences are so frequently engaged with

by percussionists that any findings in this area are clearly valuable. Generally,

higher mallet hardness is known to increase the high frequency content of percus-

sive sounds. The term “brightness” could perhaps have been used instead, but

“hardness” is less susceptible to multiple interpretations, and the intuitive under-

standing of a physical property like mallet hardness is worth exploring separately.

Making reference to [Gib66], Freed sees this as a move toward a more “ecological”
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approach to perception.

As opposed to the static timbres used in [vB74b] or the complete wind in-

strument tones from [KC93a], acoustic analyses in Freed’s experiment were limited

to the attack portion of sounds—in this case, the first 325 milliseconds. Four types

of analyses were chosen for investigation based on their expected correlation with

physical mallet hardness: the mean and slope of the spectral level curve (tracking

the area beneath the spectral envelope as it changes over time), and the mean and

time-weighted average of the spectral centroid curve. Significantly, these spectral

measurements were not performed on raw magnitude spectra, but spectra obtained

by applying a transform designed to model the human auditory system by J. P.

Stautner [Sta83]. The transform returns a spectrum indicating energy in the dif-

ferent critical bands. Subsequently, each band was emphasized according to the

A-weighted decibel curve [Fre90, p. 314].

Nine musically trained participants rated 96 recorded sounds of four differ-

ent metal pans that were each struck with 6 different types of mallets. Arranged

from soft to hard, the mallet head materials used were: felt-covered rubber, felt,

cloth-covered wood, rubber, wood, and metal. Participants used a nine-point rat-

ing scale ranging from “very soft” to “very hard”. Results are plotted in Figure

2.1, reproduced from [Fre90].

Figure 2.1: Participants’ PMH ratings as a function of mallet identity.
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What can be seen is that participants were able to identify mallet types

based on PMH independently of pan types. The four acoustic predictors were

evaluated against this data using multiple regression analysis, showing all predic-

tors to be effective in combination. Rated individually, spectral centroid mean

(in Barks) was the most effective predictor, confirming the intuitive connection

between PMH and the verbal attribute “brightness”.

2.3 Multidimensional Scaling

The earliest uses of multidimensional scaling in timbre similarity research

are documented in [WG72] [Wes73] [Gre75], and [Plo76] following major develop-

ments in the MDS technique by Kruskal in 1964 [Kru64]. Throughout [WG72],

the dimension reduction technique is alternately referred to as “multidimensional

scaling”, “multidimensional similarity analysis”, and “principal component factor

analysis”, but the primary distinction is that a dimension reduction method was

applied to similarity judgments, not multiple verbal attribute ratings. The pri-

mary goal of Wedin & Goude’s study was to find correlations between what they

identify as the “acoustical” and “psychological” definitions of timbre; however, it

also investigates the influence of attack and decay segments of sounds, which makes

its findings relevant in terms of timbre classification as well.

The stimulus set used was small, consisting of recordings of nine Western

orchestral instrument timbres: flute, bassoon, violin, oboe, French horn, trumpet,

trombone, clarinet, and cello. In terms of pitch and loudness, the tones shared

a common fundamental of 440 Hz and were played at a “mezzo-forte” dynamic.

All tones maintain 3 seconds of steady state articulation, and vibrato was allowed

for violin, cello, flute, and oboe [WG72, p. 230]. Two versions of the sound set

recording were prepared: one unaltered, the other with the attack and decay of

each tone removed.

Four phases of experimental procedure were established and carried out

on 70 participants divided into two roughly equal groups. The second group was

exposed to the altered stimulus set with attacks and decays removed. In the first
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experimental phase, participants listened to each tone in the set twice, then were

asked to identify the instrument that produced it. Next, participants heard all

possible pairs in the set, and were asked to make a similarity judgment for each on

a 0 to 10 scale. A questionnaire collecting information about musical training was

answered in the third phase. The final phase took place on a different day, and

participants were asked to rate the similarity of the instruments used in the study,

this time referred to by name only (e.g., “violin” and “cello”). The rationale for

the fourth phase was to collect information about what Wedin & Goude refer to as

the “cognitive structure” of each sound, which is constructed based on information

that can obtained about a sound without necessarily hearing it. It was investigated

in relation to the “perceptual structures” of the sounds, which consist of direct

experiential information.

Data from the similarity portion of the experiment were reasonably consis-

tent across participants, and a perceptual space was generated from the resulting

matrix. For both the unaltered and transient-removed stimulus sets, three dimen-

sional spaces were found that explained about 75% of the variance. The positions

of instrument timbres in these spaces did not correspond with the “cognitive”

groupings obtained from the fourth experimental phase. Violin, cello, and clar-

inet were clustered on the first dimension, trombone, French horn and flute were

grouped on the second dimension, and trumpet, oboe, and bassoon were similar

along the third dimension. Thus, the cognition-based fact that the clarinet and

flute are both woodwind instruments did not predispose participants to rate the

timbres as similar.

The remarkable finding from this early and limited study is that spectral

energy distributions of stimuli were very clearly connected with their positions

along the three dimensions produced from MDS. In Figure 2.1, it can be seen

from casual inspection that the first column of spectra have consistently strong

upper harmonics relative to the fundamental, the second column of spectra possess

gradually decreasing upper harmonics (or a decreasing spectral slope), and spectra

in the third column have a strong formant region and relatively weak fundamental

strength.
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Figure 2.2: Spectra for the steady state of 9 instrument tones used in [WG72].

Wedin & Goude are modest about their conclusions, noting the “rather lim-

ited stimulus sample, and the partly imperfect control of the technical-acoustical

conditions” [WG72, p. 240], but present three acoustic correlates to the perceptual

space dimensions. The first dimension relates to the amount of “overtone rich-

ness”, or relatively high amplitude harmonics possessed by a tone. The second

dimension reflects “overtone poorness”, or decreasing spectral slope. The third

dimension represents tones with a low fundamental amplitude and a region of

stronger upper harmonics.

Through linear regression analysis, Wedin & Goude also attempted to clar-

ify how individual harmonics related to each axis of the perceptual space. It was

found that “the highest frequency, the fundamental frequency and the middle range

frequencies have the highest predictive power.” [WG72, p. 238]. This information

could be helpful in reducing the number of calculations required for automated

timbre comparisons.
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2.3.1 Grey

Though efforts toward establishing a perceptual timbre space via MDS by

Wedin & Goude preceded John Grey’s 1975 dissertation, An Exploration of Musical

Timbre [Gre75], Grey’s work has come to exemplify this experimental model. The

single most significant reason for this was the unique nature of Grey’s sound stimuli.

The set contained sixteen orchestral instrument sounds, while that used in [WG72]

consisted of only nine. More importantly, Grey’s stimuli were time-varying and

synthetically produced.

The process of producing these sounds began with conventional tape record-

ings. Each of the sixteen instruments played an E-flat at 311 Hz for durations

ranging between a quarter- and half-second. The analog recordings were subse-

quently digitized and analyzed with a heterodyne filter technique. Results of this

analysis yielded the detailed time-varying amplitudes of each partial for any given

tone. Further refinement drastically reduced the amount of information required

to resynthesize these tones using additive synthesis, making it possible to pro-

duce unprecedentedly realistic synthesized instrument tones. Thus, the complex

time-evolving physical properties of the stimuli were completely determined—a

feature that previous studies did not possess. The final step of proposing acoustic

correlates to perceptual timbre dimensions could be based on more complete infor-

mation than the steady-state spectra employed in [WG72]. In addition, controlled

equalization of pitch, loudness, and duration is greatly facilitated, and previous

studies are inconsistent in this regard.

Two articles following [Gre75] established some significant findings. In

[Gre77], a pair of experiments are described that generate a perceptual timbre

space and verify an aspect of its ability to predict similarity judgments. The first

experiment collected 35 sets of similarity judgments from 20 “musically sophis-

ticated” participants. Upon hearing each possible pairing of tones from the set

of sixteen stimuli, participants rated similarity on a 30 point scale. Carroll &

Chang’s INDSCL MDS program processed the resulting similarity matrix, and

two- three- and four-dimensional solutions were evaluated. Inconsistencies were

found in the two-dimensional solution, and no clear advantage could be found
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between the three- and four-dimensional solutions. Figure 2.3 reproduces Grey’s

three-dimensional timbre space.1272 J.M. Grey: Scaling of musical timbre 1272 

J 

FIG. 1. Three-dimensional spatial solution for 35 similarity 

matrices generated by multidimensional scaling program 

INDSCAL (Carroll and Chang, 1970). Hierarchical clustering 

analysis (Johnson, 1967) is represented by connecting lines, in 

clustering strengths order: solid, dashed, dotted. Two-di- 

mensional projections of the configuration appear on the wall 

and floor. Abbreviations for stimulus points: O1, O2=oboes; 

C 1, C2 = clarinets; X1, X2, X3 = saxophones; E H = English horn; 

FH = French ho. rn; S1, S2, S3 -- strings •TP = trumpet; TM 
=trombone; FL=flute; BN=bassoon. 

Listeners were told to rate the simila•,ity of the two 

tones, relative to that of all other pairs of tones heard. 

They were instructed that the first 30 pairs were prac- 

tice, and that they could change their rating strategies 

during that time. The similarity rating was made on a 

scale of I to 30, and this scale was presentedtolisteners 

as having three general ranges: (1) 1-10•ve•y dis- 

similar, (2)11-20--average level of similarity, and 
(3) 21-30=very similar, relative to all pairs. 

C. Results and discussion 

The similarity judgments for each listener were stored 

as a 16 by 16 matrix of data, recording responses with 

respect to the exact order of presentation for any pair 

of stimuli. -The overall Pearson product-moment cor- 

relation between the 35 pairs of half-matrices was 0.905, 

indicating that there were differences in judgmsnts with 
respect to the order of presentation. An examination 
was made for the existence of consistent order-related 

response differences across all listeners for any pair 

of stimuli. A half-matrix of order-related response 

differences was generated for each listener by sub- 

tracting th8 upper from the lower half of the response 
matrix. A Student t-test was made for each cell of the 

half-matrix across the 35 listeners for a consistent 

direction of differences. None of the 120 cell means 

for the 35 half-matrices were significantly different 

from zero, and they were all within 0.8 standard devia- 

tions of zero. Therefore the original response ma- 
trices were transformed into half-matrices for each 

listener by averaging the two responses to a pair of 

stimuli presented in different orders. 

The 35 averaged half-matrices were treated with a 

multidimensional scaling algorithm that t•kes individual 

differences into account, INDSCAL (Cart011 and Chang, 

1970). Spatial representations were obtained in two, 

three, and four dimensions. Goodness-of-fit mea- 

sures, defined as the correlation between the scalar 

products of the actual and predicted distances, for the 

solutions were: 0.78 for four dimensions, 0.75 for 

three dimensions, and 0.68 for two dimensions. 

In order to compare the similarity structures between 

the first and second runs of the 15 listeners who gave 

two data sets each, the two respective sets of 15 haft- 
matrices were solved for in two and three dimensions 

using INDSCAL. The spatial solution for the firs{ run 
was rotated to best fit that of the second run, and Pear- 

son product-moment correlations were found for spatial 
coordinates. The correlations for both the two-di- 

mensional and three-dimensional cases were 0.98, sug- 

gesting that there •ere no fundamental changes in re- 

sponse strategy for the similarity judgments between 
runs. 

In addition to subjecting the similarity matrices to 

multidimensional scaling analysis, they were also 

treated with a hierarchical clustering algorithm (HICLUS 

by Johnson, 1967). A group matrix was formed by 

averaging the rank orders of the ratings in the 35 indi- 
vidual matrices (since HICLUS works on rank orders 

of responses). The clustering algorithm produced an 

analysis of the similarity data which was independent 

of the spatial-dimensional reduction generated by 

multidimensional scaling. The cornl•actuess, or diame- 

ter, method of clustering wks found to give the most 

interpretable results. The analysis grouped the most 

similar stimuli into clusters and then grouped such 

clusters into high-order clusters, continuing this way 
until the whole set of stimuli were in one cluster. 

Cluster strength reflected degree of similarity, so that 

the lowest level clusters were the strongest. 

The INDSCAL and HICLUS analyses were used in 

conjunction with one another to interpret the data (see 
Shepard, 1972)o The three-dimensional INDSCAL solu- 
tion was found to be the most useful for interpreting the 

similarity structure of the stimuli. The two-dimen- 

sional spatial solution presented several discrepancies 

with the clustering analysis, and as a spatial solution 

was difficult to interpret. The three-dimensional solu- 

tion overcame the problems of clustering and seemed 

more interpretable. However, there was no benefit 

found for interpreting the data by increasing the num- 
ber of dimensions to four. 

The three-dimensional IND•CAL solution is shown in 

the perspective plot of Fig. 1. Dimension I is the verti- 

cal axis, H is the horizontal axis, and HI is the depth 

axis. The abbreviations adopted for the 16 tones are O1 

and O2-the two oboes; EH=the English horn; BN=the 

bassoon; Cl=the F_• clarinet and C2=the bass clarinet; 

X1 and X2 = the two saxophone tones (mr and p respec- 

tively); X3 = the soprano sax; FL = the flute;. TP = the 
trumpet; FH = the French horn; TM= the muted trom- 

,bone; S1, S2, and S3=the cello tones (labelle d strings: 
sul/•onticello, normal bowing, and muted sul tasto, re- 

spectively). 

J. Acoust. Soc. Am., Vol. 61, No. 5, May 1977 

Figure 2.3: Grey’s three-dimensional timbre space.

Plotted in the three-dimensional space, instruments were grouped by family

to a certain degree. For instance, trumpet, trombone, and french horn are tightly

clustered with respect to dimensions II and III. Grey’s psychophysical interpre-

tation of the space attributed the first dimension to spectral energy distribution

(confirming previous studies regarding the importance of spectral centroid), and

the remaining dimensions to temporal acoustic features. The second dimension

was best explained in terms of synchronicity between upper harmonics during the

rise and decay portions of the sounds. Such a pattern can also be interpreted in

terms of spectral flux—the change in amplitude of all partials over time. While

woodwinds had upper harmonics that entered and exited in close alignment, those

of brass instruments exhibited more independent behavior. The presence of low-

amplitude high-frequency inharmonic partials during the attack segment was the

most relevant acoustic feature distinguishing sounds along the third axis. Clarinet

and string instruments possessed these fleeting partials, while brass, bassoon, and

english horn did not [Gre77, p. 1274].

The second investigation detailed in [Gre77] trained participants in an iden-
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tification task over the course of several sessions. Various arrangements of the same

16 stimuli were played for participants repeatedly in each session, and classification

judgments were collected. Participants’ classifications became more accurate over

the course of the sessions, improving from 60% to 84% [Gre77, p.1276]. Among

the incorrect responses, the confusion of two sets of instruments is pointed out.

A saxophone sound was confused with English horn 8% of the time, and bassoon

was confused with French horn 7% of the time. Referring to the three-dimensional

solution from the first experiment, it can be seen that these stimuli are in close

proximity with respect to the second and third dimensions. In combination, the

two experiments in [Gre77] establish and verify a perceptual timbre space that

relates to both the spectral energy distribution and spectro-temporal features of

the stimuli under investigation.

A separate study presented in [GG78] begins to exploit the considerable

power of completely determined synthetic stimuli. Based on the perceptual timbre

space generated in [Gre77], it was hypothesized that exchanging features of the

distribution of spectral energy between a pair of complex tones would result in a

corresponding exchange of the positions of these tones within timbre space. Thus,

the effect of precisely controlled synthesis parameters was evaluated by an inde-

pendent perceptual experiment—a repetition of the timbre similarity experiment

that generated Grey’s initial timbre space.

The first phase of this investigation was to carefully map the spectral energy

distribution of one tone onto another. As each tone is described by a complex set

of time-varying amplitude and frequency values, this task involves some difficult

decisions. For instance, how should the spectral distribution of a sound with a

great number of significant partials be grafted onto a sound with relatively few

strong partials? Regarding temporal structure, which moment of the model sound

should be chosen as representative of its spectral energy distribution? Grey &

Gordon chose to apply the peak amplitude value of each partial of the model

sound to the sound under alteration. To give an example, the strategy for mapping

the features of the trumpet stimulus onto the trombone stimulus was as follows.

The peak amplitudes of all harmonics in the trumpet stimulus were used to scale
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ORIGINAL TRUMPET MOOtflED TRUMPET 

WITH TROMBONE SPECTRAL ENVELOPE 

(b) •;> -, 
'*• v .• . . . ..._•... 

ORIGINAL TROMBONE MODIFIED TROMBONE 
WiTH TRUMPET SPECTRAL ENVELOPE 

FIG. 1. Exchange of spectral envelopes between the trumpet 

(a) and trombone (b) to form the modified trumpet (c) and 

modified trombone (d). Note that only the common harmonics 

trade peak amplitude values, and hence the original frequency 
bandwidths (number of harmonics) are retained. 

vanced instrumental performance and others in con- 

ducting, musical composition, and/or music synthesis. 

Data sets were collec[ed in an hour session. Each 

trial consisted of a warning knock, the two tones for 

comparison, and a decision interval. The warning 

knock preceded the first tone by 2.5 s, 1.5 s separated 

the two tones, and 6 s were given for the listener to 

make a judgment. There were a total of 270 trials, 30 

of which were practice trials. The remaining 240 trials 

consisted of the n(n - 1) possible pairs of 16 tones, 

given in both directions. Trials were presented in a 
random order. 

The only difference in presentation of the stimuli be- 

tween the two runs of the experiment was a change in 

location. The first run was presented in a large and 

relatively reverberant room, whereas the second run 

was presented in a smaller and considerably less re- 

verberant room. in both cases, listeners were located 

approximately 12 feet from the speaker, an Altec Lan- 

sing model 604. 

Listeners were told to rate the similarity of the two 

tones relative to that of all other pairs of tones heard. 

They were instructed that the first 30 pairs were prac- 

tice, and that they could change their rating strategies 

during that time. The similarity rating was made on a 

scale of 1-30, and this scale was presented to listeners 

as having three general ranges: (1) 1-10, very dissim- 
ilar; (2) 11-20, average level of similarity; and (3) 21- 
30, very similar, relative to all pairs. 

III. RESULTS AND DISCUSSION 

The similar'fry judgments for each listener were 

stored as a 16 x 16 matrix of data, recording responses 

with respect to the exact order of presentation for any 

pair of stimuli. An examination was made for the 

existence of consistent order-related response differ- 

ences across •.11 listeners for any pair of stimuli. A 

half-matrix of order-related response differences was 

generated for each listener by subtracting the upper 

from the lowel. half of the response matrix. A student 
t-test was made for each cell of the half-matrix across 

the 40 data sets for a consistent direction of differ- 

ences. None of the 120 cell means for the 40 haft-ma- 

trices were significantly different from zero, and they 
were all within 0.8 standard deviations of zero. There- 

fore the original response matrices were transformed 

into half-matrices for each listener by averaging the 

two responses to a pair of stimuli presented in different 

orders. 

The 40 averaged half-matrices were treated with a 

multidimensional scaling algorithm that takes individ- 

ual differenceE into account: INDSCAL (Carroll and 

Chang, 1970). Spatial representations were obtained 

in two, three, and four dimensions. Goodness-of-fit 

measures, defined as the correlation between the scalar 

products of the actual and predicted distances, for the 

solutions were 0.81 for four dimensions, 0.78 for 

three dimensions, and O. 70 for two dimensions. 

In order to compare the similarity structures be- 

tween the first and second runs of this experiment, the 

two respective sets of 20 half-matrices were given to 

INDSCAL for three-dimensional spatial solutions. The 

spatial sotution for the first run was rotated to best 

fit that of the second run and Pearson product-moment 

correlations were found for spatial coordinates. The 

correlation between the two configurations was 0.99, 

suggesting thai: there were no major differences be- 
tween the two runs. 

In addition tu subjecting the similarity matrices to 

multidimensional scaling analysis, they were also 

treated with a hierarchical clustering algorithm 

(HICLUS by Johnson, 1967). A group matrix was formed 
by averaging the rank orders of the ratings in the 40 

individual mah'ices (since HICLUS works on rank orders 

of responses). The ctustering algorithm produced an 

analysis of the similarity data which was independent 

of the spatial-dimensional reduction generated by multi- 

dimensional scaling._ The compactness, or diameter, 

method of clustering was found to give the most inter- 

pretable resulls. The analysis grouped the most simi- 

lar stimuli inh) clusters; then grouped such clusters 

into higher-order clusters, continuing this way until 
the whole set cf stimuli were in one cluster. Cluster 

strength reflected degree of similarity, so that the 

lowest level clusters were the strongest. 

The 1NDSCAL and HICLUS analyses were used in 

conjunction with one another to interpret the data (see 

Shepard, 1972). The three-dimensional INDSCAL sol- 

ution was found to be the most useful for interpreting 

the similarity •tructure of the stimuli. The two-di- 
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Figure 2.4: Spectral characteristics of the trumpet and trombone are exchanged.

the corresponding harmonics of the trombone stimulus so that the magnitudes of

its harmonics were more like those of the trumpet, but the overall contour of each

harmonic’s trajectory remained similar to that of the trombone. For pairs of sounds

with differing numbers of significant partials, the additional harmonics of the sound

with larger spectral bandwidth were left unaltered. Thus, each sound retained

its bandwidth characteristics, but important amplitude relationships between its

harmonics were significantly different. Figure 2.2, reproduced from [GG78, p. 1495]

illustrates the transformation.

The four pairs of stimuli that were altered in this way were trumpet—

trombone, oboe—bass clarinet, bassoon—French horn, and two cello stimuli: reg-

ular and sul ponticello. Forty sets of similarity judgments were collected from 19

musically sophisticated participants, with all other experimental design param-

eters held constant from the previous similarity study. Again, three- and four-

dimensional solutions from the MDS process returned the best fitting results. The
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three-dimensional solution was used in order to facilitate comparison with the

previous timbre space.

As hypothesized, the altered pairs of tones traded positions along the first

axis, which was taken to represent spectral energy distribution. Because the spec-

tral alterations also affected temporal characteristics (e.g., the synchrony of high-

frequency partial trajectories), the altered tones shifted along the other two axes

as well. Unaltered tones maintained their relative positions from the timbre space

generated in [Gre77]. Grey & Gordon’s study confirmed Grey’s original percep-

tually based timbre relationships, and successfully predicted perceptual timbre

judgments using calculated synthesis parameters.

The final section of [GG78] proposes several methods for a unitary numerical

predictor of position along the first dimension of the timbre space. Amplitude

information for time-evolving spectra was averaged in a number of ways, and the

mean value of the time-averaged spectrum was determined to be the most effective

predictive measure. Strongest results were obtained by further transforming the

time-averaged spectrum by Zwicker & Scharf’s loudness function [ZS65]. The

authors conclude that spectral centroid “is an adequate representation of spectral

energy distribution, in that it simultaneously takes into consideration the many

factors which may be important: overall bandwidth, balance of levels in the lower

harmonics, and the existence of strong upper formants.” [GG78, p. 1498]

2.3.2 Iversen & Krumhansl

In a chapter offering an array of perspectives on the creative ramifications

and state of timbre investigations, [Kru89] reports the results of a study carried out

with Wessel using a newly developed MDS algorithm. Like others, she notes that

the MDS approach is very appropriate for exploratory research of high-dimensional

perceptual information. However, she also points out that certain aspects of tim-

bre may be categorical, making it difficult to model along continuous dimensions.

The MDS algorithm applied in her study with Wessel allowed stimuli to main-

tain individual dimensions that remained separate from those of the common low-

dimensional solution. The degree to which a stimulus utilized its own separate
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dimension was reflected by a “specificity” value. Timbres with a low specificity

could be understood as fitting the common dimensions of the MDS solution quite

well, while those with high specificity values required additional interpretation.

Twenty-one timbres were created using FM synthesis, with the intention of model-

ing the sound of common orchestral instruments. Six of these stimuli were “hybrid”

tones. For instance, the trumpar stimulus was designed to sound like a mixture of

trumpet and guitar.

Krumhansl & Wessel’s scaling experiment produced a space with two clearly

interpretable dimensions. The first was taken to relate to rapidity of attack, and

the second corresponded to brightness. A third dimension was less clear, but the

authors attributed it to some aspect of the “temporal evolution of spectral com-

ponents” [Kru89, p. 48]. Certain instruments, including trumpet and trombone,

generated specificity values of zero, while others generated quite high values. The

interpretations of high specificities given for stimuli like harpsichord and clarinet

were only preliminary, but pointed to unique sonic characteristics like mechanical

noise and predominance of odd harmonics. Thus, general perceptual dimensions

were still generated using this MDS model, but stimuli that created problems

for the fit could be identified and their additional characteristics possibly better

understood.

Continuing this line of research in [IK93], Iversen & Krumhansl sought

further clarification of the way in which dynamic aspects of tones contribute to

perceived timbre similarity. By 1993, several studies had identified spectral cen-

troid as “one of the main contributors to the perception of timbre” [IK93, p. 2595],

and Krumhansl, Grey, and Wessel had independently found evidence that various

combinations of onset characteristics constituted another important perceptual di-

mension. As explained above, Grey found that the synchrony of rising partials as

well the presence of quiet high-frequency energy during an onset were meaningful

timbre attributes, while the second dimension of Wessel’s timbre space related to

“the nature of the onset transient” [Wes79, p. 48]. Iversen & Krumhansl designed

three experiments in order to evaluate the unique salience of onsets in timbre

perception.



26

The stimuli were taken from the McGill University Master Samples library

(MUMS), and included recordings of bassoon, cello, clarinet, English horn, flute,

French horn, oboe, piano tenor saxophone, tenor trombone, trumpet (normal

and muted), tuba, tubular bells, vibraphone, and violin. Like Grey, Iversen &

Krumhansl’s set contained sixteen orchestral instruments, but with a notable ad-

dition of two percussion instruments: tubular bells and vibraphone. Because the

stimuli were recorded natural sounds rather than realistically synthesized sounds,

options for varying onset and steady state characteristics were quite limited. Three

sets of stimuli were prepared. The instrumental samples were unaltered in the first

set, truncated to the first 80 milliseconds in the second set, and composed of only

the steady state and decay segments for the third set. Stimuli in the final set were

referred to as “remainders”.

In each of the three experiments, participants were asked to evaluate the

similarity of all possible pairings of timbres in the set. Breaking slightly from

the procedure of previous MDS-based research, Iversen & Krumhansl posed the

similarity evaluation to participants relative to a hypothetical task. Participants

were asked to “imagine that they had a computer that allowed them to record a

sound and change it in any way they wanted.” [IK93, p. 2597] Their rating was

then given as a function of how much they would have to change the first tone

to make it sound exactly like the second. A provided rating scale ranged from “a

little” to “a lot”.

MDS of the similarity ratings for the first stimulus set was carried out using

the same algorithm employed in [Gre77] and [GG78], which is described in [Kru64].

A two-dimensional solution was generated that generally separated stimuli with

impulsive onsets from those with a more gradual attack along the horizontal axis,

and arranged stimuli by brightness (i.e., spectral centroid) along the vertical axis.

Having established an initial timbre space with meaningful axes, the two re-

maining experiments were carried out. Dimensional scaling of similarity judgments

of the onsets-only stimulus set produced a very similar timbre space, indicating

that onsets alone are very relevant in timbre similarity evaluations as well as clas-

sification. Surprisingly, MDS of judgments based on the “remainders” set also
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produced a timbre space that was very similar to that from the first experiment.

Thus, a preliminary hypothesis that onsets are the most important segment of the

sound in similarity tasks was rejected, and it was concluded that unique timbre

attributes cannot be isolated to any particular segment of complex tones.

2.3.3 McAdams

Some of the most thorough and large-scale timbre studies of late have been

generated by various collaborations between Stephen McAdams, Suzanne Wins-

berg, Jochen Krimphoff, Anne Caclin, and Stephen Lakatos, among others. Led

by McAdams, a team of five researchers produced a major report [MWD+95] that

advanced the MDS-based timbre experiment model in three major areas. First,

synthesized stimuli were used rather than acoustic instrument recordings, includ-

ing synthetic attempts at both real and invented instrument tones. Only [GG78]

and [Kru89] had done this previously. Second, the CLASCAL MDS algorithm was

used to measure the “specificity” of each stimulus. Stimuli with high specificity

possess unique attributes that are not accounted for by the axes of the MDS so-

lution space. Third, the large participant pool was designed according to levels

of musical training. The CLASCAL algorithm was used to discover latent classes

implied by the structure of the similarity data. Relationships between these classes

and musical experience were sought.

The 18 stimuli were synthesized instrument tones produced by Wessel, Bris-

tow, and Settel using FM synthesis techniques [WBS87]. An earlier study by

Krumhansl [Kru89] employed the same sound set. A majority of the timbres were

designed in imitation of traditional orchestral instruments, but six represented hy-

brid instruments, including the trumpar (trumpet/guitar), oboleste (oboe/celesta),

striano (bowed string/piano), vibrone (vibraphone/trombone), obochord (oboe/ha-

rpsichord), and guitarnet (guitar/clarinet). All stimuli were equalized for loudness,

duration, and pitch.

98 participants with varying degrees of musical training were recruited to

create three participant categories: professional musicians, amateur musicians, and

non-musicians. The number of participants in each group was 24, 46, and 28
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respectively. As with previous studies, participants evaluated the similarity of

all possible pairs of tones within the sound set.1 Analysis of the similarity data

identified a small set of participants with inconsistent ratings. These data were

removed, leaving 88 data sets for use in the CLASCAL analysis.

Figure 2.5: The three-dimensional timbre space produced by McAdams et al.

The two models returned from the MDS process—one in six dimensions

without specificities, the other in three dimensions with specificities—were highly

successful in mapping the perceptual information. The lower dimensional model

was chosen because “the psychophysical interpretation of the underlying dimen-

sions was more coherent.” [MWD+95, p. 184] This timbre space is reproduced in

Figure 2.5.

One of the goals of this study was to compare the perceptual space of

Krumhansl’s previous experiment using the same sound set.2 The first two di-

mensions of McAdams et al.’s space correlated very strongly with Krumhansl’s.

The third dimension in [Kru89] was interpreted to be related to spectral flux. In

a separate study, Krimphoff et al. [KMW94] reevaluated Krumhansl’s data and

identified an acoustic measure that correlated very highly with her third dimen-

1It is worth noting that in this case, the rating scale was presented in terms of “dissimilarity”,
with “very similar” on the left, and “very dissimilar” on the right.

2[Kru89] actually used three additional timbres that were dropped in [MWD+95]
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sion. The spectral measure employed was referred to as “spectral irregularity”,

informally defined as the “log of the standard deviation of component amplitudes

from a global spectral envelope derived from a running mean of the amplitudes of

three adjacent harmonics.” [MWD+95, p. 187] However, in spite of drastic mea-

sures, such as removing timbres from the set, no clear interpretation could be made

for the third dimension in [MWD+95], and the spectral irregularity measure did

not correlate with the position of timbres along that axis.

A listening-based analysis of timbres with high specificity values identified

some of their unique features. Eleven stimuli were closely considered, and two

categories of specificities were proposed. The authors concluded that some of

these attributes are continuous in nature, having various degrees of intensity, while

others are more discrete, depending on the simple presence or absence of an unusual

feature. For instance, the harpsichord tone (possessing one of the highest specificity

values) was said to have a distinct “clunk” during its offset, presumably a synthetic

modeling of the instrument’s mechanical noise. Counter to intuition, the hybrid

instrument tones were no more likely to have high specificity than conventional

instrument tones.

Results of latent class analysis were counter to McAdams et al.’s hypoth-

esis. Out of the five latent classes uncovered by the CLASCAL analysis, most

participants were members of either the first or second class. It was concluded

that relationships between the musical training data and class membership were

not meaningful, indicating that timbre perception is not strongly affected by expe-

rience. It is worthy of note, however, that judgments made by participants in the

professional musician group were the most consistent. McAdams et al. point to

the everyday aspect of timbre perception as a possible explanation of these results.

Timbre, being composed of many of the sensory qualities that specify the
identity of a sound source, may likely be used as an important auditory
cue for monitoring the environment on a continual basis by listeners in
their everyday lives. [MWD+95, p. 190]

More recently, a very thorough study by Caclin, McAdams, Smith, and

Winsberg [CMSW05] has again confirmed spectral centroid and attack duration as

important predictors of timbre. The investigation also directed considerable effort
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toward better understanding of the role of spectral flux in relation to the third

dimension found by Krumhansl. In three separate experiments with roughly 30

participants each, Caclin et al. gathered similarity judgments on carefully designed

synthetic tones.

Stimuli for the first experiment were systematically varied in terms of spec-

tral centroid, attack time, and spectral flux. Flux was realized as a sinusoidal

variation of spectral centroid over the first 100 milliseconds of the tones. This was

intended to model patterns of high frequency presence over time in natural tones.

As in [Gre77], all stimuli were pitched at 311 Hz, and were equalized for loudness

and duration. The spectra of all stimuli contained 20 harmonically related par-

tials with various patterns of amplitude envelopes that decreased as a function of

frequency. These patterns were used to directly control spectral centroid. In the

time domain, all amplitude envelopes had attack, sustain, and decay segments.

Two- and three-dimensional timbre spaces were produced, with axes that

correlated highly with spectral centroid and attack time.3 The three-dimensional

model indicated that participants used spectral flux to a very small extent in their

similarity ratings, but only for tones with very high spectral flux. In Figure 2.6,

strong similarity can be seen between the synthesis parameter space and the two-

dimensional perceptual space.

A second experiment focused entirely on spectral flux, using three sets of

stimuli: one in which spectral centroid was held constant, one in which attack time

was held constant, and another in which both spectral centroid and attack time

were held constant. Solutions returned from MDS analysis in all three experiments

did not map stimuli as predicted by the stimulus synthesis parameters. Two crude

groupings of stimuli with low and high spectral flux were formed in one case, but

no patterns reflecting the systematic variation of synthesis parameters could be

identified based on the similarity judgment data.

As an alternative to spectral flux, spectral irregularity was varied within

a stimulus set for a third experiment. Caclin et al. define spectral irregularity as

3A primary experimental goal of [CMSW05] was the comparison of CLASCAL and CONSCAL
MDS algorithms. In the context of this discussion, no distinction is made between timbre spaces
produced by these algorithms.
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Figure 2.6: Two-dimensional synthesis parameter and perceptual spaces, from
Caclin et al.

an amplitude attenuation of even harmonics relative to odd. Attenuation ranged

from 0 to 8 dB. A subsequent MDS analysis produced a three-dimensional timbre

space in which the third dimension correlated very highly with spectral irregularity.

Though these efforts were successful, it should be noted that spectral irregularity is

not a time-varying synthesis parameter like spectral flux. Hence, this experiment

fails to address the original goal of accounting for Krumhansl’s third perceptual

dimension. Nevertheless, the work described in [CMSW05] makes an invaluable

contribution to the literature, providing a much needed confirmatory study with

many clear findings.

As a final point, it is interesting to note McAdams’ participation in a

classification-based study led by Lakatos [LMC97]. The experiment is related to

Freed’s perceived mallet hardness study in that both evaluate participants’ abil-

ity to perceive physical characteristics of sound stimulus sources. In the case of

[LMC97], participants were asked to select one of two graphical depictions of sound

sources based on their likelihood of producing a given sound stimulus. The study

by Lakatos, described in the following section, addresses this thread of research in

the context of a more conventional MDS timbre similarity experiment.
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2.3.4 Lakatos

Growing out of work by McAdams et al., an MDS-based study described

in [Lak00] was designed in order to explore the repercussions of analyzing larger

and more heterogenous sets of stimuli. In light of the consistent identification of

spectral centroid and onset rise time as important correlates of timbre perception,

Lakatos points out that most of the stimuli upon which these conclusions were

founded were relatively similar across studies. He hypothesized that additional di-

mensions might be uncovered if this experimental parameter was expanded [Lak00,

p. 1427]. Lakatos also intended to address the question of whether or not more

recent MDS algorithms, which do not strictly assume a continuous (rather than

categorical) distribution of data, offer any significant advantages. Citing a lack

of data connected with the level of musical training possessed by participants, he

hoped to shed some light on the effect of experience on timbre perception. Fi-

nally, by employing a program capable of mapping data according to a tree model

(EXTREE), he sought patterns of categorization that related to the physical char-

acteristics of each sound’s source and manner of excitation.

34 recorded instrument tones were taken from the McGill University Master

Samples collection and organized into three stimulus sets. The stimuli were chosen

with the aim of representing a broad range of timbres, instrument materials, and

methods of excitation. The first set, called the “harmonic” group, contained 17

tones produced by pitched instruments playing a D-sharp above middle C. The

“percussive” set contained 18 tones, 7 of which were pitched. A “combined” set

was made up of 20 tones—10 selected from each of the previous sets. Loudness

and pitch were carefully equalized [Lak00, p. 1428].

The participant pool was composed of 18 musicians and 16 non-musicians.

Participants judged all possible pairs of tones for each stimulus set in three separate

hour-long sessions. The similarity rating scale ranged from “very similar” to “very

different”.

Similarity data from the harmonic set showed no significant differences

based on musical training. A two-dimensional timbre space was generated that

was quite similar to those described in [IK93]. The logarithm of attack rise time
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correlated well with stimulus mappings along the horizontal dimension, separating

impulsive instruments like harp, piano, and harpsichord from bowed string and

wind instruments. Stimuli were spread across the second dimension in a way that

correlated with the logarithm of spectral centroid. A second analysis using EX-

TREE to discover grouping trends indicated no clear grouping of the harmonic

instruments according to instrument materials or manners of excitation.

Three dimensions were found for the percussive set, however the third di-

mension was uninterpretable. In spite of the drastically more heterogenous collec-

tion of timbres in the percussive set (including bamboo chimes, bongos, castanets,

celesta, cuica, bowed and struck cymbals, log drum, marimba, snare drum, steel

drum, tambourine, tam-tam, bowed and struck vibraphone, temple block, tubular

bells, and tympani) the first two dimensions were again clearly correlated with

attack rise time and spectral centroid. This suggests that the two measures are

indeed fundamentally connected to our understanding of timbre.

A slight difference was found between the judgments of musicians and non-

musicians. Lakatos speculated that the heavier weighting of musicians’ judgments

on the axes of the MDS solution was due to their increased familiarity with the un-

usual sound set. Clusters returned from analysis using EXTREE were clearly seg-

regated along lines corresponding to instrument materials and excitation. Wooden

and metal bars and tubes formed the first cluster, while metal plates alone formed

the second. The majority of instruments in the final cluster were membranophones.

Finally, the MDS solution for data collected on the combined set (shown in

Figure 2.7) was very similar to that of the harmonic set alone. Its two dimensions

were well explained by attack time and spectral centroid, with logical separation

of impulsive and continuous sounds on the horizontal axis. No major difference

was found between judgments with respect to musical training. With the context

of harmonic stimuli, the percussion stimuli were again clustered by EXTREE ac-

cording to instrument material, and among harmonic timbres a group of blown

aerophones emerged.

Lakatos’ study engages challenges that were not addressed in previous MDS-

based research, such as the use of a more diverse set of sounds that included
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bongo drum vs. log drum). The reappearance of most of
these clusterings in the combined data set strengthens the
argument that they not only arise for a specific stimulus
set but are replicable across multiple contexts.

Given consistent findings about the dimensional struc-
ture of timbre in this work and in others, to what extent
does a two-dimensional structure represent a useful de-
scriptive model? From an intuitive perspective, it may
seem unsatisfying to accept that two orthogonal dimen-
sions capture most of the variance inherent in our rich
acoustic environment, much as it would seem reduction-
istic to characterize the wide range of visual objects in
our environment exclusively by length, width, and height.
One potential explanation may stem from the fact that
MDS algorithms, including CLASCAL, almost invari-
ably generate low-dimensional solutions because they
seek the most parsimonious dimensional fit to the data.
It may be that higher dimensions of timbre exist but that
the number of timbres (or the variance inherent within the
data) would need to be increased in order to extract those
higher dimensions. It may also be that attributes of timbre
beyond those of spectral centroid and rise time may not
be captured adequately by a continuous spatial model,
especially if such “higher” attributes arise from nominal/
categorical aspects of the sound sources that produce the
timbres (such nominal attributes would be represented
by increased variance within the MDS solution, and not
necessarily by additional dimensions unique to each at-
tribute).

Indirect evidence for additional, perhaps noncontinu-
ous, timbral attributes arises when one generates syn-
thetic timbres that vary exclusively along the dimensions
derived from MDS studies. The resulting sounds fail to
capture much of the range of timbral variation occurring

in real musical instruments or other sound sources and
tend to sound artificial and hollow. Students of computer
music, who have attempted to synthesize electroacoustic
sounds by manipulating their time-varying spectrum
along dimensions similar to those suggested by MDS
studies, are familiar with how difficult it can be to pro-
duce a realistic-sounding timbre. In a study of timbre
using newly developed MDS techniques, McAdams,
Winsberg, Donnadieu, De Soete, and Krimphoff (1995)
found that musical timbres possess specific attributes—
some deriving from the implied method of physical source
excitation—that cannot be accommodated by a model
postulating shared perceptual dimensions, suggesting that
a purely dimensional interpretation of timbre perception
may mask other noncontinuous or categorical factors.
Thus, it would appear that many of the acoustic compo-
nents necessary to convey a realistic impression of a phys-
ically generated sound may not be represented adequately
by a two-dimensional model.

Can additional MDS analyses provide further insight
into the acoustic determinants of timbre? As noted above,
the answer depends on whether attributes of timbre that
are not captured by a two-dimensional model can be rep-
resented by additional dimensions or whether such at-
tributes are nominal and therefore are not easily repre-
sented by a Euclidean spatial metric. If additional timbral
dimensions exist, one strategy would be to select stimuli
that have similar spectral centroid and rise times but are
perceptually dissimilar; such a strategy would reduce vari-
ation along the two principal dimensions of timbre and
therefore increase the likelihood that additional dimen-
sions can emerge from the data. Careful preselection of
stimuli on this basis might represent a better strategy
than, say, increasing the heterogeneity of a stimulus set
by adding more stimuli, given that the number of paired
comparisons increases geometrically with the number of
stimuli presented (e.g., 20 stimuli result in 380 pairings,
whereas 36 stimuli would have resulted in 1,260 pairings
and exhausted participants). If, on the other hand, addi-
tional timbral attributes are nondimensional, it may be
necessary to move from the purely descriptive model of
timbre that MDS provides to a more predictive, hypothesis-
driven approach that attempts to link acoustical proper-
ties of sounds and their sources to their perceptual con-
sequences.

An important starting point for the development of a
more predictive model would be the articulation of a the-
ory of proximal and distal stimulus processing for timbre
perception. Although one can describe timbral attributes
in terms of microstructural features (e.g., time-varying
amplitudes of individual partials), it is likely that listen-
ers also attend to more categorical acoustic invariants,
such as the mechanical characteristics of the instruments
themselves (e.g., the coupling of the reed to the air col-
umn in a clarinet) or physical commonalties shared by
particular instrumental families. Such an ecological com-
ponent of timbre perception was suggested by Gibson
(1966), who theorized that physical processes, such as a
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represented by open squares.Figure 2.7: Two-dimensional timbre space for the “combined” stimulus set.

unpitched and noisy instruments. His findings were remarkable in that a new

perceptual dimension did not emerge in response to this diversity. As discovered

in previous studies (both verbal attribute- and MDS-based), the spectral center of

mass was an excellent predictor of perceptual judgments. Attack duration, another

well-confirmed acoustic correlate of timbre, was the only other significant predictor

identified. In an effort to make sense of the useful but unexpected results, Lakatos

offers the following thoughts.

To what extent does a two-dimensional structure represent a useful de-
scriptive model? From an intuitive perspective, it may seem unsatisfy-
ing to accept that two orthogonal dimensions capture most of the vari-
ance inherent in our rich acoustic environment. . . . MDS algorithms,
including CLASCAL, almost invariably generate low-dimensional solu-
tions because they seek the most parsimonious dimensional fit to the
data. [Lak00, p. 1437]

2.4 Summary

This chapter has sampled a bifurcated research tradition spanning nearly

70 years. Along the verbal attribute branch, Kendall and Carterette followed von

Bismarck’s well-documented efforts, and moved in a productive direction by drop-
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ping the use of antonymous semantic differential scales. Their more careful choice

of musically relevant adjectives serves as a reminder that adjective lists must be

compiled anew for each sound set under investigation, and no assumptions can be

made about the permanence of any one term over time. Their finding that spectral

energy distribution and flux related significantly to participants’ judgments is in

line with Lichte’s and von Bismarck’s conclusions, and many MDS interpretations

as well. Freed’s study produced results that also point to the significance of spec-

tral centroid in the prediction of a single aspect of percussive timbre—one that is

conceptually tied to physical sound source characteristics. His choice to focus on

perceived mallet hardness alone produced strong conclusions upon which further

study can be built.

Though this review is not complete (also see [Rah66] [Jos67] [Tru71] [SMN96]

[Dar05]) there are relatively few timbre experiments that explore verbal attributes.

The dominance of MDS-based experiments can perhaps be explained by two under-

standable desires: 1) to find a general, intuitive, dimensional model of timbre, and

2) to avoid the imprecision and impermanence of language. The only dependence

that MDS studies have on language is in connection with the meaning of “similar”,

which is a reasonably stable concept. In spite of these significant advantages, how-

ever, the attribute-based approach should not be dismissed. It is remarkable, for

instance, that Lichte’s 1941 study identified an attribute associated with spectral

centroid as central to timbre perception. Studies of Western orchestral instrument

timbres continue to confirm the importance of this spectral measure.

It appears that decades of more sophisticated studies have yielded no more

than two additional correlates: attack duration and spectral irregularity. Of those

studies confirming the former correlate, only Grey’s work investigated it any detail

beyond raw duration. His identification of asynchrony among partial rise times

and the presence of weak high-frequency energy during attack deserve further

investigation. McAdams et al.’s identification of spectral irregularity as relevant is

relatively recent, and requires additional confirmation.

Both branches exhibit weaknesses in the area of experiments carried out

on sequences of timbres. The “legato transient” between successive notes was
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studied in [CH78] in a classification context, and similarity judgments of isolated

timbres and melodic sequences of timbres were considered in [Ser95] in a relational

context. Further work along these lines is needed. A second weakness may be

a byproduct of MDS dominance: the stimulus sets for most studies are rarely

composed of more than 16 timbres. This is at least partly due to a requirement

of MDS algorithms that similarity ratings be obtained for all possible pairs in a

stimulus set. The largest stimulus sets were those used in verbal attribute studies

by von Bismarck (35) and Freed (24). Apart from MDS limitations, there is also

a general restriction on the size of stimulus sets in terms of what can reliably be

evaluated by participants in a single session.

Timbre homogeneity is another important issue. Stimuli used in the studies

above range from actual recordings of instruments to unmistakably artificial syn-

thetic signals. Even amongst the synthetic stimuli, most of the timbres do not stray

far from the realm of Western orchestral instruments. Lakatos’ combined set of 20

orchestral and percussion instruments was by far the most diverse. There are ex-

perimental justifications for this trend. For instance, in order to isolate additional

perceptual dimensions, it is necessary to restrict rather than broaden the range of

timbres studied. With spectral centroid, attack duration, and (tentatively) spec-

tral irregularity established as relevant, a clear research path is the synthesis of

tones that are strictly normalized along these dimensions. Such a sound set would

likely be extremely homogenous, but would offer the possibility of discovering new

perceptual timbre attributes.

The sounds studied above do not begin to reflect the rich palette of acoustic

and synthetic timbres that contemporary composers are engaged with. Thus, in

parallel with research on restricted groups of timbres, a line of study involving

more diverse sound sets also needs to be established. In spite of its disadvantages,

an attribute-based research approach offers greater freedom in terms of stimulus

set size, which makes it an attractive option for studying heterogenous timbre sets.



Chapter 3

Objective Analysis

The experiments described in Chapter 2 indicate that our perception of

timbre is too complex to be fully explained by a collection of objective measures.

Stephen Handel notes that performance actions associated with the articulation of

a sound may be very influential in timbre perception [Han95, p. 495]. For percussive

sounds in particular, [Fre90] and [LMC97] confirm that mallet materials and the

shape and nature of the resonating body itself also influence perception. Clearly,

tenacious connections between action, object, and sound are formed through our

musical and day-to-day experiences. These types of associations will surely vary

with cultural context, and cannot be expected to remain stable. For instance, the

vocabulary of performance gestures associated with timbres created by a digital

musical instrument is often in constant flux. Within the context of such a perfor-

mance, our cognitive map for understanding the physical origin of familiar timbres

is altered. The rich network of associations that a sound carries for any particu-

lar individual will always differ subtly (and possibly drastically) from the sound’s

corresponding set of implications for another individual.

Such complexities make efforts toward automatically quantifying timbre

seem somewhat vain. While it is important to recognize the inadequacy of quan-

titative descriptions of a largely qualitative sonic characteristic, several objective

time and frequency domain analysis algorithms have nevertheless been applied

successfully to music and speech classification tasks. The majority are based on

a short-time Fourier transform, and involve various degrees of further processing.

37
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This chapter will present two classes of algorithms from the literature that generate

low and high level features. Low level features describing the frequency domain

are crude measures of spectral envelope, while high level features retain a larger

portion of the spectrum’s original dimensionality. Cepstral techniques have proven

to be the most powerful from a data reduction standpoint, and will be described

in the most detail.

3.1 Low level features

The successful connection of spectral centroid with a perceptual dimension

of timbre has lead to several other algorithms for summarizing spectral energy

distribution along a single dimension. The desire for unidimensionality is rooted

not only in the fitting of perceptual data, but also in applications where extremely

large audio databases are intended to be browsed by user query, and compact

information is highly prioritized. A series of spectral descriptors described in

[ZR07][Tza02][TC02][PMH00] were established for the MPEG7 standard, and have

been applied in projects such as IRCAM’s Studio On Line [HBPD03]. Some of

the most important sound descriptors are described below.

3.1.1 Spectral Centroid

Like any distribution of values, the magnitudes of spectral bins can be

described with respect to the four central moments: mean, variance, skewness, and

kurtosis [Fuj98][TC99]. The first spectral moment (mean, or centroid) is the center

of mass of magnitude spectrum. It can be computed as the ratio of the sum of

spectral magnitudes weighted by either bin index or frequency to the unweighted

sum of spectral magnitudes. In units of frequency, centroid (C) is defined as

C =

∑N/2
k=0 f(k) |X(k)|∑N/2

k=0 |X(k)|
(3.1)

Where N is the number of points in the Fourier transform, and f(k) and |X(k)| are
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the frequency and amplitude of the kth bin respectively. Two instrument spectra

and their centroids are given in Figure 3.1.

Figure 3.1: Bongo (left) and metal bowl (right) spectra, with spectral centroids of
926 Hz and 2858 Hz.

3.1.2 Spectral Spread

The second moment is spectral variance, but [Fuj98] and [ZR07] express

spectral spread in terms of standard deviation. This reflects the degree to which

total spectral energy is concentrated around the mean. The calculation is accom-

plished by centering the frequency values for each bin according to the centroid,

so that the energy in bins that are distant from the centroid will be accumulated

in the sum.

Spread =

√√√√∑N/2
k=0(f(k)− C)2 |X(k)|∑N/2

k=0 |X(k)|
(3.2)

The bongo and metal bowl spectra in Figure 3.1 have spreads of 1755 Hz and 2144

Hz respectively.

3.1.3 Spectral Skewness

The third moment is skewness, which measures the symmetry of a spec-

trum’s energy distribution. A positive skew results from distributions with a steep
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slope upward on the low end and a more gradual slope downward moving toward

higher frequencies. A negative skew is precisely the opposite. Mathematically,

spectral skewness is defined as

Skew =

∑N/2
k=0(f(k)− C)3 |X(k)|
σ3
∑N/2

k=0 |X(k)|
(3.3)

where σ is spectral spread. The bongo spectrum in Figure 3.1 has a high positive

skewness value, while the metal bowl spectrum has a lower (but still positive)

value because the energy beyond the most prominent peak is more spread out,

with several strong individual partials.

3.1.4 Spectral Kurtosis

The fourth moment is spectral kurtosis, which changes in connection with

the sharpness of an energy distribution’s peak. It is defined as

K =

∑N/2
k=0(f(k)− C)4 |X(k)|
σ4
∑N/2

k=0 |X(k)|
− 3 (3.4)

As the bongo spectrum has most of its energy in a small low-frequency band and

possesses a strong central peak, its kurtosis is quite high. All of the spectral

moment measures are taken relative to a central mean value, with the hope that

positioning of the spectral envelope along the frequency axis will have a minimal

effect on the measures. For instance, an ideal measurement of spectral spread for

a band of noise would remain constant for any center frequency value. However,

as frequency deviations from the centroid are raised to higher and higher powers,

a frequency-dependent bias is introduced. With the highest power term used here,

spectral kurtosis is the most susceptible to this bias. [Fuj98] describes the use of

moment-based features going as high as the 10th moment, but notes that “higher

order moments tend to be noisy”.
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3.1.5 Spectral Brightness

Spectral Brightness is the ratio of the sum of magnitudes above a given

boundary frequency f(K) to the sum of all magnitudes in a spectrum. Signals with

a significant amount of high frequency content will have higher brightness. Typical

values for f(K) are 1000, 1200, or 3000 Hz [LJB05][Jus00].

B =

∑N/2
k=K |X(k)|∑N/2
k=0 |X(k)|

(3.5)

Referring again to Figure 3.1, the brightness value (with f(K) = 1200) of the

bongo spectrum is 0.1, while that of the metal bowl spectrum is 0.93.

3.1.6 Spectral Rolloff

Spectral Rolloff is a second measure of high frequency content. Rather than

a ratio, it is expressed as the frequency of bin K, below which a certain percentage

of total spectral energy is concentrated. [TC02] specifies 85%.

max{f(K) :
K∑

k=0

|X(k)| ≤ 0.85

N/2∑
k=0

|X(k)|} (3.6)

The rolloff frequency of the bongo spectrum in Figure 3.1 is 991 Hz, just above

the spectral centroid.

3.1.7 Spectral Flatness

Spectral Flatness is the ratio of the geometric mean of magnitude spectrum

to the arithmetic mean of magnitude spectrum. A very noisy spectrum without

clear shape (i.e. that of white noise) has a high flatness value, while the spectrum

of a single sinusoid has extremely low flatness.

Bf =

N/2

√∏N/2
k=0 |X(k)|

1
N/2

∑N/2
k=0 |X(k)|

(3.7)



42

Figure 3.2: A tambourine spectrum with flatness value of 0.42.

Figure 3.2 shows the spectrum of a tambourine, several milliseconds after the initial

attack. Energy is concentrated in three rough areas, where the lowest concentration

is caused by the actual drum head, and the mid and high frequency concentrations

emerge from the jingling of metal along the tambourine’s frame. Although there

are several peaks and valleys across the entire frequency range, the somewhat even

energy distribution earns a relatively high flatness value of 0.42. In contrast, both

of the spectra from Figure 3.1 have flatness values of 0.01 because of their strong

primary peaks that eclipse remaining energy in other bins.

3.1.8 Spectral Irregularity

Spectral irregularity was explored in connection with perceptual judgments

in [CMSW05], described in terms of the relative strength of even and odd har-

monics. Irregularity is measured relative to the strongest peaks returned by a

peak-picking algorithm [Jen99]. This measure is especially relevant for harmonic

spectra, where the strongest peaks will be harmonics relative to a fundamental

frequency. Irregularity can then be measured with respect to the most salient

components in such a tone. Regardless of harmonicity, irregularity can also be

measured relative to all spectral bins using one of two standard algorithms. Krim-
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phoff’s strategy is to subtract a running average of neighboring magnitudes from

all but the first and last bins [KMW94].

I = log10

(N/2)−1∑
k=1

∣∣∣∣|X(k)| − |X(k − 1)|+ |X(k)|+ |X(k + 1)|
3

∣∣∣∣ (3.8)

If neighboring partials differ in magnitude by small amounts throughout the spec-

trum, the irregularity value will be very low. An extremely “spiky” spectrum

would generate a high irregularity.

Jensen’s algorithm sums squared magnitude differences with the upper

neighbor of each bin, and sets this to a ratio against the sum of spectral power

[Jen99, p. 94].

I =

∑(N/2)−1
k=0 (|X(k)| − |X(k + 1)|)2∑N/2

k=0 |X(k)|2
(3.9)

The values returned by this formula have the useful quality of usually remaining

between 0 and 1.0. Using either algorithm, the metal bowl spectrum from Figure

3.1 has a higher irregularity than the bongo spectrum. The more jagged contour

of the former is visually apparent.

3.1.9 Spectral Flux

Spectral Flux is a spectro-temporal measure, given as the sum of squared

difference between two successive normalized magnitude spectra. The time sepa-

ration between successive frames depends on window size and overlap values. If

data reduction is not a priority, the complete spectral difference between frames

can be preserved to track changes in specific frequency bands. Because squaring

the differences of fractional magnitude values can result in very small terms, it

is also appropriate to sum the absolute value of the differences (i.e., Manhattan

distance rather than Euclidean distance).

F =

N/2∑
k=0

(|Xi(k)| − |Xi−1(k)|)2 (3.10)
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Spectral flux can be used for crude threshold-based attack detection.

3.1.10 Zero Crossing

Zero crossing is a time-domain feature, and is simply the number of times

the waveform crosses zero in the window. It is computed as

Z =
N∑

n=2

sign[x(n)]− sign[x(n− 1)] (3.11)

where sign is the signum function, which returns 1 when the argument is positive,

-1 when it is negative, and 0 otherwise. For pitched instruments, zero crossing rate

correlates with fundamental frequency, and is thus an extremely crude indicator

of pitch.

3.1.11 Log attack time

Attack time was identified as a primary perceptual dimension of timbre in

studies described in Chapter 2. Limitations associated with attack detection make

reliable real time capture of this measure difficult. Even in non real time, ambigui-

ties connected with appropriate sound segmentation can cause complications. One

general algorithm for this measure is the logarithm of the time elapsed between

the points at which RMS amplitude is 2% and 80% of the sound’s overall peak

level [PMH00, p. 2].

3.1.12 Features for harmonic spectra

Additional low level features, such as the odd/even relation and the tris-

timulus measure have been proposed, but are most appropriate for the spectra of

harmonic tones [PJ82][Jen99]. The former measure sums the energy in even and

odd harmonics separately, which reflects distinctive characteristics of harmonic

timbres like the clarinet. Applying such an algorithm to even and odd spectral

bins would not return useful information, nor would it be appropriate to apply it to

a subset of the strongest peaks, which would not be evenly spaced. The tristimulus
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measure is also intended for harmonic tones, and separately measures the energy

attributed to the fundamental frequency, the following three harmonics, and the

remaining harmonics. Tristimulus is useful in distinguishing between the types of

spectra examined in [WG72], shown in Figure 2.2, where fundamental energy and

spectral slope relative to the fundamental were found to correlate with perceptual

judgments. As the focus of this dissertation is constrained to percussive timbres

with spectra that are generally inharmonic, these two measurements will not be

explored further.

3.2 High level features

In moving from unidimensional features to multidimensional feature vec-

tors, a range of options exists for negotiating the increased data size. Naturally, the

most complete information is a matrix of time-varying magnitude spectra that cov-

ers the entire sound event. From the standpoint of creating manageable databases

of sound descriptors, the interdependent parameters of time and frequency reso-

lution must be considered in terms of memory consumption. With sampling rate

sr = 44.1 kHz, window size N = 1024, and overlap o = 2, one second of au-

dio requires 86 analysis frames with 512 points each, consuming 176.128 kilobytes

of memory when using 32-bit floating point numbers. One option for reducing

data size is to use a smaller overlap value, which results in fewer frames; however,

this forfeits temporal information that is potentially critical for distinguishing one

timbre from another.

The three-dimensional spectrogram of a bass drum strike in Figure 3.3 il-

lustrates a spectro-temporal pattern that is typical of percussive sounds, where

a powerful burst of high frequency energy exists for only the first hundred mil-

liseconds of the attack, giving way to a concentration of lower energy as the main

pitch of the instrument emerges. With very low overlap values, the detail in such

patterns will be lost.

Strategies for reducing spectral information have similar consequences in

the frequency domain. Frequency bands of a spectrum can be averaged in order
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Figure 3.3: Spectrogram of a bass drum strike.

to limit the number of points for each frame, but any patterns of frequency fluc-

tuation existing within each band will not be preserved. In this case, the choice

of particular frequency bands is extremely important, as some bands are more

perceptually relevant than others. For instance, the fact that half of the data in

a spectrum describes frequencies above 10 kHz is clearly disproportionate in light

of realistic hearing ranges, which do not typically extend to the ideal of 20 kHz.

The most obvious solution to this problem is to average frequency bands that

are evenly spaced according to perceptually based scales such as mels or Barks

[SVN37][ZFS57]. Typical parameters for these types of techniques can reduce a

1024-point spectrum to about 30 points. Further reduction can be achieved with

additional processing that measures correlation with crude spectral shapes. The

most common of these techniques are based on cepstral analysis, first proposed

in [BHT63], and applied to music modeling in [Log00]. This type of analysis can

reduce a spectrum to only a few points that remain useful for automatic distinction

between sounds.
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3.2.1 Cepstral Analysis

The term “cepstrum” was originally defined in a 1963 article by Bruce P

Bogert, MJR Healy, and JW Tukey, entitled “The Quefrency Alanysis of Time

Series for Echoes: Cepstrum, Pseudo-Autocovariance, Cross-Cepstrum, and Saphe

Cracking.” [BHT63] Initial motivation for the technique came out of work on echo

detection in seismological data. As the title of the article relates, its authors

devised terminology that forges conceptual links between the frequency domain

spectrum and the period domain cepstrum. Frequency values that typically occupy

the abscissa of a spectral plot become “quefrency” values in the cepstral domain.

Signal processing terminology such as filtering, phase, and analysis were translated

to “liftering”, “saphe”, and “alanysis”. For those interested in approaching the

details behind this tongue-in-cheek vocabulary, the most accessible of conceptual

definitions is that found in Curtis Roads’ Computer Music Tutorial. According

to Roads, cepstral analysis “tends to separate a strong pitched component from

the rest of the spectrum.” It “tends to deconvolve two convolved spectra.” [Roa96,

p. 518] These features explain why cepstral techniques are so heavily used in voice

processing and identification. If speech is fundamentally a convolution of glottal

impulses with the resonance of a speaker’s oral cavity, cepstral analysis allows these

components to be examined individually. By separating filtering characteristics

from the effects of a particular pitched articulation, the cepstrum provides a general

spectral signature of a person’s voice.

In the realm of musical applications, the Audio Oracle, developed by Shlomo

Dubnov, Gérard Assayag, and Arshia Cont, uses cepstral information to shuffle

frames of an audio file by transitioning between the states of a Factor Oracle

structure [DAC07a]. Data drawn from cepstral analysis is employed as a feature

vector describing each 2048-sample window of the audio file. Similar vectors indi-

cate timbrally similar frames of audio that may be suitable for creating artificial

transitions. Using this information, the Factor Oracle is constructed to allow for

shuffling that will generate a sequence of windows with timbral patterns that are

similar to (but distinct from) the original file. For instance, if the original audio

file had the following timbral sequence of events: vibraphone, oboe, vibraphone,
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piano, vibraphone, piano, a reshuffled version resulting from a traversal of the Fac-

tor Oracle would have a timbrally similar sequence. In the resulting audio file,

instances of vibraphone followed by piano would be more frequent than instances

of vibraphone followed by oboe because there are simply more cases of the for-

mer in the original sound file. Compact cepstral information makes this process

possible within reasonable computation times.

From Spectrum to Cepstrum

Figure 3.4: Magnitude spectrum of a 440 Hz sawtooth wave.

Compared to the results of spectral analysis, cepstral information is not

as easily understood on an intuitive level. An example illustrating a transition

between the frequency and quefrency domains will aid further discussion. For

maximum clarity, this example will be based on a synthesized (and thus noise-

free) signal with harmonic content: a 440 Hz sawtooth wave. Figure 3.4 shows

its magnitude spectrum at a sampling rate of sr = 44.1 kHz, and window size

N = 1024. The fundamental is thus centered around the 10th bin, or 10 sr
N

Hz.

The real cepstrum (xRC) is defined in [QT79] as

xRC(n) = <[ IFT{ln |X(k)|} ] (3.12)
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where X(k) is the frequency domain representation of a signal x(n), and

< denotes the real portion of the inverse Fourier transform. Once a magnitude

spectrum has been computed, the only remaining steps are to convert to a log scale

and take the real portion of an inverse Fourier transform (IFT). The real cepstrum

is sometimes equivalently defined as the real part of the forward Fourier transform

(FT) of the logarithm of magnitude spectrum. At the most basic conceptual level,

a cepstrum is the Fourier transform of the Fourier transform of a signal. This

is why it is commonly referred to as the “spectrum of a spectrum.” Rather than

a time domain signal, the argument passed to the final Fourier transform in the

algorithm is simply a log-frequency domain spectrum.

Quefrency Peaks

As in a spectral plot, the clearly pitched components of a signal can be

easily located in the cepstrum. However, because cepstral analysis is performed

on frequency domain information, the bins of a cepstral plot are connected to

frequency in a different manner. Referring back to the magnitude spectrum of

Figure 3.4, the peak corresponding to the fundamental frequency f of the sawtooth

wave occurs at bin 10. Viewed as a signal, the evenly spaced harmonic peaks

that follow can themselves be considered a consistent frequency in the spectrum.

These peaks are graphically very similar to the waveform of an impulse train

with decreasing amplitude. It is this “impulse train” that causes a cepstral peak.

Locating a peak based on f requires a few simple operations. In the cepstral

domain, bin indexes no longer refer to harmonics of the fundamental frequency of

analysis; rather, they are indexes of time. A 440 Hz signal f = 440 is represented

in time as p = 1
f

= 1
440

= 0.0022727 seconds, which is the period, or time required

for one cycle to occur. Consequently, there should be a cepstral peak at the point

along the quefrency axis corresponding to 2.2727 milliseconds. Where spectral data

shows frequency, cepstral data shows period. The usefulness of the term quefrency

in the place of period is debatable. At the very least it serves as a reminder that

the cepstrum does not represent the conventional time domain, but something

different altogether.
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The quefrency bin for 440 Hz will be a time index, where each bin represents

1
sr

= 1
44100

= 0.000022676 seconds. To find the quefrency bin q of p seconds, p can

simply be divided by the time duration of a single sample:

q =

1
f

1
sr

=
sr

f
=

44100

440
= 100.23 (3.13)

Figure 3.5: A cepstral quefrency peak resulting from a 440 Hz sawtooth wave.

In the current example, this points to bin 100, and because this is an idealized

analysis, the peak is extremely well defined. If the signal’s frequency content is

not known in advance, it can be determined based on Equation (3.13) as well:

f =
sr

q
(3.14)

Notice that the number of samples, N (which is crucial for calculating

actual frequency based on spectral bin number, or vice versa) is not a part of this

equation. If the sampling rate sr is fixed at 44100, cepstral bin 100 will always

correspond to a frequency of roughly 440 Hz—regardless of whether N represents

1024, 2048, or 4096 samples. The ability to see the cepstral peak, however, will

certainly be affected by N . Just as the Nyquist frequency is related to the highest
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frequency representable by a FT, N
2

is related to the index of the highest quefrency

(the longest period, or lowest frequency) that can be represented by the cepstrum.

Cepstral bins beyond this point contain values that are symmetrical with the first

half.

Using Equation (3.14), the frequency corresponding to the next cepstral

peak at index 200 can be determined, where f = 44100
200

= 220.5. Peaks at in-

dices 300 and 400 follow, which correspond to frequencies of roughly 110 and 55

Hz respectively. The original 440 Hz sawtooth wave did not possess energy at

any of these frequencies. Referring once again to Figure 3.4, their presence can

be explained. The “impulse train” signal that is the magnitude spectrum of a

sawtooth wave is not sinusoidal, and therefore must contain partials of some sort.

These cepstral harmonics cannot be assumed to relate to the original signal in any

meaningful way. Therefore, when looking for the fundamental pitch of a harmonic

signal, only the first cepstral peak is likely to be useful.

Combined Signal Components and Homomorphic Filtering

The concept of deconvolution comes from a class of homomorphic systems

proposed by Oppenheim in 1967. According to Oppenheim, homomorphic systems

“satisfy a generalization of the principle of superposition; i.e., input signals and

their corresponding responses are superimposed (combined) by an operation having

the same algebraic properties as addition.” [OS89, p. 768] Thus, the fundamental

frequency of a signal can be distinguished from its general spectral envelope, such

that the convolution f(n)∗g(n) becomes a summation. In the case of speech, f(n)

is the vocal tract and g(n) the glottal impulse. The move from multiplication-based

convolution to summation based convolution can be expressed:

x(n) = f(n) ∗ g(n)

X(k) = F (k)G(k)

ln |X(k)| = ln |F (k)|+ ln |G(k)|

Then, using the definition of real cepstrum given in (3.12), after taking the real

result of the IFT of each term, the final step above can be represented as
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xRC(n) = fRC(n) + gRC(n)

The cepstrum of the entire signal is the sum of the corresponding filter and impulse

cepstra. This is the advantage of moving into the logarithmic domain—filter and

impulse information can be combined or separated through simple addition or

subtraction.
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Figure 3.6: Quefrency peaks resulting from 165 Hz (top) and 220 Hz (bottom)
sung vowels.

A demonstration of this concept will be most clear using vocal signals.

Figure 3.6 shows cepstra based on recordings of a singer articulating the same

voiced vowel at two different frequencies: 165 Hz and 220 Hz (or E3 and A4). The

most striking difference between these cepstra is the location of quefrency peaks,

which can be found at the following bin numbers: b44100
165
c = 267 and b44100

220
c = 200.
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Overall, both have a great deal more noise than the sawtooth cepstrum from Figure

3.5, but the deconvolution is reasonable because fRC(n) and gRC(n) clearly occupy

different quefrency ranges. The human voice is one of the strongest examples of

the deconvolution phenomenon, and certain instruments will not give such clear

results. There are no standard methods for locating an ideal upper bin limit for

the region associated with fRC(n). Here, cepstral coefficients below the 25th bin

are similar in both plots, with a prominent peak around bin 15.

It can be seen that as frequency moves higher, the quefrency peak is sit-

uated lower. This is because cepstral analysis reveals rates of change in the log

magnitude spectrum of a signal. The spectral fluctuation of g(n) (the impulse com-

ponent) is fast and periodic. As explained above, the quefrency peak generated by

g(n) is the result of evenly spaced harmonic peaks in the frequency domain. These

spectral peaks (and the valleys between them) constitute periodic spectral fluctua-

tion. Lower frequencies in the time domain cause higher periodic rates of spectral

change, which is why the 165 Hz quefrency peak from Figure 3.6 is located higher

along the quefrency axis than the 220 Hz peak. Higher frequency corresponds to

lower period. On the other hand, the first coefficients reflect the slowest rates of

spectral change, i.e., spectral envelope. The cepstrum of f(n) represents the filter

component, which varies very slowly in the spectral domain. It has a relatively

inactive spectral signature that affects the timbre of impulses that are convolved

with it (synthetically or naturally). In terms of quefrency, its variations per second

are slow, and therefore information reflecting its shape will always be located at

the low end of the cepstrum.

Figure 3.7 displays the spectra of two sawtooth waves at 440 Hz and 880

Hz. Fluctuations in the spectrum of the 440 Hz tone are much more frequent (i.e.,

they are more densely packed in terms of frequency) than those of the 880 Hz tone.

The spacing between harmonics increases as a function of frequency. Spectrally,

signals with higher fundamental frequencies will vary less rapidly. If these spectral

variations are slow enough, the resulting quefrency peak will overlap with the area

containing spectral envelope information in the cepstrum. This will make both

fRC(n) and gRC(n) less reliable. In Figure 3.6, however, fRC(n) and gRC(n) do not
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Figure 3.7: Magnitude spectra for 440 Hz (left) and 880 Hz (right) sawtooth waves.

overlap. Regardless of the frequency of the pitched component, the lowest cepstral

coefficients in the two voice recordings are clearly very similar. Figure 3.8 provides

a detailed view of this information.

Figure 3.8: Cepstral coefficients 1 through 30 for a voiced vowel sung at 220 Hz
(left) and 165 Hz (right).

Based on the first 30 coefficients alone, it is possible to verify that these

two cepstra correspond to sounds with very similar timbral characteristics. By

analyzing the signals of different sung vowels and compiling a database, it is also

possible to discriminate between vowels based on cepstrum, independently from

pitch. More specifically, an estimation of the timbral similarity of any two instances

in the database can be calculated based on the Euclidean distance d, defined as
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d =

√√√√N−1∑
n=0

(vn − wn)2 (3.15)

where N is the length of vectors v and w—the lower cepstral coefficients from two

distinct cepstra. Based on the values of d between database instances, a similarity

threshold can be chosen in order to classify new instances. The distances between

an input signal’s cepstrum and each instance in the database can be compared to

find the closest match. With a large enough database of training examples, the

events of a performance can be classified and tracked based on timbre in order to

control immediate or large scale processes in electroacoustic accompaniment. In

the case of inharmonic or noise-based percussion instruments, a real-time cepstral

analysis tool can be used as a functional replacement for pitch tracking in score

following applications, or for automatic performance transcription.

3.2.2 Mel Frequency Cepstrum

Having illustrated the process of basic cepstral analysis, its perceptually-

weighted variants can now be considered. The process for computing Mel Fre-

quency Cepstral Coefficients (MFCCs) differs from raw cepstrum computation

considerably. It requires a bank of triangular overlapping bandpass filters evenly

spaced on the mel scale, and the final transform is a discrete cosine transform

(DCT) rather than a Fourier transform. The mel scale is based on a 1937 exper-

iment exploring perceptual pitch relationships between tones [SVN37]. Using the

experimental data of 5 participants, the authors hoped to discover a frequency

unit that could be manipulated arithmetically yet remain observationally verifi-

able. This unit was named the mel in reference to melody. For any particular mel

value, one should be able to double it, then convert both the original and doubled

values to a frequency scale and confirm through experiment that the doubled mel

frequency is judged to be twice as high in terms of pitch. Likewise, halving or

tripling a mel value should lead to appropriately scaled perceptual results.

The experiment itself consisted of sessions in which participants were pre-

sented with two different tones produced by identical oscillators at an even loudness
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Figure 3.9: Hz plotted against mel units, from [SVN37].

level of 60 dB. The pitch of one oscillator was fixed, but the other could be varied

manually. Participants were instructed to adjust the second oscillator until it was

half as high in terms of pitch as the reference tone [SVN37, p. 187]. This process

was carried out for reference tones at frequencies of 125, 200, 300, 400, 700, 1000,

2000, 5000, 8000, and 12000 Hz. The geometric mean of the participants’ half-

pitch judgements at each of these frequencies was taken and used to construct the

curve shown in Figure 3.9. The arbitrarily chosen point of intersection between

frequency and mels is at 1000 Hz/mels. Even mel spacing beyond this intersection

translates to increasingly large spacing in Hz. Thus, warping the frequency axis of

a spectrum according to an evenly spaced mel scale places more weight on lower

frequency values. The general formula for calculating mels is

mel = 1127.01048 ln(1 +
f

700
) (3.16)

where f is frequency in Hz [Ber49].

Mel scaling significantly reduces the size of spectral envelope data and em-

phasizes lower frequency content. The extent of reduction depends on sampling

rate, window size, and the mel spacing of the filterbank. The lower limit of the fil-
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Figure 3.10: A mel-spaced triangular filterbank, from [DM80].

terbank is DC, and the upper limit should not reach the Nyquist frequency. Using

Equation (3.16), the Nyquist frequency at a sampling rate of 44100 is calculated

as 3923 mels. With an even spacing of 200 mels, this produces 22 mel values below

Nyquist, which correspond to 20 overlapping filters (the first and last mel values

are the lower and upper bounds of the first and last filters respectively). Figure

3.10 illustrates such a filterbank. Multiplying a spectrum against this filterbank

compresses the first 512 bins of a 1024 point window into a smoothed 20 point

estimation of the spectrum with a weighting based on the mel scale. Accordingly,

Figure 3.10 clearly shows that higher frequency content is averaged over much

larger bin ranges than lower frequency content. [DM80] and [RJ93] define MFCCs

mathematically as

MFCCi =
N−1∑
k=0

Xk cos[i(k +
1

2
)
π

N
]; i = 0, . . . ,M − 1 (3.17)

where M is the desired number of cepstral coefficients, N is the number of filters,

and Xk is the log power output of the kth filter. [Log00] specifies log amplitude

rather than power.

The DCT comprising the final step of the MFCC computation is the other

fundamental difference from raw cepstrum. [Log00] proposes that the DCT ap-
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proximates decorrelation obtained through Principal Component Analysis (PCA),

and concludes that the use of the mel scale in music classification is “at least not

harmful . . . although further experimentation is needed to verify that this is the

optimal scale for modeling music in the general case.” [Log00, p. 8]

3.2.3 Critical Bands and the Bark Scale

In place of mels, a filterbank can be constructed using a scale based on crit-

ical bandwidths. Critical bands refer to regions of the basilar membrane that are

stimulated by unique frequency ranges. An overview of multiple experiments estab-

lishing the boundary and center frequencies of critical bands is given by Zwicker,

Flottorp, and Stevens in [ZFS57]. It is acknowledged that the published critical

band boundaries are not fixed according to frequency, and depend upon specific

stimuli. Relative bandwidths are more stable, and repeated experiments have

found consistent results. In frequency, these widths remain more or less constant

at 100 Hz for center frequencies up to about 500 Hz, and are proportional to higher

center frequencies by a factor of 0.2. The uppermost curve in Figure 3.11 from

[ZF90] shows this characteristic, while the curves beneath it provide useful points

of comparison. Just-noticeable frequency difference is plotted against logarithmic

frequency in the bottom curve, and the dashed curve in the middle plots the dif-

ference in frequency required to advance the point of maximum stimulation of the

basilar membrane by 0.2 mm. Each of the curves can be shifted vertically to pro-

duce very close alignment with the others. Their similarity suggests that a scale

based on documented critical bandwidths has physiological as well as perceptual

validity. In 1960, Zwicker’s letter to the editor in the Journal of the Acoustical So-

ciety of America introduced the Bark as a unit based on critical band boundaries,

named after the inventor of the unit of loudness level: Barkhausen. The frequency

boundaries it presents are neatly rounded versions of the values found by loudness

summation experiments in [ZFS57], and are now standard reference values.

Unlike the mel scale, the Bark unit stands upon a large foundation of evi-

dence. As Zwicker et al. put it, the “critical band has the advantage . . . that it does

not rest on assumptions or definitions, but is empirically determined by at least four
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Figure 3.11: Critical bandwidths and related units vs. frequency, from [ZF90].

kinds of independent experiments.” [ZFS57, p. 554] The four unique strategies for

locating critical band boundaries that he refers to are threshold, masking, phase,

and loudness summation. The latter is documented in most detail. Participants

in the 1957 experiment were asked to match loudness between single tones and

multiple-tone complexes of varying frequency width ∆f . Modulating values of ∆f

within a frequency-dependent critical bandwidth did not affect participants’ loud-

ness judgements, but increasing ∆f beyond this bandwidth resulted in increased

loudness. The points in frequency at which such loudness increases occurred were

correctly predicted according to proposed critical band boundaries. It was also

determined that different spacings of frequencies within the complex tones—which

do not affect ∆f—produced unique effects. With even spacing of individual tones,

loudness was higher than for spacings that bunch tones closer to either boundary

of ∆f . This appears to be related to the stimulus-specific nature of critical band

boundaries. Also worthy of note is that the loudness summation method was not

effective for locating boundaries when general loudness levels were just above the

threshold of hearing. Zwicker et al. suggest that the phase based strategy is most

appropriate for measurements conducted at very low loudness levels (i.e. below 20

dB SPL).
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Detecting critical band boundaries through changes in phase relies on the

similarity of sidebands in tones synthesized through low levels of amplitude and

frequency modulation, and the fact that they significantly differ only in terms

of just noticeable modulation rate, and phase—one of the FM sidebands will be

180◦ out of phase with its AM counterpart. Our hearing system is able to detect

this difference at very low modulation rates, meaning that we are sensitive to

changes in sideband phase. As modulation rates increase, however, we are unable

to distinguish between the techniques (i.e., the associated phase differences are

no longer noticeable), and the just detectable degree of AM and just detectable

index of FM are the same. In [Zwi52], just detectable levels of modulation were

measured for four participants using a collection of various carrier and modulation

frequencies, and (for any given carrier frequency) critical bandwidth was taken to

be twice the modulation frequency at which AM and FM became indistinguishable

[ZFS57, p. 556].

In the case of masking, studied in [Zwi52], a small band of noise is placed

between two tones. At very low noise sound pressure levels, the tones mask the

noise. As the tones are more widely spaced in frequency, the sound pressure level

at which the noise ceases to be masked remains constant until a particular tone

spacing is reached, where the masking ceases at significantly lower levels [ZFS57,

p. 555]. When the noise and tones are processed within separate critical bands,

masking effects are decreased. The frequency spacing at which this occurs relates

to the critical band.

Finally, the threshold method performed in [Gas54] tracks the way in which

overall sound pressure related to the threshold of an evenly spaced tone complex

varies in relation to the number of tones in the complex [ZFS57, p. 555]. Starting

with a single tone and progressing with the addition of tones spaced 10 Hz apart

(moving downward), threshold is repeatedly measured. A pattern is observed with

respect to the the number of tones present in the complex and their appropriate

individual amplitudes. For instance, with a single tone, threshold is recorded as

+3 dB, while with two and four tones in the complex, each individual tone only

requires 0 dB and -3 dB respectively for the complex to reach threshold as a
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whole. Thus, a consistent pattern can be seen as the amplitude of individual tones

decreases and the number of tones in the complex increases. But when a certain

number of tones is reached, the pattern does not continue as expected [ZFS57,

p. 555]. This transition point in frequency is taken to be a critical band boundary.

[ZF90] describes another instance of this type of experiment, where—starting with

a single tone at 960 Hz—additional tones were spaced 20 Hz apart moving upwards

[ZF90, p. 134]. The same pattern was observed.
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Figure 3.12: Mels (top) and Barks (bottom) plotted against linear frequency.

Despite their difference in terms of verification by independent experiments,

several sources note that Barks relate very strongly to mels [Zwi60][ZF90][RMW02],

the rough guide being that multiplying Barks by 100 produces a curve similar to

the mel scale. The two curves are shown in Figure 3.12 plotted against linear fre-

quency. At 3000 mels and about 19 Barks, it can be seen that the Bark scale maps

to lower linear frequencies near the higher end. That is, the Bark scale ramps up

to higher frequencies more suddenly than the mel scale. In the context of mel- and

Bark-weighted cepstra, this means that the Bark weighting will preserve more mid
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frequency detail at the expense of high frequency detail. The highest mel values

determined directly by experiment correspond to 5, 8, and 12 kHz; higher values

are projected based on Equation (3.16). Likewise for Barks, since there are a fixed

number of critical bands that correspond to the 24 Barks, values at arbitrary sub-

divisions between boundaries or beyond the 24th Bark must also be calculated with

a general formula. Equation (3.18), taken from [Tra90], is given below, where f is

frequency in Hz:

Bark = [26.81
f

1960 + f
]− 0.53 (3.18)

As the two scales are quite similar, the distinction between mel- and Bark-weighted

cepstrum is likely to be negligible. This hypothesis is examined in Chapter 5.

3.3 Interpreting BFCCs

The compact representation of spectral envelope offered by BFCCs requires

some additional explanation in order to be understood on an intuitive level. Each

coefficient reflects a correlation between a Bark-weighted spectrum and a particular

basis function of the cosine transform. Applied in Equation (3.17), the cosine

transform (DCT-II) is defined as

Xi =
N−1∑
k=0

xk cos[i(k +
1

2
)
π

N
]; i = 0, . . . ,M − 1 (3.19)

where x0...N−1 is the input, and M represents the desired number of coefficients

(M ≤ N). Each Bark cepstral coefficient is simply the dot product between the

input and a basis function. The basis functions for iterations 1—6 of the algorithm

are given in Figure 3.13. When the input x0...N−1 is a Bark-weighted spectrum,

each cepstral coefficient measures the degree of correlation between the spectrum

and each basis function.

The 1st basis is a vector of ones, so the value of the 1st BFCC is simply the

sum of all Bark spectrum magnitudes multiplied by one. If spectrum magnitudes
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Figure 3.13: The first six cosine transform basis functions.

are not normalized before the DCT, this coefficient will reflect the amplitude of the

time domain signal. Otherwise, it will always be 1.0, and of no use in classification

tasks. The 2nd basis is a half cosine reaching from 1.0 to -1.0. In the unlikely

case that a Bark spectral envelope perfectly resembles the contour of a half cosine,

the high correlation will cause the 2nd BFCC to have a maximal value. Typical

Bark spectra will not possess this exact contour, but spectra that bear a strong

resemblance to the shape of the basis function will produce relatively high values for

this BFCC. Musical instruments having a concentration of low- and mid-frequency

energy that rolls off gently fit this general class of spectrum. As the spectral

centroid of a sound moves higher, its spectrum will most likely resemble the 2nd

basis function less and less. Thus, there is a strong negative correlation between

the 2nd BFCC and spectral centroid. The 3rd basis dips to -1.0 at the center, so that

large negative values would result from taking the dot product between this basis

function and a spectrum with a symmetrical peak in the central Bark-frequency

bands.

In this same fashion, the value of each additional BFCC can be conceptu-

alized as a reflection of the degree of similarity between a Bark spectrum and the

contour of a basis function. Moving higher among these functions, an increasing

number of peaks and valleys occur, so that the complete set of basis functions
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probes for information in all frequency regions with a resolution that depends on

N . If all BFCCs are used in a distance calculation such as Equation (3.15), the

resulting value of d will be identical to that produced when using Bark spectrum

coefficients. This is because the cosine transform amounts to a rotation in space

that preserves distances between points. If the DCT basis functions have probed

as many areas of the spectrum as permitted by the resolution of the transform,

there is no fundamental difference between the two forms of information. Thus,

the power of the Bark-frequency cepstrum is the flexibility it offers for choosing

reduced but sufficient resolution in terms of probing for crude spectral envelope

shapes.

3.4 Summary

This chapter has presented two classes of algorithms for computing numer-

ical representations of timbre. Low level features reduce high-dimensional spectral

information to single numbers that reflect various aspects of energy distribution.

The list of low level features given here is far from exhaustive—only those that

have been implemented in the system described in the following chapter were de-

scribed. While these types of measurements are extremely meager, in combination,

they provide a compact description of a sound’s spectral information. High level

features achieve similar ends. The least processed of these features is a mel- or

Bark-weighted spectrum that drops a large amount of data in frequency ranges

that are less relevant perceptually. Coefficient subsets from the different types of

cepstral analysis discussed measure relationships between a spectral envelope and

the basis functions of Fourier and cosine transforms. Like the various individual

low level features, these correlations can provide rough information about a spec-

trum. In a sense, the logic behind a feature vector composed of several low level

features is very similar to the strategy of using a subset of BFCCs. It is not obvious

that correlations with cosine transform basis functions are any more meaningful

or useful than statistical measures of energy distribution. To understand the im-

plications of these different strategies, it is necessary to examine particular sound
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sets in detail.
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Chapter 4

timbreID

4.1 Introduction

There are relatively few general analysis toolkits for retrieving and compar-

ing sonic timbre descriptors. MARSYAS [TC99], and MIRToolbox [LT07] are cur-

rently the most prominent. Tzanetakis & Cook’s open source MARSYAS project

adopts a client-server architecture, where signal analysis and pattern recognition

modules perform tasks independently of a Java-based graphical user interface. The

software allows users to perform a variety of tasks relative to large audio databases,

including scanning through automatically segmented audio, searching for similar

sounds, and classifying audio regions as either music or speech. MIRtoolbox, devel-

oped by Lartillot & Toiviainen, is an open source package of MATLAB functions

and scripts. In comparison with MARSYAS, MIRtoolbox has the advantage of

being developed for an environment with which researchers are already familiar,

and that possesses several well-established statistical and machine learning pack-

ages for further manipulation of audio features. The authors designed MIRtoolbox

functions with consideration for ease of use in graphing and batch processing tasks.

Though powerful, these packages are not immediately accessible for gen-

eral creative use because they either require users to adapt to a new software

interface, or assume familiarity with programming and scripting in MATLAB—an

environment designed for scientific research rather than creative work. Further,

they are only capable of analysis in non-real-time. At present, the most popular

67
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programming environments used by musicians are Max/MSP, Pure Data (Pd), Su-

perCollider, and Csound. For some of these platforms, open source projects have

been developed for the purpose of organizing sounds or querying an audio corpus

based on timbral similarity. This work has enabled real-time control of sounds

for live performance projects, instrument design, and broad creative exploration.

CataRT and Soundspotter are the most widely recognized projects of this sort

[SBVB06][CG07]. The former is available as a Max/MSP implementation, while

the latter is intended for multiple platforms—including Pd. Soundspotter’s Pd re-

alization is primarily designed for real time target-driven concatenative synthesis,

and all analysis takes place within a single pre-configured object. More general

tools for creative work centered on timbre similarity are limited in Pd.

timbreID is a Pd external library developed by the author. It is composed

of a group of objects for extracting audio features, and a classification object that

manages the resulting database of information. The objects are designed to be easy

to use and adaptable for a number of real-time purposes, including the generation

of synthesis control streams, timbre identification, ordering of sounds by timbre,

target-driven concatenative synthesis, and plotting of sounds in a user-defined tim-

bre space that can be auditioned interactively. Just as MIRtoolbox benefits from

being embedded within powerful research software, timbreID’s situation within Pd

creates opportunities for interfacing with many familiar real-time control and DSP

objects in an environment that is applied, developed, and supported by a commu-

nity of musicians. This chapter will summarize the most relevant features of the

timbreID toolkit and give a sense of its flexibility by describing several different

applications.

4.2 Feature Extraction Objects

In general, timbreID’s feature extraction objects have four important qual-

ities. First, each object maintains its own signal buffer based on a user-specified

window size. This eliminates the need for sub-patches in Pd to set window size

using the block∼ object. Second, Hann windowing is automatically applied within
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each object so that input signals do not need to be multiplied against a window

table using the tabreceive∼ object. Third, under certain circumstances, analysis

timing is sample-accurate. All of timbreID’s analysis objects measure the logical

time between the beginning of each DSP block and incoming analysis requests, so

that the desired slice of audio can be captured regardless of Pd’s default 64-sample

block boundaries. Thus, there is no need to set overlap values with block∼ in

order to define a particular time resolution.1 Fourth, because the objects perform

analysis on a per-request basis, the only computational overhead incurred during

periods of analysis inactivity is that of buffering. Combined, these four qualities

make signal analysis in Pd straightforward and accessible.

As a point of comparison, consider the case of capturing magnitude spec-

trum by chaining together the standard Pd objects rfft∼, *∼, +∼, and sqrt∼.

Placed in a sub-patch with block∼ at a window size of 1024 and overlap of 4, such

a network will calculate a 1024 point FFT every 256 samples2 whether or not the

information is needed at any particular time. If finer time resolution is desired,

block∼’s overlap setting must be changed to a higher value, resulting in an even

greater number of FFTs per second.

The magSpec∼ object from timbreID will not perform an FFT until the

user requests analysis results. Overlapping analyses can be obtained by simply

connecting a metro object to magSpec∼ and setting it to a rate that is smaller

than the analysis window duration in milliseconds. If a request occurs at a logical

time that falls between two DSP block boundaries, the slice of audio analyzed by

magSpec∼ will end at precisely the moment the request was made, unrestricted by

Pd’s default blocking resolution. For applications such as real-time classification

of percussive instruments with a delay of less than 20 ms, efficiency and precision

timing are critical. The feature extraction objects for timbreID were designed to

meet these needs.

1However, only certain objects are presently capable of generating bang messages that occur
between block boundaries. When clicked by a user, the graphical bang object sends its message at
the start of the following DSP block, and analysis window capture will be delayed. Bang messages
sent by Pd’s metro or delay objects, however, are transmitted between block boundaries. Thus,
the capacity for true sample accuracy depends upon the object initiating the analysis request.

2This is about 172 times a second at a sampling rate of 44.1 kHz
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4.2.1 Available Features

In spite of the fact that many timbre features are very simple to calculate,

most are not generated as easily as magnitude spectrum using Pd’s built-in objects.

For instance, based on a spectrum |X|, spectral flatness is calculated according to

Equation (3.7) as the geometric mean of |X| divided by the arithmetic mean of |X|.
Since this operation would require writing signal blocks to graphical arrays and

traversing the arrays in order to calculate the two means, it is more appropriately

implemented as an external object written in C. Other features, like MFCCs, would

be even more complicated to implement at the patching level.

The following objects for measuring basic features are provided with tim-

breID: magSpec∼, specBrightness∼, specCentroid∼, specFlatness∼, specFlux∼,

specIrregularity∼, specKurtosis∼, specRolloff∼, specSkewness∼, specSpread∼, and

zeroCrossing∼. The higher level features in the set—generated by barkSpec∼,

cepstrum∼, mfcc∼, and bfcc∼—are generally the most powerful for classifica-

tion. The implementation details of some feature extraction objects differ slightly

from the mathematical definitions provided in the previous chapter. For instance,

MFCCs and BFCCs are calculated based on normalized magnitude spectrum

rather than log power spectrum as specified in Equation (3.17). Although an

understanding of the various analysis techniques is not required for use, a general

idea of what to expect can be very helpful. To that effect, a simple demonstration

and straightforward explanation of each feature is given in its accompanying help

file. In order to facilitate as many types of usage as possible, non real-time versions

of all feature externals are provided for analyzing samples directly from graphical

arrays in Pd.

4.2.2 Open-ended analysis strategies

Independent, modular analysis objects allow for flexible analysis strategies.

Each of the objects reports its results as either a single number or a list that can

be further manipulated in Pd. Feature lists of any size can be packed together

so that users can design a custom approach that best suits their particular sound

set. Figure 4.1 demonstrates how to generate a feature list composed of MFCCs,
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spectral centroid, and spectral brightness. Subsets of mel frequency cepstral coeffi-

cients (MFCCs) are frequently used for economically representing spectral envelope

[LEB03], while spectral centroid and brightness provide information about the dis-

tribution of spectral energy in a signal. Each time the button in the upper right

region of the patch is clicked, a multi-feature analysis snapshot composed of these

features will be produced.

Figure 4.1: Generating a mixed feature list.

Capturing the temporal evolution of audio features requires some additional

logic. In Figure 4.2, a single feature list is generated based on 5 successive analysis

frames, spaced 50 milliseconds apart. The attack of a sound is reported by bonk∼
[PAZ98], turning on a metro that fires once every 50 ms before turning off after

almost a quarter second. Via list prepend, the initial moments of the sound’s

temporally-evolving MFCCs are accumulated to form a single list. By the time

the fifth mel frequency cepstrum measurement is added, the complete feature list

is allowed to pass through a spigot for routing to timbreID, the classification object

described below in Section 4.3. Recording changes in MFCCs (or any combination

of features) over time stores detailed information for the comparison of complex

sounds.

These patches illustrate some key differences from the Pd implementation

of libXtract, a well developed multi-platform feature extraction library described

in [Bul07]. Extracting features in Pd using the libXtract∼ wrapper requires sub-

patch blocking, Hann windowing, and an understanding of the libXtract’s order of
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operations. For instance, to generate MFCCs, it is necessary to generate magnitude

spectrum with one object, then chain its output to a separate MFCC object. The

advantage of libXtract’s cascading architecture is that the spectrum calculation

occurs only once, yet two or more features can be generated from the results.

Figure 4.2: Generating a time-evolving feature list.

While timbreID objects are wasteful in this sense (each object redundantly

calculates its own spectrum), they are more efficient with respect to downtime.

As mentioned above, features are not generated constantly, only when needed.

Further, from a user’s perspective, timbreID objects require less knowledge about

analysis techniques, and strip away layers of patching associated with blocking and

windowing.

4.2.3 Details of Analysis Algorithms

Certain analysis techniques can be implemented with subtle differences.

For instance, spectral flux is frequently defined as the sum of squared difference

between successive frames of magnitude spectra [TC02]. When the change in any
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particular bin has a magnitude less than 1, squaring the difference can result in

very small values. In that case, taking the absolute value might be a better strategy

than squaring for keeping all values positive in the final summation. Additionally,

as an alternative to the compact sum of differences, the complete list of bin-by-bin

fluctuations could be very useful for tracking change in any particular frequency

band. Accordingly, functions in the specFlux∼ external report the sum of either

the absolute value of bin flux or squared bin flux, as well as the complete list of

raw flux values.

Like specFlux∼, each feature extraction object has its own unique param-

eters that are explained in accompanying help files. For instance, all high level

feature objects offer a spectrum normalization option that may not be appropriate

in some analysis scenarios. In order to have maximum control over these types

of details, all feature extraction and classification functions were written by the

author, and timbreID has no non-standard library dependencies.

4.3 The Classification object

Figure 4.3: timbreID in a training configuration.

Features generated with the objects described in Section 4.2 can be used

directly as control information in real-time performance. In order to extend func-

tionality, however, a multi-purpose classification external is provided as well. This

object, timbreID, functions as a storage and routing mechanism that can cluster
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and order the features it stores in memory, and classify new features relative to its

database. Apart from the examples package described in the following section, an

in-depth help patch accompanies timbreID, demonstrating how to provide it with

training features and classify new sounds based on training. Figure 4.3 depicts the

most basic network required for this task.

Training features go to the first inlet, and features intended for classification

go to the second inlet. Suppose the patch in Figure 4.3 is to be used for percussive

instrument classification. In order to train the system, each instrument should be

struck a few times at different dynamic levels. For each strike, an onset detector like

bonk∼ will send a bang message to bfcc∼—the Bark-frequency cepstral analysis

object. Once a training database has been accumulated in this manner, bfcc∼’s

output can be routed to timbreID’s second inlet, so that any new instrument onsets

will generate a nearest match report from timbreID’s first outlet. A match result

is given as the index of the nearest matching instance as assigned during training.

For each match, the second outlet reports the distance between the input feature

and its nearest match, and the third outlet produces a confidence measure based

on the ratio of the first and second best match distances.

For many sound sets, timbreID’s clustering function will automatically

group features by instrument. A desired number of clusters corresponding to the

number of instruments must be given with the “cluster” message, and an agglom-

erative hierarchical clustering algorithm will group instances according to current

similarity metric settings. Afterward, timbreID will report the associated cluster

index of the nearest match in response to classification requests.

Once training is complete, the resulting feature database can be saved to a

file for future use. There are four file formats available: timbreID’s binary .timid

format, a text format for users who wish to inspect the database, ARFF format

for use in WEKA3, and .mat format for use in either MATLAB or GNU octave.

3WEKA is a popular open source machine learning package described in [HDW94]
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4.3.1 timbreID settings

Nearest match searches are performed with a k-nearest neighbor strategy,

where K can be chosen by the user. Several other settings related to the matching

process can also be specified. Three different similarity metrics are available: Eu-

clidean, Manhattan (taxicab), and Correlation. For feature databases composed of

mixed features, feature attribute normalization can be activated so that features

with large ranges do not inappropriately weight the distance calculation. This is

accomplished by scanning the database for the extreme values of each attribute,

then scaling according to the following formula:

Nj =
Fj −minj

maxj −minj

(4.1)

where Fj is the jth attribute of a feature F , and maxj and minj are the maxi-

mum and minimum values for that attribute column across the entire database.

Specific weights can be dynamically assigned to any attribute in the feature list

in order to explore the effects of particular proportions of features during timbre

classification or sound set ordering. Alternatively, the feature attributes used in

nearest match calculations can be restricted to a specific range or subset. Or,

the attribute columns of the feature database can be ordered by variance, so that

match calculations will be based on the attributes with the highest variance.

4.4 Applications

Further aspects of timbreID’s functionality are best illustrated in context.

This section describes six of the example patches that accompany the timbreID

package.

4.4.1 Plotting Cepstrograms

Using the non-real-time magSpec and bfcc objects, spectrogram and cep-

strogram plots can be created directly in Pd. The cepstrogram example patch
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offers several options for analyzing audio loaded to the graphical sample array,

such as window size, overlap, and spectrum normalization. When a plot request

is initiated, each iteration of an until loop generates BFCC data that is written to

a table, then displayed as a column of colored pixels using Pd’s native struct and

scalar objects. Just as spectrograms graph changing spectral information in a vi-

sually convenient way, cepstrograms can make cepstro-temporal patterns apparent

that would be otherwise difficult to identify.

Figure 4.4: Cepstrogram of three glockenspiel tones.

Figure 4.4 shows three strikes of the same glockenspiel bar at roughly the

same loudness. Spectrum normalization was disabled to eliminate changes due to

noise. Pixels along the vertical dimension represent BFCCs 0—46 from bottom

to top, with the color scheme indicating values of each coefficient. The lower and

upper value limits are represented by black and red respectively. From left to right,

the horizontal dimension represents time. In addition to illustrating consistent

patterns over time as each note decays, this cepstrogram also reveals that the

first few analysis frames of each tone have very consistent coefficient values from

one instance to the next. It can be seen that patterns in the first 15 coefficients

do not vary widely between the three tones, and will likely be sufficiently unique

for accurate classification. In Figure 4.5, two quiet strikes of the same nipple

gong are plotted. Here, temporal patterns near the attack emerge more slowly,



77

and are again unique and consistent. Thus, as a research tool, the cepstrogram

example patch offers a convenient method for exploring the nature of sounds in

the cepstral domain. Patterns identified using this system or the accompanying

spectrogram patch can be exploited for more accurate and informed classification

in performance-oriented patches.

Figure 4.5: Cepstrogram of two nipple gong tones.

4.4.2 Percussive Instrument Recognition

Percussive instrument classification is already possible using bonk∼ [PAZ98],

but timbreID objects allow for customized analysis strategies and offer some ad-

ditional options that can lead to increased accuracy. The instrument recognition

example illustrates how to use classification information to create mappings be-

tween live sounds and a set of samples. Apart from onset detection and sample

playback subpatches, Figure 4.6 shows the simple patch in its entirety. The train-

ing process briefly described in Section 4.3 applies here as well. After opening the

spigot for routing bfcc∼’s analysis information to timbreID’s training inlet, 5—10

training instances should be provided for each instrument that will be played live.

If three instruments are used, a “cluster 3” message can be sent to timbreID so

that similar instances in the database are grouped under a common cluster index.
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With only three instruments, it is very likely that the clustering algorithm will

produce accurate groupings; however, results of the process can be verified using

the “cluster list” message, which prints the members of each cluster to Pd’s post

window.

Figure 4.6: An instrument recognition and sample mapping patch.

Once training and clustering are complete, the identification spigot can be

opened so that any incoming sounds will be classified by the system, producing

a cluster index number at timbreID’s first outlet. The sample playback subpatch

then uses these indexes to locate the onsets of different samples loaded to an

array. Input/output mapping is immediate and discrete—striking each instrument

will trigger playback of a consistently corresponding sample. Synthesis control

that relies on continuous data requires constant rather than attack-based analysis.

This strategy is described in the following example.

4.4.3 Vowel Recognition

As described in Chapter 3, under the right circumstances cepstral analysis

can achieve a rough deconvolution of two convolved signals. In the case of a sung

voiced vowel, glottal impulses at a certain frequency are convolved with a filter
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corresponding to the shape of the vocalist’s oral cavity. Depending on fundamental

frequency, the cepstrum of such a signal will produce two distinctly identifiable

regions: a compact representation of the filter component at the low end, and

higher up, a peak associated with the pitch of the note being sung. Mel or Bark

frequency cepstral techniques do not produce the filter and source deconvolution

because their skewed and smoothed spectra fail to preserve the evenly spaced

harmonics that generate quefrency peaks. Furthermore, perceptually weighted

cepstral techniques de-emphasize high frequency content that may be useful in

classification. In the case of cepstral analysis, the lower coefficients should hold

their shape reasonably steady in spite of pitch changes, making it possible to

identify vowels no matter which pitch the vocalist happens to be singing. As pitch

moves higher, the cepstral peak actually moves lower, as the so-called “quefrency”

axis corresponds to period—the inverse of frequency. If the pitch is very high,

it will overlap with the region representing the filter component, and destroy the

potential for recognizing vowels regardless of pitch.4

Figure 4.7: Sending training snapshots and continuous overlapping cepstral anal-
yses to timbreID.

Having acknowledged these limitations, a useful pitch-independent vowel

recognition system can nevertheless be arranged using timbreID objects very easily.

4These qualities of cepstral analysis can be observed by sending cepstrum∼’s output list to
an array and graphing the analysis continuously in real-time.
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In an informal evaluation, it was discovered that regular cepstrum was indeed more

effective for vowel classification than BFCCs or MFCCs. The vocal spectra that

were inspected contained weak high frequency energy that Bark cepstral analysis

fails to take into account. Figure 4.7 shows a simplified excerpt of an example

patch where cepstral coefficients 2 through 40 are sent to timbreID’s training inlet

every time the red snapshot button is clicked. Although identical results could be

achieved without splitting off a specific portion of the cepstrum5, pre-processing

the feature with two instances of Pd’s list splitting object keeps timbreID’s feature

database more compact. The choice of cepstral coefficient range 2 through 40 is

somewhat arbitrary, but it is very easy to experiment with different ranges by

changing the arguments of the two list split objects.

In order to train the system on 3 vowels, about 5 snapshots must be captured

during training examples of each sung vowel. For distinguishing background noise,

5 additional snapshots should be taken while the vocalist is silent. Next, the

“cluster” message is sent with an argument of 4, which automatically groups similar

analyses so that the first vowel is represented by cluster 0, the second vowel by

cluster 1, and so on. The cluster associated with background noise will end up as

cluster 3. It is not necessary to ensure that the same number of training instances

are provided for each vowel. If 7 training examples are given for the first vowel

and only 5 for the others, the clustering algorithm should still group the analyses

correctly. Clustering results can be verified by sending the “cluster list” message,

which returns a list of any particular cluster’s members via timbreID’s fourth

outlet.

To switch from training to classification, cepstrum∼’s pre-processed output

must be connected to timbreID’s second inlet. The actual example patch contains

a few routing objects to avoid this type of manual re-patching, but they are omitted

here for clarity. Activating the metro in Figure 4.7 enables continuous overlapping

analysis. If finer time resolution is desired for even faster response, the metro’s

rate can be set to a shorter duration. Here, the rate is set to half the duration

of the analysis window size in milliseconds, which corresponds to an overlap of

5The alternative would be to pass the entire cepstrum, but set timbreID’s active attribute
range to use only the 2nd through 40th coefficients in similarity calculations.



81

2. As each analysis is passed from cepstrum∼ to timbreID, a nearest match is

identified and its associated cluster index is sent out of timbreID’s first outlet.

The example patch animates vowel classifications as they occur. Extending this

configuration of objects beyond the example, it is possible to use such classification

data as control information so that an improvising vocalist can effect changes in

computer-generated processes or synthesis with the shape of his or her mouth.

4.4.4 Target-based Concatenative Synthesis

Some new challenges arise in the case of comparing a constant stream of

input features against a large database in real-time. The feature database used for

vowel recognition only requires about 20 instances. To obtain interesting results

from target-based concatenative synthesis, the database must be much larger, with

thousands rather than dozens of instances. In addition to the systems mentioned in

the introduction, this type of synthesis can be achieved using Guidage [DAC07b],

and is practiced live by the artist sCrAmBlEd?HaCkZ! using his own software

design. The technique is to analyze short, overlapping frames of an input signal,

find the most similar sounding audio frame in a pre-analyzed corpus of unrelated

audio, and output a stream of the best-matching frames at the same rate and

overlap as the input.

The example included with timbreID provides an audio corpus consisting of

five minutes of bowed string instrument samples. As an audio signal comes in, an

attempt at reconstructing the signal using grains from the bowed string corpus is

output in real time. In the example case of speech input, timbre relationships with

the synthesized output are quite meaningful, and it approaches actual intelligibility.

A variation on this process is to draw grains from an audio corpus that is entirely

separate from that which is analyzed and compared with real time input. In both

cases, timbreID compares input features with a database and returns the index

location of the nearest matching grain. For the alternate technique, this index is

simply used to read into a different audio corpus, so that the input and output

timbres are not related directly. In this case, the strength is that the behavior of

the system is very consistent, allowing an improvising musician to learn how to
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produce any desired audio output.6

In these types of applications, timbreID’s third inlet can be used in order

to search large feature databases. Classification requests sent to the third inlet

are restricted by a few additional parameters. The search for a nearest match is

carried out on a specified subset of the database by setting the “search center” and

“neighborhood” parameters. Suppose timbreID is storing a training database with

5000 instances representing unique grains in the audio corpus. With search center

and neighborhood set to 1500 and 2000 respectively, timbreID will compare fea-

tures sent to its third inlet with grains 500 through 2500—i.e., 1000 grains above

and below search center.

The concatenative synthesis example provides options for different grain

sizes and analysis rates, but with default settings, the process of computing a

BFCC feature for the input signal, comparing it with 2500 instances in the feature

database, and playing back the best-matching grain occurs at a rate of 43 times

per second. Using a 2.91 GHz Intel Core 2 Duo machine running Fedora 11 with

4 GB of RAM, the processor load is about 17%. By lowering the neighborhood

setting, this load can be lowered. However, reducing processor load is not the only

reason that restricted searches are useful. A performer may also wish to control

which region of the audio corpus from which to synthesize.

A third parameter, “reorient” causes search center to be continually up-

dated to the current best match during active synthesis. Starting with the search ce-

nter and neighborhood parameter values above, if the first match request returns

grain 2200, search center is set to that value, and the new database range for the

following search will be between grains 1200 and 3200. With matches occurring

43 times per second, the search range adapts very quickly to changes in the input

signal, finding an optimal region of sequential grains from which to draw.

In an effort to combat sharp discontinuities from one grain to the next,

the “max matches” parameter can be altered, so that timbreID considers previous

matches as well as the current nearest match before reporting the most appropriate

grain. With max matches set to 10, if the previous match was grain 2200 and the

6Audio examples demonstrating the results of these processes can be accessed at
http://www.williambrent.com.
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current nearest match to the input feature is 1800, timbreID will look at the 10

next-nearest matches to the input feature. If one of them is closer to the previous

match than the current match is to the input feature, it will be output from

timbreID as the most appropriate grain even though it is actually not the most

proximate grain in feature space. The previous match itself is not eligible as a

current match in order to avoid repeated playback of a single grain.

For identification applications like the vowel classification example, bfcc∼’s

spectrum normalization is best kept active so that notes sung at different dynamic

levels will not throw off the identification process. In concatenative synthesis,

however, making classification vulnerable to dynamic variation may result in a

more naturally evolving output signal, so normalization is disabled in the example

patch.

4.4.5 Timbre ordering

The timbre ordering examples use two different approaches to sound seg-

mentation: the first reads in pre-determined onset/offset times for each of 51 per-

cussion instrument attacks, and the second automatically divides loaded samples

into grains that are 4096 samples in length by default. Onset/offset labels for the

first example were generated manually in Audacity, exported to a text file, then

imported to a table in Pd. The percussive sound set included with this example

is small, and is intended to provide a clear demonstration of timbreID’s ordering

capabilities. Figure 4.8 shows a region of the patch that includes the table where

ordering information is stored and 5 sliders that control feature weighting.

Ordering is always performed relative to a user-specified starting point.

With 51 instruments, when an instrument index between 0 and 50 is supplied

along with the “order” message, timbreID will output the ordering list at its fourth

outlet for graphing. Using the 5 feature weight sliders, it is possible to boost or

cut back the influence of any particular feature in the ordering process. The fea-

tures implemented in this patch are temporally evolving spectral centroid, spectral

flatness, zero crossing rate, loudness, and BFCCs.

After hearing the results of a particular ordering, the levels of the feature



84

Figure 4.8: Fifty-one percussion sounds ordered based on a user-specified weighting
of 5 features.

weight sliders can be changed in order to produce a new ordering and gain an

understanding of the effects of various features in the process. An ordering is shown

in the graph of Figure 4.8, where the y axis represents instrument indices 0 through

50, and the x axis indicates each instrument’s position in the ordering. It begins

at instrument 0 with a drum and progresses through other drum strikes followed

by snares, a sequence of cymbal strikes, and a sequence of wooden instruments.

Ordering the set by starting with a wooden instrument will produce a different

result that retains similarly grouped sequences. An expanded version of this patch

could be useful as a compositional aid for exploring relationships between sounds in

a much larger set, offering paths through the sounds that are smooth with respect

to different sonic characteristics.

Two types of ordering are available: “raw” and “relative”. The graph in

Figure 4.8 was produced with relative ordering, which starts with the user-specified

instrument, finds the nearest match in the set, then finds the nearest match to that

match (without replacement), and so on. The point of reference is always shifting.
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Raw ordering begins with the given instrument, then finds the closest match, the

second closest match, the third closest match, and so on. Orderings of this type

start with a sequence of very similar sounds that slowly degrades into randomness,

and usually finish with a sequence of similar sounds—those that are all roughly

equal in distance from the initial sound, and hence, roughly similar to each other.

The second ordering example loads and segments arbitrary sound files.

Loading a speech sample generates sequences of similar phonemes with a sur-

prisingly continuous pitch contour.

4.4.6 Mapping sounds in timbre space

Figure 4.9: Speech grains mapped with respect to the 2nd and 3rd BFCC.

Another way to understand how the components of a sound set relate to one

another is to plot them in a user-defined timbre space. CataRT is the most recog-

nized and well developed system for this task; timbreID makes it possible within

Pd using GEM for two- and three-dimensional plotting. In the provided example,

axes of the space can be assigned to a number of different spectral features, zero

crossing rate, amplitude, frequency, or any of 47 Bark-frequency cepstral coeffi-

cients by clicking the labeled radio buttons. By editing the analysis sub-patch,
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additional features can be included. Using automatic granular segmentation, an

audio file can be loaded and analyzed at a specified grain size. Figure 4.9 shows

speech grains plotted in a space where values of the second and third BFCCs are

mapped to the horizontal and vertical dimensions respectively. RGB color can be

mapped to any available features as well. Here, it is set to the values of BFCCs

4—6.

Mousing over a point in the space plays back its appropriate grain, enabling

exploration aimed at identifying regions of timbral similarity. The upper left region

of Figure 4.9 contains a grouping of “sh” sounds, while the central lower region

contains a cluster of “k” and “ch” grains. Other phonemes can be located as well.

In order to explore dense regions of the plot, keyboard navigation can be activated

to zoom with respect to either axis (or both simultaneously), and move up, down,

left, or right in the space.

Figure 4.10: String grains mapped with respect to amplitude and fundamental
frequency.

Figure 4.10 shows a plot of string sample grains mapped according to RMS

amplitude and fundamental frequency. Because the frequencies in this particular

sound file—a recording of a Bach violin partita—fall into discrete pitch classes,

its grains are visibly stratified along the vertical dimension. Crescendos and de-

crescendos are easily performed by moving the mouse along a single pitch stratum.

In conjunction with sophisticated instrument controllers such as those described
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in [OJ08] and [Oli10], the performative tendencies of this mainly research-oriented

patch can be developed to create full-fledged digital musical instruments that nav-

igate timbre space.

Figure 4.11 shows 60 percussion instruments clustered into 12 groups, with

each group shown in a distinct color. In this case, segmentation was accomplished

using labels generated manually in Audacity. The plot illustrates that there are five

instances of each instrument class (cluster), and that they are fairly separated in the

chosen spectral centroid/BFCC 2 space. Sounds can also be displayed and rotated

in three dimensions with appropriate depth to reveal separations between clusters

that are proximate or even overlapping from a two-dimensional perspective. This

aids in assessing whether a group of sounds can be reliably classified using any

particular combination of features. If an instrument’s instances cluster well and

are relatively distant from other instrument clusters, it is an indication that real-

time classification will be reliable. The green circle in the upper right corner of the

plot is controlled by the position of the mouse. When points come into contact

with this circle, their corresponding samples or grains are played back. The radius

can be resized to achieve a desired level of control over sound playback.

Figure 4.11: Sixty percussion samples colored by cluster.

Plotting grains from a frequency chirp can be instructive for understanding
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relationships between various features. The negative correlation between spectral

centroid and the 2nd BFCC was noted in Section 3.3. In this example, it is possible

to see the correlation directly. As spectral centroid increases along the abscissa,

values of the 2nd BFCC drop in a smooth curve. In the Bark-frequency domain, as

the sinusoidal peak sweeps to higher frequencies, less and less of its area overlaps

with a Bark-spectral envelope resembling the first cosine transform basis function.

Plotting centroid against rolloff and zero crossing rate shows completely linear rela-

tionships. These features are essentially identical when applied to such a simplified

spectral envelope.

Figure 4.12: Grains from a 20-20,000 Hz frequency chirp plotted with respect to
spectral centroid and the 2nd BFCC.

Mapping is achieved by recovering features from timbreID’s database with

the “feature list” message, which is sent with a database index indicating which

instance to report. The feature list for the specified instance is then sent out of

timbreID’s fifth outlet, and used to determine the instance’s position in feature

space.
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4.5 Conclusion

This chapter has introduced some important features of the timbreID anal-

ysis/classification toolkit for Pd, and demonstrated its adaptability to six unique

tasks. The example patches are simple in some respects and are intended to be

starting points that can be expanded upon by the user. Future development will be

focused on adding new features to the set of feature extraction objects, implement-

ing a kD-tree for fast searching of large databases in order to make concatenative

synthesis more efficient, and developing strategies for processing multiple-frame

features of different lengths in order to compare sounds of various durations.
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Chapter 5

Classification Performance

Evaluation

5.1 Examining Percussive Timbres

This chapter presents the results of a performance evaluation exploring the

effectiveness of timbreID’s feature extraction objects in a classification task. Anal-

ysis was performed on percussive sounds that are investigated from a perceptual

point of view in the following chapter, where correlations between the two data

sets are considered. Percussive timbres were chosen for several reasons. To begin,

research investigating these sounds is limited, in spite of the importance of timbre

as an organizational parameter in contemporary percussion composition. In terms

of sonic characteristics, a great number of percussive sounds have a brief or even

absent steady state, making the attack portion an obvious common target for ob-

taining relevant acoustic analyses within a diverse sound set. The cepstrograms

from Chapter 4 (Figures 4.4 - 4.5) illustrate the stability of cepstral character-

istics during the attack segment across several strikes of the same instrument.

Further, looking forward to the perceptual study in the following chapter, the

attack segment duration of percussive instruments is more varied than might be

assumed, providing opportunities for investigating the role of attack time—an as-

pect of timbre that has been established as perceptually relevant in classification

90
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tasks [CLA+63][IK93]. With regard to spectrum, very few percussion instruments

exhibit anything like a true harmonic structure. Even instruments that have an

unambiguous pitch, like the vibraphone, are quite difficult to analyze reliably with

standard pitch tracking algorithms that depend upon the presence of harmonically

related partials. Certain established acoustic measurements that have been em-

ployed as timbre descriptors, like spectral irregularity and the tristimulus measure,

are most appropriate for harmonic tones like the violin, clarinet, or flute. Further

study of percussive timbres may turn up similarly appropriate measures for in-

harmonic spectra, or illustrate how harmonically-oriented features may be put to

use effectively when considering different types of spectra. Regarding pitch, with

the exception of keyboard instruments like the xylophone, marimba, and vibra-

phone (which, granted, are foundations of the percussion family), most percussion

instruments have very limited means for producing a range of pitches. From one

perspective, keyboard instruments themselves can be viewed as collections of in-

dividual instruments that are capable of producing only a single pitch. Most

membranophones and idiophones are also tuned to only one pitch. Thus, clas-

sification difficulties associated with interactions between pitch and timbre, such

as those noted in [HE01][KI92] must be accepted as inevitable, making artificial

schemes for normalizing pitch unnecessary. In fact, the presence of pitch in per-

cussive tones can be understood as part of the timbre itself. Where perceptual

studies of Western orchestral instruments require a control for pitch (a strategy

that imposes boundaries upon the musical relevance of subsequent findings), the

study of percussive instruments presents a naturally occurring experimental con-

trol. Finally, the palette of timbres that fall under the category of percussion is

enormously varied, and desired ranges of timbre similarity can therefore be easily

constructed by the experimenter.

5.2 Method

Several samples of percussion instruments were recorded for training and

testing the system. In an effort to compile a range of timbres typical of con-
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temporary percussion, instruments were chosen from the orchestration of Varèse’s

Ionisation, spanning the three standard instrument categories of skins, metals, and

woods. The performance tests exploring these timbres range in difficulty, from the

ideal condition of diverse, isolated timbres with optimally placed analysis windows,

to more difficult scenarios with a more similar timbre set, additional background

noise, and suboptimal analysis timing scenarios. Beginning with highly favorable

circumstances allows the most accurate results possible, so that gradual degrada-

tion of these circumstances will make reasons for the inevitably reduced accuracy

in real-time applications more clearly understood.

Figure 5.1: Training and testing instances of tam tam strikes.

All recordings were taken in a soundproof studio using high quality GRACE

m802 preamplifiers and a Neumann KM140 cardioid microphone. The sounds were

initially digitized at 96 kHz, 24 bits per sample, and were subsequently downsam-

pled to 44.1 kHz, 16 bits per sample using SoX.1 Each instrument was struck

repeatedly at several different dynamic levels in order to produce a sufficient num-

ber of training and testing instances. The percussionist used suitable mallets for

each instrument. After downsampling, the audio was manually labelled in Audac-

ity to mark the precise onset of each instrument strike. As these recordings were

very high quality with a low noise floor, instrument onsets were clearly visible as

1SoX is an open source audio utility available at http://sox.sourceforge.net.
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deviations from zero in the waveform. Two sets of label files were created: one

defining onset and offset points for 5 unique training instances of each instrument,

and a second defining onset and offset points of a single test instance for each

instrument. The test instances in the second label file were not selected according

to any consistent criteria. In most cases, the strike following the fifth training

instance was used. A typical range of dynamics for training and testing instances

is shown in Figure 5.1, where 5 tam tam strikes are labeled to be used for training,

and a sixth strike is labeled for testing.

5.2.1 Instruments

Two different sound sets were used, referred to below as “diverse” and

“similar”. The instrument list for the diverse set of timbres is shown in Table

5.1. Because mallet type and point of contact cause a very perceptible difference

in timbre for certain instruments, sounds that vary in these respects are treated

as distinct timbres even when produced by a single instrument. There is a great

deal of diversity in the set, but some pairs of instruments are clearly more similar

than others; for instance, the orchestral crash cymbals and suspended cymbal,

the snare drum and military drum (with snares), and the two tam tams. Such

similarities were included in order to introduce the possibility of misclassifications

in an otherwise timbrally scattered sound set.

The similar set of timbres was generated using six different striking methods

on five different tam tams and gongs (three of which are listed in Table 5.1). Each

instrument was struck on the edge, the band between the edge and center, and the

center using both a drumstick and a standard felt orchestral mallet. These timbres

were judged to be perceptually distinguishable by the author in consultation with

a percussionist, with the highest similarity existing between timbres generated

by the three different strike points on a single instrument using one mallet type.

Spectral plots for example strikes of instruments in both the diverse and similar

sets are provided in Appendix A.
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Table 5.1: Thirty percussion instruments used for performance evaluation.

Clave (low) Orchestral crash cymbal

Clave (high) Military drum

Cowbell Tambourine

Snare drum Triangle

Temple block Castanet

Temple block Glockenspiel (middle G)

Tom (12.5”) Medium nipple gong (felt, center)

Bass Drum (37”) Large tam tam (drumstick, middle band)

Bongo (low) Guiro

Bongo (high) Lion’s Roar

Brake Drum Sleigh Bells

Sus. cymbal (edge) Large tam tam (felt, edge)

Sus. cymbal (bell) Medium tam tam (drumstick, middle band)

Large nipple gong Medium nipple gong (drumstick, edge)

Maraca Wooden Plank (poplar, 0.75” x 2.5” x 18.75”)
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5.2.2 Analysis Strategies

A major objective of this study is to identify the most effective analysis

strategy for classification purposes. Analysis methods were chosen taking into ac-

count restrictions that are likely to exist in actual performance contexts. Ideally,

multiple short-time overlapping analyses can be taken over the entire course of each

sound in order to extract as much time-varying information as possible. In real-

time applications, however, it is useful to obtain analysis and classification results

immediately upon the onset of a new instrument strike. One approach is simply

to analyze a single frame of audio containing the onset of the new sound. With a

short enough analysis window, results can be obtained within 20 milliseconds or

less after an attack, enabling synthetic accompaniment to adapt to a musician’s ac-

tions roughly synchronously. A more advanced and slightly more time-consuming

approach is to perform a series of overlapping analyses following the onset. While

this does not come close to describing the entire sound, it does capture the complex

spectro-temporal structure of the attack segment, which can significantly improve

classification accuracy. The cost is not only increased latency, but increased data

size as well. This is significant in terms of storage and additional computation

during distance calculation. In response to these drawbacks, a third approach is to

summarize multiple frame analysis information with the mean and standard devia-

tion of each feature (or each individual coefficient in a multiple-component feature

vector like Bark-frequency cepstrum) over time. All of these strategies bypass the

difficult question of how to directly compare the timbres of sounds with different

durations. In light of the constraints of real-time considerations and the temporal

characteristics of percussive timbres in general, the range of options for analysis

has been limited to the attack segment only.

A variable that impacts all of these strategies is analysis window place-

ment. Because this evaluation makes use of manually produced label points, it

is possible to place the analysis window so that it begins precisely at the onset

of each sound. In real-time performance applications, it is impossible to pinpoint

attacks so accurately. Thus, it is important to produce training instances based on

analysis windows that are displaced from actual onsets, and to perform multiple
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classifications of each test sound at various displacements as well. To investigate

reliability in the face of this real-time complication, repeated classification tests

were run with the analysis window beginning between 0 and 896 samples (20.3 ms)

displaced from the actual onset, moving in steps of 128 samples (2.9 ms). This

variable will be referred to as onset displacement (OD). Accuracy results presented

in the figures below are based on the average accuracy across all eight OD settings.

A second major objective is to identify the most consistently useful fea-

ture or combination of features for classification, with consideration for keeping

training database information compact. The 15 features that were evaluated are

listed in Table 5.2. Several features require consideration of additional parameters,

which are specified here. The boundary frequency for spectral brightness was set

at 1200 Hz. The concentration used for spectral rolloff was 85%. Because spectral

flux requires two analysis frames, it was measured starting 256 samples (5.8 ms)

after the common analysis point for all other features. Manhattan distance was

used to compute the spectral difference between frames. Spectral irregularity was

calculated using Jensen’s algorithm, defined in Equation (3.9). Magnitude spectra

for all spectral and cepstral features were normalized before further processing in

order to strip the effects of amplitude variation. Filterbanks for mel- and Bark

frequency cepstra were constructed using 81 mel and 1/2 Bark spacing, respec-

tively, producing 47-point vectors for both MFCCs and BFCCs. These filterbanks

were applied to magnitude spectra rather than log power spectra as specified in

[DM80]. Conventionally, energy is weighted and summed in each band of the fil-

terbank [YJO+00]. Here, in order to reduce high-frequency bias, weighted energy

was averaged in each band according to filter width. The timbreID object for com-

puting BFCCs provides this option. The question of whether to sum or average

is one that hinges upon how strictly the Bark-frequency model is intended to be

realized. The human ear does not average energy within critical bands. Thus, the

averaging approach is less true to the concept of Bark weighting. However, the

crude triangular filter shapes used in a typical Bark weighting algorithm are no

less artificial. From this perspective, the degree of adherence to perceptual models

can be justifiably sacrificed if classification performance can be improved. Here,



97

the averaging of weighted magnitude spectrum produced slightly better results. A

common window size of 1024 samples was chosen for all feature calculations as a

reasonable compromise between time and frequency resolution. The table-reading

versions of timbreID feature extraction objects (described in Section 4.2.1) were

used in order to process all tests in non-real-time.

Table 5.2: Fifteen features used for performance evaluation.

Zero Crossing Rate Spectral Flux Magnitude Spectrum

Spectral Rolloff Spectral Centroid Bark Spectrum

Spectral Brightness Spectral Spread Cepstrum

Spectral Flatness Spectral Skewness Mel-Frequency Cepstrum

Spectral Irregularity Spectral Kurtosis Bark-Frequency Cepstrum

Numerical features, such as spectral brightness, will be referred to as low

level, in contrast with high level feature vectors like Bark-frequency cepstral co-

efficients. When evaluating combinations of low level features, the database was

normalized as described in Section 4.3.1 in order to equalize the range of all features

before distance calculation. In the case of multiple-frame analysis, components of

high level feature vectors were repacked according to coefficient number using a

patched network of list manipulation objects in Pd (i.e., information was orga-

nized into time-varying coefficient tracks). Capturing the temporal evolution of

individual coefficients enables comparison between coefficient subsets of different

multiple-frame high level features. Because all cepstral features are examined with

respect to data reduction and their vector lengths range from 46 to 511 coefficients,

specific ranges of interest were selected. As described in Section 3.3, use of the en-

tire set of BFCCs will produce distance values that are identical to those generated

when using an unprocessed Bark-weighted spectrum. Therefore, at maximum, only

the first 15 coefficients of the cepstral features were used in comparisons between

all features. The first coefficient was always excluded as it is essentially only an

indicator of amplitude. It is specifically the accuracy of 15-point cepstrum, BFCC,

and MFCC subsets that is evaluated here. The full range of available bins were
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used for magnitude and Bark-weighted spectrum in order to illustrate differences

in accuracy between complete and data-reduced spectral measurements. For mag-

nitude spectrum, bins corresponding to DC and Nyquist were removed, leaving

511 total coefficients.

5.3 Results

5.3.1 30 Diverse Timbres

Single-frame onset analysis

Average scores across all onset displacement (OD) settings for single-frame

analysis are shown in Figure 5.2. Scores are expressed as percentages, where 100%

indicates perfect classification of all 30 test instances across each of the 8 OD

settings (240 total classifications). As expected (with respect to dimensionality), a

drastic difference in performance can be seen in comparing the high and low level

features. Of the latter, spectral rolloff (ROL), zero crossing rate (ZCR), spectral

centroid (CEN), and spectral brightness (BRI) produced the highest scores at

42.92%, 32.5%, 31.67%, and 27.92% respectively. As spectral centroid has been

documented elsewhere as a useful predictor of perceptually based timbre spaces,

its relatively higher performance here is not surprising. On the other hand, the

roughly equal accuracy generated using zero crossing rate is unexpected given

the extreme simplicity of the measure. Used in combination, the complete set

of 9 equally weighted low level features (CLL) attains an accuracy of 91.67%,

approaching that of the high level features.

The high level features, on average, do not produce more than two errors

in this test, so it is impossible to identify one as more effective than any other.

Although magnitude spectrum achieves 100% accuracy, it also requires 511 points.

The remaining high level features have far fewer components but perform nearly

equally well. A more detailed view of performance with respect to data reduc-

tion reveals some significant differences. A second round of single-frame tests was

run in which the subset of coefficients used for distance calculations was varied
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Figure 5.2: Scores for individual low level features, combined low level features,
and high level features.

systematically for all high level features. The number of coefficients used ranged

from one to the full set available for each feature, incrementing by one coefficient

per test. Figure 5.3 plots accuracy against coefficient range (CR) used for all

high level features. Mel- and Bark-frequency cepstral coefficients show a signif-

icant advantage over other features for the smallest range of coefficients. With

only two coefficients, classification using BFCCs reaches 80% accuracy while mag-

nitude spectrum—with no inherent data reduction capabilities—is only able to

produce 35%. Scores using MFCCs more or less follow the same trajectory as

BFCCs, while cepstrum generates scores in between. Clearly, all of the high level

features involving a transformation beyond straight magnitude spectrum exhibit

superior accuracy using a small subset of coefficients. MFCCs and BFCCs stand

out as particularly effective, reaching 95% accuracy with 6 coefficients. Cepstrum

outperforms both Bark and magnitude spectrum by over 10% when using only 6

coefficients. Though not shown in Figure 5.3, classification using magnitude spec-

trum reaches a stable plateau of 96% accuracy with at least 55 coefficients. At this

sampling rate and window size, the 55th bin corresponds to 2326 Hz. Thus, for

this particular analysis strategy and sound set, spectral information above 2326

Hz does not appear to contribute significantly to classification accuracy.
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Figure 5.3: Accuracy vs. coefficients for all high level features.

Figure 5.4 shows accuracy stability for BFCCs with respect to OD and CR.

The 90%+ scores using a CR of 1—15 do not deteriorate relative to OD, indicating

that the strategy of providing training examples that are displaced from the actual

onset is effective.

Multiple-frame analysis

Though it is much more data intensive, a short burst of analyses using any

or all of the 15 low level features is easily managed in real time using a patching

network similar to that shown in Figure 4.2. The performance improvement can

be clearly seen in Figure 5.5, where the most significant change is among the low

level features. Five analysis frames were used, with a hop size of 128 samples (2.9

ms). Once again, the relatively high classification accuracy achieved using a simple

multiple-frame zero crossing measurement (58.3%) is very surprising. Compared

to the single-frame case, accuracy for combined low level features improved from

91.67% to 97.5%, bringing it within the range of accuracy produced by high level

features. The multiple-frame strategy using Bark spectrum, MFCCs, and BFCCs,

and unprocessed cepstrum produced scores similar to those given in the single

frame case, where no high level feature averaged more than 2 errors. Again, such a
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Figure 5.4: CR vs. OD vs. accuracy for BFCCs.

low error rate does not enable the identification of any individual high level feature

or analysis technique as superior.

As in the previous section, scores are plotted against the number of coeffi-

cients used in order to make some finer discriminations between high level features

in a multiple-frame analysis context. In this case, coefficients are not single num-

bers, but 5-component vectors with unique meanings for each feature. The vector

for a single magnitude spectrum bin traces changes in energy within its narrow

frequency band (43 Hz wide at this sampling rate and window size). Magnitude

spectrum is a raw measure without any design for data reduction; however, track-

ing individual bins in this manner gives rise to the possibility of using selected

bin tracks as a compact timbre descriptor. This type of data reduction has the

advantage of requiring only the removal of information, and no further processing.

Bark spectrum is already a reduced form of spectrum, with an additional charac-

teristic of emphasizing more perceptually relevant frequency ranges. Although it

has far fewer coefficients than magnitude spectrum, the resulting tracks refer to

meaningful ranges more consistently across the low and high ranges of the feature.

For multiple-frame BFCCs, each the 47 bin tracks describe energy distribution

changes in reference to a basis function of the cosine transform. For instance, the

multiple-frame vector for the second BFCC (recall that the first BFCC is never
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Figure 5.5: Scores for individual low level features, combined low level features
(CLL), and high level features using multiple frame analysis.

used), which is calculated relative to a half-cosine basis function, would trace the

relative presence or absence of a broad band of low frequency spectral energy over

time. Thus, as more coefficients are added, more time-varying data about these

types of gross spectral energy distributions are included for classification.

Figure 5.6 shows results obtained using 5 analysis frames, plotted as a func-

tion of the number of coefficient vectors used. The data reduction capabilities of all

cepstral features are apparent. Using only 6 coefficients, the three cepstral features

produce 95%+ accuracy in comparison with the 83.75% earned by magnitude spec-

trum. Note that magnitude and Bark spectrum perform almost equally well, and

require roughly 20 coefficients to achieve scores of 95%. Considering that the 20th

bin corresponds to frequencies of only 818 Hz and 1268 Hz for magnitude and Bark

spectrum respectively, it is significant that the temporal evolution of energy in the

bins below is unique enough to generate such high classification scores for this

sound set. The selection of these first 20 bins is completely arbitrary, a by-product

of the fact that the lowest range of cepstral coefficients are being investigated here.

It may be possible that a smaller subset of different coefficients can generate equal

accuracy.
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Figure 5.6: Accuracy vs. coefficients for all high level features using multiple-frame
analysis.

Summarized multiple-frame analysis

The final strategy explored in this test is simply a statistical summarization

of the time-evolving measurements from the previous section. The information

generated by any feature over 5 frames can be expressed compactly by taking the

mean and standard deviation of the data, reducing the feature length from 5 to

2 points. Scores for summarized individual and combined low level features are

lower than those based on the complete 5-frame features, but significantly higher

than scores generated using a single analysis frame in most cases. This can be seen

in Figure 5.7, which shows scores for all three analysis strategies at once.

Figure 5.8 shows a trend similar to that found using single frame and com-

plete multiple frame strategies. Using fewer than 10 coefficients, all cepstral mea-

sures outperform both magnitude and Bark spectrum, with an advantage shown

by the perceptually weighted cepstra. The information presented thus far indi-

cates that the optimal analysis strategy and feature for this diverse set of timbres

is a 5-frame analysis using the first 15 Bark- or mel-frequency cepstral coefficients.

This translates to a feature vector with 5 × 15 = 75 components. If further data

reduction is needed, the mean and standard deviation of each coefficient across 5

frames creates a vector with 2×15 = 30 components that performs roughly equally
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Figure 5.7: Scores for individual low level features, combined low level features
(CLL), and high level features using single (white), summarized multiple-frame
(grey), and complete multiple-frame (black) analysis.
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Figure 5.8: Accuracy vs. number of coefficients for summarized high level features.

well. In cases where increased latency is acceptable and 10 analysis frames can be

used, data summarization will result in greater reduction of data size.

The Bark-weighted spectral plots of six instrument attacks from the diverse

set are shown in Figure 5.9, providing a sample of the contrasting energy distri-

butions existing among these timbres. As can be seen from the instrument list in
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Table 5.1, the timbres contrast from a perceptual point of view as well (e.g., very

few participants would have any difficulty distinguishing a snare drum from a tri-

angle). Results from a more difficult test using the similar timbre set are presented

in the following section.

Figure 5.9: Bark cepstra for six timbres from the diverse set.

5.3.2 30 Similar Timbres

As described in Section 5.2.1, the 30 timbres in the “similar” set were

generated using a collection of five inharmonic metals: 3 tam tams and 2 gongs.

Each instrument was struck using a drumstick and felt orchestral mallet in three

locations—edge, between the edge and center (referred to below as “middle”), and

center. Figure 5.10 shows Bark-weighted spectra for the attacks of six of these tim-

bres, generated by strikes on the edge, middle, and center of one instrument. The

upper and lower rows show spectra from strikes using a drumstick and orchestral

felt mallet respectively. In comparison with Figure 5.9, is it clear that classifi-

cation by spectral energy distribution will be more problematic with this sound

set. Sounds produced with the felt mallet possess spectral distributions with most

of the energy concentrated in the lower frequency range, while drumstick strikes

generate more broadband spectra. Thus, there are two general classes of spectra
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with 15 instances each. Spectra for the complete set of similar timbres is provided

in Appendix A. The increased difficulty of this test will provide further insight

regarding the reliability of robust high level features evaluated in the previous sec-

tion. In spite of the very similar Bark-spectral envelopes of these instruments, with

a concentration of high energy due to the drumstick attack, it is easy to distinguish

between them perceptually.

Figure 5.10: Bark cepstra for six timbres from the similar set.

Single-frame Analysis

Single frame analysis was carried out as before, with results averaged across

all OD settings shown in Figure 5.11. Results are lower overall, and the most sig-

nificant proportional change is the performance of unprocessed cepstrum relative

to the other high level features. Using the diverse sound set, the largest differ-

ence in accuracy between these measures was 1.2%, or 0.36 incorrect classifica-

tions. Here, the smallest gap between cepstrum and any other high level feature

is 31.7%—roughly ten misclassifications. An almost identical drop in accuracy oc-

curred for the combined low level features. The accuracy gap between magnitude

spectrum and the other cepstral measures also widened significantly, amounting

to differences of 15.4% and 7.9% for mel and Bark cepstrum respectively. Scores

for Bark spectrum were only 2.1% lower than magnitude spectrum. In the con-
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text of more similar spectra, the effectiveness of data-reduced features appears to

break down. The combined low level features and cepstral measures all provide

a compact amount of information about rough spectral envelope contours. When

the contours become similar, the finer level of detail provided by Bark spectrum,

or ideally, magnitude spectrum is needed for the highest levels of accuracy. Nev-

ertheless, considering the relatively limited information provided by only a single

frame of 15 mel or Bark cepstral coefficients, their 80%+ accuracy is quite good.
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Figure 5.11: Scores for individual low level features, combined low level features
(CLL), and high level features using single frame analysis.

Multiple-frame Analysis

Figure 5.12 shows the improved scores achieved using multiple frames.

Among the low level features, zero crossing rate remained one of the most ro-

bust, and the vector of 10 combined features (CLL) achieved a score 5.4% higher

than that of the 15 raw cepstral coefficients. While scores for magnitude spectrum

remained the same, the gaps between it and mel and Bark cepstrum were roughly

halved from the single frame case, to differences of 5.8% and 2.9% respectively.

A major break from previous patterns can be seen in Figure 5.13. Very

small sets of time-varying Bark-weighted and regular magnitude spectrum coeffi-

cients produced scores well above 90%. Using 5 coefficients, MFCCs and BFCCs
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Figure 5.12: Scores for individual low level features, combined low level features
(CLL), and high level features using multiple-frame analysis.
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Figure 5.13: Scores vs. CR for high level features using multiple-frame analysis.

scored 37.5% and 29.17% lower than magnitude spectrum respectively. The suc-

cess of the spectral features in such a limited frequency range can be attributed

to unique spectro-temporal patterns in the lowest modes of the instruments being

tested. While BFCCs provide a good summary of the entire frequency range, the

spectral features capture the most relevant information for these instruments at a
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far greater resolution. Though Bark-weighted spectrum is a data reduced form of

magnitude spectrum, the weighting preserves low frequency detail, which explains

its effectiveness here.

Figures 5.14—5.16 show spectrograms of the lowest 15 magnitude spectrum

bins across 8 frames for the same instrument being struck in three locations.2 All

three timbres possess a peak near 86 Hz, and more prominent peaks near either

431 Hz or 301 Hz. The center strike exhibits the most stable peak over time,

corresponding to the sustained pitch of the instrument. In contrast, the primary

peaks of the middle and edge strikes reach their maxima and decay during the

attack segment. With only 5 coefficients, only tracks for the lowest mode near 86

Hz are used in classification. Figure 5.16 shows that for the center strike this area

holds its shape during the 8 frames, while the edge and middle strikes shown in

Figures 5.14 and 5.15 dip significantly in this area over time.
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Figure 5.14: Low frequency spectrogram of a tam tam drumstick strike (edge).

Classification mistakes resulting from these features are instructive as well.

Using 5 coefficients, multiple frame magnitude spectrum scored an average of

96.67%, with a total of seven errors among tests at all OD settings, and a max-

2However, the multiple frame features used for classification are only 5 frames in length.
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Figure 5.15: Low frequency spectrogram of a tam tam drumstick strike (middle).
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Figure 5.16: Low frequency spectrogram of a tam tam drumstick strike (center).

imum of two errors in each test. Four out of the seven errors were confusions

between the edge and center felt mallet strikes of the second tam tam. Of the

remaining errors, two were confusions between felt mallet strikes of the center of
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the second tam tam and the middle of the third tam tam, and one confused edge

and middle strikes of the first gong using a drumstick. Thus, five out of the seven

errors failed to identify the location of the strike, but not the instrument or mallet

type. In no cases was a drumstick attack mistaken for a felt mallet attack, as the

corresponding spectra have very different energy distributions, with the felt mallet

producing mainly low- and mid-frequency energy.

Figure 5.17: Confusion matrix for classifications using 5 multiple-frame magnitude
spectrum coefficients.

A three-dimensional confusion matrix for classifications using magnitude

spectrum is presented in Figure 5.17. The uniform diagonal is another reflection

of the 96.67% accuracy rate, where deviations (such as those in the green band

corresponding to timbres 10—12) illustrate the nature of misclassifications. Most

misclassifications remain near the diagonal because neighboring timbres share the

same instrument and mallet type. Unique instrument/mallet combinations are
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colored differently, where each group of three represents edge, middle, and center

strikes using the same instrument and mallet. Thus, the two instrument-based

errors are easily identified visually in the green region as the bar most displaced

from the diagonal. The gong edge/middle confusion is on the opposite side of the

main diagonal in the brown region (timbres 19–21). At a glance, it is clear that

the majority of misclassifications are location-based.

Figure 5.18: Confusion matrix for classifications using 5 multiple-frame Bark cep-
strum coefficients.

Misclassifications resulting from the use of 5 BFCCs are not only more

numerous—as illustrated previously in Figure 5.13—they are also more likely to

make errors of a less subtle nature for particular instrument/mallet combinations.

In Figure 5.18, the three rightmost timbres (grey) refer to the second gong struck
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with a felt mallet. Deviations from the diagonal are clustered nearby with only

one outlier from an incorrect instrument altogether. However, displacements in

other areas are far more scattered, illustrating the inferiority of this feature with

respect to the nature of misclassification.

5.3.3 Signal distortion

By adding various levels of white noise, signal interference from other in-

struments can be simulated in a controlled manner. Results from this test give an

indication of how strongly classification accuracy will be affected when microphone

leakage occurs. White noise is an imperfect simulation—actual instrument reso-

nances will not have such even spectral characteristics. However, this approach has

the advantage of being straightforward and uniform. Figures 5.19 and 5.20 display

the results of adding white noise at -36 dB and -42 dB to the diverse and similar

sound sets using the optimal multiple-frame analysis approach. At -36 dB, this

distortion completely masks some of the quieter instrument samples. In the case of

the similar timbre set, the testing conditions are therefore extremely unfavorable.
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Figure 5.19: Accuracy for all features when adding white noise at -36 dB (grey)
and -42 dB (black) to the diverse timbre set.

For the diverse timbre set, scores are lower overall, with average accuracy

of some low level features indistinguishable from random chance (3.33%). For in-
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stance, the accuracy of spectral flatness, which produced scores over 50% in tests

on the unaltered diverse set, does not outperform chance at either noise level. The

spectral flatness of white noise on its own is very near the maximum value of 1.0.

Therefore, this feature is especially susceptible to the type of interference tested

here. Of the most effective low level features identified previously (zero crossing

rate, spectral rolloff, spectral brightness, and spectral centroid), zero crossing rate

and brightness fare better than others. The relatively high score of spectral ir-

regularity may be due to its higher invulnerability to doses of broadband noise,

as frequency peaks rising above neighboring spectral noise should still generate

relatively unique values.
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Figure 5.20: Accuracy for all features when adding white noise at -36 dB (grey)
and -42 dB (black) to the similar timbre set.

The 6 dB difference in noise level causes a roughly 2:1 difference in accuracy

when using magnitude spectrum and cepstrum. Proportional differences between

the scores of all high level features are noticeably different than before, with Bark

spectrum, MFCCs, and BFCCs significantly outscoring magnitude spectrum at

the higher noise level. This difference can be attributed to the fact that magni-

tude spectrum preserves high frequency noise, while for Bark- and mel-weighted

features, this spectral region is drastically attenuated. Likewise, raw cepstrum is

also susceptible to high frequency noise, and its performance is further diminished



115

from the already poor scores given in Figure 5.12. Cepstrum scores amount to

about half those of magnitude spectrum at both noise levels. Computed according

to Equation (3.12), cepstrum is the only high level feature making use of a log

magnitude spectrum. Large doses of noise across the entire frequency range are

amplified in the logarithmic frequency domain, resulting in a spectral envelope

representation that differs greatly from those stored during the training process.

The presence of noise in linear magnitude spectra is less prominent.

Identical distortion applied to the similar timbre set produces predictable

results. Spectral flatness remains completely ineffective as a classifier at both

noise levels. As with the noise-treated diverse set, zero crossing rate, spectral

brightness, and spectral irregularity are the most effective low level features. In

comparison with other high level features, raw cepstrum is further crippled, and is

outperformed by an individual low level feature (spectral irregularity) for the first

time. Mel and Bark cepstrum hold roughly the same ∼80% score range shown in

the case of the diverse set at -42 dB, with scores reduced by about 10% at the

higher noise level. As in Figure 5.19, scores for magnitude spectrum are eclipsed

by the perceptually weighted features, though less drastically in the case of noise

at -36 dB. Scores generated by perceptually weighted features are thus superior

due to their de-emphasis of high frequency noise. It can be concluded that these

features are the most robust in the face of signal distortion.

5.4 Conclusions

These tests have confirmed some important characteristics of audio features

and analysis techniques in the context of the timbreID analysis package. First, the

general inferiority of individual low level features is apparent in the case of each

analysis strategy and both timbre sets. However, using 5 overlapping analysis

frames, some individual features produced accuracy in the range of 60% and 70%

for the diverse timbre set. In this case, spectral rolloff generated the highest average

score of 72.5%, or 21.75 correct classifications out of 30. In an equally weighted

combination, the ten low level features achieved 97.5% under the same circum-
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stances. Using the summarized multiple-frame approach, results were consistently

between the bounds of single and multiple frame scores.

High level features performed very reliably in tests on the diverse timbre

set. Distinctions between these measures were made relative to data reduction

capabilities. In general, Bark spectrum stayed in very nearly the same score range

as magnitude spectrum, and is much more compact (46 vs. 511 points). The

three cepstral techniques exhibited superior performance using fewer than 10 co-

efficients for all analysis strategies. Thus, cepstral techniques were optimal in the

classification test of diverse timbres. Mel- and Bark-weighted cepstral features

were consistently more effective than raw cepstrum in all cases. In all testing sce-

narios, mel and Bark cepstrum performed essentially identically. In a break from

the conventional calculation of these cepstral techniques (which is based on the

sum of weighted log power spectrum bins in each band of the filterbank [DM80]),

the average of weighted magnitude spectrum bins was used. Based on the study

presented here, multiple-frame mel or Bark cepstra calculated in this manner are

the most appropriate features for real-time classification of a diverse collection of

percussive timbres.

A more difficult test performed using similar metallic timbres produced

some contrary results. Scores generated using 15 MFCCs or BFCCs were in the

same range as those for magnitude spectrum. However, for the 5 metal instruments

investigated, temporal patterns in low frequency modes as captured by 5–10 mag-

nitude spectrum bins were more effective in classification than the general spectral

summarization offered by similarly sized subsets of MFCCs or BFCCs. These re-

sults show that additional investigation of spectral characteristics among similar

sound sets can lead to carefully composed feature vectors that outperform the

lowest BFCCs. Under circumstances of signal distortion, it was shown that the

de-emphasis of high frequency content produced by perceptual scale weighting of-

fered an advantage over full magnitude spectrum. Averaging rather than summing

weighted energy in filter bands further de-emphasized high frequency content. The

modular design of timbreID feature extraction objects greatly facilitates the pro-

cess of composing custom features as needed for any of these conditions. Under cir-



117

cumstances where higher spectral resolution can capture unique spectro-temporal

patterns, custom timbre descriptors may also reduce processor load. In the case of

the similar timbre set, the steps of multiplying against a Bark-weighted filterbank

and performing a DCT were shown to be unnecessary.

In summary, with a timbrally diverse sound set, a small subset of BFCCs

can produce very high scores, and requires no additional research. For more similar

sound sets, BFCCs produce useful scores, but can be outperformed using a subset

of magnitude spectrum bins if the sound set can be considered in detail before

classification.



Chapter 6

A Perceptual Timbre Space for

Percussive Sounds

The studies reviewed in Chapter 2 established at least two consistent per-

ceptual dimensions of timbre: brightness and attack time. Although there was a

great deal of variation in the particularities, a third dimension relating to spectral

changes over time was also identified in several cases. With the exception of [Fre90]

and [Lak00], the majority of studies explored pitch-based orchestral instruments in

the categories of strings, winds, and brass. This chapter presents a study investi-

gating 30 percussive timbres selected from the orchestration of Varèse’s Ionisation.

In the previous chapter, these timbres were referred to as the “diverse” set. The full

list of instruments are given in Table 5.1. A primary objective of the experiment

described here is to discover dimensions of timbre that are specific to percussion

instruments, and to confirm established dimensions that may be common to all

types of instruments. A second objective is to identify correlations between per-

ceptual dimensions and the physical measurements employed in Chapter 5, with

the intent of creating predictive models of subjective judgments.

6.1 Method

In light of the experimental history outlined in Chapter 2, it was decided

to record participant judgments on verbal attribute scales. The advantages offered

118
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by multidimensional scaling (MDS) were considered to be outweighed by its main

disadvantage: a severe restriction on the size of the stimulus set. In this case, the

investigation of 30 sounds would have required 30×29×0.5 = 435 trials. A unique

feature of this study is the relatively large stimulus set, which allows for further

investigation of context effects with respect to common perceptual dimensions.

This was a stated goal of Lakatos’ experiment (Section 2.3.4), which studied 20

diverse sounds. Most other MDS studies consider roughly half the number of

timbres used here. A second motivation for choosing a verbal attribute strategy

is that the chosen adjectives can provide insight regarding particular factors that

contribute to the primary perceptual dimensions discovered. As noted by Lakatos,

MDS algorithms are designed to produce a parsimonious model of data, which can

be “unsatisfying” in the context of a phenomenon as rich as timbre perception.

[Lak00, p. 1437] Because the underlying timbre characteristics that govern general

similarity judgments are not known when interpreting the dimensions of a space

generated by MDS, in most cases only a single attribute is proposed for each

axis. The use of verbal attribute scales offers the possibility of understanding the

underlying aspects of primary dimensions in more than one respect.

The disadvantages of a verbal attribute approach have already been dis-

cussed in Chapter 2. In short, the chosen adjectives—no matter how carefully

they are selected—may influence the aspects of timbre to which participants at-

tend. There is also no assurance that participants will use the given scales simi-

larly and consistently. Regarding the former point, a body of MDS-based timbre

research has sufficiently established recurring perceptual dimensions on a nonver-

bal basis. Thus, it may be constructive at this point to risk influencing participant

judgments with verbal suggestions in order to gain further understanding of the

meaning behind common dimensions like “brightness”. This is something that was

recognized by Plomp, one of the earliest advocates of MDS in timbre studies:

When at some time these [MDS] experiments have given a clear picture
of the multidimensionality of timbre perception in its dependence on the
physical parameters, it would be of great interest to investigate the rela-
tionship between the dimensions found and the verbal categories by which
the timbre differences can be described. [Plo70, p. 414]
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Regarding language consistency, the participants in this study were all percus-

sionists sharing a common performance practice. Therefore, the relative stability

of terminology should be quite high. Five of the six participants rehearse and

perform together on a regular basis, where nuances of instrument articulation are

frequently discussed in relation to timbre. While language will always introduce a

degree of ambiguity, the scenario here can be considered optimal.

Adjectives for the rating scales were chosen from the collection given in

[KC93b]. As described in Section 2.3.2, Kendall & Carterette’s original list of 61

adjectives was drawn from a musically relevant text. This list was edited by the

present author to remove terms that reference the physical qualities of instruments

(e.g., “metallic” and “wooden”). Several adjectives from [vB74b] were included,

and adjectives deemed appropriate for unpitched percussion timbres (e.g., “noisy”)

were also appended. The complete list of 100 adjectives is given in Appendix B.

One of the participants in the present study examined the collection and identified

15 adjectives as the most relevant descriptors of percussive timbre. These adjectives

are given in Table 6.1.

Table 6.1: Fifteen adjectives used for the VAME rating scales.

Sharp Rough Deep

Dry Pure Rich

Bright Round Noisy

Shrill Warm Dull

Dead Brilliant Thin

Note that some adjective pairs are potential synonyms and antonyms. Follow-

ing the logic for attribute scale design given in [KC93a], antonymous scales were

avoided and 15 independent 7-point VAME rating scales were employed. This

avoids the ambiguity of scales with many potential antonyms, or no clear antonym

at all. Participants were instructed to interpret the left and right limits of each

scale as “not at all” and “extremely” respectively (e.g., “not at all bright” and “ex-

tremely bright”). Under this approach, antonymic relationships should be apparent
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as strong negative correlations between judgments on different scales. Synonyms

will likewise be identified as positive correlations.

6.1.1 Participants

Participants were 6 graduate students from the UCSD music department.

Five participants were percussion performance majors and members of the resident

contemporary percussion ensemble. One participant was a percussionist studying

within the computer music area of the department. All participants were native

English language speakers, and none were paid for participation in the experiment.

6.1.2 Apparatus

Stimuli were presented via two interactive Pd patches. The first patch

was designed merely to familiarize participants with the sound set, and did not

record judgments. The patch generated unique random orderings of the complete

sound set, and participants could play back individual sounds by pressing the space

bar. After each sound was played back, the next sound in the random sequence

was cued up automatically. Once all 30 sounds had been played back, the patch

automatically reorganized the set in a different random order so that participants

could continue to listen to the stimuli informally if desired.

The second patch, pictured in Figure 6.1, allowed participants to rate each

sound on 15 verbal attribute scales. As in the previous patch, the playback order

was randomized and unique for all participants. Sounds were played back via the

space bar (or the GUI “PLAY” button), and in this case could be repeated as many

times as desired by the participant. It was not possible to repeat a sound until

active playback had completed, which forced participants to listen to each sound

in its entirety. A progress bar at the bottom of the window provided feedback

regarding the remaining duration of each sound. A volume adjustment slider was

provided as well.

After participants made ratings on all 15 scales and clicked the “RATE”

button, the next sound in the sequence was automatically cued up, and it was not
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Figure 6.1: User interface for auditioning stimuli and recording judgments.

possible to edit previous ratings. In order to avoid ordering effects, the positions of

the 15 scales were randomized on each trial. The initial states of the 7-point scales

were also randomized on each trial. Labels to the left and right of the scales were

provided as reminders of the meanings for minimum and maximum values. This

was added after a pilot stage revealed occasional confusion. The left—right/less—

more orientation was apparently more intuitive for some scales than for others.1

For each trial, the patch recorded the following information to a separate text

file: the stimulus number, the rating values on all 15 scales, the number of times

the stimulus was played back, and the trial duration.

6.1.3 Stimulus Materials

As noted previously, this collection of timbres possesses characteristics that

are of interest in the context of a perceptual study; however these features also

present some procedural difficulties. First, because the majority of instruments

are unpitched, there is no clear strategy for normalizing pitch in the set. Even

1For instance, making a rating on the right side of the scale for a very “bright” sound seemed
natural for some pilot participants, but going far to the right for an extremely “deep” sound was
less intuitive.
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among the pitched instruments—including the claves, bass drum, tom, glocken-

spiel, and wooden plank—not all are capable of producing a range of pitches.

In [Lak00], pitches for some stimuli were corrected using pitch-shifting software.

Here, unaltered stimuli are prioritized, and the degree of pitch-shifting necessary

for normalization would have caused severe changes in timbre. Interactions be-

tween pitch and timbre are thus unavoidable in the case of pitched instruments,

and not problematic for the remaining unpitched stimuli.

With respect to duration, again there is no ideal method for normalization.

While resonating instruments like tam tams and triangles can be dampened in

order to control duration, other instruments like the castanet, claves, and snare

drum offer no means for extending their extremely short durations. Further, be-

cause duration and loudness are interrelated when dealing with timbres possessing

varied amplitude envelopes, loudness normalization was also problematic. Most

of the sounds in this set have attack segments of 1 ms or less, but several are

much longer. For instance, the loudest point in a lion’s roar tone may be half a

second after the initial onset. Typical articulations of maraca, guiro, and sleigh

bell may also have amplitude peaks that are displaced by 100 ms or more from

the onset. One possibility is to truncate the durations of all instruments to that of

the shortest instrument, making loudness normalization much more manageable.

While this is also worthy of investigation, in the present study a choice was made

to avoid such artificial modifications and investigate stimuli with durations that

are typical in actual musical practice. Thus, loudness could not be normalized as

precisely as in other cases. All instruments were recorded at several different dy-

namic levels, and mezzo-forte instances were selected for the stimulus set. Sounds

ranged in duration from 202 ms (castanet) to 7862 ms (tam tam), with a mean

duration of 2274 ms.

6.2 Procedure

Participants were told that they would be rating 30 timbres on 15 attribute

scales. In the first stage of the experiment, participants interacted with the intro-
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ductory patch to hear all of the sounds in the set. They were required to listen to

the entire set at least once, and most participants listened to the set two times.

A list of the 15 adjectives from Table 6.1 was shown in the bottom portion of

the patch, and participants were instructed to imagine making ratings using these

descriptors as they listened casually.

In the second stage, ratings were made on all scales at every trial, following

[vB74b]. The positions of the scales shifted randomly on the screen, and partic-

ipants were instructed to proceed from top to bottom, left to right. Thus, the

order of scale ratings was different for each trial. The interface for each scale was

an instance of Pd’s graphical radio button object with 7 elements. The desired

point on the scale could be chosen by clicking with the mouse. Participants were

told to listen to each sound as many times as necessary. It was recommended that

they listen to the sound at least once for every adjective scale. No time limit was

imposed, but at least one 10-minute break was required halfway through the test.

Additional breaks were allowed if needed. Both stages of the experiment were

carried out using high quality AKG 702 reference headphones in a soundproof,

non-reverberant room. In total, the experiment lasted approximately one hour.

6.3 Results

6.3.1 Consistency of Ratings

One method for discerning the similarity of ratings between participants is

to look at the standard deviations of judgments for each instrument. The average

standard deviation for randomly generated ratings on a 7-point scale is about 1.93.

Because participants are not likely to have a uniform approach to using the scales,

it is relevant that standard deviations of participant ratings were far below the

chance value for many scales. In very rare cases, ratings did not deviate at all.

This occurred in extreme examples, such as ratings of “brightness” for triangle and

orchestral crash cymbals, “roughness” for guiro, and “shrillness” for bass drum.

Regarding guiro, the extreme consistency indicates that in certain cases, the na-

ture of a particular adjective may lead to ratings that are more descriptive of the
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physical properties of the instrument than its purely sonic characteristics. Percus-

sionists are aware that the guiro’s grooved surface is literally rough to the touch;

of course, this has nothing to do with the psychophysical sensation of roughness

documented by Terhardt [Ter70].

Table 6.2 shows rating scale adjectives ordered according to mean standard

deviation across all instruments. The most consistently used scales were relatives

of “bright”, “sharp”, and “noisy”. Although sharpness is discussed in [vB74b]

as synonymous with brightness, use of the term among these participants is in

reference to attack quality. A sound with a short attack is said to be sharper than

one with a gradual attack.

Table 6.2: Adjectives ordered by mean standard deviation.

Mean std. dev.

Deep 0.98

Sharp 0.99

Bright 0.99

Pure 1.03

Noisy 1.11

Thin 1.12

Dead 1.20

Round 1.20

Warm 1.22

Rich 1.23

Dry 1.25

Rough 1.30

Brilliant 1.32

Shrill 1.32

Dull 1.43

A different perspective on rating consistency is given by examining correla-

tions between ratings for all possible pairings of participants. With 6 participants,
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Table 6.3: Adjectives ordered by mean inter-participant correlation.

Mean correlation.

Deep 0.70

Pure 0.65

Noisy 0.64

Sharp 0.64

Dry 0.62

Bright 0.60

Rich 0.58

Shrill 0.55

Thin 0.55

Brilliant 0.53

Dead 0.52

Round 0.50

Rough 0.44

Warm 0.34

Dull 0.23
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15 unique pairings are possible, and mean values can be determined for each ad-

jective. The mean correlation coefficient is given for each adjective in Table 6.3.

The top 6 adjectives in both Tables 6.2 and 6.3 include “bright”, “deep”, “noisy”,

“pure”, and “sharp”, indicating that these rating scales were used most consis-

tently. In both cases, “dull” is the least consistently used adjective.

6.3.2 Adjective correlations

Correlations between VAME scale ratings point to adjectives with similar or

opposite meanings in the context of timbre. Tables 6.4 and 6.5 respectively show

roughly synonymous and antonymous adjective pairs with corresponding corre-

lation coefficients. Correlations were generated from the mean judgments of all

6 participants, and only pairs with correlations greater than 0.7 are shown. All

p-values are below 1.0e-05.

Table 6.4: “Synonymous” adjective pairs.

Correlation

Noisy—Rough 0.91

Round—Warm 0.91

Brilliant—Shrill 0.91

Dead—Dry 0.91

Bright—Brilliant 0.90

Bright—Shrill 0.89

Dead—Dull 0.85

Deep—Warm 0.84

Deep—Round 0.84

Bright—Sharp 0.79

Dry—Dull 0.74

Sharp—Thin 0.73

The strong relationship between “bright” and “sharp” seems to contradict

the point made earlier—that among these participants sharpness refers to attack
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Table 6.5: “Antonymous” adjective pairs.

Correlation

Pure—Rough -0.91

Pure—Noisy -0.89

Bright—Deep -0.86

Round—Sharp -0.84

Round—Bright -0.82

Bright—Warm -0.80

Deep—Sharp -0.79

Brilliant—Dull -0.76

Sharp—Warm -0.76

Round—Thin -0.75

Shrill—Warm -0.75

Deep—Thin -0.75

Dead—Rich -0.74

Dry—Rich -0.73

Deep—Shrill -0.72

Round—Shrill -0.72
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quality, not high frequency content. This is likely the result of a forced correlation

due to the fact that most timbres in this set with shorter attacks happen to have

high spectral centroid and brightness values as well. However, the maraca, guiro,

and sleigh bells are exceptions that should provide opportunities to understand

how the two dimensions differ. Thus, while this correlation is strong, it should not

be assumed that brightness and sharpness are completely dependent. Furthermore,

it must be stressed that in general, even though adjectives with strong correlations

will be referred to as “synonyms” for convenience, ratings on each scale contain

unique information. Though the timbre set here is relatively diverse, it is not

sufficiently diverse to make truly general claims about the interchangeability of

different adjectives applied to timbre.

6.3.3 Physical Correlates of Perceptual Judgments

In Chapter 5, it was shown that 15 BFCCs (i.e., BFCCs 2—16) were more

effective than combined low level features in a classification test. Because the 2nd

BFCC has a strong negative correlation with spectral centroid, it also relates to

adjective scales that are generally linked to brightness. The 3rd BFCC (which mea-

sures Bark spectral correlation with a full cosine and is therefore a good indicator

of strong mid-range frequency content) correlates fairly well with several adjective

scales as well. Higher BFCCs produce very few correlations with magnitudes above

0.4. In the context of this experiment, the assortment of low level features specified

in Table 5.2 were more useful than the systematic spectral summarizations offered

by BFCCs.

As before, all analysis was performed on the attack segment using a win-

dow size of N = 1024. Undoubtedly, this approach is flawed in some regards, as

participants made ratings based on hearing entire instrument articulations. How-

ever, such inconsistencies are unavoidable when investigating a heterogenous set

of stimuli that possess various durations. The attack segment was chosen as an

obvious target of analysis, as several studies have noted the importance of attack in

classification experiments [IK93]. Log attack time (ATT) was added to the ten low

level features employed previously, measured manually as the time from onset to
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peak amplitude. The remaining low level analyses were performed on peak regions

rather than actual onsets for sounds with longer attack times (including maraca

and lion’s roar), in order to capture the most characteristic segment of all sounds.2

High correlations with this set of features are more numerous than those for the

lowest BFCCs, with coefficient magnitudes greater than or equal to 0.5 found be-

tween each feature and at least one rating scale. Table 6.6 shows correlations with

magnitudes greater than 0.5 and p-values below 0.01. Spectral flux and log attack

time yield the weakest relationships, while some measures of high-frequency con-

tent produce coefficient magnitudes above 0.8. Spectral moment measures (CEN,

SPR, SKW, & KUR) also fare well, with several magnitudes above 0.7.

It is apparent that some adjective scales possess very few strong relation-

ships to physical measures. These are “dead”, “dry”, and “rich”, although richness

appears to have some relationship to spectral fourth moment (KUR). Patterns

expected to follow from synonym/antonym relationships pointed out in the pre-

vious section can be seen in several cases. Approximate synonyms like “noisy”

and “rough” have similar correlation patterns across measures of spectral flatness

(FLA), irregularity (IRR), and flux (FLU), while the contrary scale, “pure”, shows

a precisely opposite pattern. Spectra of “pure” tones, like the glockenspiel, gen-

erally have only a few strong isolated frequency peaks during the attack, which

generate very high irregularity values. A “noisy” tone will generate lower irregu-

larity values because, without strong isolated peaks in the spectrum, neighboring

bins are more likely to share values in a similar range. “Round” and “warm” have

similar patterns across spectral rolloff (ROL), brightness (BRI), and all spectral

moments, and as expected, “bright”, “brilliant” and “shrill” correlate in an op-

posite direction from “round” and “warm” in all cases. Spectral skewness, which

is positive when the spectral energy distribution tail on the high frequency side

slopes toward zero more gradually, appears to be a potential predictor of warmth

and roundness judgments that are linked to a predominance of low frequencies. A

negative skewness indicates the opposite spectral distribution, such as that result-

ing from high-frequency bursts associated with striking a tam tam with a drum-

2For instance, a weak pre-attack exists for maraca articulations when pellets inside the hull
gather prior to the main accentuation of the sound. Here, the perceptual onset was analyzed.
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stick. Thus, negative skewness values are likely to result in positive correlations

with brightness judgments and the brightness measure. However, skewness is mea-

sured relative to spectral centroid while the brightness measure is based on a fixed

boundary frequency. Certain signals may produce positively skewed spectra that

are nevertheless concentrated beyond the brightness boundary. Such possibilities

point toward the advantage of multifaceted spectral distribution analysis methods,

even though some measures may seem redundant at first glance.

6.3.4 Principal Components Analysis

With potentially unique but highly intercorrelated rating scales, principal

component analysis (PCA) offers a means of identifying the most fundamental di-

mensions upon which participants made their ratings. In this case, the 15 adjective

dimensions can be summarized by only three principal component dimensions that

explain 90.45% of the variance existing in the original mean judgment data. The

loadings of each adjective scale on the three dimensions after varimax rotation are

given in Table 6.7. The leftmost column shows that for the first principal com-

ponent (PC1), information is drawn most heavily from brightness-related scales,

including “shrill”, “sharp”, “round”, “brilliant”, “bright”, and “deep”. Scales load

negatively and positively as expected. For instance, “deep” and “bright” load

oppositely. Of the six brightness-related scales just mentioned, most weigh on

the first PC dimension fairly exclusively (i.e., their weight is disproportionately

concentrated on this dimension). The second PC axis is slightly less conclusive.

Its most significant loadings come from the “dry” and “dead” scales, which load

primarily on this dimension alone. Thus, PC2 can be referred to as the “dry-

ness” dimension. Scales for “rich”, “dull”, and “brilliant” have a lesser—but still

significant—influence on this axis. While “dull” loads exclusively on PC2, its po-

tential antonym from Table 6.5, “brilliant”, is also a significant contributor to PC1,

the brightness dimension. Both the “brilliant” and “rich” scales load negatively

on PC2. Finally, the third PC axis is determined mostly by noise-related scales,

including “noisy”, “pure”, and “rough”. As expected “rough” and “noisy” load

negatively, while “pure” has a positive loading. All three scales load nearly ex-
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clusively on PC3. In summary, the three principal component dimensions point

to three primary perceptual dimensions for these percussive timbres: brightness,

dryness, and purity.

Table 6.7: Adjective loadings on the first three principal component dimensions
after varimax rotation. Loading magnitudes of 0.3 or greater are highlighted in
blue.

PC1 PC2 PC3

Shrill 0.35 -0.23 -0.05

Rough 0.01 0.02 -0.52

Pure 0.03 0.00 0.56

Dull -0.08 0.30 0.03

Dead 0.03 0.48 -0.04

Warm -0.28 0.00 0.02

Sharp 0.37 0.08 0.02

Thin 0.28 0.20 0.04

Noisy 0.06 -0.01 -0.60

Round -0.35 -0.05 0.04

Brilliant 0.31 -0.30 0.03

Dry 0.11 0.61 -0.09

Bright 0.37 -0.13 0.00

Deep -0.45 -0.03 -0.05

Rich -0.14 -0.30 -0.20

At this point it is worthwhile to consider the connections between consistent

scale use and the dimensions revealed by PCA. Recall that the five most consis-

tently used scales were “bright” “deep”, “noisy”, “pure”, and “sharp”. The first

and third perceptual dimensions were identified based on ratings from all of these

scales, which supports the validity of PCA results. That is, the scales that were

used most consistently by participants are also those that contribute to determin-

ing positions on the PC axes. And, although rating scales for “dry” and “dead”

(the main rating scales for the second perceptual dimension) were less consistent
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according to the orderings given in Tables 6.2 and 6.3, they did earn high place-

ment in comparison with the remaining scales. For instance, the “dry” scale was

the fifth element when ordering according to average inter-participant correlation.

Table 6.8: Correlations between adjectives and physical measures after decorrela-
tion from PC1 (mag. > 0.5, p < 0.01).

ZCR ROL FLA IRR FLU SPR ATT

Rough - - 0.62 -0.66 0.51 - 0.57

Pure - - -0.58 0.69 -0.56 - -0.54

Dull - -0.50 - - - - -

Dead -0.54 -0.51 - - - - -

Sharp - - - - - - -0.60

Noisy - 0.53 0.61 -0.67 - - -

Deep - - - - - 0.54 -

Sequential decorrelation of the first three rotated principal components from

all judgments and measurements further elucidates relationships between the most

salient adjective scales and physical measures, and reveals some remaining struc-

ture in the data that may amount to a fourth perceptual dimension. Expunging

the brightness PC removes the majority of strong correlations between brightness-

related adjective scales and measurements. Judgment/measurement correlations

taken after PC1 decorrelation with a magnitude above 0.5 and p-value below 0.01

are shown in Table 6.8. No correlations meeting these criteria were found between

any measures and the “bright”, “brilliant”, “round”, “shrill”, or “warm” scales.

The “deep” scale, however, remains connected with spectral spread. Thus, there

may be aspects of “deep” ratings that are independent of brightness and spectral

centroid. The “sharp” scale also remains, but its only strong correlation is with

log attack time—relationships with spectral rolloff, brightness, and centroid are

erased. The largest correlation magnitudes in Table 6.8 are linked to noisiness,

with the “rough”, “pure”, and “noisy” scales retaining correlation coefficients sim-

ilar to those shown in Table 6.6, prior to PC1 decorrelation.
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Table 6.9: Correlations between adjectives and physical measures after decorrela-
tion from PC1 and PC3 (mag. > 0.5, p < 0.01).

ZCR KUR ATT

Dead -0.51 - -

Sharp - - -0.62

Rich - 0.55 -

Because the correlations in Table 6.8 are associated most clearly with pu-

rity/noisiness, the third PC is decorrelated next. Having removed both the bright-

ness and purity dimensions, we expect to find relationships involving any of the

scales loading on PC2, i.e., “dry”, “dead”, “rich”, “brilliant” or “dull”. Indeed,

both the “dead” and “rich” scales turn up correlation magnitudes above 0.5 when

compared with measurements for zero crossing rate and spectral kurtosis respec-

tively. Table 6.9 shows the results. Note that the negative correlation between the

“sharp” scale and log attack time remains from the previous table. When the final

(2nd) PC is decorrelated from this data set, the only remaining correlation with a

magnitude greater than 0.5 and significance of p < 0.01 is found between log at-

tack time and the “sharp” scale (mag. = −0.65, p = 0.001). While sharpness and

brightness judgments were shown previously to be correlated, the strong relation-

ship that remains after correcting for brightness indicates that sharpness is indeed

used to refer to quickness of attack. In all, these manipulations show patterns that

point to one very strong perceptual dimension for brightness, a strong dimension

for purity/noisiness, a dimension related to dryness, and a remaining dimension

for sharpness of attack that is completely independent of the three PC dimensions.

Based on these findings, future experiments with a different set of diverse timbres

could be composed with the intent of avoiding overlap between dimensions and

forced correlations (such as that found here between brightness and sharpness).
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6.3.5 A Predictive Model

Having identified groupings of adjective scales that determine stimuli po-

sitions along the three perceptual dimensions, the next task is to exploit the cor-

relations with physical measures shown above for predicting these key judgments.

Table 6.6 indicates that there is no shortage of measures relating to brightness-

oriented judgments. Apart from a link between richness and spectral fourth mo-

ment, direct correlates of deadness, dryness, and richness were not identified. The

strongest relationships to purity/noisiness judgments are with spectral flatness,

irregularity, and log attack time. It is clear from the magnitude of correlations

that brightness judgments will be more easily predicted than those relating to the

remaining perceptual dimensions.

Table 6.10: Mean squared errors for predicting 15 adjective scales using 6-fold
cross validation.

MSE

Shrill 1.97

Rough 2.54

Pure 2.54

Dull 0.89

Dead 0.90

Warm 0.45

Sharp 1.03

Thin 1.74

Noisy 3.50

Round 0.54

Brilliant 1.23

Dry 2.31

Bright 0.76

Deep 1.56

Rich 1.62
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Multiple linear regression was performed to create multiple predictive mod-

els using a stratified 6-fold cross validation strategy. Stratification was carried out

by ordering all stimuli by spectral centroid, dividing this list into 5 equal groups,

and populating validation sets with one stimulus from each group. Spectral cen-

troid was chosen as the basis for stratification because of its relationship with the

primary perceptual dimension of brightness. The mean squared error across all

folds for predicting each adjective scale is given in Table 6.10.

As expected, the error for predicting judgments on the “bright” scale is quite

low, as are those for antonymous scales like “warm” and “round”. Other rough

synonyms and antonyms for brightness produced higher error rates. The heaviest

loadings on the second PCA dimension were from “dry”, “dead”, and “rich”. Table

6.6 shows these scales to have the fewest number of significant correlations with

physical measures. However, the weighted combinations of all features produced

by linear regression exhibit some predictive power for the “dead” scale. Sharpness

predictions were also strong, but predictions relating to purity/noisiness were quite

poor.

6.4 Conclusions

In the current and previous chapters, predictions related to percussive tim-

bre characteristics were explored from two different perspectives. In the case of

automated classification of a diverse set of timbres, it was shown that high ac-

curacy rates could be achieved with multiple frame analysis and a small subset

of Bark-frequency cepstral coefficients, or alternatively, using a combined feature

composed of nine low level features describing spectral energy distribution and one

feature that measures waveform zero crossings in the time domain. Under more

difficult classification conditions, such as the use of a very similar set of timbres

and the introduction of various levels of white noise, the BFCC subset was conclu-

sively more robust than the combined low level features. It was also shown that if

unique features of members of a sound set can be identified in advance, elementary

measures like magnitude spectrum sub-band analysis can perform more reliably
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than BFCCs. However, in automated classification applications, the systematic

approach offered by BFCCs appears to be the most appropriate general method.

In contrast, the vague spectral summarizations of individual BFCCs proved

less useful in predicting expert judgments of timbre relative to 15 VAME scales.

The application of standard statistical measures of data distributions to spectral

envelopes, and the additional measures presented in Chapter 3 yielded relevant

information for these purposes. A specific focus on percussive timbres has uncov-

ered two perceptual dimensions that have not emerged in the majority of previ-

ous research investigating pitched orchestral instruments: dryness and noisiness.

While some significant correlations were found between the noisiness dimension

and physical measures like spectral flatness and irregularity, these measures were

not adequate for producing accurate predictions of noisiness judgments. For more

robust predictions, a reliable measure of perceptual noisiness must be devised. Di-

mensions of timbre that have been identified in previous studies, such as brightness

and attack quality, were found here as well. By adopting language that is actively

used by a group of percussionists, it was shown that these dimensions relate to

several adjectives, including “bright”, “brilliant”, “shrill”, “deep”, “round”, and

“sharp”. Regarding the dryness dimension, there was an extreme disparity of stim-

ulus durations in the set used for testing. Participants may have been predisposed

to describing instruments with very brief durations like the castanet as “dry” in

comparison with resonant instruments like the tam tam. If aspects of dryness

beyond mere duration exist, future investigation of this possible dimension will

require strict normalization of duration.

Furthermore, this study has only explored relationships between perceptual

judgments and the first 23 milliseconds of instrument attacks. This was accepted

as the least flawed method for analyzing and comparing sounds of greatly varied

duration. It will be useful to uncover any differences in findings between this study

and an experiment in which unnatural alteration of stimuli was deemed acceptable.

As noted earlier, stimuli could be truncated to a common length to allow for very

precise normalization of duration and loudness. Development of a method for

normalization that does not impose such artificial changes would be extremely
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beneficial, increasing the rigor of a study such as this while preserving its aim

of investigating percussive sounds in a natural state. Perhaps more importantly,

approaches for exploring timbre relationships in something closer to actual musical

context must be advanced.

Finally, the question of whether certain dimensions may be better under-

stood in a categorical rather than continuous sense must be explored further. The

commonly uncovered dimension of brightness appears to be well served by continu-

ous measures like spectral centroid. However, it seems unlikely that attack quality,

which has turned up in several MDS studies, can be wholly explained by the simple

duration of the attack segment. Log attack time is one significant measure, but as

Grey’s careful observations regarding synchrony of partial rise patterns illustrate,

phenomena surrounding instrument attacks carry a great deal of complexity. It

is too early to say that such patterns can be adequately expressed along contin-

uous dimensions. In the case of percussive tones, with many possible instrument

and mallet combinations, it is quite possible that categories of attack quality ex-

ist. Noisiness may be similarly problematic. Subjective judgments about sounds

that are perceptually differentiable with respect to these characteristics certainly

depend on more than what can be measured physically. Many percussion instru-

ments carry unpredictable cultural associations. For instance, it seems a daunting

task to map every thought that the brake drum, military drum, sleigh bells, and

lion’s roar might evoke in a listener. Thus, while the study of timbre has shown

that a great deal can be understood through general signal processing algorithms,

it is clear that our endlessly shifting relationships to sounds will require ongoing

research that grapples with considerable ambiguity.
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Spectra of Timbre Sets

Figures A.1 and A.2 show magnitude spectra for the 30 stimuli from the

diverse percussive timbre set discussed in Chapters 5 and 6. All analyses were

performed on the attack portion of the sounds using a 1024 point window. For each

plot, the abscissa shows the entire frequency range, and magnitude is represented

on the ordinate. Figures A.3 and A.4 show spectra for all stimuli from the similar

timbre set, discussed in Chapter 5. Row pairs show drumstick and felt mallet

strikes of the same instrument alternately. Columns correspond to instrument

strike location, which is either at the edge, in between the edge and center (labeled

“middle”), or center.
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Figure A.1: Magnitude spectra for timbres 1—15 in the diverse set.
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Figure A.2: Magnitude spectra for timbres 16—30 in the diverse set.
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Figure A.3: Magnitude spectra for timbres 1—15 in the similar set.
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Figure A.4: Magnitude spectra for timbres 16—30 in the similar set.



Appendix B

100 Adjectives

Table B.1 contains the original list of 100 adjectives from which the final 15

adjectives were selected by a participant in the experiment described in Chapter

6. Most of the adjectives were drawn from the collection of 61 terms in [KC93b,

p. 501]. Additional terms were taken from [vB74b]. The 15 selected adjectives are

highlighted in blue.
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Table B.1: One hundred adjectives from which the final set of 15 were drawn.

Obtrusive Hard Open Tremulous Ringing

Clear Hoarse Buoyant Velvety Scattered

Crisp Light Voluminous Muffled Artificial

Shuffling Piercing Even Balanced Silvery

Gentle Dry Delicate Smooth Subdued

Choked Muted Broad Reedy Sweet

Sparkling Clicking Fused Dead High

Nasal Deep Dirty Pulsating Sharp

Strained Rustling Pleasant Brilliant Violent

Penetrating Rich Assertive Loud Beautiful

Sensuous Blurred Dark Edgy Raspy

Quivering Brilliant Shrill Pure Coarse

Mellow Forceful Pale Cold Warm

Bright Sustained Weak Tight Hollow

Soft Strong Biting Thin Rough

Ominous Full Evocative Clean Tense

Pungent Incisive Cutting Round Throbbing

Complex Noisy Colorful Damped Intense

Prominent Dramatic Dull Brittle Resonant

Heavy Luminous Thick Dynamic Strident
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