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ABSTRACT OF THE DISSERTATION

Essays on Time-Varying Investment Opportunities and Investors’
Asset Allocation

by

Alberto Gianluca Paolo Rossi

Doctor of Philosophy in Economics

University of California, San Diego, 2011

Professor Allan Timmermann, Chair

This dissertation presents three stand-alone contributions to the fields of theoret-

ical and empirical asset pricing. The first chapter presents a theoretical model in which

the attention investors pay to the stock market varies over time. This feature is obtained

by introducing information costs into a continuous-time model of asset allocation with

time-varying investment opportunities. My model explains why investors do not trade

uniformly through time. It also rationalizes why agents do not modify their portfolio

allocations gradually with the arrival of new information, but rather alternate extended

periods of inertia (no-trade) with brief moments of action where asset allocations are

updated according to the current state of the economy.

The second chapter analyzes the role of information in the context of financial

market predictions. I employ a novel semi-parametric method known as Boosted Regres-

xii



sion Trees (BRT) to forecast stock returns and volatility at the monthly frequency. The

framework allows me to generate forecasts on the basis of a large set of predictor variables

without incurring over-fitting related problems. My results indicate that expanding the

conditioning information set results in greater out-of-sample predictive accuracy com-

pared to the standard models proposed in the literature and that the forecasts generate

profitable portfolio allocations even when market frictions are considered.

The third chapter (co-authored with Allan Timmermann) analyzes the limita-

tions of parametric models in evaluating the relation between risk and return. By taking

advantage of the flexible and semi-parametric nature of Boosted Regression Trees, we

find evidence of a nonmonotonic relation between conditional volatility and expected

stock market returns. At low and medium levels of conditional volatility there is a pos-

itive risk-return trade-off, but this relation is inverted at high levels of volatility. This

finding helps explain the absence of a consensus in the empirical literature on the sign

of the risk-return trade-off. We propose a new measure of risk based on the conditional

covariance between observations of a broad economic activity index and stock market

returns. Using this broader covariance-based risk measure, we find clear evidence of a

positive and monotonic risk-return trade-off.

xiii



1 Towards a Theoretical

Explanation of Time-Varying

Trading

Abstract

Investors do not continuously modify their portfolio allocations with the arrival

of new information. Rather, extended periods of inertia are alternated with brief mo-

ments of action where asset allocations are updated according to the current state of

the economy. We explain this pattern of behavior by developing a theoretical frame-

work that introduces information costs into a continuous-time model of asset allocation

with time-varying investment opportunities. Our model explains why individuals’ at-

tention to their investment portfolio is high when the expected gains from investing in

the stock market are large, such as during recessions. It also explains why investors’

portfolio adjustments are lumpy in nature. The model implies a weak and time-varying

co-variation between consumption growth and equity returns and so helps explain why

the equity premium can be high despite the low correlation between stock returns and

consumption changes. The microeconomic implications of our analysis are tested empir-

ically against competing models of asset allocation using duration models estimated on

Odean (1999)’s brokerage account data and through panel data estimates based on the

PSID. Our macroeconomic predictions are supported by tests based on both high and

low frequency economic and financial time-series.

1
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1.1 Introduction

Most theoretical models of asset allocation envision a frictionless environment

where consumption and investment decisions are made by agents who continuously ex-

ploit all the available information. Yet, a pervasive finding in empirical finance is that

investors revise their portfolio allocations and consumption decisions rather infrequently.

For example, using no-load mutual fund data, Johnson (2010) estimates that investors

trade once every 20 months on average. Recent research also shows that financial agents

do not trade uniformly through time, implying that investors’ attention to the stock mar-

ket is time-varying. This gap between theory and empirical findings is the motivation of

our work.

This paper introduces information costs into a continuous-time asset pricing

framework with time-varying investment opportunities and proposes a model that con-

tributes to the financial economics literature by explaining investors’ time-varying trad-

ing and inertia in their asset allocation. When the cost of inattention is low as in those

states of the world characterized by low expected returns on the stock market, investors

choose to trade as infrequently as once every two or three years. Conversely, when the

expected gains from investing in the stock market are high, investors pay close attention

to the stock market and place numerous trades within a given month. Time-varying

attention to the stock market implies a co-variation between returns and consumption

that is generally weak, but increases sharply during market booms and crashes. In

this respect our model contributes also to the macro-finance literature that provides a

theoretical explanation for the equity premium puzzle.

We formally characterize the optimal inattentive behavior of a representative

agent who pays information costs on his investment portfolio. The cost is proportional

to the contemporaneous value of the portfolio and is intended to summarize the financial

and non-financial costs associated with processing the information needed to formulate

the optimal investment and consumption plans. Once information costs are introduced,

it is no longer optimal for the investor to make consumption and portfolio decisions on

a continuous basis and periods of inattention to the stock market become optimal. Our

analysis shows that the length of optimal inattention depends on the economic conditions

faced by the agent at the time of action: if the agent expects his investment portfolio

to be very profitable, he will pay close attention to the stock-market; he will instead

disregard it for a long time if expected returns are low. The mechanism is generated
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by a cash-in-advance constraint that forces the investor to store part of his wealth in a

low-yield account (a transactions account) to finance his every-day consumption. When

expected returns on the market are high, such as during recessions, the agent has the

incentive to keep very little of his wealth in the transactions account and frequently

transfer wealth from the investment to the transactions account. The opposite holds

true if expected returns on the market portfolio are low. Recognizing explicitly that the

agent’s optimal behavior depends on the economic conditions he faces at the time of

action is one of the key insights of our model. Conversely, by ignoring time-variations

in investment opportunities, extant partial equilibrium analyses in this literature are

essentially static: the agent always faces the same economic conditions, always makes

the same portfolio and consumption decisions and chooses the same optimal inattention

interval.

The theoretical contributions of our paper can be summarized as follows. First,

consistent with the results in Abel, Eberly, and Panageas (2007, 2009) as well as Gabaix

and Laibson (2002), our analysis shows that small information costs generate lengthy

periods of inattention. Second, we show that the period of optimal inattention is not

fixed but depends on the prevailing risk-return trade-off as summarized by the market

Sharpe ratio. The value of the Sharpe ratio at the time of action determines the optimal

portfolio allocation, the expected return on the investment portfolio and consequently

the amount of wealth in the transactions account. Third, in our model the co-variation

between returns and consumption is weak and time-varying. Because the correlation be-

tween aggregate consumption and market returns is generally low, but increases sharply

during market booms and crashes, our model entails that standard CCAPM estimates

are affected by a time-varying bias. Fourth, the inattention periods followed by sudden

awakenings give rise to lumpy portfolio adjustments, a feature that theoretical models

have difficulties in explaining. Finally, financial economists have explored exact solutions

to optimal non-myopic strategic asset allocation for agents with different investment hori-

zons, but the investment horizon has always been taken as an exogenous parameter.1 In

our model the horizon is endogenously determined by the trade-off between the oppor-

tunity cost of keeping wealth in the transactions account and the cost incurred every

time the value of the portfolio is observed and funds transferred from the investment to

the transactions account.

1see for example Kim and Omberg (1996), Brennan (1998), Brennan and Xia (2000, 2001, 2002),
Wachter (2003), Sangvinatsos and Wachter (2005) and Liu (2007)
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Allowing for a multi-agent extension of the standard framework implies a number

of additional results. First, our model explains the cross-sectional dispersion of portfolio

allocations between the agents populating the economy. Identical agents who differ only

in their first day of trading are shown to hold different portfolio allocations over time.

Furthermore, the dispersion of portfolio allocations across agents is shown to be time-

varying and positively related to the absolute value of the conditional Sharpe ratio.

Second, even if all agents are endowed with the same wealth on their first trading day,

different investment decisions translate into different wealth processes for different agents

so that over a given investment horizon, some see their wealth increase dramatically while

others end up poorer. Finally, the model implies that the aggregate trading behavior is

time-varying and is a function of the Sharpe ratio of the aggregate market.

Introducing time-variations in the investment opportunity set is important in

light of the large literature assessing the predictability of aggregate stock returns and

market volatility. Numerous studies, see Lettau and Ludvigson (2009) for a comprehen-

sive treatment, show that excess stock market returns can be predicted using financial

and economic time-series. The same holds for volatility, that has been shown to be

forecastable at horizons ranging from one day to six years. While classic asset pricing

models such as the CAPM imply a constant price of risk, the conditional Sharpe ratio,

which is defined as the ratio of conditional excess return and volatility, has been shown

empirically to be strongly countercyclical and highly volatile. Our modeling strategy

implies that the testable implications we derive depend only on the conditional Sharpe

ratio, as the latter is the only state variable of our model. Once estimates of this quantity

are obtained, empirical tests can easily be computed. We conduct four distinct empirical

exercises that estimate quantitatively the micro and macroeconomic predictions of our

framework.

The first tests whether the conditional Sharpe ratio affects individuals’ trading

frequencies using a duration model estimated on Odean (1999)’s brokerage account data.

Our findings indicate that time-varying investment opportunities are a fundamental de-

terminant of time-varying trading and that a one-standard deviation increase in the

conditional Sharpe ratio leads to a 20% increase in households’ trading probabilities.

Our work is the first to analyze the impact of the investment opportunity set on house-

holds’ trading. While the number of empirical studies in the field of household finance

has grown rapidly in the recent past, the majority are concerned with assessing behav-
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ioral biases in investors’ trading. Odean (1998) uses account-level data to assess whether

investors are reluctant to realize losses and Odean (1999) employs a similar dataset to

study whether investors’ trade too much. Huberman and Jiang (2006) analyze whether

the structure of 401(k) plans influence investors’ positions in risky assets. A number

of papers analyze the socio-economic determinants of individuals’ portfolio allocation

and stock market participation. Ameriks and Zeldes (2002) analyze how equity posi-

tions in investors’ portfolios vary with age. Vissing-Jorgensen (2002) proposes a model

explaining the non-participation puzzle, i.e. the empirical finding that a large fraction

of US households do not participate in the stock market, and tests it using data from

the PSID. The analyses closest to ours are the ones undertaken in Johnson (2004) and

Johnson (2010). The first uses a proprietary panel dataset in one no-load mutual fund

family to show that observable shareholder characteristics can be exploited to determine

their investment horizon. Using the same dataset, the second shows that mutual fund

shareholders do not trade uniformly through time and that while demographic traits are

important trade predictors, time effects are much more important.

To estimate the extent to which the conditional Sharpe ratio affects investors’

positions in risky assets our second empirical exercise uses panel data estimates from

the PSID. Our findings show that changes in investment opportunities are important

determinants of investors’ portfolio allocations: a 10% change in the average conditional

Sharpe ratio increases by approximately 4% the proportion of risky assets held by in-

vestors. Our analysis nests that of Brunnermeier and Nagel (2008) who use the same

dataset to show that wealth fluctuations are not associated with changes in investors’

risky asset positions, as habit-persistence models predict.

Turning to the model’s implications for the macroeconomy, we test the time-

varying covariance between stock returns and aggregate consumption using a number

of macroeconomic and financial time-series. After obtaining a high frequency proxy for

consumption using the Arouba-Diebold-Scotti Index of economic activity, we compute

the realized covariance between consumption and stock returns at the monthly frequency

using daily data. We then show that the conditional covariance between consumption

and stock returns is time-varying and a function of the conditional Sharpe ratio.

Our fourth empirical exercise shows that aggregate volumes on the S&P 500 are

a function of the investment opportunity set. Periods characterized by large conditional

Sharpe ratios are also characterized by large trading volumes.
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The rest of the paper is organized as follows. Section 1.2 briefly surveys the

theoretical literature relevant to our work, presents the key components of the model

and solves it. Section 1.3 analyzes its static and dynamic properties. In Section 1.4 we

conduct the main empirical exercises. Section 1.5 concludes.

1.2 The Model

Standard continuous-time models (e.g. Merton (1969)) study the optimal invest-

ment and consumption decisions of an agent that has free access to unlimited information

and does not face transactions costs. This setup entails that agents are able (and willing)

to continuously re-optimize their decisions. While economists recognize the elegance of

this framework, they are aware of its limitations at explaining investors’ actual behavior.

Agents do not continuously take advantage of all available information, they change their

investment positions infrequently and do not modify their consumption instantaneously

after making a profitable (or unprofitable) trade in the market. To explain the diver-

gence between standard theory and investors’ behavior, economists devised a wide array

of explanations. Relevant to our paper are the ones that focus on the role played by

transactions costs and agents’ limited information-processing capacity.

Papers under the first heading find their roots in Baumol (1952) and Tobin (1956)

and share the common feature that agents are willing to hold on to cash as opposed to

riskless bonds (that provide a higher rate of return) because only cash can be exchanged

for consumption. The idea of employing “cash-in-advance” constraints became partic-

ularly popular in the real business cycle literature thereafter (e.g. Cooley and Hansen

(1989)), but the emphasis was generally placed on the effect of such constraints on the

dynamic behavior of wages, prices and capital accumulation in aggregate economies.

The second line of research has proceeded in two directions. The first, which

includes Sims (2003) and Moscarini (2004), characterizes individuals’ rational inattention

by way of entropy, a concept developed in the field of information theory. In these

models rational inattention is generally intended as agents’ decision to focus on a specific

source or type of information out of the many available ones. The second direction

comprises models that impose a cost of obtaining and processing information. Examples

of this literature are Abel, Eberly, and Panageas (2007), Abel, Eberly, and Panageas

(2009), Gabaix and Laibson (2002) and Duffie and Sun (1990). These papers require

consumption to be purchased with a liquid asset, i.e. cash, and include information costs
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so that the consumer does not observe continuously the value of the stock market. Our

research is closely related to this literature and generalizes the results obtained so far by

allowing for a time-varying investment opportunity set.

In this paper we present a partial equilibrium model for a representative agent

that lives in an economy with three assets: a liquid risk-less asset, an illiquid risk-less

asset and an illiquid risky asset. The liquid asset will be referred to as the transactions

account and can be thought of as a checking account whose rate of return is constant

and known. Only the wealth stored in the transactions account can be exchanged for

consumption. The illiquid assets constitute what we will refer to henceforth as the in-

vestment portfolio. Within the investment portfolio, wealth is allocated on the basis of

the expected return and volatility of the risky asset as well as the (known) return on the

risk-less asset. To capture parsimoniously the time-varying behavior of expected return

and volatility we let the market expected Sharpe ratio follow an Ornstein-Uhlenbeck pro-

cess. This characterization is motivated by the strong evidence of a significant cyclical

variation in the market Sharpe ratio uncovered, among others, by Kandel and Stam-

baugh (1990), Whitelaw (1997) and Perez-Quiros and Timmermann (2000).2 It is also

convenient as many aspects of the model can be solved in closed-form using standard

techniques. The agent can observe the current value of his investment portfolio and

the value of the conditional market Sharpe ratio by paying an information cost that is

proportional to the value of the invested wealth.3 Furthermore, the agent can transfer

assets from the investment to the transactions account and can change the composition

of the investment portfolio only by paying the information costs. We will refer to the

instant right after information costs are paid as the “moment of action” and the interval

between two moments of action as an “optimal inattention period”. We next provide a

formal description of the model.

Assume a consumer with power utility and infinite horizon that maximizes

Et

{∫ ∞
0

1

1− α
c1−α
t+s e

−ρsds

}
(1.1)

where 0 < α 6= 1 and ρ > 0.

The agent has access to three assets. A liquid riskless asset that pays a rate of

return rL, a non-liquid riskless bond trading at price B with return r and a non-liquid

2See also to Lettau and Ludvigson (2009) for a survey.
3This assumption is imposed for analytical convenience: at the expense of losing the closed-form

solutions we could model information costs in terms of utility. On the other hand, in the presence of
a market for information investors could purchase the knowledge required to update their consumption
and portfolio decisions from an external source and pay a monetary amount for it.
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risky asset P with time-varying expected return µt and volatility σt. The only asset that

can be exchanged for consumption is the liquid riskless asset that the agent keeps in

the transactions account. We assume that 0 ≤ rL < r to reflect the liquidity premium

associated with the transactions account and to rule out arbitrage opportunities. The

return processes for the riskless bond and risky asset are:

dB

B
= r dt (1.2)

dP

P
= µt dt+ σt dZ (1.3)

where Zt is a standard Brownian motion. The drift rate µt and volatility σt of the risky

asset are both diffusion processes. Define

Mt =
µt − r
σt

(1.4)

to be the conditional Sharpe ratio of the risky asset, which is assumed to follow an

Ornstein-Uhlenbeck process

dM = −λM (M − M̄)dt+ σMdZM , (1.5)

where λM , σM , and M̄ are positive constants and ZM,t is a second standard Brownian

motion. The correlation between the asset’s return and Sharpe ratio processes is given by

E{dZdZM} = ρsMdt. The opportunity set has three stochastic variables µt, σt and Mt

linked by the definition of the Sharpe ratio: µt = r + σtMt, but we know from Kim and

Omberg (1996) that in this specific setting, the Sharpe ratio provides all the currently

available information on present and future investment opportunities.

Wealth, Wt, is the sum of invested wealth WI,t and the funds in the transactions

account, denoted by Xt: Wt = WI,t + Xt. The agent can observe the value of the

Sharpe ratio and the investment portfolio only by paying a fraction θ, 0 ≤ θ ≤ 1, of his

invested wealth. Furthermore, funds can be transferred from the investment account to

the transactions account (and vice-versa) only when the value of the invested portfolio

is observed. However, because rL < r the agent arrives at the end of the optimal

inattention period with no funds in the transactions accounts. This means that transfers

will only occur from the investment account to the transactions account.4 It follows that

for an investor that observes the value of his invested portfolio at the time of action “tj”,

4Abel, Eberly, and Panageas (2009) show that this result holds under more general specifications for
information and transaction costs.
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the t+j invested wealth is simply the current wealth, minus the amount deposited in the

transactions account multiplied by (1− θ): i.e. WI,t+j
= (Wtj −Xtj )(1− θ).

At the time of action tj , the consumer chooses the timespan of optimal inatten-

tion, τ , the amount of wealth to be deposited in the transactions account X and the

fraction φ of the investment portfolio to be held in the risky asset. The agent’s optimal

behavior is the following. At the moment of action the investor observes the current

Sharpe ratio. Because its evolution and its relation to the risky asset are known, the

agent’s expectations regarding the return of the risky asset at any horizon incorporate all

the currently available information. For any horizon the agent can calculate the optimal

investment portfolio, the expected end-of-period wealth5 and therefore the expected util-

ity from the investment portfolio. He is also able to calculate the utility deriving from the

wealth stored in the transactions account. The trade-off he faces is the following: on the

one hand, he would like to keep very little wealth in the transactions account, because

the investment portfolio offers a higher rate of return; on the other hand, he would like to

transfer funds from the investment portfolio to the transactions account as infrequently

as possible to avoid paying the costs of information. The economic conditions faced at

the time of action affect fundamentally this decision.

1.2.1 Model Solution

We solve the model by first characterizing the dynamics of consumption. We

then derive the optimal portfolio allocation and the optimal proportion of wealth to be

deposited in the transactions account. Finally, we obtain the optimal inattention period,

τ∗. Proofs of propositions and theorems are provided in the Appendix.

Consumption dynamics

We derive a rule for optimal consumption that holds for any inattention period

τ and any amount Xtj deposited in the transactions account at time tj . Given Xtj and

τ , the agent chooses consumption to maximize his utility:

Utj (τ) ≡ max
{ct+s}τs=0

∫ τ

0

1

1− α
c

(1−α)
tj+s

e−ρs ds (1.6)

5In Abel et al (2007) and in our paper, the investment portfolio is managed by a portfolio manager
that continuously rebalances the portfolio, i.e. a mutual fund, following the rule dictated by the agent.
This allows for greater tractability of the problem and excludes the re-balancing motive as a reason for
the agent to observe the value of his portfolio.
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subject to the constraint Xtj (τ) =
∫ τ

0 ctj+se
−rLsds.

Proposition 1 (Consumption Rule and Maximized Utility from Consump-

tion): Given the wealth deposited in the transactions account, Xtj , and the inattention

period τ , the maximized utility of consumption is:

Utj (τ) =
1

1− α
X

(1−α)
tj

h(τ)α. (1.7)

Over the interval of inattention, consumption evolves according to the following rule:

ctj+s = ctj e
− (ρ−rL)

α
s, for 0 ≤ s ≤ τ. (1.8)

Eq. 1.7 describes how the maximized utility of consumption from period tj to

tj+τ depends on the utility derived by the sum deposited [1/(1− α)]X
(1−α)
tj

and a scaling

factor h(τ)α that depends on the degree of risk aversion α, the subjective discount factor

ρ and the rate of return rL paid by the liquid risk-free asset. Eq. 1.8 characterizes

how consumption over the inattention period increases or decreases depending on the

relative values of ρ and rL. If the agent discounts future consumption more than the

rate of interest paid by the transactions account, consumption decreases over time and

vice-versa, i.e. ctj+s R ctj if rL R ρ. Under power utility the risk aversion coefficient α

is the inverse of the elasticity of inter-temporal substitution and so determines the rate

at which consumption increases or decreases over time.

To build intuition, Figure 1.1 plots the dynamics of consumption (Top Panel) as

well as the dynamics of the wealth stored in the transactions account (Bottom Panel)

between periods of inattention. Consumption changes in a lumpy fashion at the time

of action and varies very little during the periods of inattention. In fact, if rL = ρ

consumption is constant between the times of action. Furthermore, the behavior of

consumption during the inattention periods is independent from the dynamics of invested

wealth. The wealth stored in the transactions account is exhausted completely when the

period of optimal inattention ends. This is optimal because the transactions account

pays a lower rate of returns compared to the expected returns paid by the investment

portfolio.

Portfolio Choice

So far we have derived a rule for consumption that holds for any wealth Xtj

stored in the transactions account and any inattention interval. We next show how the
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agent calculates the optimal allocation within the investment portfolio. At tj , the agent

observes the value of his invested wealth Wtj (which coincides with his total wealth)

and the value of the current Sharpe Ratio Mtj . Conditional on these, the value function

V (Wtj ,Mtj , τ) satisfies:

V (Wtj ,Mtj , τ) = max
Xtj ,φ

Utj (τ) + e−ρτEtj
{
V ((Wtj −Xtj )(1− θ)R(tj , tj + τ)) | M = Mtj

}
. (1.9)

Conjecture the solution:

V (Wtj ,Mtj , τ) = γ(Mtj , τ)
W 1−α
tj

1− α
(1.10)

and substitute (1.7) and (1.10) into (1.9) to obtain
1

1− α
γW 1−α

tj
= max
Xtj ,φ

1

1− α
X1−α
tj

[h(τ)]α (1.11)

+ e−ρτ
1

1− α
γ(Wtj −Xtj )1−α(1− θ)1−αEtj

{
[R(tj , tj + τ)]1−α | M = Mtj

}
.

The proposition that follows characterizes the optimal portfolio allocation for the in-

vestment portfolio and the associated expected returns.

Proposition 2 (Optimal Portfolio Allocation and Maximized Expected Re-

turns): Given the Sharpe ratio value Mtj and investment horizon τ , the optimal fraction

of the investment portfolio in the risky asset is:

φ∗ =
Mtj

ασtj
+

(C(τ)Mtj +B(τ))ρsMσM

ασtj
, (1.12)

The associated expected returns on the investment portfolio from tj to tj + τ can

be written as:

Etj
{

[R(tj , tj + τ)]1−α | M = Mtj

}
= exp

[
r(1− α)τ +A(τ) +B(τ)M + C(τ)

M2

2
| M = Mtj

]
. (1.13)

It is not straightforward to compute closed form comparative statics of Eqs.

1.12 and 1.13 because the terms A(τ), B(τ) and C(τ) are rather intractable. We can

however build intuition regarding the optimal portfolio allocation and expected returns

by focusing on the “normalized return process”, which is the return obtained by buying

1/σt of the risky asset financed by going short in the risk-free asset:

dRt = Mt dt+ dZ. (1.14)

The normalized return process has four parameters: M̄ , λM , σM and ρsM . The

first three measure the Sharpe ratio’s long-run average, the strength of its mean-reversion
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and its volatility, respectively. The fourth is the cross-sectional correlation between the

risky asset’s return and the Sharpe ratio. As shown by Kim and Omberg (1996), to

analyze the optimal portfolio allocation, it suffices to understand the role of M̄ , ρsM and

that of the derived parameter k∗ = (σM/λM )2 + 2ρsM (σM/λM ). M̄ controls the long-

run value for the Sharpe ratio. To understand the sign and magnitude of ρsM , imagine

that the current price for the risky asset is P0 and that the agent expects future prices

to follow a certain trajectory over the interval [0, T ]. Now imagine that negative news

regarding the risky asset lowers the price at time 0 to P ′0 and shifts downward the entire

price trajectory over the interval [0, T ]. If the fall in the current price is large compared

to the fall in expected future prices, the trajectory will rotate counter-clockwise, causing

the current Sharpe ratio to rise. This would produce a negative correlation between

the asset’s return and the Sharpe ratio, resulting in a bias towards higher expected

returns after a series of price decreases and vice-versa. If small changes in the current

price are associated with changes in expected future prices in the same direction, the

correlation between the risky asset’s return and the Sharpe ratio will be positive, leading

to a bias towards higher expected returns after price rises and vice-versa. To sum up:

the magnitude of the correlation ρsM depends on how much expected future prices are

influenced by information uncorrelated with the current price, while the sign of ρsM

determines the sign of the intertemporal correlation in normalized asset returns over

discrete time-periods.6 The derived parameter k∗ determines the long-run variance of

normalized return process (Eq. 1.14) as summarized in the proposition that follows.

Proposition 3 (Variance of the Normalized Return Process) (Kim and Om-

berg (1996)): The variance of the normalized return process (Eq. 1.14) can be written

as:

V ar{R(τ)} = τ +

(
σM
λM

)2(
τ +

2e−λM τ

λM
− e−2λM τ

2λM
− 3

2λM

)
(1.15)

+

(
2ρsMσM
λM

)(
τ +

e−λM τ

λM
− 1

λM

)
,

from which it can be shown that limτ→0
∂V ar{R(τ)}

∂τ = 1 and limτ→∞ = 1 + k∗.

The variance of the normalized return process determines how appealing the

risky asset is to the representative investor, therefore affecting the portfolio allocation

6This is an important subtlety: while the normalized returns process dRt = Mtdt+dZ has unbounded
variation and no serial correlation in Zt, asset returns are inter-temporally correlated over discrete
intervals due to the cumulative impact of past return dZ on future risk-premia M , via the cross-sectional
correlation between dZ and dM combined with the dynamics of Mt.
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and the optimal inattention interval. For a positive ρsM , the long-run variance of the

normalized process is positively related to σM and negatively related to λM . A negative

correlation ρsM is a necessary but not a sufficient condition for k∗ < 0: in fact the

necessary and sufficient condition is ρsM < 0 and σM
λM
∈ (0,−2ρsM ). The minimum value

for the normalized return process is k∗min = −ρ∗sM ≥ −1 and is attained for the values

σM/λM = −ρsM . The intuition is that with ρsM < 0 and σM/λM > 0, low returns are

associated with high Sharpe ratios. It follows that the variance of the return process

decreases as the horizon increases as long as the variations in the Sharpe ratio are not

too large.

Wealth in the Transactions Account and Optimal Inattention

Substituting Eq. 1.13 into 1.11 and differentiating the resulting expression w.r.t

Xtj we obtain the optimal wealth deposited in the transactions account:

Theorem 1 (Optimal Wealth Deposited in the Transactions Account): Given

the Sharpe ratio value Mtj , wealth Wtj and investment horizon τ , the optimal amount

of wealth deposited in the transactions account is:

X∗tj =
K(Mtj , τ)

K(Mtj , τ) + 1
Wtj , (1.16)

where K(Mtj , τ) = χ−1eS(Mtj ,τ) − 1; χ ≡ (1− θ)
1−α
α and

S(Mtj , τ) =

[
1

α

(
(ρ− r(1− α))τ −A(τ)−B(τ)M − C(τ)

M2

2

)
| M = Mtj

]
.

Furthermore, the analytical expression for the γ(Mtj , τ) conjectured in Eq. 1.10 is:

γ(Mtj , τ) =

(
1− e−ωτ

1− χe−S(Mtj ,τ)

)α
ω−α. (1.17)

X∗tj represents the optimal amount of funds to be deposited in the transactions

account for any given optimal inattention period τ and current value of the Sharpe Ratio

Mtj . It depends on current wealth Wtj , the expected returns on the market S(Mtj , τ),

the risk-aversion coefficient α and the information cost θ. Having obtained a closed-form

expression for γ(Mtj , τ) allows us to characterize the solution because choosing τ to

maximize the value function (Eq. 1.10) is equivalent to solving the problem:

F (Mtj ) ≡ max
τ

γ(Mtj , τ)

1− α
(1.18)

s.t. χe−S(Mtj ,τ) < 1 (1.19)
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where the constraint guarantees that consumption is positive at all times.

We solve the problem numerically because a closed form expression would be

very hard, if not impossible, to obtain. It also would not be very informative. For θ

equal to 0.1 basis points7 the optimal period of inattention is 1.80 years, while it is 1.93

years for θ equal to 1 basis point. Both values are close to the 20 months of inattention

estimated empirically by Johnson (2010).

1.3 Analysis of the Model

In this section we present an analysis of the static and dynamic properties of

the model. The results are computed for the following parameterization: σM = 1.06,

λM = 0.99, ρsM = 0.1, α = 5; M̄ = 0.5; M = 0.5, ρ = 0.01, rL = 0.01, r = 0.02 ,

θ = 0.0001. The long-run mean of the Sharpe ratio M̄ and the volatility of its process

σM are calibrated using S&P 500 realized Sharpe ratio estimates from 1960 to 2008.

We assume that the process is strongly mean reverting and it has a small and positive

correlation with the returns process. We also assume that that we are in the long-run

equilibrium by imposing M = M̄ . The parameter values for the return on the liquid

risk-free asset, the illiquid risk-free asset, the risk-aversion coefficient, the subjective

discount factor and the cost of information are chosen to match those of Abel, Eberly,

and Panageas (2007).

Under this baseline parameterization we find that that the optimal inattention

span is approximately 1.80 years and the fraction of invested wealth in the risky asset,

given the optimal horizon, is 0.47. These numbers provide the benchmark for the analysis

we report next: we allow each parameter to vary while keeping the others fixed and track

the optimal inattention span as well as the optimal portfolio allocation. We first analyze

the effect of the conditional Sharpe ratio on the optimal inattention and optimal portfolio

allocation. We then discuss the effect of information costs and agents’ characteristics.

1.3.1 Current Value of the Sharpe ratio

The advantage of incorporating a state variable in our framework is that we are

able to characterize the agent’s optimal behavior conditional on the economic environ-

ment he faces at the time of action. This is one of the key contributions of our paper

7For the other parameters we employ the standard values reported at the beginning of Section 1.3.
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because it allows for an analysis of investors’ optimal behavior over the course of the

business cycle.

Figure 1.2 plots the optimal inattention span (continuous line) and the optimal

risky asset allocation (dashed line) for different values of the annualized conditional

Sharpe ratio M. The y-axis on the left reports the years of optimal inattention, while

the right hand side reports the fraction of wealth in the investment portfolio allocated

to the risky asset. The values for the conditional Sharpe ratios reported on the x-axis

are chosen to match the empirical estimates reported in Lettau and Ludvigson (2009).

In periods characterized by high expected returns on the stock market, repre-

sented by a high value of Mt, the agent’s optimal strategy is to allocate more than 100%

of his invested wealth to the risky asset, deposit very little in the transactions account

and observe the value of the portfolio very frequently. The same holds when expected

returns on the stock market are large and negative: the agent shorts the risky asset and

reaps the benefits of the negative expected returns. Interestingly, in sluggish economic

environments characterized by a Sharpe ratio around zero, it is optimal for the agent

to invest very little in the risky asset and opt for very long periods of inattention. The

phenomenon deserves a closer inspection.

For a myopic investor, it is the magnitude of the Sharpe ratio rather than its sign

that determines the attractiveness of the risky asset. But the non-myopic investor also

considers the asymmetry in the dynamics of the Sharpe ratio process: i.e. the reversion

to a positive long run Sharpe ratio M̄ . Very large Sharpe ratios offer two advantages:

high expected returns in the short run, combined with an ultimate return to the long

run Sharpe ratio through a region of high expected returns. Very negative Sharpe ratios

offer the same type of short-run profitability (recall that the agent is allowed to short the

risky asset), combined with the disadvantage of the ultimate return to a long-run Sharpe

ratio through a region of low expected returns. The two effects counter each other but

it can be shown that for a sufficiently low Sharpe ratio, there is a net advantage for even

lower values.

The mechanism described above explains the “sail” shape of the optimal inat-

tention depicted in Figure 1.2: for very negative values of the current Sharpe ratio, the

agent shorts the risky asset and reaps the large benefits coming from the negative re-

turns.8 The transactions account has a large opportunity cost, so it is optimal for the

8Negative conditional Sharpe ratios can arise in general equilibrium asset pricing models with time-
varying covariance between consumption growth and the stochastic discount factor. See, for example,
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agent to deposit very little wealth in it and pay attention to the stock market very often.

For the same reason the optimal inattention period is very small for large positive values

of the Sharpe ratio. For Sharpe ratios small in absolute value, the low expected returns

from the investment portfolio translates into a low opportunity cost for the transactions

account and large periods of inattention.

1.3.2 Comparative Statics with Respect to the Remaining Parameters

We summarize next the results for the numerical comparative statics analysis for

the remaining parameters.

(Comparative Statics Results): Under the baseline parameterization of Section 1.3

:

a) An increase in the persistence λM of the Sharpe ratio process increases the optimal

fraction of invested wealth in the risky asset and decreases the optimal inattention

period (Figure 1.3 (a)).

b) An increase in the volatility σM of the Sharpe ratio process decreases the optimal

fraction of invested wealth in the risky asset and increases the optimal inattention

period (Figure 1.3 (b)).

c) An increase in the correlation ρsM between the asset return and the Sharpe ratio

processes decreases the optimal fraction of invested wealth in the risky asset and

decreases the optimal inattention period (Figure 1.3 (c)).

d) An increase in information costs θ decreases the optimal fraction of invested wealth

in the risky asset and increases the optimal inattention period (Figure 1.3 (d))

e) An increase in the risk-aversion coefficient “α” or the subjective discount factor

“1 − ρ” decreases the optimal fraction of invested wealth in the risky asset and

increases the optimal inattention period (Figure 1.3 (e) and (f))

In Figure 1.3 (a) we allow the persistence “λM” of the state variable to vary from

0.01 to 1 while keeping all the other parameters constant. The continuous line represents

the optimal inattention period and its values are reported in years on the left hand side.

The right hand side reports the optimal portfolio allocation, intended as the fraction of

Boudoukh, Richardson, and Whitelaw (1997) and Whitelaw (2000).
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wealth in the investment portfolio allocated to the risky asset. From the definition of k∗

we know that for positive values of ρsM , the more persistent the state variable the lower

the long-run variance of the risky asset: i.e. ∂k∗/∂λM = −2
(
σM
λ2M

)(
σM
λM

+ ρsM

)
< 0.

This results in a more profitable investment portfolio and increases the opportunity

cost of keeping funds in the transactions account. The agent opts for a lower inattention

period, places less funds in the transactions account and pays more often the information

cost θ.

In Figure 1.3 (b) we report the results for different volatility levels “σM” of the

state variable. Contrary to the persistence case, for positive values of ρsM an increase in

the volatility of the state variable increases the variance of the risky-asset, making it less

desirable: i.e. ∂k∗/∂σM = 2
λM

(
σM
λM

+ ρsM

)
> 0. This results in a lower opportunity cost

for the transactions account. The optimal inattention increases and the wealth allocated

to the risky asset decreases.

Turning to the correlation ρsM , we know from the definition of k∗ that given our

base choice of σM and λM , the long-run risk of the stock is inversely related to ρsM .

The intuition is the one explained in Section 1.2.1 and repeated here for convenience:

the tendency for lower returns to be followed by higher Sharpe ratios lowers the overall

risk of the stock as the horizon increases. The strong positive relation between the

expected return on the investment portfolio and the investment horizon motivates the

optimal choice of the agent: as ρsM varies from −1 to 1, both the optimal inattention

and investment in the risky asset decrease. This relation is illustrated in Figure 1.3 (c).

In Figure 1.3 (d) we evaluate the effect of information costs on the optimal

inattention interval. We allow the information costs to vary from 1 to 20 basis points.

The relationship between optimal inattention and information costs is positive. Greater

information costs translate into a lower opportunity cost for the transactions account

leading to longer optimal inattention periods. The optimal portfolio allocation is not

affected directly by the information cost, it is only affected indirectly through the horizon

effect: because the risk of the stock increases with the investment horizon,9 the weight

in the risky asset decreases with it.

The agent’s preferences for risk and inter-temporal consumption are controlled

by two parameters: the degree of risk-aversion α and the subjective discount factor 1−ρ.

Intuition dictates that α has an impact on the fraction of invested wealth allocated to

9To see this, recall that ρsM = 0.1 in our base case and use the definition of k∗.
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the risky asset as higher risk-aversion leads to more conservative investment portfolios.

This is confirmed by Figure 1.3 (e). The effect of α on the length of optimal inattention

is unclear a priori as the parameter represents both the degree of risk-aversion and

the inverse of the elasticity of inter-temporal substitution. The relation is essentially

flat and mildly upward sloping. The relationship between the discount factor and the

optimal inattention is clear-cut as depicted in Figure 1.3 (f). As 1 − ρ increases, the

agent discounts future consumption less, implying that he consumes less in the short-

run. The diminished short-run consumption implies that a given amount stored in the

transactions account will finance consumption for a longer time-span, allowing for longer

optimal inattention periods. The optimal portfolio allocation is only mildly negatively

affected through the horizon effect.

The comparative statics analysis reported in this section allows us to get a first

feel for the implications of our theoretical framework. The real appeal of our model,

though, is that it allows us to explore how the time-varying investment opportunity set

affects the dynamic behavior of single and multiple-agents economies. We explore these

implications next.

1.3.3 Dynamic Behavior of the Representative Agent

It is widely known that agents do not update their portfolio holdings continuously,

but it is difficult to account for time-varying lumpiness in portfolio adjustments within

the context of standard continuous-time models. Our model is an exception in this

respect.

In this section we simulate the process for the Sharpe ratio using the parameter-

ization specified in Section 1.3 and describe the portfolio allocation and trading activity

for a representative investor. The top panel of Figure 1.4 reports the evolution of the

agent’s normalized consumption10 and portfolio allocation. The consumption process is

represented by the black continuous line and the portfolio allocation by the red dashed

line. The y-axis on the left reports consumption values, while the one on the right reports

the weight of the risky asset in the investment portfolio. The middle panel presents the

process for the agent’s invested wealth and the bottom panel plots the simulated pro-

cess for the Sharpe ratio. The vertical dotted lines in each panel represent the periods

at which the agent updates his consumption and portfolio decisions. An easy way to

10We normalize to 1 the average consumption of the representative agent over the sample.
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capture the essence of Figure 1.4 is to think of it as the dynamic counterpart of Figure

1.2.

The agent enters the three year interval presented in the figure with an invested

wealth of $85,000. Approximately around year 1.3, the agent ends his period of inatten-

tion. He pays the information costs and observes the value of his investment portfolio

as well as the market Sharpe ratio. Given that expected returns are relatively high,

the agent increases his proportion of invested wealth in the risky asset as shown in the

top panel and increases his per-period consumption. The opportunity cost of the trans-

actions account is high, so it is optimal for the agent to store relatively little wealth

in it and choose a relatively short period of inattention. Over the following half year,

the agent breaks his inattention seven more times and updates his portfolio allocation

and consumption according to his wealth and the current investment opportunity set.

Around year 1.7 the investment opportunity set worsens and it is optimal for the agent to

reduce his investments in risky assets, decrease his consumption and choose a 5 months

period of inattention. When the agent “wakes-up” the investment opportunities have

worsen even more, so the agent chooses an even longer period of inattention of approxi-

mately one year. He then observes a rather high conditional Sharpe ratio and so trades

repeatedly (approximately nine times) over the following six months. At the end of this

intense trading period, the investment opportunities worsen and the investor reduces his

exposure to the stock market by placing a small fraction of his invested wealth in the

risky asset, storing a large portion of his wealth in the transactions account and choosing

a very long period of inattention.

Changes in consumption co-vary strongly with changes in investment opportu-

nities and wealth only during the periods characterized by intense trading, i.e. years

1.3-1.7 and years 3.3-3.7 in Figure 1.4, because only in those periods the agent updates

his consumption decisions to reflect the current economic environment he faces. Con-

sumption is instead uncorrelated with the investment opportunity set over years 2.2-3.3,

because the agent opts for a long period of inattention. These findings show that mod-

els of inattention that do not account for time-varying investment opportunities can be

severely mis-specified in at least two respects. First, by featuring constant periods of

inattention, they imply a constant bias in CCAPM estimates while, in fact, the bias is

time-varying. Second, they imply that consumption is only a function of current wealth

and not of the current investment opportunities and both should matter as shown by
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our extended model.

A unique feature of our model is that the investor acts on periods characterized

by good investment opportunities only if he happens to end his inattention during one

of them. For example, by observing the bottom panel of Figure 1.4 it is clear that the

investment opportunity set over the first half of year 2 is not very different from the

one that characterize the first half of year 3 and yet the investor acts very differently.

He leaves untouched his investments and consumption paths in the first and he trades

repeatedly in the second. The behavior of the investor at a given point in time depends

on the current Sharpe ratio only if he observes it by placing a trade and paying the

associated information costs.

The peculiar features described in this section sets our model apart from the

ones that have been proposed so far in the literature. Standard continuous time models

entail that investors’ portfolio allocations and consumption paths change continuously

through time. Models that introduce transactions costs in the standard framework imply

that the agent behaves in a similar fashion if similar investment opportunities recur over

time. Finally, models that incorporate inattention, but do not allow for time-varying

investment opportunities imply constant portfolio allocations over time as well as a

constant covariance between consumption and market returns. In the empirical section

we test the merits of our theoretical framework using a duration model on brokerage

account data provided by Odean (1999). Our tests show that individuals’ behavior is

consistent with the trading pattern entailed by our theoretical model, but inconsistent

with the one entailed by the others.

Next we present the results for a multi-agent extension of our baseline model,

with the intent of describing the dynamic behavior of an aggregate economy populated

by a large number of inattentive consumers.

1.3.4 Dynamics in an Economy with Multiple Agents

In this section we extend the results obtained above by increasing the number of

agents in the economy while maintaining a partial equilibrium perspective. The approach

we follow is in the same spirit of Lynch (1996) and Gabaix and Laibson (2002) and it is

aimed at showing that rather different portfolio allocations and inattention intervals can

coexist across different agents, if only the initial time at which they join the economy is

allowed to differ.
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We introduce 1000 agents in the economy, we divide the first year in 1000 equally

spaced intervals and we use these to determine when each agent is allowed to observe

the Sharpe ratio for the first time. The top panel of Figure 1.5 reports the percentage of

the population trading at a given point in time. The bottom panel depicts the Sharpe

ratio process.

A low value for the Sharpe ratio implies a long period of inattention for all

those agents that update their portfolio decision at that time. The opposite holds true

if the value of the Sharpe ratio is high. It follows that high Sharpe ratio periods are

characterized by a rather intense trading activity, while little trading takes place in low

Sharpe ratio periods. This is a reflection of the simple fact that while information on

the current investment opportunities is always available in this economy, it is not always

optimal for the agents to exploit it. Agents take advantage of it only in those periods

when the gains from actively investing in the market are high. In our example intense

trading takes place during the Bull market periods, i.e. approximately years 1.3-1.8,

2.2-2.4 and 3.3-3.6, while little trading takes place in low Sharpe-ratio periods, i.e. years

1.8-2.0, 2.7-3.2 and 3.7-4.0.

The top panel of Figure 2.4.5 plots the average portfolio allocation in the economy

as well as the 20th and 80th percentiles of the portfolio allocations for a given period.

The bottom panel plots the value of the Sharpe ratio over time.

The average exposure to risky assets in this economy is not constant, but time-

varying. Between bear and bull market periods the average portfolio allocation in risky

assets varies from approximately 45% to 60%, indicating that accounting for changes in

investment opportunities have the potential of explaining time-variations in investors’

risky assets positions. Furthermore, because of inattention the change in the average

portfolio allocation over time is not a straightforward function of the current Sharpe

ratio as implied by a standard models, but a complex function of the present and past

Sharpe ratios and agents’ inattention levels.

Also due to inattention, not all investors hold the same portfolio allocations at

a given point in time and the dispersion in portfolio allocations is time-varying. High

Sharpe ratio periods are characterized by a proportion of the population that takes ad-

vantage of the information of high expected returns, i.e. those whose optimal inattention

end sometime during the high Sharpe ratio period, and a proportion of the population

that doesn’t. Because only a fraction of the population reacts to the new information
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available, the portfolio allocation dispersion across agents is rather large. Furthermore,

given that the agents that take advantage of the high expected returns have short op-

timal inattention periods while the value of the Sharpe ratio stays high, but go back to

long periods of inattention when the Sharpe ratio is low, the cross-sectional dispersion

of portfolio allocation shrinks over low Sharpe ratio periods.

Overall, the results reported in this section show that information costs and time-

varying investment opportunities result in an economy where different agents face and

exploit different information sets. In this respect our model is unique, because it explains

rather simply the cross-sectional dispersion in investment positions across agents that

have otherwise identical risk-profiles and investment attitudes. The rest of the paper is

dedicated to testing empirically the theoretical implications of the model.

1.4 Empirical Framework

Our theoretical model provides testable implications along a number of dimen-

sions. The first is that investors do not trade uniformly through time and that indi-

viduals’ trading and the investment opportunity set are closely related: periods char-

acterized by high (absolute) Sharpe ratios should be characterized by intense trading.

Unlike standard continuous-time models of asset allocations, our model does not imply

that agents trade continuously through time. It also does not imply that agents trade

uniformly through time as implied by models of optimal inattention that do not al-

low for time-varying investment opportunities. Finally, unlike frameworks that account

only for transactions costs, it implies that current investment opportunities should af-

fect investors’ behavior only at times when they pay attention to the stock market. We

test empirically these predictions by estimating a duration model on the very detailed

brokerage account data provided by Odean (1999).11

The second testable implication of our model is that agents’ portfolio allocations

vary over time as a function of the conditional Sharpe ratio. Unlike standard asset

pricing models that entail agents reacting instantaneously to changes in investment op-

portunities, our model implies that portfolio allocations should be characterized by a

considerable amount of inertia due to agents’ inattention. We test this implication using

panel data estimates from the PSID.

The model carries macroeconomic testable implications as well. We have shown

11We are grateful to Terrance Odean for providing this data.
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in Section 1.3 that economy-wide trading activity should be a function of the Sharpe

ratio. By the same token, the covariance between consumption and returns is a function

of the length of inattention among the agents populating the economy. Shorter periods of

inattention imply a greater covariance between aggregate consumption and stock returns

and the opposite holds true for longer periods of inattention. We test these economy-

wide implications of our model using high and low frequency macroeconomic and financial

time-series.

Our theoretical framework has a number of testable implications that rest on

the econometrician’s knowledge of the conditional market Sharpe ratio. This quantity

is unobservable, however. To circumvent this issue, we adopt the remedy commonly

employed in the literature of obtaining conditional returns and volatility series using

observable economic and financial time-series and construct conditional Sharpe ratio

series in a second step.

A second obstacle that makes the empirical estimates hard to implement is that

in our theoretical model the agent knows the process for the Sharpe ratio, so it is enough

for him to know its current value to form expectations regarding the return on the risky

asset in the subsequent periods. It is hard to replicate empirically this mechanism, as

the assumptions we imposed on the process for the Sharpe ratio may be too simplistic.

The empirical strategy we employ to side-step this problem lies in obtaining conditional

expected returns and volatility series at various horizons and use these in our empirical

tests. The next section shows how we extract conditional returns and volatility series

from financial and economic variables.

1.4.1 Constructing Conditional Sharpe Ratio Series

In order to empirically test our framework, we need to construct conditional

Sharpe ratio series from hard data, i.e. we need to construct conditional excess returns

Et{rt+1:t+k} and volatility V olt{rt+1:t+k} series at horizon k on the basis of investors’

conditioning information set at time t. Depending on the empirical study at hand we

allow the horizon k to range from 1 week to 12 months.

As evidenced by the returns predictability literature, a large number of condition-

ing variables have the potential to explain time-variations in expected returns at monthly,

quarterly and yearly horizons. Welch and Goyal (2008) show that, if included in linear

regression frameworks, none of the variables commonly employed in the literature can
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consistently outperform the prevailing mean out-of-sample at the monthly or quarterly

frequency. More recently, Rossi (2010) and Rossi and Timmermann (2010) show that

the same predictor variables incorporated in a new forecasting method also known as

Boosted Regression Trees (BRT) provide accurate predictions in- and out-of-sample.

At the monthly frequency, we construct conditional expected returns and volatil-

ity series according to the following model specifications:

Et{rt+1:t+k} = fµ(xt|θ̂µ) (1.20)

V̂ olt{rt+1:t+k} = fσ(xt|θ̂σ), (1.21)

where xt represents a set of publicly available predictor variables, while θ̂µ and θ̂σ are pa-

rameter estimates obtained via Boosted Regression Trees.12 We use BRT at the monthly

frequency because of their ability to incorporate a large amount of conditioning infor-

mation without over-fitting the training dataset.

Our data comprises stock returns along with a set of twelve predictor variables

previously analyzed in Welch and Goyal (2008). Stock returns are tracked by the S&P

500 index and include dividends. A short T-bill rate is subtracted to obtain excess

returns. The covariates from the Welch-Goyal analysis are available during 1927-2005

and we extend their sample up to the end of 2008.13 The twelve predictors are the

lagged returns, the long-term returns, the volatility, the log dividend-price ratio, the log

earnings-price ratio, the log dividend-earnings ratio, the three-month T-bill rate, the T-

bill rate minus a three-month moving average, the yield on long term government bonds,

the yield spread between BAA and AAA rated corporate bonds, the term spread and

the inflation rate. Market volatility is unobserved, so we follow a large recent literature

in proxying it through the square root of the realized variance obtained from daily data.

At the weekly horizon we use instead linear estimates of the form:

Et{rt+1:t+k} = β′µxt (1.22)

V̂ olt{rt+1:t+k} = β′σxt (1.23)

where xt is a set of publicly available predictor variables at the weekly frequency, i.e. the

dividend yield, the earnings-price ratio, the default spread and the T-bill rate, while βµ

12For a detailed introduction to Boosted Regression Trees and their application in financial economics,
please refer to Rossi (2010) and Rossi and Timmermann (2010).

13We are grateful to Amit Goyal and Ivo Welch for providing this data. A few variables were excluded
from the analysis since they were not available up to 2008, including net equity expansion and the
book-to-market ratio. We also excluded the CAY variable since this is only available quarterly since
1952.
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and βσ vectors of parameter estimates obtained via ordinary least squares. We employ

linear models for conditional estimates at the weekly horizon, because at that frequency

we have very few covariates available and the benefits of using BRT would not be sub-

stantial. Furthermore, BRT generally work well when estimated on long time-series,

but observations at the weekly frequency are available only for the most recent years.

Armed with conditional Sharpe ratio estimates we can test the micro and macroeconomic

implications of our model.

1.4.2 Empirical Tests Based on Micro-Data

Next we conduct two empirical exercises on micro-data. The first evaluates in-

vestors’ trading activity as a function of the investment opportunity set by estimating

duration models on Odean (1999)’s brokerage account data. The second evaluates the

extent to which changes in the conditional Sharpe ratios affect investors’ positions in

risky assets using panel data estimates on the PSID.

Individuals’ trading activity and the investment opportunity set

As mentioned in Sections 1.3, our model implies that individuals’ trading and the

investment opportunity set are closely related: periods characterized by high (absolute)

conditional Sharpe ratios should also be characterized by intense trading. By taking

advantage of the very detailed data of Odean (1999), we test this prediction via a duration

model.

In a continuous-time model of asset allocation with no optimal inattention (and

no transactions costs), agents should continuously change their portfolio allocations to

incorporate new information as it becomes available. In a model that incorporates trans-

actions costs, agents should trade only if the changes in the portfolio allocations deliver

an increase in the expected portfolio returns that are large enough to outweigh the

transactions costs incurred to place the trade. Finally, in a model of optimal inatten-

tion without time-varying investment opportunities, agents’ inattention should not be a

function of the conditional Sharpe ratio.

For each household in our dataset, we have access to all the transactions under-

taken between January 1991 and November 1996: i.e. we have detailed information on

the various accounts held by the household and the transactions undertaken therein. In

accordance with our theoretical model, we use the time between transactions as a natural
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measure of inattention to the stock market. In Odean (1999)’s dataset,14 the transac-

tions are recorded at the daily frequency and this would in principle require conditional

Sharpe ratio estimates at the daily frequency as well. We compute them instead at the

weekly frequency, because the latter strikes a good balance between the need to capture

quick changes in investment opportunities and the need to condition our estimates on a

sufficient number of covariates. Our weekly conditional returns and volatility series are

obtained from the following linear models:

r{t+1:t+5} = α+ β dyt + γ ept + δ defsprt + θ rfreet + ζ vol{t−4:t} + ε{t+1:t+5}

(1.24)

vol{t+1:t+5} = α+ β dyt + γ ept + δ defsprt + θ rfreet + ζ vol{t−4:t} + ε{t+1:t+5}

(1.25)

where r{t+1:t+5} are the (excess) returns on the S&P 500 index over a weekly horizon

and volt+1:t+5 is the realized volatility estimate for the S&P 500 index obtained from

daily data.

After computing the conditional returns and volatility estimates r̂t+1:t+5 and

v̂olt+1:t+5, we construct conditional Sharpe ratios

Ŝh{t+1:t+5} =
r̂{t+1:t+5}

v̂ol{t+1:t+5}
(1.26)

based on observables. We employ the latter interacted with an indicator variable Itrade

indicating whether the household placed a trade over the previous calendar year as the

covariate of interest in our baseline model specification:

λ(t, x) = λ0(t) exp{α+ β I{trade} × Ŝh{t+1:t+5} + γx}, (1.27)

where t is the number of days since the last transaction and x is a vector of constant

household covariates. The vector contains information on the “Investment Objective”,

“Knowledge”, “Experience”, “Tax Rate”, “Income” and “Net Worth” of each household.

These covariates should affect how often households trade and are included to obtain

more precise estimates of the effect of the conditional Sharpe ratio on time-varying

trading.

There are four investment objectives: conservative, income, growth and specu-

lation. Individuals are allowed to choose more than one investment objective and all

14Please refer to Odean (1999) and related papers for a more precise description of the data at hand
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possible combinations appear in the dataset. In Table 1 Panel A we report the cate-

gories, together with their frequencies to give a picture of the type of investors populating

the dataset. Only 5% of the investors have conservative investment objectives and ap-

proximately 70% of the households have growth, income or both as their investment

objectives. There exists some cases of rather contradictory investment objectives like

the “conservative and speculation” category, for example. Fortunately, the category

comprises only 0.15% of the households. Furthermore, recall that households generally

hold more than one investment accounts, so it is not inconceivable that different ac-

counts serve different investment strategies, making prima facie contradictory categories

more plausible. “Knowledge” and “experience” have four categories each: none, limited,

good and extensive. In Table 1 Panels B and C we show the frequency of each category.

Approximately 9% of the households claim to have no financial sophistication, while

33% believe to have limited financial expertise. The “good” and “extensive” categories

are chosen by 46% and 12% of the households, respectively. The frequencies for the

“experience” categories are very similar. In fact “knowledge” and “experience” have a

correlation coefficient of 0.8 on our sample. Because of the strong collinearity between

the two measures, we only use the first in our estimates. Including that latter instead

does not change our findings.

The distributions of income and net worth are, as expected, right-skewed so we

log both variables before performing our estimations. Finally, households are categorized

as “active traders” if they perform 48 or more commissioned trades in a year, “affluent

household” if their invested wealth exceeds $100, 000, and “general brokerage” otherwise.

We first estimate our duration model for the three household categories separately to

assess whether households’ behavior vary substantially across household types. We then

pool our estimates over the whole dataset.

Over our sample, January 1991 to November 1996, the conditional Sharpe ratio

is always positive, so our model implies a positive and monotonic relation between the

agent’s attention to the stock market and the Sharpe ratio. Table 2 Panel A reports the

results for a Cox semi-parametric proportional hazard model estimating Eq. 1.27. We

report the hazard ratios and the z-statistics for the conditional Sharpe ratios as well as

the constant control variables described above. The results indicate that higher Sharpe

ratios are associated with higher trading probabilities for the investor. The hazard ratios

for the conditional Sharpe ratio in “affluent”, “general brokerage” and “active trader”
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households are 1.465, 1.744 and 1.228, respectively and the pooled coefficient estimate

across household types is 1.628. The coefficients’ display a high degree of statistical

significance as indicated by the z-statistics as well as high economic significance. For

example, an estimated hazard ratio equal to 1.628 implies that a standard deviation

increase in the conditional Sharpe ratio (0.25 in our sample) increases the probability of

a trade by 16.7% for the average household.

Panel B repeats the estimates of Panel A without including the recent trade

indicator variable: i.e. it estimates

λ(t, x) = λ0(t) exp{α+ β Ŝh{t+1:t+5} + γx} (1.28)

instead of Eq. 1.27. We estimate the two models in an effort to distinguish between our

model of inattention and alternative models of asset pricing that incorporate transac-

tions costs, but not information costs. In our model, financial agents do not observe the

Sharpe ratio unless they pay information costs. The implication is that over a period

of inattention, the investor would not be able to reap the benefits from periods of high

conditional Sharpe ratios because he literally would not be aware of them. In a model

that incorporates transactions costs but not information costs, on the other hand, the

agent would always know the value of the Sharpe ratio and act accordingly. Similar coef-

ficient estimates across the two model specifications would rule in favor of a model with

transactions costs rather than information costs. On the other hand, larger coefficient

estimates for the model that includes the recent trade indicator variable would indicate

that a model with information costs is a better characterization of agents’ time-varying

trading behavior. The results reported in Panel B show that the conditional Sharpe ratio

does not seem to have an impact on trading for “affluent households” and has a slightly

negative and economically weak impact on trading for “general brokerage” households.

The only household group where the conditional Sharpe ratio has a positive impact are

the active traders, which is expected, given that they are the ones most likely to track

closely the stock market at all times.

Comparing Panels A and B is instructive because it shows that the conditional

Sharpe ratio increases the investor’s trading probability only if the agent has been re-

cently paying attention to the stock market. It therefore provides evidence supporting

our model of information costs against those featuring only transactions costs. Models

of inattention that do not allow for time-varying investment opportunities cannot be

consistent with our findings, because they imply that trading probabilities are constant
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over time and not a function of the conditional Sharpe ratio. Finally, standard models

of time-varying asset allocation cannot be consistent with our findings, because they

require that agents trade continuously over time.

Turning to the constant covariates, the results show that compared to the base

group that has no financial sophistication, limited knowledge of the stock market gener-

ally implies a lower probability of trading as the hazard ratios average approximately 0.9

across the three household groups. For affluent and general brokerage, good and exten-

sive knowledge of financial markets is associated with greater trading probabilities with

hazard ratios averaging approximately 1.15 and 1.35 across the two household groups. In

the active traders group, instead, agents with extensive knowledge of financial markets

trade as often as agents with no financial expertise, while agents with good knowledge

trade significantly less. The non-monotonic relation between trading and financial exper-

tise is likely the outcome of two competing effects. On the one hand, agents with more

experience and knowledge of financial markets realize rather quickly that stock picking

and market timing skills are very hard to develop and buy-and-hold strategies are often

more remunerative. On the other hand, the higher the degree of financial sophistication,

the greater the number of trading signals an agent is likely to receive; it is also possible

that over-confidence could play a role in the active investment strategies pursued by this

group.

The reason why active traders behave differently from the other two groups is

probably due to the fact that the competing effects mentioned above have different

relative strengths in this group. Furthermore, it is hard to believe that individuals that

open an investment account claiming to place more than 48 trades a year (approximately

one trade a week!) do not have any degree of financial sophistication.

Turning to the investment objectives, affluent and general brokerage accounts

generally have higher trading probabilities if their investment objectives contain growth

or speculation. “Income” is instead associated with less trading. The table separates

the large investment objectives groups that characterize at least 1% of the sample, from

the small ones. The latter groups tend to have estimated coefficients that are less sig-

nificant and more erratic in general, reflecting the smaller number of observations they

are estimated on. The results for active traders are slightly out of line compared to the

ones displayed by the other two household groups: speculation is associated with more

frequent trading, while growth and income are associated with longer duration between
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transactions.

Tax and income tend to have statistically and economically insignificant coeffi-

cients. As far as taxes are concerned, agents have greater incentives not to realize gains

if their tax rate is high and the opposite holds true for realizing losses. Given that we

do not make a distinction between buys and sales, the two effects are probably canceling

each other out. Income is either insignificant or has a negative impact on trading. The

coefficient is surprising at first sight, but it is probably due to the collinearity between

income and net worth, which is instead significant across the board with hazard ratios

equal to 1.054, 1.018 and 1.077 for affluent households, general brokerage households and

active traders, respectively.

To check the robustness of our results, in Table 3 Panel A we repeat the anal-

ysis reported above by modeling parametrically the λ0(t) function that was estimated

non-parametrically in Table 2. We model it as an exponential function because the expo-

nential distribution is suitable for modeling data with constant (unconditional) hazard.

We report only the hazard ratios and the z-statistics for the conditional Sharpe ratio and

omit the results for the control variables because similar to the ones reported in Table

2.

The results are in line with the ones reported in Table 2, with the important

difference that the hazard ratios are greater compared to the ones estimated using the

Cox semi-parametric model. This holds true for both the specification that includes the

recent trade indicator, Panel A, and the one that does not, Panel B. Economically the

results are more significant. For example, a hazard ratio equal to 1.883, as estimated

for the general brokerage households, implies that the a one-standard deviation increase

in the conditional Sharpe ratio increases, on average, the probability of a trade by 22%

if the household has placed a trade some time over the course of the previous calendar

year.

In Panels B and C of Table 3 we present the coefficient estimates from a logistic

regression model specification. To perform the analysis, we first construct an indicator

variable denoting whether a trade occurred in a given week and convert the dataset into
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weekly observations. We then estimate the following two model specifications:

Pr(trade = 1|Ŝh{t+1:t+5}, x) =
exp{α+ β I{trade} × Ŝh{t+1:t+5} + γx}

1 + exp{α+ βI{trade} × Ŝh{t+1:t+5} + γx}
(1.29)

Pr(trade = 1|Ŝh{t+1:t+5}, x) =
exp{α+ βŜh{t+1:t+5} + γx}

1 + exp{α+ βŜh{t+1:t+5} + γx}
, (1.30)

where the covariates are the same as the ones specified in the duration models described

above. The results are reported in Panel B. In Panel C we estimate the above expression

without the constant covariates and introducing fixed effects in order to capture the

constant households’ heterogeneity in a different fashion. In all specifications and across

all household types, the coefficient for the conditional Sharpe ratio is positive and signif-

icant. Including the recent trade indicator results in more statistically and economically

significant coefficients, as implied by our model of time-varying trading. Qualitatively,

the logistic regression specifications with constant covariates yield similar results to the

ones that employ fixed effects. Quantitatively, their coefficient estimates are smaller for

the specifications that includes the recent trade indicator. They are instead uniformly

larger for the specifications that does not include the recent trade indicator.

In unreported results we construct an alternative measure of time-varying invest-

ment opportunities based only on past realized Sharpe ratio estimates of the form

Real Sharpet =

∏T
i=1(1 + rt−i)(∑T
i=1 r

2
t−i

)1/2
(1.31)

at the weekly, bi-weekly, monthly and bi-monthly frequencies. In the second step of

our analysis we use this quantity instead of the conditional Sharpe ratio to estimate the

duration and logistic regression models. The results for the realized Sharpe ratios are

qualitatively consistent with the conditional ones, but smaller in magnitude.

Overall, the results reported in this section show that the changes in time-varying

investment opportunities as captured parsimoniously by the conditional Sharpe ratio

play an important role at explaining time-variations in investors’ trading as implied by

our model. They are instead inconsistent with the models of time-varying asset pricing

proposed so far in the literature.

Another important prediction of our model is that changes in investment oppor-

tunities should be associated with time-variations in investors’ exposure to risky assets.

Unfortunately, the time-series dimension of Odean’s dataset is too short to test this hy-

pothesis. We decide instead to employ panel data estimates from the PSID, because the
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latter dataset extends for a longer time-span even though the data is sampled at a lower

frequency.

Investors’ positions in risky assets and the investment opportunity set

We test whether changes in the investment opportunity set affect investors’ port-

folio allocations using panel data estimates from the PSID. The PSID is a longitudinal

study that tracks family units and their offspring over time. The financial addenda rele-

vant to our analysis were collected from 1984 to 1999 every 5 years. For a more precise

description of the data, refer to Brunnermeier and Nagel (2008) as our analysis is based

on the same dataset and data-cleaning procedure performed by them.

We define financial assets as the sum of holdings of stocks and mutual funds plus

riskless assets. The riskless assets are defined as the sum of cash-like assets and holding

of bonds. The share of risky assets held by each household is computed as the sum of

stocks and mutual funds, divided by the households’ total financial assets. We abstract

from issues related to stock market participation and we include in our analysis only

stock market participants.15 In order to analyze whether an increase/decrease in the

conditional Sharpe ratio is associated with an increase/decrease in risky assets held in

individuals’ portfolios, we first denote for each household the change in the proportion

of risky assets over a k years horizon as ∆kφi,t = φi,t − φi,t−k, where k = 5 and use it as

a regressand in a linear panel data model. Our model predicts that investors’ positions

in risky assets are a function of the conditional Sharpe ratio, but also that inattention

introduces inertia in investors’ portfolio weights. In order to capture this idea in a

reduced form model, we use yearly conditional Sharpe ratio estimates obtained from

BRT and define the average conditional Sharpe ratio over a five year horizon preceding

(and including) time t as a regressor and denote it by ̂AV Gt Sht−(k−1):t. We use t−k+1

instead of t − k, because the conditional Sharpe ratio at time t − k likely to affect the

change in portfolio allocation at time t−k. Given that the PSID data collection is carried

out throughout the year, but we do not know when each household is interviewed, we

use the conditional Sharpe ratios from June of each year in our analysis. Given that

our covariate of interest is the change in the average conditional Sharpe ratio, we then

compute ∆k
̂AV G Sht−(k−1):t.

While the change in the conditional Sharpe ratio is the key quantity of our

15For analyses of the determinants of households’ stock market participation, please refer to Brunner-
meier and Nagel (2008) and Vissing-Jorgensen (2002).
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theoretical model, decades of research in financial economics have identified a multitude

of socioeconomic variables that determine investors’ positions in risky assets. In order

to account for their effects we follow Brunnermeier and Nagel (2008) and condition our

estimates on a vector qt−k of household characteristics that includes a broad range of

variables related to the life-cycle: age and age2; indicators for completed high school and

college education, respectively, and their interaction with age and age2; marital status

and health status; the number of children in the household and the number of people

in the household. It also includes variables related to the household’s employment and

financial situation: a number of dummy variables for any unemployment in the k years

leading up to and including year t − k; the coverage of the household head’s job by a

union contract; the log of the equity in the vehicles owned by the household; the log

family income at time t− k − 4; the two-year growth in log family income at t− k and

t−k−2 and a variable for inheritances received in the k years leading up to and including

year t− k.

In addition to the life-cycle variables reported above, we include preference

shifters that control for changes in some household characteristics between t − k and

t and denote them by ∆kht: changes in family size; changes in the number of children;

sets of dummies for house ownership, business ownership and non-zero labor income

at t and t − k. The idea to control for house ownership is motivated by the body of

research showing that households might save towards buying a house by way of risky

assets. When the house is purchased, the risky assets are sold, reducing dramatically the

proportion of risky assets in the household’s portfolio (see Faig and Shum (2002)). In

addition, we recognize that changes in the economic conditions may vary across regions,

so we include the four PSID geographical regions. As a final control variable we include

the change in wealth ∆kwi,t, because habit persistence models imply that changes in

wealth affect risk-aversion, and hence investors’ portfolio allocations.

Our estimation equation can then be written as

∆kφi,t = α+ β ∆k
̂AV G Sht−(k−1):t + γ ∆kwi,t + δ qi,t−k + θ∆khi,t + εi,t (1.32)

We report our results in Table 4 Panel A. Column 1 reports results for Eq. 1.32 while

column 2 introduces a number of additional control variables related to asset composition:

the labor income/liquid wealth ratio interacted with age, the business wealth/liquid

wealth ratio, and the housing wealth/liquid wealth ratio. For both specifications, the

estimates of the β coefficients show that changes in the average conditional Sharpe ratio
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have a significantly positive effect on the proportion of risky assets held by the investors.

The magnitude of the coefficient is 0.392 for the baseline specification, implying an

economically significant effect: a 10% increase in the difference between the average

conditional Sharpe ratio and its lag value implies a 3.9% increase in the proportion of

risky assets held by investors. Furthermore, with a t-statistic equal to 2.72, the coefficient

is significant at conventional statistical levels.

We also report the results for the γ coefficient, i.e. the one for the changes

in wealth. As highlighted by Brunnermeier and Nagel (2008), this is a particularly

important coefficient because habit persistence models imply a positive relation between

changes in wealth and the proportion of wealth invested in risky assets. In line with the

findings reported by Brunnermeier and Nagel (2008), the coefficient has a sign opposite

to the expected one (negative instead of positive), providing strong evidence against the

ability of habit persistence models to explain micro-data.

As a robustness check, in Panel B of Table 4 we present alternative estimates of

Eq. 1.32 by replacing ∆k
̂AV G Sht−(k−1):t with ∆kŜht, i.e. by including the change in the

investment opportunity set rather than the average change in the investment opportunity

set. The estimates reported in Panel B show that the change in the conditional Sharpe

ratio between two survey dates is a statistically significant predictor of the changes in

investors’ portfolio allocations. The coefficients are economically smaller compared to

the ones for the changes in the average Sharpe ratio, but this is mainly due to the effect

of averaging in Panel A. They maintain a strong statistical significance though.

Overall, the estimates reported in Panels A and B of Table 4 are consistent

with our model of inattention that features time-varying investment opportunities, but

not with those frameworks of inattention that imply a constant conditional Sharpe ratio.

Hence, our results show that allowing for a price of risk that varies over time is important

because it generates a model that explains more precisely investors’ behavior.

1.4.3 Empirical Tests Based on Macro-Data

We present next the empirical tests for the macroeconomic implications of our

model. We first evaluate empirically the time-varying covariance between stock returns

and aggregate consumption using a high-frequency proxy for the latter, i.e. the ADS

index. We then assess empirically whether aggregate time-varying trading, proxied by

volumes on the S&P 500, is a function of the conditional Sharpe ratios.
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Time-varying covariance between aggregate consumption and stock returns.

As in the previous section, we use Boosted Regression Trees and employ monthly

observations to compute conditional Sharpe ratios at the one-year horizon. To test

whether changes in the conditional Sharpe ratio affect the covariance between consump-

tion and stock returns, we adopt an empirical strategy similar to the one introduced

by Rossi and Timmermann (2010), which entails proxying high-frequency consumption

using the ADS index. The ADS index is designed to track the business conditions of the

US economy at the daily frequency, by incorporating high- and low-frequency as well as

stock and flow data. It is obtained by estimating via the Kalman Filter a dynamic factor

model that incorporates daily spreads between 10-year and 3-month Treasury yields,

weekly initial jobless claims; monthly payroll employment, industrial production, per-

sonal income less transfer payments, manufacturing and trade sales, and quarterly real

GDP. In unreported results we show that there exists a close relation between the ADS

index and total, durable and non-durable consumption with uniformly positive correla-

tions that increase with the horizon, rising from 0.15 − 0.20 at the monthly horizon to

0.40− 0.50 at the semi-annual and 0.50 at the annual horizon.

The advantage of using the ADS-index as opposed to consumption data is that

it allows for the construction of realized co-variances between monthly stock returns and

consumption using daily observations, allowing us to test very precisely how consumption

and stock returns co-vary as a function of the investment opportunity set.

We compute monthly “realized covariances” between stock returns and scaled

changes in the ADS index, ĉovt, from daily observations as follows:

ĉovt =

Nt∑
i=1

∆ADSi,t × ri,t, (1.33)

where ∆ADSi,t is the scaled change in the ADS index on day i during month t, and

ri,t is the corresponding stock market return. The scaled changes in the ADS index are

obtained by dividing the change to the ADS Index by the standard deviation of returns

times the standard deviation of changes to the index.

Once the realized covariance measure is obtained, we construct estimates of the

conditional covariance

ĉovt+1:t+k|t = fcov(xt|θ̂cov), (1.34)

where xt represents the same set of publicly available predictor variables we employ to

construct conditional expected returns and volatilities, θ̂cov are estimates of the parame-
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ters obtained via Boosted Regression Trees and k is a month identifier that ranges from

1 to 12.16

In the final step, we characterize parametrically and non-parametrically the rela-

tion between the conditional covariance and the conditional Sharpe ratio by estimating

the following models

ĉovt+1:t+k|t = α+ β Ŝht+1:t+12|t + εt+1:t+k (1.35)

ĉovt+1:t+k|t = f(Ŝht+1:t+12|t) + εt:t+k (1.36)

The interesting aspect of working with Ŝht+1:t+12|t is twofold. First, it is the same

conditional Sharpe ratio measure employed in our PSID panel data estimates. Second,

the conditional Sharpe ratio estimates are virtually never below -0.7, threshold below

which our model would predict high attention as shown in Figure 1.2. It follows that,

empirically, we should expect a monotonic relation between the conditional Sharpe ratio

and the conditional covariance between consumption and stock returns.

We report the results for estimates of Eq. (1.35) in Table 5. The β coefficient

is positive and significant up to the sixth month, indicating that at short horizons the

correlation between stock returns and consumption is time-varying and a function of the

conditional Sharpe ratio as implied by our model. The fact that the correlation is not

significantly different from zero at longer horizons is natural in our framework given that

the longer the time interval employed, the greater the percentage of the population that

adjusts its consumption to new levels, even during periods of long inattention.

To corroborate the results reported in Table 5, we present non-parametric esti-

mates of the relation at hand using Boosted Regression Trees. In Figure 1.7 we report

the results at 1, 2, 3, 6, 9 and 12 months horizons. From the plots it is clear that the

relation is increasing and monotonic until the sixth month while it is effectively flat and

non-monotonic at longer horizons.

Overall, the results reported in this section show that an increase in the condi-

tional Sharpe ratio is associated with an increase in the conditional covariance between

stock returns and consumption, as implied by our model. Conversely, they are inconsis-

tent with traditional models of asset pricing or models of inattention that do not allow for

time-varying investment opportunities, because they both imply a constant covariance

between consumption and returns. In the next section we present our final empirical

16Refer to Rossi and Timmermann (2010) for a more detailed analysis of the conditional covariance
series.
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exercise testing whether economy-wide trading activity is a function of the conditional

Sharpe ratio.

Conditional Sharpe ratio and trading volumes on the S&P 500

Our model predicts that in periods characterized by large (absolute) conditional

Sharpe ratios, individuals’ opportunity cost of storing wealth in the transactions account

is high. It follows that agents should trade rather frequently and, consequently, aggregate

volumes on the S&P 500 should be high. The opposite is true for periods where the

conditional Sharpe ratio is small in absolute terms. These periods are characterized by a

rather small opportunity cost of holding wealth in the transactions account, low attention

to the stock market and a feeble aggregate trading activity. We test this implication of

our model using aggregate trading volumes on the S&P 500.

Trading volumes have increased dramatically from 1950 through 2008. It follows

that the raw volumes series shows clear signs of non-stationarity. In order to study

the effect of the conditional Sharpe ratio on trading volumes, we take the natural log

transformation of the latter and fit a quadratic trend. The general increase in the trading

volumes is commonly attributed to the increase in wealth and financial sophistication

of economic agents as well as the technological progress of financial institutions and

financial markets. Our model is silent about these, so we limit ourselves to explaining

deviations of aggregate volumes from their long-run trend. We define the difference

between the observed volumes and their long-run trend as the de-trended volumes series

“VOL” and make it the object of our analysis. We estimate

V OLt+1 = α+ β Ŝht+1:t+12|t + γ Ŝh
2

t+1:t+12|t + δ Ŝh
3

t+1:t+12|t + εt+1, (1.37)

where the third-order polynomial is employed to capture the non-linearities implied by

the model. We also provide an alternative specification whereby we estimate

V OLt+1 = f(Ŝht+1:t+12|t; θ) + εt+1, (1.38)

via Boosted Regression Trees. The rationale for Eq.(s) 1.37 and 3 is that after controlling

for technological advancements and increased stock market participation, the conditional

Sharpe ratio should have an impact on agents’ attention to the stock market and, con-

sequently, their trading activity. In Figure 1.8, we report the fitted values for the two

specifications proposed. The dashed red line plots the fitted values for the parametric
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model, the solid black line the ones for the BRT model. Consistent with our theoretical

model, there is a clear non-monotonic relation between aggregate trading volumes and

the conditional Sharpe ratio: periods characterized by large Sharpe Ratios in absolute

value are also characterized by large trading volumes. This holds irrespective of whether

we employ a parametric (ordinary least squares) or non-parametric (Boosted Regression

Trees) model to estimate the relation at hand.

Time-varying trading volumes are not consistent with a model of inattention that

does not incorporate time-varying investment opportunities. It is also not consistent with

a model that does not incorporate information costs, because the latter would entail that

agents trade continuously over time. There are, however, a number of potential problems

associated with testing our time-varying model of inattention using aggregate S&P 500

volumes. A common objection that could be raised is that only a small fraction of the

trading volumes on the S&P 500 is generated by individuals’ trades. This objection is

based on the misconception that the bulk of equity investments is held by institutional

investors. In fact, as reported by Barber and Odean (2000), in 1996 47% of equity

investments in the United States were held directly by households, 23% by pension funds

and 14% by mutual funds. Furthermore, even if institutional investors generated larger

trading volumes than individual investors, it is unlikely that their time-varying trading is

a function of the conditional Sharpe ratio. It follows that institutional investors’ trading

should only introduce noise in our results and hence reduce the precision of our estimates,

but not affect the overall identification of our empirical strategy.

1.5 Conclusions

This paper presents a theoretical model of time-varying inattention to the stock

market by introducing information costs into a continuous-time model of asset alloca-

tion with time-varying investment opportunities. Our model explains why individuals’

attention to their investment portfolio is high during recessions as well as during stock

market booms and crashes. It also rationalizes why agents do not modify their portfolio

allocations gradually with the arrival of new information, but rather alternate extended

periods of inertia with brief moments of action where asset allocations are updated

according to the current state the economy. By implying a weak and time-varying co-

variation between consumption growth and equity returns, our model also contributes

to the literature that provides a theoretical explanation of the equity premium puzzle.
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Empirical tests based on Odean (1999)’s dataset and estimates conducted on

the PSID support the microeconomic predictions of our model against others that have

been proposed so far in the literature. Furthermore, CCAPM-type estimates based on

high and low frequency economic and financial time-series support the macroeconomic

predictions of our model of a time-varying covariance between consumption and stock

returns.

While this paper focuses on individuals’ portfolio allocations, the potential impli-

cations of our theoretical framework are much broader. By combining information costs

and time-varying investment opportunities, the multi-agent extension of our model im-

plies that different individuals hold different conditioning information sets at any given

point in time. As a consequence, our framework has the potential to serve as the micro-

foundation for the reduced form models developed by Mankiw, Reis, and Wolfers (2003)

and Carroll (2003) that study heterogeneities in macroeconomic expectations. These

implications are currently being explored using survey data on inflation expectations.
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Table 1.1: This table presents summary statistics of the knowledge, experience and investment
objective variables for the investors populating the brokerage account data provided by Odean (1999).
Panel A presents the frequencies for the investment objectives. Panels B and C present the frequencies
for the self-reported level of knowledge and experience.

Summary Statistics for Investors’ Knowledge and
Objectives in Odean (1999)’s Dataset

Panel A. Investment Objectives and associated Frequencies
Investment Objective(s) Frequency

Growth 55.75%
Income, Growth 11.94%
Conservative, Growth 6.99%
Income 4.57%
Conservative, Income, Growth 5.86%
Conservative 5.00%
Conservative, Income 3.56%
Growth, Speculation 2.74%
Speculation 1.32%
Conservative, Income, Growth, Speculation 1.17%
Income, Growth, Speculation 0.54%
Conservative, Growth, Speculation 0.25%
Conservative, Speculation 0.15%
Income, Speculation 0.13%
Conservative, Income, Speculation 0.02%

Panel B. Knowledge and associated Frequencies
Knowledge Frequency

None 8.85%
Limited 33.20%
Good 45.82%
Extensive 12.13%

Panel C. Experience and associated Frequencies
Experience Frequency

None 3.74%
Limited 35.60%
Good 46.66%
Extensive 13.99%
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Table 1.2: This table reports the results of a Cox semi-parametric duration model estimating the
number of days between investors’ transactions as a function of time-varying as well as constant co-
variates. The time-varying covariate is the conditional Sharpe ratio estimated at the weekly frequency
using observable economic and financial time-series. The constant covariates are the investors’ financial
sophistication (knowledge), investment objectives, tax rate, income and net worth. For each covariate
we report the hazard ratio and z-statistic. Panel A interacts the conditional Sharpe ratio with a recent
trade indicator variable. Panel B does not.

Cox Semi-Parametric Proportional Duration Model With and Without Recent Trade Indicator Variable

A. Specification With the B. Specification Without the
Recent Trade Indicator Recent Trade Indicator

Time-Varying Covariates

Account type Affluent General Active Total Affluent General Active Total

Sharpe Ratio
1.465 1.744 1.228 1.628 0.983 0.935 1.097 1.000

(33.16)** (65.06)** (25.03)** (94.33)** (-1.48) (-7.85)** (11.21)** (0.00)

Constant Covariates

Account type Affluent General Active Total Affluent General Active Total

Investors’ Knowledge

Limited
0.966 0.93 0.835 0.766 0.966 0.928 0.835 0.765

(-2.91)** (-10.47)** (-27.87)** (-61.31)** (-2.94)** (-10.65)** (-27.85)** (-61.67)**

Good
1.143 1.146 0.888 0.963 1.144 1.149 0.888 0.965

(11.79)** (20.09)** (-20.50)** (-9.35)** (11.92)** (20.55)** (-20.41)** (-8.85)**

Extensive
1.268 1.407 1.002 1.253 1.272 1.417 1.003 1.259

(19.23)** (42.85)** (0.30) (49.79)** (19.44)** (43.72)** (0.45) (50.88)**
Objective (Large Groups)

G
1.064 1.024 0.889 0.993 1.065 1.025 0.888 0.993

(5.15)** (2.61)** (-13.87)** (-1.34) (5.28)** (2.69)** (-13.92)** (-1.23)

I; G
1.104 1.017 0.914 1.085 1.104 1.019 0.914 1.086

(7.67)** (-1.68) (-9.77)** (13.50)** (7.68)** (1.86) (-9.78)** (13.75)**

C; G
1.129 1.101 0.899 1.075 1.131 1.104 0.899 1.077

(8.90)** (8.66)** (-10.70)** (11.11)** (8.99)** (8.91)** (-10.73)** (11.43)**

I
0.928 0.969 0.981 1.027 0.928 0.97 0.981 1.028

(-4.46)** (-2.41)* (-1.68) (3.47)** (-4.47)** (-2.38)* (-1.67) (3.60)**

C; I; G
1.197 1.135 0.907 1.217 1.199 1.14 0.907 1.221

(13.52)** (10.23)** (-10.21)** (30.52)** (13.63)** (10.56)** (-10.20)** (31.08)**

C; I
0.971 0.917 0.911 1.024 0.97 0.916 0.911 1.024
(-1.91) (-5.41)** (-8.02)** (3.02)** (-1.99)* (-5.53)** (-8.06)** (3.02)**

G; S
1.249 1.265 1.117 1.449 1.252 1.27 1.117 1.454

(11.93)** (18.64)** (10.70)** (51.54)** (12.04)** (18.93)** (10.71)** (52.08)**

S
1.191 1.128 1.155 1.207 1.192 1.130 1.154 1.208

(5.85)** (7.55)** (9.52)** (18.41)** (5.88)** (7.66)** (9.47)** (18.47)**

C; I; G; S
1.060 1.396 1.101 1.528 1.062 1.402 1.101 1.535

(2.64)** (18.59)** (8.33)** (49.59)** (2.70)** (18.84)** (8.34)** (50.13)**
Objective (Small Groups)

I; G; S
1.352 1.314 1.041 1.698 1.357 1.324 1.040 1.707

(8.57)** (11.34)** (2.80)** (47.24)** (8.67)** (11.65)** (2.74)** (47.71)**

C; G; S
0.926 0.987 1.277 1.969 0.925 0.994 1.277 1.978
(-1.28) (-0.31) (14.72)** (47.38)** (-1.31) (-0.15) (14.72)** (47.69)**

C; S
1.670 0.941 1.399 1.601 1.680 0.942 1.397 1.604

(7.42)** (-1.36) (13.00)** (22.36)** (7.51)** (-1.34) (12.94)** (22.44)**

I; S
1.068 0.935 0.802 1.227 1.07 0.938 0.801 1.233
(-1.09) (-1.06) (-6.30)** (7.54)** (1.13) (-1.02) (-6.35)** (7.71)**

C; I; S
0.817 0.354 0.303 0.508 0.812 0.354 0.301 0.507
(-1.10) (-3.74)** (-7.63)** (-6.19)** (-1.14) (-3.75)** (-7.68)** (-6.23)**

Tax
1.001 0.999 0.997 0.998 1.001 0.999 0.997 0.998
(2.16)* (-2.31)* (-17.38)** (-14.41)** (2.22)* (-2.37)* (-17.38)** (-14.47)**

Income
0.977 1.000 0.996 1.011 0.977 1.000 0.995 1.011

(-5.67)** (-0.040) (-1.92) (6.82)** (-5.65)** (-0.07) (-2.02)* (6.86)**

Net Worth
1.054 1.018 1.077 1.156 1.054 1.018 1.077 1.157

(21.83)** (9.10)** (51.06)** (141.49)** (21.87)** (9.30)** (51.14)** (142.67)**
Observations 1,568,733 3,363,061 1,261,279 6,193,073 1,568,733 3,363,061 1,261,279 6,193,073
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Table 1.4: This table reports in Panel A the results of a linear regression model estimating the relation
between changes in households’ risky assets positions over the course of five years as a function of average
changes in the conditional Sharpe ratio and households’ wealth over the same time-span. A number of
additional covariates that control shifts in preferences, life-cycle and regional effects are included, but
their coefficients are not reported. Specification 2 differs from specification 1 in that it includes variables
that control for households’ asset composition. Panel B repeats the analysis substituting the average
changes in the conditional Sharpe ratio with changes in the conditional Sharpe ratio. Coefficients and
standard errors are reported for the regressors of interest. Coefficients significant at 5% level are bold-
faced.

Evidence of time-varying portfolio allocation from PSID

Panel A. Portfolio Allocations and Changes

in the Average Conditional Sharpe ratio.

Spec 1 Spec 2

β 0.392 0.412
S.E. β 0.144 0.146
γ -0.014 -0.010
S.E. γ 0.006 0.009
Asset control Composition No Yes
Preference Shifters Yes Yes
Life-Cycle controls Yes Yes
Regions Fixed Effects Yes Yes

R2 3.9% 4.2%
N 1234 1234

Panel B. Portfolio Allocations and

Changes in the Conditional Sharpe ratio.

Spec 1 Spec 2

β 0.035 0.037
S.E. β 0.014 0.015
γ -0.014 -0.010
S.E. γ 0.006 0.009

Asset control Composition No Yes
Preference Shifters Yes Yes
Life-Cycle controls Yes Yes
Regions Fixed Effects Yes Yes

R2 3.8% 4.0%
N 1234 1234
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Table 1.5: This table reports α and β coefficients and standard errors for the linear model:
ĉovt+1:t+k|t = α + β Ŝht+1:t+12|t + εt+1:t+k, where ĉovt+1:t+k|t is the conditional covariance between

consumption and stock returns over “k” months and k ranges from 1 to 12. Ŝht+1:t+12|t is the one-
year conditional Sharpe ratio. Both conditional covariance and Sharpe ratio measures are obtained via
Boosted Regression Trees over the sample 1960-2008. Coefficients significant at 5% level are bold-faced.

Covariance Between Consumption and Stock Returns
as a Function of the Conditional Sharpe Ratio

Horizon (Months)

1 2 3 4 5 6 7 8 9 10 11 12

α -0.04 0.05 0.27 0.38 0.47 1.00 1.36 2.52 3.33 3.42 3.77 3.95
S.E. α 0.01 0.05 0.09 0.12 0.16 0.21 0.25 0.29 0.35 0.39 0.43 0.45

β 0.18 0.38 0.50 0.67 1.04 0.78 0.65 -0.35 -0.72 -0.55 -0.49 -0.28
S.E. β 0.02 0.07 0.13 0.18 0.24 0.30 0.37 0.43 0.52 0.57 0.63 0.66
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Figure 1.1: This figure plots the dynamics of consumption (Top Panel) as well as the dynamics
of the wealth stored in the transactions account (Bottom Panel) as a function of time. Consumption
changes in a lumpy fashion at the times of action (represented by vertical dotted lines) and varies very
little during the periods of inattention: in fact, if rL = ρ consumption is constant between the times of
action. The behavior of consumption during the periods of optimal inattention is independent from the
dynamics of invested wealth and the investment opportunity set. The wealth held in the transactions
account is exhausted completely when the period of optimal inattention ends. This is optimal for the
agent because the transactions account pays a lower rate of returns compared to the expected returns
paid by the investment portfolio.
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Figure 1.2: This figure plots the optimal inattention span (continuous line) and the optimal risky
asset allocation (dashed line) for different values of the Sharpe ratio M. When the expected returns are
high, the agent’s optimal strategy is to allocate more than 100% of his invested wealth in the risky asset,
deposit very little in the transactions account and observe the value of the investment portfolio very
frequently. The same holds when the expected Sharpe ratio is very high: the agent shorts the risky asset
and reaps the benefits of the negative expected returns. In sluggish economic environments characterized
by a Sharpe ratio around zero, the agent’s optimal portfolio choice is to invest very little in the risky
asset. This translates in a low opportunity cost for the transactions account and a very long period
of optimal inattention. The x-axis tracks the variable under study and the y-axis reports the years of
inattention on the left and the proportion of invested wealth in the risky asset on the right.
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(a) Persistence: λM (b) Volatility: σM

(c) Correlation: ρsM (d) Information Costs: θ

(e) Risk-Aversion: α (f) Subjective Discount Factor: 1− ρ

Figure 1.3: This figure plots the optimal inattention interval (continuous line) and the optimal risky
asset allocation (dashed line) as a function of the persistence parameter for the Sharpe ratio process λM
(Panel (a)); its volatility parameter σM (Panel (b)); its correlation coefficient with the risky asset ρsM
(Panel (c)); the investor’s information costs θ; the investor’s risk-aversion coefficient α; and the investor’s
subjective discount factor 1− ρ. In all panels, the x-axis tracks the variable under study and the y-axis
reports the years of inattention on the left and the proportion of invested wealth in the risky asset on
the right.
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Figure 1.4: This figure plots the portfolio allocation and trading activity for the representative
investor. The top panel reports the evolution of the agent’s normalized consumption and portfolio allo-
cation. The consumption process is represented by the black continuous line and the portfolio allocation
by the red dashed line. The y-axis on the left reports values for the consumption, while the one on the
right reports the weight of the risky asset in the investment portfolio. The middle panel presents the
process for the agent’s invested wealth and the bottom panel plots the simulated process for the Sharpe
ratio. The vertical lines in each of the panels represent the agent’s trading activity: every period at
which the agent changes his portfolio allocation is denoted by a vertical line.
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Figure 1.5: This figure plots the trading activity for an economy composed of 1000 agents. The top
panel reports the percentage of the population trading at a given point in time. The bottom panel plots
the value of the Sharpe ratio over time.
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Figure 1.6: This figure plots the dispersion of portfolio allocations across investors for an economy
composed of 1000 agents. The top panel reports average portfolio allocation as well as the 20th and
80th percentiles of the portfolio allocations for a given period. The bottom panel plots the value of the
Sharpe ratio over time.
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(a) Horizon: 1 month (b) Horizon: 2 months (c) Horizon: 3 months

(d) Horizon: 6 months (e) Horizon: 9 months (f) Horizon: 12 months

Figure 1.7: These figures represent non-parametric estimates of the relation between the conditional
covariance between consumption and stock returns and the conditional Sharpe ratio. The estimates are
obtained via Boosted Regression Trees over the sample 1960-2008 and we report results at 1, 2, 3, 6, 9
and 12 months horizons. The horizontal axis covers the sample support of the conditional Sharpe ratio,
while the vertical axis tracks the change in the conditional covariance.
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Figure 1.8: This figure plots the fitted values of the aggregate trading volume on the S&P 500 index
as a function of the conditional Sharpe ratio. The conditional Sharpe ratio is estimated using Boosted
Regression Trees over the sample 1960-2008. The fitted values reported are obtained either by boosted
regression trees (black line) or a third-order polynomial model estimated via ordinary least squares.
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Appendix

Proof of Proposition 1: For any given amount of wealth Xtj deposited in the

transactions account at time tj and any inattention period of length τ , the agent chooses

consumption to solve the following constraint optimization problem.

Utj (τ) ≡ max
{ct+s}τs=0

∫ τ

0

1

1− α
c

(1−α)
tj+s

e−ρs ds (A-1)

s.t. Xtj (τ) =

∫ τ

0
ctj+se

−rLsds, (A-2)

where Eq. A-2 is the budget constraint. The budget constraint requires the present

value of consumption discounted at rate rL over the inattention period τ to equal the

sum deposited in the transactions account Xtj at tj . The inter-temporal marginal rate

of substitution between consumption at tj and tj + s is
(
ctj+s

ctj

)−α
e−ρs and the gross

rate of return is e(rLs). Equating the two we obtain an expression for the evolution of

consumption over the interval of inattention:

ctj+s = ctj e
− (ρ−rL)

α
s, for 0 ≤ s ≤ τ, (A-3)

Substitute Eq. A-3 into Eq. A-2 to obtain:

Xtj (τ) =

∫ τ

0
ctje

− ρ−r
L

α
se−r

Lsds

= ctj

∫ τ

0
exp

[
−ρ− (1− α)rL

α
s

]
ds

= ctj

∫ τ

0
e−ωsds

= ctj

[
−e

ωτ

ω
+
eω0

ω

]
= ctj

[
1− eωτ

ω

]
= ctjh(τ),

where

h(τ) =

∫ τ

0
e−ωsds =

1− e−ωτ

ω
(A-4)

ω =
ρ− (1− α)rL

α
. (A-5)
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Now substitute Eq. A-3 into Eq. A-1 and use Eq. A-4 to write the maximized utility of

consumption as:

Utj (τ) =

∫ τ

0

1

1− α
c∗

(1−α)
tj+s

e−ρs ds

=

∫ τ

0

1

1− α

(
ctj e

[− (ρ−rL)
α

s]

)(1−α)

e−ρs ds

=

∫ τ

0

1

1− α
c

(1−α)
tj

e−
(ρ−rL)

α
s e(ρ−rL)s e−ρs ds

=

∫ τ

0

1

1− α
c

(1−α)
tj

e−
ρ−(1−α)rL

α
s eρse−ρs ds

=
1

1− α
c

(1−α)
tj

∫ τ

0
e−

ρ−(1−α)rL
α

s ds

=
1

1− α
c

(1−α)
tj

h(τ)

=
1

1− α
X

(1−α)
tj

h(τ)α

This is the form stated in Proposition 1. �

Proof of Proposition 2: We follow Kim and Omberg (1996) and obtain a closed

form solution for the optimal expected utility and portfolio allocation. Take τ to be the

investment horizon. Denote the wealth in the investment portfolio as WI , the optimal

monetary investment in the risky asset as y∗(WI ,M, τ) and the optimal expected utility

as J(WI ,M, τ). Since J(WI ,M, τ) is the investor’s expected utility assuming optimal

investment over the remaining horizon, it satisfies the dynamic programming condition:

J(WI ,M, τ) = max
y(WI ,M,τ)

(J − Jτdt+ JWI
E {dWI}+

1

2
JWIWI

E
{
dW 2

I

}
(A-6)

+ JME {dM}+
1

2
JMME

{
dM2

}
JWIME {dMdWI}),

while the condition for the optimal monetary investment in the risky asset should satisfy:

y∗(WI ,M, τ) =

(
JWI

−JWIWI

)(
µt − r
σ2
t

)
+

(
JWIM

−JWIWI

)(
ρsMσM
σt

)
(A-7)

The optimal expected utility J(WI ,M, τ) is the solution to the partial differential equa-

tion and horizon-end condition:

−Jτ + JWI
rWI +

1

2
JWIWI

(y∗)2σ2−JMλM (M − M̄) +
1

2
JMMσ

2
M = 0 (A-8)

J(WI ,M, 0) = U(WI) (A-9)
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For the myopic case, it can be shown that the solution is additively-separable in WI and

M . For the non-logarithmic case, conjecture trial solutions of the form:

J(WI ,M, τ) = Φ(M, τ)
W 1−α
I

1− α
erτ(1−α) (A-10)

Φ(M, τ) = exp[A(τ) +B(τ)M + C(τ)M2/2] (A-11)

A(0) = B(0) = C(0) = 0. (A-12)

Note that the solution is multiplicatively separable in WI and M , and automatically

satisfies the horizon-end condition J(WI ,M, 0) = U(WI) and the second-order condition

for a maximum JWIWI
(WI ,M, τ) < 0. Substituting the trial solutions in Eq. A-7 and

Eq. A-8 yields the following expression for the optimal monetary investment in the risky

asset:

y∗(WI ,M, τ) =
WI

α

(
M

σ
+
ρsMσMC(τ)M + ρsMσMB(τ)

σ

)
(A-13)

and the partial differential equation for Φ(M, τ)

−Φτ +

(
1− α

2α

)(
M +

ΦM

Φ
ρsMσM

)2

Φ− λM (M − M̄)ΦM +
1

2
ΦMMσ

2
M = 0 (A-14)

The investment in the risky asset depends only on the functions B(τ) and C(τ), while

expected utility depends on A(τ) as well. The functions C(τ), B(τ) and A(τ) should be

chosen to satisfy Eqs. A− 11, A− 12 and A− 14. Substitute and collect terms to obtain

the quadratic expression in M :

{
1

2
σ2
MC

2(τ)− λMC(τ)−
1

2
C′(τ) +

(1− α)

2α
[1 + ρ2sMσ

2
MC

2(τ) + 2ρsMσMC(τ)]

}
M2 (A-15)

+

{
σ2
MB(τ)C(τ)− λMB(τ) + λMM̄C(τ)−B′(τ) +

(1− α)

α
ρsMσMB(τ) [1 + ρsMσMC(τ)]

}
M

+
1

2
σ2
M

[
B2(τ) + C(τ)

]
+ λMM̄B(τ)−A′(τ) +

(1− α)

2α
ρ2sMσ

2
MB

2(τ) = 0,

where the “primes” indicate first derivatives with respect to the horizon τ . In order

for the solution to hold for any Sharpe ratio M , the coefficients on M2, M and 1 must

vanish. The result is the following system of first-order non-linear ordinary differential

equations:

dC

dτ
= c C2(τ) + b C(τ) + a (A-16)

dB

dτ
= cB(τ)C(τ) +

b

2
B(τ) + λMM̄C(τ) (A-17)

dA

dτ
=
c

2
B2(τ) +

1

2
σ2
MC(τ) + λMM̄B(τ) (A-18)

C(0) = B(0) = A(0) = 0,
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where

a =
1− α
α

(A-19)

b = 2

[(
1− α
α

)
ρsMσM − λM

]
(A-20)

c = σ2
M

[
1 +

(
1− α
α

)
ρ2
sM

]
. (A-21)

The first differential equation involves only C(τ), the second C(τ) and B(τ) and the

third C(τ), B(τ) and A(τ). The first is a Riccati equation with constant coefficients and

we can re-cast it as the integral equation:∫ τ

0
=

dC

cC2 + bC + a
= τ. (A-22)

The left hand side can be determined from standard integral tables, which indicates that

the solution can take 4 different forms depending on the parameters a, b and c. The four

solutions to the set of three functions C(τ), B(τ) and A(τ) can be categorized using the

discriminant

q = b2 − 4ac = 4λ2
M [1− (γ − 1)k∗] (A-23)

of the quadratic equation:

dC

dτ
= cC2(τ) + bC(τ) + a = 0. (A-24)

The four solutions are:

1. q > 0: normal solution

2. q = 0: hyperbolic solution if b 6= 0 and polynomial solution if b = 0

3. q < 0: tangent solution

The only solution that is interesting to us from an economic point of view is the “normal

solution”. The analytical expressions for C(τ), B(τ) and A(τ) for the normal solution
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case are:

C(τ) =
2
(

1−α
α

)
(1− e−ητ )

2η − (b+ η)(1− e−ητ )

B(τ) =
4
(

1−α
α

)
λMM̄(1− e−ητ/2)2

η[2η − (b+ η)(1− e−ητ )]

A(τ) =

(
1− α
α

)(
2λ2

MM̄
2

η2
+

σ2
M

η − b

)
τ

+
4
(

1−α
α

)
λ2
MM̄

2
[
(2b+ η)e−ητ − 4be−ητ/2 + 2b− η

]
η3 [2η − (b+ η)(1− e−ητ )]

+
2
(

1−α
α

)
σ2
M

η2 − b2
ln

∣∣∣∣2η − (b+ η)(1− e−ητ )

2η

∣∣∣∣ ,
where

η =

√
4λ2

M

[
1−

(
1− α
α

)
k∗
]

k∗ =

(
σM
λM

)2

+ 2ρsM

(
σM
λM

)
�

Proof of Proposition 3: Start from the Ornstein-Uhlenbeck process for the Sharpe

ratio dynamics:

dM = −λM (M − M̄) + σMdZM ,

which has the integrated form, from tj to tj + τ , equal to:

M(tj , tj + τ) = M̄ +
(
Mtj − M̄

)
e−λM τ + σM

∫ tj+τ

tj

eλM (τ−u)dZM (u).

Following Karatzas and Shreve (1991), the future risk premium is normally distributed

with mean, variance, auto-covariance and covariance with the risky-asset’s return equal

to:

E{M(tj , tj + τ)} = M̄ + (Mtj − M̄)eλM τ

V ar{M(tj , tj + τ)} =

(
σ2
M

2λM

)
(1− e−2λM τ )

Cov{M(u),M(v)} =

(
σ2
M

2λM

)(
e−λM |u−v| − e−λM (u+v)

)
Cov{M(u), dZ(v)} =

 ρsMσMe
−λM (u+v) for u < v

0 for u > v
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Recall now the expression for the normalized return process:

dRt = Mt dt+ dZ.

Its expected value from tj to tj + τ :

E{R(tj , tj + τ)} = M̄ + (Mtj − M̄)eλM τ

while its variance is

V ar{R(tj , tj + τ)} = τ +

∫ tj+τ

tj

∫ tj+τ

tj

Cov(X(u), X(v))du dv

+

∫ tj+τ

tj

∫ tj+τ

tj

Cov[X(u), dZ(v)]du

Using the expressions reported above we can re-write this last expression as:

V ar{(R(tj , tj + τ)} = τ +

(
σM
λM

)2(
τ +

2e−λM τ

λM
− e−2λM τ

2λM
− 3

2λM

)
+

(
2ρsMσM
λM

)(
τ +

e−λM τ

λM
− 1

λM

)
�

Proof of Theorem 1: Given the Sharpe ratio value Mtj , wealth Wtj and the investment

horizon τ , the value function has the following form:

1

1− α
γW 1−α

tj
= max

Xtj

1

1− α
X1−α
tj

[h(τ)]α (A-25)

+
1

1− α
γ(Wtj −Xtj )

1−αχαe

[
(r(1−α)−ρ)τ+A(τ)+B(τ)M+C(τ)M

2

2
| M=Mtj

]

where

χ ≡ (1− θ)
1−α
α . (A-26)

To obtain the optimal amount of wealth deposited in the transactions account X∗tj ,

differentiate Eq. A-25 w.r.t Xtj and set it equal to zero

X∗(Mtj , τ) = h(τ) γ−
1
α χ−1(Wtj −X

∗
tj

) e

[
1
α

(
(ρ−r(1−α))τ−A(τ)−B(τ)M−C(τ)M

2

2

)
|M=Mtj

]
. (A-27)

Now define:

S(Mtj , τ) ≡
[

1

α

(
(ρ− r(1− α))τ −A(τ)−B(τ)M − C(τ)

M2

2

)
| M = Mtj

]
(A-28)

K(Mtj , τ) ≡ h(τ) γ−
1
αχ−1eS(Mtj ,τ) (A-29)
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and use Eq. A-29 to re-write Eq. A-27 as:

X∗tj =
K(Mtj , τ)

K(Mtj , τ) + 1
Wtj . (A-30)

Plug this last expression into Eq. A-25 together with Eq. A-28 and solve for γ to obtain:

γ(Mtj , τ) =

(
K(Mtj , τ)

K(Mtj , τ) + 1

)1−α

[h(τ)]α + γ(Mtj , τ)

(
1

K(Mtj , τ) + 1

)1−α

χαe
−αS(Mtj ,τ). (A-31)

Equations (A-31) and (A-29) constitute a system of two equations and two unknowns,

conditioning on the value of the current Sharpe ratio Mtj . The solution is found by

substituting K(Mtj , τ) into γ(Mtj , τ):17

γ =

(
γ−

1
α h χ−1eS

)1−α
hα(

1 + γ−
1
α h χ−1eS

)1−α +
γ(

1 + γ−
1
α h χ−1eS

)1−αχαe−αS

γ =

(
γ−

1
α h χ−1eS

)1−α
hα + γχαe−αS(

1 + γ−
1
α h χ−1eS

)1−α
γ =

γ
[
γ−

1
α h1−α χα−1eSe−αShα + χαe−αS

]
(

1 + γ−
1
α h χ−1eS

)1−α
γ =

γe−αSχα
[
γ−

1
α χ−1eSh+ 1

]
(

1 + γ−
1
α h χ−1eS

)1−α .

Which can be re-written as:

γ =
γe−αSχα(

1 + γ−
1
α h χ−1eS

)−α
1 =

e−Sαχα(
1 + γ−

1
α h χ−1eS

)−α
1 =

(
1 + γ−

1
α h χ−1eS

)α
e−Sαχα

eSαχ−α =
(

1 + γ−
1
α h χ−1eS

)α
eSχ−1 =

(
1 + γ−

1
α h χ−1eS

)
eSχ−1 − 1 =

(
γ−

1
α h χ−1eS

)
(
γ−

1
α h χ−1eS

)
= eSχ−1 − 1.

17We temporarily suppress the dependence on Mtj and τ to ease the notation
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Solve the expression above for γ to obtain:

γ−
1
α =

eSχ−1 − 1

h χ−1eS

γ =

(
eSχ−1 − 1

h χ−1eS

)−α
γ =

(
h χ−1eS

eSχ−1 − 1

)α
γ =

(
1− e−ωτ

)α
ω−α

(
eSχ−1

eSχ−1 − 1

)α
γ =

(
1− e−ωτ

1− χe−S

)α
ω−α

Replace the expression for γ derived above into K to obtain:

K = γ−
1
α hχ−1eS

=

(
1− χe−S

1− e−ωτ

)
ω

(1− e−ωτ )

ω
χ−1eS

=
(

1− χe−S
)
χ−1eS

= χ−1eS − 1.

Hence, the solution to the system of equations is:

γ(Mtj , τ) =

(
1− e−ωτ

1− χe−S(Mtj ,τ)

)α
ω−α

K(Mtj , τ) = χ−1eS(Mtj ,τ) − 1. �
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2 Asset Allocation with

High-Dimensional Information

Sets

Abstract

We employ a semi-parametric method known as Boosted Regression Trees (BRT)

to forecast stock returns and volatility at the monthly frequency. BRT is a statistical

method that generates forecasts on the basis of large sets of conditioning information

without imposing strong parametric assumptions such as linearity or monotonicity. It

applies soft weighting functions to the predictor variables and performs a type of model

averaging that increases the stability of the forecasts and therefore protects it against

overfitting. Our results indicate that expanding the conditioning information set results

in greater out-of-sample predictive accuracy compared to the standard models proposed

in the literature and that the forecasts generate profitable portfolio allocations even when

market frictions are considered. By working directly with the mean-variance investor’s

conditional Euler equation we also characterize semi-parametrically the relation between

the various covariates constituting the conditioning information set and the investor’s

optimal portfolio weights. Our results suggest that the relation between predictor vari-

ables and the optimal portfolio allocation to risky assets is highly non-linear.

64
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2.1 Introduction

Information plays a central role in modern finance. Investors are exposed to

an ever-increasing amount of new facts, data and statistics every minute of the day.

Assessing the predictability of stock returns requires formulating equity premium fore-

casts on the basis of large sets of conditioning information, but conventional statistical

methods fail in such circumstances. Non-parametric methods face the so-called “curse-

of-dimensionality”. Parametric methods are often unduly restrictive in terms of func-

tional form specification and are subject to data overfitting concerns as the number of

parameters estimated increases. The common practice is to use linear models and re-

duce the dimensionality of the forecasting problem by way of model selection and/or

data reduction techniques. But these methods exclude large portions of the conditioning

information set and therefore potentially reduce the accuracy of the forecasts. To over-

come these limitations we employ a novel semi-parametric statistical method known as

Boosted Regression Trees (BRT). BRT generates forecasts on the basis of large sets of

conditioning variables without imposing strong parametric assumptions such as linearity

or monotonicity. It does not overfit because it performs a type of model combination

that features elements such as shrinkage and subsampling. Our forecasts outperform

those generated by established benchmark models in terms of both mean squared error

and directional accuracy. They also generate profitable portfolio allocations for mean-

variance investors even when market frictions are accounted for. Our analysis also shows

that the relation between the predictor variables constituting the conditioning informa-

tion set and the investors’ optimal portfolio allocation to risky assets is, in most cases,

non-linear and non-monotonic.

Our paper contributes to the long-standing literature assessing the predictability

of stock returns. Over the nineties and the beginning of the twenty-first century the

combination of longer time-series and greater statistical sophistication have spurred a

large number of attempts to add evidence for or against the predictability of asset re-

turns and volatility. In-sample statistical tests show a high degree of predictability for

a number of variables: Rozeff (1984), Fama and French (1988), Campbell and Shiller

(1988a,b), Kothari and Shanken (1997) and Pontiff and Schall (1998) find that valuation
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ratios predict stock returns, particularly so at long horizons; Fama and Schwert (1977),

Keim and Stambaugh (1986), Campbell (1987), Fama and French (1989), Hodrick (1992)

show that short and long-term treasury and corporate bonds explain variations in stock

returns; Lamont (1998), Baker and Wurgler (2000) show that variables related to aggre-

gate corporate payout and financing activity are useful predictors as well. While these

results are generally encouraging, there are a number of doubts regarding their accu-

racy as most of the regressors considered are very persistent, making statistical inference

less than straightforward; see, for example, Nelson and Kim (1993), Stambaugh (1999),

Campbell and Yogo (2006) and Lewellen, Nagel, and Shanken (2010). Furthermore, data

snooping may be a source of concern if researchers are testing for many different model

specifications and report only the statistically significant ones; see, for example, Lo and

MacKinlay (1990), Bossaerts and Hillion (1999) and Sullivan, Timmermann, and White

(1999). While it is sometimes possible to correct for specific biases, no procedure can

offer full resolution of the shortcomings that affect the in-sample estimates.

Due to the limitations associated with in-sample analyses, a growing body of lit-

erature has argued that out-of-sample tests should be employed instead; see, for example,

Pesaran and Timmermann (1995, 2000), Bossaerts and Hillion (1999), Marquering and

Verbeek (2005), Campbell and Thompson (2008), Goyal and Welch (2003) and Welch

and Goyal (2008). There are at least two reasons why out-of-sample results may be

preferable to in-sample ones. The first is that even though data snooping biases can be

present in out-of-sample tests, they are much less severe than their in-sample counter-

parts. The second is that out-of-sample tests facilitate the assessment of whether return

predictability could be exploited by investors in real time, therefore providing a natural

setup to assess the economic value of predictability.

The results arising from the out-of-sample studies are mixed and depend heav-

ily on the model specification and the conditioning variables employed.1 In particular,

many of the studies conducted so far are characterized by one or more of these limitations.

First, the forecasts are generally formulated using simple linear regressions. The choice

is dictated by simplicity and the implicit belief that common functional relations can be

1The data frequency also affects the results. Stock returns are found to be more predictable at
quarterly, annual or longer horizons, while returns at the monthly frequency are generally considered the
most challenging to predict.
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approximated reasonably well by linear ones.2 Most asset pricing theories underlying

the empirical tests, however, do not imply linear relationships between the equity pre-

mium and the predictor variables, raising the issue whether the mis-specification implied

by linear regressions is economically large. Second, linear models overfit the training

dataset and generalize poorly out-of-sample as the number of regressors increases, so

parsimonious models need to be employed at the risk of discarding valuable conditioning

information. Approaching the forecasting exercise by way of standard non-parametric

or semi-parametric methods is generally not a viable option because these methods en-

counter “curse-of-dimensionality” problems rather quickly as the size of the conditioning

information set increases. Third, the models tested are generally constant: different

model specifications are proposed and their performance is assessed ex-post. Although

interesting from an econometric perspective, these findings are of little help for an in-

vestor interested in exploiting the conditioning information in real time as he would not

know what model to choose ex-ante.3 Finally, apart from some important exceptions,

much of the literature on financial markets prediction focuses on formulating return

forecasts and little attention is dedicated to analyzing quantitatively the economic value

associated with them for a representative investor.4

While conditional returns are a key element needed by risk-averse investors to

formulate asset allocations, the conditional second moments of the return distribution are

crucial as well. In fact, they are the only two pieces of information required by a mean-

variance investor to formulate optimal portfolio allocations. It is widely known that

stock market volatility is predictable and a number of studies attempts to identify which

macroeconomic and financial time-series can improve volatility forecasts at the monthly

or longer horizons.5 But it is still unclear whether that conditioning information could

have been incorporated in real-time and how much an investor would have benefitted

from it.

2Another reason underlying the use of linear frameworks is that those statistical techniques were
known by investors since the beginning of the twentieth century. For this and other issues related to
“real-time” forecasts, see Pesaran and Timmermann (2005).

3For exceptions, see Dangl and Halling (2008) and Johannes, Korteweg, and Polson (2009).
4For exceptions, see Campbell and Thompson (2008) and Marquering and Verbeek (2005).
5See, for example, Campbell (1988), Breen, Glosten, and Jagannathan (1989), Marquering and Ver-

beek (2005), Engle and Rangel (2005) and Engle, Ghysels, and Sohn (2006), Lettau and Ludvigson (2009)
and Paye (2010).
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In this paper we consider a representative mean-variance investor that exploits

publicly available information to formulate excess returns and volatility forecasts using

Boosted Regression Trees (BRT). BRT finds its origin in the machine learning literature,

it has been studied extensively in the statistical literature and has been employed in the

field of financial economics by Rossi and Timmermann (2010) to study the relation be-

tween risk and return. The appeal of this method lies in its forecasting accuracy as

well as its ability to handle high dimensional forecasting problems without overfitting.

These features are particularly desirable in this context, because they allow us to con-

dition our forecasts on all the major conditioning variables that have been considered

so far in the literature, guaranteeing that our analysis is virtually free of data-snooping

biases. BRT also provide a natural framework to assess the relative importance of the

various predictors at forecasting excess returns and volatility. Finally, the method al-

lows for semi-parametric estimates of the functional form linking predictor and predicted

variables, giving important insights on the limitations of linear regression.

Our analysis answers three questions. The first is whether macroeconomic and

financial variables contain information about expected stock returns and volatility that

can be exploited in real time by a mean-variance investor. For stock returns we use

the major conditioning variables proposed so far in the literature and summarized by

Welch and Goyal (2008). We propose two models of volatility forecasts. The first models

volatility as a function of monthly macroeconomic and financial time-series as well as past

volatility. The second is inspired by the family of MIDAS models proposed by Ghysels,

Santa-Clara, and Valkanov (2006) and models monthly volatility as a function of lagged

daily squared returns. We call this model “semi-parametric MIDAS” and show that its

performance is superior to that of its parametric counterpart. Genuine out-of-sample

forecasts require not only that the parameters are estimated recursively, but also that

the conditioning information employed is selected in real-time. For this reason, every

predictive framework under consideration starts from the large set of predictor variables

employed by Welch and Goyal (2008) and selects recursively the model specification. Our

estimates show that BRT forecasts outperform the established benchmarks and possess

significant market timing in both returns and volatility.

A related question we address is whether the conditioning information contained
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in macro and financial time-series can be exploited to select the optimal portfolio weights

directly, as proposed by Ait-Sahalia and Brandt (2001). Rather than forecasting stock

returns and volatility separately and computing optimal portfolio allocations in two

separate steps, we model directly the optimal portfolio allocation as a target variable.

Our approach can be interpreted as the semi-parametric counterpart of Ait-Sahalia and

Brandt (2001),6 because instead of reducing the dimensionality of the problem faced by

the investor using a single index model, we employ a semi-parametric method that avoids

the so-called “curse of dimensionality”. Our analysis gives rise to two findings. First,

formal tests of portfolio allocation predictability show that optimal portfolio weights are

time-varying and forecastable; second, we show that the relation between the predictor

variables constituting the conditioning information set and the mean-variance investor’s

optimal portfolio allocation to risky assets is highly non-linear.

The third question we analyze is whether the generated forecasts are economically

valuable in terms of the profitability of the portfolio allocations they imply. We assess this

by computing excess returns, Sharpe ratios and Treynor-Mazuy market timing tests for

the competing investment strategies. Our results highlight that BRT forecasts translate

into profitable portfolio allocations. We also compute the realized utilities and the break-

even monthly portfolio fees that a representative agent would be willing to pay to have his

wealth invested through the strategies we propose, compared to the benchmark of placing

100% of his wealth in the market portfolio. We show that the break-even portfolio fees

are sizable even when transaction costs as well as shortselling and borrowing constraints

are considered. For example, a representative investor with a risk-aversion coefficient of

4 who faces short-selling and borrowing constraints as well as transaction costs would

be willing to pay yearly fees equal to 4% of his wealth to have his capital invested in the

investment strategy we propose rather than the market portfolio.

The rest of the paper is organized as follows. Section 2.2 introduces our empirical

framework and describes how stock returns and volatility are predicted. In Section 2.3

we show how we employ boosted regression trees to directly select optimal portfolio

allocations. Section 2.4 presents results for the out-of-sample accuracy of the model,

6It is important to clarify that our analysis applies only to the mean-variance investor, while Ait-
Sahalia and Brandt (2001) work with power utility investors as well.
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conducts formal tests of market timing in both returns and volatility and evaluates

the performance of empirical trading strategies based on BRT forecasts. Section 2.5

concludes.

2.2 Empirical Framework and Full-Sample Results

Consider a representative agent that has access to a risk-free asset paying a

return of rf,t+1 and the market portfolio with a return rt+1 and volatility σt+1. The

agent’s utility function is affected only by the first and second moments of the returns

distribution, i.e. his utility function takes the form

Ut(·) = Et{rp,t+1} −
1

2
γV art{rp,t+1}, (1)

where γ is the coefficient of risk-aversion, rp,t+1 = wt+1|t rt+1 + (1− wt+1|t) (rf,t+1) and

wt+1|t is the proportion of wealth allocated to the risky asset for period t + 1 given

the information available as of time t. Given the expected returns and volatility of the

market portfolio, the investor chooses his asset allocation by solving the maximization

problem

max
wt+1|t

[
Et
{
wt+1|t rt+1 + (1− wt+1|t)

(
rf,t+1

)}
−

1

2
γV art

{
wt+1|t rt+1 + (1− wt+1|t)

(
rf,t+1

)}]
,

leading to the optimal portfolio weights

w∗t+1|t =
Et{rt+1} − rf,t+1

γV art{rt+1}
. (2)

When we impose realistic short-selling and borrowing constraints, the optimal weights

have to lie between 0 and 1, so they become

wrt+1|t =


0 if w∗t+1|t < 0,

w∗t+1|t if 0 ≤ w∗t+1|t ≤ 1

1 if w∗t+1|t > 1.

The objects Et{rt+1} = µt+1|t and V art{rt+1} = σ2
t+1|t in Eq. 2 represent conditional

expectations of returns and variance on the basis of the investor’s conditioning informa-

tion at time t. In this paper we allow these conditional expectations to be non-linear
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functions of observable macroeconomic and financial time-series, the idea being that the

linearity assumption generally adopted in financial economics may be costly in terms of

forecasting accuracy and portfolio allocation profitability.

The conditioning information we use are the twelve predictor variables previously

analyzed in Welch and Goyal (2008) and by many others subsequently. Stock returns are

tracked by the S&P 500 index and include dividends. A short T-bill rate is subtracted

to obtain excess returns. The predictor variables from the Goyal and Welch analysis

are available during 1927-2005 and we extend their sample up to the end of 2008.7 The

predictor variables pertain to three large categories. The first goes under the heading

of “risk and return” and contains lagged returns (exc), long-term bond returns (ltr)

and volatility (vol). The second, called “fundamental to market value” includes the

log dividend-price ratio (dp) and the log earnings-price ratio (ep). The third category

comprises measures of interest rate term structure and default risk and includes the

three-month T-bill rate (Rfree), the T-bill rate minus a three-month moving average

(rrel), the yield on long term government bonds (lty), the term spread measured by the

difference between the yield on long-term government bonds and the three-month T-bill

rate (tms) and the yield spread between BAA and AAA rated corporate bonds (defspr).

We also include inflation (infl) and the log dividend-earnings ratio (de). Additional

details on data sources and the construction of these variables are provided by Welch

and Goyal (2008). All predictor variables are appropriately lagged so they are known at

time t for purposes of forecasting returns in period t+ 1.

For stock returns, conditional expectations are commonly generated according to

the following linear model

µ̂t+1|t = β′µxt,

where xt represents a set of publicly available predictor variables and βµ is a vector

of parameter estimates obtained via ordinary least squares. The linear specification is

generally imposed for simplicity at the expense of being potentially misspecified. The

7We are grateful to Amit Goyal and Ivo Welch for providing this data. A few variables were excluded
from the analysis since they were not available up to 2008, including net equity expansion and the
book-to-market ratio. We also excluded the CAY variable since this is only available quarterly since
1952.
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sources of misspecification are at least two. The first relates to what information is

incorporated in the formulation of the forecasts. Asset pricing models suggest a wide

array of economic state variables for both returns and volatility, but linear frameworks are

prone to over-fitting if the number of parameters to be estimated is large compared to the

number of observations, forcing the agent to exclude a large portion of the conditioning

information available. The second relates to how information is incorporated in the

forecasts: theoretical frameworks rarely identify linear relations between the variables

at hand, so empirical estimates based on ordinary least squares may not be appropriate.

Note however that, in our context, misspecification per se is not a source of concern as

long as it does not translate into lower predictive accuracy, which is ultimately what

matters for portfolio allocation.

To address this issue, we extend the basic linear regression model to a class of

more flexible models known as Boosted Regression Trees. These have been developed

in the machine learning literature and can be used to extract information about the

relationship between the predictor variables xt and rt+1 based only on their joint em-

pirical distribution. To get intuition for how regression trees work and explain why we

use them in our analysis, consider the situation with a continuous dependent variable Y

(e.g., stock returns) and two predictor variables X1 and X2 (e.g., the volatility and the

default spread). The functional form of the forecasting model mapping X1 and X2 into

Yt is unlikely to be known, so we simply partition the sample support of X1 and X2 into

a set of regions or “states” and assume that the dependent variable is constant within

each partition.

More specifically, by limiting ourselves to lines that are parallel to the axes track-

ing X1 and X2 and by using only recursive binary partitions, we carve out the state space

spanned by the predictor variables. We first split the sample support into two states

and model the response by the mean of Y in each state. We choose the state variable

(X1 or X2) and the split point to achieve the best fit. Next, one or both of these states

is split into two additional states. The process continues until some stopping criterion

is reached. Boosted regression trees are additive expansions of regression trees, where

each tree is fitted on the residuals of the previous tree. The number of trees used in the

summation is also known as the number of boosting iterations.
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This approach is illustrated in Figure 1, where we show boosted regression trees

that use two state variables, namely the lagged values of the default spread and market

volatility, to predict excess returns on the S&P500 portfolio. We use “tree stumps” (trees

with only two terminal nodes), so every new boosting iteration generates two additional

regions. The graph on the left uses only three boosting iterations, so the resulting

model splits the space spanned by the two regressors in six regions with one split along

the default spread axis and two splits along the volatility axis. Within each state the

predicted value of stock returns is constant. The predicted value of excess returns is

smallest for high values of volatility and low values of the default spread, and highest

for medium values of volatility and high values of the default spread. So already at

three boosting iterations BRT highlights non-linearities in the functional form relating

volatility and stock returns. With only three boosting iterations the model is quite

coarse, but the fit becomes more refined as the number of boosting iterations increase.

To illustrate this we plot on right the fitted values for a BRT model with 5,000 boosting

iterations. Now the plot is much more smooth, but clear similarities between the two

graphs remain.

Figure 1 illustrates how boosted regression trees can be used to approximate

the relation between the dependent and independent variables by means of a series of

piece-wise constant functions. This approximation is good even in situations where, say,

the true relation is linear, provided that sufficiently many boosting iterations are used.

Next, we provide a more formal description of the methodology and how we implement

it in our study.8

2.2.1 Regression Trees

Suppose we have P potential predictor (“state”) variables and a single dependent

variable over T observations, i.e. (xt, yt+1) for t = 1, 2, ..., T , with xt = (xt1, xt2, ..., xtp).

As illustrated in Figure 1, fitting a regression tree requires deciding (i) which predictor

variables to use to split the sample space and (ii) which split points to use. The regression

trees we use employ recursive binary partitions, so the fit of a regression tree can be

8Our description draws on Hastie, Tibshirani, and Friedman (2009) and Rossi and Timmermann
(2010) who provide a more in-depth coverage of the approach.
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written as an additive model:

f(x) =
J∑
j=1

cjI{x ∈ Sj}, (3)

where Sj , j = 1, ..., J are the regions we split the space spanned by the predictor variables

into, I{} is an indicator variable and cj is the constant used to model the dependent

variable in each region. If the L2 norm criterion function is adopted, the optimal constant

is ĉj = mean(yt+1|xt ∈ Sj), while it is ĉj = median(yt+1|xt ∈ Sj) for the L1 norm

instead.

The globally optimal splitting point is difficult to determine, particularly in cases

where the number of state variables is large. Hence, a sequential greedy algorithm is

employed. Using the full set of data, the algorithm considers a splitting variable p and

a split point s so as to construct half-planes

S1(p, s) = {X|Xp ≤ s} and S2(p, s) = {X|Xp > s}

that minimize the sum of squared residuals:

min
p,s

min
c1

∑
xt∈S1(p,s)

(yt+1 − c1)2 + min
c2

∑
xt∈S2(p,s)

(yt+1 − c2)2

 . (4)

For a given choice of p and s the fitted values, ĉ1 and ĉ2, are

ĉ1 =
1∑T

t=1 I{xt ∈ S1(p, s)}

T∑
t=1

yt+1I{xt ∈ S1(p, s)},

ĉ2 =
1∑T

t=1 I{xt ∈ S2(p, s)}

T∑
t=1

yt+1I{xt ∈ S2(p, s)}. (5)

The best splitting pair (p, s) in the first iteration can be determined by searching

through each of the predictor variables, p = 1, .., P . Given the best partition from the

first step, the data is then partitioned into two additional states and the splitting process

is repeated for each of the subsequent partitions. Predictor variables that are never used

to split the sample space do not influence the fit of the model, so the choice of splitting

variable effectively performs variable selection.

Regression trees are generally employed in high-dimensional datasets where the

relation between predictor and predicted variables is potentially non-linear. This be-

comes important when modeling stock returns because numerous predictor variables
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have been proposed so far in the literature. Furthermore, the theoretical frameworks

rarely imply a linear or monotonic relation between predictor and predicted variable.

On the other hand, the approach is sequential and successive splits are performed on

fewer and fewer observations, increasing the risk of fitting idiosyncratic data patterns.

Furthermore, there is no guarantee that the sequential splitting algorithm leads to the

globally optimal solution. To deal with these problems, we next consider a method

known as boosting.

2.2.2 Boosting

Boosting is based on the idea that combining a series of simple prediction models

can lead to more accurate forecasts than those available from any individual model.

Boosting algorithms iteratively re-weight data used in the initial fit by adding new trees in

a way that increases the weight on observations modeled poorly by the existing collection

of trees. From above, recall that a regression tree can be written as:

T
(
x; {Sj , cj}Jj=1

)
=

J∑
j=1

cjI{x ∈ Sj} (6)

A boosted regression tree is simply the sum of regression trees:

fB(x) =

B∑
b=1

Tb
(
x; {Sb,j , cb,j}Jj=1

)
, (7)

where Tb
(
x; {Sb,j , cb,j}Jj=1

)
is the regression tree used in the b-th boosting iteration and

B is the number of boosting iterations. Given the model fitted up to the (b − 1) − th

boosting iteration, fb−1(x), the subsequent boosting iteration seeks to find parameters

{Sj,b , cj,b}Jj=1 for the next tree to solve a problem of the form

{Ŝj,b, ĉj,b}Jj=1 = min
{Sj,b ,cj,b}Jj=1

T−1∑
t=0

[
yt+1 −

(
fb−1(xt) + Tb

(
xt; {Sj,b , cj,b}Jj=1

))]2
. (8)

For a given set of state definitions (“splits”), Sj,b, j = 1, .., J , the optimal constants, cj,b,

in each state are derived iteratively from the solution to the problem

ĉj,b = min
cj,b

∑
xt∈Sj,b

[yt+1 − (fb−1(xt) + cj,b)]
2

= min
cj,b

∑
xt∈Sj,b

[et+1,b−1 − cj,b]2 , (9)
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where et+1,b−1 = yt+1 − fb−1(xt) is the empirical error after b − 1 boosting iterations.

The solution to this is the regression tree that most reduces the average of the squared

residuals
∑T

t=1 e
2
t+1,b−1 and ĉj,b is the mean of the residuals in the jth state.

Forecasts are simple to generate from this approach. The boosted regression tree

is first estimated using data from t = 1, ..., t∗. Then the forecast of yt∗+1 is based on the

model estimates and the value of the predictor variable at time t∗, xt∗ . Boosting makes

it more attractive to employ small trees (characterized by only two terminal nodes) at

each boosting iteration, reducing the risk that the regression trees will overfit. Moreover,

by summing over a sequence of trees, boosting performs a type of model averaging that

increases the stability and accuracy of the forecasts.9

2.2.3 Implementation

Our estimations follow the stochastic gradient boosting approach of Friedman

(2001) and Friedman (2002) with J = 2 nodes. The baseline implementation employs

10,000 boosting iterations, but we conduct a number of robustness checks to show that

the results are not very sensitive to this choice.

We adopt three refinements to the basic boosted regression tree methodology.

The first is shrinkage. As with ridge regression and neural networks, shrinkage is a

simple regularization technique that diminishes the risk of over-fitting by slowing the

rate at which the empirical risk is minimized on the training sample. We use a shrinkage

parameter, 0 < λ < 1, which determines how much each boosting iteration contributes

to the overall fit:

fb(x) = fb−1(x) + λ
J∑
j=1

cj,bI{x ∈ Sj,b}. (10)

Following common practice we set λ = 0.001 as it has been found (Friedman (2001))

that the best empirical strategy is to set λ very small and correspondingly increase the

number of boosting iterations.

The second refinement is subsampling and is inspired by “bootstrap aggregation”

(bagging), see Breiman (1996). Bagging is a technique that computes forecasts over

bootstrap samples of the data and averages them in a second step, therefore reducing

9See Rapach, Strauss, and Zhou (2010) for similar results in the context of linear regression.
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the variance of the final predictions. In our context, the procedure is adapted as follows:

at each boosting iteration we sample without replacement one half of the training sample

and fit the next tree on the sub-sample obtained.

Finally, our empirical analysis minimizes T−1
∑T

t=1 |yt+1−f(xt)|, i.e. mean abso-

lute errors. Under this criterion function, the optimal forecast is the conditional median

of yt+1 rather than the conditional mean entailed by squared error loss. We do this in the

light of a large literature which suggests that squared-error loss places too much weight

on observations with large absolute residuals. This is a particularly important problem

for fat-tailed distributions such as those observed for stock returns and volatility. By

minimizing absolute errors, our regression model is likely to be more robust to outliers

such as returns during October 1987, thus reducing the probability of overfitting.

2.2.4 Conditional Volatility Estimates

Conditional volatility estimates have taken various shapes and forms in the recent

past. Paye (2010), Ludvigson and Ng (2007) and Marquering and Verbeek (2005) propose

a linear specification, whereby estimates of monthly return volatility, σt+1, are obtained

from high frequency data and are modeled according to the following linear specification:

σ̂lint+1|t = β′σxt

Even though these methods give interesting in-sample results, their out-of-sample per-

formance was never shown to be convincing and this is probably why linear regression

estimates are not so popular in this strand of the literature.

Volatility forecasts are generally based on GARCH-type frameworks. These as-

sume a model for the variance of the residuals in a regression rt = µt + σt εt, where

var(εt) = 1. For example, the GARCH (1,1) model for the variance is defined as follows:

σ̂Garcht+1|t =
√
ω + α(rt − µt)2 + βσt =

√
ω + ασtε2t + βσt

where ω, α and β are estimated via maximum likelihood.

More recently, Ghysels, Santa-Clara, and Valkanov (2005) proposed a new family

of models under the heading MIDAS (MIxed DAta Sampling). Their model adopts the
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following estimator for the conditional variance of monthly returns:

σ̂MIDAS
t+1|t = 22

D∑
d=0

wdr
2
t−d, (11)

where

wd(κ1, κ2) =

(
d
D

)κ1−1 (
1− d

D

)κ2−1∑D
i=0

(
i
D

)κ1−1 (
1− i

D

)κ2−1 (12)

for the “Beta” weights model that we adopt in this paper. “D” represents the maximum

lag length which is set to 250 days following Ghysels, Santa-Clara, and Valkanov (2005).

We propose two models for conditional volatility. The first extends the linear

framework presented above as we estimate

σ̂BRTt+1|t = fσ(xt|θ̂σ), (13)

where xt represents the same set of publicly available predictor variables we employ to

construct conditional expected returns and θ̂σ are estimates of the parameters obtained

via boosted regression trees. The second specification is similar to that of Eq. 13, with

the difference that xt is now a vector consisting of 250 days of lagged squared returns.

Because semi-parametric in nature and inspired by MIDAS, we call this model “Semi-

Parametric MIDAS”.

The exercise we undertake has three main objectives. The first is to understand

what kind of information Semi-Parametric MIDAS exploits compared to the paramet-

ric MIDAS specification. Second, we are able to assess whether relaxing the MIDAS

parametric assumptions results in more accurate out-of-sample forecasts. Third, we can

compare the forecasts of “Semi-Parametric MIDAS” to those of Boosted Regression Trees

that exploit macroeconomic and financial variables and assess what type of information

is more valuable to forecast aggregate market volatility at the monthly frequency.

2.2.5 MIDAS and Semi-Parametric MIDAS

MIDAS originates from the idea that expanding the information set on which

volatility forecasts are conditioned should increase their precision. While realized volatil-

ity frameworks generally use arbitrary volatility lags to forecast the future, MIDAS mod-

els fit volatility by weighting past observations optimally. For the case of monthly data,
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this translates into forecasting a given month’s volatility using daily squared returns

lagged up to a year: i.e. 250 days. In order to reduce the dimensionality of the problem

specific weighting functions are assumed (the Beta weights reported in Eq. 12 is one

possible example) and their parameters are obtained via Quasi-Maximum Likelihood.

The optimal weights determine how past information is incorporated in the predictive

model to generate volatility forecasts.

For boosted regression trees we can construct a comparable measure of how past

information affects volatility forecasts. We consider the reduction in the empirical error

every time one of the 250 lagged squared return, xl,·, is used to split the tree. Summing

the reductions in empirical errors (or improvements in fit) across the nodes in the tree

gives a measure of the variable’s influence (Breiman (1984)):

Il(T ) =
J∑
j=2

∆|e(j)|I(LSR(j) = l), (14)

where ∆|e(j)| = T−1
∑T

t=1 (|et(j − 1)| − |et(j)|), is the reduction in the (absolute) em-

pirical error at the j’th node and LSR(j) is the lagged squared return chosen at this

node, so I(LSR(j) = l) equals one if lag l is chosen and zero otherwise. The sum is

computed across all time periods, t = 1, ..., T and over the J − 1 internal nodes of the

tree.

The rationale for this measure is that at each node, one of the 250 lagged squared

returns gets selected to partition the sample space into two sub-states. The particular lag

chosen at node j achieves the greatest reduction in the empirical risk of the model fitted

up to node j−1. The importance of each lagged return, xl,·, is the sum of the reductions

in the empirical errors computed over all internal nodes for which it was chosen as the

splitting variable. If a lag never gets chosen to conduct the splits, its influence is zero.

Conversely, the more frequently a lag is used for splitting and the bigger its effect on

reducing the model’s empirical risk, the larger its influence.

This measure of influence can be generalized by averaging over the number of

boosting iterations, B, which generally provides a more reliable measure of influence:

Īl =
1

B

B∑
b=1

Il(Tb). (15)
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This is best interpreted as a measure of relative influence that can be compared across

squared lagged returns. We therefore report the following measure of relative influence,

RI l, which sums to one:

RI l = Īl/

L∑
l=1

Īl. (16)

It should be clear that the relative influence measure we propose is the semi-

parametric counterpart of the popular MIDAS weights. In Figure 2 we aggregate in-

dividual days’ relative influence and MIDAS (Beta) weights in 1, 2, 3, and 4 - week

periods and compare the relative importance that the two procedures give to past infor-

mation. The weights obtained via the semi-parametric procedure are less smooth than

the MIDAS (Beta) ones as we do not impose any parametric restriction on their shape,

and yet it is comforting to see that the weighting functions are similar across the two

procedures. There are however some important differences as semi-parametric MIDAS

gives greater weight to more recent observations compared to MIDAS (Beta): the first

six weeks of lagged squared returns are given more weight in our model at the expense of

the following 10-15 weeks of returns that are underweighted compared to MIDAS (Beta).

The most distant thirty weeks of data are given very little weight by both models.

The fact that the two procedures exploit differently the same set of conditioning

information raises the question of which one exploits it in a more effective fashion.

We answer this question in Section 2.4 that is dedicated to assessing the out-of-sample

performance of the forecasting models at hand.

2.3 Predicting Optimal Portfolio Allocations

In the previous section we have focused our attention on forecasting returns

and volatility separately and constructing optimal portfolio allocations in a second step.

Given the set of conditioning information we rely on, a natural question is whether it is

possible to forecast directly the optimal portfolio allocation and whether such approach

leads to more or less profitable forecasts in a portfolio allocation setting. Furthermore,

given that the optimal portfolio allocation for a mean-variance investor is the ratio of ex-

pected excess return and variance, scaled by the coefficient of risk-aversion,10 conditional

10We set it to 4 as a commonly chosen parameter in the literature
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optimal portfolio weights represent a natural measure of the expected price of risk.

We construct optimal portfolio allocations based on market returns rt+1 and

volatility σt+1 as well as the risk-aversion coefficient γ

wrealt+1 =
rt+1 − rf,t+1

γ σ2
t+1

, (17)

and use it as our target variable. We then estimate optimal portfolio allocations based

on time t information set

ŵrealt+1|t = fw(xt|θ̂w), (18)

where xt represents the same set of publicly available predictor variables we use for

returns and volatility and θ̂w are estimates of the parameters obtained via Boosted

Regression Trees. There are very few papers that have analyzed the direct relationship

between economic activity and optimal portfolio weights, see Ait-Sahalia and Brandt

(2001) as one example, and there are virtually no economic theories that model this

relation. It then seems particularly appropriate to present our exploratory findings on

the relation between conditional portfolio weights and the variables constituting the

conditioning information set.

This task is more complicated than usual as regression trees do not impose any

restrictions on the functional form of the relationship between the dependent variable −

the optimal portfolio weight−and the predictor variables, X. To address this point, we

proceed as follows. Suppose we select a particular predictor variable, Xp, from the set

of P predictor variables X = (X1, X2, ..., XP ) and denote the remaining variables X−p,

i.e. X−p = X\{Xp}. We use the following measure of the average marginal effect of Xp

on the dependent variable

fp(Xp) = EX−pf(Xp, X−p). (19)

This is called the average partial dependence measure. It fixes the value of Xp and

averages out the effect of all other variables. By, repeating this process for different

values of Xp, we trace out the marginal effect this covariate has on the predicted variable.

An estimate of fp(Xp) can be computed by averaging over the sample observa-

tions

f̄p(Xp) =
1

T

T∑
t=1

f(Xp, xt,−p), (20)
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where xt,−p = {x1,−p, ..., xT,−p} are the values of X−p occurring in the data.

Over the full sample, the predictors with the greatest relative influence are the log

earnings price ratio (ep), inflation (infl), the log dividend earnings ratio (de), the yield on

long term government bonds (lty), stock market volatility (vol) and the three-month T-

bill rate (Rfree) that have a relative influence of 16.63%, 15.88%, 13.94%, 9.38%, 7.23%

and 6.67%, respectively.

In Figure 3 we present their partial dependence plots. The relationship between

the optimal weight in the risky asset and the log earnings price ratio is positive, it

is strongest at low or high levels of this ratio and gets weaker at medium levels. The

variation in the expected optimal portfolio weight as a function of the earnings-price ratio

is economically large, spanning a range of 500% and entailing long and highly levered

positions for log earnings price ratios greater than −2.2 and short positions for ratios

smaller than −3.3. The partial dependence plot for inflation is particularly interesting.

At negative levels of inflation the relationship between the rate of inflation and the

optimal risky investment is either flat or rising. Thus in a state of deflation, rising

consumer prices leads to a higher exposure to risky assets by the investor. Conversely,

at positive levels of inflation, higher consumer prices become bad news for stocks. Again,

the effect of inflation is quite strong in economic terms: an inflation rate equal to zero

is associated with a long and levered position in the stock market, while inflation rates

greater than 1% are associated with no exposure to the risky asset. The log dividend

earnings ratio is inversely related to the investment in risky assets and its sensitivity is

greatest for medium values of the ratio and weakest at low and high levels of the ratio.

The variation is again quite large in economic terms as the difference between optimal

portfolio weights at small and large values of the log dividend earnings ratio is 200%. The

relation between optimal portfolio weights and long-term government bonds, volatility

and the T-bill rate are all highly nonmonotonic. The optimal investment in risky asset

is increasing for low values of the predictors and decreasing for high values of them.

Rossi and Timmermann (2010) perform a similar analysis for return and volatility

prediction. Their results highlight that the three most important predictors for the equity

premium are inflation, the log earnings price ratio and the de-trended T-bill rate; the ones

for volatility are the lag volatility, the default spread and the lag return on the market
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portfolio. They also uncover strong non-linearities in the functional form relating the

predictor and predicted variables. These findings imply that linear models are potentially

misspecified. In order to assess whether correcting for such misspecification translates

into greater predictive accuracy, we assess next the out-of-sample forecasting performance

of boosted regression trees and other benchmark models commonly employed in the

literature.

2.4 Out-of-Sample Results.

In this section we present the out-of-sample forecasting performance of boosted

regression trees and other benchmark forecasting methods. We present the results in

terms of Mean Squared Error as it is the most common loss function for forecasting

problems with continuous dependent variables. We also present directional accuracy re-

sults as it is known since Leitch and Tanner (1991) that the latter forecast evaluation

criterion is closely related to the profitability of financial forecasts. Finally, we imple-

ment a number of forecasting accuracy tests proposed in the literature. Throughout

the empirical section we use 1969 as the starting value for our out-of-sample evaluation

period. The choice is driven by the need to have a large training sample and allow for a

40-year test sample.

2.4.1 Returns

Panel A of Table 1 reports the results for return prediction in terms of mean-

squared error (MSE) and directional accuracy. The results are reported for BRT as well

as two competing models proposed in the literature: the prevailing mean proposed by

Welch and Goyal (2008) and a multivariate linear regression model selected recursively

using the BIC on the full set of predictor variables listed in Section 2.2. Over the sample

1969-2008 BRT outperforms both benchmarks in terms of L2 norm and achieves an out-

of-sample R2 of 0.30%. The second best is the prevailing mean, with an R2 of -0.79%.

Finally, the performance of the multivariate linear model is disappointing, with an R2
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of -2.28%.11

Our results are consistent and extend the ones obtained by Welch and Goyal

(2008). They are consistent in the sense that the linear framework is outperformed

by the prevailing mean. They extend them as our specification simulates the real-time

decision-making of the forecaster that chooses the conditioning information in real time

by way of recursive model selection on the whole set of predictor variables. The results

indicate that even though the linear framework and boosted regression trees condition

their forecasts on the same information, only the latter is capable of exploiting the

information effectively and generate valuable forecasts.12

As mentioned above, MSE may not be an appropriate loss function in financial

settings as directional accuracy has, in some circumstances, proved to be more closely

related to the profitability of financial forecasts. For this reason, we also analyze the

directional accuracy of the competing models. Because there is no obvious benchmark

of no-predictability in this case, we employ the recursively estimated prevailing direction

as a benchmark. Furthermore, because the prevailing direction has been that of positive

excess returns over the sample under consideration, our benchmark is equivalent to

predicting positive excess returns at all times and has a predictive accuracy of 55.26%.

BRT has a hit ratio of 57.35%, 2% greater than the prevailing direction. The linear

model has a rather disappointing accuracy of 52.17% and so ranks last among the models

considered.

In the top panel of Figure 4, we present the Goyal and Welch “CumSum analysis”

for stock returns. It is defined as

CumSum(T ) =

T−1∑
t=τ

(
µ̂pmt+1|t − rt+1

)2
−
(
µ̂modelt+1|t − rt+1

)2
, (21)

where τ is the first month we start our calculations from, “pm” stands for prevailing

mean and “model” is alternatively BRT or the multivariate linear model. This measure

is useful at tracking the performance of the forecasting framework on each period because

an upward sloping “CumSum” curve over a given month entails that the predictive

11Our sample comprises the years 2006-2008 that are not included in the analysis of Welch and Goyal
(2008). Our results for the test sample ending in 2005 are much stronger. BRT has an R2 of 1.56% while
the prevailing mean and the linear model have an R2 equal to -0.58% and -3.64%, respectively.

12In the context of financial markets prediction, very low (but positive) R2’s generally translate into
profitable investment strategies, see Campbell and Thompson (2008).
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model outperforms the prevailing mean, and vice versa. The plot shows that BRT

outperforms the multi-variate linear model and the prevailing mean over the sample

under consideration. BRT outperforms the prevailing mean from 1970 to 1975 and from

1980 to 2005. It underperforms the prevailing mean over the period 1975-1980 and

the last few years characterized by the financial crisis. The multivariate linear model

outperforms the prevailing mean over the period 1970-1975 and in 2008. It underperforms

consistently the prevailing mean from 1975 until the end of 2007.

To parallel the “CumSum” analysis presented above, we present in the top panel

of Figure 5 the cumulative out-of-sample directional accuracy difference between BRT,

the linear model and the prevailing direction that we use as a benchmark. The vertical

axis counts the differential performance between the prediction model and the benchmark

in terms of correct directional forecasts. BRT performs very well over the years 1969-

1988. Its performance is rather poor between 1989-1995 and picks up again towards the

end of the sample. The performance for the linear model is always worse than that of

BRT and is particularly disappointing over the period 1990-2005.

Our benchmark analysis uses 10,000 boosting iterations to estimate the regression

trees. In unreported results we show that our findings are not sensitive to this choice.

For example, BRT with 5,000 and 15,000 boosting iterations outperform the benchmarks

in Table 1 Panel A. We also consider two alternative ways of selecting the number of

boosting iteration that could be used in real time, a point emphasized by Bai and Ng

(2009). The first chooses the best model, i.e. the optimal number of boosting iterations,

recursively through time. Thus, at time t, the number of boosting iterations is only

based on model performance up to time t. Second, we use forecast combinations as a

way to lower the sensitivity of our results to the choice of B by using the simple average

of the forecasts from regression trees with B =1, 2, ..., 10,000 boosting iterations. Both

models beat the benchmarks with the combined average being particularly effective.

2.4.2 Volatility

Panel B of Table 1 presents forecasting accuracy results for volatility. BRT that

uses both macroeconomic and financial variables as conditioning information performs

best with an R2 of 40.84%. The “Semi-Parametric MIDAS” specification we propose
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has an R2 of 34.95%, which is comparable to the 35.69% of MIDAS (beta). Garch (1,1)

has the worst performance as its R2 is only 14.13%.13

In Panel B we also report the results for directional accuracy. Directional volatil-

ity is not a natural concept because volatility is always positive, so we follow Marquering

and Verbeek (2005) and define as high/low volatility those periods characterized by a

volatility greater/smaller than the full-sample median volatility. Relative to the other

models, GARCH (1,1) has a rather poor directional forecasting accuracy with a hit ratio

of only 62.31%. This is expected, given its rather slow mean reverting nature. MIDAS

(Beta), Semi-Parametric MIDAS and BRT perform very well: the directional accuracy

is above 75% for all of them. With a hit ratio of 77.02% MIDAS (beta) is the best

model, followed by Semi-Parametric MIDAS and BRT that have a directional accuracy

of 76.40% and 75.98%, respectively.

In the middle panel of Figure 4 we present the results for a modified “CumSum

analysis” defined as

CumSum(T ) =

T−1∑
t=τ

(
σ̂
GARCH(1,1)
t+1|t − σt+1

)2
−
(
σ̂modelt+1|t − σt+1

)2
, (22)

where GARCH (1,1) now replaces the prevailing mean in the definition and acts as

the benchmark.14The models compared are BRT, MIDAS (Beta) and semi-parametric

MIDAS. A close examination of the plot reveals that semi-parametric MIDAS performs

better than what transpires from the results reported in Panel B of Table 1. BRT and

semi-parametric MIDAS perform equally well on most of the sample, except for the

period associated with the recent financial crisis where BRT dominates. MIDAS (Beta),

instead, performs rather poorly on most of the sample, but predicts very well volatility

during the current financial crisis.

The middle panel of Figure 5 reports the out-of-sample directional accuracy dif-

ference between BRT, Semi-Parametric MIDAS, MIDAS (Beta) and GARCH (1,1) that

we employ as a benchmark. The vertical axis counts the differential performance be-

tween the prediction model and the benchmark in terms of correct volatility directional

13Conducting the analysis until 2005 gives stronger results for the methods proposed here as the R2’s of
BRT, Semi-Parametric MIDAS, MIDAS(beta) and Garch (1,1) are 35.51%, 32.07%, 23.90% and 7.69%,
respectively.

14For the predictive accuracy of GARCH(1,1) compared to other ARCH-type models, see Hansen and
Lunde (2005).
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forecasts. The plot shows that the BRT model outperforms its competitors on most of

the sample only to lose its lead in the last few years. MIDAS (Beta) and Semi-Parametric

MIDAS display a virtually identical performance throughout the test period.

In unreported results we show that the performance of boosted regression trees

is not sensitive to the choice of boosting iterations. BRT with 5,000 and 15,000 boosting

iterations outperforms the benchmarks reported in Table 1 Panel B. Also, the combined

average model and the best model selected recursively beat the benchmarks with the

latter being particularly effective.

2.4.3 Weight Prediction

We report the results for BRT-based optimal weight predictions in Panel C of

Table 1 and we compare it to the prevailing mean, as no other empirical framework has

been proposed until now in such context. BRT has an R2 of 0.51% and does significantly

better than the prevailing mean, whose R2 is -6.24%. In terms of directional accuracy,

the performance of BRT is superior to that of the prevailing mean with a performance

differential of 1.0% (56.11% compared to 55.26%).

The bottom panel of Figure 4 presents estimates of

CumSum(T ) =
T−1∑
t=τ

(ŵpmt+1|t − w
real
t+1 )2 − (ŵBRTt+1|t − w

real
t+1 )2. (23)

The plot confirms that boosted regression trees consistently outperform the prevailing

mean throughout the sample. Finally, the bottom panel of Figure 5 plots the cumulative

out-of-sample directional accuracy difference between BRT and the prevailing direction

that we use as a benchmark. The plot highlights that while a great deal of directional

accuracy was present in the 1973-1976 period, over the rest of the sample boosted re-

gression trees have performed as well as the prevailing mean in terms of directional

accuracy.

Overall, the results reported in this section highlight the superiority of BRT

compared to the established benchmarks at predicting the equity premium and volatility.

The results hold whether mean squared error or directional accuracy is employed as

an evaluation criterion. As far as the optimal portfolio allocation is concerned, our
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preliminary results suggest that BRT performs well in terms of mean squared error, but

the evidence for directional accuracy is not convincing.

In order to draw more precise conclusions on the predictive accuracy of BRT in

the context of financial markets prediction, we conduct next a number of formal tests of

return and volatility timing that have been proposed in the literature.

2.4.4 Formal Tests of Predictive Accuracy

We employ three tests of return and volatility timing that have been widely used

in the literature. The first is designed to test for directional accuracy only, while the

second and third focus on magnitudes as well.

The first test we employ is the Henriksson and Merton (1981) (HM) test, which

is motivated by the idea that a forecasting framework has directional accuracy if the

sum of the conditional probabilities of forecasting correctly the target variable when

it takes positive and negative values is greater than one: i.e. if p1 + p2 = 1, where

p1 = Pr(ŷt > 0|yt > 0), p2 = Pr(ŷt < 0|yt < 0), ŷ is the forecast and y is the target

variable. It is easy to show that the non-parametric test proposed by Henriksson and

Merton (1981) is asymptotically equivalent to a one-tailed test on the significance of the

coefficient α1 in the regression

I{µ̂t+1|t>0} = α0 + α1I{rt+1>0} + εt+1, (24)

where rt+1 and µ̂t+1|t are the realized and predicted market excess returns at time t+ 1

and I{·} represents an indicator function.

The second test we employ is the one developed by Cumby and Modest (1987)(CM).

The CM test is constructed following the intuition that it is more important to correctly

predict the direction of positive or negative returns whenever they are large in magnitude.

The coefficient of interest is α1 in the regression specification

rt+1 = α0 + α1I{µ̂t+1|t>0} + εt+1. (25)

The null is that α1 is zero and is tested against the alternative of it being greater

than zero. Finally, following Bossaerts and Hillion (1999)(BH) that employ a Mincer-
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Zarnowitz-type test, we run the regression:

rt+1 = α0 + α1µ̂t+1|t + εt+1 (26)

and test for the significance of the α1 coefficient. The values and t-tests of the α1

coefficients for the tests described above are reported in Table 2 for the sample 1969-

2008. Panel A reports the results for stock returns. The HM test indicates that BRT is

able to forecast market positive and negative excess returns at a statistically significant

level, while the timing of the linear model is negative and not significant. The results for

the CM and BH tests are similar. The null of no-predictive ability is rejected for BRT

for both tests, while we fail to reject the null hypothesis for the linear model. The results

are in line with the findings displayed in Table 1 as BRT has a rather strong forecasting

accuracy in terms of directional accuracy and mean-squared error, while the opposite

holds true for the linear model selected recursively using BIC.

We conduct the same tests for volatility, mutatis mutandis, in Panel B of Table

2. The results are more clear-cut in this context as all four models analyzed have a

significant predictive ability across all tests and samples. This should come at no surprise

as volatility is easier to predict than returns and volatility models have been used for

many years because of their forecasting accuracy. Still, it is worth noting that the BRT

model has higher and more significant α1 coefficients compared to its competitors for the

CM and BH tests, precisely those tests where not only the sign of realized volatility, but

also its magnitude matters. In the BH test, BRT is followed by Semi-Parametric MIDAS,

MIDAS (Beta) and GARCH (1,1),15 while in the CM test the rank of the MIDAS (Beta)

and Semi-Parametric MIDAS is inverted. Finally, the results of the HM test confirm

the superiority of the MIDAS (Beta) model in terms of directional accuracy displayed in

Table 1.

In Panel C of Table 2 we report the market timing tests for the optimal portfolio

weights. In accordance with the rather weak directional accuracy results of Table 1, BRT

does not display significant directional accuracy according to the HM test. In the tests

15We also consider an alternative specification for the BH test that includes the lagged realized volatility
in an effort to control for volatility’s persistence, i.e. we estimate a linear model of the form: σt+1 =
α0+α1σ̂t+1|t+α2σt+εt+1. BRT, MIDAS(Beta) and Semi-Parametric MIDAS maintain their significance,
while GARCH(1,1) does not.
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where not only directional accuracy but also magnitudes matter (CM and BH tests)

BRT displays instead significant market timing, possibly implying profitable portfolio

allocations.

The results for return, volatility and optimal weight prediction highlight an over-

all better performance of BRT compared to the frameworks currently employed in the

literature. Among the volatility models under consideration, the BRT model that ex-

ploits information from macroeconomic and financial time-series displays a better per-

formance than the semi-parametric MIDAS model that conditions volatility forecasts

on the basis of past returns only. In turn, semi-parametric MIDAS performs better

than its parametric counterpart. We draw two important conclusions from these results.

First, at the monthly horizon our semi-parametric specification leads to a more effective

use of the conditioning information contained in lagged squared returns, compared to

its parametric counterpart. Second, incorporating economic information leads to more

precise volatility forecasts compared to the models that exploit only the time series of

returns. We analyze next whether the predictive accuracy presented here translates into

profitable portfolio allocations for the mean-variance investor.

2.4.5 Mean-Variance Investor and Portfolio Allocation

We construct portfolio weights for the mean-variance investor described in Sec-

tion 2.2 who uses boosted regression trees to formulate return and volatility predictions.16

We have a free parameter γ that determines the investor’s degree of risk-aversion.

We set it to 4 as that corresponds to a moderately risk-averse investor. We first present

the results for unconstrained portfolio weights and evaluate the performance of two

models. In the first, market returns and volatility are forecasted separately and the

optimal mean-variance portfolio allocation is computed in a second stage (two-step BRT

model). In the second, the optimal portfolio allocation is forecasted directly following

the procedure described in Section 2.3 (one-step BRT model).

We compare our results to three benchmark strategies. The first uses stock re-

turns predictions from a multivariate linear regression model selected recursively using

16The performance of the portfolio allocations that use semi-parametric MIDAS volatility forecasts
are not reported for brevity.
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the BIC on the full set of predictor variables listed in Section 2.2 and volatility predic-

tions from a GARCH (1,1) model. The second model replaces the GARCH (1,1) model

with a MIDAS (Beta) model (Ghysels et al (2005)). The third benchmark is a passive

investment strategy that allocates 100% of wealth in the market portfolio at all times.

In Panel A of Table 3 we report the mean and standard deviation of returns

for each investment strategy. We also report the Sharpe Ratio, the Jensen’s Alpha

measure of abnormal returns, i.e. the coefficient and t-statistic for the α0 coefficient in

the regression

rp,t+1 = α0 + α1rt+1 + εt+1, (27)

where rp,t+1 is the return on the investment portfolio and rt+1 is the return on the market

portfolio. Finally, we report the Treynor-Mazuy (TM) test statistic, i.e. the coefficient

and t-statistic for the α2 coefficient in the regression

rp,t+1 = α0 + α1 rt+1 + α2 r
2
t+1 + εt+1. (28)

The performance is evaluated over the sample 1969-2008. The best model is the BRT

that forecasts the optimal portfolio allocation in two steps with a monthly Sharpe ratio

of 15.81%. The second best is the one-step BRT model with a Sharpe ratio of 14.81%.

The two-step BRT model has a higher and more significant Jensen’s Alpha measure of

market outperformance, but a lower and less significant Treynor-Mazuy (TM) measure

of market timing compared to the one-step BRT model. The benchmark models perform

considerably worse. The two active benchmark strategies have a negative and insignifi-

cant Jensen’s Alpha: -0.072% for the model that uses a GARCH (1,1) and -0.069% for

the model that uses a MIDAS (Beta) specification. The Treynor-Mazuy measure of mar-

ket timing is positive but insignificant for both models. The Sharpe ratios, 2.70% and

3.18% respectively, are smaller than that of the passive strategy (Panel D) that invests

100% of wealth in the market portfolio (7.71%).

In Panel B of Table 3 we repeat the same exercise imposing short-selling and

borrowing constraints. As expected, the constraints reduce the profitability of both

BRT-based investment strategies. The Sharpe ratio of the two-step BRT model drops

by approximately 1.8% to 14.01%, while the Sharpe ratio of the one-step BRT model
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drops by approximately 2.2% to 12.59%. The lower Sharpe ratios are due to both lower

mean returns and volatility of the constrained portfolio allocations compared to the

unconstrained ones. The magnitudes of both Jensen’s Alpha’s and TM market timing

measures are lower than their unconstrained counterparts, but they maintain a strong

level of statistical significance. The opposite holds true for the two active benchmark

strategies. The Sharpe ratio for the investment strategy that exploits GARCH (1,1)

volatility forecasts increases by 2.8% to 5.52% and the one for the MIDAS (Beta) in-

creases by 3.5% to 6.69%. There are a number of reasons for this, the most important

being that there is a fair degree of estimation error in the estimated optimal portfolio

allocations, particularly so for the linear regression, GARCH (1,1) and MIDAS (Beta)

models that minimize L2 criterion functions. We show in section 2.4.7 that accounting

for estimation uncertainty improves the performance of the investment strategies.

Table 3 Panel C reports results for models that exploit only the predictability

of stock returns: i.e. the investment strategy entails investing 100% of wealth in the

risky asset if expected excess returns are greater than zero and 0% otherwise. For the

one-step BRT model the decision is based on the sign of the expected Sharpe ratio rather

than that of expected returns. For BRT, the portfolio allocations that do not exploit

volatility predictions are less profitable than those that do. The Sharpe ratio of the

two-step BRT model drops by 1.2% to 12.83% and the one for the one-step BRT model

drops by 1.4% to 11.18%. The results for the BRT models indicate that the investment

strategies that explicitly model volatility lead to more profitable portfolio allocations.

The opposite holds true the two active benchmark strategies as the Sharpe ratio of the

linear model that does not exploit volatility forecasts is 8.09%, higher than the 5.52%

and 6.69% obtained by the models that use GARCH (1,1) and MIDAS (Beta) volatility

forecasts, respectively.

Overall, this section highlights that BRT models outperform the established

benchmarks in term of constrained and unconstrained portfolio allocation performance.

They also show that, for BRT models, portfolio allocations based on both conditional

returns and volatility estimates are more profitable than those that exploit return pre-

dictability only. Next, we focus our attention on BRT models with transaction costs

and show that the outperformance of our framework is robust to the inclusion of such
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frictions.

2.4.6 Portfolio Allocation Performance with Transaction Costs

In Table 4 we report the same estimates of Table 3 for the boosted regression

tree models, while accounting for the effect of transaction costs. Following Marquering

and Verbeek (2005), we impose the assumption that transaction costs “τ” are equal to

percentage points of the value traded. The wealth of the agent at time t + 1 “Wt+1” is

equal to

Wt+1 = Wtrp,t+1 − τWt|∆wt+1|

= Wt (rp,t+1 − τ |∆wt+1|) ,

where |∆wt+1| is the absolute change in the portfolio weights between t and t + 1 and

rp,t+1 is the corresponding portfolio return. The returns net of transaction costs are

therefore rp,t+1 − τ |∆wt+1|. We consider two scenarios: low (0.1%) and high (0.5%)

transaction costs.

The investment strategies display positive and significant Jensen’s Alpha and

TM market timing when low transaction costs are considered. This holds for the two-

step BRT model (Panel A) as well as the one-step BRT model (Panel B). The two-step

models display a better performance with Sharpe ratios of 14.33%, 13.28% and 12.24%

for the unconstrained, constrained and “return predictability only” investment strate-

gies. The one-step BRT counterparts are 13.77%, 12.07% and 10.73%. The investment

performance deteriorates slightly in the presence of high transactions costs: all market

timing measures are positive and significant, the Jensen’s Alpha’s are positive, but not

significant, and the Sharpe ratios are greater than the market Sharpe ratio (7.71%).

Our findings highlight that the investment strategies based on BRT forecasts remain

profitable even in the presence of transaction costs. The results are generally strong

if we consider that the transaction costs are not present in the maximization problem

that determines the portfolio weights. This is particularly true for the unconstrained

models, whose weights can be rather extreme and volatile and therefore vulnerable to

the introduction of unexpected market frictions. We conduct next further analyses on

the economic value generated by the trading strategies based on BRT forecasts.
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2.4.7 Economic Value of the Investment Strategies

Even though very popular and widely used, the performance measures employed

until now are affected by a number of shortcomings. As argued by Fleming, Kirby, and

Ostdiek (2001) and Marquering and Verbeek (2005), the Sharpe ratio is not a correct

measure of risk-adjusted returns in the presence of time-varying volatility and Jensen’s

Alpha is a biased estimator of abnormal returns in the presence of time-varying portfolio

weights. Also, the TM measure provides an indication of whether the portfolio exhibits

market timing, but it does not quantify the economic value it generates .

Following Marquering and Verbeek (2005) and Fleming, Kirby, and Ostdiek

(2001), we employ a utility-based performance measure based on the investor’s (ex-ante)

utility function

Ut(·) = Et{rp,t+1} −
1

2
γV art{rp,t+1}. (29)

By using the definition of rp,t+1 we can re-write the expression above as:

Ut(·) = rf,t+1 + wp,t+1Et{rt+1 − rf,t+1} −
1

2
γw2

p,t+1V art{rt+1 − rf,t+1}. (30)

This allows the construction of an (ex-post) average utility level for each investment

strategy using the following formula

Up(·) =
1

T

T−1∑
t=0

[
rf,t+1 + wp,t+1rt+1 −

1

2
γw2

p,t+1σ
2
t+1

]
, (31)

where rt+1 is the actual return on the market between t and t + 1 and σ2
t+1 is the

variance of the market returns estimated using daily observations. The average utility

level is interpreted as the certain return, in percentage per month, that provides the same

utility to the investor as the risky strategy. Also, the difference between the average

realized utilities delivered by two portfolio allocation strategies can be interpreted as the

maximum monthly fee an agent would be willing to pay to hold one instead of the other.

Another issue that has been ignored until now is that of estimation uncertainty.

Expected returns and volatilities are not known but estimated from data. Even though

we used the longest possible time-series available, noise may be responsible for making

the portfolio weights too volatile over time. A number of approaches have been proposed
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to mitigate the effect of estimation uncertainty, see, for example, Ter Horst, De Roon,

and Werker (2000) and Maenhout (2004). Here, for simplicity, we follow Marquering and

Verbeek (2005) and estimate the optimal portfolio weights using a “pseudo-risk aversion

coefficient” that is double the true risk-aversion coefficient of the agent.

In Table 5 we report the results for the average realized utilities without ac-

counting for estimation uncertainty (Panel A) and accounting for estimation uncertainty

(Panel B). Panel C presents the average realized utilities for an investor that places

100% of his wealth in the market portfolio at all times. The results are presented for

coefficients of risk-aversion ranging from 2 to 10. The constrained investment strategies

and the ones that are based on return predictability only deliver greater average real-

ized utilities compared to the passive benchmark strategy for all levels of risk-aversion.

The results hold whether we use one or two-step BRT models and whether we correct

for estimation uncertainty or not. The unconstrained investment strategies are more

interesting as the portfolio allocations that are not corrected for estimation uncertainty

deliver lower realized utilities than the benchmark strategy for risk-aversion coefficients

below 5. The portfolio allocations that correct for estimation uncertainty provide instead

very high average realized utilities for low coefficients of risk-aversion. For example, the

unconstrained investment strategy based on a two-step BRT model that corrects for es-

timation uncertainty delivers an average monthly realized utility of 1.19% to an agent

with coefficient of risk-aversion equal to 2. The average realized utility for the one-step

counterpart is 0.90%. Both are much larger than the 0.60% delivered by the passive

strategy. Overall, our results indicate that unconstrained portfolio weights that do not

account for estimation uncertainty result in too volatile portfolio allocations.

Finally, we compute the maximum monthly portfolio fees that a representative

investor would be willing to pay in order to have his wealth invested in one of the in-

vestment strategies we propose as opposed to holding the market portfolio. In Figure

6 we present the results for the one and two-step BRT models that account for estima-

tion uncertainty. The top panel presents the break-even monthly portfolio fees for the

unconstrained, constrained and “return predictability only” strategies for the two-step

BRT models with zero, low and high transaction costs (left, middle and right plot re-

spectively). The bottom panel repeats the exercise for the one-step BRT model. Each



96

figure reports the break-even portfolio fees (in percentage) on the y-axis and the risk-

aversion coefficient (ranging from 1 to 10) on the x-axis. When transaction costs are not

accounted for, the monthly break-even portfolio fees for the two-step BRT models are

quite sizable and range from 0.47% to 1.20% for the unconstrained investment strategy,

from 0.22% to 0.91% for the constrained investment strategy and from 0.18% to 0.47%

for the investment strategy that exploits only the predictability in returns. Similar, but

somewhat lower, are the results for the one-step BRT model. The results remain very

strong and are almost unaffected by low transaction costs, but they deteriorate for high

transaction costs. For example, an investor with a coefficient of risk aversion equal to 2

would rather hold the market portfolio than the unconstrained investment strategy for-

mulated using the one or two-step BRT models. All the other risk-aversion, transaction

costs and investment strategy combinations deliver positive and sizable monthly break-

even portfolio fees, implying that the investment strategies proposed are economically

valuable.

2.5 Conclusions

We present new evidence on the predictability of stock returns and volatility at

the monthly frequency using Boosted Regression Trees (BRT). BRT is a novel semi-

parametric statistical method that generates forecasts on the basis of large sets of condi-

tioning information without imposing strong parametric assumptions such as linearity or

monotonicity. Our forecasts outperform those generated by benchmark models in terms

of both mean squared error and directional accuracy. They also generate profitable port-

folio allocations for mean-variance investors even when market frictions are accounted

for. Finally, our analysis shows that the relation between the predictor variables consti-

tuting the conditioning information set and the investors’ optimal portfolio allocation to

risky assets is, in most cases, nonlinear and nonmonotonic.
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Table 2.1: This table reports the out-of-sample R2 and directional accuracy for a boosted regression
tree model with 10,000 boosting iterations used to forecast monthly stock returns, realized volatility
and the optimal portfolio weight in the risky asset for the mean-variance investor. For return prediction
(Panel A) we also present results for the prevailing mean model proposed by Welch and Goyal (2008)
and a multivariate linear regression model selected recursively using the BIC on the full set of predictor
variables listed in Section 2 of the paper. For volatility prediction (Panel B) we report the results for
a semi-parametric MIDAS specification described in Section 2 of the paper, a MIDAS (Beta) model
(Ghysels et al (2005)) and a GARCH (1,1). For optimal portfolio allocation prediction (Panel C) we also
report the results for the prevailing mean. The out-of-sample performance is computed over the sample
1969-2008. The parameters of the forecasting models are estimated recursively through time.

Out-of-Sample Forecasting Accuracy

A. Return Models
L2 Norm Directional Accuracy

R2 % Accuracy

BRT 0.30% 57.35%
Prevailing Mean -0.79% 55.26%
Linear Model -2.28% 52.17%

B. Realized Volatility Models
L2 Norm Directional Accuracy

R2 % Accuracy

BRT 40.84% 75.98%
Semi-Par. MIDAS 34.95% 76.40%
MIDAS (Beta) 35.69% 77.02%
GARCH (1,1) 14.13% 62.31%

C. Optimal Weight Prediction Models
L2 Norm Directional Accuracy

R2 % Accuracy

BRT 0.52% 56.11%
Prevailing Mean -6.24% 55.26%
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Table 2.2: This table reports forecasting accuracy tests for a boosted regression tree model with
10,000 boosting iterations used to forecast monthly stock returns in Panel A, realized volatility in Panel
B and the optimal portfolio weight in the risky asset for the mean-variance investor in Panel C. Each
panel presents the results for three tests: the Henriksson and Merton (HM), the Cumbey and Modest
(CM) and the Bossaerts and Hillion (BH) test. We report the coefficient of interest, α1, whose significance
determines the directional predictive ability of each forecasting framework. The numbers in brackets are
t-test values. For comparison, in Panel A we also present results for a multivariate linear regression
model selected recursively using the BIC on the full set of predictor variables listed in Section 2 of the
paper; in Panel B we report the results for a semi-parametric MIDAS specification described in Section 2
of the paper, a MIDAS (Beta) model (Ghysels et al (2005)) and a GARCH (1,1). The tests are performed
for the sample 1969-2008. The parameters of the forecasting models are estimated recursively through
time.

Tests of Out-Of-Sample Forecasting Accuracy

A. Return Models
HM Test CM Test BH Test

BRT
0.106 0.010 0.537
(2.53) (2.33) (2.85)

Linear Model
-0.017 0.003 0.148
(-0.46) (0.56) (0.56)

B. Volatility Models
HM Test CM Test BH Test

BRT
0.519 0.022 1.181

(13.48) (11.65) (19.69)

Semi-Par. MIDAS
0.528 0.021 1.141

(13.65) (10.85) (16.55)

MIDAS (Beta)
0.541 0.021 1.041

(14.16) (11.11) (16.39)

GARCH (1,1)
0.247 0.014 0.845
(6.55) (5.85) (9.84)

C. Models for the Optimal Portfolio Weight
HM Test CM Test BH Test

BRT
0.059 0.009 0.537
(1.62) (1.84) (2.86)
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Table 2.3: This table reports the performance of an investment portfolio based on a boosted regression
tree model with 10,000 boosting iterations. The first row of each panel presents the results obtained
by forecasting stock market returns and volatility separately and computing the optimal mean-variance
portfolio allocation for an agent with risk-aversion coefficient of 4 (two-step BRT model). In the second
row we forecast the optimal portfolio allocation directly on the basis of the conditioning variables listed
in Section 2 of the paper (one-step BRT model). For comparison, we also present results for investment
portfolios constructed using stock return predictions from a multivariate linear regression model selected
recursively using the BIC on the full set of predictor variables described in Section 2 of the paper and
volatility predictions from alternatively a GARCH (1,1) or a MIDAS (Beta) model (Ghysels et al (2005)).
For each investment portfolio we report the average monthly return, standard deviation, Sharpe ratio
as well as its Jensen’s Alpha and Treynor-Mazuy market timing measure. In brackets are t-test values.
Panel A reports the results for unconstrained portfolio allocations. Panel B imposes shortselling and
borrowing constraints. Panel C exploits only return predictability. Panel D report results for a passive
investment strategy that places 100% of wealth in the market portfolio. The performance is computed
over the sample 1969-2008. The parameters of the forecasting models are estimated recursively through
time.

Portfolio Allocation Performance

A. Unconstrained Weights
Mean St. Dev. Sh. Ratio Jensen’s α TM

Two-Step BRT 2.10% 10.19% 15.81% 1.37% 4.484
(3.09) (3.93)

One-Step BRT 2.02% 10.38% 14.81% 1.12% 4.939
(2.77) (4.79)

Linear Model & GARCH (1,1) 0.62% 4.84% 2.70% -0.07% 0.397
(-0.35) (0.81)

Linear Model & MIDAS (Beta) 0.69% 6.35% 3.18% -0.07% 0.213
(-0.31) (0.34)

B. Short-Selling and Borrowing Constraints
Mean St. Dev. Sh. Ratio Jensen’s α TM

Two-Step BRT 0.93% 3.17% 14.01% 0.26% 0.931
(2.77) (3.90)

One-Step BRT 0.93% 3.57% 12.59% 0.22% 0.825
(2.45) (3.54)

Linear Model & GARCH (1,1) 0.64% 2.86% 5.52% -0.02% 0.039
(-0.21) (0.19)

Linear Model & MIDAS (Beta) 0.69% 3.07% 6.69% 0.01% 0.126
(0.17) (0.58)

C. Return Predictability Only
Mean St. Dev. Sh. Ratio Jensen’s α TM

Two-Step BRT 0.94% 3.55% 12.83% 0.24% 0.729
(2.44) (2.89)

One-Step BRT 0.91% 3.78% 11.18% 0.18% 0.741
(1.93) (3.15)

Linear Model 0.80% 3.91% 8.09% 0.05% 0.070
(0.60) (0.31)

D. Passive Strategy
Mean St. Dev. Sh. Ratio Jensen’s α TM

100% Market 0.83% 4.45% 7.71% — —
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Table 2.4: This table reports the performance of an investment portfolio based on a boosted regression
tree model with 10,000 boosting iterations accounting for transaction costs. Panel A presents the results
obtained by forecasting stock market returns and volatility separately and computing the optimal mean-
variance portfolio allocation for an agent with risk-aversion coefficient of 4 (two-step BRT model), while
accounting for low and high transaction costs. For each transaction costs level we report the performance
of the unconstrained optimal portfolio, the optimal portfolio with shortselling and borrowing constraints
as well as an investment strategy that invests 100% of wealth in the risky asset if expected excess returns
are greater than zero and 0% of wealth in the risky asset otherwise. In Panel B we conduct the same
exercise, but we forecast the optimal portfolio allocation directly on the basis of the conditioning variables
listed in Section 2 of the paper (one-step BRT model). The tests are performed on the sample 1969-2008.
The parameters of the forecasting models are estimated recursively through time.

Portfolio Performance with Transaction Costs

A. Two-Step BRT
Mean St. Dev. Sh. Ratio Jensen’s α TM

Low Transaction Costs
Unconstrained 1.94% 10.19% 14.33% 1.22% 4.523

(2.75) (3.97)
Short. and Borr. Constraints 0.91% 3.16% 13.28% 0.23% 0.934

(2.53) (3.92)
Return Predictability Only 0.92% 3.55% 12.24% 0.22% 0.738

(2.23) (2.92)
High Transaction Costs

Unconstrained 1.34% 10.19% 8.35% 0.61% 4.679
(1.37) (4.11)

Short. and Borr. Constraints 0.81% 3.17% 10.34% 0.14% 0.947
(1.52) (3.97)

Return Predictability Only 0.84% 3.56% 9.87% 0.13% 0.771
(1.36) (3.05)

B. One-Step BRT

Mean St. Dev. Sh. Ratio Jensen’s α TM

Low Transaction Costs
Unconstrained 1.91% 10.37% 13.77% 1.00% 4.925

(2.50) (4.78)
Short. and Borr. Constraints 0.92% 3.57% 12.07% 0.20% 0.829

(2.24) (3.56)
Return Predictability Only 0.89% 3.78% 10.73% 0.16% 0.746

(1.74) (3.18)
High Transaction Costs

Unconstrained 1.48% 10.36% 9.57% 0.57% 4.866
(1.42) (4.74)

Short. and Borr. Constraints 0.84% 3.58% 9.98% 0.13% 0.846
(1.41) (3.63)

Return Predictability Only 0.82% 3.78% 8.91% 0.09% 0.767
(0.98) (3.27)
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Table 2.5: This table reports the realized utility of an investment portfolio based on a boosted
regression tree model with 10,000 boosting iterations for different coefficients of risk-aversion. The top
rows of Panel A present the results obtained by forecasting stock market returns and volatility separately
and computing the optimal mean-variance portfolio allocation in a second step (two-step BRT model).
The bottom rows of Panel A present the results obtained by forecasting the optimal portfolio allocation
directly on the basis of the conditioning variables listed in Section 2 of the paper (one-step BRT model).
In Panel B we conduct the same exercise using a “pseudo risk-aversion coefficient” that doubles the
investor’s genuine risk-aversion γ to adjust portfolio weights for estimation uncertainty. For comparison,
in Panel C we report results for a passive investment strategy that places 100% of wealth in the market
portfolio. The analysis is conducted over the sample 1969-2008. The parameters of the forecasting
models are estimated recursively through time.

Average Realized Utilities

A. Without Accounting for Estimation Uncertainty
γ = 2 γ = 4 γ = 6 γ = 8 γ = 10

Two-Step BRT

Unconstrained 0.10% 0.29% 0.36% 0.39% 0.41%
Short. and Borr. Constraints 0.81% 0.70% 0.62% 0.58% 0.54%
Returns Predictability Only 0.78% 0.63% 0.47% 0.31% 0.15%

One-Step BRT

Unconstrained -0.95% -0.23% 0.01% 0.13% 0.20%
Short. and Borr. Constraints 0.75% 0.63% 0.52% 0.43% 0.38%
Return Predictability Only 0.74% 0.56% 0.39% 0.22% 0.04%

B. Accounting for Estimation Uncertainty
γ = 2 γ = 4 γ = 6 γ = 8 γ = 10

Two-Step BRT

Unconstrained 1.19% 0.84% 0.72% 0.66% 0.63%
Short. and Borr. Constraints 0.82% 0.73% 0.66% 0.62% 0.60%
Return Predictability Only 0.78% 0.63% 0.47% 0.31% 0.15%

One-Step BRT

Unconstrained 0.90% 0.69% 0.62% 0.59% 0.57%
Short. and Borr. Constraints 0.78% 0.67% 0.60% 0.57% 0.55%
Return Predictability Only 0.74% 0.56% 0.39% 0.22% 0.04%

C. Passive Strategy
γ = 2 γ = 4 γ = 6 γ = 8 γ = 10

100% Market 0.60% 0.37% 0.14% -0.09% -0.32%
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Figure 2.2: This figure presents the relative influence (in percent) of lagged squared returns at
predicting monthly volatility for both the MIDAS (beta) model (Ghysels et al (2005)) and the Semi-
Parametric MIDAS model. Monthly volatility is predicted using 250 lagged squared daily returns as
conditioning information. For ease of interpretation, in each panel we aggregate individual days’ relative
influence in 1, 2, 3, and 4 week periods.
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Figure 2.3: This figure presents the partial dependence plots for the optimal allocation to risky assets
as a function of the six predictor variables with the highest relative influence over the sample 1927-2008.
The most influential predictors are the log earnings price ratio (ep), inflation (infl), the log dividend
earnings ratio (de), the yield on long term government bonds (lty), stock market volatility (vol) and the
three-month T-bill rate (Rfree) that have a relative influence of 16.63%, 15.88%, 13.94%, 9.38%, 7.23%
and 6.67%, respectively. The horizontal axis covers the sample support of each predictor variable, while
the vertical axis tracks the change in the optimal weight in the market portfolio as a function of the
individual predictor variables.
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Figure 2.4: This figure presents cumulative out-of-sample sum-of-squared error differences between
a boosted regression tree and benchmark forecasting models for returns, volatility and portfolio weight
predictions. The top graph performs the analysis for stock returns: it uses the prevailing mean proposed
by Goyal and Welch (2008) as a benchmark and plots the performance of a boosted regression tree model
with 10,000 boosting iterations and a multivariate linear regression model selected recursively using the
BIC on the full set of predictor variables listed in Section 2 of the paper. The middle graph performs the
analysis for volatility: it uses a GARCH (1,1) as a benchmark and plots the performance of a boosted
regression tree model with 10,000 boosting iterations, a MIDAS (beta) model (Ghysels et al (2005)) and
a semi-parametric MIDAS specification described in Section 2 of the paper. The bottom graph performs
the analysis for portfolio weight predictions: it uses the prevailing mean as a benchmark and plots the
performance of a boosted regression tree model with 10,000 boosting iterations.
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Figure 2.5: This figure presents cumulative out-of-sample directional accuracy differences between
a boosted regression tree and benchmark forecasting models for returns, volatility and portfolio weight
predictions. The top graph performs the analysis for stock returns: it uses the prevailing direction as a
benchmark and plots the performance of a boosted regression tree model with 10,000 boosting iterations
and a multivariate linear regression model selected recursively using the BIC on the full set of predictor
variables listed in Section 2 of the paper. The middle graph performs the analysis for volatility: it
uses a GARCH (1,1) as a benchmark and plots the performance of a boosted regression tree model
with 10,000 boosting iterations, a MIDAS (beta) model (Ghysels et al (2005)) and a semi-parametric
MIDAS specification described in Section 2 of the paper. The bottom graph performs the analysis for
portfolio weight predictions: it uses the prevailing direction as a benchmark and plots the performance
of a boosted regression tree model with 10,000 boosting iterations.
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3 What is the Shape of the

Risk-Return Relation?

Abstract

Using a novel and flexible regression approach that avoids imposing restrictive

modeling assumptions, we find evidence of a non-monotonic relation between conditional

volatility and expected stock market returns. At low and medium levels of conditional

volatility there is a positive risk-return trade-off, but this relation is inverted at high

levels of volatility. Conventional linear risk-return models are strongly rejected by the

data. We propose a new measure of risk based on the conditional covariance between

observations of a broad economic activity index and stock market returns. Using this

covariance-based risk measure, we find clear evidence of a positive and monotonic risk-

return trade-off.

3.1 Introduction

The existence of a systematic trade-off between market risk and expected re-

turns is central to modern finance. Yet, despite more than two decades of empirical

research, there is little consensus on the basic properties of the relation between the eq-

uity premium and conditional stock market volatility. Studies such as Campbell (1987),

Breen, Glosten, and Jagannathan (1989), Glosten, Jagannathan, and Runkle (1993),

Whitelaw (1994), and Brandt and Kang (2004) find a negative trade-off, while conversely
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French, Schwert, and Stambaugh (1987), Bollerslev, Engle, and Wooldridge (1988), Har-

vey (1989), Harrison and Zhang (1999), Ghysels, Santa-Clara, and Valkanov (2005),

Guo and Whitelaw (2006), and Ludvigson and Ng (2007) find a positive trade-off. While

these studies use different methodologies and sample periods, it remains a puzzle why

empirical results vary so much.

Theoretical asset pricing models do not generally imply a linear or even mono-

tonic, risk-return relation. For example, in the context of a simple endowment economy,

Backus and Gregory (1993) show that the shape of the relation between the risk pre-

mium and the conditional variance of stock market returns is largely unrestricted with

increasing, decreasing, flat, or non-monotonic patterns all possible. Similar conclusions

are drawn by studies such as Abel (1988), Gennotte and Marsh (1993), Veronesi (2000),

Whitelaw (2000), and David and Veronesi (2009).1 It follows that the conventional

practice of measuring the risk-return trade-off by means of a single slope coefficient in a

linear model offers too narrow a perspective and can lead to biased results since it limits

the analysis to monotonic or flat relations. Typically, the risk-return trade-off cannot

be summarized in this manner without making strong auxiliary modeling assumptions

whose validity need to be separately tested. Instead it is necessary to consider the shape

of the entire risk-return relation at different levels of risk.

This paper introduces a novel and flexible regression approach that does not

impose strong modeling assumptions such as linearity to analyze the shape of the risk-

return relation. Our approach uses regression trees to carve out the state space through

a sequence of piece-wise constant models that approximate the unknown shape of the

risk-return relation. By using additive expansions of simple regression trees−a process

known as boosting−we obtain smooth and stable estimates that let us map the shape of

the risk return relation as well as empirically test if it is monotonic.2

We adopt the boosted regression tree approach to empirically analyze the risk-

return relation for US monthly stock returns over the period 1927-2008 and find strong

empirical evidence of a non-monotonic risk-return relation. At low and medium levels of

conditional volatility, there is a strongly positive relation between the conditional mean

1Merton (1980) also considers nonlinearities but assumes a monotonic mean-volatility relation.
2By combining several models, boosted regression trees have advantages similar to those found in

forecast combinations, see, e.g., Rapach, Strauss, and Zhou (2010).
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and volatility of stock market returns. Conversely, at high levels of volatility, the relation

appears to be flat or inverted, i.e., higher levels of conditional volatility are associated

with lower expected returns. Formal statistical tests that account for sampling error

soundly reject a monotonically increasing mean-volatility relation.

One reason for the difference between these new findings and existing ones is

that previous studies have generally assumed a linear model for the mean-volatility (or

mean-variance) relation. Such an assumption may lead to biased estimates. Empirical

tests show that linear models for the risk-return relation are clearly misspecified. In

fact, a simple piece-wise linear regression model shows that there is a strongly positive

risk-return trade-off at low-to-medium levels of conditional volatility, but a significantly

negative trade-off at high levels of conditional volatility.

A second reason why our results differ from previous estimates comes from dif-

ferences in the underlying mean and volatility estimates. Empirical evidence in Glosten,

Jagannathan, and Runkle (1993) and Harvey (2001) suggests that inference on the risk-

return relationship can be very sensitive to how the expected return and volatility models

are specified.3 Estimates may again be biased if the models for expected returns or condi-

tional volatility are misspecified as a result of using overly restrictive models or including

too few predictor variables (Ludvigson and Ng (2007)). Our model specification tests

show that linear models used to compute expected returns and conditional volatility are

misspecified even when a large set of conditioning variables is used. The same holds

for GARCH or MIDAS variance estimates based on past squared returns. These results

suggest that it is important to maintain a flexible functional form for the conditional

mean and volatility models while also considering a large conditioning information set.

We find that the boosted regression tree approach accomplishes this and leads to reliable

estimates of expected returns and conditional volatility that pass the model specification

tests.

Dynamic asset pricing models provide economic intuition for our findings of a

non-monotonic risk-return relation. In consumption asset pricing models, the conditional

equity premium reflects the correlation between stock returns and the marginal rate of

3Lettau and Ludvigson (2009) conclude that “the estimated risk-return relation is likely to be highly
dependent on the particular conditioning variables used in any given empirical study.”
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substitution which only depends on growth in next period’s consumption. Stock returns

reflect changes in expectations of the entire infinite future stream of consumption and

asset payoffs. In a model with regime switching in the consumption process, Whitelaw

(2000) shows that this difference in horizons can reduce the relation between stock market

returns and the marginal rate of substitution. While the traditional positive risk-return

relation emerges in “normal” states with little uncertainty, states with high probability of

transitioning to a new regime and hence high levels of uncertainty and return volatility

can have low expected returns. These effects can lead to a non-monotonic, inverted

risk-return relation.

When the dividend and consumption processes can differ, time-varying het-

eroskedasticity in the dynamics of these processes can create a further wedge between

marginal utility of consumption and asset payoffs and thus between expected returns

and volatility. States with high uncertainty of future consumption growth and high

return volatility need not have high expected returns if the simultaneous correlation

between consumption and dividend growth is low. In this situation the stock market

may provide a partial hedge against adverse consumption states because dividends, and

hence the price-dividend ratio can be high in such states. In the context of a simple

asset pricing model based on the analysis in Garcia, Meddahi, and Tedongap (2008) and

Bonomo, Garcia, Meddahi, and Tédongap (2011), we show how this can again lead to a

non-monotonic risk-return relation similar to the one observed in the data.

Common to many dynamic asset pricing models is that conditional stock mar-

ket volatility is not an appropriate measure of risk. Indeed, the consumption CAPM

(Breeden (1979)) suggests the covariance between returns and consumption growth as

the appropriate measure of risk, while the intertemporal CAPM (Merton (1973)) adds

a set of hedge factors tracking time-varying investment opportunities. To address these

points, we construct a new “realized covariance” risk measure based on daily changes

in the broad economic activity index developed by Arouba, Diebold, and Scotti (2009)

and daily stock market returns. Consistent with the above asset pricing models we find

evidence of a strongly positive and monotonic relation between conditional covariance

risk and expected returns. From an economic perspective, variations in the conditional

covariance lead to far greater changes in expected returns than those associated with
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variations in conditional volatility.

Our analysis generalizes and provides a synthesis of many existing approaches

from the literature on the risk-return trade-off. Ludvigson and Ng (2007) argue that most

studies consider too few conditioning variables and provide a factor-based approach that

parsimoniously summarizes information from a large cross-section of variables. Once

the conditioning information set is expanded in this way, they find evidence of a positive

risk-return trade-off. Like these authors, we consider a large set of conditioning variables

to compute the conditional equity premium and market volatility. Linear mean-variance

models such as Bollerslev, Engle, and Wooldridge (1988), and Ghysels, Santa-Clara, and

Valkanov (2005) arise as special cases of our setup when the variance estimates are based

on past (squared) returns. Guo and Whitelaw (2006) argue that findings of a negative or

insignificant mean-variance relation is due to the omission of an intertemporal hedging

component leading to a downward bias in the variance coefficient. We consider a model

that includes both variance and covariance terms and find that our results are robust

to the inclusion of both measures of risk. Following papers such as Harrison and Zhang

(1999), we do not impose monotonicity on the risk-return relation, but allow its shape

to be freely estimated.

In summary, the main contributions of our paper are as follows. First, we present

a new, flexible modeling approach that reduces the risk of biases in estimates of expected

returns and conditional volatility. Second, we use this approach to analyze empirically

the relation between the expected return and conditional volatility without imposing

restrictions on the shape of this relation. Using U.S. stock returns, we present evidence

of a non-monotonic mean-volatility relation with expected returns first rising, then de-

clining as the conditional volatility further increases. Third, we use asset pricing models

to gain insights into the type of economic mechanism that can induce the non-monotonic

risk-return relation observed in the data. Fourth, we propose a new conditional covari-

ance risk measure that builds on the covariation between daily stock returns and daily

economic activity. Finally, we show empirically that when this broad conditional covari-

ance is used to measure risk, a strongly increasing and monotonic risk-return relation

emerges.

The remainder of the paper is organized as follows. Section I introduces our
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approach to modeling the risk-return relation. Section II describes the data, analyzes

the risk-return relation empirically, compares our approach to existing methods and

discusses reasons why our empirical findings differ from previously reported ones. Section

III provides economic intuition for the non-monotonic risk-return relation in the context

of dynamic asset pricing models. Section IV introduces the new covariance measure of

risk, while Section V concludes.

3.2 Empirical Methodology

Dynamic asset pricing models do not generally restrict the relation between con-

ditional market volatility and expected returns to be linear. To quote from Gennotte

and Marsh (1993, page 1039), “.. in a general equilibrium framework, the market risk

premium is a complicated function of the cash flow uncertainty, implying that the simple

regression and time series fits of the relation between equity risk premiums and asset

price volatility are likely to be misspecified.” To avoid biases that follow from restricting

the shape of the risk-return trade-off, it is therefore important to adopt an empirical

modeling approach that is flexible, yet as emphasized by Ludvigson and Ng (2007) can

simultaneously deal with large sets of predictor variables.

This section describes a new modeling approach that avoids imposing shape

restrictions on the risk-return relation or on the models used to generate expected returns

and conditional volatility estimates, while allowing for large-dimensional state variables.

The approach uses regression trees. To get intuition for how these work and establish

the appropriateness of their use in our analysis, consider the situation with a single

dependent variable yt+1 (e.g., stock returns) and two state variables, x1t and x2t (e.g.,

the earnings-price ratio and the payout ratio), so that interest lies in modeling expected

returns using ex-ante regressors. The functional form of the model mapping x1t and x2t

into yt+1 is unlikely to be known, so we simply partition the sample support of x1t and

x2t into a set of regions or “states” and assume that the dependent variable is constant

within each partition.

Specifically, we first split the sample support into two states and compute the

mean of y in each state. We choose the state variable (x1 or x2) and the splitting point
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to achieve the best fit. Next, one or both of these states is split into two additional

states. Boosted regression trees are additive expansions of regression trees, where each

additional tree is fitted on the residuals of the previous tree until some stopping criterion

is reached. The number of trees used in the summation is known as the number of

boosting iterations.

An economic illustration of the approach is provided in Figure 1, which shows

boosted regression trees that use the (lagged) log payout ratio (i.e., the dividend-earnings

ratio) and the log earnings-price ratio to predict excess returns on the S&P500 index.

Each iteration fits a tree with two terminal nodes, so every new tree stub generates two

regions. The graph on the left uses only three boosting iterations. The resulting model

ends up with one split along the payout ratio axis and two splits along the earnings-price

ratio axis. Within each state the predicted value of stock returns is constant. With only

three boosting iterations the model is quite coarse and shows that the expected return is

at its lowest (highest) when the payout ratio is high (low) and the earnings-price ratio is

low (high). The fit improves as more boosting iterations are added. As an illustration,

the figure on the right is based on 5,000 boosting iterations. Now the plot is much

smoother, but clear similarities between the two graphs remain.

We next provide a more formal description of the methodology and explain how

we implement it in our analysis. Our description draws on Hastie, Tibshirani, and

Friedman (2009) who provide a more in-depth coverage of the approach.

3.2.1 Regression Trees

Consider a time-series with T observations on a single dependent variable, yt+1,

and P predictor (state) variables, xt = (xt1, xt2, ..., xtp), for t = 1, 2, ..., T . As illustrated

in Figure 1, implementing a regression tree requires deciding, first, which predictor vari-

ables to use to split the sample space and, second, which split points to use. A given

split point may lead to J disjoint sub-regions or states, S1, S2, ..., SJ , and the dependent

variable is modeled as a constant, cj , within each state, Sj . For example, in Figure 1

there are J = 2 nodes at each split point. For the resulting states cj corresponds to

the value of the flat spots on the vertical (expected return) axis. The value fitted by a
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regression tree, T (xt,ΘJ), with J nodes and parameters ΘJ = {Sj , cj}Jj=1 can thus be

written

T (xt,ΘJ) =

J∑
j=1

cjI{xt ∈ Sj}, (1)

where the indicator variable I{xt ∈ Sj} equals one if xt ∈ Sj and is zero otherwise.

Estimates of Sj and cj can be obtained as follows. Under the conventional ob-

jective of minimizing the sum of squared forecast errors, the estimated constant, ĉj , is

the average of yt+1 in state Sj :

ĉj =
1∑T

t=1 I{xt ∈ Sj}

T∑
t=1

yt+1I{xt ∈ Sj}. (2)

Optimal splitting points are more difficult to determine, particularly in cases where the

number of state variables, P , is large, but sequential algorithms have been developed for

this purpose.

Regression trees are very flexible and can capture local features of the data that

linear models overlook. Moreover, they can handle cases with large-dimensional data.

This becomes important when modeling stock returns because the identity of the best

predictor variables is unknown and so must be determined empirically. On the other

hand, the approach is sequential and successive splits are performed on fewer and fewer

observations, increasing the risk of overfitting. There is also no guarantee that the

sequential splitting algorithm leads to the globally optimal solution. To deal with these

problems, we next consider a method known as boosting.

3.2.2 Boosting

Boosting is based on the idea that combining a series of simple prediction models

can lead to more accurate forecasts than those available from any individual model.

Boosting algorithms iteratively re-weight data used in the initial fit by adding new trees in

a way that increases the weight on observations modeled poorly by the existing collection

of trees. By summing over a sequence of trees, boosting performs a type of model

averaging that increases the stability of the forecasts.
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A boosted regression tree (BRT) is simply the sum of individual regression trees:

fB(xt) =
B∑
b=1

Tb(xt; ΘJ,b), (3)

where Tb(xt,ΘJ,b) is the regression tree of the form (1) used in the b-th boosting iteration

and B is the total number of boosting iterations. Given the previous model, fB−1(xt),

the subsequent boosting iteration seeks to find parameters ΘJ,B = {Sj,B , cj,B}Jj=1 for

the next tree to solve a problem of the form

Θ̂J,B = arg min
ΘJ,B

T−1∑
t=0

[et+1,B−1 − TB(xt,ΘJ,B)]2 , (4)

where et+1,B−1 = yt+1 − fB−1(xt) is the forecast error remaining after B − 1 boosting

iterations. The solution is the regression tree that most reduces the average of the

squared residuals
∑T

t=1 e
2
t+1,B−1 and ĉj,B is the mean of the residuals in the jth state.

Figure 1 shows that as the number of boosting iterations increases, the area covered by

individual states shrinks and the fit becomes better.

Boosting makes it more attractive to employ small trees at each boosting itera-

tion, thus reducing the risk that the regression trees will overfit. Our estimations there-

fore use J = 2 nodes and follow the stochastic gradient boosting approach of Friedman

(2001). The baseline implementation employs B =10,000 boosting iterations. Robust-

ness analysis reveals that the results are not sensitive to this choice.

The literature on ensemble learning (e.g. Dietterich (2000)) suggests various

ways in which the learning rate of the BRTs can be controlled, and we adopt three

common refinements to the basic regression tree methodology, namely (i) shrinkage, (ii)

subsampling, and (iii) minimization of absolute errors. These techniques are all known

to decrease the rate at which the average forecast errors are minimized on the training

data and hence reduce the risk of overfitting (e.g., Hastie, Tibshirani, and Friedman

(2009)).

Specifically, following Friedman (2001) we use a small shrinkage parameter, i.e.,

λ = 0.001, that reduces the amount by which each boosting iteration contributes to the

overall fit:

fB(xt) = fB−1(xt) + λ
J∑
j=1

cj,BI{xt ∈ Sj,B}. (5)
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This procedure reduces the ability of the algorithm to overfit individual outlier observa-

tions such as October 1987.

Each tree is fitted on a randomly drawn subset of the training data, whose length

is set at one-half of the full sample, the default value most commonly used. Again this

reduces the risk of overfitting. Importantly, since individual trees are fitted on different

subsets of the data, the starting point of the algorithm, or more specifically the particular

sequence of splits selected by the regression trees, has very little effect on our results.

Finally, the empirical analysis minimizes mean absolute errors. We do this in

light of a large literature suggesting that squared-error loss places too much weight on

observations with large residuals. This is a particular problem for fat-tailed distributions

such as those observed for stock returns and volatility. By minimizing absolute errors,

our regression model is more robust to outliers.

To see how the resulting BRTs can flexibly approximate a range of true relations

by means of a series of piece-wise constant functions, Figure 2 plots the fitted values

for three different shapes−linear, inverse-V, and linear-quadratic−using one, five and

10,000 boosting iterations. With only a single boosting iteration and two nodes, the

BRTs simply classify the data into high and low values. For the inverse-V or linear-

quadratic shapes, the BRTs capture the nonlinear relation with only five iterations and

with 10,000 iterations the fit gets very good, with only peak values missing out. In

contrast, the linear model is clearly misspecified suggesting that the BRT estimates are

more robust and can capture a wide range of patterns.

3.2.3 Measuring the Effect of Individual Variables

In a linear model the importance of a particular state variable can be measured

through the magnitude and statistical significance of its slope coefficient. This measure

is not applicable to regression trees since these do not impose linearity. As an alternative

measure of influence, we instead consider the reduction in the forecast error every time

a particular variable, xp, is used to split the tree. Summing the reductions in forecast

errors (or improvements in fit) across the nodes in the tree and across boosting iterations

gives a measure of each variable’s influence (Breiman (1984)). The more frequently a

variable is used for splitting and the bigger its effect on reducing the forecast errors, the
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greater its influence. If a variable never gets chosen to conduct the splits, its influence will

be zero. Finally, the resulting measure of influence is divided by the summed influence

across all variables to get a measure of relative influence. This sums to one and can be

compared across predictor variables.

Similarly, we can compute the marginal effect of one state variable, Xp, on the

dependent variable by fixing the value of the state variable and averaging out the effect of

the remaining variables. Repeating this process for different values of Xp yields a partial

dependence plot that shows the effect individual state variables have on the dependent

variable.

3.3 Empirical Risk-Return Estimates

This section presents estimates of the risk-return relation, contrasting results

from conventional linear models with those obtained using the boosted regression tree

approach described in Section I. We first present the data used in our empirical analysis

and then report empirical results.

3.3.1 Data

Our empirical analysis of the risk-return trade-off relies on proxies for the condi-

tional expectation of stock returns and the conditional volatility. Following the extensive

empirical literature on time variations in both expected stock market returns and volatil-

ity (e.g., Lettau and Ludvigson (2009)), these are constructed using a broad range of

state variables.

Specifically, our empirical analysis uses a data set comprising monthly stock

returns along with a set of predictor variables previously analyzed in Welch and Goyal

(2008) extended to cover the sample 1927-2008.4 Stock market returns are tracked by

the S&P 500 index and include dividends. A short T-bill rate is subtracted to obtain

excess returns. For brevity we refer to these simply as the returns.

The predictor variables fall into three broad categories. First, there are valuation

4A few variables were excluded from the analysis since they were not available up to 2008. We also
excluded the CAY variable since this is only available quarterly since 1952.
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ratios capturing some measure of ‘fundamental’ value to market value such as the log

dividend-price ratio and the log earnings-price ratio. Second, there are bond yield mea-

sures capturing the level or slope of the term structure or measures of default risk such

as the three-month T-bill rate, the de-trended T-bill rate, i.e., the T-bill rate minus a

three-month moving average, the yield on long term government bonds, the term spread

measured by the difference between the yield on long-term government bonds and the

three-month T-bill rate, and the default yield spread measured by the yield spread be-

tween BAA and AAA rated corporate bonds. Third, there are estimates of equity risk

and returns such as the lagged excess return, long term (bond) returns, and stock vari-

ance, i.e., a volatility estimate based on daily squared returns. Finally, we also consider

the dividend payout ratio measured by the log of the dividend-earnings ratio and the

inflation rate measured by the rate of change in the consumer price index. Additional

details on data sources and the construction of these variables are provided by Welch

and Goyal (2008). All predictor variables are appropriately lagged so they are known at

time t for purposes of forecasting returns in period t+ 1.

Following the analysis in Ludvigson and Ng (2007), we also consider a much larger

information set. Specifically, suppose that a large set of state variables zit, i = 1, ..., N

are generated by a factor model of the form zit = λ′ift + eit,where ft is a vector of

common factors, λi is a set of factor loadings, and eit is an idiosyncratic error. Using

common factors as predictor variables rather than the N individual regressors achieves

a substantial reduction in the dimension of the information set. We follow Ludvigson

and Ng (2007) and extract factors through the principal components method. Their

data contain N = 131 economic time series for the period 1960-2007. By considering

this large set of predictor variables, we address a potentially important source of model

misspecification caused by omitted variables.

Market variance is unobserved, so we follow a large recent literature in proxying

it through the realized variance. Specifically, let ri,t be the daily return on day i during

month t and let Nt be the number of trading days during that month. Following, e.g.,

French, Schwert, and Stambaugh (1987) and Schwert (1989) we construct the realized
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variance measure

σ̂2
t =

Nt∑
i=1

r2
i,t. (6)

This estimator is only free of measurement errors as the sampling frequency approaches

infinity, so σ̂2
t is best thought of as a variance proxy.

3.3.2 Estimates of Expected Return and Conditional Volatility

Let rt+1 be the market return during period t+1, measured in excess of the risk-

free rate. Estimates of the expected excess return, µt+1|t = Et[rt+1], and the conditional

volatility, σt+1|t = V art(rt+1)1/2, are computed conditional on information known to

investors at time t. Both are unobserved and so empirical analysis typically relies on

model-based proxies of the form

µ̂t+1|t = fµ(xt|θ̂µ),

σ̂t+1|t = fσ(xt|θ̂σ), (7)

Here xt is a set of publicly available predictor variables and θ̂µ and θ̂σ are estimates of

the parameters of the expected return and volatility models, respectively. We provide

further details of these estimates below, but first turn to the risk-return model.

3.3.3 Linear Estimates of the Risk-Return Relation

Following Ludvigson and Ng (2007) we first consider a reduced-form relation that

models the conditional equity premium as a linear function of the conditional volatility:

µ̂t+1|t = α+ β1σ̂t+1|t + β2σ̂t|t−1 + β3µ̂t|t−1 + εt+1, (8)

where ‘hats’ indicate estimated values from the boosted regression trees. In a general-

ization of the conventional volatility-in-mean model, lags are included to account for the

complex lead-lag relation between the conditional mean and volatility, see, e.g., Whitelaw

(1994) and Brandt and Kang (2004).

Empirical estimates of this model are shown in Panel A1 of Table 1. For the

full sample, 1927-2008, we find evidence of a positive and significant linear relation

between the contemporaneous volatility and expected returns with a t-statistic of 2.7.
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Conversely, the effect of lagged volatility is strongly negative, while the effect of lagged

expected returns is strongly positive. Although these results carry over to the first

subsample, 1927-67, they are not stable. In the second subsample, 1968-2008, the relation

between the conditional mean and both the current and lagged conditional volatility is

insignificant and much weaker. Similar findings hold for the comparable sample, 1960-

2007, used to obtain factor-based estimates of the mean and volatility.

While Ludvigson and Ng (2007) use the conditional volatility as their risk mea-

sure, it is more common to use the conditional variance, so we also consider the following

linear mean-variance specification

µ̂t+1|t = α+ β1σ̂
2
t+1|t + β2σ̂

2
t|t−1 + β3µ̂t|t−1 + εt+1 (9)

For this specification, Panel B1 shows that the estimated slope coefficient on the condi-

tional variance term is positive but not statistically significant in any of the samples or

when common factor estimates are used to obtain the underlying moments.

To see if the linear mean-volatility or mean-variance models are correctly speci-

fied, we undertake a set of non-parametric specification tests. The null is that a model is

correctly specified, so a small p-value indicates misspecification. These results, reported

in Panel A in Table II, show that linearity of the mean-volatility or mean-variance re-

lation is strongly rejected for both the baseline variance specification that uses the full

sample from 1927-2008 and for the factor model based on the shorter sample 1960-

2007. Linearity of the mean-variance relation continues to be rejected in the full sample,

though not always in the shorter sample, when the variance estimates are based on

GARCH (Bollerslev, Engle, and Wooldridge (1988)) or MIDAS (Ghysels, Santa-Clara,

and Valkanov (2005)) models. Both of these approaches model current conditional vari-

ance as a function of past return shocks measured either at the monthly or daily horizon.

As a simple first measure of the nature of the misspecification of the linear risk-

return relation, we adopt the threshold regression approach of Hansen (2000) and esti-
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mate a piece-wise linear model relating the expected return to the conditional variance:

µ̂t+1|t =



−0.003 + 25.538 σ̂2
t+1|t for σ̂2

t+1|t ≤ (0.0253)2

(−1.492) (6.229)

0.009 − 0.542 σ̂2
t+1|t for σ̂2

t+1|t > (0.0253)2

(20.730) (−5.219)

(10)

At low levels of the conditional variance (corresponding to annualized volatility levels be-

low 9%), a strongly positive and significant mean-variance relation emerges. In contrast,

for higher values of the conditional variance, the relationship is negative and strongly

significant. A linearity test for equal slope of the two segments is rejected with a p-value

well below 0.01%.5 This demonstrates the limitations of linear and monotonic models for

the relation between the conditional mean and variance and indicates that the risk-return

relation is inverted at high levels of volatility.

An alternative to using model-based estimates of the conditional volatility is

to adopt a market-based estimate of conditional volatility, namely the Chicago Board

Options Exchange Index, commonly known as the VIX. The VIX is effectively a market-

based estimate of the volatility of the S&P 500 index over the next 30 days. Data on

the VIX are available over the period 1986-2008. Table I shows results for the linear risk

specification based on the VIX measure of conditional volatility or its square. In both

cases the coefficient on current VIX is positive but statistically insignificant.

3.3.4 Flexible Risk-Return Model

Given the evidence that the linear model is clearly misspecified, we next turn

to the more flexible risk-return model based on the boosted regression trees which do

not impose particular functional form assumptions. Specifically, consider the following

generalization of Eqs. (8-9):

µ̂t+1|t = f(σ̂t+1|t, σ̂t|t−1, µ̂t|t−1), (11)

where now f is estimated by means of the BRTs. As noticed in Section I.C, we can no

longer measure the importance of the explanatory variables through their slope coeffi-

5For simplicity we have omitted the lagged expected return and conditional variance from Eq. (10),
but we continue to reject the linear specification when these terms are included. Nearly identical results
were obtained when we used the conditional volatility in place of the conditional variance in Eq. (10).
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cients, so instead Panels A2 and B2 in Table I present estimates of the relative influence

of the three variables in this model using either σ̂t+1|t or σ̂2
t+1|t as the measure of risk.6

The relative weight on current conditional volatility is 8% for the full sample which is

statistically significant at the 5% level.7 This weight is similar to that of the lagged

volatility (9%). The weight on the lagged expected return (83%) is higher, which is

unsurprising since the expected return is quite persistent and so its lagged value is likely

to be important in this model. This finding is also consistent with the larger coefficient

and t-statistic on lagged expected returns in the linear model. Interestingly, in the first

subsample, 1927-67, the current conditional volatility obtains a large (and significant)

weight of 21%, but the weight declines to 10% in the second subsample, 1968-2008, where

it fails to be significant.

Panel A in Table II reports model specification tests for the BRTs fitted on

the risk-return data. In contrast with the linear model, we find no evidence of mis-

specification for the BRT model, indicating that this approach captures the shape of

the risk-return relation much better and suggesting that the true risk-return relation is

nonlinear.

Figure 3 plots the marginal effect of the conditional volatility on expected returns,

obtained by integrating across the lagged values of volatility and expected returns. The

figure confirms that the trade-off between concurrent expected returns and conditional

volatility is highly nonlinear in all three samples. At low-to-medium levels of volatility, a

strongly positive relation emerges where higher conditional volatility is associated with

higher expected returns. As volatility rises further, the relation flattens out and, at high

levels of conditional volatility, it appears to be inverted so higher conditional volatility

is associated with declining expected returns.

6For the flexible risk-return model it should make no difference whether we use σ̂t+1|t or σ̂2
t+1|t as the

measure of risk since the squaring can be undone by the BRT. This is consistent with what we find in
Table I with only very minor differences (due to random sampling) between the results in Panels A2 and
B2.

7To assess the statistical significance of the relative influence of individual variables, we undertake the
following analysis. We fix the ordering of the dependent variable and all explanatory variables except
for one variable, whose values are redrawn randomly in time. We then calculate the relative influence
measure for the data with the reshuffled variable. Because any relation between the randomized variable
and expected returns is broken, we would expect to find a lower value of its relative influence, any results
to the contrary reflecting random sampling variation. Repeating this experiment a large number of times
and recording how often the randomized relative influence measure exceeds the estimated empirical value
from the actual data, we obtain a p-value for the significance of the individual variables.
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Our analysis assumes a constant risk-return relation. However, we can at least

in part address this issue by applying our methodology to subsamples of the data. As

shown in the middle and right plots in Figure 3, the inverted risk-return trade-off at

medium-high levels of volatility is a robust finding in the sense that it appears not to be

confined to a particular historical period.8

A possible concern with these findings is that the flat and decreasing parts of

the risk-return plot could be driven by relatively few observations. However, this does

not seem to be the case. In the full-sample plot in Figure 3, 37% of the observations lie

to the left of the steeply increasing part, while 63% lie on the flat and declining parts.

For the first subsample, 75% of the observations lie to the left of the peak of the graph

while for the second subsample, 65% of the observations lie to the left of the peak. These

numbers do not suggest that the shape of the graphs are driven by a few outliers.

A second concern is that the BRTs may overfit the data. To address this point,

we computed out-of-sample forecasts of stock returns and volatility, using 1970-2008

as the evaluation period and making use only of historically available information as

opposed to full-sample estimates. In unreported results we find that, for the return

forecasts, the prevailing mean model of Welch and Goyal (2008) and a multivariate

linear regression model generate negative out-of-sample R2−values, whereas the BRT

model generates more precise out-of-sample forecasts and a positive R2−value. For the

volatility forecasts, we find that the BRTs produce more precise out-of-sample forecasts

than those from a GARCH(1,1) model, a MIDAS model from Ghysels, Santa-Clara, and

Valkanov (2005), and an autoregressive ‘realized volatility’ model. This out-of-sample

analysis suggests that the boosted regression tree estimates of the conditional mean and

volatility are not overfitting the data.

8The non-monotonic risk-return relation is related to the finding by Brandt and Wang (2007) that,
while the risk-return relation is mostly positive, it varies considerably over time and is negative for
periods around the oil price shocks of the early 1970s, the monetarist experiment, 1979-81, and again
around the recession of 2000-2001. Those are all periods associated with greater than normal volatility
and so these findings are closely related to our results.
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3.3.5 Comparison with Existing Approaches

Differences between the findings reported here versus earlier estimates can be

attributed either to differences in how the risk-return relation is modeled or to the use of

different estimates of the conditional mean and variance of market returns. We already

addressed the first point and now turn to the second point.

Differences in estimates of market variance and expected returns turn out to be

very important for the risk-return relation. This finding is consistent with Glosten, Ja-

gannathan, and Runkle (1993), Harvey (2001) and Lettau and Ludvigson (2009) who

conclude that empirical analysis of the risk-return is highly sensitive to changes in the

mean-volatility estimates. Indeed, in unreported results we find that the coefficient in

a regression of the conditional mean on the conditional volatility is highly sensitive to

whether the first-stage conditional mean and volatility estimates are based on a lin-

ear model−in which case the coefficient is significant and negative−or on the boosted

regression tree, which leads to a positive and significant coefficient.

It is therefore important to avoid using misspecified models when generating es-

timates of the expected return and conditional volatility. To see the relevance of this

point, Panel B in Table II reports a set of diagnostic tests for whether the first-stage

estimates of the conditional mean and variance are misspecified. Linear models for the

expected return and conditional variance (or volatility) are clearly misspecified. In con-

trast, the BRTs do not appear to be misspecified for the expected return and conditional

variance. Furthermore, both the GARCH variance model adopted by Bollerslev, Engle,

and Wooldridge (1988) and the MIDAS model of Ghysels, Santa-Clara, and Valkanov

(2005) appear to be misspecified. This may help explain the dissimilarity in results

reported in previous empirical studies.

To understand why linear models for the volatility and expected returns are

misspecified, we study the BRT estimates of the conditional mean and volatility in more

detail. These are unconstrained and so are able to reveal the nature of any deviations

from linearity. The top row in Figure 4 presents partial dependence plots for the three

most important predictor variables in the BRT model for expected returns, namely

inflation, the earnings-price ratio and the relative return. The relation between expected
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stock returns and these predictor variables is highly nonlinear. At negative levels of

inflation the relation between the rate of inflation and expected returns is either flat or

rising. Conversely, at positive levels of inflation, higher consumer prices are associated

with lower mean returns. Although the relation between expected stock returns and the

log earnings-price ratio is always positive, it is strongest at low or high levels of this

ratio, and gets weaker at medium levels.

Turning to the volatility plots in the middle row, the predicted volatility quadru-

ples from roughly 2% to 8% per month as the lagged realized volatility increases over its

historical support. The relation between current and past volatility is basically linear

for small or medium values of past volatility but very high values of past volatility do

not translate into corresponding high values of expected future volatility, as evidenced

by the flatness of the relation at high levels of volatility. A highly nonlinear pattern is

also found in the relation between the conditional volatility and the default spread or

past returns.

This evidence indicates that conventional linear risk-return models may get re-

jected not only because they are intrinsically misspecified but also because they rely on

misspecified proxies for the conditional mean and volatility. Hence, it is important to

use a flexible modeling approach in both stages of the analysis.

3.3.6 Tests of Monotonicity

The results reported so far suggest that expected market returns rise when the

conditional volatility goes from low to medium levels. The opposite finding holds for

periods with medium-to-high levels of conditional volatility, where rising volatility is as-

sociated with constant or declining expected returns. While the plots in Figure 3 suggest

marked non-monotonicities in the mean-volatility relation, they do not demonstrate that

this relation is non-monotonic in a statistically significant way.

To formally test if the relation between the conditional volatility and expected re-

turns is monotonic in a statistical sense, we use the approach in Patton and Timmermann

(2010). We sort pairs of monthly observations into g = 1, .., G groups, {µ̂gt+1|t, σ̂
g
t+1|t}

and then rank them by the conditional volatility estimate. A monotonic mean-volatility

relation implies that, as we move from groups with low conditional volatility to groups
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with high conditional volatility, mean returns should rise.9

We seek to test whether the conditional expected return increases when ranked

by the associated value of σ̂gt+1|t :

H0 : E
[
µ̂gt+1|t|σ̂

g
t+1|t

]
≥ E

[
µ̂g−1
t+1|t|σ̂

g−1
t+1|t

]
, for g = 2, .., G. (12)

Because σ̂gt+1|t > σ̂g−1
t+1|t, this hypothesis says that the expected return associated with ob-

servations where the conditional volatility is high exceeds the expected return associated

with observations with lower conditional volatility. Defining ∆g ≡ E
[
µ̂gt+1|t|σ̂

g
t+1|t

]
−

E
[
µ̂g−1
t+1|t|σ̂

g−1
t+1|t

]
, for g = 2, ..., G, and letting ∆=(∆2,∆3, ....,∆G)′, the null hypothesis

can be rewritten as10

H0 : ∆ ≥ 0. (13)

To test this hypothesis, we use the test statistic of Wolak (1989). The null that the

conditional mean increases monotonically in the level of conditional volatility is rejected

if there is sufficient evidence against it. Conversely, a failure to reject the null implies that

the data is consistent with a monotonically increasing relation between the conditional

mean and conditional volatility. The test statistic has a distribution that, under the

null, is a weighted sum of chi-squared variables whose critical values can be computed

via Monte Carlo simulation.

For robustness, we perform the test on different numbers of groups, G, chosen

so that there are 40, 50 and 65 observations per group. Furthermore, because it could

be of interest to study the results across different forecast horizons, we compound the

monthly returns and compute the associated estimates of the h-month conditional mean

and conditional volatility and conduct tests for horizons of h = 1, 2, 3 months.11

Test results are reported in Panel A of Table III. At the one-month horizon,

we get p-values below 5% irrespective of the number of groups, G. Similar results are

obtained for the bimonthly and quarterly horizons. Panel B shows similar findings for

9Since we are interested only in the relation between the concurrent conditional mean and volatility,
we integrate out the effects of the lagged variables in Eq. (11). Hence our analysis is based on the
relation between the marginalized conditional mean and the marginalized conditional volatility.

10Since rankings by σ̂t+1|t are identical to rankings by σ̂2
t+1|t, the tests for monotonicity in the relation

between expected returns and conditional volatility also apply to the conditional variance measure of
risk.

11Going beyond the one-quarter horizon entails a significant decline in sample size and a resulting loss
in power.
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the VIX measure of volatility. These results demonstrate that a monotonically increasing

relation between the conditional mean and the conditional volatility is strongly rejected,

providing evidence of a nonlinear mean-volatility or mean-variance relation.

3.4 Why is there a Non-monotonic Risk-Return Relation?

Simple intuition suggests a positive trade-off between stock market volatility and

expected returns, so our empirical finding of a non-monotonic relation may at first seem

puzzling. In fact, this section shows that many asset pricing models can generate a

non-monotonic or even negative relation between expected stock returns and market

volatility.

In many dynamic asset pricing models, expected returns depend not only on

the conditional variance of next-period returns but also on how returns are correlated

with future shocks to investment opportunities so that the equity premium contains an

intertemporal hedging component. For example, in a log-linearized asset pricing model

with Epstein-Zin preferences, Campbell (1993) shows that the expected market excess

return takes the form

Et[rt+1] = (γ − 0.5)σ2
t+1|t +

[
γ − 1− θκ

ψ

]
Covt(rt+1, [Et+1 − Et]

∞∑
j=1

ρjrt+1+j , ). (14)

Here γ is the coefficient of relative risk aversion, ψ is the elasticity of intertemporal

substitution, θ = (1 − γ)/(1− ψ−1), ρ is a linearization constant, and κ measures the

sensitivity of consumption with respect to changes in the expected market return. The

last term in Eq. (14) measures the covariance between the single period market return,

rt+1, and revisions to expectations of all future discounted market returns. The constant

in front of this term can be positive or negative, with θ/ψ measuring the market price of

consumption risk. A non-monotonic mean-variance relation can arise if the covariance

term depends on the variance of the market return, σ2
t+1|t. Suppose, for example, that

during periods with high market volatility the covariance between stock returns and

revisions to long-run market return expectations is higher than normal. Since agents do

not like to be exposed to this uncertainty, they increase their precautionary savings and

lower their consumption. If the market price of investment opportunity set risk (θκ/ψ)
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is sufficiently high, this can lead to a non-monotonic shape of the risk-return relation.

As a specific example, in a simple asset pricing model with power utility, Whitelaw

(2000) shows that switches between two regimes with large differences in consumption

growth can induce a complex, nonlinear relation between expected returns and con-

ditional market volatility. High conditional return volatility is induced by high levels

of uncertainty about future states caused by high probabilities of switching to a new

regime. Such regime switches can also reduce the correlation between stock returns

and the marginal rate of substitution between current and next period’s consumption

and lower the equity premium. In states of the world where the stock market portfolio

acts as a hedge against adverse shocks to consumption−e.g., when the price-dividend

ratio is high in economic downturns−the equity risk premium can be low even when the

conditional market volatility is high.12

A non-monotonic risk-return relation can alternatively arise because of the dy-

namics in the fundamentals of the economy and learning effects. David and Veronesi

(2009) derive a model in which investors’ learning about the unknown state of the econ-

omy leads to a V-shaped relation between return volatility and valuation measures such

as the price-earnings ratio. Uncertainty and thus return volatility is low in “normal”

states of the world since these are highly persistent and thus are associated with only a

small probability of large future shifts in the economy. Conversely, “bad” and “good”

states are much less persistent than the normal states and so are surrounded by much

greater uncertainty about the near future. Asset prices react more strongly to directional

information and so are relatively low in the bad state and high in the good state. Con-

versely, volatility is high in both of these outlier states, giving rise to a V-shaped relation

between asset prices and volatility. An inverted V-shaped relation between expected re-

turns and volatility arises in this model if, as one would expect, expected returns are

highest in the bad state (where marginal utility is high) and lowest in the good state

with low marginal utility. Simulations from the model confirm that this holds as there

12Similarly, in the simple dynamic exchange economy analyzed by Backus, Gregory, and Zin (1989)
and Backus and Gregory (1993), the sign of the risk-return relation can shift from being positive at
low-to-medium levels of volatility to becoming negative at medium-to-high volatility levels, taking an
inverse V-shaped form. This effect is driven by the volatility properties of the endowment process and
the associated expected returns or “risk prices”.



134

is a negative relation between the price-earnings ratio and expected returns.13

We next provide a more detailed example of these effects using a model that

matches the non-monotonic risk-return relation observed empirically.

3.4.1 Illustration from a Simple Model

As an illustration of how a non-monotonic risk-return relation may arise, we

adopt the regime switching model for consumption and dividends proposed by Garcia,

Meddahi, and Tedongap (2008) and Bonomo, Garcia, Meddahi, and Tédongap (2011).

In common with papers such as Bansal and Yaron (2004), this model allows for state-

dependent volatility and distinguishes between consumption and dividends, the former

being the payoff on the market portfolio, while dividend payoffs are received by equity

owners.

Log consumption and dividend growth, ∆c, ∆d, follow a process with four states

characterized by their mean (µc, µd), volatility (σc, σd) and correlation (ρ):

∆ct+1 = µ′cζt + (σ′cζt) εc,t+1

∆dt+1 = µ′dζt + (σ′dζt) εd,t+1, (15)

where the innovations (εc,t+1, εd,t+1) are drawn from a normal distribution with zero

mean, unit variance and correlation ρ′ζt. The state vector, ζt, follows a Markov process

with transition probabilities collected in a matrix P . ζt = ei if state i occurs at time

t, where ei is a column vector with zeroes everywhere except in the ith position, which

takes the value one.

A representative investor is assumed to have Epstein-Zin preferences as charac-

terized by the following continuation value of investor utility, Vt:

Vt =

{
(1− δ)C

1− 1
ψ

t + δ

[(
Et

(
V 1−γ
t+1

)) 1
1−γ
](1− 1

ψ
)
} 1

1− 1
ψ

. (16)

Here γ is the coefficient of relative risk aversion, ψ 6= 1 measures the elasticity of in-

tertemporal substitution, and δ is a subjective discount factor. With this in place,

Garcia, Meddahi, and Tedongap (2008) show that the conditional mean and variance of

13We are grateful to Alex David for confirming this point.
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excess returns are given by:

Et[R
e
t+1] =

[
(λ′2ζt) exp(µ′dζt + σ2′

d ζt/2)(λ1 + e)′P − λ′2f
]
ζt, (17)

V art[R
e
t+1] = (θ′2dζt)

(
[(λ1 + e)� (λ1 + e)]′ Pζt

)
, (18)

where {λ1, λ2, θ2d} are vectors of constants that depend on the underlying parameters

of the economy, (µc, µd, σc, σd, ρ, γ, δ, ψ, P ).

Following the analysis in Garcia, Meddahi, and Tedongap (2008), we consider a

four-state model with parameters for the consumption and dividend growth processes

calibrated to match the empirical moments reported by Lettau, Ludvigson, and Wachter

(2008). Specifically, the means and volatilities of the consumption and dividend growth

processes across the four states (in percent/year) are µc =
(

0.62 0.62 −0.32 −0.32
)

;

µd =
(

2.80 2.80 −1.45 −1.45
)

; σc =
(

0.75 0.40 0.75 0.40
)

;

σd =
(

3.36 1.82 3.36 1.82
)

. Volatility of consumption and dividend growth is

highest in states one and three and lowest in states two and four, while the mean growth

rates are highest in states one and two and lowest in states three and four. Consistent

with a configuration in Garcia, Meddahi, and Tedongap (2008), preference parameters

are set to ψ = 0.5, γ = 30, δ = 0.9925. The only additional parameters in our analysis

are the pairwise correlations between dividend and consumption growth which we set to

ρ =
(

3/4 1/4 1/4 1/4
)

, so that the first state has a higher correlation parameter

than the other states. However, the shape of the risk-return relation does not appear to

be overly sensitive to the exact choice of correlation parameters.

The left graph in Figure 5 plots the conditional expected excess return against the

conditional volatility implied by the model. Expected returns and conditional volatility

are lowest in the second state (which has low volatility and high mean dividend and

consumption growth) and both increase as we move through states four and one which,

compared with state two, experience either higher volatility or lower mean consumption

and dividend growth. While return volatility is highest in state three, the expected return

is lower in this state than in state one. This happens because of the higher correlation

between dividend and consumption growth in state one compared with the third state.

Although return volatility is very high in state three, marginal utility of consumption and

stock returns are less strongly correlated in this state than in state one, which means that



136

the market portfolio acts as a hedge in state three. Figure 5 shows how this translates

into a non-monotonic relation between the conditional volatility and expected returns in

a way that matches our empirical findings.

This analysis suggests that the conventional positive link between conditional

volatility and expected returns can be broken when the relation between marginal utility

and asset payoffs is weakened. One risk measure that is less subject to this issue because

it more closely tracks the covariance between excess returns and marginal utility is the

conditional covariance between consumption growth and excess returns. In the present

model this can be shown to be given by

Covt(R
e
t+1,∆ct+1) =

(
λ′2ζt

) (
(λ1 + e)′ Pζt

)
ρ′ζt. (19)

The right graph in Figure 5 plots the expected return against the conditional covariance

of excess returns and consumption growth. For this measure of risk, a monotonic relation

is obtained. The conditional covariance increases as we move from state two through

states four, three and state one. Expected returns increase in the same order. This

motivates an extension of the volatility or variance risk measures to a measure that

incorporates covariance risk.

3.5 Conditional Covariance Risk

Up to now we have used conditional market volatility as our proxy for risk. How-

ever, consumption asset pricing models suggest that the covariance between returns and

consumption growth would be a more appropriate measure of risk (Breeden (1979)),

while the ICAPM (Merton (1973)) suggests including further state variables tracking

time-varying investment opportunities. For example, Merton derived a relationship be-

tween the conditional expectation of excess returns on the market portfolio, Et[rt+1], its

conditional variance, σ2
t+1|t, and the conditional covariance between market returns and

state variables capturing time variations in the investment opportunity set, Covt+1|t:

Et[rt+1] = aWσ
2
t+1|t + bWxCovt+1|t. (20)

Here aW measures the representative investor’s relative risk aversion and bWx depends

on the sensitivity of the investor’s indirect utility function with respect to wealth (W )
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and state variables (x). Leaving out the conditional covariance term from Eq. (20) could

lead to omitted variable bias and so must be addressed (Guo and Whitelaw (2006)).

Consumption based asset pricing models lead to similar suggestions. For example,

when the representative investor has power utility, u(Ct+1) = C1−γ
t+1 /(1− γ), γ ≥ 0, and

consumption growth is log-normally distributed, expected excess returns on the stock

market portfolio satisfy

Et[rt+1] ≈ γcovt(∆ct+1, rt+1), (21)

where covt(∆ct+1, rt+1) is the conditional covariance between consumption growth, ∆ct+1,

and stock returns. A broader result is obtained under weaker assumptions requiring only

concave utility and a positive relation between consumption growth and stock returns:

∂Et[rt+1]

∂covt(∆ct+1, rt+1)
> 0. (22)

When consumption growth is unobserved, this result is not very useful. However, a

similar result holds if an economic activity variable is used to proxy for consumption

growth, provided that there is a monotonically increasing relation−not necessarily a

linear one−between consumption growth and changes in economic activity, ∆At+1 :

∂Et[rt+1]

∂covt(∆At+1, rt+1)
> 0. (23)

Intuitively, the higher the covariance between changes to economic activity and stock

market returns, the lower returns tend to be during economic recessions where marginal

utility of consumption is high, suggesting that stocks are a poor hedge against shocks

to marginal utility. Hence, investors must be offered a higher expected return to induce

them to hold stocks. We next show how an estimate of covt(∆EAt+1, rt+1) can be

constructed from daily data on economic activity.

3.5.1 Realized Covariance

There is no proxy for the covariance term in Eq. (20) equivalent to the realized

variance measure in Eq. (6). To overcome this, we construct a new measure based on

the covariance between stock market returns and a high frequency proxy for economic

activity measured by means of the ADS business conditions index proposed by Arouba,

Diebold, and Scotti (2009). Daily data on this are available back to 1960.
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The ADS index is designed to track high frequency (daily) business conditions.

Its underlying economic indicators (daily spreads between 10-year and 3-month Treasury

yields, weekly initial jobless claims, monthly payroll employment, industrial production,

personal income less transfer payments, manufacturing and trade sales, and quarterly

real GDP) optimally blend high- and low-frequency information and stock and flow data.

The top window in Figure 6 plots the ADS index over the period 1960-2008. The index

displays a clear cyclical pattern with distinct declines during economic recessions.

The ADS index is a broad measure of economic activity so it seems reasonable to

expect that consumption growth is positively correlated with this index. Because daily

consumption data is not available, we consider instead the correlation between changes

to the ADS index and real consumption growth at monthly, quarterly, semi-annual and

annual horizons. Correlations are uniformly positive and increase with the horizon, rising

from 0.15-0.20 at the monthly horizon to 0.40-0.50 at the semi-annual and 0.50 at the

annual horizon, irrespective of whether durable or nondurable real consumption is used.

These findings are consistent with a monotonically increasing relation between

consumption growth and changes to the ADS index and suggest that we can use high

frequency changes to this index as a proxy for the unobserved consumption growth

or, alternatively, as a proxy for time-varying investment opportunities. Specifically, we

compute monthly “realized covariances” between stock returns and changes in the ADS

index from observations at the daily frequency,

ĉovt =

Nt∑
i=1

∆ADSi,t × ri,t, (24)

where ∆ADSi,t is the change in the ADS index on day i during month t, and ri,t is the

corresponding stock market return.

The bottom window in Figure 6 plots monthly (scaled) values of the conditional

covariance between changes to the ADS index and stock returns. The conditional co-

variance is distinctly countercyclical and rises during economic recessions.

3.5.2 Empirical Results

We next extend the risk-return model to include estimates of our new condi-

tional covariance measure in addition to the earlier measure of conditional volatility.
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We estimate both linear and flexible risk-return specifications that control for dynamic

effects:

µ̂t+1|t = α+ β1σ̂
2
t+1|t + β2ĉovt+1|t + β3µ̂t|t−1 + β4ĉovt|t−1 + β5σ̂

2
t|t−1 + εt+1, (25)

µ̂t+1|t = f(σ̂2
t+1|t, ĉovt+1|t, µ̂t|t−1, ĉovt|t−1, σ̂

2
t|t−1) + εt+1. (26)

To the extent that the consumption CAPM is valid and our conditional covariance mea-

sure proxies well for time-variations in consumption betas, we would expect only the

covariance terms to be significant. Conversely, if the ICAPM better describes the data,

both the conditional volatility and the covariance should be significant.14

Table IV presents estimation results for the models in Eqs. (25-26) using data

over the sample, 1960-2008, for which the covariance measure can be estimated. For the

linear model shown in Panel A, the coefficient on the conditional variance is insignificant

with a t-statistic below one. In contrast, the coefficient on the conditional covariance is

positive and highly significant with a t-statistic above six.

Turning to the flexible specification reported in Panel B, the covariance measure is

most important in explaining variations in expected returns. The conditional covariance,

ĉovt+1|t obtains a relative influence of 13.4% which is significantly different from zero (p-

value of 0.0%), whereas the relative importance of the conditional variance, σ̂2
t+1|t, is

6.1% (p-value of 14%).

Panel C shows that the null hypothesis of a monotonically increasing relation

between the conditional covariance and expected returns is not rejected. Conversely,

we reject, in two out of three cases, that there is a monotonic relation between the

conditional volatility and expected returns.15

Figure 7 shows that the partial dependence plots for the joint model in Eq.

(26) further corroborate these findings. Expected returns increase monotonically in the

conditional covariance, whereas the expected return-conditional volatility relation rises

14Suppose that the economic activity index depends both on consumption growth and state variables,
xt+1, that track time-varying investment opportunities, i.e.,

∆EAt+1 = λ0 + λ1∆ct+1 + λ2xt+1.

Then it follows that the specifications in Eqs. (25) and (26) nest both the consumption CAPM (if λ2 = 0
and conditional volatility does not matter in explaining variations in expected returns) and the ICAPM
(if λ2 6= 0).

15The case where we fail to reject compares fewer portfolios and so could excessively smooth out
nonmonotonicities in the expected return-variance relation.
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at first but then declines at higher levels of volatility. Moreover, expected returns vary by

approximately 5% per annum due to variations in the conditional covariance but change

by less than 2% per annum due to variations in the conditional variance.

Guo and Whitelaw (2006) also include a covariance estimate of time-varying

investment opportunities in their analysis of the risk-return relation. In common with

much of the literature, they assume that f is a linear function of both σ̂2
t+1|t and ĉovt+1|t

and they compute σ̂2
t+1|t and ĉovt+1|t from linear projections on observable state variables.

However, the plots in the bottom row in Figure 4 show that the conditional covariance

is a highly nonlinear function of the most important state variables such as inflation,

the payout rate and long term returns, suggesting that linear models for the covariance

are misspecified. Corroborating this, the bottom rows of Panel B in Table II show that

linear specifications for the conditional covariance are clearly misspecified. While there

is evidence that the BRT covariance estimates are also misspecified, this is driven by a

single observation following the default of Lehmann (October 2008) which represents an

extreme outlier for the realized covariance measure. Without this single observation, the

BRT estimates appear to be correctly specified, while the linear estimates are not.

3.6 Conclusion

This paper proposes a new and flexible approach to modeling the risk-return

relation that avoids imposing strong functional form assumptions. The approach can

handle large sets of state variables and is not prone to overfitting the data. Hence it

is not subject to the misspecification and omitted variable biases that have been a big

concern in empirical studies of the risk-return trade-off.

Using this approach on US stock return data, our empirical analysis finds that

there is a positive trade-off between conditional volatility and expected returns at low

or medium levels of conditional volatility, but that the relation is flat or inverted during

periods with high volatility. These findings make it easier to understand why so many

empirical studies differ in their findings on the sign and magnitude of the conditional

volatility-mean return relation.

The non-monotonic trade-off between conditional volatility and expected returns
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uncovered in our analysis indicates limitations of conditional volatility as a measure of

risk. To address this, we develop a high-frequency risk measure that captures the co-

variance between a broad economic activity index and stock returns. Changes to the

economic activity index are shown to be strongly positively correlated with consumption

growth at horizons of one month or longer, and have the further advantage that they

are measured at the daily frequency. This enables us to compute ‘realized covariances’

and facilitates estimation of conditional covariance risk. We find strong and significant

evidence of a monotonically increasing relation between expected stock returns and con-

ditional covariance risk. This suggests that there is indeed a positive risk-return trade-off,

but that it is important to use a broad measure of risk that accounts for the state of the

economy.

Chapter 3 is currently being prepared for submission for publication of the ma-

terial. Rossi, Alberto; Timmermann, Allan. The dissertation author was the primary

investigator and author of this material.
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Table 3.1: This table reports estimates of the relationship between expected returns, µ̂t+1|t, and
conditional volatility, σ̂t+1|t, or conditional variance, σ̂2

t+1|t, as well as lags of these. Panels A1 and
B1 use linear specifications and report coefficient estimates and t-statistics. Panels A2 and B2 employ
boosted regression tree models and report relative influence estimates together with their significance
(p-values) obtained through Monte Carlo simulations. Relative influence measures sum to 100. Panels
A1 and A2, use conditional volatility, σ̂t+1|t, while panels B1 and B2, use conditional variance, σ̂2

t+1|t,
as a measure of risk. The last rows in both panels use the Chicago Board Options Exchange (CBOE)
Volatility Index, VIX, or its square, as a measure of risk. Estimates of the conditional mean and volatility
or variance are based on boosted regression trees and use the state variables described in Section II.A,
except for the common factor estimates which are based on a wider set of 131 economic variables.

Estimates of the risk-return trade-off
A1. Linear volatility model A2. Flexible volatility model

Model: µ̂t+1|t = α+ β1 σ̂t+1|t + β2 σ̂t|t−1 + β3 µ̂t|t−1 + εt+1 XXX Model: µ̂t+1|t = f(σ̂t+1|t, σ̂t|t−1, µ̂t|t−1) + εt+1

Sub-Samples
σ̂t+1|t σ̂t|t−1 µ̂t|t−1

R2 Sub-Samples
σ̂t+1|t σ̂t|t−1 µ̂t|t−1

(t-stat) (t-stat) (t-stat) (p-value) (p-value) (p-value)

1927-2008 0.058 -0.079 0.659 44.40% 1927-2008 7.6% 9.4% 83.0%
(2.76) (-3.79) (26.78) (1.8%) (0.0%) (0.0%)

1927-1967 0.056 -0.104 0.584 41.54% 1927-1967 21.1% 19.5% 59.4%
(2.07) (-3.92) (15.41) (0.0%) (0.0%) (0.0%)

1968-2008 0.048 -0.025 0.662 42.93% 1968-2008 9.9% 9.9% 80.2%
(1.42) (-0.72) (19.29) (70.6%) (53.9%) (0.0%)

Common Factor Model Common Factor Model
1960-2007 0.007 -0.011 0.607 36.8% 1960-2007 15.2% 12.1% 72.8%

(0.13) (-0.21) (17.65) (9.6%) (48.6%) (0.0%)
VIX Volatility Proxy VIX Volatility Proxy

1986-2008 0.053 -0.042 0.656 42.35% 1986-2008 18.3% 11.3% 70.4%
(1.75) (-1.33) (14.07) (55.3%) (88.8%) (0.0%)

B1. Linear variance model B2. Flexible variance model
Model: µ̂t+1|t = α+ β1 σ̂2

t+1|t + β2 σ̂2
t|t−1

+ β3 µ̂t|t−1 + εt+1 XXX Model: µ̂t+1|t = f(σ̂2
t+1|t, σ̂

2
t|t−1, µ̂t|t−1) + εt+1

Sub-Samples
σ̂2
t+1|t σ̂2

t|t−1
µ̂t|t−1

R2 Sub-Samples
σ̂2
t+1|t σ̂2

t|t−1
µ̂t|t−1

(t-stat) (t-stat) (t-stat) (p-value) (p-value) (p-value)

1927-2008 0.242 -0.415 0.653 44.10% 1927-2008 7.6% 8.8% 83.6%
(1.56) (-2.68) (26.60) (3.3%) (0.2%) (0.0%)

1927-1967 0.135 -0.507 0.567 41.10% 1927-1967 20.2% 19.6% 60.2%
(0.72) (-2.71) (14.92) (0.0%) (0.0%) (0.0%)

1968-2008 0.412 -0.131 0.660 43.00% 1968-2008 10.5% 9.6% 79.9%
(1.45) (-0.44) (19.36) (59.1%) (57.8%) (0.0%)

Common Factor Model Common Factor Model
1960-2007 0.015 -0.004 0.607 36.8% 1960-2007 18.7% 9.3% 72.0%

(0.02) (-0.01) (17.71) (0.6%) (82.1%) (0.0%)
VIX2 Volatility Proxy VIX2 Volatility Proxy

1986-2008 0.223 -0.107 0.651 42.2% 1986-2008 18.1% 11.3% 70.6%
(1.47) (-0.66) (13.98) (9.0%) (89.9%) (0.0%)
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Table 3.2: This table presents Ramsey RESET specification tests applied to different models for the
risk-return relation (Panel A) or the underlying conditional mean (Panel B.I), variance (Panel B.II) and
covariance (Panel B.III). The null is that a model is correctly specified, so a small p-value (i.e., below
0.05) indicates misspecification. The linear and boosted regression tree (BRT) models use the state
variables described in Section II.A as predictors, while the MIDAS and GARCH(1,1) models are based
on past returns. The baseline results are based on the full sample (1927-2008), while the factor results
use a shorter period (1960-2007) for which data on 131 underlying economic variables are available.

Model Specification Tests

A. Risk-Return Relation

Model
Baseline Results Model with Factors
F-test p-val F-test p-val

Linear (Volatility) 8.807 0.000 1.961 0.069
Linear (Variance) 52.297 0.000 4.244 0.000
BRT (Volatility) 0.919 0.508 0.533 0.851
BRT (Variance) 0.579 0.815 0.298 0.975
GARCH(1,1) 25.143 0.000 2.113 0.050
MIDAS 7.703 0.000 0.719 0.635

B. Moment Estimates
B.I. Mean

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 4.538 0.001 2.210 0.067
BRT 0.964 0.509 0.982 0.486

B.II. Variance

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 10.226 0.000 6.168 0.000
BRT 0.933 0.550 0.873 0.632
GARCH(1,1) 10.968 0.000 — —
MIDAS 3.759 0.000 — —

B.III. Covariance

Model
Baseline model Model with Factors

F-test p-val F-test p-val

Linear 4.605 0.000 2.084 0.125
BRT 3.355 0.000 1.213 0.229
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Table 3.3: This table presents the results of a test of whether the relationship between conditional
risk and expected returns is monotonic after marginalizing out the effect of lagged risk and lagged
expected returns. The test uses pairs of expected return, risk observations that are sorted on the basis
of the conditional risk measure (volatility or VIX), yielding groups of observations corresponding to
different levels of risk. The number of monthly observations in the small, medium and large groups or
“portfolios” are approximately 40, 50 and 65. We then test if the associated mean return is monotonically
increasing as we move from low to high risk observations. Each entry reports the p-value of a Wolak test
that entertains the null hypothesis of an increasing and monotonic relation between expected returns
and conditional volatility against the alternative of a decreasing or non-monotonic relation. Small p-
values indicate rejection of a monotonically increasing risk-return relation. In panel A, estimates of the
conditional mean and volatility are based on boosted regression trees that use the state variables from
Section II.A. The Chicago Board Options Exchange Volatility Index, also known as the VIX, is used as
a proxy for the conditional volatility in Panel B.

Tests for a monotonically increasing
risk-return relation

Group size

Horizon (months) Small Medium Large

A. Volatility estimates

1 0.000 0.018 0.010
2 0.000 0.000 0.017
3 0.000 0.000 0.039

B. VIX-based estimates

1 0.027 0.041 0.091
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Table 3.4: This table reports estimates of the effect on the conditional mean return, µ̂t+1|t, of the
conditional variance, σ̂2

t+1|t, the conditional covariance between stock returns and changes to economic

activity, ĉovt+1|t, the lagged conditional mean return, µ̂t|t−1, lagged variance, σ̂2
t|t−1, and lagged covari-

ance, ĉovt|t−1. Panel A reports estimates and t-statistics from a linear model. Panel B shows relative
influence estimates (in percent) from the boosted regression tree model. In parentheses we present the
significance of the relative influence estimates by way of Monte Carlo p-values. Panel C presents the
results of a test of whether the relation between conditional variance or conditional covariance) and
expected returns is monotonic after marginalizing out the effect of the other variables in the model.
Each entry reports the p-value of a Wolak test that entertains the null hypothesis of an increasing
and monotonic relation between expected returns and conditional variance (or conditional covariance).
Small p-values indicate rejection of a monotonically increasing relation. The number of observations in
the small, medium and large portfolios are approximately 40, 50 and 65.

Estimates and tests of the covariance model

A. Linear model
µ̂t+1|t = α+ β1σ̂

2
t+1|t + β2ĉovt+1|t + β3µ̂t|t−1 + β4σ̂

2
t|t−1 + β5ĉovt|t−1 + εt+1

Sample
σ̂2
t+1|t ĉovt+1|t µ̂t|t−1 σ̂2

t|t−1 ĉovt|t−1

(t-stat) (t-stat) (t-stat) (t-stat) (t-stat)

1960-2008
0.207 0.011 0.660 -0.112 -0.006
(0.74) (6.16) (20.70) (-0.37%) (-3.20%)

B. Flexible model
Relative influence measures

Model: µ̂t+1|t = f(σ̂2
t+1|t, ĉovt+1|t, µ̂t|t−1, σ̂

2
t|t−1

, ĉovt|t−1)

Sample σ̂2
t+1|t ĉovt+1|t µ̂t|t−1 σ̂2

t|t−1 ĉovt|t−1

1960-2008
6.16% 13.45% 67.50% 6.37% 6.52%

(14.0%) (0.0%) (0.0%) (11.4%) (15.9%)

C. Monotonicity tests
Group size

Small Medium Large

Conditional Variance 0.0000 0.0260 0.2567

Small Medium Large

Conditional Covariance 0.2355 0.2359 0.8242
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(a) 1 Iteration (b) 5 Iterations (c) 10,000 Iterations

(d) 1 Iteration (e) 5 Iterations (f) 10,000 Iterations

(g) 1 Iteration (h) 5 Iterations (i) 10,000 Iterations

Figure 3.2: Fitted values from linear regression and boosted regression trees. The top
row assumes the true relation is linear, the middle row assumes an inverted V-shaped relation, while the
bottom row assumes the true relation is first linear, then quadratic. The number of boosting iterations
is set to one (left column), five (middle column), or 10,000 (right column).
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Panel A. Expected Returns

Panel B. Volatility

Panel C. Covariance

Figure 3.4: Effect of predictor variables on conditional moments. The figures present partial
dependence plots for the mean excess return (Panel A), the conditional volatility (Panel B) and the
conditional covariance (Panel C) based on the three predictor variables with the highest relative influence
during 1927-2008, namely inflation (infl), the log earnings price ratio (ep), and the detrended T-Bill rate
(rrel) for returns; the lagged stock market volatility (vol), the default spread (defspr) and the excess return
on stocks (exc) for volatility; inflation (infl), the log dividend earnings ratio (de), and the long-term rate of
return (ltr) for the covariance. The horizontal axis covers the sample support of the individual predictor
variables, while the vertical axis tracks the change in the conditional equity premium as a function of
the individual predictor variables.
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Figure 3.5: Risk-Return relation in a dynamic asset pricing model. This figure plots the
conditional expected excess returns against the conditional volatility (left graph) and the conditional
covariance (right graph) implied by the four-state regime switching model proposed by Garcia et al.
(2008). The left plot shows a non-monotonic relation between conditional volatility and expected returns.
The state with the highest conditional volatility has a weaker correlation between consumption and
dividend growth than the other states. This means that the market portfolio provides a partial hedge
against adverse shocks to consumption in this state, resulting in a reduced equity premium. Conversely,
the right plot shows that there is a monotonically increasing relation between expected returns and the
conditional covariance between consumption growth and stock returns.
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ADS Index

Conditional Covariance

Figure 3.6: ADS index and the conditional covariance measure. This figure plots the ADS
index at the monthly frequency in the top panel and the scaled conditional covariance between changes
in the ADS index and stock returns in the bottom panel. The scaled conditional covariances are obtained
as follows. First, monthly realized covariances between changes in the ADS index and stock returns are
obtained using observations at the daily frequency. The scaled changes in the ADS Index are obtained by
dividing the change to the ADS Index by the standard deviation of returns times the standard deviation
of changes to the index. Finally, the conditional covariances are estimated by way of boosted regression
trees.
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Panel A. Baseline Model

Panel B. Model With Factors

Figure 3.7: Risk-return trade-off in the model with the conditional covariance risk mea-
sure. The figure shows partial dependence plots for the conditional mean return as a function of the
conditional volatility (vol) and the conditional covariance between stock returns and changes to economic
activity (cov). The plot is based on a boosted regression tree, using data over the sample 1960-2008 in
Panel A and 1960-2007 in Panel B. The horizontal axis covers the sample support of each predictor
variable, while the vertical axis tracks the change in the conditional mean as a function of the individual
state variables. In Panel A, the conditioning information is the predictor variables described in Section
II.A. In Panel B the conditioning information is the principal components derived from a set of 131 state
variables and the three most important variables selected from the predictors in Section II.A.



153

Bibliography

Abel, A. B. (1988): “Stock prices under time-varying dividend risk : An exact solution
in an infinite-horizon general equilibrium model,” Journal of Monetary Economics,
22(3), 375–393.

Arouba, S., F. Diebold, and C. Scotti (2009): “Real-Time Measurement of Busi-
ness Conditions,” Journal of Business & Economic Statistics, 27(4).

Backus, D. K., and A. W. Gregory (1993): “Theoretical Relations between Risk
Premiums and Conditional Variances,” Journal of Business & Economic Statistics,
11(2), 177–85.

Backus, D. K., A. W. Gregory, and S. E. Zin (1989): “Risk premiums in the
term structure : Evidence from artificial economies,” Journal of Monetary Economics,
24(3), 371–399.

Bansal, R., and A. Yaron (2004): “Risks for the long run: A potential resolution of
asset pricing puzzles,” Journal of finance, 59(4), 1481–1509.

Bollerslev, T., R. F. Engle, and J. M. Wooldridge (1988): “A Capital Asset
Pricing Model with Time-Varying Covariances,” Journal of Political Economy, 96(1),
116–31.

Bonomo, M., R. Garcia, N. Meddahi, and R. Tédongap (2011): “Generalized
Disappointment Aversion, Long-run Volatility Risk, and Asset Prices,” Review of Fi-
nancial Studies, 24(1), 82–122.

Brandt, M. W., and Q. Kang (2004): “On the relationship between the conditional
mean and volatility of stock returns: A latent VAR approach,” Journal of Financial
Economics, 72(2), 217–257.

Brandt, M. W., and L. Wang (2007): “Measuring the Time-Varying Risk-Return
Relation from the Cross-Section of Equity Returns,” Unpublished Working Paper,
Duke University.

Breeden, D. (1979): “An intertemporal asset pricing model with stochastic consump-
tion and investment opportunities,” Journal of Financial Economics, 7(3), 265–296.

Breen, W., L. Glosten, and R. Jagannathan (1989): “Economic significance of
predictable variations in stock index returns,” Journal of Finance, 44(5), 1177–89.

Breiman, L. (1984): Classification and regression trees Regression trees The Wadsworth
statistics/probability series. Wadsworth International Group.

Campbell, J. Y. (1987): “Stock returns and the term structure,” Journal of Financial
Economics, 18(2), 373–399.

Campbell, J. Y. (1993): “Intertemporal Asset Pricing without Consumption Data,”
American Economic Review, 83(3), 487–512.



154

David, A., and P. Veronesi (2009): “What Ties Return Volatilities to Price Valua-
tions and Fundamentals?,” NBER working paper.

Dietterich, T. (2000): “Ensemble methods in machine learning,” Multiple classifier
systems, pp. 1–15.

French, K. R., G. W. Schwert, and R. F. Stambaugh (1987): “Expected stock
returns and volatility,” Journal of Financial Economics, 19(1), 3–29.

Friedman, J. H. (2001): “Greedy function approximation: A gradient boosting ma-
chine,” Annals of Statistics, 29, 1189–1232.

Garcia, R., N. Meddahi, and R. Tedongap (2008): “An analytical framework for
assessing asset pricing models and predictability,” Université de Montréal Working
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