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Uncover the Rhythmic and Arrhythmic Dynamics in Complex Systems

Abstract

In this dissertation, I computationally analyze the dynamic pattern for time series belonging to

two distinct settings: rhythmic and arrhythmic, and resolving a Machine Learning topic: Multiclass

Classification (MCC). The primary study of arrhythmic signals is carried out via change-point anal-

ysis on dynamics of various complex systems, while the study of rhythmic patterns is focused on

gait dynamics. For arrhythmic time series with unknown and unspecified non-stationarity, an ap-

proach is proposed to partition the whole time span into homogeneous periods where the underlying

distribution is identical. In contrast, for the rhythmic time series, the goal is to detect all rhythmic

cycles precisely. Although an encoding-and-decoding technique is implemented from local to global,

the methodologies and the information content under the two settings are rather different. Under

the arrhythmic setting, the number and temporal locations of all identified change points are the

primary parts of information. Especially, a group of time points is marked as events of interest for

characterizing segments in high and low intensity. The number of change-points is determined by

information criteria based on maximum likelihood functions derived based on Geometric distribu-

tions of recursive time between two successive events. While under the rhythmic setting, structural

components constitute a rhythm, so the cyclic structures and rhythmic patterns are the major parts

of information. The rhythmic time series is discretized by a set of symbols, and the deterministic

pattern is embraced so that the symbolic trajectory is in low Kolmogorov or Lempel-Ziv complexity.

So far, the homogeneous segments or rhythmic cycles are detected without explicit labeling. For

the completeness of the study, geometric structure of structured data with labels is investigated as

a basis of facilitating error-free classification with potential multiple candidate labels.
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CHAPTER 1

Introduction

It has been claimed by John Tukey early in 1962 that data analysis is “... procedures for

analyzing data, techniques for interpreting the results of such procedures, ways of planning the

gathering of data to make its analysis easier, more precise and more accurate, and all the machinery

and results of statistics which apply to analyzing data”. Nowadays, with the rapid increase in the

amount of information, real-world data analysis has been unprecedentedly challenged by either the

amount and the complexity of the data resources. Major issues of data analysis are still remained

and needed to be resolved accordingly.

The signals coming from the real world often have very complex dynamics. In psychology, audi-

tory stimuli of different intensities provide the dynamics of electroencephalographic(EEG) activity

differing from typical development and autism spectrum development. In finance, the volatility of

the price of a single stock would transit the uncertainty of risk to other associated stocks. In the

musculoskeletal analysis of gait, dynamic pattern of movement is reflected by wearable sensors mea-

suring accelerator and gyroscope from different joints. One undergoing challenge is then to manage

information and understand the underlying dynamics from a complex system.

A complex system consists of a set of possible states which determine how the system changes.

Especially, the analysis of deterministic and stochastic patterns is a basic topic in nonlinear dy-

namic fields. As a tool for analyzing dynamical systems, symbolic dynamics was studied by [87] in

partitioning the space into finite phases and encoding a trajectory with a discrete alphabet. The

encoding procedure which is designed to reduce redundancy and extracting features is now a basis

of various information processing and a key to understanding properties of the dynamical system.

However, it is unresolved to define a good encoding in real data application [46], and more im-

portantly, to reveal the dynamic signals based on the symbolic trajectories. If it is mysterious to

discover the rule that generates the real data, can we extract the underlying information and at

least understand the complex system better?
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In this dissertation, I aim to propose data-driven signal processing approaches to investigate

symbolic dynamics and heterogeneity property of data systems from different fields of complex sys-

tems. The dynamic pattern can be basically divided into two settings- arrhythmic and rhythmic.

Following the concepts of symbolic dynamics, I analyzed both types of dynamics by encoding the

time series from local parts of the system into a symbolic trajectory and then decoding or summa-

rizing the information globally. It is noted that the encoded trajectory is able to filter out irrelevant

or noisy signals and present the information simply and concisely. In the decoding phase, the de-

terministic structures are extracted such as the cutpoints between two consecutive time segments

and the transition probability between symbols within each segment. The motivation of applying

the algorithm from locally to globally is based on the integration property of complex systems.

Specifically, the components of a system interact with each other and form collective behaviors.

The idea of dividing-and-concurring or from-local-to-global exactly reflects the escalation process

of understanding a system- from the simple to the complex.

Though similar procedures are employed under arrhythmic and rhythmic settings, the infor-

mation is extracted and collected differently. For arrhythmic signals, the number and locations

of change points play a crucial role in revealing the abrupt distributional changes. The idea is

then refined as a generalized methodology for change point analysis. By iteratively subsampling

a group of data points and aggregating the change point locations for each binary process, the

proposed approach is able to detect distributional changes without prior knowledge of the underly-

ing distributions. While, for rhythmic signals, the recurrent pattern of gait time series implicates

the deterministic behavior. Especially, there exists a particular landmark by which the gait time

span can be sectioned into rhythmic cycles although the duration of each cycle evolves over time

stochastically. It claims that this aspect of difference between these two settings critically relies on

whether structural components exist and further constitute a rhythm.

Motivation on Stock Dynamics and Network Analysis. Since the major financial crisis

in the last century, a huge amount of attention from researchers or scientists has been received

to work on financial markets in order to avoid such risks in the future. As a complex system of

finance, it has not been well understood so far that how stocks are interacting with each other

and transit volatility into the whole market. Volatility of financial stock is referring to the degree
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of uncertainty or risk embedded within a stock’s dynamics. The study of volatility is essential to

model the dynamic in stock or a financial market. A nonparametric regime-switching model is firstly

proposed to study the stochastic volatility for a single stock and then a network is established to

illustrate which stocks stimulate or even promote volatility on others. The regime-switching model

was advocated by [48, 52] to incorporate stochastic volatility into stock price modeling, such as

the Hidden Markov Model (HMM) [95]. Specifically, the distributional changes between different

volatility regimes are determined under the assumption of Markov Chain. However, these models

usually required too many parameters or a strong assumption of the underlying dynamic structure,

which makes it hard to interpret the analysis result. In contrast, my nonparametric approach is able

to detect distributional changes between low and high volatility without assuming any underlying

distribution or Markovian property. After that, the causality between two stocks is measured based

on the recovered dynamic trajectories. Finally, networks dealing with distinct financial implications

are established to represent different aspects of global connectivity among all stocks in S&P500.

Motivation on Multivariate Financial Analysis. The volatility modeling for a single stock

is extended to multivariate settings. My motivation is because there are multiple assets highly

associated and their nonlinear dependence is necessary to be captured. For instance, transaction

volume had been increasingly used as a cause of stock return volatility. Thus, it is a barrier to study

the stock price without taking into account the trading number and volume. Moreover, the pair-wise

dependence in the S&P500 network is measured based on the recovered dynamics of every single

process, so the nonlinear dependence can be easily overwhelmed by the integrated microstructure

noises. In this chapter, a nonparametric approach is proposed to dissect multivariate time series in

order to discover multiple dynamics phases when the joint distribution varies. It shows that this

expanded approach can successfully not only map out volatile periods but also provide potential

associative links between stocks.

Motivation on Change Point Analysis. Under the direction of regime-switching model,

the research problem is then generalized to change point analysis. The goal is to estimate the

number of change points and their locations so long as the consecutive distributions are different.

Change points as temporal locations of such occurrences and their multiplicity are key parts of
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deterministic structures of the time series under study. The task of change point detection is

more general since it does not restrict the number of hidden states. So far, it has been playing

a crucial role in diverse fields including bioinformatics, behavioral science, neuroimage, climate

science, finance, and speech recognition. In this chapter, a nonparametric approach is proposed to

detect the abrupt changes of joint distribution without imposing prior distributional knowledge. A

structural subsampling procedure is firstly developed such that the observations are encoded into

multiple sequences of Bernoulli variables. So, the maximum likelihood approach can be applied to

detect change points on each Bernoulli process separately. Then, aggregation statistics are proposed

to collect change-point results from all individual univariate time series. The theoretical work shows

that the proposed statistic is favorable in terms of controlling false change-point discovery and holds

consistency property as the sample size goes into infinity.

Motivation on Gait Analysis. As an application for rhythmic signals, the idea of from-

local-to-global is extended to unravel the systematic dynamics in gait analysis. The local movement

trajectories from an apart of skeleton or joint are first discovered and then aggregated to reconstruct

a global system for an individual’s gait dynamic. It is known that rhythmic biomechanics and the

dependency between different joints form the primary deterministic structures. One of the scientific

goals is to detect the early-stage illness or disorder condition for the clinical trial. For example,

an imbalanced correspondence between left and right food may reflect some potential diseases like

Alzheimer’s. The rhythmic cycle is firstly discovered by encoding the gait time series from one

joint separately. Then, the joint-to-joint dependency is visualized by stacking the resulted code

sequences. Specifically, the encoding procedure is designed to represent the rhythmic pattern in a

low Kolmogorov’s complexity, and the visualization implies evident deterministic structure within

each rhythmic cycle. Another scientific goal of gait analysis is identification. The goal is to recognize

one’s walking style as a signature of gait. Since such a signature is hard to be faked, it can be used to

strengthen security inspection in the future as an alternative to facial or finger recognition. Another

encoding scheme is proposed to symbolize the gait time series. The most frequent symbols are then

extracted as the key information for gait identification. It shows that the selected symbols work as

a gait signature that can be used to perfectly separate one individual from others.
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Motivation on Multiclass Classification. Nowadays, Machine Learning grew out of the field

of artificial intelligence and has gained a stronghold in data analysis. Given that human experts

hardly make mistakes in classification or categorization, the machine is still impossible to compete

with human intelligence until very recently. It motivates us to consider why such mistakes and

how to decrease the risk of decision-making. I demonstrate that possible answers under Multiclass

Classification (MCC) setting. MCC is defined by a collection of labeled point clouds specified by a

feature set. The group of features is chosen to capture certain system characters or to reflect certain

existing experiences or knowledge pertaining to the system. However, the expert-made labeling

may contain certain information that the machine is unable to learn. For example, the distinction

between the labels and the presence of heterogeneity within a label group. In this chapter, I aim

to construct a label-embedding tree to illustrate the labeling geometry. Such tree geometry in turn

sheds light on explainable knowledge on why and how labeling comes about and facilitates error-free

prediction with potential multi-scale candidate labels supported by the data.

Organization. The dissertation consists of five chapters which are organized as follows. In

Chapter 2, an encoding-and-decoding procedure is present to reveal the volatility dynamics of every

single stock of S&P500. After that, stock networks dealing with distinct financial implications are

established to represent different aspects of global connectivity among all stocks in S&P500. The

encoding approach is then generalized to multivariate stock settings in Chapter 3. I analyze the

relationship from returns, trading volume, and transaction number of a single, as well as of multiple

stocks. In Chapter 4, the approach is employed under the setting of change point detection, and

theoretical work is shown accordingly. In Chapter 5, I studied the deterministic and stochastic

pattern embedded in the gait system, and resolve two questions specifically- how to precisely differ-

entiate gait signatures of many individuals, and how to represent an individual’s gait dynamics for

authentication. In Chapter 6, the data-driven intelligence is applied by demonstrating coarse- and

fine-scale geometric information content of MCC in Major League Baseball(MLB). A conclusion

and some future research topics related to this dissertation are organized in the last chapter.
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CHAPTER 2

From Single Stock Volatility to Networks in S&P500

2.1. Introduction

To discover the mystery of the stock dynamics, financial researchers focus on stock returns or

log returns. Black and Scholes [19] proposed in their seminal work to use stochastic processes in

modeling stock prices. One particular model of focus is the geometric Brownian motion (GBM),

which assumes all log-returns being normally distributed. That is, if a time series of the price of a

stock is denoted as {Pt}t, the GBM modeling structure prescribes that

log
Pt
Pt−1

∼ N(µ, σ2)

Later Merton [85] extended Black and Scholes’ model by involving time-dependent parameters

for accommodating potential serial correlations. Further, in order to go beyond normal distri-

bution, models belonging to a broader category, including a general Levy process or particular

geometric Levy process model [38], become popular and appropriate alternatives by embracing sta-

ble distribution with heavy tails. Since the independent increments property of Brownian motion

or Levy process, returns over disjoint equal-length time intervals remain identically independently

distributed (i.i.d). So, the independent increment property restricts modeling stochasticity to be

invariant across the entire time span. However, it is well known that the distributions of returns are

completely different over various volatility stages. Thus, these models are prone to fail in capturing

extreme price movements [52].

Research attempts from various perspectives have experimented to make stock price model-

ings more realistic. One fruitful perspective is to incorporate stochastic volatility into stock price

modeling. From this perspective, regime-switching or hidden-state models are proposed to govern

the stock price dynamics. The regime-switching model can be represented by the distributional
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changes between a low-volatility regime and a more unstable high-volatility regime. In particu-

lar, different regimes are characterized by distinct sets of distributional modeling structures. One

concrete example of such modeling is the Hidden Markov Model(HMM). HMM appeals increas-

ingly to researchers due to its mathematical tractability under the assumption of Markovian. Its

parametric approach has gained popularity and its parameter estimation procedures have been dis-

cussed comprehensively. For instance, Hamilton [48] described autoregressive (AR) models under

Markov regime-switching structure. Hardy [52] offered Markov regime-switching lognormal model

by assuming different normal distribution within each state,

log
Pt
Pt−1

|s ∼ N(µs, σ
2
s)

where s indicates the hidden states for s = 1, 2, .... Fine et al. [41] developed hierarchical HMM

by putting additional sources of dependency in the model. So, every state is composed of substates

with multiple levels of dependencies. To further increasing the degree of modeling complexity in

stochastic volatility, another well-known financial model was related to volatility clustering [36].

For instance, GARCH models have been studied to model the time-varying conditional variance of

asset returns [20]. However, such a complicated dynamic structure usually involves a large number

of parameters. This modeling complexity renders the model hard to interpret. In contrast, nonpara-

metric approaches are still scarce in the literature due to the lack of tractability and involvement of

many unspecified characteristics [112].

In this chapter, we take up a standpoint right in between the purely parametric and nonpara-

metric modelings. We adopt the research platform of regime-switching models but aim to develop

an efficient nonparametric procedure to discover the dynamic volatility underlying any asset re-

turns. The idea is motivated by a nonparametric approach, named Hierarchical Factor Segmenta-

tion(HFS) [59,61], to mark extreme large returns as 1 and others 0, and then partition the resultant

0-1 Bernoulli sequence into alternating homogeneous segments. HFS takes advantage in transform-

ing the returns into a 0-1 process with time-varying Bernoulli parameters, so parametric approaches

such as likelihood-based function can be applied to fit each segment respectively. However, it is

unclear in HFS to define a “large” return that should be marked, which makes the implementation

7



limited in application. Another limitation of HFS is that there are only two kinds of regimes alter-

natingly evolving across the entire temporal span. This limitation is sharply contrasting with the

shared limitation of the regime-switching models or HMM, in which there is no data-driven way of

determining the number of underlying regimes or hidden states.

We propose an encoding-and-decoding approach to resolve the issues tied to the aforementioned

limitations simultaneously. The encoding procedure is done by iteratively marking the returns

at different thresholding quantile levels, so the time series can be transformed into multiple 0-1

processes. In the decoding phase, a searching algorithm in conjunction with model selection criteria

is developed to discover the dynamic pattern for each 0-1 process separately. Finally, the underlying

states are revealed by aggregating the decoding results via cluster analysis. It is remarked that the

nonparametric approach is able to discover both light-tail and heavy-tail distributional changes

without assuming any dynamic structure or Markovian properties. Though the proposed method is

favorable under independence or exchangeability conditions, our numerical experiments show that

the approach still works for settings with the presence of weak serial dependency, which can be

checked by testing the significance of lagged correlation in practice.

Another contribution is that a searching algorithm is developed to partition a 0-1 process into

segments with different probability parameters. Therefore, our computational development is a

change point analysis on a sequence of Bernoulli variables with the number of change points being

large and unknown. For such a setting and its like, the current searching algorithm is infeasible,

such as bisection procedures [91,118]. As an alternative to the hierarchical searching strategy, our

proposed search algorithm concurrently generates multiple segments with only a few parameters.

The optimal partition of homogeneous segments is ultimately obtained via model selection.

The chapter is constructed as follows. In Section 2.2, we introduce the asymptotic theory

for recurrent time distributions. In Section 2.3, we review the HFS and develop the new searching

algorithm that can handle multiple-states decoding. In Section 2.4, we present the main approach in

modeling distributional changes. In Section 2.5, real data analysis is performed and various networks

with nonlinear association are established to illustrate diverse aspects of relational patterns among

S&P500 stocks. A conclusion and remarks are given in Section 2.6.
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2.2. Recurrent Time Distribution

2.2.1. Homogeneous Time Series. Given a large data of stock price at an even interval of

time and its consequential calculated returns with length N , we can encode the continuous time

series into a 0-1 binary sequence of length N where 1 indicates an observation of a rare event,

and 0 otherwise. In such one-dimensional stock time series, the rare event is defined by extremely

large values of absolute stock returns, so that the binary sequence can represent the frequency of

return volatility. Note that a period with a high-frequent appearance of 1’s may indicate a volatility

clustering.

As advocated by the Black-Scholes model, stock’s return stochastic process is often modeled

by geometric Brownian motion, or more generally geometric Levy processes. The returns are i.i.d.

or exchangeable under the model assumptions. It motivates an invariance theorem for the waiting

time between successive extreme large returns. If we look at the time of observing a successive 1’s

under the assumption of exchangeable returns, it was proved that the waiting time is asymptotically

independent and its finite empirical distribution converges almost surely to a geometric distribution

[24].

Consider a N -length series of stock returns {Xt}Nt=1. Suppose M out of N objects are selected

randomly as 1’s, and the unseleted N −M as 0’s. Denote the recurrent time of two successive 1’s

as RN , so there obtained M + 1 recurrent time sequence RN1 , RN2 , ..., RNM+1. Assume the waiting

time can be 0 if two 1’s appear consecutively, RN1 = 0 if X1 = 1, and RNM+1 = 0 if XN = 1. Due to

the exchangeability assumption of {Xt}Nt=1, RN1 , RN2 , ..., RNM+1 are exchangeable as well.

Theorem 2.2.1. If N → ∞ and M → ∞ in a way such that M
N → p ∈ (0, 1), then, for any

t ≥ 1,

(2.1) (RN1 , R
N
2 , ..., R

N
t )

d−→ (R1, R2, ..., Rt)

where (R1, R2, ..., Rt) are independent and identically geometric distribution with parameter p.

The proof sees Theorem 2.1 in [24]. When N and M go to infinity in a way that M ∼ Np, the

recurrent time becomes asymptotically independent and converge to a geometric distribution with

parameter p = M/N .
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In one-dimensional stock returns, a fixed proportion from all the time points can be selected

as events of interest. For example, α and β quantile is set to cut the lower and upper tail of the

distribution, where 0 < α < 0.5 < β < 1 and α+ (1− β) < 1. So that all time stamp has the same

probability p = α+ (1− β) to be marked as 1. An excursion process is defined by,

(2.2) Et =


1 Xt ≤ α-quantile, Xt ≥ β-quantile

0 Otherwise

where {Et}t is the resultant 0-1 sequence after labeling absolute large return as 1 and 0 otherwise.

However, the exchangeability of successive returns is easily violated due to the well-known

stochastic volatility in finance. Returns should only be considered exchangeable locally, and rapid

time-varying volatility is evidently observed [23].

2.2.2. Mixed Geometric Distribution. Complicated models are investigated to evaluate

the mechanism of stock return. Markov property, more or less, plays a significant role in modeling

time-varying volatility. Instead, Hierarchical Factor Segmentation(HFS) is proposed to search for

alternating hidden regions without assuming any Markov property [59]. The idea is to admit

distributional heterogeneity embedded behind the distribution of stock returns. After encoding

the time series in the same way described above, HFS is implemented to label each time point

by an index of hidden regions. By assuming that the conditional distributions are exchangeable

within a hidden region, a corollary for heterogeneous time series is shown as a direct consequence

of Theorem 2.2.1.

Assume there are only k hidden regions, denoted by S1, S2, ..., Sk. Select a fix size of samplesM

from all the samples. Denote the sample selected from region Sj having size Mj , for j = 1, 2, ..., k.

So,
∑k

j=1Mj = M .

Corollary 2.2.1. If N → ∞ and M → ∞ in a way such that Mj

N → pj ∈ (0, 1), for j =

1, 2, ..., k, then, for any t ≥ 1,

(2.3) (RN1 , R
N
2 , ..., R

N
t |Sj)

d−→ (R1, R2, ..., Rt|Sj)
10



where (R1, R2, ..., Rt|Sj) are independent and identically geometric distribution with parameter pj

given hidden region Sj.

Moreover, by further assuming identicality of conditional distribution given a hidden region, i.e.

the cumulative distribution function denoted by Fj given region Sj , with an appropriate choice of

α and β advocated in (2.2), ratio Mj

N converges to a constant almost surely,

(2.4)
Mj

N
→ pj = (

∫ α-quantile

−∞
+

∫ ∞
β-quantile

)dFj

It is easy to generalize the thresholds to involve one-sided tale excursions, for instance, to set

α = 0 and β ∈ (0, 1) to focus on positive returns or upper tail excursions. If the thresholds are set

too extreme, then only fewer excursive returns can stand out. As a result, the excursion process

is too simple to preserve enough information about the volatility dynamics due to the reduction

of sample size. While, if the quantile value is set close to the median, then the dynamic pattern

is overwhelmed by irrelevant information or noise. There is an inevitable trade-off between the

magnitude of the sample size and the amount of information about excursive events. Our remedy

to this problem is to systematically apply a series of thresholds and encode the time series returns

into multiple binary (0-1) excursion processes. For the completeness of the analysis, we will discuss

a searching algorithm in conjunction with model selection criteria in the section below, which is the

key in the decoding phase.

2.3. Region Switching Model

2.3.1. The searching algorithm. Suppose a 0-1 excursion process has been obtained. In

this subsection, we discuss how to search for potential temporal segmentation. As the study in-

volving multiple change points, we aim to detect abrupt distributional changes from one segment

of low-volatility regime to another segment of high-volatility regime. To properly accommodate

a potentially large number of unknown change points due to the recursive emissions of volatility,

and to effectively differentiate the alternating volatility-switching patterns, the Hierarchical Factor

Segmentation(HFS) was employed to partition the excursion process into a sequence of high and low

event-intensity segments [59]. The original HFS assumes that there exist only two kinds of hidden
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states within the returns corresponding to low-volatility and high-volatility regimes. Though the

assumption is plausible within a short time period, its potential becomes limited when the time

series of returns is lengthy and embracing more complicated regime-specific distributions. In this

subsection, we expand the HFS by incorporating a more generalized searching algorithm to handle

the scenarios of multiple states.

Denote the entire 0-1 excursion process sequence as {Et}Nt=1. The recursive recurrent time

between two successive 1’s of {Et}Nt=1 is recorded into a sequence, denoted as {Rt}M
∗

t=1. It is noted

that the recurrent time can be 0 if two 1’s appear consecutively. As such, the length of {Rt}M
∗

t=1 is

M∗ = M+1 whereM is the number of 1’s in {Et}Nt=1. To make the notations consistent, we denote

{Eit}M
∗

t=1 as the i-th coding sequence for i = 1, 2, ... and its corresponding recurrent time sequence

as {Rit}M
i∗

t=1 for i = 1, 2, ..., respectively.

Suppose that the number of internal states is k and k > 1. Then, there are k tuning parameters

are required in the searching algorithm given below. Denote the first thresholding parameter vector

as T = (T1, T2, ..., Tk−1) where T1 < T2 < ... < Tk−1, and the second thresholding parameter as T ∗.

The algorithm is described in Algorithm 1.

Algorithm 1 multiple-states searching

1.Define events of interest and encode the time series of return into a 0-1 digital sequence {Et}Nt=1

with 1 indicating an event and 0 otherwise.

2.Calculate the recurrence time in {Et}Nt=1 and denote the resultant sequence as {Rt}M
∗

t=1.

3. For loop: cycle through i = 1, 2, ..., k − 1:

i. Transform {Rt}M
∗

t=1 into a new 0-1 digital strings {Eit}M
∗

t=1 via the second-level coding

scheme:

Eit =


1 Rt ≥ Ti

0 otherwise

ii. Upon code sequence {Eit}M
∗

t=1, take code digit 1 as another new event and recalculate the

event recurrence time sequence {Rit}M
i∗

t=1
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iii. If a recursive time Rit ≥ T ∗, then record its associated time segment in {Eit}M
∗

t=1, denoted

as Segi where Segi ⊂ {1, ..., n}.

4. The k internal states are returned by S1 = Seg1, S2 = Seg2\Seg1, ..., Sk−1 = Segk−1\Segk−2,

and Sk = {1, ..., N}\Segk−1.

A sequence of Gaussian distributed observations are generated with mean 0 and variance vary-

ing under different unknown states in Figure 2.1(A). A pair of thresholds α-quantile = −2 and

β-quantile = 2 are applied to code the observations via (2.2), so a sequence of recursive time is

obtained in Figure 2.1(B). The first-level parameter Ti are set to control the event-intensity that

we aim to partition for i = 1, ...,m − 1, see thresholds T1 and T2 in Figure 2.1(B). If Ti takes its

maximum Tk−1, then a high-intensity segment is separated from other level segments, see T2 in

Figure 2.1(B). Decreasing the value of Ti from Tk−1 to T1 to implement a series of partitions, so the

multiple intensity levels of phases can get separated. In this example, T1 is set to partition high-

and median-intensity from the low-intensity segment.

In the second level of recursive time calculation, {Rit}M
i∗

t=1 are calculated for i = 1, ..., k − 1. If

Rit is above the second-level threshold T ∗, the segment corresponds to a period with low-intensity

events. So, for a fixed Ti, T ∗ is set to decide which phases having relatively low intensity, so the

rests are in high intensity. It is noticed that Segj ⊂ Segi, for j > i. It is because if a recursive

time is greater than Tj , it is greater than Ti as well. So, by applying the same parameter T ∗, the

low-intensity segment Segj is wider than Segi. In Figure 2.1(B), for example, Segment2 is wider

than Segment1, so the median-intensity segment is obtained by Seg2\Seg1.

2.3.2. Model selection. Multiple volatility phases of time series Sj , j = 1, ..., k are computed

and achieved by applying the searching algorithm. Assuming join distribution is exchangeable within

each volatility phase, the recursive distribution {Rt}t∈Sj converges to a geometric distribution with

parameter pj as the sample size goes to infinity. Maximized Likelihood Estimation(MLE) and

Method of Moment(MOM) give the same estimator for pj ,
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T2

T1

Segment2

Segment1

Figure 2.1. Simple example to illustrate the implementation of Algorithm 1

(2.5) p̂j =
1∑

t∈Sj Rt

for j = 1, ..., k. The searching algorithm actually advocates a way to partition the process into seg-

ments with k different intensities. With enough sample size, geometric distributions are appropriate

to model the k phases with estimated parameter p̂j . Moreover, there are k parameters required, say

θ = T1, ..., Tk−1, and T ∗. To measure goodness-of-fit for a potential hidden state sequence, model

selection is done by fitting geometric distribution within each hidden region, while penalizing the

total number of switching regions as the model complexity. Information criteria AIC or BIC can be

utilized for this purpose. Parameter pj is estimated by MLE p̂j = Mj/N . So, the negative penalized

likelihood or loss function can be written as,

(2.6) Loss(θ) = −2
k∑
j=1

[
∑
t∈Sθj

Etlogp̂j +
∑
t∈Sθj

(1− Et)log(1− p̂j)] + φ(N)Qk

where Et is a 0-1 discrete process after applying binning strategy (2.2); k is the number of hidden

states; Qk is the total number parameters from k conditional geometric distributions; φ(N) is a

penalty coefficient. For instance, φ(N) = 2 corresponds to Akaike Information Criterion(AIC), and

φ(N) = log(N) corresponds to Bayesian Information criterion(BIC). In this paper, we consistently

use BIC in all the experiment. The optimal parameters θ∗ are tuned such that the loss can achieves

its minimum, so

14



(2.7) θ∗ = argmin
θ

Loss(θ)

Thus, the segments are ultimately achieved by applying θ∗. The computation cost is expensive if

all possible T1, ..., Tk−1 combinations are considered. In practice, a random grid-search strategy can

be applied.

A toy dataset is simulated to illustrate how the algorithm works. Independent Normal data

points are simulated with mean 0 but time-varying variance. σ = 1 when time t ∈ [1, 200]
⋃

[400, 600],

denoted as “state1”, and σ = 1.5 for the rest of time, denoted as “state0”. The purpose here is to

discover the underlying switching pattern of σ. The simulated time series is shown in Figure 2.2. A

pair of thresholds α and β is chosen as cutting lines to mark extremely large values (red dots). After

that, the limiting distribution of waiting time between successive extreme events is analyzed, and

segmentation is done via model selection with AIC. P-P plots in Figure 2.3 show a goodness-of-fit

for the waiting time variables in both regions. And the segmentation result (yellow line) can almost

perfectly capture the true dynamic pattern of σ.

Figure 2.2. Independently Normal distributed process with µ = 0 and σ = 1 or
1.5 varying over time. The vertical dashed line indicates the real change points; the
yellow solid line indicates estimated segmentation label; red dots indicate the events
of interest
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Figure 2.3. P-P plot for the geometric distribution with true parameter versus
empirical waiting time between successive events; (A) within “state0”; (B) within
“state1”

2.3.3. Simulation. Numerical experiments are done to demonstrate the model performance.

In the first case, data is generated according to Hidden Markov Model(HMM) with 2 hidden states.

The decoding error rate is calculated and compared for the proposed method and the Viterbi’s

path [117].

In the application of Viterbi’s, since the true transition probability and emission probability

are unknown in reality, EM algorithm in Baum–Welch type [13] is firstly implemented to estimate

the parameters. Generally, an initial condition is needed in implementing the EM algorithm. Here,

we assume that the true emission probability is known, but initialed with two kinds of transition

probability- one is the true transition probability denoted as Atrue and the other is a random initial

denoted as A0. For convenience, we set p11 = p22 in transition probability matrix Atrue, so Atrue is

controlled by only one parameter p12,

Atrue =

1− p12 p12

p12 1− p12


Random initial transition A0 are generated with all entry value 0.5,

A0 =

0.5 0.5

0.5 0.5


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Observations are simulated via different transition matrix Atrue and emission (p1, p2). The

experiments are repeated 100 times, and the mean and standard deviation of decoding error rates

are reported in Table1. It shows that the overall decoding errors are decreasing as p12 is lower,

and our method gets largely improved when p12 decreases to 0.005. It can be explained by the

fact that model selection criteria, like BIC, favors a “simple” model with fewer alternating segments

but with a longer length of each segment. In this settings, Viterbi’s in conjunction with the true

initial matrix performs better when p12 is moderate. However, the result becomes much worse if a

random initial is applied. It challenges the application of Viterbi’s or Baum–Welch’s to select an

appropriate initial. Instead, without assuming any prior knowledge, the proposed method is more

robust and competitive with Viterbi’s even under Markovian conditions.

Table 2.1. Decoding Error Rate

p1=0.2, p2=0.1 p1=0.1, p2=0.05
Viterbi(A0) Viterbi(Atrue) HFS Viterbi(A0) Viterbi(Atrue) HFS

p12=0.005 N=2000 0.4358 (0.050) 0.2378 (0.114) 0.2290 (0.093) 0.4550 (0.062) 0.3726 (0.110) 0.2689 (0.090)
N=5000 0.3940 (0.054) 0.1850 (0.051) 0.2809 (0.164) 0.4256 (0.076) 0.3169 (0.077) 0.3171 (0.097)

p12=0.01 N=2000 0.4405 (0.045) 0.2838 (0.069) 0.3376 (0.109) 0.4722 (0.044) 0.3569 (0.082) 0.3710 (0.089)
N=5000 0.4504 (0.042) 0.2890 (0.058) 0.3584 (0.048) 0.4889 (0.053) 0.4219 (0.076) 0.4064 (0.078)

p12=0.05 N=2000 0.4407 (0.031) 0.4526 (0.045) 0.4518 (0.034) 0.4718 (0.036) 0.4825 (0.037) 0.4652 (0.051)
N=5000 0.4398 (0.020) 0.4187 (0.051) 0.4752 (0.029) 0.4751 (0.021) 0.4832 (0.033) 0.4738 (0.014)

p12=0.10 N=2000 0.4415 (0.019) 0.4543 (0.034) 0.4728 (0.017) 0.4729 (0.025) 0.4778 (0.032) 0.4744 (0.017)
N=5000 0.4464 (0.014) 0.4650 (0.026) 0.4920 (0.025) 0.4757 (0.021) 0.4792 (0.031) 0.4853 (0.022)

In the second case, data is simulated under a regime-switching model with 3 hidden states em-

bedded behind. Suppose that the observations (log returns) are {Xt}8000
t=1 and there are 8 alternating

segments over time:

St =


1 t ∈ [1, 1000], [4001, 5000], [7001, 8000]

2 t ∈ [1001, 2000], [3001, 4000], [6001, 7000]

3 t ∈ [2001, 3000], [5001, 6000]

The index of the hidden states is alternating like 1, 2, 3, 2, 1, 3, 2, 1. In the first example, observations

are generated of Gaussian distribution with mean 0 and variance varying under different states in
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Figure 2.4(B), so

Xt ∼


N(0, σ2

1) St = 1

N(0, σ2
2) St = 2

N(0, σ2
3) St = 3

where standard deviations σ1 = 1,σ2 = 2, and σ3 = 3. In the second example, heavy-tail distribu-

tion, student-t, is considered. The simulation is shown in Figure 2.4(D) by

Xt ∼


t(df1) St = 1

t(df2) St = 2

t(df3) St = 3

where degree of freedoms df1 = 1, df2 = 2, and df3 = 5. In the Gaussian setting, we set |α-quantile| =

|β-quantile| = 2 which corresponds to 0.9 quantile of the observations; In the student-t setting, a

larger threshold is considered, |α-quantile| = |β-quantile| = 3, which corresponds to 0.95 quantile of

the observations.
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−1
00

−5
0

0
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0State1 State2 State3 State2 State1 State3 State2 State1  State1 State2 State3 State2 State1 State3 State2 State1  

(A)                                                                   (B)

Figure 2.4. Data is simulated via conditional distribution given a hidden state:
(A) Gaussian distribution (B) student-t distribution. 8 underline phases alternates
over time where 3 kinds of hidden states are embedded. The horizontal lines in (A)
indicate the thresholds α-quantile and β-quantile.

The recovered segment (marked in different colors) shows that with appropriate choice of thresh-

olds, the proposed method can successfully detect the alternating hidden states. The error only

appears around the change points. Besides, we obtain good estimations of emission probability
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Figure 2.5. Simulation with Normal distribution(A)(B), student-t distribution
(C)(D). (A),(C): Recursive time; (B),(D): raw data with colored decoding states.
“red”, “yellow”, and “pink” 3 colors indicates 3 different kinds of states.

under different hidden states. The estimators are (0.0463, 0.3210, 0.4739) in the Gaussian setting

and (0.0420, 0.1008, 0.1997) in the student-t setting, respectively. They are close to the theoretical

parameter

2 ∗ (Ψ1(−2),Ψ2(−2),Ψ3(−2)) = (0.0455, 0.3173, 0.5049)

and

2 ∗ (Ft1(−3), Ft2(−3), Ft3(−3)) = (0.0300, 0.0954, 0.2048)

where Ψj is the CDF of Gaussian distribution under the j-th hidden state, and Ftj is the CDF of

student-t distribution under the j-th hidden state, for j = 1, 2, 3.
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2.4. Encoding-and-Decoding Procedure

2.4.1. The method. As described in the previous section, the choice of threshold in defining

an event or large returns is of vital importance. A natural question is that what if the threshold

fluctuates, is the decoding result of the 0-1 processes still stable? The answer is positive. For

example, if an observation is marked with a return below a threshold π, the intensity parameter in

the geometric distribution is ps(π) = Fs(π) under a hidden state s. By assuming the continuity of

the underlying distribution Fs, ps is also continuous for π. Thus, the emission probability under a

hidden state would not fluctuate much if π varies slightly. Indeed, our experiment shows that the

estimated emission probability is not sensitive to π. To make the notation consistent, we will use

pπ(t) or F π(t) if both t and π are present.

The idea of dealing with a stochastic process with continuous observations is described as follows.

In the encoding phase, we iteratively switch the excursion threshold from an extreme value lower

to 0 and discretize the time series into a 0-1 binary process at each iteration. After that, we

implement the searching algorithm to decode the processes, respectively. As a consequent result,

a vector of estimated emission probability p̂π(t) is obtained at time t with a different choice of π.

It actually gives an estimator of the empirical Cumulative Distribution Function(eCDF) at time t,

F̂ π(t) = p̂π(t) where F̂ π(t) is a function of π given a fixed t. Following up the simulated data with t

distribution, Figure 2.6 shows a series of eCDF with a change point embedded in the middle though

it is hard to detect by eyes. Lastly, all the decoding information is aggregated by clustering the time

points with comparable eCDFs. Suppose that {Eπt }t is a 0-1 coding sequence obtained by applying

a threshold π upon the returns, and Π is a pre-determined threshold set, for example, Π can be a

series of quantiles of the mixed distributions Π = {0.99 quantile, 0.97 quantile, 0.95 quantile, ...}. The

encoding-and-decoding algorithm is described in Algorithm 2.

Algorithm 2 Encoding-and-Decoding

1. For loop: cycle threshold π through Π = {π1, π2, ...}:
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Define events and code the whole process as a 0-1 digital string {Eπt }Nt=1,

Eπt =


1 Xt ≤ −π or Xt ≥ π

0 otherwise
(symmetric)

Or

Eπt =


1 Xt ≤ π if π < 0

1 Xt ≥ π if π > 0

0 otherwise

(asymmetric)

Repeat the step 3 & 4 in Algorithm 1 and estimate the probability p̂π(t) by (2.5).

End For

2. Stack the estimated probability at t in a vector ~p(t) := (p̂π1(t), p̂π2(t), ...).

3. Merge time points with comparable ~p(t) together via clustering analysis.

It is surprising that how an eCDF can get returned based on the only observation at each time

stamp. Indeed, the eCDF does not hold an asymptotic property here. Because of the limitation of

data information, increasing the number of thresholds π would not provide a good estimation of the

distribution. The estimated distribution function here depends on how well the decoding algorithm

can separate the different states and at what intensity levels. Specifically, if there exists a threshold

π by which the underlying distribution can be separated well, then the decoding achieves a good

result to reflect the distributional changes. On the other hand, if the π is set not appropriate,

for example, the permission probability of the underlying distribution at state s and s
′ are very

close to each other or F̂ πs ∼= F̂ π
s′
, then the decoding algorithm fails to separate the two states with

such a threshold applied. There is an ongoing discussion about how to choose a good threshold to

discretize a sequence of continuous observations. A heuristic idea is to tune the optional value of

π such that the estimated probabilities under different states are far apart from each other. For

example, consider the max-min estimator of π,

(2.8) π̂ = argmax
π

min
s,s
′
|p̂s(π)− p̂s′ (π)|
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Figure 2.6. For t-distributed simulation, eCDF for time point from 1998 to 2003.
Data from 1998 to 2000 follows t distribution with degree of freedom 2; data from
2001 to 2003 follows t distribution with degree of freedom 5

It is remarked that the proposed procedure avoids the issue of tuning parameters by imposing a

series of thresholds and aggregating all the decoding results together. We claim that the information

of distributional changes is reserved onto the vector of the emission probabilities. Moreover, a noisy

result by applying an unreasonable threshold would not affect the aggregation result much. For

example, if F̂ πs ∼= F̂ π
s′
, then there is no distributional changes are detected in the process, so p̂π(t)

is a constant for any t. Based on our numerical experiments, if π is set close to the median, the

emission probabilities are not separated enough, so there is a big “jump” in the middle of the eCDFs.

In summary, the continuous decoding algorithm can be applied by shifting π value from high to

low to obtain a sequence of eCDFs, although only fewer π are meaningful in sense of decoding. By

combining the decoding results of several discrete processes, the aggregated information sheds a

light in differentiating the underlying distributions.
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2.4.2. The number of hidden states. The next question is how to summarize the infor-

mation among all the eCDFs, and how many underlying distributions can represent the patterns

of distribution switching. It raises a realistic question to all the regime-switching models to de-

termine the number of underlying states. Generally, the more states are taken into consideration,

the less tractable the model becomes. For example, a 2-state lognormal Markov Model contains

6 parameters, while a 3-state model increases the number to 10. The number of states is usually

decided subjectively or tuned with an extra criterion. Given the estimated probability vector ~p(t)

in Algorithm 2, the problem is resolved by clustering the similar time points together such that

the eCDFs within each cluster are comparable to each other. Moreover, the number of underlying

states can be determined by searching through the number of clusters embedded in the probability

vectors or eCDFs. Hierarchical clustering is implemented to cluster similar time points shown in

Figure 2.7(A). One can visualize the dendrogram to discover the number of clusters, or employ

criteria to quantify the quality of clustering.

The numerical data with student-t distributions is reused in this example. The dendrogram

shows that 2 or 3 clusters may be embedded inside the observations. If we cut the dendrogram into

3 clusters, the trajectory of cluster indices can almost perfectly represent the alternating hidden

states, see Figure 2.7(B). If 2 clusters are taken rather than 3, the result also makes sense since

cluster2 and cluster3 are combined together as a contradiction to the high-intensity cluster or

cluster1. By calculating the average function of eCDFs for each cluster, one can compare the

estimated probability function with the theoretical distributions, respectively. Figure 2.7 (C)-(E)

show that the average function is a goodness-of-fit for each cluster.

It is also claimed that the model performance is not sensitive to the number of hidden states that

we supposed in decoding each 0-1 process. Without the prior knowledge of 3 states embedded in the

observations, if we implement a 2-states or 4-states decoding schedule, a 3-cluster clustering result

can still represent the distributional changes well. The clustering result of 2-state decoding is shown

in Figure 2.8 though there is a short period (between 1000 and 2000) in which state2 is misclassified

as state3. The result of 4-state decoding is more accurate, see Figure A.1 in Appendix A.
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Figure 2.7. 3-states continuous-distribution decoding in simulation data. (A) Hier-
archical Clustering Tree; (B) cluster index switching over time; (C),(D),(E): median
eCDFs versus true CDFs, in cluster 1,2,3, respectively

2.5. Real Data Application

In the real data application, we analyze the tick-by-tick data of S&P500 index. The stock returns

are calculated in a market time scale which is measured by transaction rather than the real-time

clock. The idea was firstly suggested by [80], and then worked thoroughly by [32]. A well-known

example is the random-walk model suggesting that the variance of returns depend on the number

of transactions. Following the idea above, we apply the tiniest sampling rate to alleviate the serial

dependency. It is reasonable to assume that the stock returns are exchangeable within a certain

number of transactions.

2.5.1. Single index dynamics. The encoding-and-decoding algorithm is implemented to dis-

cover the volatility dynamics for a single stock. Since the result is not sensitive to the number
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Figure 2.8. 2-states continuous-distribution decoding in simulation data. (A) Hier-
archical Clustering Tree; (B) cluster index switching over time; (C),(D),(E): median
eCDFs versus true CDFs, in cluster 1,2,3, respectively

of hidden states, a 2-state decoding procedure is applied and the number of clusters is determined

according to the tree height of hierarchical clustering. It turns out that there are 3 potential clusters

embedded in the returns of IBM index in 2006. The average function of eCDFs for the 3 clusters

are shown in Figure 2.9. The distribution of cluster3 with a heavier tail reflects a high-volatility

phase; cluster1 indicates a phase with low volatility. As a phase in the middle, cluster2 shows an

asymmetric distribution with a heavy tail on the left but a light tail on the right. Instead, cluster1

and cluster3 look more symmetric on both sides. The result shows that an asymmetric distribution

could be embedded in reality, which is usually missed by researchers.

We then present volatility dynamics by showing the cluster index varying over the transaction

time. The dynamic pattern of IBM in January 2006 are shown in Figure 2.10. According to the
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previous notation, cluster1 indicates a low-volatility phase, cluster2 is for a median stage, and

cluster3 presents a high-volatility phase. Based on the daily segments, it is clear that the unstable

volatility mostly appears at the beginning of a stock market, and usually shows up twice or three

times per day.
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Figure 2.10. Recovered volatility trajectory of IBM in January 2006

2.5.2. Nonlinear Dependency. Beyond detecting the volatility dynamics for a single stock,

we further consider the network among all the S&P500 to present how one stock’s returns is related
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to another stock’s return. Such a relationship can be quantified by calculating the cross-correlation

between two stock time series [29,81] and correlation matrix was investigated via random matrix

theory [103] or clustering analysis [63]. Conditional correlation [40] and partial correlation [68]

was also studied to provide information about how the relationship of two stocks is eventually

influenced by other stocks. However, since the empirical distribution of returns is very different from

Gaussian, and correlation is only adaptive for a linear relationship, a distribution-free and nonlinear

measurement is studied to measure the financial connection. Transfer Entropy(TE) [57,107], as

an extension of the concept of Granger causality [12], was proposed to measure the reduction of

Shannon’s entropy in forecasting a target variable via the past value of a source variable. Denote

the target variable at time t as Yt and the source variable at t as Xt. The Transfer Entropy from

X to Y in terms of past l lags is defined by,

TEX−>Y (l) =
n∑

t=l+1

P (Yt, Y(t−l):(t−1), X(t−l):(t−1))log
P (Yt|Y(t−l):(t−1), X(t−l):(t−1))

P (Yt|Y(t−l):(t−1))

It is remarked that the measure is asymmetric, generally, TEX−>Y 6= TEY−>X .

However, it is computationally infeasible to calculate the exact TE value due to the difficulty in

estimating a conditional distribution or joint distribution especially when l is large. In the applica-

tion of finance, people commonly cut the observation range into disjoint bins and assign a binning

symbol to each data point [35,102,104]. However, a straightforward implementation of binning

with equal probability for every symbol will lead to sensible results [82]. To the best of our knowl-

edge, it still lacks in the literature to digitize the stock returns and effectively reveal the dynamic

volatility. The simple binning methods such as histogram or clustering fail to catch the excursion

of large returns, so only the trend of the returns is studied but the dynamic pattern or volatility

is missing in it. We claim that the encoding-and-decoding procedure remedies the drawbacks of

simple binnings. Indeed, the recovered volatility states can be easily applied to calculate the TE

values. Moreover, the network is improved in terms of measuring the causality of stock volatility

rather than the similarity of trend.

The proposed procedure is implemented to detect the volatility trajectory of the tick-by-tick

returns. However, since the return patterns are recorded in transactions, the decoded sequences

are not directly conjunct with each other. It is required to transform the decoded trajectories back
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into the real-time scale before calculating the Transfer Entropy. Suppose that the intensity level of

volatility is indicated by ordinal number 1, 2, or 3 meaning low-, median-, or high-volatility state,

respectively. If there exists a tiny time scale in which at most one transaction happens, a time

unit can be labeled by symbol 0 if no transaction present or an ordinal number if a transaction

present. Thus, the decoded pattern from different stocks can share the same chronological time. It

seems that we attempt to choose a time scale as small as possible, but the pairwise dependency is

weakened due to the increasing number of 0’s. To balance the proportion of symbols and alleviate

the sparsity, we summarize the recovered pattern by scanning a time block from the beginning to

the end of the time axis to select the maximal ordinal number. So, uninformative 0’s are filtered

out, while volatility stages are kept. Suppose that the recovered symbol sequence is {St}Nt=1 where

St ∈ {0, 1, 2, 3}. The sequence is then summarized via a time block with length w by

(2.9) S∗t = max{St : t ∈ (t− bw
2
c, t+ bw

2
c)}

for t = bw2 c, ..., n−b
w
2 c where {S

∗
t }t is the summarized symbolic sequence. It is noted that a minute-

level scale w is too rough to reflect the tick-by-tick volatility pattern. A block with w = 5-seconds

is an admissible choice.

According to the way we summarize the symbolic trajectory, a nonlinear measure is developed

as a variant of TE. Different from the classic TE, this measure takes both lag and lead effects into

account instead of only the lag effect. Denote the summarized symbolic sequence of X and Y as

SXt and SYt , respectively. The lag-and-lead information flow from X to Y is defined by

(2.10) TE∗X−>Y (w) =
∑
t

P (SYt = 3, SXt )log
P (SYt = 3|SXt )

P (SYt = 3)

We use TE∗X−>Y to differentiate it from the classic TE and w is omitted without confusion. The

measure is interpreted by how much uncertainty Y is affected due to the lag-and-lead effect of X

such that Y is under its volatility states (state3). The higher the value, the stronger the impact

that X promotes volatility phases of Y .

The summarized symbolic sequence SX(t)∗ and SY (t)∗ are shown in Figure 2.11. In the first

example, Figure 2.11(A) shows that MXIM (Maxim Integrated Products Inc.) and NTAP (NetApp

Inc.) share a large intersection in volatility phases. Especially, when MXIM is in volatility, the price
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of NTAP has a high probability to be in state3. The value of the dependency TE∗ from MXIM to

NTAP is 0.039 and 0.016 in reverse. In the second example, Figure 2.11(B) shows that TWX has

a stronger influence on the volatility stages of BRCM. The value of TE∗ from TWX to BRCM is

0.036 and 0.026 in reverse.

Figure 2.11. A pair of volatility trajectories summarized in real time: (A) MXIM
v.s NTAP; (B) TWX v.s BRCM

Once the Transfer Entropy is calculated for all pairs of indices of S&P500, the result can be

recorded via a 500×500 asymmetric matrix with the entry value of the i-th row and the j-column as

the information flow from the i-th stock to the j-th stock. We rearrange the rows and columns such

that the sum of rows and the sums of columns are in ascending order, respectively. The reordered

TE matrix is shown in Figure 2.12. The idea of reordering follows the discussion about the node

centrality for directed networks in [104]. Two types of node strength are considered for incoming

and outgoing edges. The incoming node strength at node i denoted as NSiin, is defined by the sum

of the weights of all the incoming edges to i,

(2.11) NSiin =
∑
j

TE∗j−>i
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Similarly, the outgoing node strength, denoted as NSiout, is defined by the sum of the weights of all

the outgoing edges from i,

(2.12) NSiout =
∑
j

TE∗i−>j

If a stock has a larger value of incoming node strength, it receives more information flow, which

means the stock is strongly influenced by other indices; while, if a stock has a larger value of

outgoing node strength, it sends more impacts to other stocks. The top30 stocks with the largest

incoming and outgoing node strength values are reported in TableA.1 in Appendix A. If we take

the intersection between the top30 incoming nodes and the top30 outgoing nodes, a group of most

central stocks gets returned. The central stocks can be regarded as the intermediate nodes which

connect all the other stocks in the S&P500 network. The central stocks include CHK(Chesapeake

Energy), VLO(Valero Energy), NTAP(NetApp, Inc.), BRCM(Broadcom, Inc.), and TWX(Time

Warner, Inc.), which are all big manufacturer, retailer, supplier, or media covering the important

fields in the United States.

Figure 2.12. Transfer Entropy matrix for S&P500 in 2006. The rows and columns
are rearanged such that the row sum and column sum are in ascending order

2.5.3. S&P500 Networks. In this subsection, we present two different types of networks to

illustrate the volatility connection among the S&P500 in 2006. A weighted directed network is
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established by regarding each stock as a node, the information flow from one node to another as

an edge, and the Transfer Entropy value as the weight of the edge. Nodes with weak dependency

are filtered out, so only the strongest edges and their conjunct nodes are shown in Figure 2.13.

Apart from the central stocks such as CHK, VLO, NTAP, and BRCM, the result shows that big

investment corporations, such as JPM(JPMorgan), BAC(Bank of America), and C(Citigroup) also

heavily depend on other indices. Instead, TWX(Time Warner, Inc.), MXIM(Maxim Integrated

Products Inc.), APC(Apple inc.), EBAY(eBay Inc.), and YHOO(Yahoo! Inc.) have a primary

impact on others S&P500.
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Figure 2.13. A directed network of S&P500: edges with the strongest weights and
the conjunct nodes are shown; blue nodes: central stocks; red nodes: stocks with
strong incoming strength; green nodes: stocks with strong outgoing strength.

Another way to represent the network is to transform the asymmetric information flow into a

symmetric dissimilarity measure. The similarity between the i-th and the j-th nodes can be defined

by the average of the two asymmetric TE values,

(2.13) Sim(i, j) = (TE∗i−>j + TE∗i−>j)/2
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If the range of similarity is rescaled between 0 and 1, the dissimilarity can be simply defined by,

(2.14) Dis(i, j) = 1− Sim(i, j)−mini,j Sim(i, j)

maxi,j Sim(i, j)−mini,j Sim(i, j)

So, the range of dissimilarity is scaled between 0 and 1. The symmetric dissimilarity matrix of

S&P500 is present in Figure 2.14(A) with a hierarchical clustering tree imposed on the row and

column sides. The idea is similar to Multidimensional Scaling, which has been widely used to

visualize the financial connectivity in a low-dimensional space [55]. We claim that the dendrogram

provided by hierarchical clustering is more informative in terms of illustrating how the S&P500 are

agglomerated hierarchically from the bottom to the top according to their dissimilarity. Intuitively,

companies under a similar industrial category should be merged into a small cluster branch. One of

the branches with relatively low mutual distance is extracted and shown in Figure 2.14(B). It looks

that the cluster mainly includes technology companies including internet retail (EBAY and AMZN),

manufacturer of integrated circuits(LLTC), video games(ERTS), information technology(ALTR),

network technology(TLAB), biotechnology(GILD and GENZ), etc. Besides, we notice that energy

corporations, such as VLO, COP, and CHK, are also merged into a small cluster.

2.6. Conclusion

Starting from a definition of large or relative extreme returns, we firstly propose a searching

algorithm to segment stock returns into multiple levels of volatility phases. This is an extension of

Hierarchical Factor Segmentation(HFS). Then, we advocate a data-driven method, named encoding-

and-decoding, to discover the embedded number of hidden states and represent the stock dynamics.

By encoding the continuous observations into a sequence of 0-1 variables, a maximum likelihood

approach is applied to fit the limiting distribution of the recurrence time series. Though the as-

sumption of exchangeability within each hidden state is required, our numerical experiments show

that our proposed approach still works when the assumption is slightly violated, for example, a

weak transaction probability is imposed under the Markovian condition. This demonstration of

robustness with respect to various conditions makes our approach valuable in real-world finance

researches and practices.
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Figure 2.14. Heatmap of the symmetric dissimilarity matrix with a hierarchical
clustering tree imposed on the row and column sides; Ward linkage is applied in
the hierarchical clustering algorithm; (A) a matrix for S&P500; (B) a submatrix
extracted from (A)

In real data application, it was reported by [24] that stock returns are only exchangeable in a

short period. With this assumption holds, our proposed method is implemented on tick data to

alleviate the serial dependency. Moreover, it is beneficial to investigate the fine-scale volatility, so

the established network can illustrate which stocks stimulate or even promote volatility on others.

It is also noted that the nonparametric regime-switching framework can work in conjunction with

other financial models. For example, Peak Over Threshold(PoT) [75] can be implemented to analyze

the extreme value distribution for the discovered homogeneous regimes. We hope these networks

would be somehow stimulating for researchers and practitioners in finance.
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CHAPTER 3

Multiple Phases of Dynamics in Multivariate Financial Time Series

3.1. Introduction

It has received increasing research interests and attention in studying nonlinear stochastic dy-

namics in quantitative finance. Researchers and practitioners have realized that it is rather impor-

tant to understand the joint behaviors of multiple aspects of one single stock or asset as well as one

common aspect of multiple assets. One dynamic issue that has been making quantitative finance

experts wondering even up to now is the joint dependence among returns, trading volume, and

transaction numbers [78,128]. Another well-known dynamic issue is about how volatility clustering

comes to exist and where to look for it [37]. Since volatility is measured by conditional variance and

it changes over time for one single stock or asset, how to compute and visualize volatility in concert

with a form of clustering to a great extend is still mysterious. Computational and data-driven

approaches for both issues are not yet well established or reported in the literature.

For instance, GARCH models have been proposed to study and to model the time-varying

volatility of asset returns [20], and their variants have been extended to multivariate time series cases

by modeling the correlation dynamics [21,40,115]. However, they require too many parameters

and a large collection of prior knowledge about the dynamic structure. Such modeling and required

structures make the model interpretation rather complicated. A more effective methodology was

proposed to incorporate realized volatility [49,50] and realized covariance [108,126]. However, its

results could be biased due to noises’ hard to be accommodated nature. Further, often a long time

window is usually required implement such a methodology.

Recently, a data-driven approach named Hierarchical Factor Segmentation(HFS) is developed

by characterizing volatility fluctuation directly [59]. HFS, to some extent, is similar to the regime-

switching model advocated by [48,52]. Both likewise assume regime-switches being somehow away

from the beginning and ending time points of the involved time span. HFS computationally attempts
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to detect all time-points, at which the dynamics phase shifts from one episode to another by revealing

distinct dynamic behavior. Its chief computing device tracks the recurrence of “extreme” events,

i.e. large returns, defined by a chosen threshold. Consequently, latent regions with different event-

intensities are segmented. Via this way, dynamic tail behaviors are successfully discerned. Along

the direction of threshold choice, HFS was extended to study the empirical tail distribution by

applying a series of thresholds in [120].

Compared with region-switching models, HFS takes advantage of offline analysis to decode

dynamics patterns without assuming any underlying distribution or Markovian structure. So HFS is

in the category of nonparametric change point detection in time series. Nonparametric change point

detection has a wider range of applications than parametric [53]. Characteristically, it often relies

heavily on the estimation of density functions [67], see details in a recent survey being available

in [6]. The key difference between HFS and the change point approach, in general, is that we

assume the underlying distributional changes at a certain point and may come back in afterward in

a recurrent fashion, which makes more sense in the case that volatility clustering comes and leaves

recurrently in financial data.

So far, the nonparametric approach in discovering the recurrent switch patterns underlying

multivariate time series is still scarce. One underlying reason is attributed to the fact that the

nonlinear dependence among them is the key and necessary knowledge. Thus, missing or lacking

such knowledge underlying all involving time series or processes has become a barrier that hinders

the potential research advances in this direction. Such dependence needs to be measured based

on the latent phases revealed from each single process separately [60,120]. However, beyond the

multiplicity and complexity of global dynamic patterns, the nonlinear dependence can be easily

overwhelmed by the integrated microstructure noises. In this chapter, we extend the idea of HFS to

discern the temporal switching patterns underlying a collection of assets. This extended computa-

tional approach proceeds in three steps. Firstly, a chosen Rp dimensional region is created based on

observed time series data and then partitioned into B subareas. Upon each subarea, its chronologi-

cal emergence is tracked along the temporal axis of the involved time series. Secondly, the limiting

distribution of recurrent time between successive events according to each subarea-specific chrono-

logical emergence is analyzed. Then, a confusion matrix is constructed by stacking B estimated
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permission rate vector resulted from each subarea. Lastly, clustering analysis is applied to group

similar time points as if they are sharing the same phases of the dynamics. Via such clustering, the

dynamic patterns of hidden phases are revealed by the cluster index. This is the fundamental idea

underlying our proposed methodological extension of HFS.

The chapter is organized as follows. In Section 3.2, we proposed our main method in encoding

multivariate processes. In Section 3.3, feature-weighting techniques of clustering are proposed for

choosing potentially informative “extreme” events. Simulation experiments and real data analysis on

multiple time series of one stock and multiple stocks in S&P500 index are performed in Section 3.4

and Section 3.5, respectively. A conclusion of this chapter is present in Section 3.6.

3.2. Multivariate Decoding

Based the discussion of the excursion process in Chapter 2, there are still at least three shortcom-

ings for this approach: (i) independence of returns is assumed without considering time dependence;

(ii) decoding in multivariate settings yet to be developed; (iii) a more data-driven way to define an

“event” is required.

Here, we study this nonparametric region switching model under the assumption that Xt are

independent. Such independence assumption is practically needed for computational purposes,

though it might be often violated in real settings. Indeed, this assumption allows us to connect

the asymptotic conclusion with real data analysis. Results may also be useful when the assumption

is slightly violated. We later discuss modifications to our proposed computational approach such

that it could accommodate small degree of violation of this independence assumption. For the last

two shortcomings, a novel decoding method is proposed to discover the stochastic dynamic among

multivariate time series.

3.2.1. The Method. Following the discussion of the excursion process, we shall extend the

strategy from one dimension to multivariate. In single-dimensional time series, we consider volatility

as a temporal aggregation of absolute large returns, so that extreme returns can be marked with

appropriate choice of α and β in (2.2), and then the dynamic pattern is revealed by decoding the

resultant 0-1 sequence. However, without any clear definition of an event of interest, it raises a

problem in multivariate settings. The event should be defined to reflect the dependence or at least
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local dependence of the multiple time series, for example, to mark data points contained in a pre-

determined Euclidean subarea in Rp. Intuitively, the subarea is of most interest if it contains data

points exclusively from one underlying hidden state. A time period is currently under the control

of this state if the subarea-specific events emerge chronologically in a high frequency.

Motivated by the idea of exploring local dependence, a new encoding and decoding approach is

proposed as follows. In the encoding phase, a series of (rough) Euclidean “ball” is generated in Rp

to mark points of interest, and so a series of 0-1 binary sequences can get returned. In the decoding

phase, we treat the information of dynamics obtained from each “ball” as a feature and aggregate all

pieces of information as one. The global pattern is ultimately discovered by clustering time points

with similar feature sets.

Consider multivariate time series {Xt}Nt=1. Let B(v) be the v-th “ball” with pre-fixed boundary.

A new excursion process is defined by,

(3.1) E
(v)
t =


1 Xt ∈ B(v)

0 Otherwise

Under the assumption of Theorem 2.2.1, the waiting time between two successive 1’s in E(v)
t con-

verges to a geometric distribution. The emission probability of 1’s given hidden state Sj now

becomes

(3.2) p
(v)
j =

∫
B(v)

dFj

where Fj is the conditional CDF given Sj . A series of alternating hidden regions, for example

(S1, S1, S2, S1, ...), can be computed in model selection, and the corresponding region-based per-

mission probability, which is (p
(v)
1 , p

(v)
1 , p

(v)
2 , p

(v)
1 , ...) in this example, can be estimated by MLE of

geometric distribution. Denote the N-length estimated probability vector as p̂(v) which is the feature

generated by B(v). Iteratively generate subarea B(v) for v = 1, 2, ..., V , then V resultant features

can get obtained.

Note that p̂(v) could be a vector with only a single value if the true permission probability

are comparable given different hidden regions, for example, when
∫
B(v) dF0

∼=
∫
B(v) dF1. In this
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case, features are less relevant or even redundant. In contrast, features may contain significant

information about the dynamics when
∫
B(v) dF0 differs a lot from

∫
B(v) dF1.

3.2.2. Ball Generation. To make features more representative and less correlated, the “balls”

should ideally be generated mutually disjointed and samples should get selected only once. In real

data analysis with finite samples, it is neither efficient nor effective to determine the boundary for

each “ball”, especially when the dimension is high. Instead, we turn to select a fixed proportion of

samples at each iteration and make each group of the samples less overlapping.

To generate fewer overlapping sample groups, cluster analysis can be applied for the purpose.

K-Means would be the most appropriate method due to its scalability and property of getting

relatively balanced clusters. Assume V clusters get returned via K-Means, then a rough “ball” can

be generated by searching for M nearest neighbors starting from the centroid of each cluster. The

reason that we fix the size is to make sure there is enough data selected in each cluster. There is

actually a tradeoff between the sample size of recurrent time and the magnitude of the excursion.

We will keep using the proportion that is advocated in one-dimensional settings, say M
N = 0.1. As

a result, V subarea gets returned, and each includes exactly M data points. The V is chosen very

large in practice, say 100, so a sample is chosen 10 times on average. Here, we lose less information

but via involving more correlated features.

Let X = [X1, X2, ..., XN ]T be a N×pmatrix that records the time series {Xt}Nt=1 whereXt ∈ Rp.

The feature generation algorithm is described in Algorithm 3. In the end, we simply stack all the

features into a N × V matrix P = [p̂(1), p̂(2), ..., p̂(V )] as the output. The next task is resolved by

feature selection or feature weighting techniques discussed in the next section.

Algorithm 3 Feature Extraction

Input: Data matrix X

1. Apply K-Means to X, and get V cluster centroids C1, C2, ..., CV .

2. Loop: cycle through every Cv

a. Search for its M nearest neighbors in X, denoted as B(v)

b. Generate a 0-1 excursion process via (3.1), denoted as {E(v)
t }Nt=1
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c. Apply Algorithm 1 to {E(v)
t }Nt=1 to get emission probability p̂(v)

3. Stack all p̂(v)’s into a (N × V ) matrix P = [p̂(1), p̂(2), ..., p̂(V )],

and record B(v)’s in a set B = {B(1), B(2), ..., B(V )}.

Output: a confusion matrix P and a set B

3.3. Feature Weighting

The decoding result is finally achieved by clustering similar time points in P. We will use K-

Means as an example to illustrate the idea. K-Means minimizes the sum of within-cluster error via

iteratively assigning each object by its closest centroid and updating each centroid consequently.

Define Yiv is the v-th feature in the i-th sample, for v = 1, 2, ..., V , and Cj is the centroid of the

j-th cluster Sj , for j = 1, 2, ..., k. The optimization problem can be specified as to minimizing the

following quantity,

(3.3)
k∑
j=1

∑
i∈Sj

V∑
v=1

D(Yiv, Cjv)

where D(.) is a metric.

As what is discussed before, features may have different degrees of relevance, but K-Means treats

every single feature equally, regardless of the actual relevance. As a consequence, clustering results

could be greatly biased by the irrelevant features, while the more relevant features are overwhelmed.

This weakness can be resolved by feature selection or feature weighting which is discussed as follows.

The research in feature weighting of clustering can be traced back to 1984. Different from feature

selection, feature weighting approaches usually lead to better performance by iteratively conducting

clustering and adjust feature weights based on the result in the last step. A survey on feature

weighting of K-Means is available in [8]. Typically, the goal is to minimize the within clustering

dispersion by updating the feature weight wv for feature position v. The optimization problem (3.3)

is then rewritten as,
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(3.4)
k∑
j=1

∑
i∈Sj

V∑
v=1

wvD(Yiv, Cjv)

Usually, wv is set so that
∑V

v=1wv = 1. Note that wv may also vary in different clusters, and

metric D(.) can be generalized to non-Euclidean distance, like Minkowski’s [9], but they are beyond

our focus in this paper.

3.3.1. Related Works. Feature Weight Self-Adjustment mechanism(FWSA) [114] is designed

to adjust feature weight to simultaneously minimize the separations within clusters and maximize

the separations between clusters. The importance of a feature to the clustering quality is measured

based on a function of sum of separations within clusters, denoted as av, and sum of separations

between clusters, denoted as bv, and feature weight is updated, iteratively,

(3.5) w(c+1)
v = w(c)

v − η (w(c)
v −

b
(c)
v /a

(c)
v∑

u b
(c)
u /a

(c)
u

)

where c indicates the current step, and c + 1 is the next step; η is the learning rate. The updated

weight vector still sums up to 1. In the original paper, η is set as 0.5. FWSA mechanism significantly

improves clustering quality in experiments. In addition, it takes considerable advantage that no

extra parameter is required to be specified.

The second method weights features according to mutual information. As Shannon Entropy is

widely used as criteria of clustering quality, its variant, Mutual information, measures the amount of

information obtained about the clusters which can be interpreted through another random variable.

The minimum of MI is 0 if a particular feature does not contribute any new information about what

its cluster might be. Maximum mutual information is reached when a feature can perfectly recreate

the clusters. A drawback of MI is that a feature with numerical value has to be categorized before

applying the discrete-version formula, and entropy tends to increase with the number of categories.

The Normalized Mutual Information(NMI) solves the problem by standardizing the MI number

always between 0 and 1. Fortunately, no extra binning is required in matrix P since each feature
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is a sequence of discrete probability numbers. Feature weights are updated based on the idea that

more relevant features to the current clustering result weights more than redundant features.

(3.6) w(c+1)
v = w(c)

v − η (w(c)
v −

NMI(L(c), Y
(c)
.v )∑

uNMI(L(c), Y
(c)
.u )

)

where Y.v = (Y1v, Y2v, ..., YNv)
T , L(c) is the cluster labels returned at the current step, and

η is the learning rate. As an unsupervised algorithm, the quality of clustering may get out of

control, especially when signal-to-noise ratio is relatively low, so the noise may get exaggerated in

the iteration.

3.3.2. Feature Weighting Clustering for Decoding. A new feature-weighting clustering

algorithm is designed for the decoding procedure. As is claimed in one-dimensional settings, the

decoding result is reliable if the true permission rates difference between two hidden states is large.

It is the reason that α and β in (2.2) are tuned to enlarge the difference between the tailedness of

underlying distributions. Inspired by this idea, the feature importance can also be measured by the

estimated permission rate delta.

Recall the time series data {Xt}Nt=1. In a iterative fashion, let L(c)
t be the cluster label for data

point Xt in the current step. When k = 2, L(c)
t only takes two values corresponding to two hidden

states, say “state0” and “state1”. Denote the v-th feature is generated by a selection area B(v), then

permission probability p(v)(c)
j upon B(v) given hidden state j can be further estimated by,

(3.7) p̂j
(v)(c) =

∑N
t=1 1{Lt = j,Xt ∈ B(v)}∑N

t=1 1{Lt = j}

Especially when k = 2, the feature importance for feature v can be quantified based on |p̂1
(v)(c) −

p̂0
(v)(c)|. The greater the absolute difference, the more important feature v is. The feature weight

can be simply updated by,

(3.8) w(c+1)
v = w(c)

v − η (w(c)
v −

|p̂1
(v)(c) − p̂0

(v)(c)|∑
u |p̂1

(u)(c) − p̂0
(u)(c)|

)
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Without any prior information, let’s assume the size of the two hidden states is balanced. Then,

the estimated delta is simply measured by the proportion of the two cluster labels in B(v). The

more purity of cluster in B(v), the more important feature v should be. It actually enlighten us to

look at the Shannon entropy in B(v) as a smooth approximation to |p̂1
(v) − p̂0

(v)|.

(3.9) w(c+1)
v = w(c)

v − η (w(c)
v −

F(Hc(B
(v)))∑V

v=1F(Hc(B(v)))
)

where F(x) = 1− x−min(x)
max(x)−min(x) and Hc(B

(v)) denote the Shannon entropy of cluster labels of data

points in {B(v)} at the current step. The feature weight is measured by one minus the scaled entropy

of clusters in B(v). Note that the entropy-type feature weighting procedure can be easily generalized

when k > 2. Moreover, it takes advantages in geometric interpretation, which is illustrated in the

simulation study.

3.4. Simulation Experiments

3.4.1. Independent Processes. Independent Bivariate Normal processes are simulated with

mean 0 and 2 types of covariance matrix varying over time. The data is generated with a covariance

matrix Cov0 in a short period of time, then switching to the other matrix Cov1 for a period and

switching back, so on and so forth. Each short period indicates a state hidden behind the time

series, and the conditional distribution given a state is identical. There are 10 alternating periods

in total, and the time length for each period is uniformly distributed by Unif([200, 400]).

Consider 5 different simulation scenarios, named “Case1”, up to “Case5”. The detail about the

simulated covariance matrix is reported in Appendix B. A confusion matrix is firstly obtained via

feature generation (Algorithm 3), and then feature weighting K-Means is applied to clustering

time points in hidden states. Figure 3.1 illustrates a decoding result in “Case1”. It shows that the

underlying dynamics pattern can be almost perfectly discovered although some stamps around 1000

are misclassified (accuracy is 0.87).

Four feature weighting clustering algorithms described in (3.5), (3.6), (3.8), and (3.9) are com-

pared. For the convenience of comparison, clustering accuracy is calculated and used to measure

the quality of decoding. Denote the first feature-weighting algorithm in (3.8) as “MethodA”, and

42



Figure 3.1. Dataset simulated from bivariate Gaussian “Case1”; vertical dashed
line indicates the true change points; red solid line reflects the segmentation result
via (3.9)

the second one in (3.9) as “MethodB”. Dataset is simulated for at least 100 times, and the decoding

accuracy is reported in Table 3.1.

Table 3.1. Decoding Accuracy

Simulation
Case FWSA NMI MethodA MethodB
Case1 0.8048 (0.1046) 0.8021 (0.0960) 0.8145 (0.1111) 0.8286 (0.1026)
Case2 0.9377 (0.0190) 0.9415 (0.0186) 0.9502 (0.0145) 0.9489 (0.0145)
Case3 0.9354 (0.0192) 0.9389 (0.0170) 0.9480 (0.0176) 0.9493 (0.0146)
Case4 0.9213 (0.0218) 0.9249 (0.0217) 0.9378 (0.0142) 0.9390 (0.0142)
Case5 0.8920 (0.0490) 0.8764 (0.0541) 0.9030 (0.0476) 0.9110 (0.0579)

It turns out that the feature weighting methods are adapt to the decoding framework well.

“MethodB” that weights features according to the entropy of each Euclidean “ball” outperforms

others. In “Case1”, the join distribution given a hidden state is Gaussian with a unit variance but

different correlations. The join distribution in the two states can be visualized from Figure 3.2(A).

“Balls” with relatively high feature weights are highlighted in Figure 3.2(B). It looks that the algo-

rithm is trying to pay more attention to the “balls” located in the right-up and left-bottom corners,

in which the distributions differ a lot, see Figure 3.3. While in “Case2”, weights are concentrated

to “balls” located around the four corners. It claims that our new feature weighting strategy can
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truly find out the key difference between the joint distributions, and “balls” with high weights play

a significant role in detecting the distribution changes.

Figure 3.2. Dataset simulated from bivariate Gaussian “Case1”; (A) scartterplot
from two hidden states; (B) data points are plotted in back; “balls” with high weights
are painted in different color

Figure 3.3. Dataset simulated from bivariate Gaussian “Case2”; (A) scartterplot
from two hidden states; (B) data points are plotted in back; “balls” with high weights
are painted in different color

3.4.2. Serial Dependent Processes. In this section, we discuss some extensions to our ap-

proach when serial dependence is present in the time sequence. This problem is related to change
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point detection in time series models. To detect structural breaks in variance, authors in [62] studied

cumulative sums of squares in case of independent sequence. Later on, the test statistic is modified

by looking into the stability breaks of the autocovariance function γ(r) = E[XtXt+r] where r is the

time lag [16].

Motivated by the idea, we extend the multivariate decoding procedure to a single time series with

weak serial dependence. A multivariate process is made up by coupling time point with its r-lags,

say {Zt}t = {(Xt, Xt+1, ...Xt+r)}N−rt=1 . We suppose the (r + 1)-dimensional variables can represent

the covariance structure, and modify the decoding algorithm as follows. For the validation of the

independence assumption, it is necessary to break the local dependence. Time sequence {Zt}t is

partitioned by l-length window, so bN−rl c time pierces are obtained. Time points in each window

are then randomly permuted and denote the new sequence as {Z̃ lt}t. The choice of l could be

very tricky. A too small l has nothing to do with breaking the dependence, while a too large l

tremendously destroys the true dynamic pattern. We find l around 30 is proper given that the size

of a hidden region is at least 300.

Datasets are simulated based on AR(1) and AR(2) models. Independent standard normal

variables were used as innovations. In AR(1) settings, parameters are set φ|state0 = 0.3 and

φ|state1 = 0.7 given hidden state “state0” and “state1”, respectively. In AR(2), the pair of param-

eters is (φ1, φ2)|state0 = (0.3, 0.2) and (φ1, φ2)|state1 = (0.5, 0.3). The switching pattern of the

hidden states is generated in a fashion similar to that in Section 5.1. We choose r = 1 and 2 to

make up new time sequence {Zt}t in AR(1) and AR(2) settings, respectively. The average decoding

accuracy for simulation in AR(1) is 0.7791 (0.0861), and 0.8045 (0.0705) in AR(2).

3.5. Real Data Application

3.5.1. Triplet Time Series. The relationship between returns, trading volume, and transac-

tion numbers has been received great amounts of attention in finance. Under one old Wall Street

adage that “it takes volume to move prices”, volume had been increasingly used as a cause of return

volatility. It can be explained that volume can reflect the extent of disagreement about a security’s

value in stock price. However, it would be modified later that it is the number of trades but their
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Figure 3.4. Dataset simulated from AR(1) with φ|state0 = 0.3 and φ|state1 = 0.7

Figure 3.5. Dataset simulated from AR(2) with (φ1, φ2)|state0 = (0.3, 0.2) and
(φ1, φ2)|state1 = (0.5, 0.3)

sizes that generate volatility [78]. It would also be shown that to recover normality in asset returns,

the number of trades is a better time change than the traditionally used trading volume.

It is claimed in [60] that direct modeling may have difficulty capturing the intricate dynamic

structure, especially given the lack of goodness-of-fit in dynamic linear regression. A nonpara-

metric approach was advocated to explore each of the three dimensions separately by segmenting

high-volatility and low-volatility states, and then combine them to reflect a single stock dynamics.

However, the idea of divide-and-conquer may fail to capture the real association among the three

but be biased by the integrated microstructure noises.
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In the experiment, we track the 3-dimensional time series of a single stock from S&P500. The

log return, volume, and transaction number at every 1-min interval are recorded. To mitigate

the influence of activities near opening and closing, We truncate the transaction time from 10am

to 4pm, so there are 360 data points per business day. Again, no prior knowledge about the

stochastic mechanism needs to be assumed. Via our proposed method, the time axis is segmented

into equilibrium and off-equilibrium periods to represent the latent state-space trajectory underlying

the single stock’s dynamics.

Figure 3.6. Trivariate time series of IBM

Figure 3.6 shows minutely trivariate time series of IBM in January 2006. Each of the dimensions

is standardized to have a mean 0 and standard deviation of 1. A constant is added or subtracted

to returns and trading numbers for better visualization so that the 3 time series are clearly viewed

in one panel. The vertical dashed line indicates a date change. It shows that volume and trading

number are highly correlated. They would rhythmically go up and down simultaneously. The

decoding result (0-1 sequence) obtained by our method is plotted in a red line, which represents

the two hidden states switching throughout the whole period. It looks that the segmentation can

successfully capture the time when volume and trading number both increase heavily, see state code

“1”. If the increment is not that much, it is marked as in equilibrium state, see the right part in

Figure 3.6.
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The next question is, what is the association among these 3 time series given different hidden

states? 2-D scatterplots in Figure 3.7 can roughly illustrate the answer. The correlation between

volume and trading number is much higher in “state1”. The surprising pattern is that the corre-

sponding stock returns in the same period have a much lower deviation than that in “state0”. That is

to say, stock return tends to stay in low-volatility once volume and trading number are significantly

going up together. This phenomenon is shown more clearly in Adobe’s stock, see Figure 3.8. Our

findings contradict the previous argument that volatility is highly correlated to volume or trading

numbers.

Figure 3.7. 2-D scatterplot for IBM: (A) returns v.s volume; (B) returns v.s trading
numbers (C) volume v.s trading numbers

Figure 3.8. 2-D scatterplot for ADBE: (A) returns v.s volume; (B) returns v.s
trading numbers (C) volume v.s trading numbers

3.5.2. Multivariate Returns. In this experiment, we apply the decoding approach to dis-

cover the time-varying dependence among bivariate and multivariate stock returns. In the first
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example, a pair of indexes is chosen from one of the categories of S&P500 based on Global Indus-

trial Classification Standard(GICS). For example, ‘Amazon’ and ‘Ebay’ are coupled together as a

pair of representatives for internet retails. The price returns are calculated in 1-min time interval.

The volatility segmentation result is shown in Figure 3.9. Volitility state shows up rhythmically

every day in the first business week, and then the frequency tends to disappear in the second week.

The return fluctuates even severely in the third week and then goes back to the first state in the

end. Kernel density estimations for returns in high-volatility and low-volatility stages are plotted

separately in Figure 3.10. It shows that both distributions have their tails heavier when in volatility

stage.

Figure 3.9. Bivariate returns of Amazon and Ebay in January 2006

In the second example, we pick up 9 semiconductor indexes from S&P500 and segment the time

axis into high-volatility and low-volatility regions. To measure the heavy-tailedness, we calculate

the probability with which return X goes beyond the z-standard deviation limits, for z = 1, 2, 3,

P (X < z σ) + P (X > z σ)

The heavy-tailedness is calculated for high-volatility and low-volatility, respectively. The delta val-

ues between high-volatility and low-volatility is reported in Figure 3.11. All the positive delta values

indicate that the 9 indexes would have a heavier tail simultaneously when in the volatility period,
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Figure 3.10. Kernel density estimation for data points on high-volatility and low-
volatility region; (A) Amazon; (B) Ebay

but the heavy-tailedness is quite different. For example, ‘Advanced Micro Devices(AMD)’ and ‘In-

tel(INTC)’ have relatively stable returns when in volatility; while returns of ‘Qualcomm(QCOM)’

and ‘Nvida(NVDA)’ fluctuate more heavily.

Figure 3.11. Heavy-tailedness delta between high-volatility and low-volatility; 9
indexes from left to right is ‘AMD’, ‘INTC’, ‘TXN’, ‘XLNX’, ‘MXIM’, ‘ADI’, ‘MU’,
‘QCOM’, and ‘NVDA’

50



3.6. Conclusion

In the chapter, we try to break down the complicated model framework and to directly investi-

gate the volatility dynamic patterns underlying multivariate stock time series. A feature engineering

strategy is proposed from feature extraction to feature weighting, and our clustering results can suc-

cessfully detect the switching region in which the nonlinear dependence differs a lot. In the real

data experiment, we revised the former claim on the relationship among returns, trading volume,

and transaction numbers, and measure the association in multiple return time series. Despite the

weakness in modeling long-term serial dependence and forecasting, the data-driven approach estab-

lished a platform to study distributional heterogeneity, which is commonly observed in reality. In

the future, it can incorporate time series models, like GARCH, to perform a more detailed analysis.
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CHAPTER 4

Multiple Change Point Analysis and Stability Detection

4.1. Introduction

Change point analysis aims to detect abrupt distribution changes in time-ordered observa-

tions and partition such time series into homogeneous segments. The study can be traced back

to [28, 64, 92]. So far, it has been playing a crucial role in diverse fields including bioinformat-

ics [88,94], behavioural science [58,98], neuroimage [22], climate science [97], finance [111], and

speech recognition [79]. Generally, the analysis can be conducted via either parametric or nonpara-

metric approaches. Parametric approaches rely heavily upon the assumption that the underlying

distributions belonging to a known family, and likelihood or penalized likelihood functions are gen-

erally involved [11,26,127]. Instead, the nonparametric analysis makes the least assumption about

the distributions, so they can be used in a wider variety of applications.

A vast number of attention has been received in the nonparametric literature in the past decade.

For instance, authors in [67,77] attempted to estimate the likelihood ratio using KL divergence;

Chen and Zhang [25] proposed a graph-based approach and applied it in multivariate non-Euclidean

data. Zou et al. [130] developed an empirical likelihood approach to discover an unknown number

of change points via BIC. Matteson and James [83] present a U-statistic to quantify the difference

between the characteristic functions of two segments. Lung-Yut-Fong et al. [1] generalized Mann-

Whitney rank-based statistic to multivariate settings. Arlot et al. [100] improved the kernel-based

method by [51] with a generalized model-selection penalty. However, most the existing nonparamet-

ric research focused on the single change-point problem, and the extension of multiple change point

detection is achieved via dynamic programming [1, 51, 100] or bisection procedure [83, 90, 118].

It is still scarce in the literature to efficiently discover multiple change points under multivariate

settings, especially when the covariance structure changes in chronological order.
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In this chapter, a new nonparametric approach is proposed to detect multiple distributional

changes within independent time-ordered observations. The basic idea is to systematically select a

subset of the data points at each iteration and encode the continuous observations into a sequence of

Bernoulli variables. The number of change points and their locations are estimated by aggregating

all the dynamics information discovered from the Bernoulli processes. Instead of working on the

unknown distribution directly, the proposed approach takes advantage of dividing the problem

into several easier tasks, so that the maximum likelihood approach can be applied to analyze the

Bernoulli processes respectively. We claim that the divide-and-concur framework is robust to any

underlying distributions and can be implemented in conjunction with other parametric approaches.

Another important extension of the aggregation technique is stability change point detection.

Stability selection introduced by [84] was designed to improve the performance of variable selection

and provide control for false discoveries. We demonstrate that the idea of aggregating results by

applying a procedure to subsamples of the data can be well implemented under our framework.

One can aggregate the estimation from the Bernoulli sequences, and select the estimated change

point locations with votes beyond a predetermined threshold. As far as we know, this could be the

first method in the change point literature that holds both asymptotic property and finite-sample

control of false discoveries.

The chapter is organized as follows. We start with an efficient algorithm for searching multiple

change points within a change-in-parameter Bernoulli sequence in Section 4.2. In Section 4.3, we

propose the main divide-and-concur framework to analyze multivariate observations. In Section 4.4,

the stability detection technique is applied under our change point framework. In Section 4.5, a

strategy is provided to weighting the results from different sample sets for practical usage. Numer-

ical experiments are shown in Section 4.6 to compare the model performance with that of other

nonparametric approaches, and real data applications including categorical and continuous data in

univariate and multivariate settings are reported in Section 4.7. We note that the proposed ap-

proach can be easily generalized to categorical or ordinal data though we mainly discuss continuous

observations in this chapter.
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4.2. Sequence of Bernoulli variables

4.2.1. Background. Consider a sequence of 0-1 independent Bernoulli variables {Et}Nt=1. Sup-

pose that k change points are embedded within the sequence at locations 0 = τ∗0 < τ∗1 < ... < τ∗k <

τ∗k+1 = N , so the observations are partitioned into k + 1 segments. Observations within seg-

ments are identically distributed but observations between adjacent segments are not. Specially,

Et
iid∼ Bern(pi) for Et ∈ {Eτ∗i +1, ..., Eτ∗i+1

}, for i = 0, ..., k. Now, given the number of change points

k, one task of change point detection is to estimate the k locations. In the most general case, both

number of change points and their locations need to be estimated.

Change point analysis in a Bernoulli-variable sequence was well studied when k = 1. Hinkley and

Hinkley [56] provided asymptotic distributions of likelihood ratio statistics for testing the existence

of a change point. Pettitt [93] introduced CUSUM statistics and showed its asymptotical equivalence

to the maximum likelihood estimator. Miller and Siegmund [86] investigated maximally selected

chi-square statistics for two-sample comparison in a form of 2×2 table. Later on, Halpern [72]

advocated a statistic based on the minimum value of Fisher’s Exact Test. When k > 1, Fu and

Curnow [42] firstly attempted to search for optimal change points such that the likelihood function

is maximized. However, it still lacks a computationally efficient algorithm especially when k is large.

In this section, we present a new algorithm to address the problem of performing multiple

change points detection within a Bernoulli-variable sequence. An exhaustive searching procedure

is proposed but with relatively feasible time complexity. The idea is motivated by HFS [59] which

was designed to detect dynamics phase shifts from one episode to another in financial data. By

tracking the recurrence of 1’s in the time axis, observations are partitioned into disjoint segments

with different emergence intensities in a fashion of dynamic programming. Thus, change points

between adjacent segments are detected such that the likelihood or penalized-likelihood functions

are maximized.

4.2.2. Multiple Change Points Searching Algorithm. For simplicity of computation, we

only consider the situation in which change point locates at the emergence position of 1’s. Suppose

that the number of 1’s in the i-th segment is Mi, so the total number of 1’s is M =
∑k+1

i=1 Mi and

the total number of 0’s is N −M . By further supposing that the recurrent time can be 0 if two
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1’s appear consecutively, and R1 = 0 if E1 = 1, and RM+1 = 0 if EN = 1, the Bernoulli-variable

sequence can be represent by a sequence of recurrent time between consecutive 1’s, denoted as

{Rt}M+1
t=1 . Especially, there are Mi + 1 recurrent times in the i-th segment where Rt ∼ Geom(pi).

The task then becomes to search for the change points within the recurrent-time sequence.

The searching procedure is done by iteratively taking off the smallest number Rmin from the rest

Rt’s and combine the time points within Rmin. For example, if Rmin is the recurrent time between j

and j′, we combine the locations from (j+1) to j′ as a time window, denoted as w(j+1)→j′ . Here, we

suppose that Ej = 1, Ej′ = 1, and Et = 0 for t ∈ (j, j′). In the next step, if the smallest Rt is taken

from the recurrent time between j′ and j′′, a new time window is recorded from (j′+1) to j′′, named

w(j′+1)→j′′ . We can further combine the two consecutive time windows w(j+1)→j′ and w(j′+1)→j′′ into

w(j+1)→j′′ . Indeed, we iteratively merge a pair of nearest 1’s at each step and update the recorded

time windows according to their connectivity. The recorded time windows contain recurrent time

with relatively smaller values, which corresponds to a period with high frequency of 1’s. Hence, the

boundaries of the time windows can be extracted as potential change point locations that partition

the observations into segments with low and high Bernoulli parameters.

So far, the algorithm works very similarly to the hierarchical clustering with a single-linkage,

by merging two closest single 1’s or two groups from bottom to top. However, it is known that this

greedy algorithm does not guarantee global optimization. Our remedy is to set a tuning parameter

C∗ to control the minimal length of the recorded high-intensity segments. Additionally, we count

the number of Rt absorbed within each recorded time window. Continuing with the above example,

the count of recurrent time for window w(j+1)→j′ and w(j+1)→j′′ is denoted as C(j+1)→j′ = 1 and

C(j+1)→j′′ = 2, respectively. The recorded time window, for example, w.→.. is regarded as a high-

intensity segment only if its count C.→.. is greater than the threshold C∗. Hierarchical clustering

with a single-linkage is just a special case that C∗ = 0. Another most extreme case is when C∗ = M ,

so there is no period having a count number above C∗, thus no change point exists. Without any

prior knowledge about the minimal length of the segments, we run over all the choice of C∗ starting

from 0 to M to generate all possible partitions. The optimum is returned to fit the Bernoulli or

Geometric observations best.
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Suppose the observations are partitioned into k̃ + 1 segments via k̃ time window boundaries or

change points τ̃1, ..., τ̃k̃. The Bernoulli parameter p̃i between τ̃i−1 and τ̃i can be estimated by MLE

ˆ̃pi = {# of 1′s ∈ (τ̃i−1,τ̃i)}
τ̃i−τ̃i−1

. To measure the goodness-of-fit, model selection is done by maximizing

log-likelihood function within each segment, while penalizing the number of change points k and

related estimation parameters. The penalized function or loss can be written by,

(4.1) L(τ̃1, ..., τ̃k̃) = −2
k̃+1∑
i=1

∑
t∈(τ̃i−1,τ̃i)

[Etlog ˆ̃pi + (1− Et)log(1− ˆ̃pi)] + φ(N)Qk̃

where Qk is the total number parameters; φ(N) is the penalty coefficient; φ(N) = 2 for AIC and

φ(N) = log(N) for BIC.

Suppose that W (.) is a mapping that records the corresponding time window of Rt. For ex-

ample, W (Rt) = w(j+1)→j′ where Rt is the recurrent time between j and j′. It is marked that the

segmentation and the loss function can be updated based on the results in the last step. After ap-

plying a big loop cycling through C∗ from 0 to M , the total time complexity now becomes O(M2).

As a result, an optimal window set is returned, so the change points locations are estimated by their

boundaries. The multiple change points searching algorithm is described in Algorithm 4.

Algorithm 4

Input: unmarked recurrence time {Rt}t and a threshold C∗

Loop: cycle Rt through order statistics R(1), R(2), ..., R(M+1)

1. Initial an empty set W recording the high-intensity time windows

2. Consider 4 “if” conditions and obtain a new window w,

a. If neither Rt−1 or Rt+1 is marked:

w = W (Rt)

b. If Rt−1 is marked but Rt+1 is not:

merge W (Rt−1) and W (Rt) into one window,

w = {W (Rt−1)
⋃
W (Rt)}

c. If Ri−1 is not marked but Rt+1 is:
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merge W (Rt) and W (Rt+1) into one window,

w = {W (Rt)
⋃
W (Rt+1)}

d. If both Rt−1 and Rt+1 are marked:

merge W (Rt−1), W (Rt), and W (Ri+1) into one window,

w = {W (Rt−1)
⋃
W (Rt)

⋃
W (Ri+1)}

3. Update the recorded window set W with w and mark Rt.

4. If window length |w| is greater than C∗:

extract the boundaries of windows in W as τ̃1, ..., τ̃k̃

update loss function L(τ̃1, ..., τ̃k̃)

Output: optima boundaries τ̂1, ..., τ̂k̂

4.3. MCP for multivariate time series

A large part of change point detection literature deals with continuous observation. In this

section, we firstly proposed an encoding approach to categorize continuous time series into multiple

Bernoulli sequences, and then analyze change points embedded within the multivariate process. The

idea of categorizing real-value observations aims to extract more relevant information and filter out

noise. It is claimed that the proposed approach is robust to encode any underlying distributions

and is easily generalized to either categorical or continuous observations.

4.3.1. Encoding continuous time series. In the analysis of single stock returns, the authors

in [59] utilized a pair of thresholds to mark absolutely large stock returns as 1 and 0 otherwise, then

revealed the volatility pattern behind the resultant 0-1 sequence. The encoding process is written

as

(4.2) Et =


1 Xt ≤ α-quantile, Xt ≥ β-quantile

0 Otherwise

where {Et}t is an excursion sequence by marking the stock returns. Later, authors in [119] proposed

an encoding method to explore the local dependence of observations whenXt ∈ Rp. Following up the
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idea, we partition Rp space into V disjoint subarea, denoted as B(v) for v = 1, 2, ..., V , and transform

the continuous observations {Xt}Tt=1 into V Bernoulli sequences or a V -dimensional multinominal

process {(E(1)
t , E

(2)
t , ..., E

(V )
t )}Tt=1, such that

(4.3) E
(j)
t =


1 Xt ∈ B(j)

0 Otherwise

Here, subarea B(j) plays an important role to reserve the change-point pattern into a Bernoulli

process. Denote the Bernoulli parameter in the i-th segments of {E(j)
t } as p

(j)
i . So,

(4.4) p
(j)
i =

∫
B(j)

dFi

where Fi corresponds to the CDF of {Xt}t in the i-th time segments. Consider two consecutive

homogeneous time segments i and i + 1. The change point detection becomes easier if p(j)
i is

far apart from p
(j)
i+1, and vice versa. There is actually a tradeoff between the size and the total

number of the subareas. Larger number of subareas with smaller size can discover the distributional

difference more precisely but with sacrifice of the power of statistics due to the reduced sample

size. In the following subsections, we would assume that V is fixed and B(j) are determined. The

implementation of the encoding procedure is discussed in Section 4.5.

4.3.2. Single Change Point Detection. Starting with a simplest setting, let’s assume that

there exists a single change point at τ∗. Specifically, {Xt}τ
∗
t=1

iid∼ F1 and {Xt}Nt=τ∗+1
iid∼ F2 where F1

and F2 are two unknown CDFs. The goal is to test the homogeneity between the two sample sets.

Following the encoding procedure above, we obtain a multinomial process {(E(1)
t , E

(2)
t , ..., E

(V )
t )

′}Nt=1

where {E(j)
t }τ

∗
t=1 ∼ Bern(p

(j)
1,τ∗) and {E(j)

t }Nt=τ∗+1 ∼ Bern(p
(j)
2,τ∗).

Robbins et al. [97] extent the multivariate CUSUM statistics with uncorrelated components to

the multinomial settings and derived its asymptotic distributions under the null hypothesis. The

estimators of Bernoulli parameters at a hypothesized time location τ is defined by

(4.5) p̂
(j)
1,τ =

τ∑
t=1

1{E(j)
t = 1}/τ
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and

(4.6) p̂
(j)
2,τ =

N∑
t=τ+1

1{E(j)
t = 1}/(N − τ)

for j = 1, 2, ..., V . Then, a chi-square statistic proposed by [97] is written as,

χ2
τ =

V∑
j=1

(
∑τ

t=1 1{E
(j)
t = 1} − p̂(j)

1,τ )2

p̂
(j)
1,τ

+
(
∑N

t=τ+1 1{E
(j)
t = 1} − p̂(j)

2,τ )2

p̂
(j)
2,τ

Moreover, if there exists no change point under the null hypothesis, the maximally selected chi-

square statistics χ2
τ̂ converges to a Brownian motion asymptotically.

4.3.3. Multiple Change Points Detection. Now, we consider multiple change point detec-

tion when number of change point k is known. Suppose the change point locations are 0 = τ∗0 <

τ∗1 < ... < τ∗k < τ∗k+1 = N . Specifically, {Xt}
τ∗i+1

t=τ∗i

iid∼ Fi for i = 0, 1, ..., k, and consecutive CDFs Fi

and Fi+1 are different. A naive method to search for O(Nk) possible change point locations is com-

putationally intractable. Bisection procedure as in [90,118], dynamic programming [51], or the one

we proposed in Algorithm 4 can work for the purpose. It is claimed that our searching algorithm

is favorable in exploring the global optima, but it is designed only adapting to a single-dimensional

Bernoulli-variable sequence.

A divide-and-concur approach is proposed as a remedy to the multivariate problem. Denote

{E(j)
t }Nt=1 as the j-th Bernoulli process after encoding the observations via B(j), and p

(j)
i as the

true parameters of E(j)
t defined by (4.4). We firstly apply Algorithm 4 to estimate the change

point locations within {E(j)
t }, for j = 1, 2, ..., V , respectively. Suppose the estimated change point

locations in the j-th sequence is 0 = τ̂
(j)
0 < τ̂

(j)
1 < τ̂

(j)
2 < ... < τ̂

(j)

k̂(j)
< τ̂

(j)

k̂(j)+1
= N . Note that

the number of change points k̂(j) does not necessarily equals k. It should depend on the way that

we encode the observations and the choice of penalty coefficient in (4.1). So, the observations

are partitioned into k̂(j) + 1 segments and within-segment points are sharing the same estimator

of parameter. After that, a vector of length N is generated to record the estimated Bernoulli

parameter, denoted as {r̂(j)
t }Nt=1. Let p̂(j)

i be the estimated parameter when t is between τ̂ (j)
i−1 and
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τ̂
(j)
i , so

p̂
(j)
i =

∑τ̂
(j)
i+1

t=τ̂
(j)
i +1

1{E(j)
t = 1}

τ̂
(j)
i+1 − τ̂

(j)
i

for i = 0, 1, ..., k̂(j) and j = 1, 2, ..., V . Thus, there are τ̂ (j)
i − τ̂ (j)

i−1 duplicates of p̂(j)
i in {r̂(j)

t }Nt=1,

and r̂
(j)
t = p̂

(j)
i , for t ∈ (τ̂

(j)
i−1, τ̂

(j)
i ]. Repeating the above procedure through the V sequences,

we can eventually obtain a sequence of V -dimensional estimated parameters, denoted as {r̂t}t =

{(r̂(1)
t , r̂

(2)
t , ..., r̂

(V )
t )

′}t.

Generated by marking samples from subarea B(j), the Bernoulli-variable sequence E(j)
t partially

reserves the distributional changes from the raw observations. Indeed, the switching pattern of

Bernoulli-parameter recorded in r̂(j)
t ’s is relevant to the distributional changes, while some r̂(j)

t ’s or

at least some subsequences may work as irrelevant noise, especially, when
∫
B(j) dFi ∼=

∫
B(j) dFi+1.

An aggregation statistic is present to combine all pieces of information from j = 1, 2, ..., V , and

weight each {E(j)
t }Nt=1 according to its degree of relevance. In this section, we will treat every

sequence equally for theoretical purpose. The weighting procedure will be described in Section 4.5.

Different from the CUSUM statistics, we consider the within-group variance in {r̂t}t. Given k

hypothesized change point locations τ1, τ2, ..., τk, the statistic is written as,

(4.7) Ĝ(τ1, τ2, ..., τk) :=

k∑
i=0

τi+1∑
t=τi+1

||r̂t − r̄i||2

τi+1 − τi

where r̄i =
∑τi+1

t=τi+1 r̂t/(τi+1 − τi) for i = 0, 1, ..., k. Change point locations are then estimated as

the ones that minimize the within-group variance, so

(4.8) τ̂1, τ̂2, ..., τ̂k = argmin
τ1,τ2,...,τk

Ĝ(τ1, τ2, ..., τk)

It is shown in the next section that consistency holds for the statistic. Moreover, it is cheap in the

computation when k > 1. A hierarchical clustering algorithm with k + 1 clusters obtained can be

implemented to search for multiple change point locations.

Stack the estimated parameters {r̂t}Nt=1 in a N ×V design matrix denoted asM, in other words,

MN×V = [M(t, j)]t,j = [r̂
(j)
t ]t,j for t = 1, ..., N ; j = 1, ..., V
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A time-order-kept agglomerate hierarchical clustering algorithm is applied uponM to cluster time

locations (rows) with comparable V -dimensional covariables. We modify the classical hierarchical

clustering algorithm in the sense that only consecutive time points or groups are agglomerated at

each iteration, so the original time order is kept. A Wald’s type of linkage is applied for the purpose

of minimizing the within-group variance. As a result, k + 1 consecutive time point clusters get

returned, so k change point locations can be detected accordingly.

4.3.4. Consistency. We present the consistency of the estimated change point locations ob-

tained from our proposed procedure. It shows that if some of the likelihood-based estimators of

a single Bernoulli sequence are consistent, then the estimators derived by the aggregation statistic

in (4.7) can also converge the true change point locations. We firstly demonstrate the consistency

property in the case of a single change point and then do the same for the multiple change points

setting.

Suppose the true change point location is τ∗, so {E(j)
t }τ

∗
t=1 ∼ Bern(p

(j)
1,τ∗) and {E(j)

t }Nt=τ∗+1 ∼

Bern(p
(j)
2,τ∗). By definition,

(4.9) r̂
(j)
t =


p̂

(j)

1,τ̂ (j)
, t ∈ [1, τ̂ (j)]

p̂
(j)

2,τ̂ (j)
, t ∈ (τ̂ (j), N ]

where τ̂ (j) is the estimated change point locations in {E(j)
t }t. To prove the consistency, people

typically assume that the size of the two half time sequence cut by τ∗ goes into infinity as N →∞,

and the proportion of the first half converges to a constant γ∗ ∈ (0, 1), a.k.a. τ∗/N → γ∗ (N →∞).

The within-group variance of (4.7) at any proportion cut γ can be written as,

(4.10) Ĝ(γ) =

∑bNγc
t=1 ||r̂t − r̄1||2

bNγc
+

∑N
t=bNγc+1 ||r̂t − r̄2||2

N − bNγc

where r̄1 =
∑bNγc
t=1 r̂t
bNγc and r̄2 =

∑N
t=bNγc+1 r̂t

N−bNγc . The estimated change point location now becomes

(4.11) τ̂ = argmin
τ

Ĝ(τ/N)

in the finite-sample situation.
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The theorem below shows that if some of the estimators τ̂ (j) are consistent, then τ̂ consistently

converges to τ∗. Assume that if p(j)
1,τ∗ 6= p

(j)
2,τ∗ , then τ̂

(j)/N converges to γ∗ asymptotically; otherwise,

τ̂ (j)/N converges to 0 or 1 meaning no change point exists in {E(j)
t }t. We further assume that

there exist at least one encoded Bernoulli sequence such that p(j)
1,τ∗ 6= p

(j)
2,τ∗ . Without loss of the

generalization, we suppose that a change point exists in {E(j)
t }t for j = 1, 2, ..., u, and no change

point exists for j = (u+ 1), ..., V where 1 ≤ u ≤ V .

Theorem 4.3.1. Under the assumption above and furthermore, for any ε > 0,

P (|τ̂ /N − γ∗| < ε)→ 1

as N →∞.

Proof. Let γ̂(j) = τ̂ (j)/N . For any γ ∈ (0, 1), rewrite

Ĝ(γ) =
V∑
j=1

g(γ̂(j), γ)(p̂
(j)

1,τ̂ (j)
− p̂(j)

2,τ̂ (j)
)2

where

g(γ̂(j), γ) =
γ̂(j)

γ
(1− γ̂(j)

γ
)1{γ ≥ γ̂(j)}+

1− γ̂(j)

1− γ
(1− 1− γ̂(j)

1− γ
)1{γ < γ̂(j)}

For j = 1, ..., u, with the consistency of τ̂ (j), we can have

g(γ̂(j), γ)(p̂
(j)

1,τ̂ (j)
− p̂(j)

2,τ̂ (j)
)2 → g(γ∗, γ)(p

(j)
1,τ∗ − p

(j)
2,τ∗)

2

While for j = (u+ 1), ..., V , it shows

g(γ̂(j), γ)(p̂
(j)

1,τ̂ (j)
− p̂(j)

2,τ̂ (j)
)2 → 0

since g(0, γ) = g(1, γ) = 0. Therefore,

Ĝ(γ)→
u∑
j=1

g(γ∗, γ)(p
(j)
1,τ∗ − p

(j)
2,τ∗)

2 = g(γ∗, γ)||pu1,τ∗ − pu2,τ∗ ||2 = G(γ)

as N →∞, uniformly in γ. Let γ̂ = τ̂ /N . It follows that

Ĝ(γ̂) < Ĝ(γ∗)
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Additionally, the minimum value of g(γ∗, γ) is attained when γ = γ∗. For any ε > 0, there exists

η > 0, such that G(γ)−G(γ∗) > η, for all γ with |γ − γ∗| ≥ ε. Therefore,

P (|γ̂ − γ∗| > ε) ≤ P (G(γ̂)−G(γ∗) > η)

= P (G(γ̂)− Ĝ(γ̂) + Ĝ(γ̂)−G(γ∗) > η)

≤ P (G(γ̂)− Ĝ(γ̂) + Ĝ(γ∗)−G(γ∗) > η)

≤ P (|G(γ̂)− Ĝ(γ̂)| > η/2) + P (|Ĝ(γ∗)−G(γ∗)| > η/2)→ 0

as N goes into infinity. �

The assumption ensures that τ̂ (j) is a consistent estimator if a change point exists in {E(j)
t }t.

So long as u ≥ 1, the distributional discrepancy is captured by τ̂ . For a Bernoulli-variable sequence,

the change point analysis is relatively easier. One can test the existence of a single change point

and plug in a consistent estimator if reject.

In the more general case of multiple change points, suppose that the observations are inde-

pendent and distributed from k + 1 distributions {Fi}ki=0. Let τ∗i /N → γ∗i as N → ∞, and

0 = γ∗0 < γ∗1 < ... < γ∗k < γ∗k+1 = 1. Since {E(j)
t }t may only reserve partial information of the dis-

tributional discrepancy, the number of change points in {E(j)
t }t could be smaller than k and varies

for different j. By further assuming the existence of consistent estimator in the Bernoulli-variable

sequence, the theorem below shows the consistency of the aggregation statistic when the number of

change point k > 1.

Theorem 4.3.2. Define that Ci = {j : τ̂
(j)
i /N → γ∗i as N →∞}. Suppose that |Ci| ≥ 1 and τ̂ (j)

i

is none if j ∈ {1, ..., V }/Ci. Further assume that ζi+ζi+1 < τ∗i+1−τ∗i where ζi = maxj∈Ci |τ̂
(j)
i −τ∗i |,

for i = 1, ..., k. Then, for any ε > 0,

P ( max
i=1,...,k

|τ̂i/N − γ∗i | < ε)→ 1

as N →∞.
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Proof. Denote τ∗i = Nγ∗i . Consider a group of change point locations that τ̃i = τ∗i + ζi, for

i = 1, 2, ..., k. By the definition of ζi, it follows that

Ĝ(τ̃1, ..., τ̃k) ≤
k−1∑
i=0

∑
j∈Ci+1

2|τ̂ (j)
i − τ∗i |

τ∗i+1 − τ∗i
(1−

2|τ̂ (j)
i − τ∗i |

τ∗i+1 − τ∗i
)(p̂

(j)
i+1 − p̂

(j)
i )2

≤
k−1∑
i=0

|Ci+1|
2ζi/N

γ∗i+1 − γ∗i
(1− 2ζi/N

γ∗i+1 − γ∗i
)

Then, denote Θ = {(τ1, ..., τk) : maxi=1,...,k |τi/N − γ∗i | ≤ ε}. It shows that, for any ε > 0,

(*) P ( max
i=1,...,k

|τ̂i/N − γ∗i | ≥ ε) ≤ P (G(τ̂1, ..., τ̂k) ≤ min
(τ1,...,τk)∈Θ

G(τ1, ..., τk))

Moreover, since ζi is consistent to 0, uniformly in i, by the assumption. So,

P ( max
i=1,...,k

ζi > ε)→ 0

Therefore,

(*) ≤ P (G(τ̂1, ..., τ̂k) ≤ min
(τ1,...,τk)∈Θ

G(τ1, ..., τk)|max
i
ζi < ε)P (max

i
ζi < ε)

+ P (G(τ̂1, ..., τ̂k) ≤ min
(τ1,...,τk)∈Θ

G(τ1, ..., τk)|max
i
ζi ≥ ε)P (max

i
ζi ≥ ε)

≤ P (G(τ̂1, ..., τ̂k) ≤ G(τ̃1, ..., τ̃k)) + P (max
i
ζi ≥ ε)

→ P (G(τ̂1, ..., τ̂k) ≤ 0) + 0 = 0

as N goes into infinity. �

The theorem requires that the estimator is consistent if it exists, and there exists at least one

estimator over the V Bernoulli sequences according to a true change point. Though the assumption

is strong theoretically, we actually transform the change point detection for unknown underlying

distributions into an analysis of a Bernoulli-variable sequence. The task becomes easier since an

explicit likelihood function exists without further assumption of the distribution family. So, para-

metric approaches is involved and fitted under the framework. In practice, the searching algorithm

advocated in Algorithm 4 can be employed to detect the change points for each Bernoulli process.
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Another advantages by applying the encoding-and-aggregation is that the error rate of change point

detection can get controlled at the same time, which is present in the next section.

4.4. Stability Change Point Analysis

Finally, it comes to the most general case that the number of change points and their locations

are unknown. The current approaches can be divided into two types: model selection and multi-stage

testing. A searching algorithm is usually applied in conjunction with a model selection procedure to

explore a possible number of change points starting from 1 to a large number. Multi-stage testing

is conducted to test the null hypothesis of no additional change point needed by inserting another

change point at each stage. However, none of the approaches provides a control for the discovery

error of the change point detection. Indeed, the result is sensitive to the objective function of model

selection or the significance level in multi-stage testing.

4.4.1. The Stability Detection Method. In this section, we borrow the idea of stability

variable selection and propose a robust change point detection framework, named stability detec-

tion. Stability selection was firstly advocated by [84] to enhance the robustness and control the

false discovery rate of variable selection. Half of the samples are randomly selected to feed into a

base model at each iteration. The relevant variables are ultimately discovered based on the votes

aggregated over all the variable selection results. Later on, authors in [14] extent the stability

selection by sampling disjoint subsets of samples.

Similar to the strategy of subsampling, we select but not randomly a subset of samples in B(j) to

generate a Bernoulli sequence, and then estimate the number and locations of change points within

each of the Bernoulli sequences, respectively. By treating each time location as a variable, the

stability selection framework can be employed here to aggregate the estimated change points over

B(j) for j = 1, 2, ..., V . The successive change points are the ones with votes or selected probability

above a pre-determined threshold. However, it could be unrealistic to break down the chronological

order and treat each time point as separate from others. The locations near the true change points

are considered as acceptable results.

Denote that S(j) is a set of change points detected based on Bernoulli sequence {E(j)
t }t, and

p(j)(t) is the probability that a time point t is selected, i.e. p(j)(t) = P (t ∈ S(j)). After aggregating
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all the change points sets S(j) for j = 1, 2, ..., V , the probability of selection for time point t is

defined by

(4.12) ΠV (t) =

∑V
j=1 1{t ∈ S(j)}

V

Then, we can obtain the output of stability change point detection by thresholding the quantity

with a threshold π ∈ (0, 1),

(4.13) SVπ = {t : ΠV (t) ≥ π}

4.4.2. Error Control. To evaluate the false discovery rate, we need to define the noisy time

points that we should exclude from the admissive set. Especially, we believe that time points around

the truth change point τ∗ are admissive, but time points far away from τ∗ should get excluded.

Define A = {t : t ∈ (τ∗i − wA, τ∗i + wA) i = 1, 2, ...} as a set of admissive change points including

true change points and their close neighbors. Here, wA is an admissive window width and it can

change over i. Similarly, define N = {t : t /∈ (τ∗i − wN , τ∗i + wN ) i = 1, 2, ...} as a set of noisy time

points which is outside from the neighbors of the true change points where wN is a noisy window

width. Note the window width wA can be narrower than wN , such that A ⊂ NC . Suppose that

the following assumptions hold for appropriate wA and wN .

(1)
∑V

j=1 p
(j)(t)/V are identical for any t ∈ N ,

(2)
∑V

j=1 p
(j)(t)/V are identical for any t ∈ A.

Here, we assume that the noisy time points have the same expected probability to be selected, and

so do the admissive time points. Under these assumptions, the next theorem is shown to bound the

expectation of false positive rate or false negative rate of change point detection, depending on the

choice of threshold π.

Theorem 4.4.1. Under the assumption (1) and (2), denote pVN =
∑V

j=1 p
(j)(t)/V for t ∈ N

and pVA =
∑V

j=1 p
(j)(t)/V for t ∈ A. Let π ∈ (0, 1) be the selection threshold.

For any 0 < ξ < 1/pVN − 1, if π > (1 + ξ)pVN we have

(4.14)
E[|SVπ ∩N|]
|N |

≤
1− (1 + ξ)pVN
π − (1 + ξ)pVN

exp(− ξ2V

ξ + 2
pVN )
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For any 0 < ξ < 1, if π < (1− ξ)pVA we have

(4.15)
E[|(SVπ )C ∩ A|]

|A|
≤

(1− ξ)pVA
(1− ξ)pVA − π

exp(− ξ2V

ξ + 2
pVA)

Proof. For any 0 < ξ < V/
∑V

j=1 p
(j)(t) − 1, denote πN = (1 + ξ)

∑V
j=1 p

(j)(t)/V , so that

πN ∈ (0, 1).

It is easy to show that ΠV (t) ≤ (1− πN )1{ΠV (t) ≥ πN }+ πN for a fix t ∈ {1, 2, ..., N}. Thus,

P (ΠV (t) ≥ π) ≤ P ((1− πN )1{ΠV (t) ≥ πN }+ πN ≥ π)

= P (1{ΠV (t) ≥ πN } ≥
π − πN
1− πN

)

≤ 1− πN
π − πN

P (ΠV (t) ≥ πN )

=
1− πN
π − πN

P (
V∑
j=1

1{t ∈ S(j)} ≥ (1 + ξ)
V∑
j=1

p(j)(t))

The last inequality holds based on Markov’s inequality and the condition that π > πN .

Moreover, 1{t ∈ S(j)} are independent for j = 1, 2, ..., V . It holds because that we select disjoint

samples to make up {E(j)
t }t so for a fixed time t, its selection does not reply on the iteration index

j. The resultant probability can be further bounded via Chernoff upper bound,

P (
V∑
j=1

1{t ∈ S(j)} ≥ (1 + ξ)
V∑
j=1

p(j)(t)) ≤ exp(− ξ2

ξ + 2

V∑
j=1

p(j)(t))

Hence,
E[|SVπ ∩N|]
|N |

=

∑
t∈N P (ΠV (t) ≥ π)

|N |

≤
∑
t∈N

1− πN
π − πN

exp(− ξ2

ξ + 2

V∑
j=1

p(j)(t)) / |N |

By further assuming identical
∑V

j=1 p
(j)(t) for t ∈ N , we can cancel N for both numerator and

denominator, so the inequality (4.14) is obtained. Inequality (4.15) can be proved similarly via the

lower bound of Chernoff’s. �

As the bound of false positive rate or false negative rate decays with V , we are tempting to

choose the number of iterations as large as possible. But it will significantly harm the power of
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change point detection due to the reductive sample size of the recurrent times. In order to control

the false discovery rate from both sides, one should increase the signal-selection rate pVA and decrease

the noise-selection rate pVN . It is ideal to set threshold in between, (1 + ξ)pVN < π < (1 − ξ)pVA.

Recall the definition of the selection set S(j) := {τ̂ (j)
i , i = 1, ..., k̂(j)} where τ̂ (j)

i is the i-th estimator

of the j-th Bernoulli sequence. Then, pVA can be simplified by
∑V

j=1 P (τ̂
(j)
i ∈ (τ∗i −wA, τ∗i +wA))/V .

Thus, with a fixed width of wA, a good estimator τ̂ (j)
i is favored so that it is close the true change

point location with a higher probability.

Another way to increase pVA is to sightly expand the selection set S(j), that is to say, selecting

the estimators and their neighbors. So, S(j) = {t : t ∈ neig(τ̂
(j)
i ), i = 1, ..., k̂(j)}. A wider neighbor

set neig() is better in adsorbing admissive change points but endures the risk of involving noise. In

the change point analysis of a sequence of Bernoulli variables, it is illustrated in Section 4.3 that a

change point is estimated at the locations of 1’s. A conservative way of expanding the selection set

is to involve the estimator and the locations between the last and the next 1’s.

4.5. Subsampling and Weighting Strategy

From an application perspective, there are still two real problems to be addressed. Firstly,

how to generate a series of subarea {B(j)}j=1,...,V in the encoding phase. Secondly, how to weight

the contribution for each encoded Bernoulli sequence {E(j)
t }t based on its degree of relevance. A

follow-up question is that how to measure the goodness-of-fit for each {E(j)
t }t and weighting their

contributions accordingly. In this section, we resolve both problems via a subsampling weighting

technique.

To address the first one, a natural way is to apply clustering analysis to obtain V disjoint clusters

as {B(j)}. But it raises another problem related to the robustness of a different number of clusters

and the second question becomes even hard due to the unbalanced cluster size. Model selection

criterion in (4.1) can be used to measure the goodness-of-fit if the cluster sizes are balanced. To

ensure robustness and efficiency, we attempt to generate a larger number of clusters but with fixed

cluster size, so overlappings are present here. Our numerical experiments show that the method is

not sensitive to the choice of V . It is advocated to choose a larger number V = 50 with a fixed

subsampling proportion M/N = 0.1, so a sample is expected to be selected 5 times.
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Denote X = [X1, X2, ..., XN ]
′ as a N×pmatrix recording the time series {Xt}Nt=1 whereXt ∈ Rp.

The subsampling algorithm is described as follows. We firstly apply K-Means upon X to get V cluster

centroids. Then, cycle through every centroid to search for its M nearest neighbors in X. We mark

the M samples as 1 and the other N −M as 0 at each iteration, so V Bernoulli sequences get

returned. If without confusion, let’s denote the M marked samples in the j-th step as B(j).

Since the weight is inversely proportional to the model selection criterion values or loss in (4.1),

one can consider a mapping function F : R 7→ R to scale the quantity,

F(x) = 1− x−min(x)

max(x)−min(x)

so, the weight w(j) measuring the importance of j-th Bernoulli sequence is defined by,

(4.16) w(j) =
F(L(j))∑V
j=1F(L(j))

where L(j) = L(τ̂
(j)
1 , τ̂

(j)
2 , ...) is the loss of the j-th sequence. Thus, a N × V weighted design

matrix Mweighted is fed into the time-order-kept hierarchical clustering algorithm mentioned in

Section 4.3.3,

(4.17) Mweighted =MN×V × diag(w(1), ..., w(V ))

Another weighting technique is based on the iterative weighting algorithm proposed in [119].

In the simple case that only one change point exists within a Bernoulli process, it is hard or even

impossible to detect the parameter change if the two Bernoulli parameters are too close. Indeed,

one can qualify the goodness-of-fit via the difference between p(j)
1,τ∗ and p

(j)
2,τ∗ or the estimated delta

|p̂(j)
1,τ̂ − p̂

(j)
2,τ̂ | in practice. If we assume that the size of the two segments is equal, the estimated delta

is then simplified by measuring the proportion of the two recovered segments in B(j). The more

purity of B(j), the better E(j)
t can be fitted. It enlightens us to measure the Shannon entropy in

B(j) as an approximation when k > 1.

Denote the weight of the j-th sequence at the current step as w(j)
c and the entropy of set B(j)

at the current step as Hc(B
(j)). We can iteratively apply clustering algorithm upon the weighted

matrix in (4.17) and update the the entropy Hc(B
(j)) based on the recovered segments in the current
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step. So, the weight in the next step can be updated by

(4.18) w
(j)
c+1 = 0.5 w(j)

c + 0.5
F(Hc(B

(j)))∑V
j=1F(Hc(B(j)))

iteratively until convergence. Here the 0.5 is set to smooth the learning curve and make the sum of

weights equal 1.

4.6. Numerical Experiment

In this section, we simulate various univariate and multivariate distributions with a known and

unknown number of change points to illustrate our model performance.

When k is known, the time-order-kept hierarchical clustering algorithm is implemented with the

weighting techniques proposed in (4.16) and (4.18). To differentiate the two weighting techniques, we

denote (4.16) as ‘simple weighting’ and (4.18) as ‘iterative weighting’. We compare the performance

of our approaches with other nonparametric methods: E-Divisive by [83], Kernel Multiple Change

Point(KernelMCP) by [100], and MultiRank by [1]. For the fairness of the comparison, all the

procedures are conducted with the number of change point k known. The results are reported in

Section 4.6.1 and Section 4.6.2 for univariate and multivariate settings, respectively. When k is

unknown, since it is hard to quantify the false discovery rate, only stability detection is applied in

Section 4.6.3.

Our method was implemented with V = 50, cluster proportion M/N = 0.1, and φ(N) = 2

(AIC). In the iterative weighting, we further set iteration number R = 150 and stop criteria when

the weights do not change for 10 steps. E-Divisive was implemented via ecp package with the tuning

parameter α = 1, R = 499 which was advocated in the paper. KernelMCP was implemented by

Python package named Chapydette using the default setting (Gaussian kernel with the Euclidean

distance, bandwidth = 0.1, and α = 2). For MultiRank, we implement R codes provided in the

supplementary file of [83].

To quantify the performance of a change point detection result, we calculate the Adjusted Rand

Index(ARI) [71] between the recovered segments and the true segments. Rand Index(RI) [96]

was originally used to measure the similarity between two data clustering results. As a corrected

version of RI, ARI was designed to adjust for the chance of grouping elements. An ARI value of
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1 corresponds to a perfect result, while negative or 0 values imply that the recovered segments are

different from the underlying segments.

4.6.1. Univariate Simulation. In this section, we simulate univariate distributions with dif-

ferent variance or tailedness. Three data segments are generated sequentially with distributions

N (0, 1), G, N (0, 1), respectively. For changes in variance, G ∼ N (0, σ2); and for changes in tailed-

ness, G ∼ tdf (0, 1). Unbalanced segments are generated with the sample size n, 2n, n, respectively.

The size n is also varied n = 100, 200, 300 while the proportion for the three segments are kept the

same.

Given the number of change points, ARI values as recovery accuracy are compared for the pro-

posed approaches, E-Divisive, KernelMCP, and RankMCP in Table 4.1 and Table 4.2. Results show

that E-Divisive outperforms others in the setting of changes in variance. The overall performance is

worse in the setting of changes in tailedness, but the iterative weighting approach performs slightly

better than others. KernelMCP takes advantage if G is Gaussian distributed but fails otherwise.

It shows that the kernel-type method is very sensitive to the choice of kernel. As a nonparametric

approach designed for changes in mean, RankMCP consistently fails in both settings.

It is remarked that our approach is implemented under unfavorable conditions since we attempt

to clustering univariate observations with large cluster numbers. Indeed, the encoding phase can

be modified accordingly by applying quantile thresholds and marking extreme observations below

or above the thresholds. More discussions about encoding a single-dimensional process are referred

to [120].

Table 4.1. ARI values in univariate Gaussian setting

univariate distribution with changes in variance
n σ simple weighting iterative weighting E-Divisive KernelMCP RankMCP
100 1.5 0.4216 (0.1668) 0.5308 (0.1883) 0.5122 (0.2118) 0.3146 (0.1888) 0.3341 (0.1012)

2 0.6239 (0.1993) 0.6463 (0.1677) 0.8214 (0.1999) 0.5248 (0.3274) 0.3253 (0.0832)
4 0.8179 (0.1372) 0.7634 (0.1242) 0.9724 (0.0382) 0.9510 (0.0784) 0.3281 (0.0782)

200 1.5 0.5852 (0.2208) 0.6808 (0.1911) 0.6697 (0.2706) 0.4355 (0.2601) 0.3068 (0.1085)
2 0.7788 (0.1381) 0.7653 (0.1367) 0.9536 (0.0605) 0.8942 (0.1554) 0.3208 (0.0878)
4 0.9184 (0.0425) 0.8821 (0.0850) 0.9872 (0.0176) 0.9815 (0.0157) 0.3246 (0.0798)

300 1.5 0.7311 (0.1747) 0.7674 (0.1586) 0.7905 (0.2393) 0.6048 (0.3100) 0.3429 (0.0933)
2 0.8375 (0.1019) 0.8189 (0.1054) 0.9758 (0.0274) 0.9610 (0.0338) 0.3449 (0.0861)
4 0.9440 (0.0311) 0.9243 (0.0480) 0.9935 (0.0078) 0.9889 (0.0088) 0.3449 (0.0861)
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Table 4.2. ARI values in univariate student-t setting

univariate distribution with changes in tailedness
n df simple weighting iterative weighting E-Divisive KernelMCP RankMCP
100 1 0.5527 (0.2242) 0.6426 (0.1780) 0.6880 (0.2533) 0.2764 (0.1630) 0.3297 (0.1110)

2 0.3742 (0.1582) 0.4930 (0.1980) 0.4542 (0.1851) 0.2930 (0.1488) 0.2954 (0.0944)
5 0.3045 (0.1380) 0.3910 (0.1316) 0.3767 (0.1139) 0.2564 (0.1380) 0.3194 (0.1247)

200 1 0.7695 (0.1585) 0.7762 (0.1407) 0.8419 (0.2123) 0.3391 (0.2089) 0.3205 (0.0879)
2 0.4332 (0.2181) 0.6097 (0.1824) 0.5055 (0.2267) 0.2672 (0.1648) 0.3212 (0.0967)
5 0.2887 (0.1254) 0.3696 (0.1666) 0.3606 (0.1204) 0.2401 (0.1600) 0.2899 (0.1280)

300 1 0.8395 (0.0926) 0.8220 (0.1065) 0.8927 (0.1709) 0.4675 (0.2891) 0.3325 (0.1010)
2 0.5010 (0.2481) 0.6605 (0.2129) 0.6547 (0.2564) 0.3026 (0.1965) 0.3288 (0.1191)
5 0.3101 (0.1211) 0.4263 (0.1713) 0.3484 (0.1237) 0.2655 (0.1494) 0.2890 (0.1166)

4.6.2. Multivariate Simulation. Following the generation step above, we simulate multivari-

ate observations in this section. The observations are distributed from Nd(0, I), Nd(0,Σ), Nd(0, I),

respectively. In the first part, we consider binormal distributions, in which Σ =

1 ρ

ρ 1

 with dif-

ferent correlation ρ. The ARI values for E-Divisive and KernelMCP are compared in Table 4.3.

Given a moderate ρ value, it shows that the weighting procedures have comparable ARI values and

outperform E-Divisive and KernelMCP. When ρ is extremely large and the sample size is greater,

the binormal distribution actually degrades to an univariate Gaussian, which explains why the ARIs

of E-Divisive and KernelMCP come from behind at ρ = 0.9 and n = 300.

In the second part, we simulate observations with dimension d = 3, 5, 10. Since KernelMCP is

not easily adoptive when the dimension is more than 2, we only compare the performance of simple

weighting, iterative weighting, and E-Divisive. Two types of Σ are imposed for the generation.

Σ1 is set with diagonal elements 1 and off-diagonal elements ρ; Σ2 is set with diagonal elements

1 and ±1-off-diagonal elements ρ. Table 4.4 shows that the simple weighting is more favorable in

identifying the change point locations in the case of Σ1; in the more complicated case of Σ2, the

iterative weighting performs the best.

4.6.3. Simulation for Stability Detection. Stability detection is applied when the number

of change points is unknown. Suppose we encode the continuous observations into V Bernoulli

sequence components, so there are V change point sets obtained in total. Instead of weighting each

voting set equally, we involve the simple weighting techniques and weight the votes according to the

goodness-of-fit.
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Table 4.3. ARI values in 2-dim Gaussian setting

2-dim Gaussian with changes in correlation
n ρ simple weighting iterative weighting E-Divisive KernelMCP
100 0.5 0.3673 (0.1593) 0.4671 (0.1531) 0.3904 (0.1303) 0.2862 (0.1458)

0.7 0.4726 (0.1935) 0.5542 (0.1862) 0.4309 (0.1695) 0.2877 (0.1411)
0.9 0.6993 (0.1882) 0.6612 (0.1803) 0.5985 (0.2550) 0.3453 (0.2032)

200 0.5 0.3982 (0.1830) 0.5386 (0.1950) 0.3960 (0.1592) 0.2776 (0.1533)
0.7 0.7186 (0.1790) 0.6535 (0.1912) 0.5025 (0.2340) 0.2944 (0.1494)
0.9 0.8316 (0.1435) 0.7665 (0.1409) 0.8614 (0.2108) 0.6924 (0.2816)

300 0.5 0.5171 (0.2343) 0.5809 (0.2228) 0.3897 (0.1643) 0.2872 (0.1435)
0.7 0.8209 (0.1099) 0.7311 (0.1558) 0.7013 (0.2852) 0.3196 (0.1411)
0.9 0.8753 (0.1188) 0.8160 (0.1233) 0.9461 (0.1403) 0.9305 (0.1404)

Table 4.4. ARI values in d-dim Gaussian setting

d-dim Gaussian with off-diagonal correlation 0.5 d-dim Gaussian with ±1-off-diagonal correlation 0.5
n d simple weighting iterative weighting E-Divisive simple weighting iterative weighting E-Divisive
100 3 0.4074 (0.1965) 0.5520 (0.1855) 0.4505 (0.1772) 0.3805 (0.1565) 0.5276 (0.2014) 0.4367 (0.1673)

5 0.5660 (0.2095) 0.6364 (0.1760) 0.4704 (0.2018) 0.4056 (0.1904) 0.5160 (0.1836) 0.4222 (0.1581)
10 0.7826 (0.1595) 0.7132 (0.1785) 0.5777 (0.2563) 0.3919 (0.1426) 0.5362 (0.1913) 0.4306 (0.1641)

200 3 0.5056 (0.2296) 0.6500 (0.2027) 0.4281 (0.1976) 0.5013 (0.2267) 0.5899 (0.1859) 0.4041 (0.1802)
5 0.8078 (0.1312) 0.7706 (0.1649) 0.6051 (0.2646) 0.4594 (0.2090) 0.5977 (0.2101) 0.4419 (0.1849)
10 0.8819(0.0957) 0.8386 (0.1255) 0.7875 (0.2644) 0.4148 (0.1936) 0.6229 (0.1983) 0.4459 (0.1905)

300 3 0.6150 (0.2422) 0.7480 (0.1828) 0.5166 (0.2285) 0.6258 (0.2461) 0.6319 (0.2108) 0.4780 (0.2199)
5 0.8649 (0.0796) 0.8322 (0.1089) 0.8007 (0.2601) 0.5690 (0.2563) 0.6836 (0.2066) 0.5429 (0.2343)
10 0.8973 (0.0744) 0.8679 (0.1059) 0.9170 (0.1787) 0.5586 (0.2469) 0.7149 (0.1784) 0.4969 (0.2224)

Denote a binormal distribution N2(0,

 1 0.7

0.7 1

) as G2. In the first scenario, 3 binormal dis-

tributions are generated by N2(0, I), G2, N2(0, I) with sample size 300, 600, 300, respectively. In

the change point analysis of each Bernoulli sequence, model selection criterion is applied with a

different penalty coefficient φ(N). φ(N) is set from 2, a value corresponding to AIC, to log(N), a

value corresponding to BIC. We partition the time axis into disjoint time bins with the same length.

The probability of selection is then calculated based on the summed votes falling in each bin. It

shows that the results are not sensitive to the choice of penalty term. There are 6 or 7 curves always

above the others regardless of the penalty coefficient. Their corresponding time bins are marked in

Figure 4.1. The first and second bins are (320,360) and (360, 400) which are close to the first change

point located at 300; the third and fourth time bins (280,320) and (880,920) cover the true change

point locations. The probability of selection for all the time points are shown in Figure 4.2((A)
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for AIC and (B) for BIC). The two big spikes indicate that the number of change points is 2. By

further setting a threshold at 0.1, we can obtain two consecutive time windows containing the truth

change point locations.

(320,360)

(360,400)

(280,320)

(880,920)

(400,440)

(920,960)

AIC BIC

Figure 4.1. probability of selection with different penalty coefficient φ(N); different
time bins are plotted in different curves

Figure 4.2. (A) probability of selection with φ(N) = 2 as AIC; (B) probability of
selection with φ(N) = log(N) as BIC. True change point locations are plotted in
vertical lines

In the second scenario, we make the problem more complicated by generating 7 segments

N2(0, I), G2, N2(0, I), G2, N2(0, I), G2, N2(0, I) with equal sample size n. BIC is applied for

model selection of each Bernoulli sequence. There turns to be 6 obvious spikes after smoothing
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the probability curve. Especially, when n increases to 500, the local maximas can almost perfectly

detect the true change points.

Indeed, stability detection gives a new perspective to discover the number of change points

and measure the confidence bound simultaneously. To estimate the change point locations, one

can search for the topk local maxima or go back to the hierarchical clustering procedure with an

estimated change point number k. Based on our experiment, the two estimation results are very

similar. We claim the consistency should also hold based on the result in Figure 4.3.

Figure 4.3. (A) probability of selection with n = 400; (B) probability of selection
with n = 500

4.7. Real Data Application

4.7.1. Genome Data. CpG dinucleotide clusters or ‘CpG islands’ are genome subsequences

with a relatively high number of CG dinucleotides (a cytosine followed by a guanine). They are

observed close to transcription start sites [101] and play a crucial role in gene expression regulation

and cell differentiation [18]. There were developed many computational tools for CpG island iden-

tification. A sliding window is typically employed to scan the genome sequence to figure out CpG

islands based on some filtering criteria. However, the criteria are set with subjective choice (G+c

proportion, observation versus expectation ratio, etc) and it has evolved over time. It commonly

happens that different CpG island finders would provide various results.

In this section, we implement our change point detection approach in the categorical nucleotide

sequence. We believe that the proposed algorithm is able to detect an abrupt change in C-G

patterns, and the estimated change point locations may help researchers to identify potential CpG

islands. A contig (accession number NT_000874.1) on human chromosome 19 was taken as an
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example for CpG island searching. The dataset is available on the website of National Center for

Biotechnology Information(NCBI).

Denote the genome sequence as {Xt}Nt=1 with Xt ∈ {A,G, T,C}. In the encoding phase, a 0-1

sequence {Et}t is generated such that Et = 1 if Xt = C&Xt+1 = G and Et = 0 otherwise, for

t = 1, ..., N − 1. Algorithm 4 is implemented to search for multiple change points in the Bernoulli

sequence. Results from a CpG island searching software CpGIE [125] are shown as a benchmark

for comparison. Criteria advocated by the authors are employed in the usage of CpGIE (length

≥ 500 bp, G + C content ≥ 50% and CpG O/E ratio ≥ 0.60). Note that our algorithm does not

need any assumption or tuning parameter. The result in Figure 4.4 shows that there is a high

proportion of overlapping segments between ours and CpGIE’s. Our approach can also find extra

genome subsequence with a higher number of C-Gs which are misspecified by CpGIE.

sequence part1

sequence part2

sequence part3

sequence part4

Figure 4.4. encoded DNA sequence-CG dinucleotides are marked in black; the
CpG islands discovered by CpGIE are marked in green; the estimated change point
locations are marked in red

4.7.2. Hurricane Data. It was widely recognized that the global temperature has risen due

to anthropogenic factors, such as increased carbon dioxide emissions and other human activities.

According to NOAA’s 2020 global climate report, the annual temperature has increased globally
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at an average rate of 0.14 degrees Fahrenheit per decade since 1880 and over twice that rate (0.32

degrees Fahrenheit) since 1981. It was argued by climatologists that the warmer sea surface leads

to an increasing number of stronger tropical cyclones [39,106]. However, it is claimed by [74] that

the warmer sear surface increases only weak cyclones which are short and even hard to be detected.

In this section, we studied the number of cyclones between 1851 and 2019. We are interested to

detect potential change points embedded within the tropical cyclone history.

The dataset HURDAT2 recording the activities of cyclones in the Atlantic basin is available on

the website of National Oceanic Center(NHC). NHC tracked the intensity of each tropical cyclone

per 6 hours every day (at 0, 6, 12, and 18). The intensity level is categorized based on wind strength

in knots, such as hurricane (intensity greater than 64 knots), tropical storm (intensity between 34

and 63 knots), tropical depression (intensity less than 34 knots). Different from [97] in categorizing

cyclones, we summarize the number of time units that a category is observed, so the count is at

most 4 × 31 in a month. The monthly frequency of tropical storm-level and higher-level cyclones

is reported in Figure 4.5(A). If we apply 5 change points which is detected by the local maxima

of stability detection in Figure 4.5(B), the time range is then partitioned based on the variation of

storm count. Figure 4.5(A) shows that storms are more active in the 1880s, 1960s and after 2000.

Though the global temperature trends to go upward since 1980, the storms are relatively sparse

between 1980 and 2000. Thus, we tend to believe that no firm conclusion can be made yet that

higher temperatures would increase the number of hurricanes.
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Figure 4.5. (A) monthly hurricane counts in Atlantic basin from year 1851 to 2019;
estimated change points are plotted in vertical lines. (B) probability of selection for
all the time points; local maximas are plotted in vertical lines
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4.7.3. Financial Data. Lastly, the proposed approach is applied to detect the abrupt time-

varying dependence within bivariate stock log returns. CTSH and IBM are chosen as representative

of IT Consulting subcategories of S&P500 based on Global Industrial Classification Standard(GICS).

The first and last hours in the transaction time are filtered out (so it is from 10am to 4pm), and

the hourly price returns are calculated in the business days of the year 2006. A constant is added

to the returns of CTSH for a better visualization in Figure 4.6(A), but the raw return series are

analyzed. It was noted that the lagged correlation statistics are not significant based on the sample

autocorrelation function of stock returns. Conditional heteroskedasticity can be studied by a more

complicated time series model, like GARCH, but it is out of our concentration.

We encode the bivariate time series and apply stability detection techniques. Figure 4.6(B)

shows that there exist 3 or 4 change points within the returns. The top3 change point locations

with the highest probability are marked by vertical lines in Figure 4.6(A). It shows that the returns

are partitioned into segments with different volatility levels. If we further look into the scatterplot

between CTSH and IBM under different time partitions (left, middle, right segments) in Figure 4.7,

both returns in the middle phase are relatively high, and their correlation is even stronger.
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Figure 4.6. (A) hourly index returns of CTSH and IBM in 2006; top3 change points
with the highest probability of selection are plotted in vertical lines. (B) probability
of selection for all time points
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Figure 4.7. scatterplot of returns of CTSH versus IBM; (A) observations on the
left segment; (B) observations on the middle segment; (C) observations on the right
segment

4.8. Conclusion

In the chapter, we have established a framework to encode a sequence of continuous observations

into several Bernoulli processes and proposed approaches for change point detection in univariate and

multivariate settings with or without a known number of change points. Theoretical work shows that

the proposed method can hold both asymptotic property and finite-sample error control. Numerical

and real experiments show that the approach is able to detect any type of distributional changes

and can be applied to categorical, ordinal, and continuous data. Furthermore, the computational

expense is reasonable with time complexity at the most expensive part O(VM2) or O(V N2), and

parallel programming is applicable to decrease the complexity to O(N2).
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CHAPTER 5

Gait Identification and Individuals’ Gait Dynamics

5.1. Introduction

It seems ordinary that we recognize our close friends and family members by their distinctive

walking “styles”, so-called signatures of gaits. With the complexity of neural and musculoskeletal

systems in mind [124], the gait dynamics is not at all simple. Unlike high speed camera, our eyes

surely miss all gait patterns of fine temporal scales. So, this ability of ours is not at all ordinary.

Even though we human are anatomically identical by sharing the same structural skeleton and

muscle constructs, and any gait dynamics must obey the universal biomechanics governing our

musculoskeletal system, what make up individual signatures of gaits as biometric traits is still not

yet well understood.

Majority of gait related research works is in the category of modeling-based gait analyses. The

whole gait dynamics is never the focus. Any model based on only a few characteristics of gait

dynamics typically not only is prone to make mistakes, but also difficult to apply to large number

of healthy people. For instance, many works mainly aim for either Parkinson disease predictions or

risk evaluations for the elderly [2,44,73,113,123]. Such top-down approaches are of limited used

for surveillance since they don’t embrace diverse spectra of gait characteristics. For instance, the

fuzzy finite state machine [5] needs to incorporate expert opinions and judgements for specifying

relevant states. Further transitions between states are governed by fuzzy logics [129].

Recently data collecting technologies have drastically evolved with recent advances in Micro-

electromechanical systems (MEMS), such as low-cost, light-weight, easy-to-use inertial measurement

units (IMU), such as accelerometer and gyroscope sensors [110]. These sensors nowadays are inte-

grated with mobile devices, which enable us to collect gait time series data outside of gait laboratory,

see figures of human wearing sensors in [69,89]. However, the capacity of precisely differentiating
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many subjects’ gait signatures and seeing a person’s multiscale gait dynamics in full are not yet

available in literature.

Figure 5.1. Gait time series data of subject #5 from four sensors: (A)Left foot;
(B)Waist; (C)Right foot; (D)Wrist. X−dimension is Red color-coded, Y−dimension
is Green and Z−dimension is Blue.

In this chapter, we develop computing and data-driven algorithms suitable for addressing two

questions. 1) How to find and embrace large and diverse spectra of gait characteristics for identifi-

cation purpose? 2) How to discover and recreate a person’s gait dynamics in full?

The first theme of our data-driven developments is to compute and find many principle directions

or vectors that implicitly capture many important aspects of above structural dependency-based

heterogeneity across many people. We consider one manifestation of structural dependency through

temporal patterns via a very simple and coarse coding scheme, called Principle System-State Anal-

ysis (PSSA). This dependency manifestation of coarse scale pattern is indeed very versatile for

classifying among all subjects. We conjecture that this kind of dependency manifestation is poten-

tially close to how our brains learn gait signatures.

As a complex system, and the intelligence of musculoskeletal system is embraced by its multi-

scale heterogeneity [10]. It is well known that any real “rhythmic” biomechanics is far from being

completely deterministic and it naturally embraces stochastic structures across all rhythmic cy-

cles as well [33]. Here it is worth emphasizing the evidently visible, but inexplicable stochasticity.

Since this stochasticity is chiefly constrained by deterministic structures, it is not completely ran-

dom. Therefore extracting stochastic structures of gait dynamics is at least as equally important as

extracting the deterministic counterparts.
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For explicitly extracting such multiscale deterministic and stochastic information contents, we

turn to and focus on the system’s fundamental structural dependency among all observed gait time

series. It is clear that such structural dependency is lost to a great degree in the so-called resultant

acceleration signal [65,105]:

Ares[t] =
√
X2[t] + Y 2[t] + Z2[t],

where X,Y, and Z indicate the 3-dimensional accelerations. This fact is evident through our mo-

tivating Lampel-Ziv complexity experiments, see details in the next section. Results from such

experiments imply how to build a symbolic coding scheme to retain structural dependency of mul-

tiple time series.

Based on such motivation, our second theme of data-driven computing paradigm is developed

as an unsupervised learning based multi-layer coding scheme, called Local-first and Global-second

(L1G2) coding scheme. We apply L1G2 to build a 2D code sequence pertaining to the [Left-foot

+ Right-foot] system. We also develop a landmark partition algorithm to dissect such a 2D code

sequence into rhythmic cycles consisting of visible biomechanical states. Such rhythmic patterns

confirm that this subsystem indeed dictates the contents of a rhythmic cycle, its period and most

importantly its evolving process. That is, the entire musculoskeletal system should function by

coupling others subsystems upon [Left-foot + Right-foot] system.

To further show L1G2 effectively capturing multiscale gait dynamics, via graphic display, we

simply stack all resultant color-coded rhythmic cycles aligned with the landmarks into a 3D cylin-

der. This rotatable 3D cylinder coherently reveals multiscale deterministic and stochastic rhythmic

patterns as multiscale structural dependency across all rhythmic cycles. Such a 3D cylinder is the

very foundation of further researches of gait-mimicking. It is also good for clinical diagnosis, and

can be used as a “passtensor” for cybersecurity.

Two known gait time series databases are analyzed as the real data experiments. 1) MAREA

database [69] with 4 sensors; 2) HuGaDB database [27] with 6 sensors. Both databases are created

on healthy subject’s gait when subjects wear with multiple sensors performing various activities on

different kinds of surfaces. The sampling rate in MAREA is 128Hz, and is less in HuGaDB. That

is, the time series in these databases contains patterns of centisecond (10 mini-second) scale.
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We focus only on accelerometer in this study. It picks up accelerations of linear motions of

body parts, where the sensors are fixed, upon X−, Y− and Z−axial orientations. The 3-dim

measurements are referencing to the coordinate system of human body: anterior-posterior (forward

vs backward), superior-inferior (vertical up vs down along gravity direction) and left-right [45].

Our developments can easily accommodate gyroscope-based time series. In MAREA database, each

subject wore a 3-axes Shimmer3 (Shimmer Research, Dublin, Ireland) accelerometer (+- 8g). In

HUGA database, the information of accelerometer is described in [27].

The chapter is organized as follows. In Section 5.2, we propose an encoding procedure to capture

the deterministic structure of multiple accelerometer time series. In Section 5.3, we resolve the task

of identifying gait signatures of different individuals. In Section 5.4 and Section 5.5, rhythmic cycles

are detected and the gait authentication is done by constructing an individual’s gait dynamics. A

conclusion and several remarks are given in Section 5.6.

5.2. Revelations of Structural Dependency

To set the stage for our computational developments for exploring an individual’s gait dynamics

in full, we give an overview of the two contrasting manifestations of structural dependency contained

in multi-dimensional gait time series. Firstly, from the 3-second recording of 12 dimensional time

series of a MEARA subject’s walking on flat ground in Figure 5.1, we see that each sensor’s triplet

directional time series exhibit diverse scales of relational patterns, which evolve within each visible

cycle and recurrently appear across evident rhythmic cycles. Secondly, when we compare such

patterns across different sensors, we also discover various scales of recurrent pattern-to-pattern

correspondences. Such pattern-to-pattern correspondences are especially evident between panel

(A) of Left-foot and panel (C) of Right-foot of Figure 5.1 across the evident cycles. Pattern-to-

pattern correspondences between panel (B) of Waist and either one of Left-foot or Right-foot are

also apparent, but not between panel (D) of Wrist with the rest of panels. These visible temporal-

oriented relational patterns within cycles and complex pattern-to-pattern correspondences across

cycles constitute multiscale structural dependency of gait dynamics contained in the 12 dimensional

time series.
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Figure 5.2. (A),(B),(C) 3-state code sequences for X-,Y-,Z- accelerometer time
series based on 5.1, respectively. (D) is a natural combination of X,Y,Z, and the
resultant sequence is coded by 27 (3 × 3 × 3) states. (E),(F) are sequences based
on our clustering-based way of combination; (E) is coded by 27 states (clusters),
the same number of states as (D), while its LZ complexity reduces by half. (F) a
10-states code sequence can show the rhythmic pattern clear enough, and its LZ
complexity is as low as that of one-dim time series case.

In computational theory of computer science, the concept of Kolmogorov complexity is used

in evaluating and exploring hidden structural patterns embraced within symbolic or digital time

series. Its conceptual shortest universal computer program for regenerating a time series at hand

is recognized to embrace all deterministic and stochastic structures. Unfortunately, Kolmogorov

complexity cannot be calculated in general. We employ Lempel-Ziv complexity to give an approx-

imate measure by only using ‘copy’ and ‘insert’ two operations. This complexity can be efficiently

computed, see [66]. So, Lempel-Ziv is used in our complexity experiments. Before our complexity

experiment, all the continuous time series must be categorized and transformed into a finite and

discrete state sequence.

As shown in each panel of Figure 5.1, each triplet time series of (X,Y, Z) directions of an

accelerometer reveal varying mechanism-specific gait dynamic patterns. Thus, we make use of this
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data transformation requirement to naturally link the concept of structural dependency among time

series to system-states of its dynamics. The idea of system-state can be seen as follows. We develop

two tempo-sensitive digital-coding schemes upon gait time series along the temporal axis. The first

scheme is to perform digital-coding upon each of the triplet directional time series individually and

then couple the three digital code sequences into one sequence of vectors. The second scheme is

to apply Hierarchical clustering algorithm based on Euclidean distance and Ward linkage on the

temporal (column) axis of a data matrix representing the triplet time series with 3 rows. Based

on the resultant clustering tree, a composition of clusters is chosen. A cluster of 3D vectors can

be regarded as a symbolic code for a system state. Hence the specific mechanism pertaining to an

accelerometer along the temporal axis is represented by a 1D symbolic code sequence. Color-coded

examples of such code sequences are given in Figure 5.4. The computing cost of the first approach

is much less than that of second approach. But, unlike the second approach, the first approach can

only capture relatively coarse structural dependency.

We compare these two coding schemes in a set of Lampel-Ziv complexity experiments based on

a short temporal segment [0, 300]. Results of such experiments are summarized in Figure 5.2, also

see Figure C.2 and Figure C.3 in Appendix C for more details. The top three panels of Figure 5.2

respectively give the three directional symbolic code sequences. Each code sequence has 3 states

and a value of Lampel-Ziv complexity. By coupling these three code sequences along the temporal

axis, as shown in panel (D), the resultant code sequence with 27 state is seen nearly without any

recognizable recurrent patterns. It has a complexity value 1017. In comparison, the second scheme

with 27 clusters results into code sequence, as shown in the panel (E), that shows very evident

recurrent and rhythmic patterns with a complexity value 571. Further, even if only 10 clusters are

used to form the set of states, as seen in the bottom panel (F), the resultant code sequence is as

evidently rhythmic as the one with 27 states in (E). With such rhythmic patterns in view, it is not

surprising that its Lampel-Ziv complexity value is even lower. Evidently it captures the rhythmic

dynamics well. Such experimental results confirm the presence of structural dependency among the

three directional gait time series, and at the same time imply that the second coding scheme is way

of extracting detailed dependency patterns in gait dynamics. Nonetheless, the first coding scheme

has its own merit in identifying among many subjects as seen in the next section.
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5.3. Principle System-State Algorithm (PSSA) for Identification

A simple way of having a glimpse of structural dependency among sensor-direction specific D

dimensional gait time series is to transform and couple them into a D-dimensional digital vector

trajectory. Here D is equal to 12 for 4 sensors used in MAREA database and 18 in for 6 sensors

used in HuGaDB database. This digital trajectory is to exhibit rough manifestations of rhythmic

cycles. So we manage to have a representation with relative small algorithmic complexity about

the gait dynamics. This idea is simple and intuitive. Here we develop data-driven computations

via a coarse coding scheme to realize this concept. By doing so, we get away from the necessity

of man-made system-states and requirements of their transition rules. The simple computational

results are capable of identifying many subjects simultaneously on a single platform. Thus we

speculate such a simple algorithm is potentially what our brain actually performs in recognizing

friends and relatives’ gait signatures. To this aim, we propose an algorithm, called the Principle

System-State Algorithm (PSSA), that attempts a single-layer coarse structural dependency among

many individuals’ D dimensional gait time series simultaneously.

5.3.1. The PSSA algorithm. For the purpose of identification, we expect to identify an

individual by only glimpsing his/her short time of walking. Each individual’s specific gait time

series is subdivided into replicates of period in equal length l. we assume that in the test set, each

unlabeled individual would have sample size exceeding l. The choice of l is supposed to be small

while the signal is strong enough. Here we set l = 1000 time points, which lasts about 7.8 seconds

with respect to the sampling rate being set at 128Hz. Consider that each individual at each time

point has a D dimensional measurements (with the same unit m/sec2): 3 directional (X-, Y-, Z-)

accelerations from each of accelerometer sensors. We stack such D dimensional vectors together

across all individuals’ time points into a large data matrix with 12 rows. After that, the PSSA

algorithm is applied which is described below.

Firstly, encode each sensor-direction specific 1-dim time series by using 3-digit alphabets.

Sd(t) =


1 Xd(t) ≤ α

2 α < Xd(t) ≤ β

3 Xd(t) > β

(5.1)
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where Xd(t) is the variable at time stamp t and d = 1, 2, ..., D indicating dimension. So a D-

dimensional digital system-state (vector), say S(t) = (S1(t), ...., SD(t))
′ , is formed at each time

point t. The tuning parameter α and β (α < β) are chosen based on the quantile of each 1-dim

empirical distribution of pooled data across all involving subjects. Based on the consideration that

the extreme values of each distribution played an important role in identifying different subjects.

We choose α < 0.5 < β and α and β are closer to their extremes 0 and 1, respectively. As a result,

the complexity of resultant digital code time series becomes smaller.

Secondly, collect all distinct system-states S(.) and calculate their corresponding frequency f .

There will be at most 3D possibilities. Sort the distinct states with respect to frequency from the

most frequent to the least S(1)(.), ..., S(N)(.) with highest frequency f (1) to the lowest one f (N).

Select a set of N∗ states with top highest frequency as principle system-states (PSS).

Thirdly, cut the gait time series from the training set into short-temporal segments in length l,

and convert each segment to a N∗-vector of proportion of PSS occurring within the period. That

is to say, we extract N∗ from each of the segment which represent the frequency of the appearance

of the principle system states.

Finally, an m×N∗ rectangle matrix ΣPSS is built by stacking all involving proportion vectors

along the row-axis, where m is the total number of segments, and N∗ is the number of principle

components. The entry (i, j) of ΣPSS can be explained as the frequency of the j-th principle state

found in the i-th segment. Apply hierarchical clustering analysis on row and column axes of ΣPSS ,

respectively. Find the corresponding ‘key’ PSS for each individual such that the PSS can be used

as a new feature (group) to exclusively identify the individual from others.

PSSA achieves a huge reduction on temporal dimensionality from l = 1000 to N∗. More

importantly, such a N∗-dim vector is in the category of structural data, that is, each component

can be treated as a feature variable. So any classic machine learning techniques can come in and

work on the structured matrix ΣPSS .

With a chosen pair of tuning parameter α and β (α < 0.5 < β). the complexity digital coded

D-dim time series can be seen via the curve of proportion of coverage on all involving trajectories

as:

r(N∗) =
N∗∑
i=1

f (i)/N,
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The selection of N∗ principle system-states S(1)(.), ..., S(N∗)(.) can be also based on this curve.

5.3.2. PSSA on real databases. Two examples of coverage proportion curves with respect to

N∗ principle system-states are given Figure C.1 in Appendix C for MAREA database and HuGaDB

database.

Figure 5.3. Identification via heatmap of ΣPSS . Each row indicates a segment of
gait time and rows from the same subject are labeled in the same color; each column
indicates a selected PSS. (A) MAREA database: 10 subjects. The quantiles α = 0.3
and β = 0.7. N∗(= 300) principle system-states based on 9 dimensions of gait
time series derived from three sensors fixed at Left foot and Right foot and wrist;
(B)HuGaDB database: 17 subjects with 6 sensors tied to left and right thighs, shins
and feet. The quantiles α = 0.1 and β = 0.9. N∗(= 500) principle system-states
based on 18 dimensions of gait time series.

Both results in the training set are perfectly classified without any error among all 10 subjects’

replicates in MAREA database, and 17 subjects’ replicates in HuGaDB database, see Figure 5.3.

By selecting one significant states block or cluster for each individual, a simple decision tree can

achieve perfect classification result in the test set. That is to say, the principle states take the shape

of feature selection, and they are the keys in Gait identification.

Here we make a remark on how to scale a big ensemble of individuals via PSSA. When the

ensemble of individuals is big in size, the PSSA needs a strategy to scale down the computing

loading. That is, if such an ensemble is taken as being homogeneous, then PSSA will need a
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large collection of system-state vectors to cover enough complexity in identification task. Or the

percentages α and β are chosen to be close their extremes. On the other hand, if heterogeneity is

naturally present in any human ensemble, it implies the necessity of partitioning the whole ensemble

into homogeneous sub-ensembles, and then PSSA is applied respectively. This is a typical divide-

and-conquer strategy. For instance, the database in [89] consists of more than 700 individuals. It

is sensible to divide the whole ensemble with respect to available demographic information.

In summary, our PSSA algorithm apparently is able to identify a set of system-states as signa-

tures for each individual subject via relatively easy computations, and then perfectly classify among

these subjects. Such visible signatures are indeed between-subject characteristics in nature. Since

the computing behind such signatures is so simple, it is postulated why our brain can capture such

signatures seemingly with easy after lengthy observations.

5.4. Authentication via Structural Dependency

Here if we agree that different sets of triplet time series from different sensors give rise to different

aspects of gait dynamics pertaining to our musculoskeletal system, then to authentically recreate

gait dynamics is equivalently to compute the multiscale structural dependency based on all available

time series data.

Let the local scale refer to various body components of musculoskeletal system, such as Left-

foot, Right-foot, Waist and Wrist. Each component contributes a fixed series of nearly deterministic

biomechanical phases. Each biomechanical phase involves with a specific type of stochasticity: either

in lengths or compositional contents. It is worth noting that such stochastic structures are somehow

constrained by deterministic structures.

Let the global scale refer to how different components of musculoskeletal system couple and work

out gait dynamics. Due to their dual symmetry, we particularly focus on how Left-foot relationally

works with Right-foot via an evolving process. The [Left-foot + Right-foot] subsystem is rather

distinct from their relations to Waist as the center of mass with the musculoskeletal system. That

is, within the entire musculoskeletal system, the [Left-foot + Right-foot] system indeed functionally

coordinates with different subsystems.
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Figure 5.4. 3D time series superimposed with color coding on temporal period [1,
500]: (A) Left-foot sensor; (B) Right-foot sensor. Color coding of the 10 selected
clusters are listed on the right hand side. The landmarks are calculated and marked
with vertical black line.

5.4.1. L1G2 and landmark partition algorithms. We reiterate that Left-foot and Right-

foot play dual roles, on one hand, and are comparable or even symmetric, on the other hand.

Their two sets of triplet time series are highly associated. We denote the [Left-foot + Right-foot]

as the L+R, for short. Thus, we will encode L+R system locally first, and then integrate L+R

system with Waist or Wrist. That is, we make the L+R system a foundation to grow the integrated

musculoskeletal system. For this integrative task, we develop a rather simple algorithm based

“local-first and global-second (L1G2)” coding scheme in this section.
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This L1G2 coding scheme is devised by first applying HC algorithm onto the stacked version

of X−, Y− and Z− directional time series from the Left-foot and Right-foot sensors to generate

a clustering tree. Upon this tree, we pick a 10-cluster composition to form a set of 10 code-words.

Accordingly, Left-foot’s triplet time series are transformed into a 1D symbolic code sequence, so is

the Right-foot’s. We then simply couples these two code sequences into a 2D L+R system-state

trajectory. This choice of 10 code-words is supported by results of complexity evaluations in our

Lampel-Ziv experiments in Figure 5.2.

Algorithm 5: Local-first & Global-second (L1G2) Coding

Input: {(XL(t), YL(t), ZL(t)), 1 ≤ t ≤ T} from Left-foot sensor

{(XR(t), YR(t), ZR(t)), 1 ≤ t ≤ T} from Right-foot sensor

1. Stack two time series and build a 3× 2T matrix,

ML+R[·, 1 : T ] = {(XL(t), YL(t), ZL(t)), 1 ≤ t ≤ T}

ML+R[·, (T + 1) : 2T ] = {(XR(t), YR(t), ZR(t)), 1 ≤ t ≤ T}

2. Apply HC on the temporal (column) axis of ML+R to obtain H clusters, coded as {a1, ..., aH},

which represent local-system states.

3. Represent 3D time series {(XL(t), YL(t), ZL(t))} and {(XR(t), YR(t), ZR(t))} as 1D H-digital

time sequence {SL(t)} and {SR(t)}, respectively.

4. Couple the two local system-state time series of Left-foot and Right-foot in a 2D L+R system-

state time series with 2D vector SL+R(t) = (SL(t), SR(t))
′
, for t = 1, 2, ..., T .

5. Integrate encoded Waist and encoded L+R system by a 3D (L+R)+W system-state time series

with 3D vector S(L+R)+W (t) = (SL(t), SR(t), SW (t))
′ .

Output: SL+R(t) and S(L+R)+W (t).
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Figure 5.5. Color-coded rhythmical cycles in L+R system of subject #5 marked
with serial biomechanical phases. (A) The coupled color coding time series on tem-
poral period [1, 500] (Upper curve for Left-foot, Lower curve for the Right-foot. The
landmarks are marked with vertical black lines; (B) Rhythmic cycle, the 3rd one in
panel (A), is represented by two concentric rings (Outer ring for Left-foot, and inner
right for Right-foot). The temporal coordinates go clockwise.

Next we develop a landmark algorithm to partition symbolic system-state trajectories into rhyth-

mic cycles. The algorithm is described in Algorithm 6.

Algorithm 6: Landmark Partition

Denote a Runi as a temporal segment that one specific state i consecutively repeats itself.

Input: the 2D L+R system-state time series {SL+R(t)}

1. Calculate variance of the size of Runi.

2. Calculate variance of the recurrence time of Runi.

3. Choose the system-state i∗ as a “landmark”,

i∗ = argmini{V ar(size of Runi)+ V ar(recurrence time of Runi)}

4. Employ the landmark i∗ to partition the entire system-state trajectory into pieces of rhythmic

cycles.
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Output: a series of rhythmic cycles.

Throughout our experimental explorations across many subjects, we found that rhythms in the

L+R system are rather stable, while Waist and Wrist sensors’ system-state are also rhythmic, but

their stability are weak. Further computed landmarks are found to coincide with the beginning of

a system-state in L+R system, which is defined by a code-word pertaining to either Left-foot or

Right-foot sensors, see Figure 5.4. This uncertainty is likely due to some degrees of asymmetry

between left foot and right foot.

5.4.2. Color coded rhythmic cycles. We apply the L1G2 algorithm onto the L+R system

of subject #5 on temporal period [1, 10000]. The Local coding scheme is worked out on a stacked

3× 20000 matrix. The 10 code-words are color-coded, so that the identified system-states of L+R

system are visible and readable with biomechanical meanings, as shown in Figure 5.4.

Each colored code sequences of Left-foot and Right-foot sensors respectively achieves a dimension

reduction: from 3 to 1. By coupling the two colored-codes sequences, as shown in panel (A) of

Figure 5.5, L1G2 algorithm results cosine function like rhythm under L+R system. The symmetry

on both feet are also explicit. We then apply the landmark computing algorithm on such a 2D

coupled colored-code sequence on the temporal period [1, 10000] to result 77 rhythmic cycles. The

average period length and standard deviation as calculated as 127.56± 2.31.

To better visualize the progressing of system-state of L+R system via coupled colored-codes,

a rhythmic cycle is specifically represented by two concentric circles: Outer one for Left-foot and

inner one for Right-foot, starting from the marked landmark located at the 9 o’clock position, as

shown in panel (B) of Figure 5.5. Biomechanical phases on both feet are annotated. Indeed the gait

dynamics within a rhythmic cycle is evidently revealed with deterministic and stochastic structures

as characterized as follows:

Deterministic structures:

A. The process of 2D coupling-phases as its state trajectory (with clockwise temporal coordinates)

is nearly deterministic throughout all computed cycles:
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Starting from “landmark” ⇒ (LF-Kick, RF-Stance2) ⇒ (LF-HeelStrike, RF-toToeOff) ⇒ (LF-

HeelStrikeEnd, RF-ToeOff) ⇒ (LF-Stance1, RF-Swing1) ⇒ (LF-Stance1, RF-Swing2) ⇒ (LF-

Stance1, RF-Swing3) ⇒ (LF-Stance2, RF-Swing4) ⇒ (LF-Stance2, RF-Kick) ⇒ (LF-ToeOff, RF-

HealStrike) ⇒ (LF-ToeOff, RF-HeelStrikeEnd) ⇒ (LF-Swing1, RF-Stance1) ⇒(LF-Swing2, RF-

Stance1) ⇒ (LF-Swing2, RF-Stance1) ⇒ (LF-Swing3, RF-Stance2) ⇒ (LF-Swing4, RF-Stance2)

⇒ End at next “landmark”;

B. A Toe-off phase of one foot has to happen after the end of Heel-strike phase of the other foot;

C. The end of kick phase as the ending phase of swing process on one foot coincide with the

beginning of “to-Toe-off” phase.

Stochastic structures:

A. Each 2D coupling-phase varies with lengths (seen through the 3D plot of rhythmic cycles from

#3 to #70). This is the median-scale aspect of stochasticity within a rhythmic cycle;

B. The fine-scale stochasticity is seen in the phases of “heel-strike” of both left foot and right foot.

The variations are far from being completely random;

C. There are some orders involving with a limited number of colored nodes. The large-scale of

stochasticity is seen via one or two distinct colored nodes being inserted between two phases specif-

ically located at the two concentric circles;

D. There is also evident asymmetry on color coding of stance between the left foot and right foot.

5.5. Graphic Display of Gait Dynamics

The explicit deterministic and stochastic structures in panel (B) of Figure 5.5 prescribe the

structural dependency of gait dynamics in L+R system. Such a concentric-ring representation of a

rhythmic cycle within L+R system is indeed very stable. Two more rhythmic cycles: one is from

the middle and another one from the end of the temporal period [1, 10000] among the 77 cycles, are

rather similar, as shown in panels (A) and (B) of Figure 5.6. The great degree of stability of gait

dynamics pertaining to the L+R system is also seen through a 3D cylinder representation in panel

(A) of Figure 5.6.

Such stability implies remarkable adaptability and precision of gait dynamics and its underlying

structural dependency. The adaptability is primarily due to the interplay of deterministic and
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Figure 5.6. 3D cylinder representation of evolution of rhythmical cycles in L+R
system of subject #5. (A) Concentric-ring for a rhythmic cycle from the middle of
[1, 10000]; (B) Concentric-ring for a rhythmic cycle from the final part of [1, 10000];
(C) 3D cylinder representation of evolution of rhythmic cycles from the 3rd to the
70th.

stochastic structures on the left and right foot. The deterministic structures give rise to a “typical”

2D coupling phase trajectory, while stochastic ones seemingly allows variations in lengths to happen

among many components (or phases) of the typical cycle with total precision being about 36ms

(=:4600/128). Such a precision is possible only when the deterministic structures are governed

strictly by the biomechanics of human musculoskeletal system.

5.5.1. Integrating waist sensor into L+R system. After constructing the rhythmic gait

dynamics in L+R system, we then integrate it with the waist sensor. By applying the L1G2

algorithm on the 3D time series from Waist sensor, the resultant local coding sequence is reported

in panel (A) of Figure 5.7, while the results derived from the global coding scheme is reported in

panel (B) of Figure 5.7 for one rhythmic cycle with 3 layers of concentric circles. A 3D cylinder

from 3rd to 70th rhythmic cycles is built and reported in panel (C) of Figure 5.7. It is clear that
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3D time series from Waist sensor is rhythmic. But the rhythm is not symmetric with respect to

dynamics in L+R system. Likewise, the Wrist sensor can be integrated with L+R system as well.

Figure 5.7. Integrated gait dynamics of Waist and L+R system. (A) Color coded
3D time series from waist with 8 clusters resulted from the local coding scheme of
L1G2 algorithm. (B) Result of L1G2 algorithm represented by 3 layers of concentric-
ring pertaining to the 3rd rhythmic cycle on the temporal period [1, 10000]; (C) 3D
cylinder representation of evolution of rhythmic cycles from the 3rd to the 70th of
this integrated system of three sensors.

5.5.2. Passtensors for individual authentications. The applications of coherently com-

puted gait dynamics are rather wide and diverse. Here we mention two essential one in passing

without going into details, and then focus on cybersecurity. The first comment is that this L1G2

algorithm will allow us to integrate acceleration sensors with gyroscope sensors. By combining the

two kinds of sensors, the resultant gait dynamic system will be rather complex, but extremely inter-

esting. The second comment is obvious that such a 3D representation can be utilized as a platform

for mimicking the entire gait dynamics captured by time series data derived from the four accel-

eration sensors. Such a task of building realistic mimicry of a complex system is technically very

challenging, while is scientifically very important, for instance in robotics. Up to now, robots still
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Figure 5.8. Two angle-views of 3D passtensor constructed from subject #5’s tread-
mill walking with slope changes in the middle of the temporal period in t. The slope
changes cause very subtle change on (A).

walk in very unhuman-like fashions. This issue might be resolved to great extent by incorporating

gait dynamics.

Now we turn to cybersecurity, clinical diagnosis and self-evaluating individual health statuses.

It becomes clear that, based on our 3D graphic displays of gait dynamics, an individual’s process

of rhythmic cycle is characterized by the evolution of cyclic deterministic phases with individual

specific twists as well as idiosyncratic stochastic deviations associated with all phases. Hence, a 3D

cylinder indeed becomes a basis for authenticating this particular individual. For this use, such a

3D cylinder is called “passtensor”. More specifically speaking, a L+R system’s deterministic cycle of

2D biomechanical phases: from one landmark proceeding to the next one, in indeed provides a rigid

frame, while the stochastic phases’ lengths and presence or absence of some color codes between

adjacent phases provide the soft frames for the purposes of authentications. This authentication

capacity further illustrated as follows. For instance, consider the subject #5 in MAREA walked on

a treadmill with slope change: from horizontal(0◦) to 5◦ during a recording period. This person’s

3D passtensor corresponding to this period is shown in Figure 5.8 with two views from two different

angles. The angle specific view in panel (A) of Figure 5.8 reveals visible changes. Such changes are

likely critical patterns for authentication purposes.
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Here we briefly reiterate the practical uses of our 3D cylinder graphic display of gait dynamics in

self-evaluating individual health statuses. By stacking two temporal segments of gait time series from

two different temporal periods, we can examine the degrees and aspects of similarity and differences

in regarding to deterministic and stochastic structures between these two temporal segments. This is

an effective way of finding out subtle and minute discrepancies to serve the early warning purposes.

5.6. Conclusion

5.6.1. Conclusion in system complexity. Our first theme of data-driven computing para-

digm, PSSA, allow us to include many principle gait states as a collective of key characteristics for

identifying as many people as we want. From many aspects, this identification approach is indeed

very distinct from identifications based on facial and voice recognitions, finger-print or retina scan-

ning. It is much easier to achieve social unbiasedness. It is much more difficult to imitate or to

fake.

Our second theme of data-driven computing paradigm, consisting of L1G2 coding and landmark

algorithms, enables us to explicitly manifest multiscale dynamic patterns of gait dynamics. The

graphic displays of single rhythmic cycle and collective 3D passtensor clearly demonstrate how the

deterministic circle of biomechanical phase couples with stochastic variations sprinkling between

consecutive phases, and offer a whole-view of an individual’s gait dynamics. Such intricate coupling

relations between deterministic and stochastic structures are the backbones of structural depen-

dency of gait dynamics. They retain essential basis for mimicking an individual’s gait dynamics in

animation. Its practical uses in clinical diagnosis and cybersecurity are also evident. In fact, the

original motivations of this gait study is aiming at detecting relative minor changes in gait dynamics

for healthy peoples and gesture tuning for athletes. These two topics require very detailed structures

within personal dynamics.

From computational science perspective, our PSSA and L1G2 coding algorithm rests on the

crucial fact: different time series have different functions linking to different subsystems of a complex

system of interest, so they should not be treated equally and uniformly. Such a rationale is a key

for revelations of multiscale structural dependency. It is also the key rationale for recreating a
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system’s authentic dynamics. Overall, good design of graphic displays definitely pave avenues for

true understanding onto a complex system.

5.6.2. Conclusion in security issue. PSSA is purely developed for individual identification

within a close community, such as a company or agency that needs a high degree of security. Within

a close community or company, PSSA is an effective alternative to facial recognition. Since it does

not suffer problems due to shading on images or shadowing and cause social biases. And any

individual outside of this community will be identified as outliers. Its application beyond a close

community is still in a stage of theoretical research. In theory, it might be possible to convert a 3D

video recording data into an accelerometer-based data format. But this technique is still not yet

available. In fact, at the current state of technologies, any real-world recording via one camera, for

example, CCTV is unlikely to create an authentic 3D recording because of missing data.

For individual gait dynamics, ours developments are geared to help individual to do self-

detections for minor gesture changes when walking or doing activities. Such analysis and results

are highly personal. So, they intend to be kept and used only by the owner of data. Our potential

role would be limited to pointing out where minor changes might have taken place. Even this step

is still under intensive researches.
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CHAPTER 6

Heterogeneous Geometric Information of Multiclass Classification

6.1. Introduction

Nowadays Machine Learning (M.L.) based Artificial Intelligence (A.I.) researches are by-and-

large charged to endow machines with various human’s semantic categorizing capabilities [99].

Given that human experts hardly make semantic categorizing mistakes, should machine also help

to explain: How and Why, to human? We demonstrate that possible answers are computational

and visible under any Multiclass Classification (MCC) setting. The keys are: first compute the

pertinent information content without artificial structure; secondly, graphically display such infor-

mation content via multiscale geometries, such as a tree, a network or both, to concisely organize

and deliver pattern-based knowledge or intelligence contained in data to human attentions.

Multiclass Classification is one major topic [7,15,30,47,116] of associating visual images or text

articles with semantic concepts [34,76,121]. Its two popular techniques: flat and hierarchical, are

prone to make mistakes [4,31,54]. Since a machine is primarily forced to assign a single candidate

label toward a prediction. No less, no more. Such a forceful decision-making to a great extent

ignores the available amount of information supported by data. With such kind of M.L. in the

heart of A.I., it is beyond reasonable doubt that A.I. is bound to generate fundamental social and

academic issues in the foreseeable future, if its error-prone propensity is not well harnessed in time.

If completely error-free A.I. is not possible at current state of technology, then at least it should

tell us its decision-making trajectory leading up to every right or wrong decision. It is in the same

sense as the recommended fourth rule of robotics: “a robot or any intelligent machine-must be able

to explain itself to humans” to be added to Asimov’s famous three. Since we need to see why, how

and where errors occur in hope of knowing what causes, and even figuring out how to fix it.

Such a quality prerequisite on A.I. and M.L. is also coherent with concurrent requirements put

forth by many governments around the world: transparent explanation upon each A.I. based decision
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is required. Now it is a critical time point to think about how to coherently build and display data’s

authentic information content that can afford the making of explainable error-free decisions. So

such information content with pertinent graphic display can be turned into Data-driven Intelligence.

In this chapter, we specifically demonstrate Data-driven Intelligence for Multiclass Classification.

This choice of M.L. topic is in part due to that classification is human’s primary way of acquiring

intelligence, and also in part due to its fundamental importance in science and industry.

On the road to Data-driven Intelligence, we begin by asking the following three simple questions.

First, the naive one is: where is relevant information in data? Secondly, what metric geometry is

suitable to represent such information content? Finally, how to make perfect, or at least nearly

perfect empirical inference or predictive decision-making? We address these three non-hypothetical

questions thoroughly based on a model-free label-embedding tree. Here we explicitly show the

nature of information content under Multiclass Classification as: multiscale heterogeneity. Such

information heterogeneity can be rather intertwined and opaque when its three data-scales: numbers

of label, feature and instance, are all big.

The chapter is organized as follows. In Section 6.2, we describe the background and related work

of MCC. In Section 6.3, we develop a new label-embedding tree constructed via partial ordering

and a classification schedule. In Section 6.4, we illustrate a tree-decent procedure with early stop

and represent the error flow. In Section 6.5, we explore the heterogeneity embedded within labels.

A conclusion and remarks are given in Section 6.6.

6.2. Multiclass Classification

A generic Multiclass Classification (MCC) setting has three data scales: the number of label L,

the number of feature K and total number of subjects N . Each label specifies a data-cloud. A data-

cloud is an ensemble of subjects. Each subject is identified by a vector of K feature measurements.

The complexity of data and its information content under any MCC setting is critically subject to

L, K and N . The goal of Multiclass Classification is to seek for the principles or intelligence that

can explain label-to-feature linkages. Such linkages are intrinsically heterogeneous as being blurred

by varying degrees of mixing among diverse groups within the space of labeled data-clouds. Since

101



such data mixing patterns are likely rather convoluted and intertwined, so the overall complexity

of information content must be multiscale in nature.

Specifically speaking, its global scale is referred to which label’s point-cloud is close to which,

but far away from which. Though such an idea of closeness is clearly and fundamentally relative,

it is very difficult to define or evaluate precisely. That is, such relativity essence can’t be directly

measured with the presence of two point-clouds, but it can be somehow reflected only in settings

involving three or more point-clouds. From this perspective, all existing distance measures com-

monly suffer from missing the data-clouds’ essential senses of relative closeness locally and globally.

For instance, recently Gromov-Wasserstein distance via Optimal Transport has been proposed as a

direct evaluation of distance between two point-clouds [109]. But it suffers from the known diffi-

culty in handling high dimensionality (large K). So this distance measure likely misses the proper

senses of relative closeness among point-clouds, especially when K is big.

In this chapter, we propose a simple computing approach to capture the relative closeness

among all involving point-clouds without directly and explicitly evaluating pairwise cloud-to-cloud

distance. The key idea is visible as follows: through randomly sampling a triplet of singletons from

any triplet of point-clouds, we extract three partial ordering among the three pairs of cloud-to-cloud

closeness. By taking one partial ordering as one win-and-loss in a tournament involving
(
L
2

)
teams,

we can build a dominance matrix that leads to a natural label embedding tree as a manifestation

of heterogeneity on the global scale. Such a triplet-based brick-by-brick construction for piecing

together a label embedding tree seems intuitive and natural. Indeed such a model-free approach is

brand new to M.L. literature [15,17]. The existing hierarchical methods build a somehow symbolic

label embedding tree by employing a bifurcating scheme that nearly completely ignores the notion

of heterogeneity [3,15,70].

After building a label embedding tree on the space of L labels, we further derive a predictive

graph, which is a weighted network with precisely evaluated linkages. This graph offers the detailed

closeness from the predictive perspective as another key aspect of geometric information content of

MCC. To further discover the fine scale information content of MCC, we look into heterogeneity

embraced by each label. Clustering analysis is applied on each label’s point-cloud to bring out

a natural clustering composition, and then label each cluster pertaining to a sublabel. By doing

102



so across all labels, we result in a space of sublabel with much larger size than L. Likewise we

compute a sublabel embedding tree and its corresponding predictive graph. These two geometries

then constitute and represent the fine scale information content of MCC.

A real database, Major League Baseball (MLB) PITCHf/x, is analyzed for the purpose of

application. The availability of data is mentioned in Appendix D. Since 2008 the PITCHf/x database

of MLB has been recording each every single pitch delivered by MLB pitchers in all games at its

30 stadiums. A record of a pitch is a measurement vector of 21 features. A healthy MLB pitcher

typically pitches around 3000 pitches, which are categorized into one of pitch-types: Fastball, Slider,

Change-up, curveball and others types. We collect data from 14 (= L) MLB pitchers, who threw

around 1000 Fastball or more during the 2017 season. As one pitcher is taken as a label, his

seasonal fastball collection is a point-cloud. It is noted that each pitcher tunes his Fastball slightly

and distinctively when facing different batters under different circumstances of game. That is,

multi-scale heterogeneity is inherently embedded into each point-cloud.

A potential feature set is selected based on permutation-based feature importance measure. The

importance score is defined as the reduction in the performance of Random Forest after permuting

the feature values. All real data illustrations for the entire computational developments throughout

this chapter is done with respect to a feature set consisting of 3 features: horizontal and vertical

coordinates, and horizontal speed of a pitch at the releasing point. Results on other larger feature-

sets are reported in Appendix D.

6.3. Label Embedding Tree

We develop a computing paradigm to nonparametrically construct the label- and sub-label

embedding trees in this chapter. This paradigm is designed to be scalable to the three factors: L,

K and N . With a label-triplet, say (La,Lb, Lc), in the brick-by-brick construction, partial ordinal

relations are referred to: D(La,Lb) < D(La,Lc) for example, where D(., .) is the unspecified

“distance” between two label clouds. It is emphasized that the algorithm is devised to extract such

relations without explicitly computing the three pairwise distances D(., .). These relations found

among three point-clouds are stochastic in nature.
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(C)

(B)

(A)

Figure 6.1. Illustrating example for Algorithm 7. (A) the 3D scatter plot of
data; (B) the 11 labeled data-clouds defined by a HC tree; (A) and (B) share the
same labeling numbers with the same color; (C) the embedding tree.

Given a triplet of labels La,Lb, Lc, if we randomly sample three singleton vectors in RK , say

XLa, XLb and XLc: one from each of three labels, separately. A piece of information of partial order-

ing within the triplet can be shed by inequalities among Euclidian distances d(., .) among 3 singletons

XLa, XLb and XLc. That is, inequality d(xLa, xLb) < d(xLa, xLc) provides a small piece of infor-

mation about Labels La and Lb being closer than La to Lc and Lb to Lc. By iteratively randomly

sampling vector-triplets for a large number of times, say T , the probability of this relative closeness

between La and Lb can be estimated as P̂ (D(La,Lb) < D(La,Lc)) =
∑T

t=1 1d(xLa,xLb)<d(xLa,xLc)/T .

Via law of large number, we arrive at the relative closeness information by aggregating partial

ordering among all possible combination of three labels. Let H be a square dominant matrix with(
L
2

)
= L(L − 1)/2 rows and columns. Each entry of H records a probability that “this unspecified

distance D(., .) of a label-pair” is dominated by the same unspecified distance of another label-pair.

Denote ixy is the index of a label pair Lx and Ly. The entry of H in the iabth row and the icdth

column records the related probability between these two label pairs,

(6.1) H[iab, icd] = P (D(La,Lb) < D(Lc, Ld))
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It is noted that H(i, j) + H(j, i) is equal to 1. In this way, H realizes the partial ordering among

all pairs of labels.

Here we illustrate the validity of this algorithm through a small example, as shown in Figure 6.1.

A S-shape data set is simulated in R3 space, see panel (A). Hierarchical clustering is implemented

and a dendrogram is shown in panel (B). 11 clusters are obtained by cutting the dendrogram at

a certain tree height and each cluster is marked with different color. Consider each cluster as a

label, and a label embedding tree is created via Algorithm 7 to show the hierarchical structure

among those 11 classes in (C). It shows that our labeling tree built by only using partial ordering

can reflect the original hierarchy among labels very well. In short, our dissimilarity matrix makes

more sense in showing the natural label-cloud hierarchical dependency, which is the most advantage

to distinguish our labeling tree from others.

There is a natural way to do classification based on this triplet partial ordering. We can simply

assign a singleton or a batch of unlabeled sample with a new label Lnew, which never appears in

the previous label set. So there is supposed to be L + 1 labels in total. Then, the triplet-version

dissimilarity
(
L+1

2

)
×
(
L+1

2

)
matrix Hnew can be calculated for all those L + 1 labels. The classi-

fied label is just the one that is the closest to the new label, see Algorithm 8. Actually, given

the previous
(
L
2

)
×
(
L
2

)
matrix H pre-trained, it is only necessary to calculate the rest

(
L+1

2

)
× L

sub-matrix. That is to say, we randomly sample two singletons XLa and XLb from two labels La

and Lb, respectively, and sample one unlabeled sample Xnew from Lnew. The partial ordering now

turns out to compare d(XLa, Xnew) and d(XLb, Xnew). Via a large number of sampling, we gain

information about P (D(La,Lnew) < D(Lb, Lnew)) and its counterpart. Let Hnew record all newly

added probabilities of such dominance. Then the label-pairwised dissimilarity matrix is calculated

via the column sum of Hnew. Therefore, the classification procedure is equivalent to aggregating

all binary classifiers and vote according to the sum of probability, which is exactly one-versus-one

classification with a soft vote strategy. One brand new property is that, when Lnew represents a

unlabeled data-cloud, the geometry of this data-cloud is fully used in this predictive decision-making.

Algorithm 7 Label Embedding Tree
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Denote: H is a
(
L
2

)
×
(
L
2

)
ranking matrix,

H[iab, icd] = P (D(La,Lb) < D(Lc, Ld))

where iab is the index of label pair La and Lb, D(La,Lb) is their dissimilarity which is inaccessible.

Initialize: H with all entries 0

for (La,Lb, Lc) in all unique label triplets:

Randomly sampling a triplet of data for T times with replacement, denoted

as (X
(1)
La , X

(1)
Lb , X

(1)
Lc ), (X

(2)
La , X

(2)
Lb , X

(2)
Lc ), ..., (X

(T )
La , X

(T )
Lb , X

(T )
Lc )

where XL is a single sample of data with label y = L

for t in 1, ..., T :

if d(X
(t)
La, X

(t)
Lb ) < d(X

(t)
La, X

(t)
Lc ): H[iab, iac]+ = 1/T

else H[iac, iab]+ = 1/T

if d(X
(t)
La, X

(t)
Lb ) < d(X

(t)
Lb , X

(t)
Lc ): H[iab, ibc]+ = 1/T

else H[ibc, iab]+ = 1/T

if d(X
(t)
La, X

(t)
Lc ) < d(X

(t)
Lb , X

(t)
Lc ): H[iac, ibc]+ = 1/T

else H[ibc, iac]+ = 1/T

end for

end for

Calculate K ×K labeling dissimilarity matrix D̄

D̄(La,Lb) = ELx,Ly{P (D(Lx,Ly) < D(La,Lb))} =
∑

j H(j, iab)/
(
L
2

)
Output: a hierarchical clustering tree based on the dissimilarity matrix D̄

We can also sample XLa and XLb from the neighbors of Xnew to extract the partial ordering

locally. Let’s choose M-nearest neighbors of Xnew constrained in the data with label La, denoted as

XM |La = (X
(1)
La , X

(2)
La , ..., X

(M)
La ), and so is XM |Lb. We look at whether there are relatively more La’s

compared with Lb’s in the M nearest neighbors. This classification becomes k-Nearest Neighbor

with tuning parameter k chosen to be M . If we repeat the aforementioned procedure for a large

number of times, we have another way of extracting information of P (D(La,Lnew) < D(Lb, Lnew)).
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Thus, Algorithm 8 is equivalent to one-versus-one classification with k-NN as its classifier. These

properties also explain why our triplet comparison is so important.

Besides, Algorithm 8 can indicate where the unknown label is located within the previous

label embedding tree. The label embedding tree with an unknown label embedded is clear to view

which labels are mixed with the unknown label in a small branch and which labels is far away. See

Figure 6.2 for an illustration.
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Figure 6.2. Label embedding tree of 14 pitchers with a heatmap of “distance”
derived from a computed H and an illustrating example of classifying an unknown
label X; the truth label is 7.

The number of sampling iteration T is supposed to be as large as possible. In practice, T should

be chosen dependent on the sample size of each label. If the data is balanced, T = N/L, otherwise,

T = maxiNi to cover the biggest label data cloud, where Ni is the sample size for label i. So the

time complexity is O(NKL2).

When L is small or moderate, consider a setting with the number of all possible triplets,
(
L
3

)
,

being not overwhelmingly big. We perform Algorithm 7 on all possible triplets to fill up the(
L
2

)
×
(
L
2

)
dominance matrix, H. Each of column sum of H tells how many times a label-pair’s

distance is dominated by distances of all other pairs. So the bigger a column sum is, the larger

degree of similarity of this label pair is. Therefore the
(
L
2

)
-vector of column sums of H can be
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transformed into a natural L× L similarity matrix, say S̄, among all involving labels. In contrast,

the
(
L
2

)
-vector of row sums of H is a distance (dissimilarity) matrix, say D̄, of all labels. Such a S̄

or D̄ will afford a hierarchy, which is the label embedding tree.

Algorithm 8: Classify Xnew with an unknown label Lx

Input: a
(
L
2

)
×
(
L
2

)
matrix H obtained from Algorithm 7

Initialize: a
(
L+1

2

)
×
(
L+1

2

)
ranking matrix Hnew

Hnew[1 :
(
L
2

)
, 1 :

(
L
2

)
] = H and the rest entry 0.

for (La,Lb) in all unique label pairs:

Randomly sampling a pair of data for T times with replacement, and concatenate it with

Xnew to make a triplet, denoted as (X
(1)
La , X

(1)
Lb , Xnew), (X

(2)
La , X

(2)
Lb , Xnew), ..., (X

(T )
La , X

(T )
Lb , Xnew)

where XL is a single sample of data with label y = L

for t in 1, ..., T :

if d(X
(t)
La, Xnew) < d(X

(t)
Lb , Xnew), Hnew[iax, ibx]+ = 1/T

else Hnew[ibx, iax]+ = 1/T

where iax and ibx are indices for label pair (La,Lx) and (Lb, Lx)

end for

end for

Output1: Classification result a∗, if

i∗ = ia∗x, i∗ = argmini
∑

j H(j, i)

Get (L+ 1)× (L+ 1) dissimilarity matrix D̄new

D̄new(La,Lb) =
∑

j H(j, iab)/
(
L+1

2

)
Output2: a hierarchical clustering tree on D̄new and the branch in which the unknown label Lx

locates from the previous labeling tree.
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When it is too expansive to compute a full version of H, then we start with a sparse version, says

H ′. By applying the transitivity property in dominance relationship, we can resolve the sparsity issue

by making product matrix like H ′×H ′ to record all indirect dominance with one intermediate [43],

see Algorithm D in Appendix D. By embracing such transitivity, as confirmed in our experiment, a

reliable distance dominance matrix H can be resulted.

(A) (B)

Figure 6.3. Label embedding tree superimposed on its confusion matrix: (A) Clas-
sification being driven to the tree bottom with a singleton label candidate; (B) Clas-
sification can stop early at a tree inter-node.

6.4. Tree-descent Schedule and Error Flow

With a label embedding tree, a very efficient decision-making process can be devised via tree

descend framework as depicted in Algorithm 9. This algorithm works for any bi-class classifier

by making a chain of decisions from top-to-bottom levels of the label embedding tree. So our label

embedding tree becomes a scalable platform for decision-making with respect to the number of

labels (L). In fact the tree somehow provides an ideal setting for distance metric learning [122],

because similar labels have been clustered together.

For prediction purpose, ideally the tree’s binary branching structure can allow us to arrive at a

singleton label at the bottom of tree, or a small set of label as a small tree branch by avoiding any

risk of making any major mistake. A threshold θ defined in Algorithm 9 works for risk control.

If the probability of classification is less than θ, say 0.8, we have less confidence to descend the
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labeling tree further, so early stop the iteration and return a label set. This fact can be visualized

from our construction of predictive graph below.

Algorithm 9 Classify Xnew via descending label embedded tree with an early stop

Input: a label embedding tree B; a trained Binary Classifier F ; a threshold θ to stop descending

tree

Denote:

BLeft and BRight are the left and right branch on the root node of tree B

FL(Xnew) returns the probability of classifying Xnew into Left branch

FR(Xnew) returns the probability of classifying Xnew into Right branch

while (|B| > 1 & max{FL(Xnew), FR(Xnew)} > θ) :

if FL(Xnew) > FR(Xnew), then B ← BLeft

else B ← BRight

end while

Output: label(s) under the current tree B

Let Y = {Lj}L1 and F = {fi}K1 be the ensembles of label and feature, respectively. Denote a

computed label embedding tree as B[F ]. We derive a label predictive graph, denoted by G[F ], based

on a confusion matrix. All classification results are collectively summarized into an asymmetric

error-flow matrix E[F ] = [ei,j ] with directed error-flows (ei,j , ej,i) between any label pair (Li, Lj)

are the percentages of wrong decisions by predicting Li to be Lj , and vice versa. G[F ] is a weighted

network or graphic representation of E[F ], see Figure 6.3 for two predictive graphs of 14 MLB

pitcher-labels.

The essence of G[F ] is that its pairwise directional links {(ei,j , ej,i)} realistically reflects unequal

mixing configurations of labels Li from Lj . The utility of G[F ] is that it allows a smallest predictive

label set, while achieving a nearly perfect precision. Such an asymmetry, See Figure 6.3, is invaluable

in understanding the MCC setting and in explaining decision-making. This perspective is completely

lost when an undirected distance measure is forcefully employed.
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Figure 6.4. Dissimilarity matrix and predictive graphs calculated on 3 different
Feature Groups with increasing sizes (see Group 1, 3 and 4 in Appendix D)).
(A),(B),(C) illustrate the dissimilarity matrix with a label embedding tree embedded
on the row and column axis. The label number is the index of a baseball pitcher.
There are 14 different pitcher, labeled from 1 to 14; (D),(E),(F) are predictive graphs
that visualize the bi-class cut tree descending result.

With the two explicit and visible geometries embraced by the computed label embedding tree

and its corresponding predictive graph as the MCC information content with respect to feature set

F , the linkages between the label space Y and the collection of point-clouds defined by feature set

F become evidently explainable. It is clear to see that the predictive graph is possible to guide

us to error-free decision-making if our decision is in a form of a set of potential label candidates,

rather than restricted to a singleton. This fact leads us to reflect on the common phenomenal issue:

why predicting an unlabeled singleton has to be prone to error? There are at least two key reasons.

First, a predictive object can be caught deep within some point-clouds of wrong labels, not just the

right one. Therefore, involving all labels’ data-clouds at once for such prediction is not ideal. To

ameliorate such a situation, a decision-making process descents from the top of a label embedding

tree is strategic since MCC’s information content is fully used. The second reason is that we ignore

what amount of information is available, and simultaneously force ourselves to make a single pick

of label.

111



6.5. Fine Scale Information Content

It is known that each label’s point-cloud contains its own label specific heterogeneity. Discover-

ing and accommodating such heterogeneity into MCC’s information content in a collective fashion is

another essential part of our data-driven computational endeavors. Since our label embedding tree

can represent the natural hierarchical structure among separated data clouds, it is straightforward

for us to decompose one label’s point cloud into separate sublabel clusters and then implement Al-

gorithm 7. The sublabel clusters are empirically discovered from each label through a hierarchical

clustering tree built upon this label’s point could. On the MLB pitching MCC setting, 139 sub-

labels are generated. We then likewise construct a sublabel embedding tree and its corresponding

139× 139 confusion matrix.

Both geometries of fine scale MCC’s information content are shown in the three panels of Fig-

ure 6.5. They explicitly reveal detail and complex mixing patterns among the 139 sublabel specific

point-clouds. Such fine scale information to a great degree reflect the coarse scale information, but

at the same time shed new light on its own. For instance, we see how diverse subtypes are belonging

to a pitcher’s fastball. If all his subtypes are located in a relative small branch of the sublabel em-

bedding tree, then this pitcher fastball pitches are rather uniform. In contrast, if his subtypes are

located across several far apart branches, then this pitcher’s fastball pitches are difficult to predict.

Further we examine in explicit detail how his subtypes are mixing with other pitchers’ via a pre-

dictive graph. Such examinations allow us to discover how and why this pitcher is in common with

which pitchers, and how and why he is distinct with which pitchers. That is, these two geometries

are platforms for discovering and establishing many ways of comparing MLB pitchers from many

aspects. All these discoveries as diverse parts of the collective knowledge made possible by the fine

scale of information content of MCC.

6.6. Conclusion

The coarse and fine scales of information contents of MCC afford us to zoom-in and zoom-out

to discover Data-driven Intelligence(D.I.) in visible and explainable fashion. The implied nearly

perfect decision-making allows researchers to be responsible. We hope such a D.I. mindset can

prevail from sciences to health industries, and beyond. Promoting D.I. is same as promoting truth
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(A)

(B) (C)

Figure 6.5. Fine scale multiscale geometry of 139 sublabels, which belong to 14
pitchers labeled from 1 to 14. (A)The sublabel embedding tree; (B)the confusion
matrix with a singleton label candidate; (C) predictions stop early at a tree inter-
node.

and knowledge already contained in data. Human might have been very wasteful in casting away

invaluable knowledge by only focusing on forceful prediction.

Finally we make a remark on feature selection. Our standpoint here is that perfect decision-

making is the prerequisite on any prediction issue occurring in sciences and health industries. Over

these fields, any prediction needs to rightly reflect the amount of information available from data.

At the same time, all decision-makers have to be responsible on what they decide. Their subject-

matter sensitive criteria can be easily based on the two geometries of MCC’s information content.

That is, the task of feature selection shall be based on the F and be subject-matter sensitive.

Such a standpoint is illustrated in Figure 6.4. By comparing the three sets of geometric information

contents pertaining to three feature-sets (feature information given in Appendix D), we gain different
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understanding and knowledge regarding the 14 MLB pitchers. We explain such D.I. pertaining to

different sets of feature. That is why a prediction is better feature-set sensitive.

In summary, at least under MCC settings, Data-driven Intelligence is one basic principle objec-

tive of machine learning in Data Science as well as in Artificial Intelligence.
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CHAPTER 7

Conclusion and Future Work

The deterministic and stochastic structure of arrhythmic and rhythmic dynamics have been

studied through this dissertation. Upon segment-wised non-stationary time series of arrhythmic

pattern, change points as temporal locations of abrupt distributional changes are the key part of

the deterministic structure. Within the frame of the change-point skeleton, statistical randomness

forms the stochastic part in each stationary segment. By further assuming the recurrence of the

stationary segment, regime-switching model or Hidden Markov model can be implemented to inves-

tigate the scientific meaning for each underlying regime. While, upon cyclic time series of rhythmic

pattern, landmarks and the stable trajectory within each cycle form the crucial information. In gait

analysis, the variation of time that a person spends finishing a walking cycle implies the existence

of stochasticity.

The deterministic structure plays a significant role in understanding and analyzing the dynamics

in complex systems. In financial analysis, by quantifying the correspondence between change point

locations resulted from different stock returns, one can measure causal effects- whether one stock’s

volatility causes an abrupt change to the price of another stock. Such pair-wise dependency is further

collected to link stocks of S&P500 into a whole system. In gait analysis, the deterministic structure

constitutes the basis of gait identification and authentication. The existence of gait signature and

the recurrent pattern motivates us to select system-states with high frequency. It is demonstrated

that the principle system-states can be easily applied to differentiate a particular individual as a

gait signature. For gait authentication, a stable transition within each circle makes it possible to

detect early-stage illness or disorder condition once such stability is found to be broken.

The heterogeneity in real data is fully discussed through this dissertation. For example, in

financial data, it is well known that the volatility stage is not homogeneous, so it would be more

beneficial to study the regime-switching model compared with the Black-Schole’s. In the Multiclass

Classification (MCC) setting, there might exist different subtypes in one label cloud, which is
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attributed to classification errors of machine learning. In the dissertation, unsupervised learning is

implemented to segment the mixed-type data into homogeneous groups. The segment-wised non-

stationary stock time series is taken into account and the segmentation is achieved based on the

number and location of change points. In MCC, the label-embedding tree provides the geometric

connection among the labels and their subtypes, which illustrates why and how the classification

error is made by the machine.

So far, the offline method is primarily studied in the dissertation. That is to say, time seg-

mentation is performed after all samples have been collected. For example, the S&P500 network is

established based on the correspondence between the retrospective dynamic of a pair of stocks. One

of the future works is to generalize the method to online study. The online analysis can be used on

streaming data and it is able to react to changes in real time. A possible application is to forecast

the volatility regime in the future based on the historical stock price to decrease investment risk.

Another future work is to gain information from an individual to a population. In gait analysis,

the fine-scale gait dynamics are represented via the color-coded cylinder under the individual level.

With the availability of a larger gait database, it brings the possibility to compare the gait dynamic

between different population groups, like male versus female, or youth versus elder. On the other

hand, there exists a biometric trait for each participant to make the individual’s gait signal very

different. The existence of such population-level gait characteristics is still under mystery. In the

finance data, it has been demonstrated that the stocks from the same industrial subcategory, such

as semiconductor, may transit from low- to high-volatility regimes simultaneously. It motives a

potential research topic that whether such local relationship exists in the stock population, or how

to figure out the highly associated stock groups in a data-driven way.
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APPENDIX A

Appendix of Chapter2

Additional Figures and Tables.
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(C)         Cluster1                                    (D)          Cluster2                                   (E)         Cluster3

Figure A.1. 4-states continuous-distribution decoding in simulation data. (A) Hi-
erarchical Clustering Tree; (B) cluster index switching over time; (C),(D),(E): me-
dian eCDFs versus true CDFs, in cluster 1,2,3, respectively
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Table A.1. Top30 indices with the strongest node strength

incoming outgoing
Index NS Index NS
EMC 4.3349 TWX 3.3975
BAC 4.2760 BRCM 3.3148
NTAP 4.2245 NTAP 3.2715
JPM 4.0252 GILD 3.0749
WFC 3.8934 ALTR 2.9504
NBR 3.7955 VLO 2.8755
HON 3.6844 EBAY 2.8178
BRCM 3.6363 HD 2.7764
AIG 3.6327 WMT 2.7619
KBH 3.6230 NVLS 2.7501
CAT 3.6097 CHK 2.7336
WB 3.5598 AMD 2.7331
CTX 3.5570 MXIM 2.7227
WAG 3.4599 YHOO 2.6252
BJS 3.4538 JNJ 2.5732
WLP 3.4503 SCHW 2.5519
LOW 3.3636 IBM 2.5448
SWY 3.3279 XLNX 2.5334
AXP 3.2317 BIIB 2.5313
NOV 3.1355 LLTC 2.5274
BUD 3.1273 MU 2.5269
CHK 3.1227 NVDA 2.5108
DOW 3.0809 BMET 2.4964
KSS 3.0608 TXN 2.4894
VLO 3.0252 C 2.4635
TWX 3.0220 ADBE 2.4633
MO 3.0072 CELG 2.4574
DE 2.9712 TGT 2.4286
COP 2.9598 KLAC 2.3873
TRUE 2.9564 ESRX 2.3860
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APPENDIX B

Appendix of Chapter3

Simulation Data.

Denote the two hidden states as “state0” and “state1”, and their corresponding covariance matrix

“Cov0” and “Cov1”, respectively. In Section 5, datasets are simulated in 5 different cases described

as following.

Simulation Case1

Cov0 =

 1 0.3

0.3 1



Cov1 =

 1 0.7

0.7 1


Simulation Case2

Cov0 =

 1 0.3

0.3 1



Cov1 =

 1 −0.7

−0.7 1


Simulation Case3

Cov0 =

 σ2
1 r ∗ σ1 ∗ σ2

r ∗ σ1 ∗ σ2 σ2
2



Cov1 =

 σ2
2 r ∗ σ1 ∗ σ2

r ∗ σ1 ∗ σ2 σ2
1


where σ1=1, σ2=1.5, r=0.6.
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Simulation Case4

Cov0 =

 σ2
1 r ∗ σ1 ∗ σ2

r ∗ σ1 ∗ σ2 σ2
2



Cov1 =

 σ2
2 r ∗ σ1 ∗ σ2

r ∗ σ1 ∗ σ2 σ2
1


where σ1=1, σ2=1.5, r=0.2.

Simulation Case5

Cov0 =

 1 0.3

0.3 1



Cov1 =

 1 −0.3

−0.3 1


Additional Figures.

Figure B.1. Dataset simulated from bivariate Gaussian “Case2”; vertical dashed
line indicates the true change points; red solid line reflects the segmentation result
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Figure B.2. Dataset simulated from bivariate Gaussian “Case3”; vertical dashed
line indicates the true change points; red solid line reflects the segmentation result

Figure B.3. Dataset simulated from bivariate Gaussian “Case3”; (A) scartterplot
from two hidden states; (B) data points are plotted in back; “balls” with high weights
are painted in different color
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Figure B.4. Dataset simulated from bivariate Gaussian “Case4”; vertical dashed
line indicates the true change points; red solid line reflects the segmentation result

Figure B.5. Dataset simulated from bivariate Gaussian “Case4”; (A) scartterplot
from two hidden states; (B) data points are plotted in back; “balls” with high weights
are painted in different color
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Figure B.6. Dataset simulated from bivariate Gaussian “Case5”; vertical dashed
line indicates the true change points; red solid line reflects the segmentation result

Figure B.7. Dataset simulated from bivariate Gaussian “Case5”; (A) scartterplot
from two hidden states; (B) data points are plotted in back; “balls” with high weights
are painted in different color
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Figure B.8. Trivariate time series of ADBE

Figure B.9. Bivariate returns of CTSH and IBM
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Figure B.10. Kernel density estimation for data points on volatility and non-
volatility region; (A) CTSH; (B) IBM

Figure B.11. Kernel density estimation for data points on volatility and non-
volatility region for 9 semiconductor indexes
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APPENDIX C

Appendix of Chapter5

Data Source. The MAREA Gait Database is available at: http://islab.hh.se/mediawiki/

Gait_database. The Human Gait Database(HuGaDB) is available at: https://github.com/

romanchereshnev/HuGaDB.

Additional Figures.

Figure C.1. (A): r(N∗) v.sN∗ from 9-dim gait time series from 3 sensors fixed at
Left foot and Right foot and wrist among 10 subjects in MAREA database. The
triple coding is based on α = 0.3 and β = 0.7 quantiles.
(B): r(N∗) v.sN∗based on 18-dim gait time series derived from 6 sensors fixed to left
and right thighs, shines and feet in HuGaDB database. The black curve is pertaining
to the triple coding based on α = 0.1 and β = 0.9 quantiles, while the blue curve is
based on α = 0.3 and β = 0.7 quantiles
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Figure C.2. From top to bottom, code each accelerometer time series from right
shine separately and combine them into one sequence in two different ways; one
is a natural way of combination (the second last to the bottom), the other is our
clustering-based combination (the last)

Figure C.3. From top to bottom, code each accelerometer time series from left
foot separately and combine them into one sequence in two different ways; one
is a natural way of combination (the second last to the bottom), the other is our
clustering-based combination (the last)
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APPENDIX D

Appendix of Chapter6

Data Source. The pitching data is available in PITCHf/x database belonging to Major League

Baseball via http://gd2.mlb.com/components/game/mlb/.

Feature explanation from PITCHf/x. A pitched baseball flight captured by 20 pairs of

images via a pair of 60Hz cameras, which have orthogonal optical axes and cover the field of view

between pitcher’s mound and home plate, are determined with respect to the field coordinates.

These images and estimated coordinates are converted into 21 features to characterize the flight’s

aerodynamics. The 21 features are briefly described as follows.

• The starting speed (“start speed”) is measured when the ball is at the point 50 fts away

from the home plate, which is very close to the horizontal and vertical coordinates of release

point (x0, z0) of a pitch.

• The spin direction (“spin dir”) is determined by assuming spin-axis being perpendicular to

the movement direction, while spin rate (“spin rate”) is the number of rotations per minute.

• Vertical and horizontal movement measurements, denoted by “pfx-z” and “pfx-x”, respec-

tively. Topspin and backspin cause positive and negative vertical movements “pfx-z”.

Therefore this feature has a high association with “start speed" for pitchers, who has the

high speed fastball as his chief pitch-type in his repertoire, than for pitchers, who doesn’t.

The feature “pfx-z” is also associated with features related to how a baseball trajectory

curves.

• A baseball trajectory from release point to the home plate is coupled with two straight

lines: the tangent line at the release point (x0, z0) and the line links the release point and

the trajectory’s end point. The angle between these two lines is termed “break angle”,

while the maximum distance between the baseball trajectory and the second straight line
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is called and denoted as “break length”. Therefore the three features: “pfx-z”, “break angle”

and “break length”, are highly associated with each other.

• The remaining features are three directions of speeds and accelerations at the release point,

named “vx0, vy0,vz0” and “ax, ay, az”, respectively, or play only auxiliary roles, like “break

y”, “x”, and “y”.

Definition of Feature Groups.

• Feature Group1: “x0", “z0", and “vx0"

• Feature Group2: “x0", “z0", “vx0", “vy0", “start-speed", “end-speed", and “spin-dir"

• Feature Group3: “x0", "z0", “vx0", “vy0", “start-speed" “end-speed", “spin-dir", “spin-

rate", “break-angle", “pfx-x", and “pfx-z"

• Feature Group4: all 21 features

Additional Algorithms.

Algorithm D Label Embedding Tree (Sparse)

Alg.1 is applied to get the dominance matrix H ′ with a smaller sampling iteration T

H = H
′
+H

′ ×H ′

H(i, j) = min{H(i, j), 1}

D̂(La,Lb) =
∑

j H(j, iab)/
(
L
2

)
Output: a label embedding tree based on D̂
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