
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Towards Parallelization of Regression Test Selection

Permalink
https://escholarship.org/uc/item/5bx69070

Author
Zaber, Maruf Hasan

Publication Date
2021

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NoDerivatives License, availalbe at https://creativecommons.org/licenses/by-nd/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5bx69070
https://creativecommons.org/licenses/by-nd/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Towards Parallelization of Regression Test Selection

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Software Engineering

by

Maruf Hasan Zaber

Thesis Committee:
Professor Cristina V. Lopes, Chair
Associate Professor James A. Jones
Assistant Professor Joshua Garcia

2021

© 2021 Maruf Hasan Zaber

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

LIST OF ALGORITHMS vi

ACKNOWLEDGMENTS vii

ABSTRACT OF THE THESIS viii

1 Introduction 1

2 Background 5
2.1 Regression Test Selection . 5
2.2 Types of RTS . 7

2.2.1 Granularity of Test Selection . 7
2.2.2 Granularity of Change Impact Analysis 8
2.2.3 Dependency Collection . 8

2.3 Regression Test Selection Techniques and Tools 9
2.3.1 FaultTracer . 9
2.3.2 Ekstazi . 10
2.3.3 STARTS . 11
2.3.4 HyRTS . 11

3 Related Work 13
3.1 Change Impact Analysis . 13
3.2 Granularity of Regression Test Selection . 14
3.3 Dependency Collection in RTS . 15

4 Parallelization of Regression Test Selection 17
4.1 Concept . 17
4.2 Example . 19

5 TLDR Design and Implementation 23
5.1 Test Selection and Dependency Extraction 23
5.2 Safety . 27

ii

5.3 Parallelism in TLDR . 27
5.4 In-Memory Database . 29
5.5 Repository Scanner . 30
5.6 Class Analyzer and Entity Analyzer . 31
5.7 Dependency Extractor . 34

5.7.1 DFS Component . 35
5.8 Test to Entity Map . 35
5.9 Runner . 36
5.10 TLDR Artifact . 36

6 Safety of TLDR 38
6.1 Safety of TLDR . 38

6.1.1 Static Extended Dependency Graph 39
6.1.2 Firewall . 40
6.1.3 Proof of Safety of TLDR . 40

7 Evaluation 43
7.1 Research Questions . 43
7.2 Data Collection . 44
7.3 Experiment Setup . 46
7.4 Results . 49

7.4.1 RQ1: Number of Selected Tests . 49
7.4.2 RQ2: End-to-End Testing Time . 50

8 Limitations and Threats to Validity 53
8.1 Reflection and Instrumentation . 53
8.2 External Dependency . 55
8.3 Test Failure . 55
8.4 Average Error . 56

9 Future Work and Conclusion 57
9.1 Future Work . 57

9.1.1 Ground Truth and Benchmark . 57
9.1.2 Robust Artifact . 58
9.1.3 External Dependency . 58

9.2 Conclusion . 59

Bibliography 60

iii

LIST OF FIGURES

Page

2.1 High-level overview of Regression Test Selection. 6

4.1 Generic pipeline of regression test selection. 19

5.1 Pipe-and-filter architecture of TLDR. The architecture contains two partially-
independent pipelines, one for the source-code (marked as grey) and one for
the test-code (marked as white). 28

5.2 Two revisions of the same program. Revision 2 includes a new variable name,
black line, and a comment. Revision 1 and Revision 2 results in the same
bytecode. 31

5.3 Change analysis of class files. Only the changed class files are passed to the
next module. 33

5.4 Change analysis of methods and fields. Each changed class file is split into
methods and fields and fed to the change analysis module. 33

iv

LIST OF TABLES

Page

4.1 Categorization of RTS Techniques . 18
4.2 Categorization of RTS Tools . 20
4.3 An Example Java Project . 21

5.1 Hashtables used by TLDR’s In-Memory Database 29
5.2 Changes detected by TLDR . 32

7.1 Meta-information of the study projects . 44
7.2 Projects and Sampled Commits . 46
7.3 Number of tests run for Retest-All, Parallel Retest-All, TLDR, STARTS,

Ekstazi, and HyRTS . 48
7.4 Test run times for Retest-All, Parallel Retest-All, TLDR, STARTS, Ekstazi,

and HyRTS in seconds, unless noted otherwise. 51

v

LIST OF ALGORITHMS

Page
1 Test Selection pseudo-code . 25
2 Dependency Extraction pseudo-code . 26

vi

ACKNOWLEDGMENTS

I could not have accomplished this research and thesis without the continuous support and
encouragement of many people who are close to me professionally and personally. More
precisely, I would like to express my gratitude to my dissertation committee members,
colleagues, friends, and family.

First and foremost, I want to thank my advisor, Professor Cristina Videira Lopes for
her valuable guidelines and continuous support. My journey in graduate school has been
particularly nuanced and oftentimes, difficult for various professional and personal reasons.
Crista always encouraged me to freely pursue projects that I am interested in and make
career moves as I deem suitable for me. I think her research insights, engineering acumen,
and career guidelines will always help me to be a better engineer.

I want to thank my thesis committee members, Prof. James A. Jones and Prof. Joshua
Garcia for their valuable comments and suggestions. I was a teaching assistant for Prof.
Jones for two quarters. I learned a lot about Software Testing, the overarching theme of
this very thesis, by working with him in the Software Test Debug course. Josh was my
de-facto co-advisor on this research on regression test selection. This work would not have
been possible without his valuable, in-depth, and domain-specific advice. Josh went above
and beyond in helping me write papers for ASE and ISSTA. Josh, thank you very much!

I want to thank my colleagues in the Mondego Lab, Farima FarmahiniFarahani, Vaibhav
Saini,Di Wang, Rohan Achar, and Pedro Martins for their insightful questions and intellectual
company. I enjoyed so much working with you all and I wish you all great success in your
career. I want to thank the Informatics department manager, Marty Beach, ICS student
counselor Julie Oh, Kaelyn Costa, and Leslie Escalante, and international student advisor
Ruth Ortega for making my time in the department and in UCI so seamless.

Big shout out to my friends in UC Irvine, Pedro Matias, Sumaya Almanee, Janus Vermanken,
Nil Mamano, Sameera Ghayyur, Efi Karra, Ned Beigi, Evita Bakopolou, Prabhu Rajasekaran,
Ke Jing, Ted Grover, Syed Andalib, Wahiduzzaman Khan, and Rufaida Anagh. Thank you
for keeping me sane in this long and arduous endeavor. Big thanks to my friends Sakib Malek,
Mehrab Morshed, Sakib Sauro, Abdul Mumit, and Prithvi Zareen, Adij Khan, Habib Tawhid,
and Shuvo Mahmud for always being in touch while being so far geographically.

Big shout out to my family. I am what I am today because of the dream that was instilled
in me by Ammu and Abbu. The amount of support, dedication, and courage they have
shown in every step of my life is monumental. Ammu and Abbu, you are the champions. Big
shout-out to my sisters, Ummul Mahfuza and Ummul Mahmuda. Both of you are my role
models and will always remain so.

vii

ABSTRACT OF THE THESIS

Towards Parallelization of Regression Test Selection

By

Maruf Hasan Zaber

Master of Science in Software Engineering

University of California, Irvine, 2021

Professor Cristina V. Lopes, Chair

Regression Test Selection (RTS) is a set of techniques for selecting a subset of test cases from

the test suite based on the changes in source code. RTS tools may select tests in different

granularity, namely file-level, class-level, or method-level. File- and class-level tools are less

precise than method-level tools, but they are simpler, and carry considerably less execution

overhead in test selection. In this thesis, we show how method-level test selection can be

made efficient by appropriate use of inverted indexing and parallel processing. We present a

static method-level RTS tool, TLDR – a Maven plugin for unit testing with JUnit 4.x. Like

other static RTS approaches, TLDR extracts the firewall of each changed method or field to

compensate for dynamic dispatch. The main difference with other RTS tools is that it has a

configurable and multi-threaded Pipe and Filter architecture, with several in-memory inverted

indexes for fast lookup. We conducted 23.5 hours of experiments on 20 popular open-source

Java projects where we compared TLDR with state-of-art RTS tools like Ekstazi, STARTS,

and HyRTS, and traditional unit testing methods like retest-all and parallel retest-all. Our

evaluation has shown that TLDR is both more precise and more efficient than contemporary

RTS techniques like Ekstazi, STARTS, HyRTS, retest-all, and parallel retest-all.

viii

Chapter 1

Introduction

Software artifacts evolve throughout their life-cycle—undergoing changes, additions, and

deletions. These software modifications often result in errors or unintended behaviors in

portions of the software. Therefore, robust unit and integration testing are warranted to

maintain integrity and coherence in iterative software development. The safest method to

identify bugs, errors, and faults is to run a set of tests that covers the entire software artifact i.e

the complete test suite. This practice is referred to as Retest-all in the literature [35, 63, 42].

Unfortunately, Retest-all is time-consuming and computing-intensive, hence impractical

for large-scale repositories. For example, the complete test suite of Apache Hadoop takes

approximately 17 hours to complete [20]. Furthermore, the resulting test reports from

Retest-all are often too large for manual inspection and intervention. For example, Microsoft

Windows 8.1 had more than 30 million tests [28], which made it impractical to tackle all at

once. For these reasons, in projects with large test suites it is desirable to perform regression

test selection (RTS), i.e., select and run a subset of the complete test suite that assesses only

the code that is affected by changes to the software [41, 12, 51].

RTS has been the target of extensive research spanning decades [49, 35, 63, 42, 52, 65, 29].

1

Despite an abundance of techniques reported in the literature, this form of software testing is

still not prevalent in practice. To a large extent, this lack of adoption occurs because (1) the

overhead of selecting a subset of tests can be more expensive than just running the entire

test suite [68]; (2) the inability of RTS to scale to large programs [42]; and (3) the risk of

missing required tests [50].

In object-oriented languages, one important dimension of variability among RTS tools is the

granularity of test selection. RTS tools can select tests at file-level (all tests in a test file),

class-level (all tests in a test class), or method-level (individual unit tests). Method-level

RTS is more precise than the coarser variants, and therefore it might seem the most desirable

approach to RTS, as it might result in faster test execution time (fewer tests). However,

research has shown that the existing method-level RTS techniques are slower than class- and

even file-level RTS because of the large overhead involved in tracking dependencies at such

fine granularity [32, 68]. This is the problem targeted by our work.

In this thesis, we present TLDR, a static and method-level RTS tool for Java that is both

precise and efficient. TLDR simulates the polymorphism principle of OOP, using static

analysis. TLDR achieves safety by selecting all tests that correspond to an entity’s firewall,

the set of entities which may be impacted given a change to an entity [61, 60, 58]. To improve

the precision of RTS, TLDR selects tests at the method-level like FaultTracer [68]. However,

unlike other RTS tools, TLDR leverages a novel multi-threaded pipe-and-filter architecture

[56].

Most RTS techniques follow a common sequence of steps: identifying changes in source artifacts

(e.g, source code, machine code, jars, etc.), constructing dependency graphs, traversing the

graphs to find impacted entities, and finally mapping the impacted entities to one or more

test cases in the test suite [67, 20, 19, 33, 34, 68]. In all existing RTS tools, these steps are

performed sequentially. However, the pipeline is such that some of these steps can be executed

in parallel. The efficiency of TLDR comes from two aspects of its design. First, selecting

2

tests at the method-level makes it more precise, reducing the number of tests to be retested,

as well as the test execution time. This is theoretically true for all method-level RTS tools,

but it has been difficult to achieve in practice. Second, and most importantly, parallelizing

some steps of the test selection pipeline increases the throughput of the dependency analysis

process, making test selection faster. These aspects, together, result in reduced end-to-end

testing time for TLDR.

In this thesis, we empirically show that through the adoption of parallelism, method-level

RTS can be efficient compared to class-level RTS. In summary, this thesis makes the following

novel contributions:

• We propose a multi-threaded pipe-and-filter architecture for RTS tools that reduces

test selection overhead.

• We construct a precise RTS technique, TDLR, that operates at a finer-granularity (i.e.,

the method-level) and utilizes the proposed pipe-and-filter architecture to achieve major

reductions in the time needed to actually execute test cases.

• We evaluate TLDR on 20 open source Java projects. We also compare the performance

in terms of times with state-of-the-art RTS techniques, Ekstazi, STARTS, HyRTS as

well as more conventional testing techniques like retest-all and parallel-retest-all. We

show that TLDR is 2.7 times more precise than STARTS, 2.1 times more precise than

Ekstazi, and 1.4 times more precise than HyRTS. Due to its better precision and more

efficient test selection technique, TLDR is 1.5 times faster than Ekstazi, 1.7 times faster

than STARTS, and 1.2 times faster than HyRTS.

The remainder of the thesis is organized as follows: In Chapter 2, we discuss the core concept

of regression test selection and contemporary RTS tools. In chapter 3, we discuss relevant

literature on regression test selection. In chapter 4, we discuss the theoretical concept of our

3

approach to RTS and compare TLDR with other state-of-art RTS tools with an example.

In chapter 5, we present our main contributions, i.e., the design and implementation of

TLDR. In chapter 6, we discuss the theoretical proof of TLDR’s correctness and completeness.

In chapter 7, we discuss the empirical evaluation of TLDR. In chapter 8, we discuss the

limitations of TLDR and threats to the validity of our evaluation. Finally, in chapter 7, we

discuss the future work and concluding remarks.

4

Chapter 2

Background

The idea of selecting a smaller set of regression tests based on what parts of the code changed

is at least three decades old [35]. Since its introduction, numerous techniques and tools

have been proposed. We focus on recent techniques that target Java programs in this thesis.

In this chapter, we lay the theoretical background of regression test selection along with

examples and discuss several contemporary RTS tools.

2.1 Regression Test Selection

Regression test selection (RTS) is a technique of selecting and executing a subset of tests

instead of the complete test suite in a way that is still safe i.e achieves the same test result in

each iteration [13, 21, 22]. A high-level overview of RTS is shown in figure 2.1. There are

two main steps of RTS, namely, analysis phase and execution phase. In the analysis phase,

the tests that are affected by the current change are identified. This step requires storing

information about the latest iteration i.e. commit of the repository, for example, state of

each source-code files and external files, dependency graph, and test-to-source map. In each

5

Figure 2.1: High-level overview of Regression Test Selection.

iteration, the repository is parsed statically and compared with the stored state to analyze

the change in the current iteration. Once the changes are identified, the stored dependency

graph is updated. In some RTS tools this stage is considered as a separate phase of analysis

i.e. Collection Phase [22]. Then from the nodes that correspond to the changed entities

i.e. packages or classes or methods, the dependency graph is traversed to find out all the

entities that are impacted by the changes in the current iteration. This set of entities is called

firewell. In the second step of RTS, each test function that covers the entities that belong to

the firewell is selected and run.

The analysis required for RTS can be expensive. However, the efficiency of RTS stems from

the minimization of the test suite. It selects and runs significantly fewer number of tests

compared to the entire test-suite, therefore, incurs less end-to-end testing time. RTS can

result in larger end-to-end time for smaller test suites or iterations where a substantial among

of code refactoring has been done. However, RTS guarantees that the average end-to-end time

for a series of iterations is always less than the retest-all. Oftentimes, RTS is combined with

test prioritization for better efficiency. For example, instead of the complete project, RTS can

be run only on the parts of the project that are visible to the user, bug- or error-prone, critical

to the business requirement, or complex. Other optimization approach involves parallelly

running the selected tests [8]. However, no prior work has explored the scope of parallelization

6

in the test selection process. In this thesis, we explore the application of parallelization in

test selection as well as test run to achieve better optimization.

2.2 Types of RTS

RTS tools vary along three overarching dimensions: (i) the granularity of test selection, (ii)

the granularity of change impact analysis, and (iii) how dependencies are collected.

2.2.1 Granularity of Test Selection

In Java programs, test suites are encapsulated in a set of test classes, each one containing

one or more test methods. These test classes are placed within test packages. RTS tools can

select tests by package i.e. all test methods within the selected package, by classes i.e. all

test methods within the selected test classes, by methods i.e. precisely selected test methods.

The test methods in a test class often rely on common setup and tear-down code, but good

practices dictate that each test method be independent of the others, which does not always

happen. Therefore, the first decision an RTS technique for Java programs must make is the

granularity of test selection. Because test methods are supposed to be independent of each

other, in theory, method-level test selection allows us to identify exactly the least amount

of tests to be selected for a given change. However, it has been observed that sometimes

projects do not follow the principle of test method independence [39]. Therefore, the extra

complexity and runtime overhead associated with selecting individual methods instead of

classes may not be justified in practice. This is a design decision that benefits from collecting

empirical data about how Java developers write test suites. Nevertheless, if the overhead of

selecting test methods is low, and assuming that at least some test suites follow test method

independence, it will always be desirable to select individual tests.

7

2.2.2 Granularity of Change Impact Analysis

Another dimension of variance is the granularity of change impact analysis. Source code can

be analyzed at four different levels of granularity: file-level, class-level, member-level (i.e.

methods and fields), and statement-level. On the one hand, the smaller the granularity of

analysis, the more precise RTS can be. For example, if only the name of a local variable

changed, statement-level change impact analysis should be able to infer that no regression

testing would be necessary for that change because it had no impact; member-level analysis

would identify that particular method as the only entity that needs retesting; class-level

analysis would select that entire class as the entity to be retested; and finally, file-level

analysis would select that file, possibly with many classes, as the entity to be retested. On

the other hand, the smaller the granularity of analysis, the more complex RTS becomes,

and that often comes with additional runtime overhead that may not compensate for the

increased precision of test selection. Particularly, for larger projects, small granularity can

be impractical because building precise dependency graph will be prohibitively expensive.

Contrarily, coarser granularity is less precise. For example, a class-level RTS tool would

select all the test methods within an impacted test class even if only one out of many test

methods was impacted by the latest change. The inefficiency induced by the imprecision

is compensated by the efficient test selection process as it is significantly less expensive to

build and traverse class-level or file-level dependency graph. However, if the change in the

source-code is distributed across many files coarser-granularity RTS tool can be impractical

because it will select a significantly large number of unwanted test methods.

2.2.3 Dependency Collection

Change impact analysis requires the construction of a dependency graph among entities –

files, classes, methods, and even statements – of the subject project. The third dimension

8

along which RTS techniques differ is in how they build the dependency graphs. There are two

main ways of gathering dependencies: static analysis [17, 34], and dynamic analysis [20, 68]; a

third approach is to use both [67]. Dynamic analysis of dependencies is particularly desirable

for object-oriented languages because of their dynamic binding features [53]. Dynamic

dependency graph generation is prohibitively expensive for finer granularity, such as member-

level, making such RTS techniques impractical [14]. However, dynamic RTS is safe as it

captures the actual firewell. Static RTS tools, contrarily, captures dependency by static

analysis of the source offline. Safety is maintained by traversing the entire class-hierarchy of

the impacted members. However, if the repository makes use of reflection, instrumentation,

or if any external resources, for example, external files, database are used static RTS can be

unsafe.

2.3 Regression Test Selection Techniques and Tools

In this section, we describe four contemporary RTS tools for Java projects, namely, Fault-

Tracer [68], Ekstazi [20], STARTS [34], and HyRTS [67]. Among these four tools, FaultTracer

and HyRTS are not open-source. We collected HyRTS from the author of the tool. However,

we could not collect FaultTracer’s artifact. Hence, STARTS, Ektazi, and HyRTS are used as

baselines to evaluate the proposed RTS tool, TLDR.

2.3.1 FaultTracer

FaultTracer is one of the earliest RTS tools written in Java [68]. FaultTracer is a dynamic

RTS tool that analyzes changes in statement-level and selects tests at method-level. Given

two versions of a program, in order to find all atomic changes in the program, it builds

an enhanced call graph called Extended Call Graph (ECG) that augments the traditional

9

method call graph with field access information. ECG is built by statement-level analysis of

the source-code. Furthermore, in order to reduce manual inspection, FaultTracer combines

change-analysis-based test selection with a fault localization component. For each failed

test in the current iteration, it ranks the atomic changes based on their suspiciousness. To

calculate the suspicious score of a particular edit, it adapts four spectrum-based fault location

techniques. These techniques are based on the following heuristics (i) statements that are

only covered by failed tests are more suspicious, (ii) statements that are executed by more

number of failed tests than passed tests are statistically more suspicious, (iii) statements

whose Jaccard Similarity Coefficient [1] i.e. ratio between the number of associated failed

tests and the summation of the number of all failed tests and number of associated passed

tests, are higher, are more suspicious, and (iv) statement whose Ochiai coefficient [1, 66] is

higher, is more suspicious.

2.3.2 Ekstazi

Ekstazi is the most popular open-source RTS tool for Java. This is a Maven plugin that runs

RTS for Java unit tests [20, 19]. Ekstazi is a dynamic RTS tool that analyzes changes by

file-level granularity and selects tests by class-level granularity. Since Ekstazi has coarser

granularity, it selects higher number of tests. However, due to its efficient test selection

technique, it incurs less end-to-end testing time. Ekstazi runs into three phases, namely,

analysis phase, execution phase, and collection phase. In the analysis phase, Ekstazi calculates

the checksum of each file in the repository and compares with previously-stored checksum

to find out the changed files. After that, it selects the tests that cover these files. In the

execution phase, it dynamically updates the list of tests to be run by the Maven test executor

i.e. Surefire to run only the selected tests. In the collection phase, Ekstazi instruments

the stack-trace of the selected tests to collect dynamic dependencies. Since Ekstazi collects

file-level dependencies dynamically, it is safe even if the repository uses external resources.

10

The artifact publicly available in this URL - https://github.com/gliga/ekstazi.

2.3.3 STARTS

STARTS is a class-level static RTS tool [34]. Like Ekstazi, this is also a Maven plugin

for Java unit tests. STARTS efficiency stems from efficient compile-time code analysis

as it does not involve instrumentation or reflection which are computationally expensive.

Like Ekstazi, STARTS also stores and compares the checksum of each class for change

analysis. STARTS computes the firewall of each changed class by traversing the transitive

closure in the static dependency graph. In object-oriented programming language like Java,

dependencies are resolved in run-time. Therefore, in order to uphold safety, STARTS adds

redundant edges to all the classes in the class hierarchy. Therefore, the firewall of each

changed class includes all the classes that are impacted or may have been impacted by

the recent change. The inefficiency, induced by the selection of higher number of tests is

compensated by the efficient test selection. STARTS is publicly available in this URL -

https://github.com/marufzaber/STARTS-Fork.

2.3.4 HyRTS

HyRTS is a class-level dynamic RTS tool [67]. However, unlike Ekstazi and STARTS,

HyRTS implements a hybrid-granularity change impact analysis, therefore, combines the

strength of both class-level and method-level RTS techniques. HyRTS performs method-

level analysis for method-level changes like addition, deletion, and edition of statements,

addition, and deletion of methods, etc., and class-level analysis for class-level changes like

addition and deletion of files, class header change. HyRTS performs these two different

granular analyses in two separate phases and finally, combines the selected tests. Like Ekstazi,

HyRTS has a separate collection phase that collects dependencies by instrumenting the

11

stack-trace of the selected tests. However, a hybrid RTS tool that collects dependencies

offline has been documented to be more efficient than the one that collects dependencies

online due to the overhead of instrumentation. HyRTS is publicly available in this URL -

https://github.com/marufzaber/HyRTS-Fork.

12

Chapter 3

Related Work

A plethora of research on incremental testing of software repository can be found in the

literature [35, 26, 25, 51]. The core concept of regression testing can be generalized across

languages [27, 26]. Nonetheless, implementation of RTS tool largely varies across platforms

i.e. build tools, environments, or even requirements. Despite this research literature spanning

decades, RTS techniques are not used in mainstream software-development practice. Also, a

bulk of RTS tools are not safe [25]. Even for intuitively safe RTS tools, proving safety is

difficult. However, RTS tools still hold promises. This is evident from, Ekstazi, which has

been adopted in several open-source projects. In this section, we describe previous work on

RTS, including the use of change impact analysis in the context of RTS, the granularity at

which RTS operates, and the use of static and dynamic information for RTS.

3.1 Change Impact Analysis

Change impact analysis (CIA) [36] is critical for RTS, allowing techniques to determine which

tests should be selected for re-execution. Li et al. propose a framework for change impact

13

analysis with nine overarching characteristics, namely, object i.e. input-output, impact set,

type of analysis i.e. static or dynamic, intermediate representation, language support, tool

support, and empirical evaluation. Acharya et al. [2] found that static slicing-based CIA does

not scale for larger projects. PathImpact uses dynamic slicing to perform CIA [31]. However,

the technique was reported to be unsafe as it depends on the operational behavior of the

software. Gethers et al. [18] found that a combination of information retrieval, data mining,

and source code analysis yields better precision and recall for CIA. Ren et al. [48] introduced

Chianti, a fine-grained change impact tool for Java. Chianti can isolate all semantically

meaningful atomic changes that can potentially impact a test. Buckner et al. proposed

JRipples, an eclipse plugin that assists developers with debugging and relies on CIA at the

class level [7]. Goknil et al. [24] propose a technique for CIA at the architecture-and-design

level.

Static CIA can be imprecise for object-oriented languages due to dynamic binding. However,

static code analysis can be more efficient than dynamic analysis. Bacon proposed a fast

algorithm for virtual method call resolution in C++ [4]. Dean et al. used proposed a fast

static analysis algorithm for class hierarchy in OOP [11]. These techniques can be leveraged

to optimize software where throughput is an important performance metric [9], such as

operating systems and compilers.

3.2 Granularity of Regression Test Selection

The granularity of RTS has been studied extensively where different studies have found

contradictory results. Bible et al. conducted a comparative study among RTS at varying

granularity [5]. They compared TestTube [10], a coarse-grained RTS tool with DejaVu, a

fine-grained RTS tool, in terms of precision and analysis times required by the techniques.

They argue that a hybrid approach is more promising, which contradicts Legunsen et al.’s

14

recommendation of a coarse-grained approach [33]. In their evaluation, method-based RTS

selects more tests, making it less precise than class-based RTS [33]. RTS at a coarser

granularity, although less precise, has been shown to be effective nonetheless through the

RTS technique Ekstazi [20] [20].

Method-based RTS tends to be more precise while incurring a greater cost (e.g., computational

cost) for analyzing code. For example, Gligoric et al. propose RTS++, a call-graph-based

RTS tool for C++ which runs at the function level. This tool was evaluated to be on average

38% faster than re-test all. Method-level RTS selects fewer tests compared to coarser-grained

RTS tools [68, 67, 17]. However, reducing the test execution time might not necessarily yield

shorter end-to-end testing times because the overhead of CIA for method-level RTS can be

substantial. For example, in certain cases, FaultTracer can be more expensive than retest-

all [68]. Whether the cost stems from implementation issues or only from the computational

load is not apparent [68].

Our evaluation of TLDR demonstrates that by incorporating parallelism across the RTS

pipeline, careful selection of checksum algorithms, and efficient database design, method-level

RTS can outperform coarser-grained RTS.

3.3 Dependency Collection in RTS

Ekstazi selects tests at the class level based on dynamic dependencies at the file level [20].

However, dynamic RTS is not always faster than static RTS [68]. To optimize the efficiency of

dynamic test selection, RTS techniques are often designed to run in different phases. Orso et

al. first proposed an RTS technique that involves two phases: a partition phase and selection

phase [43]. Ekstazi runs in three phases: analysis, execution, and collection phases [20].

Static RTS has been studied for decades but has achieved little industry adoption. STARTS is

15

a static RTS technique that selects tests at the class level [34]. Legunsen et al. [33] conducted

a comprehensive study of static RTS tools at different granularities and found that the

safety issue of static RTS mainly arises from dynamic dispatch. They evaluated Ekstazi and

STARTS [34] with a method-level RTS technique [32] and found that the method level is

an order of magnitude more expensive than class-level static and dynamic RTS. Contrary

to their results, we have observed that TLDR, a method-level technique, takes less time for

end-to-end testing than coarser-grained RTS tools. We believe this performance gain stems

from the application of parallelism, the selection of an efficient checksum algorithm, and our

efficient database schema design.

Hybrid approaches have also been proposed by researchers. Chen et al. [10] proposed

TestTube, an RTS tool for C that utilizes both static and dynamic analysis of source. Static

analysis is performed to detect source code change while dynamic analysis is conducted for

dependency resolution [10]. Panigrahi et al. proposed a hybrid RTS for object-oriented

language [46]. This tool extracts control and data dependency from dynamic dependency

graph and extracts program change by analyzing UML state machine models of the changed

code.

Overall, TLDR and its evaluation demonstrate that using static information without dynamic

information can result in an RTS technique that is precise. safe with respect to all changes in

source files of projects that do not involve reflection, and highly efficient in terms of end-to-end

testing time. However, further improving RTS through a hybrid static-and-dynamic RTS

technique is an interesting avenue for future work.

16

Chapter 4

Parallelization of Regression Test

Selection

In this chapter, we propose a novel, method-level, and static RTS tool, TLDR. We discuss how

TLDR compensates the computational expense of finer-granularity change impact analysis

by the application of parallelism. We then compare TLDR with other contemporary RTS

tools through a synthetic example.

4.1 Concept

We saw in chapter 2 that properties of RTS tool have a varying degree of performance

implications. Table 4.1 shows how each category of RTS tools varies in terms of precision, test

selection time, and test execution time. As we can see, finer granular RTS tools have shorter

test execution time because they select fewer tests. However, they incur large test selection

time because change impact analysis in finer granularity is more expensive. Again, Static

RTS tools have shorter test selection time, thus have shorter end-to-end time. Therefore, an

17

efficient RTS tool that incurs lesser end-to-end time should be static. Moreover, it should

combine the benefits of finer- and coarser-granularity RTS tools. As mentioned earlier, a

finer granularity RTS tool incurs more test selection time. In this thesis, we explore the

application of parallelism in the change impact analysis technique of a finer-granularity RTS

tool to reduce the test selection time as well which will, in turn, reduce the end-to-end time.

Therefore, we design TLDR, a method-level and static RTS tool that leverages an efficient

and parallel pipe-and-filter architecture [23, 47] along with a set of in-memory inverted and

forward indices.

Figure ?? shows the pipeline of a sequential RTS tool which includes four modules, namely,

Change Analysis, Dependency Graph Generation, Change Impact Analysis, and Source to

Test Map. In contemporary RTS tools, these phases are completed sequentially [20, 34, 67, 68].

A key observation is these modules are partially independent for each class. For example,

while we are analyzing recent changes in one class, we can analyze another class parallelly

in the pipeline. Dependency graph construction must be synchronized among the classes as

they are interdependent. However, after the dependency graph has been constructed, change

impact analysis and source to test map are independent steps for each class. Therefore, given

appropriate synchronization, we can employ multiple worker threads among each module and

dramatically reduce the throughput of the pipeline. The core concept of TLDR is based on
Table 4.1: Categorization of RTS Techniques

Property Category Precision Test Selection Test Execution
Time Time

Granularity of Package Very Imprecise Small Very Large
Test Selection Class Imprecise Moderate Large

Member Precise Large Small
File Very Imprecise Small Very Large

Granularity of Class Imprecise Moderate Large
Change Analysis Member Precise Large Small

Statement Very Precise Very Large Very Small
Dependency Static NA Small NA
Collection Dynamic NA Large NA

18

this parallel pipe-and-filter architecture. It parallelly passes each class of the project in the

pipeline. In each module, a worker thread consumes the outputs of the preceding module.

The worker threads that are not currently busy consume the outputs from a blocking queue.

Ultimately the pipeline outputs a set of tests. We will discuss the design and implementation

of TLDR in chapter 6.

(a) Sequential RTS pipeline

(b) Parallel RTS pipeline

Figure 4.1: Generic pipeline of regression test selection.

4.2 Example

Table 4.1 summarizes the similarities and differences among four recent techniques, as well as

our own, i.e., TLDR. What follows is an explanation of this table, followed by one concrete

example of how three of these tools behave in the presence of a given change.

Below, we explain the functionality of TLDR compared Ekstazi, STARTS, and HyRTS to

19

illustrate how these three approaches differ along the dimensions of Table 4.1. Table 4.3

shows an example Java project. Column Source shows the source code and column Test

shows the test suite of the project. For each method in the source code, there is a test method

in the test suite. Class A is extended by classes B, D and class B is extended by class C. Each

of the sub-classes overrides method A.f2. Method A.f1 is overridden by C and D.

The test selection sets when method B.m1 changes are:

• Ekstazi: all test methods in TestA, TestB, and TestC – 6 tests.

• STARTS: all test methods in TestA, TestB, TestC, and TestD – 8 tests.

• HyRTS: test methods TestB.tM1, TestA.tF1, TestC.tF1 – 3 tests.

• TLDR: test methods that reach, or might reach, B.m1, specifically TestB.tM1, TestA.tF1,

TestC.tF1, and D.tF1 – 4 tests.

Both Ekstazi and STARTS select tests at class level, so if any one test method needs to

be retested, the entire class where that method is declared will be retested. TLDR selects

tests at individual method level, so it can be more precise, as this example shows – 4 test

methods instead of 6 (Ekstazi) or 8 (STARTS). However, since this is an atomic change

within the class, HyRTS only selects 3 methods. STARTS and TLDR use static analysis for

tracking dependencies, while Ekstazi and HyRTS use dynamic analysis. Therefore, Ekstazi

and HyRTS are more precise with respect to inheritance and method overriding. Let’s look
Table 4.2: Categorization of RTS Tools

Technique Granularity of Granularity of Dependency
Test Selection Change Analysis Collection

Ekstazi [20] Class File Dynamic
STARTS [34] Class Class Static
HyRTS [67] Class/Method Class/Method Static+Dynamic
FaultTracer [68] Method Statement Dynamic
TLDR Method Member Static

20

Table 4.3: An Example Java Project

Source Tests

class A {
String f1() { return new B().m1() +

"a";}
String f2() { return "a1";}

}
class B extends A {
String m1() { return "b";}
String f2() { return "b1";}

}
class C extends B {
String f1(){ return super.f1() + "c";}
String f2(){ return "c";}

}
class D extends A {
String f1(){ return "d";}
String f2(){ return "d";}

}

class TestA {
A obj = new A();
void tF1(){ assert(obj.f1() !=

null);}
void tF2(){assert(obj.f2() !=

null);}}
class TestB {

B obj = new B();
void tM1(){assert(obj.m1() != null);}
void tf2(){assert(obj.f2() !=

null);}}
class TestC {

C obj = new C();
void tF1(){assert(obj.f1() != null);}
void tF2(){assert(obj.f2() != null);}

class TestD {
A obj = new D(); // <--- note the

declaration as A
void tF1(){assert(obj.f1() != null);}
void tF2(){assert(obj.f2() != null);}

21

at the consequences of static vs. dynamic analysis for the test method TestD.tF1. That

method instantiates a D object, but statically declares it as type A. Being an instance of D,

and given that D overrides A.f1, the test method TestD.tF1 does not need to be selected

when A.f1 changes. In this case, Ekstazi is able to identify that the A-object created in

TestD.tF1 is an instance of subclass D, while both STARTS and TLDR are unable to do so.

Now let us consider another scenario where Class D is made to extend Class C but no

method is changed. The test selection sets for this change are:

• Ekstazi: all test methods in TestD – 2 tests.

• STARTS: all test methods in TestA, TestD, and TestD – 4 tests.

• HyRTS: test methods TestD – 2 tests.

• TLDR: No test method is selected – 0 tests.

Even if no method was changed, ClassD will have different checksum, therefore, Ekstazi will

select TestD and STARTS will select TestA, TestD. HyRTS considers class hierarchy change

as class header change, thus it will perform file-level analysis and test selection. Therefore,

it will select TestD. However, TLDR detects that even though the class hierarchy has been

modified, no method was updated. Therefore, it will not select any test method.

22

Chapter 5

TLDR Design and Implementation

In this section, we discuss the design and implementation of TLDR. We first discuss the

main algorithms of TLDR, and show how they can be parallelized. Then we describe the

architecture of the implementation and each module in detail.

5.1 Test Selection and Dependency Extraction

Algorithm 1 describes the test selection algorithm underlying TLDR. The procedure takes

two versions of a project as input – projectn and projectn−1 – and returns the set of selected

tests, selected. It does so by iterating through all class files of the latest version, checking for

new, modified, and deleted ones. For new and modified classes, it then iterates through their

declared members (methods and fields), checking for new, modified, and deleted members.

For new and modified members, it extracts their static dependencies – an algorithm explained

next. Changes in classes and members are calculated by the checksum of their corresponding

byte code using BLAKE2B [3], an efficient checksum algorithm.

After updating the dependency graph, algorithm 1 then generates goldset, which is a set of

23

all members that may have indirectly been affected by changes in projectn−1, by performing a

depth-first search (DFS) over the dependency graph (line 30 of the algorithm). Each method

or field in goldset is mapped to one or more tests that have dependencies on those entities.

Test methods may have dependencies on other test methods and fields. Therefore, in order to

select all impacted tests, transitive dependents of each test method in mapped are collected.

Finally, the set of tests, selected, is generated by another DFS in the dependency graph, but

this time only traversing test-test dependency edges.

For each changed or new file, Algorithm 1 finds all new and changed members, and updates

the dependency graph of changed methods by calling Algorithm 2, our dependency extraction

algorithm. This algorithm takes a method that has been changed and updates the global

dependency graph by processing the bytecode of that method looking for instructions that

establish dependencies to other methods and fields. Those dependencies may be direct (e.g.

putfield establishes a dependency to the immediate target of the invocation) or indirect, which

may involve polymorphic relations (e.g. invokevirtual involves dynamic dispatch, meaning

that the exact type of the target is only known at runtime). Since JVM specification allows

static methods to be polymorphic as well, we consider invokestatic as polymorphic method

invocation as well. In the case of a polymorphic target, we conservatively traverse the class

hierarchy of that target either up or down, in search of all possible polymorphisms. For

example, when the target is a method that is overridden in one or more subclasses of its class,

we include all those overridden methods as dependencies, because we don’t know the exact

method that will be called at runtime; similarly, when the target is missing the method, it

means that the method is inherited from a superclass. In this case, we have to traverse up in

the class hierarchy and include the superclass method as a dependency.

24

Algorithm 1 Test Selection pseudo-code
1: function TLDR(projectn, projectn−1)
2: new, changed, goldset,mapped, selected⇐ φ
3: for all filen ∈ projectn do
4: if filen /∈ projectn−1 then
5: insert(filen, blk2b(filen))
6: end if
7: if blk2b(filen) 6= blk2b(filen−1) then
8: update(filen, blk2b(filen))
9: for all membern ∈ filen do

10: extract = false
11: if membern /∈ projectn−1 then
12: insert(membern, blk2b(membern))
13: new = new ∪ {membern}
14: extract = true
15: else if blk2b(membern) 6= blk2b(membern−1) then
16: update(membern, blk2b(membern))
17: changed = changed ∪ {membern}
18: extract = true
19: end if
20: if extract ∧ isMethod(membern) then
21: DEPEXTRACTION(membern)
22: end if
23: for all membern−1 ∈ projectn−1 − projectn do
24: remove(membern−1)
25: end for
26: end for
27: end if
28: end for
29: for all member ∈ new ∪ changed do
30: goldset = goldset ∪ dfs(member)
31: end for
32: for all member ∈ goldset do
33: mapped = mapped ∪ testmap(member)
34: end for
35: for all test ∈ mapped do
36: selected = selected ∪ dfs(test)
37: end for
38: return selected
39: end function

25

Algorithm 2 Dependency Extraction pseudo-code
1: function DEPEXTRACTION(entity)
2: direct⇐{ ”putstatic”, ”putfield”, ”getstatic”, ”getfield”}
3: polymorphic ⇐{”invokevirtual”, ”invokeinterface”, ”invokestatic”,

”invokespecial”}
4: dependencies⇐ φ
5: [11.5em]Extract dependencies from method bytecode
6: for all instruction ∈ entity.bytecode do
7: if instruction.type ∈ (direct ∪ polymorphic) then
8: dependencies = dependencies ∪ instruction.callee
9: end if

10: end for
11: for all member ∈ dependencies do
12: if dep_type(entity, member) ∈ direct then
13: insert_in_db(entity, member)
14: else if dep_type(entity, member) ∈ polymorphic then
15: hierarchy ⇐ classHierarchy(member)
16: if isOverridden(member, hierarchy) then
17: nodes⇐ getOverrides(member, hierarchy)
18: else if isMissing(member, class(member)) then
19: nodes⇐ getInherited(member, hierarchy)
20: end if
21: for all e ∈ nodes do
22: insert_in_db(entity, e)
23: end for
24: end if
25: end for
26: end function

26

5.2 Safety

An RTS technique is safe iff it selects all tests that are impacted by a change in the projects’

files [62]. As currently implemented, TLDR is not entirely safe, because it does not track

dependencies resulting from (a) the use of Java reflection, and (b) the use of external jars. This

is not an inherent problem of TLDR; it is simply a limitation of its current implementation,

which we plan to improve. This limitation affects other RTS tools that are based on static

analysis [34, 67, 17]. TLDR is safe for all other cases, i.e. for all changes in the source files of

the projects, as long as they don’t involve reflection. In broad strokes, an RTS technique is

safe when (1) it correctly captures all dependencies of all code entities down to the desired

level of granularity; (2) it correctly slices the dependency graph for the set of entities that

change from a version to another; and (3) it correctly identifies the tests that reach any

part of those slices. For performance purposes, and as explained above, TLDR uses a static

dependency graph. Because of dynamic dispatch, static analysis of object-oriented programs

needs to take inheritance relations into account. Algorithm 2 describes the construction of

this static extended dependency graph, which is complete, with the two exceptions: reflection

and external jars. While constructing the static extended call dependency graph, it considers

both direct (line (12)) and polymorphic (line (14)) dependencies.

5.3 Parallelism in TLDR

The algorithms described above are not particularly new – similar techniques for change

analysis were used by other RTS tools [68, 67, 20, 34]. However, in TLDR, we leverage the

potential that Algorithm 1 has for parallelism to reduce test selection overhead. Specifically,

instead of sequentially executing the entire algorithm, we parallelize lines (3), (9), (29), (32),

and (35) – these are portions of the algorithm that map certain processing functions to

27

Figure 5.1: Pipe-and-filter architecture of TLDR. The architecture contains two partially-
independent pipelines, one for the source-code (marked as grey) and one for the test-code
(marked as white).

potentially large numbers of classes and their members.

Figure 5.1 depicts the pipe-and-filter architecture of TLDR, which fully leverages parallelism

for test selection and implements Algorithm 1. The data elements of the pipeline are the

absolute paths of the class files – and the fully qualified name of the classes, methods, and

fields. The pipeline takes as input the absolute path of each class file and outputs a set of

selected tests. Components in the pipeline are multi-threaded and interact with each other

through queues. The number of worker threads between two components is configurable, so

to better take advantage of the hardware. As a result, TLDR can use the full computational

power of each machine where it runs.

TLDR’s architecture contains two sub-pipelines: one associated with the source code under

test – which we refer to as the source pipeline and whose constituent components are

colored in grey – and another associated with test code of the project – which we refer

to as the test pipeline and whose constituent components are filled in white. These two

28

Table 5.1: Hashtables used by TLDR’s In-Memory Database

Hashtable No. Key Value
1 class absolute path checksum
2 FQN of entity checksum
3 FQN of entity set of FQN of dependent entity
4 FQN of entity set of FQN of dependency entity
5 FQN of Class set of FQN of super class and interfaces
6 FQN of Class set of FQN of the subclasses
7 FQN of entity set FQN of test methods
8 FQN of test entity Boolean

pipelines operate in parallel and either asynchronously or synchronously, depending on which

component is currently operating. Broadly, each of these two sub-pipelines has the following

four components in common: Repository Scanner, Class File Analyzer, Entity Analyzer,

Dependency Extractor. Ultimately, these two sub-pipelines merge in the Test DFS Traversal

component, followed by execution of tests by the Runner module. In the remainder of this

section, we describe the functionality of each component.

5.4 In-Memory Database

Deductive databases are often used to store program information as relations for numerous

program analyses [30]. Similar to other RTS tools, we store program-specific information for

incremental change analysis, dependency graph traversals, and mapping entities to a test

method [68, 67, 34, 20, 32].

Data storage and retrieval are expensive processes. If nothing changes in the project, TLDR

at a minimum needs to retrieve previously stored checksums of each class file for change

impact analysis, i.e. determining the entities affected by a change to another entity. Therefore,

performance of RTS greatly depends on the database schema as well as storage technology.

To achieve high performance, we use an in-memory database server, Redis. We implemented

a customized database handler which is available to all the components in the pipeline. The

database handler provides thread-safe APIs to read, update, and delete values.

29

Conceptually, Redis tables are hashtables, i.e. key-value pairs. In TLDR, the keys are the

fully qualified name (FQN) of the entities and the values are either a hashcode, i.e. checksum,

or a set of FQNs. Table 5.1 shows the 8 hashtables used by TLDR, each identified with a

table ID. Hashtable 1 and 2 store the checksum of each file and entity i.e. field and method

respectively. These two hashtables used for change analysis. Hashtable 3 stores the set of

dependents of each field and method. This table is the dependency graph of the project.

It is used by the DFS algorithm to traverse the firewall of each changed field and method.

Hashtable 4 is the inverse of hashtable 3. It stores the set of dependencies of each field and

method. This table is needed for faster update of hashtable 3 when a method is no longer

another method’s or a field’s dependent. Hashtable 5 stores class-hierarchy information.

This table is used by algorithm 2 to construct polymorphic edges in the dependency graph.

Hashtable 6 is the inverse of hashtable 5 and facilitates faster update of hashtable 5 when the

class hierarchy of the projects changes. Hashtable 7 stores entity to test mapping information.

This is used in mapping tests to each field and method in goldset in algorithm 1. Hashtable

8, stores all test methods and fields. This table is used along with table 3 to traverse within

the test suite.

5.5 Repository Scanner

Both the source and test pipelines start by scanning the repository of the project using

a recursive depth-first search algorithm that locates all class files in the repository. In a

Maven project, source classes reside on */target/classes/ directory and test classes reside

on */target/test-classes/ directory. Source Repository Scanner collects all source classes

and Test Repository Scanner collects all test classes from the above-mentioned directories

30

Figure 5.2: Two revisions of the same program. Revision 2 includes a new variable name,
black line, and a comment. Revision 1 and Revision 2 results in the same bytecode.

respectively. A Maven project can be hierarchical with multiple modules. Each module can

have its own independent source and test directory. Each Repository Scanner can discover

all such source and test directories.

5.6 Class Analyzer and Entity Analyzer

TLDR performs change impact analysis during two subsequent stages: one for the class level

and another for the method- and field-level. TLDR analyzes change at the bytecode level.

We choose this level because many changes that do not affect tests can be filtered out when

analyzing bytecode but would result in unnecessary test selection at the source code level.

For instance, new or changed comments or equivalent code at the statement level (e.g., var++

instead of var = var + 1), etc. yields the same checksum. For example, in figure 5.2, two

versions of the same program results in the same bytecode upon compilation. Therefore,

analysing bytecode instead of source-code is more efficient. Previous regression test selection

approaches have followed a similar practice [20, 67, 34, 64, 16].

Broadly, TLDR can detect 16 types of changes, shown in Table 5.2. Altogether, these 16

31

Table 5.2: Changes detected by TLDR

Type of Change
1 Addition of a new class
2 Addition of a new method
3 Addition of a new field
4 Addition of a new static initializer
5 Change of a method definition
6 Change of a field value
7 Change of the class hierarchy
8 Change of a class signature
9 Change of a field signature

10 Change of a method signature
11 Change of a static initializer
12 Deletion of a class
13 Deletion of a method
14 Deletion of a field
15 Deletion of a test case
16 Deletion of a static initializer

change types cover a wide variety of possible changes in object-oriented languages and at

least the same type of changes handled by state-of-the-art RTS techniques [20, 67, 34].

TLDR uses a 16 character-long alpha-numeric checksum as part of its change impact analysis.

The efficiency of the test selection pipelines also depends on checksum calculation. To

maximize efficiency of checksum usage, TLDR uses BLAKE2B [3], which is 4 to 8 times

faster than SHA256, BLAKE, and SHA-1.

For each Class File Analyzer, i.e., source and test, TLDR calculates the checksum of bytecode.

Only the class files whose checksums are different than the previously computed value are

forwarded to the next component in the pipeline for field- and method-level change analysis

as shown in figure5.3.

For both source and test Entity Analyzer components, TLDR splits the class file into methods

and fields using Apache Common BCEL library. The checksum is calculated by concatenating

the entity’s (i.e., method’s or field’s) modifier, signature, and body. We omit StackMap Table

of the methods. The offset delta of StackMap of a method depends on the overall offset of the

class file. Addition or deletion of a statement in the preceding method can possibly change

the offset information of the subsequent methods’ StackMap Table. This can cause changes

in the checksum of a method even though that method did not change in code.

32

Figure 5.3: Change analysis of class files. Only the changed class files are passed to the next
module.

Figure 5.4: Change analysis of methods and fields. Each changed class file is split into
methods and fields and fed to the change analysis module.

33

For fields, we calculate the checksum of the signature of the field. In addition to change analysis,

we perform three tasks in Entity Analyzer: (1) extracting the class-hierarchy information,

i.e., super-class and interfaces of the class; (2) update the class-hierarchy information in the

database if the class hierarchy is changed; (3) update and sync the dependency information

if a method or field has been deleted.

5.7 Dependency Extractor

Algorithm 2 implements Dependency Extractor. For each method including constructors

(<init>) and static initializer (<clinit>), both source and test, we extract dependencies

by parsing the operands of the following 13 bytecode instructions: i) invokestatic, ii)

invokespecial, iii) invokevirtual, iv) invokeinterface, v) getstatic, vi) getfield,

vii) putstatic, viii) putfield, ix) checkcast. For invokevirtual, invokeinterface,

invokestatic, and invokespecial we retrieve all overridden versions of the dependency

method by traversing the class hierarchy.

The extracted dependency information is inserted in both a forward and inverted index

of dependencies. The inverted index is being used to formulate the transitive dependents

of the changed methods, while the forward index is being used to update and synchronize

the database in case a dependency is deleted in a particular revision. For the test pipeline,

dependency information is indexed into two tables: (1) Hashtable 3 and (2) Hashtable 7.

Test dependencies on source methods are used to map a source entity to a test method. Test

methods have dependencies to other test members. To select all impacted test methods,

we have to find the transitive dependents of each test that mapped to a method or field in

goldset.

34

5.7.1 DFS Component

This component is a Depth-first search algorithm that traverses the transitive dependency of

each changed or newly added entity. DFS Traversal of the source pipeline is synchronized

with the Dependency Extractor of the test pipeline. Algorithm 1 waits for Test Dependency

Extractor to finish for all data elements in the test pipeline before forwarding each member

in goldset to Test to Entity Map component. This is because in order to map the source

members to test methods, all test methods must be parsed and their updated dependency to

the source methods must be indexed. Source DFS Component collects the firewall of each

changed or new member.

The DFS component of the test pipeline gets input from both Test Dependency Extractor

of the test pipeline and Test to Entity Map component of the source pipeline. This module

is the meeting point of the two sub-pipelines. Test methods might have dependencies on

other test fields, parameterized test methods, or helper methods. Test DFS component

allows traversing these transitive dependencies for each new or mapped test method. This

component is customized to traverse transitive dependency within the test suite.

5.8 Test to Entity Map

This component is only present in the source pipeline. This is a mapping function that maps

each entity in the transitive dependent set of each changed or newly added method and field

to a test method, i.e., a test method which has a direct dependency on one or more entities

in the transitive dependent set. Mapped tests are then forwarded to test DFS Traversal to

form a transitive set of impacted changed methods.

35

5.9 Runner

TLDR extends Maven SureFire which is a plugin to run JUnit tests in Maven projects.

TLDR runs the only the selected tests by dynamically updating the test field of SureFire by

Java instrumentation. In order to run the selected tests parallelly, TLDR updates SureFire

configuration values – forkCount and reuseForks. These flags enable Surefire to spawn a

specified number of JVM processes and distribute test run load among the processes parallelly.

5.10 TLDR Artifact

TLDR is an open-source project. TLDR’s source-code can be found in this GitHub repository

: http://www.github.com/Mondego/TLDR. The tool has not been released in the Maven

Central Repository yet. Therefore, it needs to be installed in the local maven repository. To

do so, the source-code needs to be cloned into the local machine and within the repository,

the following maven command is needed to be executed mvn clean compile install. After

installing TLDR in the local maven repository, the following XML snippet needs to be added

in the <plugins> block of the pom.xml file of the project which is to be tested through TLDR.

<plugin>

<groupId> com.mondego.ics.uci </groupId>

<artifactId> tldr-plugin </artifactId>

<version> 1.0.2-SNAPSHOT </version>

<configuration>

<goalPrefix> tldr </goalPrefix>

<skipErrorNoDescriptorsFound> true </skipErrorNoDescriptorsFound>

</configuration>

</plugin>

36

Before running the plugin, a Redis server must be started locally. Finally, the following

command should be executed - mvn com.mondego.ics.uci:tldr-plugin:1.0.2-SNAPSHOT:tldr

-Dmultimodule.projectname=<project-name>. This will invoke Maven surefire and the test

report will be placed inside the Target folder of the repository. TLDR provides several

optional command-line options. Some relevant command-line options are as follows -

• -Ddebug.flag: turns on the debug prints during different stages of the pipeline.

• -Dlog.directory: specifies the location of log files that are generated during analysis and

testing.

• -Dcommit.hash: specifies the hashcode of a particular commit on which TLDR is to be

run.

• -Dcommit.serial: specifies the serial number of the project iteration. This flag is useful

in iterative evaluation of TLDR.

• -Dfork.count: specifies the number of process forks test runner should use.

• -Dthread.count: specifies the number of threads the test runner should use.

37

Chapter 6

Safety of TLDR

6.1 Safety of TLDR

An RTS technique is safe iff it selects all tests that are impacted by a change in the

projects’ files. As currently implemented, TLDR is not entirely safe, because it does not

track dependencies resulting from (a) the use of Java reflection, and (b) the use of external

jars. This is not an inherent problem of TLDR; it is simply a limitation of its current

implementation, which we plan to improve. TLDR is safe for all other cases, i.e. for all

changes in the source files of the projects, as long as they don’t involve reflection.

In broad strokes, an RTS technique is safe when (1) it correctly captures all dependencies of

all code entities down to the desired level of granularity; (2) it correctly slices the dependency

graph for the set of entities that change from a version to another; and (3) it correctly

identifies the tests that reach any part of those slices. We use the concept of Static Extended

Dependency Graph to capture (1), and the concept of Firewall to capture (2).

38

6.1.1 Static Extended Dependency Graph

Zhang et al. presented extended dependency graphs for RTS tools [33] in the context of

dynamic dependency tracking. Extended dependency graphs model methods and fields as

vertices in the graph, and the edges are the dependencies. For a set of methods, M and a set

of fields, F , extended dependency graph, G in an OO language is defined as follows [?]:

Definition 6.1.1. Dynamic Extended Dependency Graph: G =< V,E > where V =M ∪ F

and E =< v, v′ > where v ∈M, v′ ∈ calledBy(v) ∧ V

In this definition calledBy(v) denotes the set of members (methods or fields) that the method

v refers to at runtime. It is worth noting that G is dynamic in nature. This means G

has edges that correspond to dependencies among members that are resolved at runtime.

For performance purposes, and as explained before, TLDR uses a static dependency graph.

Because of dynamic dispatch, static analysis of object-oriented programs needs to take

inheritance relations into account. Algorithm 2 describes the construction of the static

extended dependency graph. Formally, we define the static extended dependency graph SG

as follows:

Definition 6.1.2. Static Extended Dependency Graph:

SG = (V,E) where V = M ∪ F , E = (v, v′) where v ∈ M , v′ ∈ V ∧ (referencedBy(v) ∪

(overridden(referencedBy(v)) ∨ inherited(referencedBy(v))))

In the definition, E is the set of edges (dependencies) that are direct or indirect via poly-

morphism. referencedBy(w) is the set of members that method w calls or refers to.

overridden(w) is the set of all methods that override method w, and inheritedBy(w) is the

set of methods inherited from superclasses. In Java, all the non-reflective dependencies among

members can be captured by the following byte code instructions: invokevirtual, in-

vokeinterface, invokestatic, invokespecial, getstatic, getfield, putstatic, put-

39

field. SG thus, includes all types of dependencies in Java bytecode, except reflective

dependencies.

6.1.2 Firewall

The concept of firewall in software testing was first discussed by White et al. [61] and has

since been adopted into object-oriented testing as well [58, 59, 60, 34, 67]. The firewall of a

given code entity (i.e. file, class, method, field, or statement) is the set of entities that can

be impacted by a change in that entity. Finding the firewall of a changed entity requires

traversing transitive dependents of that entity. In a static RTS, such traversal involves

traversing both direct and polymorphic edges. Class firewall has been proposed by Legunsen

et al. for a static class-level RTS [32]. A class-level RTS selects all test classes that have

dependency on any class in the class firewall of a changed class. Similarly, a method-level

RTS selects all test methods that have dependency on any method or field in the method

or field firewall of a changed method or field. Formally, the firewall of a member in a static

graph, SG can be defined as follows:

Definition 6.1.3. Firewall: F (w) =
⋃
∀vDFS(v, SG), w ∈M, v ∈ V ∧ calledBy(w)

In this definition, DFS(v, SG) returns a set of members that are connected to node v in a

static graph SG. Definition 6.1.3 defines firewall of a member as the union of firewall of all

dependent members.

6.1.3 Proof of Safety of TLDR

A safe static method-level RTS tool captures both static and polymorphic dependencies

among fields and methods. To prove the safety of TLDR we need to prove that TLDR

captures all types of dependency in Java bytecode i.e. creates a static extended dependency

40

graph. Also, we need to prove that it collects all members that may be impacted by a given

change in source code. Therefore, to prove the safety of TLDR, we prove that – (1) TLDR

constructs a static extended dependency graph SG (2) TLDR selects all tests that map to

firewall(v) where v is a changed entity.

Theorem 6.1.1. TLDR constructs static extended dependency graph SG

Proof: Function DEPEXTRACTION is being called for each changed or new v ∈M ∪ F .

It takes the dependent entity v and extracts the set of its direct dependencies, dependency.

Let us consider that DEPEXTRACTION only captures static edges. Line(13) inserts each

member ∈ dependency as v’s dependency with which v has invokestatic, invokespecial,

getstatic, getfield, putfield, putstatic relation. These are static edges. However,

line (22) inserts the overridden and inherited versions of each member with which v has

invokeinterface, invokevirtual relations. Since the edges are between the dependent and

all the overridden and inherited versions of the dependency members, they are polymorphic

edges according to [54]. Contradiction.

Therefore, DEPEXTRACTION captures both static and polymorphic edges, thus according

to definition 6.1.2 constructs SG.

Theorem 6.1.2. TLDR selects all tests t that has either direct or polymorphic dependency

to firewall(v) where v is a changed entity.

Proof: For a changed v ∈M ∪F , let us assume algorithm 1 returns a set of tests selects that

does not include one t which has edge to a v′ ∈ V ∪ F and v′ ∈ firewall(v). For each new

and changed v, TLDR calls DFS(v) on SG created by DEPEXTRACTION . According

to [55], DFS(v) returns a set of all entities reachable from v in SG. Therefore, DFS(v)

returns firewall(v). This set is included in goldset. Line (25) adds each t that maps to any

v
′ ∈ goldset in mapped. Each t in mapped is impacted by change in source code. Line (28),

then calls DFS(t) for each t in mapped to collect all t′ that is impacted by t and adds them

41

to select. Contradiction. Therefore, select includes all test methods that map to firewall(v)

for each changed entity v.

42

Chapter 7

Evaluation

In this chapter, we discuss the evaluation of TLDR. Regression test selection tools are

primarily evaluated based on their precision and efficiency [20, 67, 34, 68]. We evaluated

TLDR in terms of the number of selected tests (precision) and end-to-end testing time

(efficiency). As mentioned earlier, the baseline RTS techniques of our evaluation are Ekstazi,

STARTS, and HyRTS. Before discussing the findings of our evaluation, we discuss our research

questions, the projects that serve as subjects for our experiments, and the experiment setup.

7.1 Research Questions

For our evaluation, we answer the following two research questions:

1. RQ1: To what extent does TLDR reduce the number of tests selected for

re-execution compared to the baseline RTS techniques?

As demonstrated in the previous section, TDLR is safe for all changes in source files that

do not involve reflection, similar to state-of-the-art approaches [34, 20]. However, one of

TLDR’s goals is to maintain precision, i.e., select as few tests as possible for re-execution

43

while still identifying all possible faults that the original test suite can reveal. We assess

TLDR’s ability to reduce tests selected while maintaining safety for this research question

in contrast to the baselines.

2. RQ2: What is the end-to-end testing time of TLDR as compared to retest-all,

and the baseline RTS techniques?

One major contribution of TLDR is to significantly reduce end-to-end testing time compared

to the state-of-the-art techniques, i.e., Ekstazi, STARTS, HyRTS, re-running all the tests

from the original test suite, i.e., retest-all, and re-running all the tests from the original test

suite with parallelization. As a result, we evaluate each of these six techniques in terms of

end-to-end testing time for our experiments.

7.2 Data Collection

Table 7.1: Meta-information of the study projects

Project #Class SLOC #Tests #Commit #Star
Asterisk-java 839 111721 260 2004 340
Commons-dbutils 96 14836 307 783 272
Commons-jxpath 232 40128 386 601 150
Commons-validator 150 33880 544 1543 127
Compile-testing 49 10389 221 354 570
Invokebinder 26 7878 99 163 95
Chronicle-Map 453 59294 1036 2935 2200
Retrofit 283 36610 694 1865 37900
Logstash-encoder 227 26682 320 829 1800
Jfreechart 1022 283820 3182 4179 683
Commons Collections 856 62858 2884 3094 347
Commons IO 321 26882 1468 2158 574
Chronicle Map 424 28697 665 2492 1648
Commons Cli 58 12326 310 915 144
Joda Time 530 86184 5332 2104 4036
Commons Email 47 12474 209 839 60
Commons Fileupload 64 10385 113 954 104
Commons Lang 714 74934 3749 5434 1628
Commons Math 1941 174505 6065 6402 263
Commons Pool 179 14337 570 1908 245

We selected 20 open-source Java projects from GitHub to evaluate TLDR against the baselines.

44

These projects were either single or multi-modular. These projects were used in the evaluation

of prior RTS techniques [19, 67, 34, 32]. TLDR’s implementation supports Maven and JUnit

4.x but not other build automation tools or unit-testing frameworks. As a result, we excluded

projects that had the following characteristics -

(1) use Gradle, Ant, or other build tools and testing frameworks other than JUnit 4.x,

(2) have test suites that could not be executed by either Ekstazi, STARTS, HyRTS, or TLDR.

For example, running the test suite of Guava caused our Java Virtual Machine to crash even

after setting up the maximum heap size possible in our machine. While all large projects

can benefit from RTS tools, we excluded these projects due to resource and implementation

limitations. Some projects had external environment dependencies, for example, database

server, socket connection, etc. Therefore, those projects could not be run without externally

setting up environment dependencies. For example, in order to execute the test suite of Apache

Common Net, a WebSocket connection between two machines is needed to be established.

(3) are active and popular. Projects’ activity and liveliness are measured by the number of

commits and popularity is measured by the number of stars. We excluded projects that had

less than 500 commits and less than 50 stars.

These project exclusion criteria enable a fairer and accurate comparison among the RTS

techniques in our evaluation.

Table 7.1 shows the list of projects; project size in terms of number of classes, and source

lines of code (SLOC); test-suite size in terms of number of test methods; and project

metadata, i.e., number of commits and the number of stars in the latest commit from GitHub

using Sourcerer [37], a static code analysis infrastructure.

45

7.3 Experiment Setup

Table 7.2: Projects and Sampled Commits

Project Name Commit Hash
Asterisk-java 44aee1b44afbb1e4dc518ad8ea32126291318c32
Commons-cli De5f2b46fa952a69a8819b60d60a03eac1154282
Commons-collections Fa11e5702bafb392b20633a0e8c9617cab9a0276
Commons-dbutils 2ed6a127bd830adbe2b385d9ee62ead2f0e61fc5
Commons-email 77ac7bcd01f558eaeeecf50e478e939d74293942
Commons-fileupload f4cab5702b6e7d6c019c9fec29357ad2b552783d
Commons-functor 049e4fbdd987a405f2fcc1b97e6c7903db068965
Commons-jxpath 07b898f72113be256ecc1420f5388261d951c547
Commons-math b95a43fa9af718899d03bbc2c10587c069c707f0
Commons-pool c9f61e36b119a824c6c02ee6009eddae47bfecef
Commons-validator dcf935a9ef9909e59f631ecbda6d00e2a8ac8450
Compile-testing 7e2b01560666ba10b330f1984fdbb3251f2548a1
Invokebinder d539764d7ebb26edc5080a2ecd642d483bcb6030
Chronicle-Map 857f544a26e21e169280089b5f8d24b3b880782f
Retrofit bf9f11430de52b13f2f3f1aa2be4b64d6471a46d
Commons-lang efbfd2de9765bc01e4916b16e8eb82370f25ff82
Commons-io 724125eff6608884b0ac1c59f62695ecf43e5c8a
Joda-time 7b549b1d9ad88be845e469222c57c144ae1b7da1
Logstash-encoder 73437e6a3212985eeb55bcb9047c6def74161800
Jfreechart 9d7887f00218d39b63f209e86e248f895b10cb87

For each project, we collected hashcodes for the latest 30 commits that compile from the

git log of the corresponding projects. The sampled hashcodes are shown in table 7.2. For

evaluating the RTS techniques, we installed TLDR, Ekstazi1, STARTS2, and in our local

machine. HyRTS is not open-source. We collected the HyRTS artifact from the authors of

the tool [67]. STARTS had logs of test selection time and test runtime. For Ekstazi and

HyRTS, we modified the plugin code to log test selection and run time individually at the

end of test selection and test execution phase respectively. It should be noted that we did not

modify any existing code, therefore, the core functionalities of these tools remained the same.

We implemented a bash script to automatically run the experiment. For each project in our

evaluation, the script retrieves the commit in the project’s corresponding commit sequence
1collected from https://github.com/gliga/ekstazi
2collected from https://github.com/TestingResearchIllinois/starts

46

C ′, using the git reset command and each commit’s corresponding hashcode. The script

then uses Maven to clean out the project, compile its source code, and compile its test code

without running it. Cleaning the project out before compiling it reduces any potential errors

arising from residual files remaining in the project’s directories that were produced during

previous runs of the project. Some projects had release audit plugin, for example, Apache

Rat and style formatting plugin, for example, Maven Checkstyle. We turned these plugins off

because, for some projects, they caused errors while running TLDR as well as the other three

RTS plugins.

For each commit, we ran the test once for each of the six techniques we evaluate, i.e., TLDR,

Ekstazi, STARTS, HyRTS, retest-all, and parallel retest-all. To run parallel retest-all, we

set forkCount and reuseForks flag of Maven Surefire so that it spawns a specified number

of JVM processes concurrently to execute the tests. For our experiment, we used 8 JVM

forks to run tests in parallel. Note that, TLDR’s test runner also had 8 JVM forks. For

each of these runs, we collected the test reports generated by Maven Surefire. The generated

report is in HTML format. We implemented our own parser to collect the number of tests

run from the Surefire HTML reports and test selection and test execution time from the log

files generated by our custom code.

The experiment was conducted using a remote server with 256 GB (1867 MHz) DDR3 RAM,

a 112-core Intel(R) Xenon(R) E5-4650 CPU, Linux 3.10.0 operating system, and 500G of

solid-state disk. We used a local server of Redis 3.2.8 as our in-memory database.

47

Table 7.3: Number of tests run for Retest-All, Parallel Retest-All, TLDR, STARTS, Ekstazi, and HyRTS

TLDR STARTS Ekstazi HyRTS
Project Commit

∑
Testall

∑
Testpar

∑
Test %tests

∑
Test %tests

∑
Test %tests

∑
Test %tests

asterisk-java 44aee1b 7771 7771 1157 14 2121 26 1962 24 1877 24
commons-cli de5f2b4 12480 12480 615 4 1200 8 879 6 739 4
commons-collections fa11e57 749910 749910 23606 2 89161 10 36914 4 25746 2
commons-dbutils 2ed6a12 9210 9210 512 4 1830 18 1142 12 925 10
commons-email 77ac7bc 5700 5700 245 2 1710 30 380 6 219 2
commons-fileupload f4cab57 2760 2760 334 12 1622 58 1104 40 412 14
commons-functor 049e4fb 32370 32370 1318 4 3744 10 3729 10 3632 10
commons-jxpath 07b898f 11580 11580 1079 8 1900 16 1307 10 1211 10
commons-math b95a43f 125460 125460 6685 4 8514 6 7593 6 7577 6
commons-pool c9f61e3 8790 8790 323 2 865 8 579 6 569 6
commons-validator dcf935a 16320 16320 1190 6 1410 8 1387 8 1201 6
compile-testing 7e2b015 6630 6630 950 14 1947 28 1675 24 1722 24
invokebinder d539764 2970 2970 689 22 1039 34 1025 34 725 24
Chronicle-Map 857f544 31080 31080 4816 14 14752 46 13593 42 6428 20
retrofit bf9f114 20280 20280 2567 12 3164 14 5105 24 3682 18
commons-lang efbfd2d 140250 140250 7659 4 19558 12 12072 8 9391 6
commons-io 724125e 41040 41040 974 2 5894 14 4410 10 - -
joda-time 7b549b1 127140 127140 11354 8 33795 26 33795 26 13795 10
logstash-encoder 73437e6 9600 9600 342 2 725 6 416 4 234 2
jfreechart 9d7887f 95460 95460 29763 30 80306 84 63392 66 33392 34∑∑

Test 1456801 1456801 96178 275257 192459 113477
% 8.5 23.1 18.5 12.2*

48

7.4 Results

7.4.1 RQ1: Number of Selected Tests

One of the major goals of RTS techniques is to select as few tests as possible given a change

in a software under test, while maintaining safety. To assess TLDR’s ability to achieve this

goal, we assess TLDR with respect to Ekstazi, STARTS, HyRTS, and retest-all in terms of

the number of tests each technique selects.

Table 7.3 shows the number of tests selected by each technique: Commit is the hashcode of

the starting commit from which the baselines were evaluated for each project;
∑
Test is the

total number of tests run for retest-all across all sampled commits; Column (4),(6), (8), and

(10) i.e.
∑
Test show the total number of tests selected and run by TLDR, STARTS, Ekstazi,

and HyRTS respectively; and Column (5), (7), (9), and (11) i.e %tests is the percentage of

tests run by each technique across all sampled commits.

Note that sample commits are commits for which the project compiled, at least one of the

baseline RTS techniques (i.e., Ekstazi or STARTS) ran, and at least one test was affected by

changes in the source code.

Table 7.3’s two bottom-most rows aggregate results across projects for each RTS technique

and retest-all. Row
∑∑

Test (second from the last) of Table 7.3 displays the total number

of tests run by each technique across the projects in our experiment for which a technique can

successfully run, 19 projects for HyRTS and 20 projects for the remaining RTS techniques

and retest-all. For commons-io, HyRTS was not able to run since it threw a Maven-based

exception that remains unresolved at the time of this thesis’ submission. The last row of

Table 7.3 displays the percentage ratio of
∑∑

Test for each tool to
∑∑

Test for retest-all.

We can see that TLDR, STARTS, Ekstazi, and HyRTS ran 8.5%, 23.1%, 18.5%, and 12.2%

of all tests across all samples for which the tools ran. TLDR is the most precise RTS tool

49

compared to Ekstazi, HyRTS, and STARTS. STARTS is the least precise tool. This result is

intuitive because STARTS is a static and class-level RTS. For commons-email, TLDR was

less precise than HyRTS. This occurs whenever a method is (1) overridden by many other

subclasses of that method’s owner class and (2) those subclasses change to a large degree.

This case occurs very rarely. Note that TLDR is always more precise than STARTS and

Ekstazi.

7.4.2 RQ2: End-to-End Testing Time

Table 7.4 shows the end-to-end testing time of each technique:
∑
Tall shows the total time

across all sample commits in seconds ([s]) for each RTS technique for retest-all;
∑
Tpar shows

the total time across all sample commits in seconds ([s]) for each RTS technique for parallel

retest-all; Column (4), (7), (10), (13) i.e.
∑
Ts show total test selection time across all

commits for TLDR, STARTS, Ekstazi, and HyRTS respectively; Column (5), (8), (11), (14)

i.e.
∑
Tt show total test execution time across all commits for TLDR, STARTS, Ekstazi,

and HyRTS respectively; Column (6), (9), (12), (15) i.e.
∑
Te show total end-to-end test

time across all commits for TLDR, STARTS, Ekstazi, and HyRTS respectively. It should be

noted that
∑
Te is derived by adding

∑
Ts with

∑
Tt.

Table 7.4’s four bottom-most rows aggregate testing time results across projects for each RTS

technique, retest-all, and parallel retest-all. Similar to Table 7.3, we exclude Commond-IO

from any average and summation calculation for HyRTS, which could not run on the projects.

Row
∑
T [sec] shows total test selection, test execution, and end-to-end time across all

sample commits in the experiment. Row
∑
T [min] and

∑
T [hour] display this summation

in minutes and hours respectively. The %Tall row displays the percentage ratio of
∑∑

Time

for each tool to
∑∑

Time for retest-all for all projects. The %Tpar displays the percentage

ratio of
∑∑

Time for each tool to
∑∑

Time for parallel retest-all for all projects.

50

Table 7.4: Test run times for Retest-All, Parallel Retest-All, TLDR, STARTS, Ekstazi, and HyRTS in seconds, unless noted
otherwise.

TLDR STARTS EKSTAZI HyRTS
Project

∑
Tall

∑
Tpar

∑
Ts

∑
Tt

∑
Te

∑
Ts

∑
Tt

∑
Te

∑
Ts

∑
Tt

∑
Te

∑
Ts

∑
Tt

∑
Te

asterisk-java 984 770 31.1 172.3 203.4 34.5 245.9 280.4 14.1 224.1 238.2 27.4 217.7 245.1
commons-cli 294 210 11.6 21.8 33.4 26.4 44.5 70.9 10.7 37.7 48.4 26.1 29.9 56
Commons-collections 1050 630 36.5 69.2 105.7 42.8 122.7 165.5 22.3 93.5 115.8 35.1 73.1 108.2
commons-dbutils 330 158 15.7 29.8 45.5 25.1 88.2 113.3 16.8 78.9 95.7 17 61.3 78.3
commons-email 720 480 11.2 61.1 62.3 21 141.5 162.5 27.3 67.6 94.9 33.1 56.5 89.6
Commons-fileupload 682 437 14.2 63.8 78 23.2 158 181.2 14.2 107.2 121.4 27.4 96.4 123.8
commons-functor 378 325 10.9 25.6 36.5 10.8 82.5 93.3 14.1 63.1 77.2 13.7 73.1 86.8
commons-jxpath 495 201 20.5 33.8 54.3 28.9 44.4 73.3 12.5 39.7 52.2 21.7 38 59.7
commons-math 1740 1095 68.7 246.5 315.2 26.8 289.9 316.7 11.2 281.3 292.5 54.1 282.2 336.3
commons-pool 8100 5052 22.2 605.2 627.4 20.8 1075.1 1095.9 12.3 752.7 765 18.7 761.5 780.2
commons-validator 345 258 23.9 50.9 74.8 40.2 61.1 101.3 14.4 60.1 74.5 19.9 57.4 77.3
compile-testing 306 229 30.7 69.8 100.5 37.5 93.7 131.2 13 91.5 104.5 18.4 133.5 151.9
invokebinder 165 105 20.1 29.1 49.2 22.4 39.4 61.8 9.6 36.9 46.5 16.3 35.1 51.4
Chronicle-Map 5700 3350 40.2 3092.3 3132.5 52.2 5848.7 5900.9 24.7 5484.7 5509.4 30.2 3781.3 3811.5
retrofit 1920 1632 25.4 26.9 52.3 10.3 57.7 68 6.5 62.2 68.7 13.3 33.1 46.4
commons-lang 1440 960 44 177.3 221.3 46.3 327.4 373.7 8.7 282.1 290.8 34.3 211.5 245.8
commons-io 5400 5100 15.5 37.4 52.9 32.2 52.6 84.8 12.8 47.2 60 - - -
joda-time 378 334 33.5 34.1 67.6 27.3 53.5 80.8 14.2 55.9 70.1 32.1 38.1 70.2
logstash-encoder 429 369 33.1 74.9 108 30.1 135.4 165.5 22.6 99.4 122 21.2 71.1 92.3
jfreechart 585 496 56.7 81.8 138.5 57 146.9 203.9 8.5 118.8 127.3 50.4 96.6 147∑
T [sec] 31441 22191 565.7 4983.6 5549.3 615.8 9109.1 9724.9 290.5 8084.6 8375.1 510.4 6147.4 6657.8∑
T [min] 524.1 369.8 9.4 83.0 92.4 10.2 151.8 162.0 4.8 134.7 139.5 8.5 102.4 110.9∑
T [hour] 8.7 6.1 0.2 1.4 1.6 0.2 2.5 2.7 0.1 2.3 2.4 0.2 1.7 1.9

% Tall 70.1 18.3 31.0 27.5 21.8 *
% Tpar 26.2 44.2 39.3 31.1*

51

In total, the complete experiment took 23.4 hours to complete. To perform testing of all

sampled commits for 20 projects, retest-all took 8.7 hours, parallel retest-all took 6.1 hours,

TLDR took 1.6 hours, STARTS took 2.7 hours, Ekstazi took 2.4 hours. HyRTS took 1.9

hours for the 19 test projects it could run on.

Overall, parallel rest-all, TLDR, STARTS, Ekstazi, and HyRTS takes 70.1%, 18.3%, 31%,

27.5%, and 21.8% of the retest-time, respectively. Thus, each tool makes the testing process

29.9%, 81.7%, 69%, 72.5%, and 78.2% faster. Therefore, on average, TLDR is faster than

STARTS, Ekstazi, HyRTS, and parallel retest-all. Ekstazi is more efficient in test selection.

However, due to its coarser granularity, its end-to-end time is more than TLDR. STARTS is

the slowest RTS tool among the four RTS techniques under evaluation.

However, for logstash-encoder and commons-emails, TLDR is slower than HyRTS. For

commons-emails, HyRTS is more precise than TLDR due to the aforementioned case. There-

fore, for this project TLDR incurs more test execution time, thus, incurs more end-to-end

time than HyRTS. For logstash-encoder, even though TLDR incurs less test execution time,

it incurs more test selection time. Therefore, TLDR incurs more end-to-end time than

HyRTS.Overall, TLDR improves upon Ekstazi’s end-to-end testing time by a factor of 1.5,

STARTS’ end-to-end testing time by a factor of 1.7, and HyRTS’s end-to-end testing time by

a factor of 1.2.

TLDR is never slower than retest-all and parallel retest-all; however, this is not the case for

Ekstazi, HyRTS, and STARTS. For example, For Chronicle Maps, Ekstazi and HyRTS are

slower than parallel retest-all, STARTS is slower than retest-all and parallel retest-all.

52

Chapter 8

Limitations and Threats to Validity

There are several conceptual and implementation limitations of TLDR as well as potential

threats to the validity of the evaluation of TLDR. In this chapter, we discuss these limitations

and threats to the validity.

8.1 Reflection and Instrumentation

Reflection is a technique to analyze and modify the behavior of programming construct

i.e. statements, methods, classes, and interfaces at runtime [15]. Thus dependencies that

are injected by reflection can only be parsed in the runtime. Like STARTS and HyRTS,

TLDR does not track dependencies resulting from the use of Java reflection API. It should be

noted that reflection is not a common phenomenon in Java programs as it is computationally

expensive and pose security and privacy threats. To further assess the prevalence of reflection

in open-source Java projects, we statically parsed the bytecode of 50 thousand popular and

buildable open-source Java projects. These projects were collected from an open-source

dataset named 50k-C [40]. JDK exposes java.lang.reflect package that includes APIs to

53

read or write bytecode in runtime. Before the read/write operations, the corresponding

programming construct i.e. class, method, field, etc. are needed to be loaded by a set of API

that belong to java.lang.Class and java.lang.Object package. Therefore, we statically parsed

the bytecodes of the projects in 50k-C to find the use of the following APIs -

• java.lang.reflect.*

• java.lang.Object.getClass

• java.lang.Class.getMethods

• java.lang.Class.getFields

• java.lang.Class.getMethod

• java.lang.Class.getField

• java.lang.Class.getConstructors

• java.lang.Class.getConstructor

In addition to reflection, another way to inject runtime dependency is instrumentation. A java

program i.e. Java Agent can utilize JVM’s Instrumentation API to edit bytecodes that are

already loaded in a JVM [6]. A Java agent must have two public methods named premain and

agetmanin who are responsible to load the agent itself statically and dynamically respectively.

Therefore, we searched for the two mentioned APIs among the study bytecode.

We found that out of the 50,000 projects, only 4382 (8.7%)projects had reflection or instru-

mentation. This result shows that a vast majority of the open-source Java projects do not

use reflection. It should be noted that this limitation is not a threat to the validity of our

approach, it is simply an implementation shortcoming of TLDR. Reflective dependencies can

be added by performing a more sophisticated analysis of the bytecode [38]. Since TLDR

54

does not capture dependencies injected by reflection, we did not include any project that has

reflection in our evaluation dataset.

8.2 External Dependency

In addition to reflection, we did not incorporate external jars in the dependency extractor.

This decision was carried out because we focused primarily on intra-project change impact

propagation. Nonetheless, changes in external dependency artifacts may cause unanticipated

changes in the project codebase. We plan to add external jar dependency tracking to TLDR.

8.3 Test Failure

By analyzing the generated test reports, we noticed that some of the selected tests fail. This

happened for all three tools. However, those tests pass when the complete test suite is run.

Unreliable behavior of unit testing has been documented in the literature [45, 57] [44]. These

tests are known as flaky tests [39], and some causes for them include concurrency issues,

test order dependency, resource leak, time, randomness, etc. Particularly problematic for

RTS, in general, are test order dependencies. Although developers are encouraged to follow a

set of conventions while writing unit tests, these conventions are not syntactically enforced

by the test libraries. Therefore, bad implementations create the above-mentioned issues, thus

seriously undermining the outcome of RTS. In TLDR, we consider intra-test dependency

– dependency to static initializer, fields, helper methods, and parameterized tests within

the test suite. However, test order dependency is not currently addressed. This limits the

applicability of TLDR (and all other RTS tools we are aware of, including Ekstazi, STARTS,

and HyRTS) to test suites that follow recommended guidelines for writing unit tests.

55

8.4 Average Error

Our performance evaluation suffers from the same shortcomings of other similar performance

evaluations published in recent RTS literature [17, 34, 20, 68]. Specifically, the processing

of each commit was done only once. We are aware that execution times for the exact same

commits vary, depending on many external factors of the machine where the experiment

was run. As such, in order to get statistically more reliable time values, we should run each

experiment multiple times, and report the average. The reason for not doing that is that

these experiments take a long time to complete; repeating them multiple times would severely

slow down the reporting of these results, forcing us to reduce either the number of projects in

our experimental dataset or the number of commits sampled in each project. The absence of

repeated experiments is mitigated by sampling multiple commits, and having a substantially

high total experiment time (roughly, 37 hours of compute time). Since the main goal of this

study is to compare TLDR with 3 baselines, and given that all experiments were run in the

exact same machine, the reported results are statistically valid, at least in comparison to

each other.

56

Chapter 9

Future Work and Conclusion

9.1 Future Work

Currently, TLDR is compatible with Java projects that use Maven as build system. In chapter

8, we have discussed several implementation and conceptual limitations of the tool. In the

future, we would like to advance our work on regression testing in the following directions -

9.1.1 Ground Truth and Benchmark

The baseline for the safety in all RTS tools is that the tools select all the tests that are

impacted by the change in the current iteration. The baseline for the precision in all RTS

tools is that the tools must select only the tests that are impacted by the change in the current

iteration. In order to completely evaluate the absolute safety and precision of TLDR and

other RTS tools, i.e. Ekstazi, STARTS, and HyRTS, we need to know the ground truth that

is the exact set of tests that are impacted by a given set of changes. Such ground truth can

be found by implementing a dynamic and method-level RTS tool which is computationally

57

expensive. In the future, we plan to develop a benchmark that contains the precise set of the

tests that must be run for a set of the given change. Such a benchmark can be developed for

a set of commits for popular open-source project.

9.1.2 Robust Artifact

A robust artifact will enable us to conduct a robust evaluation. Currently, TLDR is a Maven

plugin that works for single- and multi-module Maven projects. In the future, we will make

the tool compatible with projects that use Ant, Gradle, and Bazel, three of the most popular

build systems. Also, external and environment dependencies are not encapsulated within

TLDR. For example, running the tool requires running a local redis server. In the future, we

plan to make all TLDR-specific and project-specific environment dependencies encapsulated

in containers like Docker. These improvements will enable us to evaluate the tool for projects

with a wide-range of variety.

9.1.3 External Dependency

Currently, TLDR analyzes dependencies within the source-code of the subject projects.

However, projects often involve dependencies to external files and resources like database,

shared memory, etc. Oftentimes, these dependencies are non-trivial to parse and analyze.

For example, projects can have dependency on a file or a database table that is hosted in one

or many remote machines. Projects can have dependencies on external files that are owned

by different entities with regulated access privileges. In the future, we seek to explore how

these external and nuanced dependencies affect regression testing and how to incorporate

these dependencies within TLDR.

58

9.2 Conclusion

In this thesis, we presented TLDR, a static method-level RTS technique. TLDR selects and

runs fewer tests than state-of-the-art RTS approaches Ekstazi, HyRTS, and STARTS because

it performs change impact analysis and test selection at the method level. TLDR gains

this improved precision of test selection while significantly reducing end-to-end testing time

since TLDR leverages parallelism, and efficient checksum algorithm usage and in-memory

database-schema design to improve the throughput of the test selection process. We evaluated

TLDR for 20 projects. Our evaluation shows that TLDR is 2.7 times more precise than

STARTS, 2.1 times more precise than Ekstazi, and 1.4 times more precise than HyRTS, while

also being 1.5 times faster than Ekstazi, 1.7 times faster than STARTS, and 1.2 times faster

than HyRTS. Overall, our evaluation demonstrates that method-level RTS can be made both

precise and efficient. In future work, we aim to make TLDR safe for reflection and external

libraries.

59

Bibliography

[1] R. Abreu, P. Zoeteweij, and A. J. Van Gemund. On the accuracy of spectrum-based
fault localization. In Testing: Academic and Industrial Conference Practice and Research
Techniques-MUTATION (TAICPART-MUTATION 2007), pages 89–98. IEEE, 2007.

[2] M. Acharya and B. Robinson. Practical change impact analysis based on static program
slicing for industrial software systems. In Proceedings of the 33rd international conference
on software engineering, pages 746–755. ACM, 2011.

[3] J.-P. Aumasson, S. Neves, Z. Wilcox-O’Hearn, and C. Winnerlein. Blake2: simpler,
smaller, fast as md5. In International Conference on Applied Cryptography and Network
Security, pages 119–135. Springer, 2013.

[4] D. F. Bacon and P. F. Sweeney. Fast static analysis of c++ virtual function calls. ACM
Sigplan Notices, 31(10):324–341, 1996.

[5] J. Bible, G. Rothermel, and D. S. Rosenblum. A comparative study of coarse-and
fine-grained safe regression test-selection techniques. ACM Transactions on Software
Engineering and Methodology (TOSEM), 10(2):149–183, 2001.

[6] W. Binder, J. Hulaas, and P. Moret. Advanced java bytecode instrumentation. In
Proceedings of the 5th international symposium on Principles and practice of programming
in Java, pages 135–144, 2007.

[7] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich. Jripples: A tool for program
comprehension during incremental change. In 13th International Workshop on Program
Comprehension (IWPC’05), pages 149–152. IEEE, 2005.

[8] J. Candido, L. Melo, and M. d’Amorim. Test suite parallelization in open-source projects:
a study on its usage and impact. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 838–848. IEEE, 2017.

[9] C. Chambers, J. Dean, and D. Grove. Whole-program optimization of object-oriented
languages. University of Washington Seattle, Technical Report 96-06, 2, 1996.

[10] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo. Testtube: A system for selective regression
testing. In Proceedings of 16th International Conference on Software Engineering, pages
211–220. IEEE, 1994.

60

[11] J. Dean, D. Grove, and C. Chambers. Optimization of object-oriented programs using
static class hierarchy analysis. In European Conference on Object-Oriented Programming,
pages 77–101. Springer, 1995.

[12] S. Elbaum, G. Rothermel, and J. Penix. Techniques for improving regression testing
in continuous integration development environments. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pages
235–245, 2014.

[13] E. Engström, P. Runeson, and M. Skoglund. A systematic review on regression test
selection techniques. Information and Software Technology, 52(1):14–30, 2010.

[14] R. E. Fairley. Tutorial: Static analysis and dynamic testing of computer software.
Computer, 11(4):14–23, 1978.

[15] I. R. Forman, N. Forman, and J. V. Ibm. Java reflection in action. 2004.

[16] G. Fraser and A. Arcuri. Evosuite: automatic test suite generation for object-oriented
software. In Proceedings of the 19th ACM SIGSOFT symposium and the 13th European
conference on Foundations of software engineering, pages 416–419. ACM, 2011.

[17] B. Fu, S. Misailovic, and M. Gligoric. Resurgence of regression test selection for c+.

[18] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk. Integrated impact analysis for man-
aging software changes. In 2012 34th International Conference on Software Engineering
(ICSE), pages 430–440. IEEE, 2012.

[19] M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test selection. In 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, volume 2,
pages 713–716. IEEE, 2015.

[20] M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with dynamic
file dependencies. In Proceedings of the 2015 International Symposium on Software
Testing and Analysis, pages 211–222. ACM, 2015.

[21] M. Gligoric, R. Majumdar, R. Sharma, L. Eloussi, and D. Marinov. Regression test
selection for distributed software histories. In International Conference on Computer
Aided Verification, pages 293–309. Springer, 2014.

[22] M. Z. Gligoric. Regression test selection: Theory and practice. PhD thesis, University of
Illinois at Urbana-Champaign, 2015.

[23] S. S. Gokhale and S. M. Yacoub. Reliability analysis of pipe and filter architecture style.
In SEKE, pages 625–630. Citeseer, 2006.

[24] A. Goknil, I. Kurtev, and K. v. d. Berg. A rule-based change impact analysis approach
in software architecture for requirements changes. arXiv preprint arXiv:1608.02757,
2016.

61

[25] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical
study of regression test selection techniques. ACM Transactions on Software Engineering
and Methodology (TOSEM), 10(2):184–208, 2001.

[26] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon,
and A. Gujarathi. Regression test selection for java software. In ACM Sigplan Notices,
volume 36, pages 312–326. ACM, 2001.

[27] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A. Spoon,
and A. Gujarathi. Regression test selection for java software. ACM Sigplan Notices,
36(11):312–326, 2001.

[28] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy. The art of testing less without
sacrificing quality. In Proceedings of the 37th International Conference on Software
Engineering-Volume 1, pages 483–493. IEEE Press, 2015.

[29] J.-M. Kim and A. Porter. A history-based test prioritization technique for regression
testing in resource constrained environments. In Proceedings of the 24th international
conference on software engineering, pages 119–129. ACM, 2002.

[30] M. S. Lam, J. Whaley, V. B. Livshits, M. C. Martin, D. Avots, M. Carbin, and C. Unkel.
Context-sensitive program analysis as database queries. In Proceedings of the twenty-
fourth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems,
pages 1–12, 2005.

[31] J. Law and G. Rothermel. Whole program path-based dynamic impact analysis. In
Proceedings of the 25th international conference on software engineering, pages 308–318.
IEEE Computer Society, 2003.

[32] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive study of
static regression test selection in modern software evolution. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 583–594. ACM, 2016.

[33] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive study of
static regression test selection in modern software evolution. In Proceedings of the 2016
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering,
pages 583–594. ACM, 2016.

[34] O. Legunsen, A. Shi, and D. Marinov. Starts: Static regression test selection. In 2017
32nd IEEE/ACM International Conference on Automated Software Engineering (ASE),
pages 949–954. IEEE, 2017.

[35] H. K. Leung and L. White. Insights into regression testing (software testing). In
Proceedings. Conference on Software Maintenance-1989, pages 60–69. IEEE, 1989.

[36] B. Li, X. Sun, H. Leung, and S. Zhang. A survey of code-based change impact analysis
techniques. Software Testing, Verification and Reliability, 23(8):613–646, 2013.

62

[37] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes, and P. Baldi. Sourcerer:
mining and searching internet-scale software repositories. Data Mining and Knowledge
Discovery, 18(2):300–336, 2009.

[38] B. Livshits, J. Whaley, and M. S. Lam. Reflection analysis for java. In Asian Symposium
on Programming Languages and Systems, pages 139–160. Springer, 2005.

[39] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov. An empirical analysis of flaky tests. In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 643–653. ACM, 2014.

[40] P. Martins, R. Achar, and C. V. Lopes. 50k-c: A dataset of compilable, and compiled,
java projects. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR), pages 1–5. IEEE, 2018.

[41] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco.
Taming google-scale continuous testing. In 2017 IEEE/ACM 39th International Confer-
ence on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP),
pages 233–242. IEEE, 2017.

[42] A. K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma. Regression testing in an
industrial environment. Communications of the ACM, 41(5):81–86, 1998.

[43] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems.
In ACM SIGSOFT Software Engineering Notes, volume 29, pages 241–251. ACM, 2004.

[44] F. Palomba and A. Zaidman. Does refactoring of test smells induce fixing flaky tests? In
2017 IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 1–12. IEEE, 2017.

[45] F. Palomba and A. Zaidman. The smell of fear: on the relation between test smells and
flaky tests. Empirical Software Engineering, pages 1–40, 2019.

[46] C. R. Panigrahi and R. Mall. A hybrid regression test selection technique for object-
oriented programs. Proc. Int. J. Softw. Eng. Appl, 6(4), 2012.

[47] J. Philipps and B. Rumpe. Refinement of pipe-and-filter architectures. In International
Symposium on Formal Methods, pages 96–115. Springer, 1999.

[48] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change impact
analysis of java programs. In ACM Sigplan Notices, volume 39, pages 432–448. ACM,
2004.

[49] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.
ACM Transactions on Software Engineering and Methodology (TOSEM), 6(2):173–210,
1997.

[50] G. Rothermel and M. J. Harrold. Empirical studies of a safe regression test selection
technique. IEEE Transactions on Software Engineering, 24(6):401–419, 1998.

63

[51] G. Rothermel, M. J. Harrold, and J. Dedhia. Regression test selection for c++ software.
Software Testing, Verification and Reliability, 10(2):77–109, 2000.

[52] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold. Prioritizing test cases for
regression testing. IEEE Transactions on software engineering, 27(10):929–948, 2001.

[53] A. Rountev, S. Kagan, and M. Gibas. Static and dynamic analysis of call chains in java.
In ACM SIGSOFT Software Engineering Notes, volume 29, pages 1–11. ACM, 2004.

[54] V. Sundaresan, L. Hendren, C. Razafimahefa, R. Vallée-Rai, P. Lam, E. Gagnon, and
C. Godin. Practical virtual method call resolution for Java, volume 35. ACM, 2000.

[55] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

[56] R. N. Taylor, N. Medvidovic, and E. M. Dashofy. Software Architecture: Foundations,
Theory, and Practice. Wiley Publishing, 2009.

[57] A. Vahabzadeh, A. M. Fard, and A. Mesbah. An empirical study of bugs in test code.
In 2015 IEEE international conference on software maintenance and evolution (ICSME),
pages 101–110. IEEE, 2015.

[58] L. White, H. Almezen, and S. Sastry. Firewall regression testing of gui sequences and
their interactions. In International Conference on Software Maintenance, 2003. ICSM
2003. Proceedings., pages 398–409. IEEE, 2003.

[59] L. White, K. Jaber, and B. Robinson. Utilization of extended firewall for object-oriented
regression testing. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 695–698. IEEE, 2005.

[60] L. White, K. Jaber, B. Robinson, and V. Rajlich. Extended firewall for regression testing:
an experience report. Journal of Software Maintenance and Evolution: Research and
Practice, 20(6):419–433, 2008.

[61] L. J. White and H. K. Leung. A firewall concept for both control-flow and data-flow in
regression integration testing. In Proceedings Conference on Software Maintenance 1992,
pages 262–271. IEEE, 1992.

[62] D. Willmor and S. M. Embury. A safe regression test selection technique for database-
driven applications. In 21st IEEE International Conference on Software Maintenance
(ICSM’05), pages 421–430. IEEE, 2005.

[63] W. E. Wong, J. R. Horgan, S. London, and H. Agrawal. A study of effective regression
testing in practice. In PROCEEDINGS The Eighth International Symposium On Software
Reliability Engineering, pages 264–274. IEEE, 1997.

[64] G. Xu and A. Rountev. Regression test selection for aspectj software. In Proceedings of
the 29th international conference on Software Engineering, pages 65–74. IEEE Computer
Society, 2007.

64

[65] S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: a
survey. Software Testing, Verification and Reliability, 22(2):67–120, 2012.

[66] Y. Yu, J. Jones, and M. J. Harrold. An empirical study of the effects of test-suite
reduction on fault localization. In 2008 ACM/IEEE 30th International Conference on
Software Engineering, pages 201–210. IEEE, 2008.

[67] L. Zhang. Hybrid regression test selection. In 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), pages 199–209. IEEE, 2018.

[68] L. Zhang, M. Kim, and S. Khurshid. Faulttracer: a spectrum-based approach to
localizing failure-inducing program edits. Journal of Software: Evolution and Process,
25(12):1357–1383, 2013.

65

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Background
	Regression Test Selection
	Types of RTS
	Granularity of Test Selection
	Granularity of Change Impact Analysis
	Dependency Collection

	Regression Test Selection Techniques and Tools
	FaultTracer
	Ekstazi
	STARTS
	HyRTS

	Related Work
	Change Impact Analysis
	Granularity of Regression Test Selection
	Dependency Collection in RTS

	Parallelization of Regression Test Selection
	Concept
	Example

	TLDR Design and Implementation
	Test Selection and Dependency Extraction
	Safety
	Parallelism in TLDR
	In-Memory Database
	Repository Scanner
	 Class Analyzer and Entity Analyzer
	 Dependency Extractor
	 DFS Component

	Test to Entity Map
	Runner
	TLDR Artifact

	Safety of TLDR
	Safety of TLDR
	Static Extended Dependency Graph
	Firewall
	Proof of Safety of TLDR

	Evaluation
	Research Questions
	Data Collection
	Experiment Setup
	Results
	RQ1: Number of Selected Tests
	RQ2: End-to-End Testing Time

	Limitations and Threats to Validity
	Reflection and Instrumentation
	External Dependency
	Test Failure
	Average Error

	Future Work and Conclusion
	Future Work
	Ground Truth and Benchmark
	Robust Artifact
	External Dependency

	Conclusion

	Bibliography

