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Abstract. 

Linear plasma fluid theory is used to study the stability of a cold 

electron beam. in Brillouin equilibrium which passes through a stationary 

cold ion background, with particular interest in stability for 

parameters relevant to EBIS devices. Dispersion is studied both 

analytically and numerically. For 9=O, the usual infinite medium two 

stream instability condition is shown to correspond to a requirement 

that beamperveance exceed a minimum value, P>33 upervs; hence, this 

mode is stable for EBIS (P.li.iperv). The Brillouin equilibrium rotation 

is shown to cause an electron—ion rotating stream instability, which is 

convectively unstable. The =1 mode is also found to be unstable. 

Higher modes numbers, £>1, are unstable, but have reduced qrowth. 

Instability is only weakly affected by finite beam radius and boundary 

conditions. 
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1. General Formalism 

- The electrostatic stability of the Electron Beam Ion Source 

(EBIS) 1 ' 2 ' 3  is studied with linear cold plasma fluid theory. Analytic 

and numerical methods are used to study the linear dispersion of a 

finite radius electron beam passing through a partially neutralizing ion 

space charge. A rigid rotor equilibrium, Brillouin flow 4 , is assumed 

for the un-neutralized beam. A two component cold fluid plasma is also 

assumed. The effect of secondary electrons on stability is neglected. 

The plasma is assumed to be very long in the Z-direction, with 

an 0=O and where: n, denotes particle density; v, fluid 

velocity; subscript, s, species; and superscript, o, an equilbrium 

quantity. The axial component of the electric field, is neglected, 

E0 O, and axial synmetry of the equilibrium is assumed, 

fl s0 ) 50 (t') and v 50 (t) =v0(r).  It follows that neither v so  

nor B0  have radial components, i.e., P [ Bo + B(r) 	+ 

Be(r), where B 0  is generated externally, and B
z  and Be  are 

g:enerated by equilibrium currents. For a low current, non-relativistic 

electron beam, B e  may be neglected, i.e., self-pinching does not 

affect the equilibrium. In cases of interest, the diamagnetic field, 

B z (r), is also neglegible. The radial electric field is obtained by 

solving the Poisson Equation, assuming the equilibrium density, 

Eor(r) 	 J dr r n 05 (r). 	 (1) 

MM 



From the radial component of the cold fluid momentum equation, the 

general equilibrium condition is, 4  

r 
2 	4iiee 	f + 	m sq 

	
dr r n05 (r) + sgn[ec 5 	= 0, 	(2) 

where, Q = e5 B0/m5c. For a square density profile, we have 

(n , 	 o<r<R. 
(\- I. OS 	

- p 
n0ri 

- 

iç 	 - 	
, 	 (3) 

10, 	r > R 

where R denotes the nominal plasma radius. The equilibrium condition 

now becomes algebraic and corresponds to rigid rotation, with, 4  

	

2: 	l/21 
w(r) 	w- 

=-- 
¶i ~ [i- •r (1-f)1  

and, 

Q f 
w(r) E w ± = -J- 	+ 

 t  I 
+ 	

pi (1-f) 	
1/2 

} 

	

c j 	f 

For future use, the vortex frequency is now defined, as, 

+ 05 sgn (e5 ) = + 	- 	. 	 (6) 
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Electrostatic stability can be studied by the usual first order 

perturbation theory, with a potential of the form, v(x,t)= 

'V 0 (x)+'i'(x,t), where, 

ts'p(r,'e, z) = 3.0 	OF 	ST-'(r,k ) 	+ kz_wt) 	 (7) 
2=- 	k=—co 	 Z 

with k2irn/L, where L represents the system length, and n=O, 

±1 , ±2..... 

Following Davidson4 , a plasma column of radius, R 	is 

considered, surrounded by a conducting wall of radius, R, with 

boundary conditions: (i) electrostatic potential, P. is finite at r=O; 

(ii) 'p is continous across the plasma boundary; and (iii) w vanishes on 

the conducting wall. From the fluid plasma theory, the full dispersion 

relation is found to be, 4  

2 	
J(TR ) 

B(k 	R) 	0- 	;) 	TR 	
J.(TR) 

2 
(&) 	W 

ps 	U.S 

5 lu (w-kV5_.w5) 

For convenience, the following notation has been adopted: 

(v 	) 	V so z 	sz' 

2 
Us =( - kV5 - w5) - 	 (9) 
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and, 

	

2 	2 	
' 	-. kV 	- kW ) 

 2]  

	

T 	-k 	
- 	

2 / 2 1 	 (10) 

	

z 	
s WpIU j 

The boundary term is given by, 

- 

B(k 	R) = kR 	
- 

where I and K represent modified bessel functions of order £. Stability 1  

is determined, by solving the dispersion assuming real k, where Im(w)>o 

corresponds to instabi lity. 

The nature of .unstab1ë growth, whether absolute or convective, 5  is 

Thiportant in an experimental device. For a general di spers Thn relation, 

expressed as, D(w,k)=0, the necessary condition for absolute growth is, 

3k0=°' or, equivalently, 3kw=O.  The velocity of propagation of an 

instability can be determined if one observes that an instability which 

is convective in the laboratory frame, is absolute in the co-moving 

frame. Denoting the velocity of this frame by V, the frequency would be 

- kV. From the definition of the frame it follows that 

Dkw = 	= kw - V = kWr - V + 
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which may be rewritten 

V = 
	

and 	
= 0. 

k= 
	

k=k0  

Thus, the velocity of propagation is given by kRe(w) at the point of 

the maximal growth. If the velocity of the instability is so large, 

that it leaves a system of size L before appreciable growth occurs, 

i.e., if, Im(w) L/V < 3, then the mode is said here to be convectively 

stable. 

In the discussion of beam stability which follows, 1=0 and lO are 

considered separately. All regions of unstable growth have been studied 

numerically and been found to be convective; hence, the convective 

criterion is used throug:hout.. 

I 



2 . 

The following notation is adopted for convenience, 

2 	 2 

T1 1 	Wpe 	 Wpj  

= 	-  
(0 	 W 

and 

.2 	 2 

T 	I - 
	Wpe 	- 	Wpj 	

(13) 
/ 	22 	2 	2 w-kVj-w 

ye 	W 	
WUi 

where no equilibrium ion drift is assumed, i.e.,= 0, and V ze EV• 

For =O, dispersion relation may now be written, 

= - T2  TRp 	J1(.iR). 	
(14) 

J 0 (TR) 

where, 

(15) 



An alternative form which will also be used is, 

00 

B 	= 	2 k R T1 n1 
	

- T2R 

where, Z0 	is the n—th zero of J. Eq. (16) has been derived from 

the product representation of J o l 

J 0 (z) = 	( 1 	z2/Z,n) 

using, J0  = —J 1 , to obtain, 

Ln(J 0 (z)). 	 n(l - z2/Zn) 
J 0 (z) 	dz 	 n=i dz 

1 

= -2z OF 	2 	2 
n=l 	

(z0 - z ) 

Since we only are concerned with the linear stability of the system, 

attention is focused on those regions of parameter space in which growth 

rates can be appreciable. A dimensionless parameter which will be used 

in the following discussion is, X 	WpeFp/ I  which 

(16) 

(17) 



can be rewritten, 

x 
2 	(!

me \l/2 

- J 
I 	- 

0.96 I(A)/V '2 (kV) 
v/2  - 

= 	p(ppervs)/33. 	 (18) 

EBIS beams are typically a few lipervs, which corresponds to x2<<l. 

One consequence of the above property is that, f or EBIS, instability 

can occur only in the long wavelength regime. This can be seen by noting 

that, from the definition of T, and 121  the ions contribute to 

dispersion only if J 	<'(w). For a beam of good quality, i.e., 

suffic:iently near Brillouin flow that lW ve l < Wpe9 this implies that 

electrons contribute to dispersion only if, lw—kVi £'(°pe). 

Since iiistability requires that both species contribute, this implies a 

nes'ary, c.nd'itin ftr gpoWt;h .1kV 1 "e 	From the. dfi nitton of 

X and e q:uatin (18), 

lk'jl 	. Wp 4 l.kRi 	< 	lxi 	<< 	1. 	 (19) 

Asymptotic approximations may be used for the boundary term, 

B(k) 	l/n (R/R); 	lkRl 	<< 1, 	kRi << 1 

	

l/n (kR) 	; 	ikRl 	<< 	1, 	lkRl << 1. 	 (20) 

From (16), for S 	! 	1/0/Z2 	-T2R2 ) , dispersion implies, 
=1 	

p 



11 1s1 = B/2k2R 	>> 1, which allows three possibilities: 

1111 < 1, IsI > 1; 

1 11 1 >> 1, 151 >> 1; 

ITil >> 1, IsI < 1. 

By definition of S, Case (1) implies T --- Z 0 , and, from (14), 

1121 	'- 0. From the previOus discussion, the dispersion relation, 

given by 12 = 0, can be solved for the fastest growing modes by using 

(w—kV) 2 9  = k2V2which gives, 

k2 V  2 	2 	,l/2 
- 2 	2 	 ye 

w = ± 	vi + pi 	
k  2  V  2 W  2 -  2 

ye 	pe 

 

which is purely imaginary for, 

'ave + Wp e  

w .+ 
\)1

w. 
 1 

22 	2 	2 < k 	< ° ve 	Wpe e  

	

Maximum growth occurs at, kV2 = 
	+ °e Although 

the approximation used to obtain (21) breaks down, substituting for k 0  

into 12 = 0 gives a maximum growth rate, 

	

2 	2 	 1/3 

= 	
Wp 	pi 

1max 	2 	2 ( w 	 ) 
2 	2 1/2 

. pe 	p1 

The velocity of propagation at maximum growth may be estimated from 

kr k=ko = V/3. Since 'max 3L/Vez  >> 3, this mode is 

- 10 - 

 



convectively unstable for EBIS. Insight into the nature of the 

instability can be gained by noting that if the vortex terms1 Wve  and 

were not present, the dispersion relation would be the same as for 

the infinite medium two stream instability (i.e., Ti=o), which will be 

discussed below. Thus, this long wavelength instability corresponds to 

the two stream instability modified by the equilibrium rotation (Ref. 

Equations 21-23), and will be referred to as an electron-ion rotating two 

stream instability. 

Case (ii) requires Ii * w / u-kV 2 >> 1, or wkV (Note: i >> 1 and 

y<<w 1,j). Since SI>>l, TR -  > Z0, 	using 

(14), this implies 12 	>0. From (22), this corresponds to 

+ Vel 
with y at most of ( IwkVI•wp i/wpe ). 

Case (iii) corresponds to 1 121 > 1. With slight modification, the 

previous argument applies,. i.e.., any growth rate is small compared with 

wpi . 

In, the notation used above.,, the usual infInite med.tum two stream 

i:ns.t.ab..ili.ty would fail under the category, 111 < l 	< 1, a case 

which was eliminated a prior by the requirement 1k RI<.< 1. If the 

EBIS perveance condition is relaxed to allow X22.1,  from (16), the 

case IkR p 1>>l corresponds to T i = 0. This is just the usual two 

stream dispersion relation, with a well known instability condition, 6  

kV2  <W2/3 + Multiplying by (R/v) 2  the usual 

two stream instability condition corresponds to x 2  > (kR) 2>>i. 

From the earlier discussion, EBIS beam perveance is well below the 

requirement for the two stream instability in this system. 

- 11 - 



2. First Rotational mode: 2=l 

In the long wave—length approximation the p=l mode is described by 

the dispersion relation (Ref. 4, Eq. 2.9.13) 

2 	 W  2 
	 2 
pe 	+ 	ipl 

1 	(Rp/R) 	(w_kV_w;)(U)_kV -we ) 

Away from the Brillouin limit, i.e., for 2w e (l_f)/c e  <<1, an 

electron—ion rotational instability has been already been found, 4  but 

this is not relevant to EBIS. Near Brillouin flow, 2we(l_f)/ce = 1, 

we have w:=w;= 
 ce z and w=_t4= (me/mj)"2 ce'2• 

The dispersion relation becomes, 

2 	 2 2 	- 	WIpe 	
wpi 

(1 - R/R) 2 	- 	( W•k\_we ) 2  + 	
2 	2 

This is similar to the previously constdered case of T 2=0 in the 

Brillouin limit (w e=O)• For simplicity, we take RPIRC << 1. 

Then, instabiltiy can only appear for, IW!W j <<w e, in which case, 

/ 

2_ 2 2 ____________ 
U) 	-, W 	+ 	

2(U)e + kV) - 

The condition for instability, w 2<0 is now, 

2 	2 	
2 

W i  < 	
pe - 2 (kV+W) 2  

(26) 

(27) 

(28) 

- 12 - 



Using the Brillouin condition, this is equivalent to kV>O. Maximum 

growth is found in the long wavelenght approximation, Ymax 

vT2 iwpe)"3/4 moving with a group velocity of V/3. 

- 13 - 



3. Higher Order Rotational Modes, 2>1 

For>l, the dispersion relation becomes (Ref. 4, Eq. 2.9.3) 9  

2 	 W 
2 
pe  

1 - (R/R)2 e 	e -kV)(w-Lw - k 
z 	ye V-w ) 

2 
+ 	 wpi 	

. 	( 29) 
( - 	0 Ji + 

For parameters relevant to EBIS, wO'(wpe) and RP /Rc  << l this 

leads to, 

)2 + 	i 	- i We + kV) 	+ kV 

2.(2 	+ kV)(w + kV - 

=0 . 	 (30) 

The condition for instability becomes, 

W e  + 2We 	
< 	e + ky)2 < 	+ 2w2pe 

pi 

or, 

ce -- 	+ ky)2 < 	2w2e  f + c2 e 	 (31) 

This implies that growth rates are reduced for large 2., and that only a 

finite number of modes can be unstable. 

- 14 - 



5. Conclusions 

Linear cold plasm fluid theory has been used to study the 

electrostatic stability of EBIS devices by considering a finite radius 

electron beam in a Brillouin—type equilibrium which passes through a 

stationary ion background and is bounded by a finite radius conductor. 

For 2 =0, the usual infinite medium two stream instability has been found 

to have a critical perveance for onset, P>33 (iipervs), and is, therefore, 

stable for EBIS (Phzperv). However, a convectively unstable electron-

ion rotating stream instability has been found., this is driven by a 

combination of streaming plus the natural rotation of the Brillouin 

equilibrium. It has been shown that the conditions for the onset of 

convective growth can be satisfied in EBIS. These results are only 

weakly affected by the boundary conditions. A non—axisynimetric 

instability, 2=1 was also found to be convectively unstable. 

The existence of the predicted modes in EBIS devices has yet to be 

confirmed by detailed exfreri'mental measurement, although unidentified 

electrostatic osciTlations have been obseved. 7  Because growth is 

convective, the 9=o mode may grow without necessarily disrupting beam 

propagation. The 2=1 modes could conceivably introduce!xB effects, but 

would also not be disruptive for a convective instability, since any 

motion across B must include the ions and can only occur at the 

relatively slow Alfven speed. The primary concern about the effect of 

convective electrostatic modes is the possibility of ion heating, which 

could conceivable hinder the collapse of the beam to high current 

density 3  and is generally undesirable in an accelerator ion source. 
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