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A B S T R A C T

Cloud vendors such as Amazon (AWS) have started to offer FPGAs in addition to GPUs and CPU in their com-
puting on-demand services. In this work we explore design space trade-offs of implementing a state-of-the-art
machine learning library for Gradient-boosted decision trees (GBDT) on Amazon cloud and compare the scal-
ability, performance, cost and accuracy with best known CPU and GPU implementations from literature. Our
evaluation indicates that depending on the dataset, an FPGA-based implementation of the bottleneck computa-
tion kernels yields a speed-up anywhere from 3X to 10X over a GPU and 5X to 33X over a CPU. We show that
smaller bin size results in better performance on a FPGA, but even with a bin size of 16 and a fixed point imple-
mentation the degradation in terms of accuracy on a FPGA is relatively small, around 1.3%–3.3% compared to a
floating point implementation with 256 bins on a CPU or GPU.

1. Introduction

The increasing computational requirements of next-generation
applications coupled with the diminishing improvements in perfor-
mance through technology scaling has resulted in heterogeneous com-
puting environments, with increasing use of GPUs and FPGAs as accel-
erators. This trend has percolated even to cloud computing platforms
with the leading vendors such as Amazon (AWS) and Microsoft (Azure)
adding FPGAs to their offerings over the past year. For example, Xilinx
FPGAs (up to eight Virtex UltraScale + VU9P FPGAs with a combined
peak compute capability of over 170 TOP/sec) are now available on the
Amazon Elastic Compute Cloud (EC2) F1 instances, along with Xilinxs
SDAccel Development Environment for cloud acceleration, enabling the
user to easily and productively develop accelerated algorithms and then
efficiently implement and deploy them onto the heterogeneous CPU-
FPGA system. The main advantage of cloud-based acceleration is the
ability to scale on demand as the computation requirements increase
due to larger datasets or due to latency constraints. Furthermore, there
is no upfront cost in terms of tools and hardware. The customer pays
only for the amount of resources used and for the duration of use, which
makes high performance computing available to a broad range of con-
sumers including small and medium companies that do not have in
house networking and hardware expertise.

∗ Corresponding author.
E-mail addresses: mshepovalov@ucdavis.edu (M. Shepovalov), akella@ucdavis.edu (V. Akella).

General-purpose GPUs take advantage of SIMD and SIMT style par-
allelism and have been in use for over a decade now with a wide
body of knowledge on their costs, benefits, and design tradeoffs. They
have become the de facto platform of choice especially for implement-
ing machine learning applications. In CPUs/GPUs cache subsystem is
fixed (size and connectivity) and managed automatically by the hard-
ware. So, applications that have poor data locality and little data reuse
or large working sets exhibit poor performance and poor scalability.
FPGAs in contrast have embedded memory blocks called Block RAMs
which can be used to create user managed caches tailored to the spe-
cific algorithm. Moreover, given that BlockRAMs are in close proximity
to the custom compute logic, FPGAs naturally support an in-memory
computing paradigm which can be beneficial in many machine learn-
ing applications. Recent work [1–4] has shown that FPGAs can be quite
effective in a variety of high performance computing applications, espe-
cially data analytics and networking. But to the best of our knowledge
there has been no direct comparisons between highly optimized GPU
and FPGA implementations of large scale machine learning applica-
tions especially in a cloud computing setting. So, the main motivation
for this work is to explore the design and cost trade-offs and scalabil-
ity of FPGA based acceleration of computing in the cloud environment
and compare it with optimized CPU and GPU implementations, so that
application developers can make more informed decisions about how to
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optimize cost/performance in a heterogeneous cloud computing envi-
ronment.

The intended audience of this work are

• Machine learning users who have large datasets and are currently
using GPUs in the cloud for accelerating their applications.

• Cloud computing vendors such as Amazon who are interested in
offering new types microservices such as FaaS (Function as a Ser-
vice) and would like to know the cost benefits tradeoffs of using
FPGAs.

Specifically we are interested in answering the following questions
in this paper to address the concerns of potential users and vendors
of cloud computing services. What are the cost/performance tradeoffs
since there is a wide disparity in terms of cost per hour between CPUs,
GPU, and FPGAs? How well does an application scale with increas-
ing number of FPGAs? What speedups are necessary for a FPGA based
implementation to be competitive compared to a GPU? How does one
develop, debug, and deploy FPGA based accelerators in the cloud? Tra-
ditional approaches to HW/SW codesign are not directly applicable to
cloud-based acceleration, because the FPGA/CPU interface is different.
Also, the amount of memory available on the accelerator, and how the
memory can be used, are pre-defined by the cloud provider. Also, in
large scale machine learning there is often a complex software infras-
tructure with multiple libraries for data pre/post processing, evalua-
tion, etc. which usually means one has to be more careful in choosing
where/how to partition the application. So, kernels have to be selected
carefully to not only match the accelerator architecture, but also the
memory requirements and the interconnect subsystem. Though there
has been prior work in implementing and optimizing machine learning
kernels on stand-alone FPGAs, the questions mentioned above have not
been answered in research literature yet, because FPGAs have only been
available in the cloud computing setting in the past year or so.

We present a case study using a widely used machine learning library
called LightGBM [5]. LightGBM is an efficient implementation of gra-
dient boosted decision trees that achieves extremely high performance
in a variety of applications such as multiclass classification, click pre-
diction, regression, and ranking etc. Zhang et al. [6] developed state-
of-the-art GPU implementation of LightGBM1 that serves as a concrete
comparison point for our work. We propose to use an FPGA instead of
a GPU to accelerate the performance critical kernels from this imple-
mentation as described in Section 2. By using the same starting point
in terms of code base, we propose to evaluate if, and when FPGA based
acceleration is cost effective compared to a GPU based acceleration.

The main contributions of this work are as follows:

1. We make a direct comparison of an FPGA implementation with a
highly optimized GPU implementation using the same code base. We
show that on performance critical kernels, FPGA implementation
using AWS F1 instances results in a 3X to 10X speed-up compared
to a GPU.

2. Our results indicate that look-up-tables (LUTs) (not the Block RAMs)
are a limiting to improving the performance on a single FPGA via
thread-level parallelism.

3. Exploiting thread-level parallelism on a FPGA is challenging com-
pared to a GPU because there are no atomic operations in a FPGA.
We propose an address remapping technique that takes advantage
of the large amount of memory available on the F1 instance that
avoids memory conflicts.

4. We show that the performance of the FPGA-based implementation
does not scale well on AWS at present because there is a single mem-
ory that is shared by all the FPGAs. This becomes the bottleneck. As
a result, when going from 1 to 8 FPGA, the performance improves
only modestly (on average about 2.6X), though the cost per hour

1 https://github.com/huanzhang12/lightgbm-gpu.

increases linearly. So, clearly in future F1 instances a better mem-
ory system architecture is required.

5. Though there is a significant improvement in the performance of the
compute-intensive kernels compared to a GPU, the overall speed of
the entire application is far more modest because of Amdahl’s law
argument. So, the cost of FPGA computing per hour has to come
down drastically before FPGAs can become truly competitive with
GPUs in the cloud.

The rest of the paper is organized as follows. We start with an
overview of decision trees and their computational bottlenecks on a
CPU and GPU. Next, we provide the background on AWS platform, and
the cost model. Next, we provide details of our implementation fol-
lowed by detailed results and discussion of the results. We conclude
with directions for future work.

2. Background

Decision trees are commonly used in operations research, specif-
ically in decision analysis, to help identify a strategy most likely to
reach a goal but are also a popular tool in machine learning. Gradient
Boosted Decision Tree (GBDT) is an ensemble model of decision trees
[7,8], which are trained in sequence. In each iteration, GBDT learns the
decision trees by fitting the negative gradients (also known as residual
errors). The main cost in GBDT lies in learning the decision trees, and
the most time-consuming part in learning a decision tree is to find the
best split points. One popular method to improve the training time to
use histogram based techniques (for example LightGBM [5]) that buck-
ets continuous feature values into discrete bins and uses these bins to
construct feature histograms during training. Histogram is in fact a set
of histograms for sample counter, gradient and hessian values. Result of
histogram splitting is used to generate new leaf of the tree and prepare
new data for generating next layer of the tree.

The computational bottlenecks in the implementation of LightGBM
are shown in Table 1. This data was obtained by Ref. [6] through
instruction level profiling on a CPU. Function BeforeFindBestSpilt()
mainly spends its time on generating three arrays - the indices of the
training samples on this leaf and the corresponding hessian and gradi-
ent values for them. Its time complexity is O(N), where N is the number
of samples at the current leaf. Function ConstructHistogram() goes over
one feature at a time to construct a feature histogram and has a com-
plexity of O(N.d) where N is the number of samples and d is the number
of features. Function FindBestThreshold() finds the best split point and
there are d calls to this function for a total complexity of O(k.d) where k
is the number of bins. The data shows that 85% of the computation time
is spent in the four functions identified in Table 1, with the Construc-
tHistogram() function taking up almost 80% of the time. So, we will
focus on implementing ConstructHistogram() on the FPGA. In general
a sequential implementation of histogram computation is quite trivial.
It involves merely reading a value from the memory and incrementing
the memory location corresponding to the value. However, implement-
ing the ComputeHistogram() function in LightGBM is challenging for
the following reasons. First, we need to compute a histogram for each
feature. In general the number of features can be quite large (thousands
or tens of thousands) for some datasets. Second, the histogram has to
be computed for the training samples for a given leaf node during the

Table 1
Computational Bottleneck in LightGBM GBDT Estimated via
Instruction level Profiling in Ref. [6].

Function Name Higgs epsilon Yahoo-LTR

BeforeFindBestSplit() 5.3% <0.1% 0.3%
ConstructHistogram() 80.8% 87.6% 75.7%
FindBestThreshold() 0.4% 5.1% 6.8%
Split() 6.3% <0.1% 4.3%

2

https://github.com/huanzhang12/lightgbm-gpu


M. Shepovalov, V. Akella Integration, the VLSI Journal 70 (2020) 1–9

Table 2
Different HW instances on AWS cloud.

AWS instance
Oregon

CPU cores Caches CPU’s RAM accelerator Accelerator’s
RAM

L3 L2 L1i L1d

CPU C4.4xlarge Intel Xeon
E5-2666 v3
2.90 GHz

8 25600k 256k 32k 32k 29 GB – –

GPU P2.xlarge Intel Xeon
E5-2686 v4
2.30 GHz

2 46080k 256k 32k 32k 59 GB NVIDIA
Tesla k80

12 GB

1 FPGA F1.2xlarge Intel Xeon
E5-2686 v4
2.30 GHz

4 46080k 256k 32k 32k 119 GB Xilinx Virtex
Ultra-
Scale + AWS
VU9P F1

64 GB

8 FPGAs F1.16xlarge Intel Xeon
E5-2686 v4
2.30 GHz

16 46080k 256k 32k 32k 960 GB Xilinx Virtex
Ultra-
Scale + AWS
VU9P F1

64 GB on
each FPGA

Table 3
Typical cost associated with different instance types (as of October 2018).

AWS instance Oregon EC2 $/hour EC2 $/month EBS $/month for 90 GB upload $0.09/Gb for 2 GB Total, $/month

CPU C4.4xlarge 0.796 592.224 9 0.18 601.40
GPU P2.xlarge 0.9 669.6 9 0.18 678.78
1 FPGA F1.2xlarge 1.65 1227.6 9 0.18 1236.78
8 FPGAs F1.16xlarge 13.2 9820.8 9 0.18 9829.98

tree building process. The training samples for a given leaf node are not
located contiguously in memory. As a result, the computation involves
non-sequential scattering access to a large memory. Third, parallelizing
the histogram computation is non trivial. Not only does it require sig-
nificantly higher memory bandwidth to read multiple items in parallel
and write them, but also could result in read/write conflicts, if the same
data element is being read each parallel thread. This is not infrequent
as many data items are usually quite similar (for example, 0).

GPU implementation proposed in [6] overcomes these challenges
by taking advantage of the thread-level parallelism and GPU atomic
operations. Since non-sequential scatter access to feature arrays is
expensive, histograms corresponding to multiple features are computed
simultaneously. Next, the number of read/write conflicts is reduced by
staggering the computation of the gradient and hessian operations of
each feature in the bundle of threads. However, it is still possible for the
same value to be updated by multiple threads, so atomic operations are
necessary. The amount of parallelism on a GPU (number of histograms
that can be computed in parallel) is dictated by the size of the local
memory. The ConstructHistogram() implementation on a GPU in [6]
delivers a speed up between 7 and 8 compared to a CPU based imple-
mentation on a 28 core Xeon E5-2683 with 192 GB of memory and a
speed-up of 25 over the exact-split finding algorithm of XGBoost [9].

In this work we propose a scalable parallel implementation of the
ConstructHistogram() function on a FPGA that is significantly faster
than the GPU implementation. We achieve the speed-up over a GPU
by eliminating the von Neumann overhead (fetching, decoding, stor-
ing back results) by realizing the underlying computation directly in
hardware with look-up tables and by scheduling the memory reads and
writes to avoid conflicts.

However, before delving into the details of the FPGA implementa-
tion we will provide a brief overview of the AWS platform and the cost
model.

3. AWS platform

AWS is a service managed by Amazon.com that provides on-demand
cloud computing platforms to individuals, companies and govern-

ments. This service allows its customers to instantly make a virtual
server on Amazons resources instead of manually purchasing hard-
ware, building networking solutions, and then dealing with mainte-
nance and power costs. Amazon Elastic Compute Cloud (Amazon EC2)
provides scalable computing capacity in the Amazon Web Services
(AWS) cloud. EC2 instances can be set up according to chosen Ama-
zon Machine Image (AMI). AMI is a template that contains a soft-
ware configuration (for example, an operating system, an applica-
tion server, and applications). Hardware selection should reflect cho-
sen AMI. There are several types of instances: T: general comput-
ing, R: memory optimized, C: compute optimized, P: GPU accelerated,
F: FPGA accelerated. Each AMI can work on more than one hard-
ware configurations. This project is using F1.2xlarge for 1 FPGA solu-
tion and F1.16xlarge for 8 FPGA solution. For comparison with CPU
only and GPU implementations, data was collected on C4.4xlarge and
P2.xlarge. Table 2 shows the available resources of different instances
CPU, GPU, and FPGA. Table 3 shows the cost of using the different
resources.

The total cost per month is derived assuming 730 h per month, and
that the application uses 90 GB of EBS storage and uploads 2 GB data.
Note that the cost of using a GPU and CPU are about the same, while
an FPGA is almost 2X compared to a CPU/GPU.

4. FPGA implementation of ConstructHistogram() on AWS
platform

Our OpenCL kernel for implementing ConstructHistogram() compu-
tation is shown in Fig. 1.

The implementation has five steps. The first step is to copy his-
togram data from global memory to FPGA Block RAM. On the AWS
platform the host CPU can only access system level DDR (global mem-
ory), so the FPGA has to allocate and manage the Block RAMS (BRAM)
that hold the partial histograms. So, the first step in the FPGA imple-
mentation is for each thread to fill its part of the BRAM with zeros.
This is necessary because the kernel is not reloaded between calls, so
the BRAM is not automatically cleared between invocations of the ker-
nel. In addition, a specific thread is used to populate the first k values

3
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Fig. 1. OpenCL kernel for FPGA implementation ConstructHistogram().

of BRAM arrays where k is the number of bins in the histogram. Next,
we remap the bin address to avoid data races as described below. The
third step involves computing the partial histograms followed by reduc-
ing the partial histograms into a single final one. The last step involves
copying the results from the Block RAM back to the CPU global mem-
ory.

The main idea in the proposed implementation is to use hardware
parallelism and fast low-latency BRAM to build one histogram for one
feature as fast as possible. The kernel on the FPGA distributes the
task of building histogram to multiple threads. Each thread will take
only part of input data to build a partial histogram. As all threads
operate simultaneously, it is possible to have data races. For exam-
ple, consider the case when thread #0 and thread #14 are both pro-
cessing bin 3 in the same 64 bin histogram. They will try to incre-
ment the value at index 3 in histograms counter array, as well as
increase hessian and gradient values for the same bin. Data races can
be avoided by atomic operations on a GPU. Since FPGAs do not sup-
port atomics, we propose to address this by forcing each thread to
write to non-overlapping parts of the memory. Each thread finds its
actual index as follows: Index_in_BRAM = bin_number + threadID ∗ num-
ber_of _bins

Using the example above, thread #0 will increment bin #3 at
index 3 + 0∗64 = 3, but thread #14 will increment bin #3 at index
3 + 14∗64 = 899. Memory requirements for the histogram computa-
tion scale linearly with the number of threads. For each bin we need

storage for 3 values with each value being 4 bytes since LightGBM is a
32 bit application. So, a histogram with 64 bins require 768 bytes. Since
each thread has its own histogram, with N threads, the total storage will
be 768 ∗ N. Virtex UltraScale + VU9P FPGA in the AWS F1 instance has
almost 43 MB of embedded memory, so the storage required is unlikely
to be a bottleneck.

Next let us consider how to parallelize the implementation across
multiple FPGAs (as noted before, AWS offers an 8 FPGA configura-
tion). FPGAs on AWS can share their global memory between each
other through a dedicated interconnection network without having to
use the PCIe network. We take advantage of this dedicated network
to avoid recalculation of the same values on different FPGAs, when
parallelizing the implementation across multiple FPGAs. The same ker-
nel can be used for all the FPGAs but with different offsets and dif-
ferent number of items for each FPGA. Upon completion, each FPGA
writes its histogram to a separate location in the output array. Host
needs to make an additional kernel call to reduce these in to the final
result.

We assume a 32-bit fixed point implementation with 14 bits for the
signed integer part and 18 bits for the fraction. In the FPGA implemen-
tation, the first stage of processing involves converting floating point
values to this fixed point representation and the last stage of the com-
putation involves converting it back to the fixed point implementation.
Note, that in general it may not be necessary to use a 32-bit fixed
point representation and one could optimize the hardware by reduc-

4
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Table 4
FPGA utilization.

kernel type # of threads BRAM DSP FF LUT

256 bins 94 2790(64.6%) 658(9.6%) 870722(36.8%) 1180452(99.8%)
64 bins 110 700(16.2%) 770(11.3%) 877910(37.1%) 1177110(99.6%)
16 bins 124 178(4.12%) 868(12.7%) 883500(37.4%) 1173288(99.2%)
Available 4320 6840 2364480 1182240

Table 5
Datasets used and their characteristics.

Datasets Higgs Microsoft –LTR Yahoo-LTR Epsilon Expo Bosch

Training Examples 10,000,000 2,270,296 473134 400,000 10,000,000 1,000,000
Features 28 137 700 2000 700 968

ing the number of bits with a concomitant decrease in the accuracy
[10,11].

Table 4 shows the utilization of the various FPGA resources as a
function of the number of bins. The limiting factor for the number of
parallel threads seems to be the LUTs (look-up tables). With 16 bins
we can have at most 124 threads and with 64 bins we can have 110
threads.

Next we will describe the results in detail starting with the datasets,
accuracy of CPU, GPU, and FPGA implementation due to fixed point
implementation and histogram based implementation.

5. Results

5.1. Workloads

We use six datasets shown in Table 5 that represent a wide diver-
sity in terms of the training set size and number of features. Higgs,

Epsilon, Expo, and Bosch are large and dense datasets applied for clas-
sification tasks. Yahoo-LTR and Microsoft-LTR are for learning to rank
tasks.

5.2. Accuracy results for CPU, GPU, and FPGA implementations

As noted above, the histogram based implementation of GBDT inher-
ently tradeoff statistical efficiency for hardware efficiency because it
uses a finite number of bins instead of the exact-split method for con-
structing the decision tree. However, the loss in accuracy is not sub-
stantial as we go from 256 to 16 bins. In a FPGA implementation, there
is additional loss in accuracy due to fixed point implementation. As the
results in Table 6 show compared to a GPU the loss in accuracy in a
FPGA is about 1.3%–3.3% as we go from 256 bins to 16 bins for differ-
ent data sets. The degradation in accuracy is negligible as we go from 1
to 8 FPGAs.

Table 6
Accuracy Tradeoffs for CPU, GPU, FPGA as function of Number of bins. AUC (Area Under Curve) and NDCG (Normalized Discounted Cumulative Gains) are
performance metrics to evaluate convergence behavior of machine learning algorithms.).

device CPU GPU FPGA 8 FPGAs

# of bins 256 64 16 256 64 16 256 64 16 256 64 16

Higgs AUC 0.845432 0.844993 0.840329 0.845591 0.845322 0.839743 0.833548 0.833236 0.828189 0.833365 0.832991 0.828025
Yahoo NDCG1 0.735694 0.732814 0.731817 0.727822 0.729786 0.72847 0.721905 0.722437 0.72008 0.72174 0.722586 0.719938
Yahoo NDCG3 0.740624 0.737505 0.73644 0.736131 0.735911 0.734873 0.72697 0.725119 0.724288 0.726875 0.72501 0.72435
Yahoo NDCG5 0.757726 0.755246 0.75428 0.755084 0.75512 0.753234 0.745804 0.744193 0.743159 0.745671 0.744062 0.743343
Yahoo NDCG10 0.797791 0.796558 0.795503 0.795248 0.796341 0.79409 0.787431 0.787139 0.785684 0.787156 0.787325 0.785452
Microsoft NDCG1 0.525336 0.520073 0.516673 0.524474 0.520645 0.519187 0.512811 0.506948 0.507033 0.512918 0.506804 0.506865
Microsoft NDCG3 0.505291 0.503479 0.502523 0.506736 0.503699 0.503543 0.494055 0.490802 0.490604 0.49417 0.490696 0.49053
Microsoft NDCG5 0.510691 0.510509 0.506849 0.510965 0.510186 0.50872 0.497573 0.496481 0.495618 0.497417 0.496372 0.495439
Microsoft NDCG10 0.527825 0.526975 0.524425 0.528319 0.527829 0.525526 0.515626 0.514292 0.513335 0.515656 0.514428 0.513288
Epsilon AUC 0.950103 0.949912 0.947959 0.950024 0.949912 0.948065 0.928182 0.928094 0.926946 0.928241 0.927977 0.927128
Bosch AUC 0.684312 0.692864 0.687224 0.686276 0.688328 0.688559 0.665279 0.663734 0.663821 0.665322 0.663583 0.664038
Expo AUC 0.774791 0.76851 0.740438 0.773652 0.766492 0.741739 0.753369 0.740674 0.716671 0.753344 0.740636 0.716831

Table 7
Performance of CPU, GPU, and FPGA implementations of the ConstructHistogram() kernel that is a proxy for the training time. The units are in
seconds.

device CPU GPU FPGA 8 FPGAs

# of bins 256 64 16 256 64 16 256 64 16 256 64 16

Higgs 1073 1058 909 371 335 329 130 104 95 45 41 36
Yahoo 821 710 571 324 204 131 113 67 45 37 25 19
Microsoft 978 966 922 577 491 476 212 166 151 65 54 50
Epsilon 4589 3938 3609 1183 463 270 345 150 110 137 101 53
Bosch 1901 1677 1514 257 184 137 65 58 53 26 25 20
Expo 706 682 629 338 330 363 87 51 37 24 20 19

5
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5.3. CPU vs GPU vs FPGA performance

First, we validated our implementation by benchmarking the results
of our GPU implementation with the implementation in Ref. [6].
The results agree though we used the Tesla K80 available on AWS
while the reference implementation [6] used a GTX 1080. As noted
in Section 2, ComputeHistogram() is responsible for about 80% of
the training time in the LightGBM GBDT library. So, we will com-
pare the performance of the ComputeHistogram() kernel on CPU,
GPU, and FPGA instances available on AWS. The results are shown
in Table 7. With more bins there is more parallelism to exploit, so
training performance improves on all the platforms. To better under-
stand the impact of bin sizes and datasets on performance, we present
a graphic visualization of the data in Fig. 2. On a complex data set
such as epsilon (where complexity is defined by the number of fea-
tures), the improvement in performance with bin size 256 is 3.42X
and 2.45X with a bin size of 16. On the Expo dataset, the improve-
ment is more substantial, almost 10X with a bin size of 16 over a
GPU.

In an accelerator-based implementation it is always useful to know
the amount of time wasted due to transferring the data from the CPU
to the accelerator and the results back to the CPU. Table 8 shows
that FPGA implementations suffer from a larger overhead (the time
when a FPGA is stalled) expressed as the percentage of the overall

execution time. We speculate that this is because we are still in the
early days of FPGAs being available as an accelerator in cloud com-
puting setting. General purpose GPU computing has matured over the
years, with better integration with a CPU. We believe the FPGA/CPU
communication will improve over the years, and this overhead will
decrease.

5.4. Scalability and cost/performance benefits

The biggest benefit of cloud computing is the ability to scale the
computation and pay for it on demand as opposed to provisioning
the computational infrastructure for the peak demand. So, it is impor-
tant to know how well FPGA based acceleration scales for a complex
application such as LightGBM library. Scalability results are shown in
Table 9.

AWS provides an instance with 1 FPGA and an instance with
8 FPGAs, so we present the results for these two cases. Though
the ComputeHistogram() function is parallelizable across multiple
FPGAs, the shared memory that the FPGAs have to use to commu-
nicate with the CPU is the bottleneck. As a result, the performance
does not scale well with the number of FPGA. For example as we
go from 1 to 8 FPGAs the improvement is 3.63X at most and in
the case of more complex data sets such as epsilon it is around
1.49X.

Fig. 2. Graphical visualization of performance in seconds for different data sets and different implementations.

Table 8
Overhead of GPU vs FPGA as Percentage of Overall Execution Time.

device GPU FPGA 8 FPGA

# of bins 256 64 16 256 64 16 256 64 16

Higgs 0.4866 0.5322 0.7939 1.7879 2.31 3.6665 5.2791 6.2831 10.4786
Yahoo 0.4133 0.6848 1.1881 1.5126 2.6326 4.4369 5.1458 7.8595 11.1142
Microsoft 0.2766 0.2926 0.399 0.9639 1.1287 1.5941 3.2954 3.5637 5.1724
Epsilon 0.3263 0.8896 1.5574 1.4819 3.4973 5.0631 3.9846 5.4251 11.3574
Bosch 1.1507 1.3619 1.8419 5.8792 5.618 6.0072 15.0686 13.6083 17.2501
Expo 0.429 0.4719 0.6327 2.2166 3.8979 7.8476 8.6043 10.4785 15.7977
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Table 9
Scalability of FPGA Performance. With 8 FPGA instances
the average speed up is only about 2.62, though the cost
increases by a factor 8. CPU memory is shared by all the 8
FPGA instances which is the bottleneck.

Dataset 1 FPGA 8 FPGA Speedup

Higgs 256 130 45 2.89
Higgs 64 104 41 2.54
Higgs 16 195 36 2.64
Yahoo 256 113 37 3.05
Yahoo 64 67 25 2.68
Yahoo 16 45 19 2.37
Microsoft 256 212 65 3.26
Microsoft 64 166 54 3.07
Microsoft 16 151 50 3.02
Epsilon 256 345 137 2.52
Epsilon 64 150 101 1.49
Epsilon 16 110 53 2.08
Bosch 256 65 26 2.50
Bosch 64 58 25 2.32
Bosch 16 53 20 2.65
Expo 256 87 24 3.63
Expo 64 51 20 2.55
Expo 16 37 19 1.95

Next, we will evaluate the cost/performance for different implemen-
tations using the cost numbers from Table 3. The results are summa-
rized in Table 10 and graphically visualized in Fig. 3. The results show
that on the ComputeHistogram() kernel which is the computational bot-
tleneck in the LightGBM application, FPGAs seem to be cost-effective.
But, as discussed in the next section, this may not translate to a signif-
icant speed up on the entire application, as the rest of the application
has to run on a CPU and there is additional CPU/FPGA communica-
tion overhead as shown in Table 11. Also, scaling to multiple FPGAs at
least on this application does not appear to be cost-effective because of
the poor scalability due to the shared memory bottleneck on the AWS
platform today.

6. Discussion

6.1. FPGA implementation issues

Bin size is a critical parameter for implementing GBDTs and it was
somewhat surprising to note that the performance degradation (in terms
of statistical efficiency) with 16 bins and a fixed point implementation
on a FPGA was not too bad (around 1.3%–3.3%). The number of LUTs
(not the BRAM) seems to be the bottleneck in terms of increasing the
number of threads (hence the parallelism) in the FPGA implementation.
With 16 bins the number of threads is 123 and with 64 bins the number
of thread is 110, with the LUT utilization in the 99% range.

The CPU on the C4.4xlarge instance being used on AWS is an Intel
Xeon E5-2666 v3 2.9 GHz with 8 cores and 25 MB L3 cache and the
GPU on the p2.xlarge instance is a half2 of Tesla k80 with 24 GB DDR5
memory, 4992 Nvidia CUDA cores, 240 GB/s bandwidth and the FPGA
is Virtex UltraScale + VU9P. Our implementation on the FPGA runs
at about 276 MHz. The speed up over a CPU is understandable given
the limited amount of parallelism available on a CPU with 8 cores.
On a FPGA we have anywhere from 94 to 124 threads as shown in
Table 4. The improvement over a GPU is more interesting because the
k80 GPU has 2496 cores, so there is definitely more resources avail-
able to exploit thread-level parallelism. However, as noted in Section
2, the ComputeHistogram() function for each leaf node requires non-
sequential memory reads, since the data samples for that particular leaf

2 https://aws.amazon.com/blogs/aws/new-p2-instance-type-for-amazon-
ec2-up-to-16-gpus/.

are not necessarily contiguous in the memory. Moreover, the amount
exploitable parallelism is limited by the amount of shared memory per
thread block which is around 48 KB, and, as described in Ref. [6], paral-
lel histogram computation invariably has data races when the same bin
is being updated by concurrent threads, which have to be avoided by
using atomics. Furthermore, the ComputeHistogram() kernel has very
low computational intensity (arithmetic operations per byte of data
read), since the underlying computation is very simple, just accumu-
lation. It appears that on a GPU, the overhead of fetching and decoding
instructions and moving the data through the memory hierarchy (so
called von Neumann computing overhead) is not effectively amortized
in this application. On the other hand, on a FPGA, each thread is com-
piled into dedicated hardware that is directly interfaced to the Block
RAMs, so the von Neumann overhead is largely absent. This results in
the significant speed up compared to a GPU implementation. Lastly,
the high LUT utilization in our FPGA implementation is because of the
way the openCL compiler mapped the fixed point arithmetic blocks.
We think that a manual implementation of the processing elements
using the DSP blocks to realize the arithmetic function could reduce
the amount of LUTs being used.

6.2. Main takeaway

The main results of the study in terms of cost performance analysis
are summarized in Table 11. Though there is a significant improve-
ment in the performance of the compute-intensive kernels compared
to a GPU (anywhere from 3X to 10X), the overall speed of the entire
application is far more modest because the bottleneck kernel only con-
sumes 70%–85% of the total execution depending on the dataset. So,
the cost of FPGA computing per hour has to come down drastically
before FPGAs can become truly competitive with GPUs in the cloud.
On the other hand, given FPGAs excel at certain computations (such as
computing histograms, data compression, video encoding etc.), cloud
vendors could use FPGAs to enable HW microservices [12]. For that
the communication overhead between the FPGA and CPU has to be
improved since the current overhead of 1%–5% for a single FPGA and
3%–17% for the 8 FPGA case seems to be quite high.

6.3. Power estimation

Using the Xilinx power estimation tools available on AWS, we
estimate that the average power for the implementation operating at
276 MHz is between 10 W and 15 W depending on the dataset. Power
efficiency is an important concern especially in a cloud computing set-
ting and as expected our FPGA based acceleration of the LightGBM
library appears to be significantly more power efficient than the cor-
responding GPU and CPU implementations. This agrees with the obser-
vations of other researchers such [1,2,13] who have also reported the
energy efficiency of FPGAs when compared to a GPU. The Tesla K80
used in the p2.xlarge instance has a TDP of 300 W, while the Xeon
E5-2666 has a TDP of 135 Watts.

7. Related work

A majority of related work on GPU and FPGA comparison is in
the area of deep neural networks implementations not in the area of
decision trees. For example, in Ref. [3], Intel researchers show that
Stratix 10 FPGA based implementation of deep neural network are
slightly better than Titan X Pascal GPU on dense floating point matrix
multiplication (GEMM), but with reduced bit width they can be sig-
nificantly better. The same research group also compared CPU, GPU,
ASIC, and FPGA on implementing inference in recurrent neural net-
works in Ref. [14]. Researchers in Ref. [15] present a scalable deep
learning accelerator on a FPGA that is 36x better than CPU. In Ref.
[13] researchers compare the CPU, GPU, and FPGA implementations
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Table 10
Cost for ComputeHistogram() kernel on CPU, FPGA, and GPU.

device CPU GPU FPGA 8 FPGAs

# of bins 256 64 16 256 64 16 256 64 16 256 64 16

Higgs 0.237252 0.233936 0.20099 0.09275 0.08375 0.08225 0.059583 0.047667 0.043542 0.165 0.150333 0.132
Yahoo 0.181532 0.156989 0.126254 0.081 0.051 0.03275 0.051792 0.030708 0.020625 0.135667 0.091667 0.069667
Microsoft 0.216247 0.213593 0.203864 0.14425 0.12275 0.119 0.097167 0.076083 0.069208 0.238333 0.198 0.183333
Epsilon 1.014679 0.870736 0.79799 0.29575 0.11575 0.0675 0.158125 0.06875 0.050417 0.502333 0.370333 0.194333
Bosch 0.420332 0.370803 0.334762 0.06425 0.046 0.03425 0.029792 0.026583 0.024292 0.095333 0.091667 0.073333
Expo 0.156104 0.150798 0.139079 0.0845 0.0825 0.09075 0.039875 0.023375 0.016958 0.088 0.073333 0.069667

Fig. 3. Graphical Visualization of Cost of ComputeHistogram() kernels on Different Datasets and Different Bin Sizes.

using a subset of the Rodinia benchmarks. Their goal was to demon-
strate that OpenCL based implementations can be implemented effi-
ciently on a FPGA. They also show that Altera Stratix V FPGA-based
implementations exhibit a 3.4X better power efficiency compared to
NVIDIA K20c GPU. In Ref. [16], researchers compare the effectiveness
of FPGAs, GPUs, and multi-core CPUs for accelerating classification
using models generated by compact random forest machine learning
classifiers. In Ref. [17] three different architectures are proposed for
a random forest classifier on a ZYNQ evaluation board, and in Ref.
[18] decision tree ensemble classifier was implemented on the Intel
HARP (CPU + FPGA) platform. However, neither do these implementa-

tions consider training, nor do they deal with gradient boosted decision
trees.

In Refs. [1,2] Microsoft researchers make a case for of FPGAs as
accelerators in a cloud computing framework which had a profound
impact in the landscape of heterogeneous computing platform and the
resurgence of FPGAs as a viable alternative to GPUs. LightGBM [5]
introduces many new algorithmic ideas in improving the performance
of GBDT training on traditional multicore CPUs. Zhang et al. in Ref.
[6] developed the highly optimized GPU implementation which has
been merged with the main LightGBM codebase. Our starting point is
Zhangs implementation. To the best of our knowledge our work is the

Table 11
FPGA Implementation of ComputeHistogram() kernel from LightGBM library - Summary of
Performance Improvement over CPU and GPU.

Dataset Speed up over P2.xlarge (1 GPU) Speedup over C4.4xlarge (1 CPU)

256 bins 64 bins 16 bins 256 bins 64 bins 16 bins

Higgs 2.85 3.22 3.46 8.25 10.17 9.57
Yahoo 2.87 3.04 2.91 7.27 10.60 12.69
Microsoft 2.72 2.96 3.15 4.61 5.82 6.11
Epsilon 3.43 3.09 2.45 13.30 26.25 32.81
Bosch 3.95 3.17 2.58 29.25 28.91 28.57
Expo 3.89 6.47 9.81 8.11 13.37 17.00
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first FPGA based acceleration of LightGBM - whether standalone or in
a cloud computing setting. Recently, there has been work in the area
of using FPGAs in the cloud [4,19–21] where researchers provide tools
and design flow to share FPGA resources in a datacenter to accelerate
large scale applications. Applications such as molecular dynamics, 3D
FFT, and deep neural networks were used as case studies. The use of
limited precision arithmetic that can be tailored to given workloads
and datasets is a key advantage of FPGAs [10,11]. Though we used
32 bit precision to stay compatible with the GPU code from Ref. [6],
the resource utilization of our implementation could be improved with
reduced precision. In the area of FPGA based histogram implementa-
tion [22], show how dual-ported RAMs can be used to avoid read/write
conflicts but the amount of parallelism is restricted to only two threads,
and the work reported in Ref. [23] focuses on reducing the energy con-
sumption by serializing the computation.

8. Conclusions and future work

The goal of this work is to help a developer, or an organization
understand the trade-offs of implementing high performance computing
applications using heterogeneous computing platforms offered by cloud
computing vendors. It is important to understand the cost/performance
and scalability of an application on CPUs, FPGA, and GPUs so that one
could choose the appropriate deployment strategy to minimize the cost.
We show that FPGAs can provide significant speed up on performance
critical kernels compared to a GPU. However, the communication over-
head of moving data to and from the FPGA is still quite high. This gets
worse with multiple FPGAs. So, clearly there is a need to rearchitect
the CPU/FPGA platform to minimize this overhead. Our results indi-
cate that with further optimization, using handcrafted hardware imple-
mentations instead of using OpenCL FPGAs can be more cost effective.
One key impediment to FPGA based implementations was the tools and
the need to program in a low level hardware oriented language such as
Verilog. However, it looks like SDAccel and the associated simulation
and debug environments have made progress in reducing programming
barrier. However, in the long run we need an alternative to OpenCL
(perhaps Chisel [24]?) so that it is easier to create customized hard-
ware and memory systems efficiently.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.vlsi.2019.09.007.
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