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Abstract.

Linear piasma fluid theory is used to study the stability pf é cold
electron beam in Bri11du1n equilibrium which passes through a stationary.
cold ion‘background, with particular interest in stability for
parameters re]évant to EBIS devices. Dispersion is studied both
analytically and numerically. Fdr —0 the usual infinite medium two
stream instability condition is shown to correspond to a requ1rement
that: beam perveance exceed a minimum value, P>33 upervs, hence, this
mode is stable for EBIS (Pzzluperv).' The Brillouin equilibrium rotation
is shown to gause an elecfron—ion rotating ;tream instability, which‘is
convectively unstable. The ¢=1 mode is also found to be unstable.

. Higher modes numbers, 2>1, are unstable, but have reduced qfowth.
Instabi]ityvis only weakly a%fected by finite'beam radius and boundary

conditions. S _ ' -



1. General Formalism

The electrostatic stability of the Electron Beam lon Source
(EBIS)]’Z’3 is studied with linear cold plasma fluid theory. Analytic
and numerical methods are used to study the linear dispersion of a
finite radius electron beam passing through a partially neutralizing ion

4, is assumed

space charge. A rigid rotor equilibrium, Brillouin flow
for the un-neutralized beam. A two componeht cold fluid plasma is also
assumed. The effect df secondary electrons on stability is neglected.
The plasma is assumed'to be very long in the Z«direction; with
aznso=0 and azvso=0, where: n; denotes particle.density; v, fluid
velocity; subscript, s, species; and superscript, o, an equilbrium
quantity. The axial component of the electric field, is negiected,
Eoz=0, and axial symmetry of the equilibrium is assumed,
Moo (X)=n o (r) and v  (X) =v o (r). It follows that neither Veo
nor BoAhave radial components, ime.,mﬁﬁs [Bo + Bz(r) ‘é +
Be(r)33 where BO is generated externally, and BZ and Be are |
generated by equilibrium currents. For a low current, non-relativistic
electron beam, Be‘may be'neglected, j.e., self-pinching does not
affect the equilibrium. In cases of interest, the diamagnetic field,
B,(r), is also neglegible. The radial electric field is obtained by

solving the Poisson Equation, assuming the equilibrium density,

r

E,(r) = 4—’;—§ [ dr” - 0 (r). (1)



From the radial component of the cold fluid momentum equation, the

general equilibrium condition is,4

2 4’” v . .
QS(Y‘)*’E ® © fdrrn Y‘)"‘Sg"[sssr)l:o’ (@)

where, fig = eSBO/mSc. For a square density profile, we have

where Rp denotes the nominal p]asmé radius. The equilibrium condition

now becomes algebraic and corresponds to rigid rotation, with,4

) :
Q. 3 2 1/2 , o
ag r) =ul =7€{1 + [r- —wg—‘i (1- f)] } . (4)
U SR ¢ '
o e
, an-d.,
R o _ 1/2 .
w_i(l") :w; = —2— {1 + [1 + wz'l ] f) ] , (5)

i

For future use, the vortex frequency is now defined, as, .

w

s -Zws +’Qs sgn (eS) = + (w_- ws) . (6)



Electrostatic stability can be studied by the usual first order
perturbation theory, with a potential of the form, ¥(x,t)=

¥o(x)* 8¥(x,t), where,

5‘1’(Y'g"@, z) = v ¥ SYY'Q(Y‘,kz) ;(29 + kzZ-‘,wt) _ (7)
£==o k=-oa

with kz=2nn/L, where L represents the system length, and n=0,

£]1,%2,....

4

Following Davidson™, a plasma column of radius, Rp, is

considered, surrounded by a conducting wall of radius, Rc’ with
boundary cohditions: (i) e]ectfostatic potential, ¥, is finite at r=0;
(ii) v is continous across the plasma boundary; and (iii) ¥ vanishes on

the conducting wall. From the fluid plasma theory, the full dispersion

relation is found to be-,4
wo J,(TR )
B(k,o R» R = (1- 5 B W el
Sz p c S Us P Jll TRP)
wz w :
pS vuS ‘
Y - | (8)

S Vg (- kZYSZ- Zws)

For convenience, the following notation has been adopted:

(v



and,

2 2
. ) [1 "% Yps /{w - kzv‘s‘z - ) ] :
L [-] C s W2l . (10)

The boundary term is given by,

R) = kR K, (K RIT G R) = K (K RT (KR )
> e

R _ Lan
Kl(k RC)IZ(kZRp) - Kl(k R )I (kZRC)

B(kz, R

P

z zp’'e

_ where I and K represent modified bessel functions of order 2. Stability =
is determined by solving the dispersion assuming real k, where Im(w)>0
eorrespondsvto 1nstabﬁlity.

The nature of unstable growth, whether absolute or conVécti've,5 is
important in an experimenial_devicea For a general dispersibn relation,
- expressed as, D(w,k)=0, the necessary condition for absolute growth is,
3, D=0, of, equiva]ent]y,'akw=0. The velocity of propagation of an
instability can be determined if one observes that.an instability which
is convective in the laboratory frame, is abso]ufe in the co-moving
frame. Denoting thevve1ocity of this frame by V, the frequency would be

-

w =0 - kV. From the definition . of the fféme it follows that

akw’ =0 = Bkw - V = 8kmr = V + .iak(l)_i



which may bé rewritten,

V = akRe(w) and akIm(w)

k=k, k=k,

Thus, the velocity of propégation is given by 3,Re(w) at the point of
the maximal growth. If the}ve1ocity of the instability is so large,
that it 1eaves.a system of size L before appreciable growth occurs,
i.e., if, Im(w) L/V < 3, then fhe mode is said here to be convectively
stable.

In the discussion of beam stability which follows, 1=0 and 140 are
considered separately. A1l regions of unstable growth have been studied
numerically and beén found to be convective; hence, the convective

criterion is used throughout.



2. =0
The following notation is adopted for convenience,

2 2

T. = 1 -  ‘'pe o Ypi | | '
1 z————;;'z 2 [ ) (]2)
w- kV)e |
and‘-
2 L2 )
T, = 1 - iy - | (13)
' (w = kV)VZ-mge .wz - wlz)i '

where no equilibrium ion drift is assumed, i.e., vzi = 0, and Vze =V, »

For 2=0, dispersion relation may now be wfr"itten, _

X _ - J; (TR ). | - ‘
B - T w1 | (18)
Q-Ov . | JO(TRp)
Where:
2. 2 -
o= - kK T/T, e



An alternative form which will also be used is,

_ 2 2 T = ' _ :
where, Zo n is the n-th zero of J . Eq. (16) has been derived from

the product representation of Jo’

22,42 '
(1 - Z /ZO,vn) )

using, Jo = -J], to obtain,

177 = 4 Q,v,n;(‘;]o(z)) = 3 : d en{1 - 22/22 n)
Jo(2) dz n=1 dz .
. 1
B @, -5 . (17)

n=1

Since we only are concerned with the linear stability of the system,
attention is focused on those regions of parameter space in which growth
rates can be appreciable. A dimensionless parameter which will be used

in the following discussion is, x = R_/V, which

“pe”p



can be rewritten,

2 2mg )”2 1 3/2

p(upervs)/33. | - (18)
EBIS beams are typica]]y.a féw upervs, which corresponds .to x2<<1.

One consequence of the above property is that, for EBIS, instability
can occur only in the long wavelength regime. This can be seen by noting
that, from the definition of Tl‘ and TZ’ the ions contribute to
_di-spersi"on only if |w] 56(%1’ . For a beam of good quality, i.e.,

sufficiently near Brillouin flow that lm\‘)e] < w this ir"npliies that

pe’
electrons contribute to dispersion enly if, |w-kV| S_U(wpef)'

Sinee: imstabiﬁ?ty requires ’eh:at' both species coentribute, this implies a

necessary »'c..'_ezn;d‘iﬂ"t:]’?@:n ﬁe@n_,g;y-«;;@wsg:;:m;,;,:;!.kv-,l < ® Frem the definition of

X and equation (18),

|kV| < “pe > lkapl < x| << 1.>\ ’ (19)
»A'sympt'otic a-pproximatiohs may be used for the boun'dary term,

B(k) = 1/an (Rp/RC); ‘IkRpl << 1, 'kRCI << 1

~ 1/n (ka) bR << T kRG] << 1. ~ (20)

2,2

From (16), for S = ¥ 1/(1/Z§ n -T Ro ) , dispersion implies,
n 9 b .

=1

¥ ox
e



|TIS| = B/2k2R§ >> 1, which allows three possibilities:
(1) Il <, Isl >
(ii.) |T]| >> 1, |S] > 1;
(iii.) 0Tyl >> 1, Is] < 1.
By definition of S, Case (i) implies T-’-Zo’n, and, from (14),
!TZI-——4> 0. From the prévidus discussion, the dispersion relation,
given by T2 = 0, can be solved for the fastest growing modes by using

(u-kV)2, = Kk?2which gives,

v kZVZ - mz_ 1/2 .
T - vi pi ~k2V2 2 _ 2 . _
“ve 7 “pe
which is purely imaginary for,
2 . 2 Wl 2,2 2 |
@l ¥ “pe . VI.ZV < k V»eifz < wge + “pe- (2‘2)‘
©yi*pq

Maximum growth occurs at, k§V2'= mie + “ge' Although
the approximation used to obtain (21) breaks down, substituting for kO

into T2 = 0 gives a maximum growth rate,

2 2 1/3
i v’g-[ “pe  “pi ]
max 2 | 2, 2 .\1/2

-~

(23)

The velocity of propagation at max imum growth may be estimated from

k% | keko =V/3. Since yp . 3L/V,, > 3, ﬁhi; mode is

- 10 -



convectively unstable for EBIS. Insight into the nature of the

instability can be gained by noting that if the vortex terms,mve and

mvi;were not present, the dispersion relation wou1d be the same as for
the infinite medium two stream instability (i.e., T,=0), which will be
discussed below. Thus, this long wavelength instability corresponds to
the two stream instability modified by the equilibrium rotation (Ref.
Equations 21-23), and will be referred to as an electron-ion rotating two

- stream instability.
Case (ii) requires T1v*‘w§e/ w-kV 2 >» 1, or w=kV (Note: T] >> 1 and

“‘gi/“’2>>1 %y«up".b). Since |[S|>>1, TRp-—e Zo,n’ usmg,
(14), this implies. TZ-->1). From (22), this corresponds to Wl

wgé'+ mse, with y at most 0f cW|m—kVmei/mpe).

Case (iii) corresponds to |T,| > 1. With slight modification, the
preVious-argument applies, i.e., any growth rate is small compared with

w

pi* _ , .
In the notatien used above, the usual infinite medium two stream

instability would fall under the category, |T|< 1, |S| < 1, a case

which was eliminated a prior by the requirement |k Rp|<< 1. If the
EBIS perveance condition is relaxed to,a]]ow‘xgz1, from (16), the
case |kRp|>>1 corfesponds to T1=='0. This is just the usual two

stream dispersion relation, with a we]] known instability condition,6

2 2/3
< (w2/3 + wp< )3

two stream instability condition corresponds to X

Multiplying by (R /V) , the usual
2 > (kR ) >>]
From the earlier discussion, EBIS beam perveance is well below the

requ1rementvfor the two stream instability in this system.

- 11 -



2. First Rotational mode: 2=1

In the long wave-length approximation the 2=1 mode is described by

the dispersion relation (Ref. 4, Eq. 2.9.13)

2 2
2 - “pe + “pi . (25)
1 (R./R )2 ( -kV-w-)(m-kV-w+) '(w-wt)(w-wf)
B U w e e i i

Away from the Brillouin limit, i.e., for sz (1 f)/Q <<1, an '
electron-ion rotational instability has been already been found,4 but

this is not relevant to EBIS. Near Brillouin flow, 2u2 (1-f)/a2 = 1,

we have w:=w;é QC z and wi=-w (m /m )1,2 ce 2
The dispersion relation becomes,:
2 ‘ w2 ‘mz
: o= P& —pi_ (26)
2 ' ‘ 2 2 2 o
(1 - Rp/RC) (w-k%-me) + . - wy

‘This is similar to the previously considered case of T2=0 in the
Brillouin limit (mve=0). For simplicity, we take RyR, << 1.

Then, instabiltiy can only appear for, Imi—-wi<<we, in which case,

2 L 2 2 (wg + kV) =
W ey fagg 2o+ K12 - 2 (27)
, We V)< - e
The condition.for instability, m2<0 is now,
) (we+kV)2
wi < mpi 2 2 o . (28)
, Ype " 2 (kV+we)

- 12 -



Using the Brillouin condition, this is equivalent to kV>0. Maximum
growth is found in the long wavelenght éppréximation, Ymax =

V3 (2 “giwpe)1/3/4’ moving with a group velocity of V/3.

- 13 -



3. Higher Order Rotational Modes, 2 >1

For 2 >1, the dispersion relation becomes (Ref. 4, Eq. 2.9.3),

2
2 i Wne
2% : _ _ i _
1 - (Rp/Rc) (w-lwe kV) (w Qwe ka mve) >
wz-
+ pi . (29)

- . - .‘+ .
(m £m1)(w £w1 wv1)

For parameters relevant to EBIS, méchgpe)and RyR. << 1, this

leads to,
(w = lm-)z o (v - 20;) ; mz-(im + kV) (2w, + KV = o )
j vi i pi‘™e Me ve
2
Z(Qme + kV) (2w + kV - wve)-wpe
=0 . » (30)
The condition for instability becomes,
5 -
w + 2w vi 2 2 2
Sve - pe —2—:—2——- < (Qwe + kV)© < “’ve+2“’p'e
w ¥+ 2w .
vi pi
or,
2 2 2 2
Qe < (lwe + kV)© < Zmpe f + e (31)

This implies that growth rates are reduced for large 2, and that only a

finite number of modes can be unstable.

- 14 -



5. Conclusions

Linear cold plasm_f]uid theory has been used to study the
e]ecfrostatic stability of EBIS devices by considering a finite radius
electron beam in a Brillouin-type equilibrium which passes through a‘
stationary ion background and is bounded by a'finité radius conductor.
For £=0, the usual infinite medium two stream instability has been found
to have a critical perveance fof onset, P>33 (upervs), and is, therefore,
stable for EBIS (P=luperv). However, a convéctive]y unstable electron-
ion rotating stréam instability has been found, this is driven by a
combination of streaming plus the natural rotation of the Brillouin
equilibrium. It has been shown that the conditions for the onset of.
convective growth can be satisfied in EBIS. These results are only
weakly affected by the boundary conditions. A non-axisymmetric
instability, 2=1 was also found to be convectively unstable.

. The existence of the predicted modes in EBIS devices has yet to be
eonfirmed by detailed experimenta]lmeasurement, aTthough'unidentified |
electrostatic oscitlations have been obséved.7 Because growth is
convective, the 2=0 mode may grow without necessarily disrupting beam
propagation. The 2=1 modes could conceivably introduce'tiﬁ effects, but
would also not be disruptive for a convective 1nstabi]ity, since any
motion across B must include the ions and can only occur at the
relatively slow Alfven speed. The primary concern about the effect of
convective electrostatic modes is the possibility of ion heating, which
could .conceivable hinder the collapse of the beam to high current

density3 and ¢s generally undesirable in an accelerator ion source.

- 15 =
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