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Community ecology and paleoecology are both concerned with the composition and structure of biotic assemblages but are largely
disconnected. Community ecology focuses on existing species assemblages and recently has begun to integrate history (phylogeny and
continental or intercontinental dispersal) to constrain community processes. This division has left a “missing middle”: Ecological and environ-
mental processes occurring on timescales from decades to millennia are not yet fully incorporated into community ecology. Quaternary
paleoecology has a wealth of data documenting ecological dynamics at these timescales, and both fields can benefit from greater interaction
and articulation. We discuss ecological insights revealed by Quaternary terrestrial records, suggest foundations for bridging between the
disciplines, and identify topics where the disciplines can engage to mutual benefit.

community ecology | Quaternary paleoecology | climate change

Community ecology and Quaternary paleo-
ecology are both concerned with the compo-
sition and structure of biotic assemblages,
including patterns of spatial variation and
dynamics in changing environments. Com-
munity ecology focuses on the here and now
of existing species assemblages, emphasizing
mechanistic understanding of local species
interactions and their consequences. Quater-
nary paleoecology uses geohistorical evidence
(1) to infer properties of past communities
and how they have changed, at local to re-
gional scales, during the past few thousand
to the past 2.6 million years. Both fields are
under increasing demand to inform scientists,
resource managers, and policymakers of what
might be in store for biodiversity and ecosys-
tems services under ongoing and future
global change (2–5). Despite their shared
concerns, however, community ecology and
Quaternary paleoecology are fundamentally
disconnected, with relatively little engagement.
Community ecology arose from popula-

tion biology and natural history and has
concentrated on local mechanisms, usually
biotic, to explain such properties of local
assemblages as diversity, dominance, and
composition (6–8). Community ecology is
rich in underlying theory and concept and
in local empirical detail. Recent critiques have
questioned whether local processes are suffi-
cient to explain community properties and
even whether the ecological community is
a realistic construct in a dynamic world (2,
9–11). These issues remain controversial (12),

but consensus is emerging that community
properties cannot be understood without bio-
geographical and historical context (13, 14).
Repeated appeals have been made to in-

tegrate history into community ecology (10,
11, 15, 16). In community ecology, history often
is treated as comprising only phylogeny and
continental or intercontinental dispersal (8, 10,
11, 14, 17)—processes that aremanifestmainly
at timespans of 106–107 years. For example, in
a recent discussion of processes influencing
species distributions within a region, the pri-
mary example of historical processes was evo-
lutionary diversification (11). Contemporary
theory and concepts in community ecology
are thus largely bimodal: The real-time pro-
cesses of local communities set in the context
of a regional species pool and the deep-time
processes by which continental or subconti-
nental floras and faunas are envisioned to de-
velop. Largely missing are the ecological and
environmentaldynamicsof intermediate time-
scales, ranging from the past few centuries to
the past million years. These dynamics shape
ecological communities no less profoundly
than real-time and deep-time processes.
Quaternary paleoecology focuses on eco-

logical change at these intermediate time-
scales and in recent decades has emphasized
climate change as the primary locus of
explanation for ecological change (18–23).
Compared with community ecology, paleo-
ecology is somewhat depauperate in theory
and concept and is often deficient in spa-
tial, temporal, and taxonomic precision. The

dearth of explicit explanatory theory is re-
lated to paleoecology’s strong empirical and
inductive traditions, which derive in part
from its roots in historical geology and pa-
leontology (24). Shortcomings in precision
derive largely from the nature of the science;
whereas real-time ecologists have the luxury
of observing and measuring in whatever de-
tail is permitted by time and resources, pa-
leoecological observations are restricted to
whatever material evidence has been left in
sediments, tree-rings, rodent middens, or
other geohistorical archives (1, 24, 25). Pale-
oecologists can exercise some control over
precision (via site selection, sampling den-
sity, type of fossil) but eventually run up
against hard limits to detail (24–26). Despite
its limitations, paleoecology offers some-
thing lacking in community ecology: records
of species assemblages spanning many gen-
erations, embedded in patterns of regional
colonization and extirpation, against a back-
drop of environmental changes diverse in
rate, duration, and nature.
Both community ecology and Quaternary

paleoecology can benefit from greater en-
gagement. Community ecology offers pro-
cesses and theory that can be applied to
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understanding patterns in the Quaternary
record. Paleoecology offers temporal context,
filling the “missing middle” between the real-
time concerns of community ecology and the
deep-time patterns of phylogeny and bio-
geography (Fig. 1). Community ecology is
grounded in natural history, which generates
the fundamental observations, patterns, and
questions to be explained by theory and
tested by experiment or further observa-
tion (17). In this context, paleoecology
can be viewed as a temporal extension of

natural history; by extending the observa-
tional foundation of community ecology, it
reveals fundamental patterns and dynamics
to which ecologists are otherwise blind. Fur-
thermore, Quaternary records provide a test-
ing ground for theory and pattern in
community ecology. Bridging between ecol-
ogy and paleoecology can extend ecological
theory and understanding to longer time-
scales, identify where existing theory needs
to be modified or replaced to accommodate
longer-term dynamics, and provide frame-
works for understanding the complex eco-
logical dynamics underlying paleoecological
records. In this paper we provide an over-
view of what Quaternary terrestrial records
reveal about environmental and community
changes, suggest some foundations for bridg-
ing between community ecology and Quater-
nary paleoecology, and identify topics where
the two fields can engage to mutual benefit.
Our review is necessarily selective; in par-
ticular, we do not discuss paleoecology’s
perspectives on the classic Clements/Gleason
community-structure controversies, which
are amply reviewed elsewhere (19, 22, 27–30).

Ecology and Time’s Environmental
Texture
Much of ecological concept and theory has
considered time as a simple, uniform di-
mension, wherein ecological processes unfold
against a constant environmental backdrop.
Time is treated as an independent variable,
and ecological properties change as time-
dependent ecological processes run their
course. A classic example is the exponential
model of population growth, together with its
many derivative models incorporating re-
source competition, predation, multiple spe-
cies, age structure, time lags, and other fea-
tures. The environment itself may change,
but only as a consequence of the ecological
processes themselves (e.g., consumption of
resources; autogenic successional processes
such as soil development or lake infilling) or
as a stochastic variable, fluctuating randomly
about a constant mean. Long-term environ-
mental change has long been acknowledged
by ecologists, but only recently have envi-
ronmental change and nonstationary vari-
ability been explicitly incorporated into
ecological models, usually as discrete pertur-
bations or at relatively short time intervals
(seasons to decades) (31–34).
Time is richly textured by environmental

change and variability. Paleoclimate records
indicate a broad and apparently continuous
spectrum of climate variability and change,
from the years and decades experienced by
individual organisms and populations to
the tens of millions of years experienced

by higher-order clades and biogeographic
provinces. These climatic changes, their
causes, and their ecological and evolutionary
implications are reviewed and summarized
elsewhere (19, 35–39).
We note here a few important features of

Quaternary climate variability and change.
First, climate variability is rarely, if ever, sta-
tionary in nature. Climate means evolve
through time, as do variances, extremes, and
modalities. For example, moisture records of
the past two millennia from tree-rings and
other sources indicate that there is no “nor-
mal” climate, revealing instead a continually
evolving array of wet periods, dry periods,
and intermediate periods, varying in du-
ration, magnitude, frequency, and sequence
(see figure 1 in ref. 35). Similar patterns
of nonstationary variation in interannual to
centennial variability are probably charac-
teristic of the past million years (36, 40),
although the details vary in space and time.
Second, although some climatic phenom-

ena exhibit cyclic or quasicyclic behavior,
environmental conditions do not necessarily
repeat themselves. For example, individual El
Niño events of the past century have differed
substantially in magnitude, spatial extent, and
duration (41, 42). Similarly, each of the six
most recent interglacial periods has had a
unique duration and spatial and temporal
climatic patterns (43). Third, climate change
often involves changing climatic realizations,
whereby combinations of seasonal tempera-
ture, seasonal precipitation, and other factors
change (19, 44, 45). Fourth, climate change
can be gradual and directional, but it is often
punctuated by episodic events and by rapid
state transitions (40, 46, 47).
To summarize, no modal or normal climate

state exists for the Quaternary. Climate has
varied widely and changed both gradually and
rapidly, across the planet. Changes have oc-
curred at all timescales, from 100 to 106 years,
although the nature, magnitude, and rate of
change differ among scales and at different
times. Changes have occurred in all parts of
the globe, although the nature, magnitudes,
and rates have differed among regions and
locales. The changes have involved virtually all
ecologically relevant manifestations of tem-
perature and moisture, including means, ex-
tremes, variance, seasonal patterns, and per-
sistence. The rich, complex, multiscale texture
of the environment through time has had and
will continue to have important consequences
for individuals, populations, communities,
and regional species pools.

Communities Come, Communities Go
In a recent review, Ricklefs (11) noted that
an ecological community comprises a single
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Fig. 1. The ecological community in space and time.
Local communities aggregate (A) into spatial mosaics of
communities, which in turn aggregate to form regional
and then (sub)continental species pools. Each level con-
strains (C) processes occurring at finer spatial and tem-
poral scales. For example, a spatial mosaic of communities
in a region is determined by the composition, size, and
spatial array of its individual elements (communities) and
in turn constrains those elements by influencing propa-
gule sources and dispersal, connectivity, adjacency, prox-
imity, and other properties that influence community
composition and dynamics. Similarly, a regional species
pool is determined by composition of its various constit-
uent communities and mosaics, aggregating the respon-
ses of countless individuals and populations to their
physical environment and to each other. At the same time,
the regional species pool constrains membership in re-
gional mosaics and local communities and is subject to the
constraints of the (sub)continental species pool, which is
subject to phylogenetic and biogeographic processes
operating across vast areas and large sweeps of time.
Each level has a finite spatial extent and temporal dura-
tion. Filled rectangles indicate the most common or modal
extent and duration of terrestrial communities, and
dashed lines indicate the extremes. Climate influences
each level, and climate change is a primary determinant of
the composition of communities, spatial mosaics, and
(sub)continental species pools. For example, paleoeco-
logical evidence indicates that terrestrial plant, vertebrate,
and insect communities rarely persist without composi-
tional change for more than a few thousand years (23, 48,
56, 57, 64). Regional species pools undergo change as
species migrate, abandoning newly unsuitable habitats
and colonizing newly favorable territory (18, 22, 50). Cli-
mate exerts influence at all levels, both directly and in-
directly via aggregation of influences from below and
constraint by influences from above.
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place that happens to be occupied by an as-
semblage of species with overlapping dis-
tributions and environmental tolerances. He
further argued that the community concept
be “replaced by the spatial distributions of
populations, which now become the primary
focus for understanding biodiversity pat-
terns” (p. 744 in ref. 11). Paleoecological
records support a parallel conception in-
volving time. An ecological community can
be viewed as a single point in a spatial
framework of species distributions super-
imposed on environmental gradients and
patchworks and in a temporal framework of
population and biogeographic responses to
environmental change and variability. The
space and time dimensions cannot be treated
separately; spatial distributions evolve through
time and are often contingent on temporal
processes. Conversely, the temporal patterns
of occurrence and abundance at an individual
site are contingent on spatial distributions,
patterns, and processes. Understanding of
community properties is inevitably in-
complete in the absence of both spatial and
temporal context (Fig. 1).
The changing composition of forest com-

munities at a single locale during the past
8,600 y is shown in Fig. 2. All the major and
most of the minor upland forest species
in the surrounding region (Central Upper
Michigan) are represented in the Tower Lake
record (48). Surrounding forests now are
dominated by Fagus grandifolia, Tsuga can-
adensis, Acer saccharum, and Betula alleghe-
niensis, with scattered Pinus strobus. This
combination of species has existed at the
site for the past 1,400 y, starting with the

colonization and expansion of Fagus, which
expanded eastward in the region during the
past 3,000 y (49). Thus, the forest community
at Tower Lake has existed for no more than
1,400 y, and it arose from an interaction
between local ecological processes (dispersal,
demography, competition) and regional bio-
geographic processes (range expansion) (18,
50). Those regional processes depended in
turn on local ecological processes at countless
other individual sites, were driven by regional
climatic changes spanning centuries or more
(18, 20, 51), and may have been modulated
by annual- to centennial-scale climate vari-
ability (35, 48).
Not only has the modern forest commu-

nity at Tower Lake persisted for only a short
time, no forest community persisted there for
longer than 1,500 y (Fig. 2). The 8,600-y se-
quence shows at least seven distinct forest
phases. Within each, forest composition
changed as decades and centuries passed,
usually in more subtle ways than the major
transitions (Fig. 2). The Tower Lake record
spans only a few millennia, but set in the
context of other records across the region (49,
52) and eastern North America (18, 50), it
illustrates how an ecological community is
one small, ephemeral point in a roiling, dy-
namic unfolding of environmental change,
distribution dynamics, and spatially aggre-
gated ecological processes.
These dynamics are not restricted to tem-

perate regions or to the postglacial period.
An 86,000-y pollen record of upland vege-
tation from Lake Petén-Itzá in the Gua-
temalan Neotropics shows many similar
features (Fig. 3). As at Tower Lake, the

community observed at any single point
in time is ephemeral, rarely persisting for
more than a few millennia before being
replaced by something new (53, 54). These
changes were also driven largely by climate
change, often accompanied by changes in
fire regime (53–55).
The examples of Tower Lake and Lake

Petén-Itzá are illustrative, not representative.
No single modal pattern can be identified for
the past 8,600 y, for the past 86,000 y, or for
any other interval. During the past millen-
nium, communities in different locales have
variously persisted unchanged, undergone
small shifts in species abundance, been col-
onized by new species, experienced pop-
ulation decline of dominants, lost incumbent
species to extirpation, or even undergone
nearly complete compositional turnover. Any
other millennium in the past 20,000 y, and
probably the past million years, would show
similar diversity of patterns. Nor are these
patterns restricted to plant communities.
Similar patterns are recorded for terrestrial
insects (56) and especially for vertebrates, for
which the extensive Quaternary mammal
record has recorded similar changes in spe-
cies abundances (23, 57, 58), range shifts (22,
59), extirpations and colonizations (23, 60),
and extinctions (61–63). Terrestrial commu-
nities are highly dynamic, and patterns vary
widely in space and time. Some communities
at some locales may persist over many mil-
lennia, but persistence for more than 10 mil-
lennia seems to be rare for the past 20,000 y
(64) and possibly for the entire Quaternary.
Communities are best understood not only as
local realizations of overlapping species ranges
and environmental gradients (11, 65) but also
as passing manifestations of ecological and
biogeographic processes in a world of cease-
less environmental change (19, 29).

What Governs Community Assembly
and Disassembly?
Determinants of community structure and
composition are a central focus of commu-
nity ecology and tend to align with one of
three modal concepts: interaction assembly,
environment assembly, or neutral assem-
bly (Fig. 4). Interaction assembly is deeply
rooted in community ecology and empha-
sizes the Eltonian niche (66, 67), considering
communities to be structured primarily by
strong interactions among species (8, 33).
Such interactions may include facilitation,
mutualism, and trophic relationships (pre-
dation, parasitism, herbivory), but resource
competition often is treated as first among
equals (68, 69). Interaction-based com-
munities have limited membership, gov-
erned by equilibrium population processes
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as determined by interspecific interactions
(7, 8, 68). In contrast, neutral assembly con-
siders communities to be structured entirely
by random processes, particularly dispersal,
recruitment, and mortality (70). Neutral
communities have virtually unlimited mem-
bership, are nonequilibrium, and bear his-
torical imprints; composition is influenced
by legacies of past demographic and dis-
persal events, and hence community prop-
erties may drift as the result of singular
events (70). Finally, communities under en-
vironment assembly are structured primarily
by species’ physiological and demographic
responses to the physical environment
(19, 33). The environment-assembly con-
cept is also niche-based but emphasizes the
Grinnellian niche (6, 19, 67). It is predicated

on all species having finite environmental
requirements or tolerances, which impose
strong filters on community membership.
Community composition is governed by
whether potential members’ fundamental
(Grinnellian) niches overlap with the local
environmental realization. These three con-
cepts are not mutually exclusive, and some
efforts have been made to reconcile interac-
tion assembly and neutral assembly (71–73).
Environment assembly has received less at-
tention in community ecology than the other
two, although it underlies the recent explo-
sion of empirical models predicting species
distribution and abundance and community
composition under various climate-change
scenarios (74).
Paleoecological support for environment

assembly is very strong, resting on both
theoretical (19, 75) and empirical founda-
tions (e.g., 20, 76–80). Paleoecologists gener-
ally look first to environmental change,
particularly climate change, as a driver of the
kinds of dynamics shown in Figs. 2 and 3,
and they often look no further. They find
implicit justification in three decades of
broad-scale comparisons of paleoecological
records with paleoenvironmental records (20,
77, 79) and with paleoclimate simulations
from general circulation models (44, 51). By
itself, ecological drift would produce a mosaic
of community types independent of envi-
ronmental mosaics. However, the temporal
pattern at Tower Lake (Fig. 2) is similar
to that at other sites across central Upper
Michigan and regions to the south and east.
The spatiotemporal coherence of faunal and
floral assemblages over broad regions (18, 77,
81, 82) suggests overarching controls, and
climate has no compelling competitor to ex-
plain regional coherence.

Although environment assembly seems
necessary to explain the dynamics observed in
paleoecological data, is it sufficient? Species
and populations are not billiard balls knocked
around the landscape by changing climate;
climate change drives community change
via processes that involve individuals, pop-
ulations, and communities. Ecological inter-
actions matter, and ultimately the changes
observed in paleoecological time series rep-
resent outcomes of interactions among pop-
ulations of different species, as influenced by
a changing environment (Fig. 4). Although
these interactions play out locally and often
briefly, even the broadest geographic patterns
are spatial aggregations of local interactions,
and all temporal changes, regardless of scale,
are ultimate outcomes of population pro-
cesses and interactions. Paleoecological dy-
namics (Figs. 2 and 3) cannot be understood
fully without considering population pro-
cesses and species interactions.
Neutral assembly is formally embodied in

a theoretical framework that assumes that
niche properties are irrelevant to community
structure and composition, which derive en-
tirely from ecological drift (70). Drift pro-
cesses are effectively random with respect to
species niche properties (Eltonian or Grin-
nellian), yielding community realizations that
cannot be predicted from either prevailing
environment or species interactions. Eco-
logical drift has a distinguished history in
paleoecology; Davis (27, 28), for example,
argued that the composition of Holocene
forest communities was determined largely by
effectively random processes of seed dispersal
and proximity of glacial refugia. Although
this view has been largely superseded by en-
vironment assembly in recent years, attention
is being refocused on historical contingencies
(35), which represent neutral assembly pro-
cesses. Cross-scale interactions (83) involving
climate variability and ecological responses at
different temporal scales lead to contingent
outcomes, with strong influences of historical
processes (mortality, disturbance, dispersal,
recruitment) (35). Those historical processes,
although they involve both Eltonian and
Grinnellian niche attributes, are effectively
neutral because the ecological outcomes
years, decades, or centuries later cannot
be predicted from niche properties and en-
vironment alone. Recent paleoecological
studies provide many examples (35, 84, 85).
The question of whether environment as-

sembly is necessary to explain paleoecological
records has been raised by a recent study that
simulated pollen sequences based on neutral
assumptions (86). The simulated profiles
share features with observed diagrams (e.g.,
Figs. 2 and 3): successive dominance of
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Fig. 4. Three primary loci of explanation for community
properties: species interaction, environmental forcing,
and neutral processes that cause ecological drift. Pro-
cesses interact among these domains. Environmental
change (e.g., climate change) can be a primary driver of
changes in community properties, both directly (organis-
mal and demographic responses) and indirectly (by altering
interactions among species and setting neutral processes
in motion). Climate change and variability continually
perturb and redirect processes within all three loci to
reshape community properties.
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different species, changing combinations
of species, and turnover in species com-
position and abundance. The study pro-
vides a cautionary lesson, demonstrating
how temporal structure can arise in the
absence of a coherent structuring mecha-
nism, and showing that environmental
forcing need not be taken for granted. The
Petén-Itzá pollen sequence (Fig. 3) has been
used in an explicit test of whether vegeta-
tional changes are attributable to ecological
drift or environmental change (55). That
study goes beyond simple comparison to
incorporate an explicit alternative hypoth-
esis (neutral assembly) but concludes that
environmental change explains most of the
observed patterns. Similarly, McGill et al.
(81) found that mammal assemblages were
more coherent across space and time than
predicted by neutral assembly, although
patterns were not specifically attributed to
environment or interaction assembly.
Just as neutral processes interact with en-

vironmental change (35), so too do species
interactions (Fig. 4). A modest change in
temperature or moisture may shift the com-
petitive balance in favor of one species,
leading to an increase in that species at the
expense of others. Climate change may ren-
der circumstances more or less favorable for
consumers, leading to changes in host or prey
populations or to altered interactions be-
tween plants, herbivores, and climate (33,
87). Effects may be profound, with environ-
ment assembly contingent on species inter-
actions as well as the reverse (88). For
example, the late-glacial megaherbivore de-
cline may have been a proximal driver of
vegetation changes that ultimately were a
response to climatic changes that occurred
centuries or more before (89).
In the final analysis, asking whether

communities are structured by interaction,
neutral, or environment assembly processes
is futile; communities are subject to diverse,
interacting influences (90), and explanation
may be more a matter of causal “thickets”
than “chains” (91). Environmental change
is a powerful driver of community change
and should be incorporated more explicitly
into community ecology (33). Species in-
teractions govern the community out-
comes of environmental change, often in
subtle ways, and should be considered more
explicitly in paleoecological explanation. In-
teractions of neutral processes with envi-
ronmental change and species interactions
introduce indeterminacies as well as his-
torical legacies that may persist as local
or even regional anachronisms. Paleoeco-
logical studies, informed by community

ecology, can reveal the short- and long-term
consequences of these interactions.

Spanning the Missing Middle
The missing middle of Quaternary ecolog-
ical history provides abundant opportunity
for collaboration between paleoecologists
and community ecologists. Success will re-
quire mutual understanding and engage-
ment. Paleoecologists must understand the
ecological questions to which their data are
applied, and ecologists must understand
the nature of paleoecological data and in-
ference. To avoid mismatches between data
and applications, careful attention must be
paid to scale and taphonomy (24–26, 48).
We identify a nonexhaustive set of themes,
topics, and questions upon which collabo-
rations might be centered.

Community Assembly and Disassembly.
Paleoecological records show not only that
communities come and go but also that
community turnover occurs in many forms
and at many rates. Some communities arise
quickly, whereas others develop in slow
transitions (Figs. 2 and 3). Conversely some
communities disassemble gradually via de-
cline and replacement of dominants, but
others appear to undergo rapid collapse (Figs.
2 and 3). These and other records provide
diverse case studies for understanding the
various roles and interactions of environ-
mental forcing, intrinsic community prop-
erties (e.g., resilience, hysteresis, keystone
species), and ecological drift in community
transitions, whether gradual or abrupt. Spe-
cific critical transitions can be targeted for
intensive study, based on various criteria (e.g.,
knowledge of natural history of taxa, exis-
tence of independent paleoclimatic records,
precision of paleoecological records, avail-
ability of multiple paleoecological sites for
replication or pattern analysis, potential sig-
nificance of observed patterns). The rapid
increase or decline of a dominant species or
the disappearance of a community, for ex-
ample, is of obvious interest in conservation
context and may be driven by rapid envi-
ronmental change, cross-scale interactions, or
both (23, 84, 92). Intensive, integrated study
of a carefully selected array of paleoecological
case studies would test fundamental theory
and indicate the extent to which community
turnover follows general rules. In addition,
paleoecological data from individual sites or
site arrays can be analyzed to test specific
theoretical predictions concerning commu-
nity turnover (e.g., refs. 55, 81, and 93–95).

Trait-Based Community Patterns. Trait-
based assembly and inference have become

an important focus in community ecology
(96, 97). Traits and related functional groups
of species may govern whether and in what
order species can join communities (97), and
influence interactions of individuals with the
environment and with each other. Paleon-
tology has a rich tradition of connecting traits
with ecological and evolutionary processes
(98), and trait-based approaches to commu-
nity assembly are ripe for paleoecological
application (99). A critical challenge is to
determine which traits extractable from the
fossil record map directly or indirectly onto
niche properties (Grinnellian or Eltonian),
and how they are related to traits commonly
measured by modern ecologists. An emerg-
ing agenda in paleoecology is to track specific
traits through time with the goal of explicitly
connecting the past with the present (99,
100). Merging trait-based paleoecology with
community ecology can identify the stability
of trait relationships through time. Much like
temporal variation in species and communi-
ties, trait distributions within species are
likely to vary through time and with chang-
ing environments. Paleoecological trait
studies can assess conservatism of trait–
environment relationships and trait proper-
ties within taxa. Furthermore, they can help
identify the extent to which communities
may display functional stasis while un-
dergoing compositional turnover (60, 81).

Diversity Dynamics Through Time. A
growing body of work has demonstrated that
environmental variability affects species di-
versity on short time scales (33, 101, 102),
suggesting a species–time relationship (103)
as an analog to the species–area relationship.
However, key differences between spatial and
temporal processes imply that they may have
unique diversity-scaling relationships (103,
104). In addition, space and time constrain
one another, motivating theoretical formu-
lation and empirical testing of integrated
species–time–area relationships (103, 105).
White et al. (103) point to several fruitful
areas to promote this integration. However,
most of their case studies are modern,
encompassing climatic variation over a few
decades at most (e.g., refs. 101, 105), and their
single fossil example starts with an interval
length of >700,000 y (106). The missing
middle remains unfilled. Brown et al. (102)
examined how environmental variability may
regulate diversity dynamics in several sys-
tems, including Holocene fossil pollen re-
cords at family resolution. They postulated
that although environmental change main-
tains diversity by influencing colonization
and extinction of different species, when
sufficiently large it could alter diversity
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by changing species-level carrying capacity
(102). These conjectures remain unexplored.

Ecological Rules in the Anthropocene.
Have ecological and evolutionary processes
changed fundamentally during the Anthro-
pocene (107)? Do anthropogenic activities
override past controls on community dy-
namics? Addressing these questions requires
accurate baselines to compare diversity
trends and patterns, and the Quaternary
provides critical linkages between deep time
and the Anthropocene. For example, mam-
malian biodiversity patterns throughout the
past 30 million years suggest that the Holo-
cene is different from all time periods that
came before (63), implying human impacts
well before the Industrial Revolution. In some
settings, beta diversity and functional di-
versity appear to have remained relatively
stable despite compositional changes, pro-
viding context to evaluate whether ongoing
processes override those of the past few
million of years (108–110). Beyond issues
of the Anthropocene, there are legitimate
questions concerning whether the Quater-
nary itself is unique and whether ecological
rules evolve with the global environmental
setting (19, 111, 112). Existing paleoecological
records provide an untapped source for in-
vestigation of diversity dynamics in diverse
systems and at different timespans (113, 114).

Dynamics of Regional Species Pools.
Community ecologists are focusing atten-
tion on the biogeographic and phylogenetic
contexts of species pools (e.g., refs. 115–117)
and their implications for community prop-
erties (e.g., ref. 118). These studies tend to
treat the regional species pool as static, sub-
ject to the same processes as (sub)continental
pools (Fig. 1). Regional species pools, how-
ever, are subject to at least partial turnover
over hundreds to thousands of years (refs.
18, 19, and 22, but see ref. 82) and are
predicted to change rapidly under global
change because of both extinction and range
shifts (119, 120). Implications of species-
pool dynamics are being explored from
biogeographical and macroecological
perspectives (82, 121), but the conse-
quences for community assembly and struc-
ture represent open territory for collabo-
ration between community ecologists and
paleoecologists.

Clocking Time-Dependent Processes.
Many ecological processes are time-depen-
dent, and paleoecological studies indicate
that similar plant communities are estab-
lished at different times in different places
(64). Comparative studies of secondary

communities (mycorrhizae, invertebrates,
vertebrates), using antiquity of the plant
community as an independent variable, can
provide insights into processes of commu-
nity development and evolution (122). Age
may be one among many differences among
sites, but other properties (e.g., physical
environment, climate history, genetics)
can be controlled in study design. Time-
dependent processes may be sufficiently
large to override other effects, many of which
can be assessed directly from paleoecological
and paleoenvironmental studies. For exam-
ple, ancient DNA may provide information
on local genetic changes (123, 124).

Meeting Cowles’ Challenge
More than a century ago Henry Chandler
Cowles identified the central challenge of
ecological dynamics, observing that vegeta-
tional response to the environment was “a
variable approaching a variable rather than
a constant” (125). The challenge has only
grown since Cowles’ time: Ecological dy-
namics comprise a multitude of variables,
with different response times, changing at
different rates, and often interacting in subtle
ways. The environment, too, is far more
dynamic than envisioned even a decade

ago, with nested climatic changes interacting
across a range of temporal and spatial scales.
Community ecology offers tools and theory
to help understand ecological change; paleo-
ecology offers diverse data and observations
of actual ecological change. By working to-
gether, these disciplines can advance under-
standing of ecological dynamics in changing
environments.
We live in a time of rapid environmental

change and associated societal challenges.
Novel communities and ecosystems are al-
ready widespread (126) and will only increase
with global change in coming decades.
Communities of the future will represent
contingent outcomes of the complex dy-
namics of environmental change, species
interactions, and ecological drift. Integrating
the mechanisms of community ecology with
the empirical richness of paleoecology will
not only advance the science of ecology but
will also increase its capacity to contribute
to climate-change adaptation and minimize
risks to biodiversity and ecological services.
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