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Abstract

Task-Driven Adaptation of Deep Learning Architectures

Deep learning (DL) is one of the widespread frameworks for solving problems from both

thriving areas such as image recognition and long-standing areas such as salinity level es-

timation for water planning. Applying DL neural network models to establish rules from

automatic data analysis and unsupervised feature extraction and generalize to unknown

data, domain knowledge and human experience can be fused to adapt the existing models

for specific DL tasks to obtain boosted performance and better interpretability. This dis-

sertation aims to address some existing obstacles in practice with a focus on two themes:

image compression and recognition in band-limited networks and water salinity modeling

in Sacramento-San Joaquin Delta (Delta), California. When considering the deployment

of learning-based image classifiers in distributed wireless Internet of Things (IoT) systems

like remote camera deployment, effective feature extraction is critical for efficient bandwidth

utilization. In the first part of this dissertation, we develop task-aware image compression

codecs for edge nodes in the IoT systems.

Massive deployment of low cost IoT devices in various networked artificial intelligence

must overcome limited computation and storage capacities of sensor terminals, thereby moti-

vating studies on developing image codec to efficiently encode source images for transporting

over bandwidth-constrained network links to cloud nodes responsible for complex compu-

tations. However, traditional standardized codecs such as JPEG were designed for human

end users based on subjective tests, not for machine learning. Under limited storage and

transport bandwidth, we aim to adapt the popular JPEG codecs for joint image compres-

sion and classification. Our novel end-to-end deep learning framework can optimize widely
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deployed JPEG codecs to improve classification accuracy over current JPEG settings. This

integrative framework simplifies training and classification by directly leveraging the stored

or received JPEG images in the frequency domain during learning to bypass the unnecessary

step of image reconstruction.

On the other hand, neural-network-based image compression codecs, which usually pro-

vide a more promising performance, also play a critical role in remote camera applications.

Yet, there exists several practical challenges in distributed DL over band-limited channels.

Specifically, many IoT systems consist of sensor nodes for raw data collection and encoding,

and servers for learning and inference tasks. Adaptation of DL over band-limited network

data links has only been scantly addressed. The second challenge is the need for pre-deployed

encoders being compatible with flexible decoders that can be upgraded or retrained. The

third challenge is the robustness against erroneous training labels. Addressing these three

challenges, we attach a side branch to the vanilla auto-encoder models and develop a hierar-

chical learning strategy to guide the encoder via this side path. Experimental results show

that our hierarchically-trained models can improve link spectrum efficiency without perfor-

mance loss, reduce storage and computational complexity, and achieve robustness against

training label corruption.

Next, we identify another important challenge which is how to effectively train such

distributed models when the training samples undergo some distortive transformations and

the connecting channels have limited rate/capacity. Our goal is to optimize DL model

such that the encoder latent requires low channel bandwidth while still delivers transform-

invariant feature information for high classification accuracy. This work proposes a three-step

joint learning strategy to guide encoders to extract features that are compact, discriminative,

and amenable to common augmentations/transformations. We optimize latent dimension

through an initial screening phase before end-to-end (E2E) training. To obtain an adjustable

bit rate via a single pre-deployed encoder, we apply entropy-based quantization and/or

manual truncation on the latent representations. The proposed trained models also exhibit
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robustness to such latent quantization and truncation.

In the second part of this dissertation, we turn to the DL applications where training

data is insufficient. Reliability of the DL models usually comes with the pre-requisite of

massive annotated training data. For example, the generalization capability of the DL mod-

els discussed above relies on tens of thousands of training samples. However, acquisition of

task-specific annotated data can be costly in terms of experimental resource, human labor

and user privacy, which calls for the few-shot learning (FSL) paradigm where models learns

data representations effectively from limited number of samples. In addition, accurate label

information may conflict with the intrinsic features in data, hence become misleading when

training the embedding extractors. To alleviate model dependence on labeled data and ad-

dress the common overfitting problem of FSL in computer vision, again, we integrate the

side path in the encoder to ensure linear discriminative embeddings extraction. Moreover,

to mitigate the disagreement between categorical labels from the classifier end and under-

lying patterns from the encoder side, we propose to incorporate coarse-grained instead of

fine-grained labels into the embedding regularizer term. The proposed regularizer reduces

overfitting and improves test accuracy over E2E CE training or its fine-grained version, espe-

cially for deeper models which are more likely to overfit. This regularizer works better when

there is less manual intervention and more randomness in coarse label assignment, which in

turn supports our statement that the inherent discriminative characteristics in data may not

be well detected via the straightforward E2E label-based training.

In the third part of this dissertation, we shift to a conventional field of water salinity

modeling. Domain-specific architectures of multi-layer perceptron (MLP) artificial neural

networks (ANNs) have been developed as computer emulators for a commonly used pro-

cess model, the Delta Simulation Model II (DSM2), for fast salinity level estimation at key

monitoring stations in the Delta. However, achieving promising prediction results and fast

inference speed at the same time can be challenging with an insufficient amount of training

samples and/or the inevitable measurement noise in the observed dataset. To begin with, we
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propose three major enhancements to the existing ANN architecture for purposes of train-

ing time reduction, estimation error reduction and better feature extraction. Particularly,

we design a novel multi-task ANN architecture with shared hidden layers for joint salinity

estimation at multiple stations, achieving a reduction of 90% training and inference time.

As another major structural redesign, we replace pre-determined pre-processing on input

data by a trainable convolutional layer. We further enhance the multi-task ANN design and

training for salinity forecasting. These enhancements substantially improve the efficiency

and expand the capacity of the current salinity modeling ANNs in the Delta. Our enhanced

ANN design methodologies have the potential for incorporation into the current modeling

practice and provide more robust and timely information to guide water resource planning

and management in the Delta.

The enhanced ANN is able to produce adequate estimation accuracy on DSM2 simu-

lated data, but the performance degrades when being applied to field observations due to

data insufficiency and noise in measurements. For further performance gain and inference

acceleration, we develop novel DL models by attaching a residual shortcut path of recurrent

neural network (RNN) layers to the vanilla MLP ANN architecture, called the “Res-RNNs”.

The proposed Res-RNNs can capture spatial variations with the main MLP path and handle

temporal information with the assistance of the RNN side path, hence provides better per-

formance than MLP models. Our work demonstrates the feasibility of DL-based models in

supplementing the existing operational simulators in providing more accurate and real-time

estimates of salinity to inform water management decision-making.

Overall, this dissertation reveals the potential of adapting existing DL model architectures

for downstream tasks to achieve interpretable, robust and timely results in both the rising

area of learning-based image recognition and the classical area of water modeling.
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Chapter 1

Introduction

1.1 Overview

Recent advances in deep learning (DL) together with the support of higher computing ca-

pabilities enables researchers to apply this growing technology to solve various complex

problems among human societies in both emerging fields like data-driven image compression

and classification, as well as traditional fields like salinity modeling in water supply systems.

Brief diagrams of DL applications are provided below in Figs. 1.1 and 1.2.

Figure 1.1: An example of a cloud-based image classification framework.

An illustration of DL-assisted cloud-based image classification technique can be found in

Fig. 1.1, where low-cost sensing devices, such as surveillance cameras, capture and compress

image data before sending them to a resource-rich cloud server for classification. The cloud

server then decompresses and categorizes the received information and transmit the label

back to the edge nodes. As existing traditional classifiers are designed for uncompressed
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high-quality images, proper architecture adaptation shall be applied in this scenario.

Figure 1.2: An example of a salinity estimation framework.

The diagram of a typical salinity estimation process is outlined in Fig. 1.2, where an

artificial neural network (ANN) produces salinity level estimations at locations of interest

based on a set of measured environmental variables. For both cases, DL has shown signifi-

cant potential in approximating and reducing the dimension of complex datasets into highly

compact and informative subspaces [3–9]. Hence, it has been adopted as a promising ap-

proach for big-data-based feature extraction. In order to attain rapid accurate estimation,

certain enhancements can be introduced to the previous ANN architecture.

In this dissertation, we aim at solving the problems of developing effective learned feature

extraction applications for both the advanced field of image compression and classification,

as well as the classical field of water supply management.

1.1.1 Joint Image Compression and Classification Paradigms

In the era of Internet of Things (IoT) and cloud computing, many practical image processing

applications [10–12] rely on widely deployed low-cost cameras and sensors for data collection

before transmitting sensor data to powerful cloud or edge servers that host pre-trained deep

classifiers. With recent developments in remote sensing technology, the sensing devices can

capture higher quality image data, which is advantageous to cloud-based remote sensing

image applications. However, the huge amount of information in these images poses a chal-
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lenge for data transmission as most network links usually are severely band-limited and must

prioritize heavy data traffic. As a result, image compression techniques become a vital topic

for efficient and effective utilization of limited network bandwidth and storage resources.

Conventional Image Compression Codecs

Conventional image compression approaches can be employed for remote sensing images.

JPEG [13] is one of such popular standards for lossy image compression, widely used to

conserve bandwidth in source data transmission and storage. An overview of a JPEG-

embedded joint image compression and cloud-based classification framework is depicted in

Fig. 1.3.

Figure 1.3: Overall framework of the joint image compression and classification technique.

At the source device end, the JPEG encoding process includes discrete cosine transform

(DCT) and frequency-dependent quantization. The quantized integer coefficients ŷ are en-

coded via run-length encoding (RLE) and Huffman coding. Due to RLE, total bit rate of an

image cannot be predicted straightforwardly [14–16]. By retaining more low-frequency data,

which human visual systems are more sensitive to, the JPEG encoding achieves substantial

image compression ratio with little human perception quality sacrifice. These encoded bits

are then transmitted over a data link channel of limited capacity (bit rate) before decoding

and recovery for various applications at the server node.
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Deep-Learning-Based Image Compression Models

With recent research progress, deep learning has become a major tool in multimedia appli-

cations such as joint image compression and classification in the IoT systems. In present

days, auto-encoders (AEs) [3–5] have been introduced into data compression tasks with

encouraging performance.

Figure 1.4: Overall framework of the joint image compression and classification technique
with an auto-encoder.

An AE is a specific type of neural networks that is popular for data encoding/compression

and decoding. As shown in Fig. 1.4, an AE consists of an encoder for the source node, which

is responsible for compressing the input into a low-dimensional meaningful representation,

and a decoder for the server node, which maps the extracted latent representation to the

desired output for a specified deep learning task, such as reconstruction, segmentation or

classification [6–8]. The rapid growth and broad deployment of low-cost sensing devices have

inspired the develeopment of multiple variants of lightweight and efficient convolutional AEs

[17–22] for networked learning frameworks.

1.1.2 Image Classification with Limited Data

Benefiting from the emergence of high speed computing devices, well-designed models and

rich datasets, DL-based classification frameworks are able to overcome human intelligence in

terms of durance, accuracy and processing speed. For instance, the joint image compression

and classification models in Section 1.1.1 learns to preserve key features and accurately
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classify the images. Yet, these data-intensive DL applications usually require learning from

a sufficient amount of labeled dataset to adapt to accommodate unseen data. Acquiring

such training data may be costly, if not impossible, for the sake of data-gathering labor,

data-labeling expertise, user privacy and safety. Straightforward approaches, such as fine-

tuning models based on the limited task-specific data, can lead to severe overfitting [23].

In contrast, humans can recognize new categories at a high accuracy [24] with only a few

instances utilizing their past experience. Consequently, researchers have devoted efforts in

this new sub-area, Few-Shot Learning (FSL), to tackle the problem of learning the underlying

pattern from a limited amount of training samples. Inspired by human development theory,

the first and most obvious solution to FSL is to gain experience from other similar tasks,

known as “meta-learning” or “learning to learn” [25]. Classic meta-learning usually involves

two learning stages. Firstly, a meta-learner rapidly learns from several individual tasks. In

the second stage, a learner acquires generic experience across the similar tasks and generalizes

the accrued knowledge using task-specific information.

As one of the meta-learning approaches that has made significant progress in FSL, metric-

learning-based methods [23,26] learn discriminative instance embedding functions that map

images to a common feature space, where they get classified based on a distance metric. An

overall diagram is provided in Fig. 1.5. In particular, Matching Networks [26] learn with a

weighted nearest-neighbor objective and measure the normalized cosine similarity between

the unlabeled images (the query set) with each labeled sample (the support set), while

Prototypical Networks (ProtoNets) [23] perform nearest neighbor classification by measuring

the negative distance between the query image and the class prototypes (instead of every

sample in the support set). Recent variants of ProtoNets [27–29] enhance its performance

with a task-adaptive metric [27,29] or an image-to-class local metric [28].
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Figure 1.5: Example setup of a metric-learning based FSL technique.

1.1.3 Water Salinity Modeling

Deep learning has also been proved to be an advanced big data analysis tool to solve complex

meteorological and hydrological phenomena in traditional fields such as water demand [30],

leak detection [31], water system control [32], and modeling salinity in groundwater [33],

soil [34], rivers [35], oceans [36], and estuarine environments [37, 38]. Salinity management

is the keystone of water resources management in estuarine environments due to the under-

lying biological significance and inherently high variations in space and time of salinity [39].

Understanding these variations and predicting their patterns under different potential future

scenarios lay the foundation for informed water management decision-making. This is es-

pecially true for areas with great ecological, social, and economic importance including the

Sacramento–San Joaquin Delta (Delta) in California, United States.

1.2 Motivation

1.2.1 Optimizing Image Compression Algorithms for Band-Limited

Networks

In this dissertation, without loss of generosity, we target at image compression codec op-

timization for the image classification task, while the proposed methods can be directly

applied for other tasks. In a networked learning scenario, there is a strong need to con-
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serve network bandwidth and local storage for remote image classification. Targeting human

users, the parameters in JPEG configuration are selected according to visualization subjec-

tive tests. However, in CNN-based image classifications, näıve adoption of the lossy JPEG

image encoding, designed primarily for human visualization needs, can lead to unexpected

accuracy loss because the traditional CNN models are agnostic of the compression distor-

tion. To tackle this issue, this work is motivated by the obvious and important question in

distributed AI: How to optimally (re)configure standardized JPEG for image compression to

improve DL-based image classification. Classical lossy image compression codecs are usually

designed for human vision. But images compressed by these algorithms can be harder when

being analyzed by a deep neural network (DNN). Direct application of traditional image

classifiers, implemented for high-quality raw images, to compressed images in this scenario

usually leads to sub-optimal results. Hence, proper architecture adaptation, such as a train-

able DL model, is required for joint image compression and classification that can optimize

the widely used JPEG codec for higher classification accuracy under the standard JPEG

settings.

Complex computer vision tasks have attracted immense research efforts. Due to the

huge amount of high-dimensional training data, DL-based image compression codecs are

naturally more suitable than handcrafted codecs for digital image analysis and/or the down-

stream image classification task. When being embedded in the IoT systems consisting of

cloud servers and edge nodes, the multilayer structure of DL neural networks makes them

naturally suitable to be distributed separately. However, it is challenging to directly deploy

traditional DL architectures on edge nodes due to their limited storage space, power supply

and computational resources.

As a result, we extend the scope from the conventional manually-designed image codecs

to the more flexible DNN-based trainable AE codecs. Traditional AEs are trained in an end-

to-end (E2E) manner to learn an unsupervised mapping from the input to the latent domain,

which may not be optimal for a band-limited IoT scenario, where bandwidth efficiency is
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an essential concern. To be specific, in distributed DL frameworks over practical rate-

limited channels, the extracted latent representations to be transmitted should be both

discriminative for classification and compact for compression. Moreover, the cost to upgrade

an encoder can be high once it has been embedded on source nodes, so the encoder should

be compatible with various decoders that may be trained separately for different objectives.

Besides, as errors in training data, such as inaccurate labeling, are inevitable in realistic

applications, the developed AE need to be robust against certain level of training label

corruptions. The straightforward E2E training with a single cost function, typically the

cross-entropy (CE) function, without regularization in the latent domain cannot address the

three challenges mentioned above.

Additionally, the original data collected by IoT sensing devices usually undergo various

transformations, including translation, mirroring and rotation, color jitter [40–42], etc. And

the encoders on edge node shall be capable of learning the key invariant features from these

distorted image data. Lastly, as the bandwidth limit may change in the IoT systems, it is

also essential that the encoder can provide various compression ratios for choice. Lastly,

channels can be disrupted when transmitting data and the learned latent representations

are expected to be robust to such random corruptions. Although E2E training strategy

empirically produces adequate performance with a black box classifier, it does not handle

the five challenges existing in real-time networked learning frameworks described above.

1.2.2 Problems of Embedding Regularization in Few-Shot Learn-

ing

In the area of metric-learning based methods for FSL, how to extract discriminative em-

beddings that are universal for both seen and unseen classes remains the key question.

Intuitively, embeddings of the same classes shall be close to each other while those of dif-

ferent classes shall locate far away in the feature domain. It has been proposed in [29]

that introducing adaptable set-to-set functions to ProtoNets can promote such effects, al-
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leviate overfitting and achieve performance gain. Moreover, it has been shown in [43] that

integrating an auxiliary loss term in [29] to ensure the compactness and discriminability of

embedding can further reduce overfitting and show accuracy improvement with no additional

computational or storage cost at inference. However, there remains several problems when

applying such learning guidance. Firstly, the embedding regularization term may disagree

with the classification objective during training [44], leading to a local minima where neither

embedding is well-regularized nor classifier is well-trained. The conflict will likely result

in a relatively marginal accuracy gain, which can be observed in [43]. Secondly, as neural

networks only pay attention to the task-specific patterns and ignore unrelated ones [45], the

meta-information shared across tasks may get missed if it is not strongly correlated with the

class labels. For example, if a learner is trained on images of cats and dogs, it may overfit

to distinguishing animals and have a hard time transferring the knowledge to recognizing

fish. Hence, such strict regularization through fine label information can be less optimal for

cross-task generalization in FSL. Thirdly, hand-crafted fine-grained labels are expensive even

in FSL problems as they usually require expertise to implement while coarse-grained labels

are more accessible. To mitigate the three problems, we consider coarse-grained labeling

information for embedding regularization as a relaxation for fine labels.

Data augmentation is another line of methods to prevent overfitting in FSL, where the

supervised information in training set gets enriched using prior knowledge [46]. For example,

one can introduce variance using manually-designed transformations such as noise, flipping,

cropping and rotation [40–42]. Designing the augmentation rules requires intensive domain

knowledge and they are data-specific and hard to be broadcast to other datasets. In contrast,

our coarse-label-guided FSL approach is applicable to any existing dataset or task. As an

exploratory research, we also investigate and compare the effects of integrating different

augmentation rules and/or our proposed coarse-label-guided approach to the FSL backbone.
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1.2.3 Enhancing Salinity Estimation Models

Previous works [2, 47–49] have investigated applying ANNs in salinity modeling in the

Delta. However, these previous works introduce training a single-task learning multi-layer

perceptron (MLP) [50] ANN for each monitoring station of interest with the same set of

input variables, which is less efficient in terms of both training time and inference speed.

Therefore, more efficient architectures and/or training strategies shall be investigated to

improve the processing speed while maintaining a valid performance.

The recurrent neural network (RNN) is a type of ANN model well-suited for handling se-

quential data. Previous studies provide evidence that RNNs can be applied to the time series

data in salinity modeling [51–54]. Specifically, the Long Short-Term Memory (LSTM) [55]

and Gated Recurrent Unit (GRU) [56] architectures have shown special potential in simu-

lating variables by keeping a memory of their predictors [49]. However, these RNN models

have two major disadvantages. Firstly, in order to keep track of sufficient memory, they often

contains more parameters than non-recurrent models. Secondly, the iterative computations

in RNNs process in an autoregressive manner and cannot run in parallel, which naturally

reduces the training and inference speed of RNNs. These facts motivate us to seek a modifi-

cation in the architecture to reduce the complexity of these powerful RNN models for faster

training and inference of the specific task.

1.3 Objectives and Approach

In the first part of this dissertation, we focus on developing low-cost image compression

algorithms for deployment on edge devices.
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1.3.1 Learning-Based Joint Image Compression and Classification

Conventional Image Compression Codecs

To improve the widely-used JPEG standard for image transmission at the cloud, the DL-

based model should take both the image compression performance and the neural network’s

classification accuracy into consideration during training. We formulate this dual-objective

problem as a constrained optimization problem which maximizes classification accuracy sub-

ject to a compression ratio constraint. We fuse the trainable JPEG compression blocks and

JPEG decoding blocks together with the trainable CNN classifier in our end-to-end learning

model. By incorporating the traditional JPEG codec in a neural network model and making

certain parameters of it trainable, we can jointly optimize/configure the JPEG codec and

the DL model to reduce the classification accuracy degradation caused by lossy compression

at a given bandwidth, compared with the original JPEG compression algorithm.

Deep-Learning-Based Image Compression Models

In this dissertation, we propose to tackle the challenges by leveraging a multi-phase hi-

erarchical learning concept by an information-theoretic principle of Maximal Coding Rate

Reduction (MCR2) [44] through a side branch attached to the AE. With the proposed train-

ing strategy, we assign the sub-task of efficient feature extraction to the encoder and the

sub-task of classification to the decoder and train them separately. In addition, to make

the encoder of the AE less complex and more feasible for cyber-deployment on sensing de-

vices, we propose a encoder pruning strategy based on Fisher’s linear discriminative analysis

(LDA) [57]. Experimental results show that the AE models trained by our training strategy

provide robustness to filter pruning compared with E2E CE training.

Inspired by hierarchical training, we suggest to incorporate self-supervised learning in

this training strategy designed above and propose a three-step hierarchical training method.

We observe that with the self-supervision-enhanced training strategy, the AE models manage
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to maintain a satisfying accuracy under multiple transformations or augmentations tested,

yielding a better overall rate-accuracy performance with entropy-based quantization applied

and are more robust to random dropout in latent representations, potentially caused by

channel disruptions, than baseline E2E CE-trained models.

1.3.2 Weakly-Supervised Few-Shot Learning

In the second part of the dissertation, we target at alleviating overfitting, improving model

generalization capability, reducing data-collection labor cost for FSL. Particularly, follow-

ing [43], we add a side branch and apply an MCR2 [44]-guided embedding regularization

term to the cost function of the enhanced ProtoNet in [29] to achieve the dual objectives

of efficient embedding extraction and accurate classification. In this work, we assign coarse

labels, based on either a random or a hand-crafted hierarchy, to the training set and only

use the coarse-grained grouping information in MCR2 loss for embedding guidance. Our

experimental outcomes suggest that such weakly-supervised MCR2 guidance is as powerful

as vanilla supervised version in [43] on shallower and thinner models. On deeper and wider

models, which are more prone to overfitting, weakly-supervised MCR2 guidance can lead

to further accuracy improvement than [43]. Additionally, we explore the effectiveness of

common data augmentation methods versus our proposed method to better understand how

the principal of MCR2 leverage the discriminability in embedding mapping and classification

accuracy. Overall, applying data augmentation alleviates overfitting at a cost of degradation

in both training and test accuracies. Random rotation, which may confuse the neural net-

works as the images’ internal patterns are completely manipulated pixel-wisely, appear to

interfere the classifier’s capability of extracting underlying discriminative features the most.

For this reason, the proposed weakly-supervised MCR2 guidance strategy does not establish

improvements under image rotation either. However, with other augmentation methods in-

cluding grayscale conversion, color jitter and flipping, our weakly-supervised MCR2 guidance

strategy shows the potential of reducing the performance drop caused by augmentation.
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1.3.3 Deep Learning on Time Series Data for Delta Modeling

In the third part of the dissertation, we aim at enhancing current models as well as developing

novel architectures for salinity estimation in the Delta.

Enhancing Multilayer Perceptron (MLPs) for Salinity Modeling

Motivated by the fact that salinity levels at multiple monitoring stations are affected by

the same hydrological measurements within the same regional ecosystem, we propose that

these domain-specific ANNs can be enhanced by viewing salinity estimations at monitoring

stations as an integrated multi-task learning (MTL) problem. In this way, the key knowledge

extracted by intermediate layers can be shared by developing and training a single MTL ANN

that generates salinity estimations for all stations simultaneously. The proposed MTL ANN

is much more efficient and outperforms baseline single-task learning ANNs for most stations.

Enhancing Recurrent Neural Networks (RNNs) for Salinity Modeling

Encouraged by the great success of ResNets [58] in image recognition, we adapt the idea

of residual learning to overcome the two aforementioned obstacles. In this dissertation, we

devise the novel Res-LSTM and Res-GRU models which are less complex than the vanilla

LSTM or GRU models tested, where the baseline MLP ANN developed in our previous

work [59] is considered as the main branch and a simplified LSTM or GRU layer is at-

tached as a shortcut path. Experimental results reveal that the Res-RNN models produce

better salinity estimation and forecasting performance than the baseline MLP ANNs while

introducing only a mild increase to computational complexity.
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Chapter 2

End-to-End Optimization of JPEG

Standard for Rate-Limited Image

Classification

2.1 Introduction

The rise of machine learning has benefited significantly from the tremendous success of deep

learning neural networks in image classification and recognition. In recent years, deep con-

volutional neural networks (CNNs) have demonstrated successes in learning tasks such as

image classification and recognition, owing to their capability of extracting image features

among adjacent pixels. The emergence of residual network (ResNet)[58] further enhanced

image classification without introducing extra computational complexity. In many practical

AI applications involving widely deployed low cost cameras, the DL tasks are carried out

on cloud servers remotely, relying on low cost sensing devices for data capturing and trans-

mission. As most (RF) network links usually are severely band limited and must prioritize

heavy data traffic, image compression techniques are vital for efficient and effective utilization

of limited network bandwidth and storage resources. JPEG[13] is a highly popular codec
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standard for lossy image compression, widely used to conserve bandwidth in source data

transmission and storage. Fig. 2.1 captures the JPEG encoding process including discrete

cosine transform (DCT), quantization, and entropy encoding. JPEG partitions each image

into 8 × 8 non-overlapping blocks before DCT. To compress the image size and conserve

bandwidth, high DCT bands are less critical to visual perception and are assigned coarser

quantization. These quantized integer DCT coefficients are then encoded via a combination

of run-length encoding (RLE) and Huffman coding. Due to the RLE, total bit rate of an im-

age cannot be predicted straightforwardly[14–16]. The JPEG encoding achieves substantial

image compression ratio with little human perception sacrifice. These encoded bits are then

transmitted over a channel of limited capacity (bit rate) before decoding and image recovery

for various visual applications.

Figure 2.1: Brief Overview of JPEG Standard.

We note, however, in AI-related applications such as DL image classifications, näıve

adoption of JPEG image encoding, designed primarily for human subjects, can lead to unex-

pected accuracy loss because the traditional CNN learning models are agnostic of the lossy

JPEG processing. Our tests in Fig. 2.2 illustrate a steep decline of classification accuracy

by CNN with growing JPEG compression. Clearly, JPEG compression is not designed or

optimized for classification based on deep learning. Still, its widespread availability provides

a strong incentive to optimize JPEG code configuration for deep learning tasks instead of

its abandonment.

Our objective in this work is to develop a specialized deep learning structure that can
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Figure 2.2: Training accuracy (left) and test accuracy (right) on 13%, 25%, 50% and 100%
JPEG image quality CIFAR-10 with ResNet-50. Lower quality images correspond to higher
compression ratio and lower classification accuracy.

effectively perform the joint task of image compression and classification. This dual-objective

problem can be formulated as a constrained optimization which maximizes classification

accuracy subject to a set degree of compression. We shall generalize the existing deep learning

architectures to jointly optimize the JPEG image codec and the classifier. Specifically, We

propose to incorporate trainable JPEG compression blocks and reconstruction blocks that are

fully JPEG compliant into our CNN architecture. Our proposed integrative JPEG framework

is capable of configuring suitable JPEG encoding parameters to achieve high classification

accuracy for a given compression ratio.

We demonstrate how this end-to-end deep learning architecture can optimize JPEG codec

to improve classification accuracy in comparison with the baseline JPEG settings. On high

resolution images such as the ImageNet dataset, this joint framework simplifies training

and classification by directly leveraging the stored or received JPEG images in the DCT

domain without the unnecessary spatial reconstruction. Tests on CIFAR-10, CIFAR-100

and ImageNet datasets demonstrate improved validation accuracy for limited image sizes.

We organize the rest of the chapter as follows. Section 2.2 introduces the basics of
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JPEG codec and summarizes related works. Section 2.3 proposes the novel end-to-end

DL architecture. We provide experimental results in Section 2.4, before concluding and

discussing potential future directions in Section 2.5.

2.2 JPEG Codec and Learning over JPEG

2.2.1 JPEG Codec in View of Deep Learning

In JPEG compression with 4:2:0 chroma subsampling, an RGB source image is first converted

to YCBCR color space through linear transformations defined as:

Y = 0.299R + 0.587 G+ 0.114B

CB = 128− 0.169R− 0.331G+ 0.5 B

CR = 128 + 0.5 R− 0.419G+ 0.081B

Here R, G, B and Y , CB, CR represent a pixel value of the corresponding color channel.

For further compression, the two chrominance channels (CB and CR) are subsampled by 2

both vertically and horizontally. After subsampling, each of the 3 YCBCR channels is split

into non-overlapping 8× 8 blocks before applying blockwise DCT.

The 2-dimensional (2-D) DCT of an image block I of size N ×N with entries I(k, l) is

defined by N ×N block F . Let 0 ≤ m ≤ N − 1, 0 ≤ n ≤ N − 1. The entries of F are

F (m+ 1, n+ 1) =

αmαn

N−1∑
k=0

N−1∑
l=0

I(k, l) cos
(2k + 1)mπ

2N
cos

(2l + 1)nπ

2N
,
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where αm =
√

(2− δ[m])/N . The DCT matrix D entries are

D(m+ 1, n+ 1) =


N−1/2, if m = 0,

2√
N

cos
(2n+ 1)mπ

2N
, otherwise.

The 2-D DCT and the 2-D Inverse DCT (IDCT) can be written, respectively, as matrix

multiplication:

F = DIDT and I = DTFD.

The DCT representations of images in the frequency domain is capable of compacting image

features with a small number of DCT coefficients which can be used for compression with

little perceptible loss.

For compression, each block of the 8×8 frequency-domain coefficients F is quantized using

pre-defined quantization matrices, or “Q-tables” Q with entries Q(j, k) at JPEG encoder to

obtain quantized block Fq whose entries are Fq(j, k) = round[F (j, k)/Q(j, k)]. The decoder

reconstructs from the compressed block Fq and the Q-table to form Hadamard product

Fq = F ◦Q. Decoder would then use IDCT to recover spatial RGB images. Parameters in

Q can be adjusted to achieve different compression levels and visual effects. JPEG standard

provides two Q-tables to adjust compression loss, one for the Y channel and another for CB

and CR channels.

In networked image applications, training using full resolution images would make little

practical sense and would be prone to accuracy loss because only codec compressed image

data are available at the cloud/edge processing node. Thus, deep learning networks should

directly use compressed DCT coefficients as inputs for both training and inference instead

of full resolution RGB images for training. Image classification (labeling) directly based on

DCT coefficients can further reduce decoder computation during both training and inference

by skipping the IDCT and potentially achieve better robustness under dynamic levels of

JPEG compression.
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Importantly, ResNets that were successfully developed for recognition of fully recon-

structed JPEG images tend to exhibit performance loss if they are directly used on image

data in DCT domain. Motivated by the need to improve image processing performance in

networked environments under channel bandwidth and storage constraints, this work inves-

tigates deep learning architecture designs suitable for optimizing standard compliant JPEG

configurations to achieve high classification accuracy and low bandwidth consumption by

directly applying DCT input data. Our joint optimization of the JPEG configuration is

achieved by optimizing both the JPEG Q-table parameters and the deep learning classifier

to achieve end-to-end deep learning framework spanning from the IoT source encoder to the

cloud classifier. Our experiments include tests on the lower resolution CIFAR-10, CIFAR-100

and Tiny ImageNet datasets, as well as the high resolution ImageNet[60] dataset.

2.2.2 Related Works

In terms of compression for bandwidth and storage conservation, DL architectures such as

auto-encoders have been effectively trained[61–63] from end to end for lossy image compres-

sion with little degradation of image classification accuracy or perceptual quality. Previous

works [1, 64] have revealed that training DL models on the DCT coefficients is possible and

can benefit from the sparsity of DCT coefficients. Specifically, the authors of [1] presented

a faster CNN structure with a modified ResNet-50 architecture, which learns directly in the

DCT domain. In another work [65], the authors developed a joint compression and classi-

fication network model based on JPEG2000 encoding. These papers are among a number

of evidences that suggest the viability of DL-based optimization of image codecs specifically

for end-to-end joint image compression and classification.

Previous studies [16,66–68] have also recognized the importance of Q-tables in traditional

JPEG codecs and seek to optimize them for DL-based image classification. [66,67] propose to

design JPEG Q-tables based on the importance of DCT coefficients, evaluated by the relative

frequency [67] or the standard deviation [66] of the coefficients. Our work is most relevant

19



to [16,68]. Both [16,68] offer end-to-end task-aware DL models that aim to estimate a set of

optimized Q-tables for each input image, where one or more entropy estimation models are

pre-trained to predict the bandwidth of each image. In contrast, targeting low cost sensing

nodes, our proposed model learns a single set of Q-tables for all images during training, which

can be pre-configured and incorporated within the JPEG codec after training for inference

tasks. This reduces the required computational power at the sensing nodes. Moreover, our

proposed training model tunes the Q-tables using a regularization term in the loss function

and does not need a separate entropy estimation model.

To the best of the author’s knowledge, there has not been any published work on JPEG

Q-table optimization for distributed by targeting low-cost sensing devices. Since JPEG

continues to be a commonly used image coding methods in massive number of low-cost

devices, we focus our investigation on the rate-accuracy trade-off to address the critical issue

for their widespread applications in distributed learning environment.

2.3 Joint Compression-Classification DL Architectures

2.3.1 Pre-processing

Figure 2.3: Pre-processing of input images. Image sample is from CIFAR-10 dataset and
original image size is 32× 32 pixels.

Fig. 2.3 illustrates the standardized JPEG encoding and processing steps. First, the

captured image pixel values are level-adjusted by 128 before converting to YCBCR color
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space. Next, pixels in CB and CR channels are down-sampled by 2 both horizontally and

vertically. All three channel data undergo 8×8 block-wise DCT. Each 8×8 DCT coefficient

block is scaled down by a constant 1/S and re-organized into a 64×1 vector. This scaling by

1/S can be equivalently performed by scaling the Q-tables up by S in the JPEG encoding

standard. We stack all the resulting 64 × 1 image vectors as inputs to the DL neural

network. This process is easily amenable to augmentation in RGB color space before DCT

transformation into frequency domain.

2.3.2 ResNet for CIFAR-10

Figure 2.4: Proposed architecture for CIFAR-10, whose layers are marked as gray blocks.
The detailed structure in ResNet-50 is not showed here.

Compression Layers

As illustrated in Fig. 2.4, the first hidden layer in our neural network is a trainable com-

pression layer, similar to the “quan block” in [65]. As discussed earlier, there are two 8× 8

quantization tables in JPEG standard suggested for luminance and chrominance channels,

respectively. However, as stated in Annex A.3.4 and Annex B.2.2 of [13], JPEG is flexible

enough to allow three distinct custom Q-tables Q1, Q2, and Q3, respectively, to each of

the three YCBCR color channels, leading to 192 trainable parameters in this layer. Same

as in [65], to further simplify computations, we change the quantization parameters into

element-wise reciprocal of the Q-table entries in Qi according to

qi(j, k) = Qi(j, k)
−1,

for i ∈ {1, 2, 3} and j, k ∈ {1, 2, ..., 8}.

21



The element-wise reciprocal matrices qi, referred to as the “compression kernels”, convert

element-wise division to multiplication and allow neural network to discard DCT coefficients

by setting the corresponding entry qi(j, k) = 0. Smaller qi values lead to smaller range of

quantized DCT coefficients and consequently generates fewer encoded bits.

Note that the quantization layer includes a non-differentiable rounding operationa(F ) =

round(F ), which cannot be used in a gradient-based training framework, as its activation

function. To facilitate gradient based training, we mitigate this problem by substituting a

smooth approximation function â(F ) = F for the rounding function in the backward pass

of backpropagation following [69].

d

dz
[z] :=

d

dz
z.

Note that we replace only the derivative and in forward pass, the rounding function oper-

ates as usual. Together, the pre-processing and the quantization layer form a JPEG-based

encoder.

The dequantization layer only needs to multiply the quantized coefficients element-wise

by their respective Q-table matrices Qi, i = 1, 2, 3 already determined in the quantization

layer of the encoder. Hence, these parameters in dequantization layer are not trained and

require no activation function. Together, the quantization and dequantization layers jointly

form a pair of “compression layers”. ·

Reconstruction Layer

As described in Section 2.2, the reconstruction layer contains 64 fixed parameters of the

8× 8 DCT matrix D. This layer performs IDCT via I = DTFqD for each quantized DCT

coefficient block Fq and rearranges the reconstructed blocks I. CB and CR channels are

upsampled via bilinear interpolation. Without activation function, this layer directly outputs

spatial-domain YCBCR images. Together, the dequantization layer and the reconstruction

layer form the JPEG decoder. This architecture allows the CNN to operate on reconstructed

images on GPU and save CPU computations.
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Loss Function during Training

To jointly reconfigure the JPEG parameters in compression layers and to optimize the deep

learning classifier, we design the following loss function during training:

L = LCLA + λLQuan,

where LQuan quantifies the quantization loss and LCLA is the loss term from the deep learning

classifier, including the cross-entropy classification loss and the parameter regularization

terms. Without loss of generality, we adopt ResNet [58] as the classifier.

Since there exists no easy and standard metric to quantify the JPEG compression level (or

channel bandwidth), which relies on run-length encoding and Huffman coding, we propose

the following surrogate loss function

LQuan =
3∑

i=1

8∑
j=1

8∑
k=1

q2i (j, k).

designed to control the power of quantization parameters. λ is a tunable regularization

parameter to adjust compression level. A larger hyper-parameter λ leads to smaller qi(j, k)

and consequently smaller range of DCT coefficients, thereby achieving higher compression

ratio.

2.3.3 Wide ResNet (WRN) for CIFAR-100 and Tiny ImageNet

For CIFAR-100 and Tiny ImageNet, we propose the WRN model of Fig. 2.5. Following

JPEG standard, our image pre-processing steps include level shifting, color transformation,

subsampling and DCT. In the pre-processing layer, the color transformation coefficients can

also be trained under simple constraints to ensure invertibility.
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Figure 2.5: Proposed architecture for CIFAR-100 and Tiny ImageNet. The detailed structure
in WRN-28 is omitted here.

Classifier

WRNs[70] achieve impressive classification performance on the CIFAR-100[71] and Tiny

ImageNet[72] datasets. Without loss of generality, we adopt a 28-layer WRN as the classifier.

For CIFAR-100, we set the convolutional layer width multiplier k = 10, same as that used

in [70]. For Tiny ImageNet, we set k = 1 to further simplify training for very low cost IoT

devices.

Loss Function During Training

However, the gradient of quantization layer activation function a(z) can be large when z is

close to an integer value. This large gradient value may lead to convergence issues, especially

with datasets containing as many as 100 and 200 categories. To mitigate this potential

problem, we replace the activation function by an accurate rounding function and manually

set its gradient to 1 during back-propagation. Moreover, we supplement the loss function

LQuan =
3∑

i=1

8∑
j=1

8∑
k=1

q2i (j, k) + λ1

3∑
i=1

8∑
j=1

8∑
k=1

|qi(j, k)|.

by adding a second term to promote sparsity in the quantization kernel with a weight of λ1.

With the same base loss function term L = LCLA + λLQuan, we propose the following
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surrogate function as the penalty term:

LQuan =
3∑

i=1

8∑
j=1

8∑
k=1

max(q2
i (j, k)− c, 0)

+λ1

3∑
i=1

8∑
j=1

8∑
k=1

|qi(j, k)|.

where c and λ1 are tunable hyper-parameters. The ℓ1 loss term promotes sparsity whereas the

ℓ2 loss term regulates the compression kernels. The hyper-parameter c acts as a constraint

on the squared magnitude of qi, shall be appropriately selected based on the values of λ and

λ1. Larger λ and λ1 and a smaller c leads to higher compression ratio and lower classification

accuracy. We propose the current form of the surrogate penalty function after testing both

logarithm and sigmoid functions without witnessing performance benefits.

2.3.4 Modified ResNet for ImageNet

For ImageNet[60], we adopt the same pre-processing steps and quantization layer from 2.3.3

and utilize the Deconvolution-RFA architecture in [1] as the classifier. As demonstrated in

Fig. 2.6, the quantized DCT coefficients of CB and CR channels are augmented to the same

spatial size as Y channel by two separate transposed convolutional layers. Then the three

channels are concatenated to form the input of the deconvolution-RFA model. Considering

the higher complexity of this model, we suggest that a single ℓ2 regularization for compression

kernels be sufficient for optimizing the quantization parameters, with quantization loss term

of

LQuan =
3∑

i=1

8∑
j=1

8∑
k=1

q2
i (j, k).

2.3.5 Implementation

We test the learning framework in Fig. 2.4 with CIFAR-10 and test the framework in Fig. 2.5

with CIFAR-100 and Tiny ImageNet datasets.The source images in CIFAR-100 and CIFAR-
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Figure 2.6: Architecture of our proposed model for ImageNet. The detailed structure of
Deconvolution-RFA[1] is omitted here.

100 datasets are of 32×32 pixels, while images in Tiny ImageNet are of 64×64 pixels. After

reconstruction, the reconstructed images as inputs to ResNet-50 or WRN-28, are also of size

32× 32 or 64× 64.

Input data are first transformed from RGB to a different color space by the color con-

version, then processed by the compression layers. The two compression layers share the

192 trainable parameters in the compression kernels, which are all initialized to 1. The

randomly-initialized ResNet-50 or WRN-28 classifiers are trained jointly with the parame-

ters in compression kernels, as well as the color transformation coefficients if needed, using

Adam optimizer[73] with a batch size of 100. The training proceeds alternatively: the

classifier trains for 2 epochs while JPEG-based layers are frozen, followed by the color trans-

formation and compression layers train for 1 epoch while freezing the classifier. The training

takes 150 such alternations. For ResNet-50 with CIFAR-10, the learning rate starts from

0.001, and is scaled by 0.1, 0.01, 0.001, and 0.0005, at epoch 80, 120, 160, and 180, respec-

tively. The training takes 200 epochs. For WRN-28 with CIFAR-100 or Tiny ImageNet,

the learning rate starts from 0.05, and is scaled by 0.1 and 0.01, at epoch 100 and 200,

respectively.

We implement the higher complexity learning framework in Fig. 2.6 with ImageNet

dataset in which the images are of 224×224 pixels. Similarly, color transformation coefficients

are initialized with the JPEG standard and all 192 quantization parameters are initialized

to 1. The color transformation coefficients, compression kernels, and Deconvolution-RFA
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classifier are trained from end-to-end by using Adam optimizer with a batch size of 32. The

learning rate of color transformation coefficients and compression kernels starts from 1×10−8

while that for other parameters starts from 0.001. Both learning rates are scaled by 0.1, 0.01,

and 0.001, at epoch 30, 60 and 80, respectively. The training takes 90 epochs.

2.3.6 Customize Huffman Coding

Annex K of JPEG standard [13] offers a set of default Huffman tables suitable for most visual

applications. However, with trained Q-tables in our model, the original JPEG Huffman tables

may yield lower compression ratio because the quantized DCT coefficients are impacted by

the new Q-tables. Thus, we also customize Huffman tables for better bandwidth saving.

For each set of learned Q-tables, we randomly choose 50k images from the corresponding

training set and generate Huffman tables accordingly. The bandwidth of the validation data

set is measured using learned Q-tables and the generated Huffman tables, combining the

principles of RLE and Huffman coding.

2.4 Experiments

Our experiments are conducted on Keras [74] and TensorFlow backend [75]. We utilize the

two metrics to evaluate perceptual quality of images: peak signal-to-noise ratio (PSNR) and

structural similarity index measure (SSIM) index. We test the proposed joint compression

and classification (JCC) frameworks on four datasets: (a) CIFAR-10 dataset based on 50k

training images and 10k test images belonging to 10 categories; (b) CIFAR-100 dataset

based on 50k training images and 10k test images belonging to 100 categories; (c) Tiny

ImageNet dataset based on 100k training images and 10k validation images belonging to 200

categories; (d) ImageNet dataset based on approximately 1.3M training images and 50k test

images belonging to 1000 categories.
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2.4.1 JPEG Standard Baseline

We first present baseline results, in which images are compressed using standard JPEG algo-

rithm with 4:2:0 chroma subsampling. We initialize compression kernels qi, i = 1, 2, 3 using

the Q-tables given in JPEG standard. In this baseline scenario, we only adapt the classifier

parameters during training by fixing. the parameters in pre-processing, quantization, and

dequantization.

For CIFAR-10 and CIFAR-100, we consider 11 and 9 different JPEG image qualities

between 12.5% and 100%, respectively. For Tiny ImageNet, we select 4 different image

qualities between 10% and 80%. For ImageNet, our experiments consider 5 different image

qualities between 12.5% and 100%. The classification results are shown in Figs. 2.7, 2.8 and

2.9. These baseline results reveal that the classification accuracy correlates positively with

image qualities and average image bandwidth (rate).

2.4.2 Joint Compression and Classification (JCC)

In the case of JCC training, we freeze the color transformation coefficients to train and

optimize the compression kernels and the classifier. For CIFAR-10 dataset, using S = 10

defined in Section 2.3.1, we select 10 values of λ between 1×10−7 and 1.6×10−1. Additionally,

we use S = 1, λ = 1 × 10−9, and N = 1024 to achieve the size of 1.82 KB per image,

which is close to 100% quality JPEG images. The JCC classification results under trainable

compression are given in Fig. 2.7. Compared with the baseline JPEG, for image sizes between

0.85 and 1.3 KB, our JCC model clearly achieves higher classification accuracy while using

similar image bandwidth as the baseline. On the other hand, when the available image

size becomes too small (e.g., below 0.85KB) or too large (e.g., above 1.3 KB), we achieve

similar classification performance as the JPEG baseline. Overall, the PSNR and SSIM of

JCC-optimized compression kernels are higher than JPEG standard ones at the bandwidth

between 0.9 KB and 1.2KB per image, and are similar otherwise.

For CIFAR-100, using S = 1, we selected 8 values of λ from 1 × 10−6 to 5 with λ1 = 1
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Figure 2.7: Comparison between JCC and JPEG standard on CIFAR-10 dataset with
ResNet-50 Model, with respect to classification accuracy, PSNR and SSIM versus average
bandwidth.

and c = 0.01/λ. The classification accuracy, PSNR and SSIM results can be found in

Fig. 2.8. Compared with the JPEG baseline, JCC achieves clear improvement of up to 2.4%

in accuracy at bandwidth between 0.75 and 1.5 KB per image. Meanwhile, the PSNR and

SSIM of JCC-compressed images are similar to JPEG-compressed images.

Figure 2.8: Comparison between JCC and JPEG standard on CIFAR-100 and Tiny ImageNet
datasets with WRN-28 Model, with respect to classification accuracy, PSNR and SSIM versus
average bandwidth.

For Tiny ImageNet, we select 6 values of c from 5 × 10−3 to 0.8. As shown in Fig. 2.8,

when comparing with the JPEG baseline, we observe accuracy gain of up to 4% by the

proposed JCC model at low bandwidth between 0.9 and 1.6 KB per image while maintaining

similar visual quality. Overall, the PSNR and SSIM of JCC-optimized and JPEG standard

quantization tables are similar.

For ImageNet, we consider 9 values of λ between 25 and 100. The resulting top-5 classifi-

cation accuracy, PSNR, and SSIM are given in Fig. 2.9. For encoding rates below 11 KB per

image, the JCC model outperforms the baseline by up to 3.7% in terms of classification accu-
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racy. For bandwidths above 11 KB per image, the classification accuracy difference between

JPEG and JCC is quite insignificant. Furthermore, PSNR and SSIM of JCC-compressed

images outperform those of standard JPEG encoded images.

Figure 2.9: Comparison between JCC and JPEG baseline on ImageNet dataset with
Deconvolution-RFA Model, with respect to top-5 classification accuracy, PSNR and SSIM
versus average bandwidth.

From these experimental results, we observe that the JCC model can effectively optimize

the JPEG compression kernels for better rate-accuracy trade-off, especially at moderately

image bit rates. It is intuitive that the performance edge of JCC diminishes for very high

image sizes because most image features can be preserved when given sufficient number of

bits. JCC and JPEG no longer need to delicately balance the rate-accuracy trade-off. Simi-

larly, for very low image sizes, very few bits can be used to encode vital information in DCT

coefficients. Hence, the encoders have less flexibility to further optimize the rate-accuracy

trade-off, thereby making it difficult for even the JCC model to find better parameter set-

tings.
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2.4.3 Ablation Study: JCC and Color Transformation

In JPEG standard, images in RGB color space are first converted to YCBCR space before

being compressed, through the linear transformation defined as:

Y = 0.299R + 0.587 G+ 0.114B

CB = 128− 0.169R− 0.331G+ 0.5 B

CR = 128 + 0.5 R− 0.419G+ 0.081B

where Y is the luminance component and CB and CR are chrominance components. The

YCBCR color space is more suitable for efficient compression because the Y channel carries

the most detailed luminance information while CB and CR channels carry less information

and can be compressed via down-sampling. Theoretically, the coefficients in the color space

conversion equations impact the compression ratio and can be tuned as long as the conversion

is invertible. To ensure the conversion is invertible, we set the parameter optimization

constraints as:

θR,Y + θG,Y + θB,Y = 1

θα,Y ≥ 0 for α ∈ {R,G,B}

θB,CB
= 0.5

θR,CB
+ θG,CB

= −0.5

θR,CB
≤ 0, θG,CB

≤ 0

θR,CR
= 0.5

θG,CR
+ θB,CR

= −0.5

θG,CR
≤ 0, θB,CR

≤ 0
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Figure 2.10: Comparison between JCC, JCC-color and JPEG baseline on CIFAR-100 dataset
with WRN-28 Model, k = 1 with respect to classification accuracy versus average bandwidth.

where θα,β refers to the coefficient connecting color channel α and color channel β.

We examine the performance with WRN-28 model with CIFAR-100 dataset. We initialize

the color conversion coefficients according to the conversion defined in JPEG standard. When

training the color conversion coefficients, we remove the linear YCBCR to RGB conversion in

the Reconstruction layer in frameworks presented in Fig. 2.5. During training, we alternately

freeze two sets of parameters among the compression layers, the classifier and the color

conversion coefficients, and train the third one. The training takes 150 such alternations.

We show the results in Fig. 2.10 and use “JCC-color” to refer to the scenario where color

transformation coefficients, compression kernels and classifier are all trainable.

Considering JCC and color transformation (JCC-color) results, tuning the color conver-

sion coefficients does not establish obvious performance gain over JCC, except for 0.78 KB/image

and 0.90 KB/image where we observe an accuracy improvement of 0.5% and 0.8%, respec-

tively. Theoretically, invertible color space transformation does not lead to information loss

and can be subsumed by first dense-layer in the neural network. In fact, we observe that the

resulting color transform rarely changes from the initial values. Hence, there is not evidence

that the existing JPEG color transformation needs further optimization.
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2.4.4 Further Analysis and Discussions
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(a) JCC optimized compression kernels based on
CIFAR-100 for Y (left), CB (middle) and CR

(right) channels, with λ = 0.001, λ1 = 1 and
c = 10.
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(b) Compression kernels for Y
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nels in JPEG standard.

Figure 2.11

Generally, our experimental results suggest that the proposed trainable JCC model can

extract critical features in the DCT domain for classification among categories of CIFAR,

Tiny ImageNet, and ImageNet datasets. Furthermore, the perceptual quality of images are

preserved. As an illustration, Fig. 2.11 compares two sets of compression kernels under the

same color scale with which WRN-28 achieves similar classification accuracy on CIFAR-100

dataset. Fig. 2.11a displays learned compression kernels for Y, CB and CR channels that

yields 75.20% classification accuracy at an average rate of 0.979 KB/image. Fig. 2.11b dis-

plays the standard JPEG compression kernels yielding 73.05% accuracy and average rate of

0.983 KB/image. Qualitatively, darker grids imply low compression or higher importance

of the corresponding DCT coefficient. Clearly, both encoders favor lower frequency bands.

It is apparent that there are longer consecutive 0’s in the zig-zag order in the end-to-end

compression kernels and consequently, the correspondingly compressed DCT coefficients re-

quire fewer bits via RLE. Furthermore, the trainable model learns to discard some higher

frequency DCT components as they are less critical to classification accuracy.

Together, these experimental results reveal that the proposed trainable model can fur-

ther enhance the standardized JPEG codec for cloud based image classification by learning

optimal quantization parameters. Practically, the proposed joint training can be easily im-

plemented in pre-installed JPEG encoders of low-cost devices by using software updates to

include more Q-table entries for different JPEG encoding sizes.
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2.5 Conclusions

We present an end-to-end deep learning (DL) architecture to jointly optimize JPEG image

compression and classification for low cost sensors in distributed learning systems. Results

on CIFAR-100, Tiny ImageNet and ImageNet datasets demonstrate that the proposed end-

to-end DL framework can be easily trained and implemented for better image compression

and classification performance without perceptual quality loss in networked applications.

Optimized Q-tables can be readily incorporated within deployed JPEG codecs in practice.

For high resolution ImageNet datasets, we can bypass image reconstruction and learning

directly in the DCT domain to further lower computation cost.

Our results show that DL models should actively take practical constraints into consider-

ation, such as storage and network bandwidth. Future works may explore the broad appeal

of this end-to-end learning principle in other bandwidth-constrained distributed DL tasks

such as object detection, segmentation, and tracking.
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Chapter 3

Hierarchical Optimization of Deep

Learning Models for Rate-Limited

Image Classification

In this chapter, we first propose two spectrum-domain DL models for joint learning-based

image compression and classification in a rate-limited framework and design a hierarchical

learning strategy to train the proposed models. We evaluate the rate-accuracy performance

by truncating the latent representations. In addition, we test their compatibility with train-

ing label corruptions, imbalanced datasets and various re-trained decoders. Then, we com-

bine the principle of unsupervised learning in training and prove that the robustness against

various image distortions/transformations is enhanced.

Part of this chapter is reprinted, with permission, from [S. Qi, L. D. Chamain, Z. Ding. “Hierarchical
Training for Distributed Deep Learning over Band-limited Networks” in IEEE ICIP, 2022] and followup
modifications for final publication.
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3.1 Deep-Learning-Based Image Compression for Trans-

mission and Classification

With important recent advances, deep learning has become a major tool in media appli-

cations such as compression and classification in Internet of Things (IoT) systems. The

rapid growth and broad deployment of low-cost sensing devices have fueled the development

of lightweight and efficient convolutional neural networks (CNNs) [17–22] for offline clas-

sification on devices with low computation power. Furthermore, it has also stimulated a

paradigm shift toward distributed learning that relies on networked cooperation of source

and server nodes. Within such networked learning framework, cost, power, and memory

efficient encoding nodes are implemented to compress and transmit data to cloud/server

nodes for subsequent deep learning and analysis. Sensor (camera) data can be efficiently

transformed into lower-dimensional latent representations using auto-encoders (AEs) [3–5],

which are typically optimized together with a decoder/classifier at servers in an end-to-end

(E2E) training process. In this chapter, we focus on AEs consisting of an encoder at the

source node before the channel and a classifier [6–8] at the channel output end, which turn

out to be one of the foremost feasible solutions for bandwidth-limited image compression and

classification. Representative variants of such AE architectures include variational AE [6],

stacked AE [7], sparse AE [8], hierarchical sparse AE [76], etc. However, these AEs, trained

by a rate loss accompanied by a weighted classification loss in an end-to-end (E2E) manner,

which may lead to a local minimum that neither brings down the coding rate nor opti-

mizes the accuracy without careful manual tuning [77] and face three major challenges to be

deployed in a networked environment.

Firstly, in networked deep learning, bandwidth efficiency can be just as important as the

overall accuracy. It is therefore vital to tackle the important problem of lowering the encod-

ing rate of latent feature representations without severely compromising the data processing

accuracy. Moreover, after deployment of encoders on source devices, the server nodes may
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directly channel the data obtained by encoders to separately-trained decoders [78–80]. Con-

sequently, the encoders that are jointly optimized with one decoder may exhibit degraded

performance with another reconfigured decoder. Hence, the reconfiguration flexibility with

decoders is an essential characteristic of these encoders embedded on source devices. An-

other major issue under supervised deep learning is its reliance on labeled data for training.

In real-life applications, however, errors in manual data annotation, inaccuracy in automatic

label extraction process, or data poisoning attacks [81,82] are commonplace that lead to un-

avoidable erroneous data labels [83]. As a result, supervised learning tends to suffer serious

performance degradation [84–86] due to corrupted data labels (or mislabels). In addition,

emerging real-world image datasets usually exhibit imbalanced class distributions, which

may largely limit the generalization capability of trained models and lead to poor inference

performance on under-represented classes due to overfitting. For this reason, achieving ro-

bustness to certain level of corrupted data labels or imbalanced dataset is critical to reliable

supervised learning models.

In the first section of this chapter, we tackle the three aforementioned practical con-

siderations that are vital to achieving bandwidth efficiency and robustness for distributed

learning. Our solutions leverage a dual-phase hierarchical learning concept by integrating

a recently proposed information theoretic deep learning principle of Maximal Coding Rate

Reduction (MCR2) with demonstrated robustness to label corruption and interpretability.

In training deep learning neural networks for image classification, cross-entropy (CE)

loss function has been particularly effective. Targeting the difference between probability

distribution of model outputs and the true distribution, the CE loss function is equivalently

a negative likelihood function. Despite its successes, CE-based neural network training does

not address the two major obstacles of limited bandwidth in distributed learning systems or

model robustness to label corruption.

The recent work of [44] has provided a particularly important tool for deep learning by

projecting input data to latent representations in low-dimensional subspaces that are inter-
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class discriminative and in-class compressive based on the principle of MCR2. In addition

to offering better interpretability, MCR2-based classifiers have also demonstrated stronger

robustness against label noise. Furthermore, the lower-dimensional latent representations of

MCR2 can potentially provide valuable insight on deriving deep learning models subject to

bandwidth constraints.

To this end, this work presents two MCR2-guided CNN models for offline and cloud-

based image classification, respectively. Our first contribution is a modified lightweight

ResNet-18 [58] hierarchically trained by the MCR2 loss and the CE loss. It can be pruned

to further reduce the computational complexity with little loss in accuracy, making it an

offline image classifier compatible for edge devices. Our second contribution is the design of

an auto-encoder learning architecture for cloud-based classification. Leveraging the MCR2

principle, we introduce a novel hierarchical learning strategy for robust and interpretable

image classification through side-channel monitoring. Specifically, we guide deep learning

network training with MCR2 loss from an auxiliary side branch, together with CE objective

function in the main input/output path. Moving beyond the traditional training based on

loss function superposition, this MCR2-guided hierarchical learning method achieves the dual

objectives of efficient compression and accurate classification.

With the three obstacles solved by the proposed training strategy, there still exist some

additional challenges and requirements to be addressed. Firstly, the AEs rely heavily on

the sizable training data to learn. For robustness in real life, training images may undergo

various distortive transformations, such as translation, mirroring, rotation, color jitter [40–

42], etc. Therefore, encoders shall compress input data for preserving key information for

classification invariant for distortions. We handle this challenge by extending the proposed

training strategy with self-supervised learning (SSL) algorithm, under the guidance of the

principle of MCR2, incorporated with supervised learning.

As discussed earlier, in networked learning, bandwidth is an essential constraint to be con-

sidered by the encoders. As the transmission band limit can change in real-time, the encoders
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should provide the flexibility of various coding rates. We address this objective through two

different approaches: entropy-based quantization and manual truncation. Entropy-based

quantization can be easily applied to any pre-deployed encoder directly without further op-

timization. By adjusting a scalar, the average coding rate of the latent representations can

be customized in accordance to the band limit. The other method, manual truncation, re-

quires fine-tuning and updating the deployed encoders and decoders but can provide greater

bandwidth reductions while preserving the classification accuracy compared with entropy-

based quantization. These two methods can be used either individually or together on any

pre-deployed AE.

The dimension of an AE’s bottleneck layer is an essential parameter that impacts the

compression ratio and classification accuracy. However, the optimal latent dimension or

the intrinsic dimensionality of data, varies between image datasets [87–89]. For example,

a dataset with more categories and larger image sizes usually consumes more bandwidth

and needs a higher latent dimension. As a result, expertise and experience is required to

determine the optimal latent dimension when implementing an AE. We tackle the third issue

via an initial CE-training screening process.

In brief, we implement a supervised and self-supervised joint learning approach guided

by the principle of MCR2. This approach regularizes the encoder to extract linear discrim-

inant representations (LDRs) that are in-class compact, between-class discriminative and

consistent to various augmentations/transformations. In addition, we propose two methods

to obtain continuous latent bit rate via a single AE model: entropy-based quantization and

manual latent truncation. Moreover, we suggest adding an initial screening phase during the

AE designing stage to select the optimal latent dimension.
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3.2 Related Works

3.2.1 Auto-Encoders for Image Classification

Auto-encoders have been very successful in achieving efficient data compression and feature

extraction. Recent works [3–5,90] have proposed efficient E2E compression models based on

auto-encoders for image classification. However, existing deep learning models are typically

trained in an E2E manner through superposition of multiple objective functions without

guidance or constraints on latent representations generated by the bottleneck layer. An-

other related work [7] has introduced the framework of compact and discriminative stacked

auto-encoder (CDSAE), by imposing a diverse regularization and a local Fisher’s discrim-

inant regularization [57] on each auto-encoder layer such that a diverse and discriminative

mapping from input data to a low-dimensional feature space can be learned. The CDSAE

architecture is accompanied by a two-phase training approach where the first phase aims at

low-dimensional feature extraction to emphasize in-class similarity and between-class diver-

sity, whereas the second phase targets E2E joint training of feature extraction and subsequent

classification.

Training Label Corruption For decades, numerous techniques have been explored to

solve the training label corruption problem in image classifications [91, 92], such as data

cleaning [93], probabilistic methods [94], loss function correction [95, 96] and model-based

methods [97]. In our work, we guide the model such that it relies less on the accurate training

labels but more on the intrinsic patterns of images themselves.

Imbalanced Data Distributions There are various methods developed to reduce the

performance degradation on the minority classes. One common solution is to re-sample the

training data to achieve a balanced distribution [98–100], either by over-sampling or gener-

ating synthetic data for the minority classes, under-sampling the majority classes [101–105],

or a combination of both [106]. Popular synthetic sample generation approaches include
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SMOTE [107, 108], ADASYN [109] and generative adversarial networks (GANs) [110, 111].

However, these methods either require expertise knowledge on the complete training data,

extra effort to pre-process the dataset and/or a separate model/algorithm to generate syn-

thetic training samples. Our work differs from these methods in that we do not manipulate

training set.

3.2.2 Linear Discriminative Representations

In networked learning scenarios, one way to effectively transmit high-dimensional real-world

data is to map such data to a low-dimensional subspaces, which shall be linear in the ideal

case. For image classification specifically, we would like to seek a compact and discriminative

kind of mapping. In the meantime, there exist certain criteria of the latents extracted

for encoding: they should be representative of the original data and robust against noise

including real-life data distortion or channel errors. The principle of MCR2 and the objective

function LLDR proposed in [44] can be used to guide an AE to learn such mappings.

Mathematically, one can denote an image dataset consisting of N samples belonging to

[K] classes as X = {x1,x2, . . . ,xN} ∈ RDin×N , with Din being the input dimension. Each

image has a class label ci ∈ [K], i = 1, . . . , N . For conventional DL image classification, a

deep classifier can learn to map the input x to its label c, by CE loss. The recent work

of [44], introduced a novel loss function based on the principle of MCR2 used to regularize

deep classifiers to extract lower-dimensional latent features z ∈ RDz that is both inter-class

diverse and in-class discriminative. Works in [112] have shown that this objective can be

achieved by minimizing the objective function defined in 3.1.

From an information-theoretic perspective, minimizing this loss function corresponds to

maximizing the difference between the global and group-wise average coding rates of the

dataset. As elaborated in [44], this MCR2 principle generates robust, low dimensional,

diverse, and discriminant latent features from the data for classification. We consider this

principle to be consistent with the goal of optimizing latent dimension for transmission over
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rate constrained channel for distributed classification.

3.2.3 Auto-Encoders and Hierarchical Learning

AEs have been very successful in both feature extraction and compression. Recent works [3–

5, 90] have proposed efficient AE compression models for image classification. However,

existing DL models are typically trained in an E2E manner through näıve superposition

of multiple objective functions without guidance or constraints on latent representations

generated by the bottleneck layer. Another related work [7] introduced a compact and

discriminative stacked AE (CDSAE), by imposing a diverse regularization and a local Fisher’s

discriminant regularization [57] on each AE layer such that a diverse and discriminative

mapping from input data to a low-dimensional feature space can be learned.

Further, the authors of [7,77] have proposed that hierarchical training of AEs, by assigning

different sub-tasks to different modules in the models can improve the overall rate-accuracy

trade-off. The CDSAE architecture in [7] accompanied by a two-phase training approach,

in which the first phase aims at low-dimensional feature extraction to emphasize in-class

similarity and between-class diversity, whereas the second phase targets E2E joint training of

feature extraction and subsequent classification. The work of [77] also suggests a Dual-Phase

Hierarchical Learning (DuPHiL) strategy. The first phase of DuPHiL fixes the decoder to

optimize the encoder by using the MCR2 loss via a side path. This phase trains the encoder

to map input images to a compact and discriminative latent space for efficient compression

while preserving the necessary information for subsequent classification. The second phase

freezes the encoder after phase one and trains the decoder by using the CE loss to learn

accurate classification based on the LDRs generated by the encoder.

3.2.4 Spectrum-Domain Image Classifier

JPEG 2000 [113] is a standardized commercial image compression encoding algorithm based

on multi-level 2-dimensional Discrete Wavelet Transform (2D DWT). For compression, JPEG
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2000 transforms RGB images to YCbCr color space before applying 2D DWT based on CDF

9/7 mother wavelet. A level-1 DWT of each color channel generates 4 sub bands: LL

band (a lowpass approximation of the original image), LH, HL and HH bands that capture

increasingly high frequency features, respectively.

Since JPEG 2000 encoding is in the spectrum domain, spectrum-domain image classi-

fication can save the decoding computation [114] and improve inference speed without the

need to recover RGB source images before classification. Furthermore, the deep learning

classifiers at the edge servers can be further simplified by eliminating a few hidden layers to

operate directly on image data in the DWT [6] or the discrete cosine transform (DCT) [115]

domains. For this reason, our proposed lightweight or distributed deep learning models shall

operate in the transform domain for edge devices.

3.2.5 The Information Theoretic Principle of MCR2

In the basic classification problem, consider a set of N samples X = {x1,x2, . . . ,xN} ∈

RDin×N and their class labels {c1, . . . , cN} ∈ [K], where Din is the input data (image) size,

N is number of samples in the dataset, and K is the number of classes. Typically a deep

learning classifier is designed to find a direct mapping from the input vector x ∈ RDin to

its class label c, based on training. Mostly, various deep learning architectures have been

developed according to experience and empirical tests.

Based on information theoretic foundation, the recent work of [44] suggested a new

principle that drives a deep learning model to extract more diverse and discriminant lower-

dimensional latent representations z ∈ RDz from input before classification. The reduced Dz

is the dimension of the latent representation z. This objective can be achieved by enforcing

coding rate reduction via the objective function:

∆R(Z)=̇R(Z)−Rc(Z,Π) (3.1)
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where, according to [112],

R(Z) =
1

2
log det

(
I +

Din

ϵ2N
ZZT

)
(3.2)

is the average number of bits required to encode a learned representation zi from Z =

{z1, z2, . . . ,zN} ∈ RDz×N up to an precision bound of ϵ. When a known partition Π =

{Πj}K1 can group samples into classes, we can write “group-wise average bit rate” of zi as

Rc(Z,Π) =
K∑
j=1

tr(Πj)

2N
log det

(
I +

Din

ϵ2tr(Πj)
ZΠjZ

T

)
(3.3)

bits per sample. Πj is a diagonal matrix with entries “1” for samples that belong to the j-th

class and “0” otherwise.

This objective function, known as maximal code rate reduction (MCR2), is an information-

theoretic measurement aimed at maximizing the coding rate difference between the global

average bit rate and the group-wise average bit rate of the data set. As elaborated in [44],

the MCR2 principle generates more robust, diverse and discriminate latent features from the

data for classification.

3.2.6 Linear Discriminative Analysis Based Pruning

It is well known that deep CNNs can often generate redundant intermediate features of low

utility value. To effectively reduce computational complexity without significantly affecting

the learning outcome, network pruning can simplify and accelerate CNNs in real-time mobile

and edge applications. In the context of our work, pruning can reduce the computation

complexity and link rate between the encoder and the classification servers.

Among various screening approaches for neuron/filter pruning, [116] suggests the L1

norm of weights in CNN filters; [117] applies a particle filtering; [118] ranks the filters

according to their effect on the cost. The works of [119–122] propose to rank the importance
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of a neuron/filter by evaluating their discriminant power. More specifically with respect to

training based on the CE loss, the study of [120] proposes to add discrimination-aware loss

to the learning model to strengthen discriminative power of intermediate layers.

3.3 Methods

3.3.1 Supervised Learning

MCR2-Guided Spectrum-Domain Image Classifier

To improve image classification on resource-limited devices in practice, we adopt the mod-

ified ResNet proposed in [6] for wavelet-domain image classification, as shown in Fig. 3.1.

Bypassing image reconstruction when processing JPEG-2000 encoded images, we also apply

level-1 DWT to lower subband image sizes both horizontally and vertically by 2.

During training and inference, we apply the same transformations in preprocessing as

used in JPEG 2000, including level shifting, color space conversion and level-1 DWT. Denote

an original image size as H ×W ×C, where H and W respectively denote image height and

width, and C = 3 denotes the 3 colors. After preprocessing, each input image x is reshaped

toH/2×W/2×4C. For each image, its DWT coefficients form a total of 12 subband channels

with 1/4 of the original size. To adapt to the change in input receptive field dimension, the

number of filters in the first convolutional layer grows from 16 to 64 whereas the last ResNet

module is removed from the original ResNet classifier [58]. Here, we use the term “ResNet

module”to refer to two stacked ResNet blocks, each of which contains two convolutional

layers and a shortcut.

Discriminative Power Analysis In order to better visualize and interpret the classifi-

cation models, we adopt the concept of “discriminative power” [119] of neurons/filters in

each layer. Given N samples X = {x1,x2, . . . ,xN} ∈ RDin×N and their corresponding class

labels {c1, . . . , cN} ∈ [K], according to Fisher’s linear discriminative analysis (LDA) [57],
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Figure 3.1: Architecture of the proposed wavelet-domain image classifier. “M” is short for
“module”. Green blocks are guided by MCR2 loss and blue blocks are guided by CE loss.

the within-class scatter matrix Sw is defined as:

Sw =
K∑
j=1

∑
x∈Πj

(x−mj)(x−mj)
T (3.4)

Here, mj is the sample mean of Πj. The between-class scatter matrix Sb is defined as:

Sb =
K∑
j=1

nj(m−mj)(m−mj)
T (3.5)

where nj is the number of samples in Πj and m is the global sample mean of the dataset.

Following [119], we define the discriminative power D of each neuron/convolutional filter as:

D =̇ trace(
Sb

Sw

) (3.6)

According to this definition, each neuron/filter has a discriminative power score. The

neuron/filter with the highest score in a layer is the “best” neuron/filter of that layer. As a

benchmark, we first detach the side branch in Fig. 3.1 and train the model using the CE loss

on the CIFAR-10 dataset [123], reaching a 93.22% test accuracy. We plot the discriminative

power of best filter per layer on both training and test set in Fig. 3.2. It can be observed

that the discriminative power grows slowly from one layer to the next within the first two

ResNet modules. This numerical analysis indicates that those layers tend to extract more

general common features rather than discriminative features from the images.

For a lightweight CNN classifier that resides on an end device, such slow growth of
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discriminative power represents poor learning efficiency. To overcome this issue, we adopt

the principle of MCR2 at the front layers in our lightweight classifier in order to guide these

layers to more quickly and more effectively extract the most discriminative image features.

Based on the interpretability of MCR2, this architecture is also more amenable to pruning.

Figure 3.2: Layer-wise best filter’s discriminative power in the CE-trained model.

Hierarchical Learning Our goal is to train the spectrum-domain CNN model according

to two loss functions: the MCR2 loss LMCR2 = −∆R(z) of Eq. (3.1) to control the latent

encoding rate and the CE loss LCE to minimize the classification discrepancy between the

CNN output ĉ and the true label c for each training image. A traditional training approach

would be to superimpose the two losses to generate a sum loss function LCE + λLMCR2

using a regularization variable λ. Such a näıve joint loss function, however, may lead to a

convergence of a compromising local minimum that neither minimizes classification error,

nor reduces the encoding rate. In fact, our preliminary studies confirm the poor outcome of

such training method.

It is important to note that the principle of MCR2 tend to generate latent representations

that are feature-preserving, and of lower dimensions. In view of both important character-

istics of MCR2, we propose the concept of hierarchical learning in an effort to integrate
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the two loss functions. Specifically, our proposal is to divide the model training for image

classification into two phases: (1) training of front modules (layers) to acquire diverse and

discriminant features from inputs at lower dimensions; (2) training of ensuing later modules

for accurate classification. Because of the feature-preserving characteristics of MCR2, the

first phase in training shall retain the key features necessary for accurate classification. At

the same time, the compact nature of MCR2 outputs makes it easier to identify candidates

for pruning in order to reduce the overall complexity of the proposed lightweight image

classifier.

Our dual phase training is different from [7], where a feature extractor is firstly trained

before training the entire model from E2E by forming a CE loss regularized by a local

discriminant regularization term and a diversity regularization term. We apply MCR2 loss

to only the front modules in phase 1 and apply the CE loss to only the later modules to

implement classification in phase 1. This concept is shown in Fig. 3.1, where we build a side

path in the learning model for applying the MCR2 loss, which does not affect the subsequent

classification training. This hierarchical learning strategy leverages the strength of MCR2

and induces models more robust to pruning and potential data corruptions.

To summarize, each epoch of our hierarchical training consists of

Phase 1: Front modules, including ResNet modules 1 and 2 and the side branch, are updated

by stochastic gradient descent to minimize LMCR2;

Phase 2: Blue modules, including ResNet module 3 and the ensuing dense layer, are updated

by stochastic gradient descent to optimize LCE, while front modules are frozen from

phase 1.

Feature Map Pruning: One benefit from the principle of MCR2 is that the filters in the

convolutional layers are more discriminate and naturally generates diverse and distinguish-

able intermediate features. As a result, it is simpler to apply LDA-based filter screening.

Specifically, we adopt the neuron/filter screening strategy of [119] to reduce the computa-
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tional complexity of the model. On the training set, we evaluate the discriminative power

D of each filter in a convolutional layer and prune those filters with the lowest scores.

MCR2-Guided Spectrum-Domain Auto-Encoder

We now consider the second deployment scenario that involves distributed auto-encoder/classifier

where a source device is responsible for encoding image data for transmission to an edge

server whereas the edge server is responsible for image classification.

When optimizing this distributed auto-encoder/classifier, the encoder node must effi-

ciently pack useful features and discard redundant or less useful information. In other words,

the learned representations should be compact within the same class while diverse between

classes. In addition, the model needs to be robust to codeword mapping (i.e. quantization)

error or label error due to data corruption.

Expanding the design of Fig. 3.1, we introduce a latent encoder consisting of a pooling

layer and two dense layers before the rounding quantizer for dimension reduction on the

intermediate feature f for transmission. At the edge server, the receiver begins with a latent

decoder consisting of three transposed convolutional layers for latent recovery, as shown in

Fig. 3.3.

The compact latent representations y are mapped (via rounding) into codeword ŷ before

transmission to the receiver node over a communication data link. The “Dense” module in

between encoder and decoder, consisting of one dense layer, is used as a side branch in phase

1 of hierarchical training with MCR2 loss based on the latent z. After hierarchical training,

this model can be distributively deployed as an efficient encoder on remote mobile node and

a decoder/classifier on the edge server for cloud-based classification.

Hierarchical Learning Similar to the lightweight classifier introduced in the previous

section. We incorporate a single dense layer as a side branch for MCR2 training in phase

1 to minimize the MCR2 loss LMCR2. We apply the CE loss LCE for optimization of the
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Figure 3.3: Architecture of the proposed wavelet-domain auto-encoder. “M” is short for
“module”. Green blocks are guided by MCR2 loss and blue blocks are guided by CE loss.

decoder/classifier only. To summarize, each epoch in our dual phase hierarchical training

includes

Phase 1: Encoder modules, including ResNet modules 1 and 2, latent encoder, and the side

channel dense layer, are jointly updated via stochastic gradient descent to minimize

LMCR2;

Phase 2: Decoder modules, including the latent decoder, ResNet module 3 and the final

dense layer, are jointly updated via stochastic gradient descent to optimize LCE,

while Encoder modules are frozen after phase 1.

Feature Map Pruning In order to optimize the encoding rate in response to different

link rate constraints, we further prune neurons from the bottleneck layer in latent encoder,

which is equivalent to nullifying entries in the latent representation ŷ. We adopt the same

neuron screening strategy in [119]. Using training dataset, we evaluate the discriminative

power D of each neuron in the bottleneck dense layer and prune those neurons of lowest

scores.

Zero Gradient Recall that the rounding quantizer has zero derivative almost everywhere.

During training, we adopt the method proposed in [124] to solve the zero gradient problem

by adding a random uniform noise between −1 and 1 to the latent representations y as a

relaxation of rounding. The reason of using a larger range of uniform noise between ±1

instead of ±0.5 in [124], is the recognition that MCR2 tends to compact y toward zero,
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thereby leading to a greater quantization error effect on subsequent blocks. For this reason,

larger additive noise is important to induce stronger robustness by the distributed learning

model against quantization noise.

3.3.2 Hierarchical Training based on Joint Supervised and Self-

Supervised Learning (SSL)

We adopt the same AE architecture proposed in [77] as shown in Fig. 3.3 and provide a

simplified diagram in Fig. 3.4 for better understanding. The AE model consists of a pair of

ResNet-based encoder and decoder as well as a lightweight side branch (for training only)

from which the supervised and self-supervised LDR loss can guide the encoder.

Figure 3.4: Architecture of adopted AE. “E” denotes “encoder” and “CL” denotes “classi-
fier”.

When sensor node captures real-life images, distortions are common [40–42]. The encoder

should learn to extract the underlying general information to account for such possible

distortions with minimum loss. Self-supervised representation learning [125–130] can train

the encoders to extract valuable features for a downstream task, such as image classification,

and have demonstrated encouraging results. More specifically, the work of [44] suggests that

SSL with MCR2 principle is a promising approach to promoting LDRs’ consistency under

certain transformations/augmentations. Following [44], we also augment each image xi in

a mini-batch with n transformations randomly drawn from a collection T of augmentations

with a know distribution PT . These augmented images belong to the same class. We define
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the objective function of LDR-guided SSL as

LLDR−SSL = −∆R(Z)=̇−R(Z) +Rc(Z,ΠT ), (3.7)

where ΠT is the artificial self-labeled partition matrix.

However, model training by SSL algorithms alone has two main drawbacks. Firstly,

since multiple augmentations generate a larger dataset, leading to potential overfitting of

label-dependent but not feature-dependent information [128]. The convergence speed is

slower. Secondly, SSL relies only on artificially-constructed labels instead of the categorical

ground truth labels, which are available in our framework, and usually performs poorer than

supervised learning [128,131]. Therefore, we propose to incorporate supervised learning with

SSL, as a feature regularizer, to jointly balance training speed, rate-accuracy performance

and LDRs’ robustness to distortion. To summarize, our three-step hierarchical training

includes

Step 1: Apply DuPHiL with Encoder loss LLDR and Decoder loss LCE, given the ground

truth partition Π.

Step 2: Apply DuPHiL with Encoder loss LLDR−SSL and Decoder loss LCE, given the artificially-

constructed partition ΠT .

Step 3: Apply E2E training with loss LCE, while at a smaller learning rate than Phases 1

and 2.

Selecting Latent Dimensions Our tests show that, an initial quick CE-training phase

can guide the selection of latent dimension from a finite set of values for our AE model. This

initial screening consists of training separate AEs of various latent dimensions to minimize

CE loss before selecting one with the highest accuracy.
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Entropy-Based Latent Quantization Recent works [132] attempt to obtain different

encoding data rates by training various AEs to manually adjusting a rate-accuracy trade-

off parameter λ in the traditional joint-compression-and-classification loss function L =

LR + λLCE. Such a näıve joint loss function, however, may lead to a convergence to a

compromising local minimum that neither minimizes classification error, nor reduces the

encoding rate. Furthermore, tuning λ can be time-consuming and costly. Alternately, several

more complex frameworks, such as RNNs [133], trainable quantization modules together with

conditional AEs [134] and asymmetric gain modules [135] have been developed to achieve

continuous compression rate adaptation via a single model. Nevertheless, the long processing

time and/or high computational complexity of these methods render them impractical for

cloud-based DL in IoT systems. In our work, as the compact LDR ŷ naturally contains

discriminative information for classification, we suggest to train only one AE and reduce the

data rate of latent ŷ by directly adjusting the quantization step sizes.

Since different entries in latent representations may carry different levels of informa-

tion (entropy), for each entry yi, we assign a quantization step size qi to yi, where i =

1, 2, . . . , dy, that is linearly proportional to average entropy H(yi) on the training set

for Gaussian yi. To be specific, qi = s × H(yi), where s is a scalar used to adjust the

overall quantization level. We obtain the quantized latent ŷi for subsequent encoding and

transmission by

ŷi =
yi

qi

=
yi

s×H(yi)
. (3.8)

Clearly, smaller qi values lead to smaller range of quantized latent values ŷi, thereby

generating fewer encoded bits (i.e. lower rate). Thus, those entries with higher entropy (i.e.,

higher variations) are quantized with finer resolution, while entries with lower entropy suffer

less from quantization error.

Manual Truncation on LDRs Channel bandwidth can vary over time and the encoder

needs to be updated accordingly in response. The proposed entropy-based quantization in
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Section 3.3.2 is applied directly to encoder outputs without optimizing the encoder and can

yield sub-optimal rate-accuracy performance with large quantization step sizes qi (higher

quantization error). Instead of re-training a new encoder from scratch, which is time-

consuming and impractical, we fine-tune the existing model. As an alternate way to reduce

the coding rate of latent representations while achieving a good rate-accuracy trade-off, we

propose to truncate the bottleneck layer in the encoder, which is equivalent to manually

truncating certain entries in ŷ, followed by encoder fine-tuning. Since both the overall di-

versity and in-class compactness of latents are fortified by LDR-guided fine-tuning, they are

expected to be more robust against such truncation.

3.4 Experimental Results

We train our AEs on CIFAR-10 and CIFAR-100 datasets, using a ResNet-18 and a ResNet-

34 backbone architecture, respectively. Both CIFAR datasets consist of 50000 32×32 RGB

training images and 10000 test images, while CIFAR-10 dataset has 10 classes and CIFAR-

100 dataset has 100 classes. To begin, we pre-train the AE models, with side channel

disabled, using CE loss for 200 epochs with a batch size of 200 and an initial learning rate

of 0.1. The learning rate is multiplied by 0.1 at epochs 100, 150 and 180, respectively. Next,

we update the pretrained models with either the dual-phase hierarchical learning strategy or

the three-step joint learning strategy for 100 epochs. Note that MCR2 loss requires a large

batch size such that the distributions of the outputs z at the side channel is approximately

Gaussian. We use a batch size of 1000 during the dual-phase or three-step training stage.

Our experiments are conducted on a TITAN X GPU with 12 GB memory using the PyTorch

library [136].
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3.4.1 DuPHiL Performance Evaluation

In the dual-phase training process, the initial learning rate for MCR2 loss in phase 1 is 0.001

for both proposed models. The initial learning rate for CE loss in phase 2 is 0.0025 for

the lightweight image classifier and is 0.009 for the distributed auto-encoder/classifier. Both

learning rates for phase 1 and 2 are reduced to 1/10 at epochs 25, 50 and 75, respectively.

When generating random corrupted labels for training set, we use the random seed of 10.

MCR2-Guided Lightweight Classifier

For comparison, we train three lightweight models of the same architecture in Fig. 3.1 based

on (1) pure CE loss; (2) joint loss by superimposing gradients of the two cost functions

to optimize weights in the entire model; (3) the proposed hierarchical learning strategy.We

achieved similar test accuracy of 93.22%, 92.13% and 93.19%, respectively.

To visualize the effect of the three training methods, Fig. 3.5 compares their discrimina-

tive power D of the most discriminative (“best”) filter in each convolutional layer. For all

three models, we observe that the discriminative power generally grows between successive

layers within each ResNet module. We do notice the mild drop of discriminative power be-

tween successive modules, which is possibly due to the reduction of feature map dimension

and the doubling of filter numbers between modules. Such structural transition between

modules leads to less information capturing by individual filter in the first layer of each

succeeding module and subsequent drop of discriminative power.

As expected, since the CE loss does not impose any direct constraints such as the linear

separability on the intermediate features, the resulting discriminative power rises slower

than those from joint-loss or hierarchical training. Meanwhile, joint loss training näıvely

superimposes the MCR2 loss and CE loss and delivers lower accuracy compared with the

CE-trained or hierarchically trained models. Remarkably, the discriminative power scores

from hierarchical training rises rapidly in module 3, firmly establishes the benefit of focusing

phase 1 training to achieve compact features before focusing phase 2 training on classification
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accuracy.

Figure 3.5: Discriminative power of the best filter in each convolutional layer, computed on
test set.

Figure 3.6: Discriminability ranks of convolution filters in the four layers in ResNet Module
3, computed on training set. There are 256 filters in each layer and their discriminability
power scores are sorted from high to low.

To efficiently reduce computational complexity and memory, we prune the four convolu-

tional layers in ResNet module 3 which account for the largest number of parameters. Since

the best discriminative power scores in these layers are clearly higher as seen from Figs. 3.5
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and 3.6, we can prune filters of lowest scores without seriously affecting the final classification

accuracy. In Table 3.1, the first “Proposed Baseline” model refers to the network in Fig. 3.1

obtained from our hierarchical training method. It naturally provides the best test accuracy.

We also present two sets of pruning results in Table 3.1 described below.

• For case “(A)”, the numbers of convolutional filters in the four layers of ResNet module

3 are pruned from {256, 256, 256, 256} to {166, 204, 128, 76}. “CE-Reduced-Size (A)”

refers to a model retrained from scratch by CE loss after implementing filter reduction

in ResNet module 3, matching the numbers of remaining filters in “Proposed-Pruning

(A)” case. “CE-Pruning (A)” refers to the baseline model trained with CE loss, fol-

lowed by the same screening and pruning process as “Proposed-Pruning (A)”.

• For case “B”, the only difference from case “A” is that the numbers of convolutional

filters in the four layers are trimmed from {256, 256, 256, 256} to {166, 166, 128, 76}

instead.

The numbers inside parentheses in Table 3.1 represent the accuracy reduction versus

the “Proposed Baseline” in the first row. The results show that the pruned models from

proposed hierarchical learning method achieve the classification accuracy of 92.95% and

92.65% for case A and case B, respectively, only 0.24% and 0.54% lower than the full model.

At the same time, the number of network parameters are reduced by over 30% whereas the

number of floating point operations (FLOPs) are lowered by over 12%. Compared against

models with same computational complexity from traditional CE training (“CE-Reduced-

Size”), which generates the best achievable accuracy through retraining given the complexity

reduction, the proposed hierarchical learning and pruning exhibit accuracy loss of only 0.04%

and 0.1%, respectively, for case A and case B. These comparisons show that MCR2-guided

hierarchically-trained models tend to deliver more separable features in intermediate layers

and can be safely pruned by applying LDA-based neuron/filter screening with negligible

performance loss.
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Table 3.1: Pruning results

Model Non-Zero Parameters Test Accuracy FLOPs

Proposed Baseline 2.92 M 93.19% 214 M

CE-Reduced-Size (A)
1.99 M (-31.8%)

92.99% (-0.20%)
187 M (-12.6%)CE-Pruning (A) 90.86% (-2.33%)

Proposed-Pruning (A) (new) 92.95% (-0.24%)

CE-Reduced-Size (B)
1.90 M (-34.9%)

92.75% (-0.44%)
185 M (-13.6%)CE-Pruning (B) 90.60 % (-2.59%)

Proposed-Pruning (B) (new) 92.65% (-0.54%)

Distributed Auto-Encoder Deployment

To test our second auto-encoder architecture of Fig. 3.3, we adopt a simple arithmetic encoder

to convert the quantized latent vector ŷ into bitstreams for bit rate measurement. We obtain

the approximated cumulative distribution functions (CDFs) by generating histogram of ŷ

using the full training set. To further compress ŷ, we evaluate the discriminative power of

each entry in ŷ based on the training set and prune the least discriminating entries. As

benchmarks, we also train the Encoder together with Decoder from E2E by minimizing the

CE loss to generate the “CE-trained” model.

The rate-accuracy trade-off results are illustrated in Fig. 3.7. It is clear that, for classifi-

cation, the input image can be compressed to a bit rate of around 0.3 bits-per-pixel (bpp) by

using either hierarchical MCR2 training or E2E CE training without accuracy loss. Fig. 3.7

shows that our proposed hierarchical learning can achieve similar rate-accuracy performance

as CE-based E2E training. For both CE-trained and MCR2-guided auto-encoders, pruning

the output ŷ based on LDA followed by fine-tuning the last dense layer in the Decoder can

achieve higher bandwidth efficiency by reducing encoding rate to 0.11 bpp with only less

than 1% loss of accuracy.

It is interesting to observe that during phase 1 training, both the overall rate R and group-

wise rate Rc would grow, implying that the MCR2-guided encoder tends to encode latent

representations into more bits, while ensuring the in-class compactness and between-class

discrimination of latent vectors.
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Figure 3.7: Rate-accuracy performance on test set of the proposed MCR2-guided AE in
comparison with a CE-trained AE.

Robustness against Corrupted Labels

The authors of [44] have demonstrated that deep models under MCR2 can learn well despite

the presence of some corrupted labels during training. To test our proposed model’s robust-

ness against label corruption, we train the auto-encoder with corrupted labels firstly by CE

loss in an E2E manner, which are used as the baseline models. We then fine-tune the same

model by applying the proposed hierarchical learning method. For classification evaluation,

we use the correct ground truth labels.

Our experiments include label corruption ratio (CR) of 10%, 20% and 30%, respectively.

We present the layer-wise discriminant power scores in Fig. 3.8. It is evident that MCR2-

guided learning models exhibit higher discriminative powers than CE-trained models when

they are subject to the same level of label corruption. From Fig. 3.9 we can observe that

with 10% training labels corrupted, the MCR2-guided model can deliver up to 1% higher

test accuracy than the CE-trained model at the same encoding data rate. Meanwhile, the

MCR2-guided model achieves robust learning even under 20% label corruption and clearly

delivers higher accuracy at the same data rate than the corresponding benchmark CE model.

Even with 30% random label corruption, our proposed learning model still yields a compa-
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rable rate-accuracy performance to the benchmark CE model with 20% label corruption.

These results demonstrate the robustness of the proposed hierarchical learning against noisy

training data by incorporating the MCR2 principle.

Figure 3.8: Layer-wise discriminative power of proposed distributed auto-encoder, computed
on test set.

Figure 3.9: Selected test accuracy vs. bpp performance of proposed auto-encoders with
corrupted training labels.
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Effects on Imbalanced Datasets

To measure the effects of our proposed model and the DuPHiL training strategy on imbal-

anced training data, we generate artificial imbalanced CIFAR-10 and CIFAR-100 datasets

by taking out training samples from some randomly selected classes to make them being

under-represented. For CIFAR-10, which comes with 5000 training images per class, we pick

two classes and manually remove 2500 or 4900 training images from them. For CIFAR-100,

which comes with 500 training images per class, we randomly pick 5, 10 or 20 classes and

remove 250 training images from these classes. Similar to the robustness tests against cor-

rupted labels, we also pre-train the models using the artificial imbalanced training set by

CE loss, whose results are considered as baselines, followed by fine-tuning process via our

proposed DuPHiL strategy. We would like to highlight that in these experiments, the test

sets, used in classification evaluation, are untouched and hence balanced. We present the

classification accuracy on test sets in Tables 3.2 and 3.3.

Table 3.2: Accuracy performance of proposed model, trained on artificial imbalanced CIFAR-
10 training set, tested on balanced CIFAR-10 test set.

Experiment 1: 2500 training images in each of the 2 minority classes

Training Strategy 2 Minority Classes 8 Majority Classes Overall

CE (Baseline) 84.35% 93.19% 91.42%
DuPHiL 86.2% 93.26% 91.85%

Experiment 2: 100 training images in each of the 2 minority classes

Accuracy 2 Minority Classes 8 Majority Classes Overall

CE (Baseline) 27.1% 93.29% 80.05%
DuPHiL 33.75% 93.48% 81.53%

It is obvious that on the imbalanced CIFAR-10 datasets with 2 under-represented classes,

the MCR2-guided model preserves the accuracy performance on the 8 majority classes and

shows an accuracy improvement of 1.85% and 6.65% when 50% and 98% of samples are

manually removed from 2 selected classes in the training set, respectively. For the imbalanced

CIFAR-100 dataset, the MCR2-guided model always outperforms baseline CE model on the

majority classes but the gain becomes more marginal with more minority classes in the
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Table 3.3: Accuracy performance of proposed model, trained on artificial imbalanced CIFAR-
100 training set, tested on balanced CIFAR-100 test set.

Experiment 1: 250 training images in each of the 5 minority classes

Training Strategy 5 Minority Classes 95 Majority Classes Overall
CE (Baseline) 68.6% 68.2% 68.22%

DuPHiL 69.4% 68.65% 68.69%

Experiment 2: 250 training images in each of the 10 minority classes

Training Strategy 10 Minority Classes 90 Majority Classes Overall

CE (Baseline) 69.7% 68.1% 68.26%
DuPHiL 69.4% 68.3% 68.41%

Experiment 3: 250 training images in each of the 20 minority classes

Training Strategy 20 Minority Classes 80 Majority Classes Overall

CE (Baseline) 67.5% 67.9% 67.85%
DuPHiL 66.8% 68.1% 67.85%

dataset. Moreover, the MCR2-guided model exhibit better performance only when there are

5 minority classes, which is a relatively easier task than the other two cases. With more than

5 minority classes, it turns out that the CE models provides higher classification accuracy

on minority classes and the gap between CE and MCR2-guided models grows with more

classes are manually processed to be under-represented. We claim that this is likely due to

the fact that when there are more classes available in the dataset, the principle of MCR2

demands more samples than CE loss to learn an optimal mapping that projects each classes

into orthogonal subspaces.

Altogether, these results tell that the proposed DuPHiL strategy can be applied to al-

leviate the overfitting problem resulted from data imbalance for the datasets with a small

amount of different categories.

Compatibility with Decoder Re-Training

To illustrate the general compatibility of our Encoders, we freeze the Encoders after CE or

MCR2-guided training, but train two new Decoders/classifiers from scratch, including: (1) a

Decoder of the same architecture as in Fig. 3.3 but optimized with Kullback-Leibler Diver-
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gence (KL-D) [137] loss and (2) a linear support vector machine (SVM) [138]. We present

the obtained results in Table 3.4. The results show that the encoder modules from DuPHiL

continue to deliver robust performance. Using a linear SVM and the proposed decoder ar-

chitecture trained by KL-D loss, we in fact observe up to 0.27% and 1.34% classification

accuracy improvement on CIFAR-10 and CIFAR-100 datasets, respectively, over encoders

from E2E training. Our results demonstrate the proposed MCR2-guided Encoders are more

flexible with various subsequent classifiers in comparison with E2E training.

Table 3.4: Accuracy performance of various classifiers based on fixed pre-trained Encoders.

Dataset Classifier Model
Training Strategy
E2E DuPHiL

(Baseline) (Proposed)

CIFAR-10
As in Fig. 3.3 (CE loss) 92.64% 92.77%

As in Fig. 3.3 (KL-D loss) 92.63% 92.75%
Linear SVM 92.1% 92.37%

CIFAR-100
As in Fig. 3.3 (CE loss) 68.54% 69.83%

As in Fig. 3.3 (KL-D loss) 68.45% 69.79%
Linear SVM 64.69% 65.37%

3.4.2 Three-Step Joint Learning Performance Evaluation

First of all, to determine latent dimensions in the model design stage, we detach the side

training branch to form an AE with a bottleneck layer dimension dy ∈ {32, 64, 128, 256, 512}

and pre-train each model using CE loss for 200 epochs. After this training step, we compare

the rate-accuracy performances to choose the best latent dimension size accordingly and the

selected model is labeled as the “CE-trained” (CE-T) baseline model. Using the pre-trained

baseline model, we further apply our three-step joint training algorithm to generate the

“LDR-fine-tuned” (LDR-FT) model.

Rate-Accuracy Performance

We present the rate-accuracy performance of models trained by the proposed three-step

training strategy (LDR-FT) together with the DuPHiL models and baseline CE-T models,
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respectively, on CIFAR-10 with dy ∈ {32, 64, 128} and CIFAR-100 with dy ∈ {64, 128, 256}

in Fig. 3.10. Assuming each individual entry in the quantized latent representations ŷ follows

Normal distribution, the total entropy of ŷ is evaluated on the test set. To vary the entropy

of each model, as discussed in Section 3.3.2, we assign a quantization step size qi to each

entry in yi based on their entropy value and linearly scale the step size by a constant factor

s.

Figure 3.10: Accuracy of proposed LDR-FT versus DuPHiL and CE-T models on CIFAR-10
or CIFAR-100 test set.

It is obvious that the classification performance correlates positively with total entropy.

As claimed in Section 3.4.1, targeting at model robustness and compatibility, DuPHiL does

not achieve a significant performance gain over CE-T. Our LDR-FT models achieves a higher

classification accuracy at the same total entropy compared with their corresponding DuPHiL

or CE-T baseline models, yielding a better entropy-accuracy trade-off. For example, with

dy = 64 as the optimized latent dimension according to our experiments, the test accuracy

achieved by baseline CE-T is 90.92% whereas the LDR-FT model accuracy is is 0.11%

higher at 91.03%. The LDR-FT model is also more robust to entropy-based quantization

as its test accuracy drops by only 0.39% when the total entropy is reduced from 71.68 to

13.93, whereas the accuracy of the baseline CE-T model decreases by 2.09% when the total
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entropy is reduced from 86.02 to 14.64. Similarly, on CIFAR-100, at the same entropy,

LDR-FT models usually outperform CE-T in test accuracy by over 3%. Further, the results

also reveal unexpectedly that a higher latent dimension dy does not always provide better

classification accuracy, despite the ability to pack more information. We investigate and

discuss this phenomenon in Section 3.4.3.

Robustness against Truncation

To illustrate the robustness against truncation when channel bandwidth is lowered, we man-

ually truncate/nullify the last half latent entries in each of the same CE-T base models in

Section 3.4.2, before fine-tuning them with either proposed training strategy (LDR-FT) or

E2E CE training (CE-T). We compare the performance of LDR-FT versus CE-T models on

CIFAR-10 with dy ∈ {32, 64, 128} and CIFAR-100 with dy ∈ {64, 128, 256} in Fig. 3.11.

Figure 3.11: Accuracy of LDR-FT versus CE-T models (with manual truncation on latent)
for CIFAR-10 or CIFAR-100.

As shown in Fig. 3.11, the truncated LDR-FT models outperform their CE-T coun-

terparts in terms of the entropy-accuracy trade-off, indicating that the LDR-FT training
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strategy fortifies models to be more robust against such active truncation in response to

the lower channel bandwidth. Moreover, comparing the performance of dy = 128 models

on CIFAR-10 before and after manual truncation in Figs. 3.10 and 3.11, we can observe an

accuracy improvement of approximately 1%, which again confirms our claim in Section 3.4.2

that higher latent dimension is not necessarily always the optimal choice.

Robustness against Distortive Transformations

To enhance model robustness against distortions, we augment the dataset by randomly

selecting and applying one or more transformations among cropping, flipping, color jitter

and uniform noise. After training, we randomly apply the same set of transformations to

evaluate how well the models adapt to these deformations. We demonstrate the performance

of LDR-FT versus CE-T models on the training set and the test set of CIFAR datasets in

Figs. 3.12 and 3.13, respectively. Clearly, LDR-FT models achieve better accuracy on the

Figure 3.12: Training set accuracy of LDR-FT versus CE-T models (with images distorted)
for CIFAR-10 or CIFAR-100.

distorted images than CE-T ones, implying that they learn to preserve the key information
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Figure 3.13: Test set accuracy of LDR-FT versus CE-T models (with images distorted) for
CIFAR-10 or CIFAR-100.

for classification that is invariant toward image distortions as expected.

3.4.3 Impact of Latent Dimensions on Model Performance

Conceptually, with a higher latent dimension, we expect better classification accuracy as the

latent representations are more informative. However, experiments show that this does not

always hold.

Figure 3.14: Standard deviation of entries in latent representation Ŷ computed on CIFAR-10
test set, with dy = 64 and 128.
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To investigate the possible causes, without the loss of generosity, we examine the vari-

ations of entries in the learned latent representations for dimension sizes dy = 64 and 128,

respectively, using the CIFAR-10 test set. As Fig. 3.14 shows, “CE-T” and “LDR-FT” rep-

resent CE-trained baseline and LDR-fine-tuned models, respectively. Comparing the two

CE-T cases, the smaller latent dimension dy = 64 model learns to pack more information in

the latent by increasing variations, making its latent more robust against quantization noise

in comparison with dy = 128. Meanwhile, after applying manual truncation and fine-tuning

“CE-T-10, dy = 128”, the “LDR-FT-10” model learns to suppress latent variations, lead-

ing to an entropy reduction while preserving the most critical between-class discriminative

information, thereby avoiding classification accuracy loss as can be seen in Fig. 3.10.

3.5 Summary

In this chapter, we study the training of AEs for distributed compression or classification

in distributed learning environment. We first propose a novel hierarchical learning strat-

egy to achieve the dual objectives of efficient discriminant feature extraction and accurate

classification. Applying the information theoretic MCR2 principle, we assign the sub-task

of efficient feature extraction to front ResNet modules and the sub-task of classification to

later modules. Instead of näıvely summing loss functions of each objective for E2E training,

we train the front and later modules alternately to minimize their respective loss functions.

By applying the MCR2 loss to guide front modules to acquire in-class-compact and between-

class-separable features before using the CE loss to optimize later modules for classification,

our hierarchical learning not only achieves good accuracy as existing CE models but also

provides robustness to LDA-based filter pruning and label corruption. Then, we suggest to

incorporate self-supervised training, also guided by the information theoretic LDR criterion,

to the proposed training algorithm such that the AEs can be amenable to common aug-

mentations/transformations. In addition, to adjust transmission rate in response to channel
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bandwidth, we propose an entropy-based quantization method, which operates directly on

any pre-trained encoders, and we propose a simple latent truncation in conjunction with

encoder fine-tuning. Further, we investigate the impact of latent dimensions on the perfor-

mance of AEs and suggest to optimize latent dimensions by using an initial screening process.

Both proposed learning strategies can apply directly to various existing AE architectures.
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Chapter 4

A Principled Hierarchical Approach

for Few-Shot Deep Learning

In this chapter, we introduce a few-shot learning strategy with the guidance from the prin-

ciple of MCR2. This strategy is capable of navigating the DL models to extract more

discriminant features from input data. With limited amount of training samples, this new

method can reduce model overfitting to seen data and make the models generalize better to

unseen data.

4.1 Few-Shot Image Classification

To enable supervised DL models to achieve impressive breakthroughs, availability of large

quantities of labeled training data is usually an essential preliminary requirement. In cases

where the accessibility of supervised information is limited, it can be more challenging for

DL approaches to generalize to new tasks. Few-shot learning (FSL) [24, 26, 139] studies

the potential of DL applications to such low-data regimes, and the work of [26] has been

presumably considered as one of the main contributors to the solid progress made in FSL

recently. The typical setting of an N -shot K-way few-shot image recognition problem in-

volves learning classifiers to categorize image samples into K prediction classes, given only
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N training samples from each class. During inference, a total of Q images are provided to

be classified into the K prediction classes. The set of N ×K training samples and the set

of Q inference samples are defined as the “support” set and the “query” set, respectively.

Existing FSL works can be divided into the three perspectives: data-level, parameter-level

and algorithm-level approaches.

Straightforwardly, data-level approaches utilize prior knowledge to increase the number

of available training samples, including data augmentation via manually-designed transfor-

mation rules [46] and synthetic data generation [140], etc. These methods are commonly seen

as a pre-processing step in FSL tasks. Another line of approach in the parameter-level uses

prior knowledge to constrain the complexity of DL classifiers as well as the mapped feature

subspace. As the hypothesis space of classifiers becomes narrower, small number of training

data may be sufficient and overfitting can thus be reduced. Typical parameter-level methods

include parameter sharing from other tasks [141,142], embedding learning [23,143] and learn-

ing with external memory [144]. Lastly, the algorithm-level approaches aim at seeking the

optimal hypothesis classifier. A popular method, known as “meta-learning” [145,146], trains

models with batches of tasks, instead of samples, and optimizes classifiers with the expec-

tation that future update steps based on data from other different tasks improves the gen-

eralization capability of models to the current task. Specifically, each task in meta-learning

is comprised of a labeled dataset consisting of a support set, which provides task-specific

information, and a query set, which evaluates generalization performance on this task. Note

that the classes present in each task shall differ.

However, these previous works do not pose direct regularization on the discrimination

capability of intermediate features extracted by the front layers in a DL model, which shall in

theory benefit classification performance. As a result, the models tend to experience severe

overfitting to the training set. In this work, we propose to alleviate the common overfitting

problem, enhance the generalization capability of DL models and improve the classification

accuracy on the unseen query set by guiding the feature extration layers to learn linear
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discriminant feature mappings via the principle of Maximal Coding Rate Reduction (MCR2).

4.2 Related Works

4.2.1 Learning Discriminant Features for Few-Shot Learning

Some recent progress in few-shot image recognition features learning to extract discriminant

embeddings from images [29,147,148] to avoid severe overfitting.

The Cross Attention Module (CAM) introduced in [147] enhances the discriminability of

extracted features by learning to localize the most discriminative and representative regions

in images and generate a weighted attention map in assistance for subsequent classifica-

tion. Instead of proposing a new architecture, the authors of [148] design the unsupErvised

discriminAnt Subspace lEarning (EASE) strategy, which quantifies the distance of represen-

tations in their subspace using a similarity metric and maximizes both the inter-class feature

similarity and the intra-class feature dissimilarity to ensure the discriminability of learned

representations. However, both of [147, 148] are conducted based on a transductive setting

that is less practical, where all the inference images shall be present at once. Based on

the ProtoNet [23] backbone, the few-shot embedding adaptation with Transformer (FEAT)

model in [29] applies a set-to-set function to the learned embeddings to make them dis-

criminative even for unseen classes. Attached after the instance embedding modules derived

from seen classes, this learnable projection adjusts the mapping from learned embeddings to

the class prototypes. These embeddings preserve the discriminative information, especially

for the unseen ones in the query set, and will be used for downstream classification. Con-

cretely, these previous studies have proved that promoting discriminability in the extracted

prototypes in an unsupervised manner can result in superior performances compared with

corresponding baseline approaches.

Different from these unsupervised methods, build upon the workflow developed in [29],

the discriminability of learned latent representations for FSL can be advanced in a supervised
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manner [43] by means of bringing a surrogate latent regularization term to the loss function,

that measures the difference between inter-class and intra-class coding rates of the projected

prototypes. Quantified by an information-theory-based metric, known as MCR2, the inter-

class discriminability, intra-class compactness and linearity of prototypes can be enhanced

during training. The benefits for the FEAT framework is twofold: inter-class discriminabil-

ity pushes class-wise mean, or the clustering centers, of the latent embeddings further away

from each other; intra-class compactness ensures the prototypes of the same class are pro-

jected closer to their corresponding class centers. For more details of the principle of MCR2

and linear discriminative representations (LDRs), we refer the readers to Section 3.2.5 of

Chapter 3.

4.2.2 Weakly-Supervised Few-Shot Learning

Although coarse labels are more affordable compared with fine-grain ones, directly training

on coarse labels may lead to sub-optimal local minima for a DL task due to information

deficiency [45]. Researchers have devoted many efforts to appropriately incorporate coarse

labels to assist representation learning for FSL [149–151].

Under a setup where only coarse labels are available for training, the authors of [150]

designs a new architecture: the Visual-Semantic Meta-Embedder (VSME). VSME bridges

the gap between coarse and fine granularity by learning an optimal embedding mapping

from the pseudo fine labels on the training set generated via clustering. Operating in the

configuration where the base training set contains both coarse and fine labels, the Parent-

Aware Self-training (PAS) representation learning approach implemented in [151] aims at

tackling the fine-grain classification problem where query images come with coarse labels.

Similar to VSME, this approach trains a teacher classifier for pseudo-label generation and a

student model for representation learning. The teacher classifier learns from the fine-grained

base data and is used to “pseudo-label” query images for the student model. Next, the

student model learns from both the base data and the query data labelled by the teacher
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classifier and its feature extractor is used for downstream classification. In another work [149],

the authors assume that a coarse-to-fine category graph is available and propose a two-stage

training strategy including a level-wise cross-entropy training with both coarse and fine

label information and a prototype propagation phase such that the prototypes for samples

belonging to the same coarse class are merged in the feature space. With the additional

information provided by the coarse labels, the FSL performance of their CNN prototype

extractor and K-nearest neighbor (KNN) predictor is boosted.

The existing works mentioned above either rely on the E2E task-specific supervised learn-

ing, or focus on transferring the knowledge of classifying fine categories within a coarse group

to unseen target groups. These methods are proposed with an anticipation that the models

would automatically learn the optimal feature extraction by task-oriented training. But it

remains unclear that whether these methods address the generalization problem in FSL. In

contrast, we propose to leverage the auxiliary randomly-generated coarse-grained informa-

tion via the LDR loss. By the guidance of this regularization term, the few-shot learner

will be directed to obtain more linear discriminant representation mappings for unseen fine

classes. We have observed that this enhancement can establish better performance than [43]

in cases where the model experiences more severe overfitting.

4.3 Method: Weakly-Supervised LDR-Guided Few-Shot

Learning via Coarse Labels

4.3.1 Learning Objectives

We note that [43] has proposed an effective way to incorporate LDR loss in the FSL frame-

work to obtain inter-class discriminative and intra-class compressive prototypes and has

achieved improved test accuracy. It has been shown that FSL can also benefit from unsu-

pervised learning by randomly-generated labels accompanied by appropriate data augmen-
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tation [46]. However, it has been observed that the principle of MCR2 tend to conflict with

the conventional cross-entropy (CE) loss [44, 77] in the final convergence phase of models.

As a result, if the LDR loss and CE loss are integrated through a linear combination, both

training and test accuracy will oscillate after a certain number of training epochs. In this

work, we adopt the model and workflow introduced in [43] and propose to lift the hard

constraint from LDR loss by proving only coarse-grained groupings as a weak supervision

instead of fine-grained ones.

Given the support set XS and denote their corresponding latent representations as ZS,

we define the weakly-supervised MCR2 loss for a pre-defined error ϵ as:

LLDR -w = −∆Rw(ZS)=̇−R(ZS) +Rc(ZS,Πcoarse) (4.1)

Given a query sample {xQ, cQ|zQ = fϕ(xQ),xQ} consisting of an image xQ and a cate-

gory label cQ, its classification loss can be computed by:

Lcls(xQ, cQ|XS) = − log
exp(−d(zQ, cQ))∑K
j=1 exp(−d(zQ, cj))

. (4.2)

Together, we train the models with a weighted summation of the classification loss LCE

and the MCR2 loss LMCR2−w:

L = LCE + λLLDR -w (4.3)

The weight parameter λ controls the trade-off between the two terms. Typically, a larger

λ leads to relatively higher training and test accuracy but more severe overfitting. An overall

diagram of the used framework as in [43] can be found in Fig. 4.1. Processed by the Encoder

and the set-to-set mapping function, the support set is used to locate the centers, or the

“prototypes”, of each category in the embedding domain. Then, the predicted class label

xQ for the Query image xQ is predicted by a soft nearest neighbor classifier in this common
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embedding space.

Figure 4.1: Diagram of the proposed FSL algorithm.

4.3.2 Instance Embedding Function Backbone

It is common practice to pick several empirically-designed neural network architectures that

have produced promising performance after intensive trial and error as feature extraction

(Encoder) backbones in FSL, such as the ConvNet and ResNet in [23, 43]. In this way, the

architectures are treated as a non-interpretable black box and why they work for this specific

FSL objective remains as an open question.

Concretely, it has been justified that optimizing a network to learn the low-dimensional

LDR from input data in an iterative manner naturally constructs a ResNet-like structure in

a recent work [152]. As a result, we believe that the ResNet is the most suitable instance

embedding backbone in our work to optimize the classification and MCR2 losses together.

Actually, our experimental results show that the guidance of weakly-supervised MCR2 loss

promotes a negligible FSL performance gain, if not degraded, with ConvNet backbones,

which support the statement above.

4.3.3 Coarse Label Generation

Previous works [149–151] utilize manually-assigned coarse labels for weak supervision in

FSL. Such manual labeling usually merges similar objects together without considering the
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intrinsic patterns in the source images. As an example, both cats and lions are grouped

in the “feline” class but the intrinsic patterns of their raw images, such as the background

or the object sizes may have significant difference. As the training of models guided by the

principle of MCR2 relies more on these patterns instead of accurate label information, manual

coarse labeling may not be the optimal choice for our weakly-supervised LDR-guided FSL

framework. Thus, we consider three different ways to generate the coarse labels, including

unconstrained random grouping, constrained random grouping and manual grouping. For

unconstrained random grouping, we randomly split all the existing categories in training

set into two even groups. For constrained random grouping, we first aggregate fine classes

into various small “clusters” without overlapping, then divide these clusters into two coarse

groups. Note that in the first stage of constrained random grouping, each small cluster

contains a few similar fine classes that usually come with similar background and object

size. For manual labeling, we directly separate fine classes into two coarse groups of live

creatures and other objects. All the three coarse labeling strategies yields two coarse groups,

each consisting of half of the fine classes.

4.4 Experimental Results

We provide the comparative performance of CE, hard guidance [43] and the proposed weak

guidance methods with the three coarse labeling strategies in Tables 4.1 and 4.2. Partic-

ularly, Table 4.1 lists the test results without data augmentation while Table 4.1 shows

the scenarios where we randomly apply one or more of four data augmentation techniques.

In both tables, we refer to random coarse labeling, constrained coarse labeling and manual

coarse labeling as “-R”, “-CR” and “-M” suffixes, respectively. For the instance embedding

backbones, we adopt four variations of ResNet architecture, including the vanilla ResNet-12

and ResNet-18 as in [29], along with their modified versions: thinner ResNet-12 and wider

ResNet-18. The numbers of filters in each layer of thinner ResNet-12 is half of ResNet-12.
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Similarly, the numbers of filters in each layer of wider ResNet-18 is twice as much as ResNet-

18. This allows us to explore the effectiveness of weak guidance toward LDR on different

model complexities or overfitting potentials.

Table 4.1: Test accuracy (%) of proposed training method versus E2E CE training on the
1-shot 5-way FSL task, with no training data augmentation. Numbers in parentheses are
accuracy changes with respect to corresponding CE cases.

Method
Backbone Thinner

ResNet-12 ResNet-18
Wider

ResNet-12 ResNet-18

CE 61.71 62.93 62.06 60.6

Hard-LDR [43]
61.98 63.57 62.86 60.62

(+0.27) (-0.64) (+0.80) (+0.02)

Weak-LDR-R
61.75 63.40 62.92 60.74

(+0.04) (+0.47) (+0.86) (+0.14)

Weak-LDR-CR
61.91 63.33 62.76 60.75

(+0.20) (+0.40) (+0.07) (+0.15)

Weak-LDR-M
61.52 63.45 62.45 60.79
(-0.19) (+0.52) (+0.39) (+0.19)

According to Table 4.1, the hard-LDR-guided [43] or the proposed weakly-supervised

LDR-guided method almost consistently outperform their CE baseline when no data aug-

mentation is applied. Particularly for ResNet-12 backbone, all three of our Weak-LDR

strategies reports over 0.4% of accuracy gain over the CE baseline while Hard-LDR takes it

down by 0.64%.

Overall, similar to the non-augmented results, Table 4.2 shows that a principled guidance

on embedding is also helpful for downstream classification task when collaborating with data

augmentation. When the models become more complex, the hard guidance starts to cause

an accuracy degradation, indicating that the strict constraint from LDR loss term is not

well adapted to the random distortions introduced by augmentation and is conflicting with

the CE term. Meanwhile, our weakly-supervised LDR-guided method still produces robust

performance improvement. Specifically, Weak-LDR-R delivers an accuracy gain of 0.59%

over baseline CE while Hard-LDR brings down the accuracy by 0.53% with a wider ResNet-
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18 backbone.

Table 4.2: Test accuracy (%) of proposed training method versus E2E CE training on the 1-
shot 5-way FSL task, with grayscale conversion, color jitter, flipping and rotation as training
data augmentation. Numbers in parentheses are accuracy changes with respect to corre-
sponding CE cases.

Method
Backbone Thinner

ResNet-12 ResNet-18
Wider

ResNet-12 ResNet-18

CE 61.33 62.16 61.51 59.29

Hard-LDR [43]
61.42 62.34 61.32 58.76

(+0.09) (+0.18) (-0.19) (-0.53)

Weak-LDR-R
61.28 62.67 61.55 59.88
(-0.05) (+0.51) (+0.04) (+0.59)

Weak-LDR-CR
60.39 62.62 61.41 59.79
(-0.84) (+0.46) (+0.09) (+0.50)

Weak-LDR-M
61.25 62.58 61.91 59.24
(-0.08) (+0.42) (+0.40) (-0.05)

From both Tables 4.2 and 4.1, one interesting observation is that in general, Weak-LDR-

R performs better than Weak-LDR-R, then followed by Weak-LDR-M, revealing that the

embedding regularization term prefers label information that is less associated with human

intelligence. This further confirms the statement that a learning process of LDR regulariza-

tion loss relies less on accurate label information [44] hence a straightforward summation of

CE loss and strict LDR guidance term can lead to accuracy degradation. However, it is also

worth noting that although overfitting is alleviated and accuracy gets increased by the LDR

guidance term, the test performance is still decreasing as model complexity grows due to

overfitting. Neither data augmentation, nor fine/coarse LDR guidance provides a complete

fix for this well known problem.

Consider the fact that some of the augmentation methods we adopt have more practical

meanings than others, such as flipping and rotation, we evaluate the performance of every

individual augmentation rule with the wider ResNet-18 backbone. “Grayscale” means 20% of

the training images are randomly converted to grayscale; “Color Jitter” means the images’

brightness, contrast and saturation are jittered by random factors between 0.8 and 1.2;
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“Flipping” means 50% of the training images are randomly flipped horizontally; “Rotation”

means each training image is randomly rotated by -45 to 45 degrees. Table 4.3 shows the

classification accuracy of E2E CE baseline and the proposed weak-LDR-guided strategy,

with one of the four augmentation method. Compared with the wider ResNet-18 results

in Table 4.1, all four considered augmentation techniques worsens the test accuracy, this is

likely because that the available information in a FSL task is highly insufficient and any

additional perturbation can make the FSL task more difficult. Such negative impact is most

obvious under rotation, which introduces an accuracy degradation of 3.8%, while those of

others are relatively negligible (less than 0.7%). This matches our expectation as rotation

is the only method that can completely change the intrinsic patterns of an image. For the

same reason, the guidance of weakly-supervised LDR loss, which relies more on the internal

characteristics of images than CE loss, does not demonstrate performance improvement when

training images are rotated. In the meantime, the effects of the other three augmentation

approaches with or without the guidance of weakly-supervised LDR-guided loss are similar.

Overall, for FSL tasks, traditional manually-crafted augmentations shall be carefully selected

since they can introduce unrealistic distortive noise, overcomplicate the task and result in

an accuracy drop.

Table 4.3: Test accuracy (%) with the wider ResNet-18 backbone of proposed training
method versus E2E CE training on the 1-shot 5-way FSL task, with one single training
augmentation method applied. Numbers in parentheses are accuracy changes with respect
to corresponding CE cases.

Method
Augmentation

Grayscale Color Jitter Flipping Rotation

CE 59.55 59.57 59.52 56.81

Weak-LDR-R
60.06 59.83 59.76 56.64

(+0.51) (+0.26) (+0.24) (-0.17)
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4.5 Summary

In this chapter, we expand the applications of the principle of MCR2 to the FSL problem

where the amount of training data is insufficient. Firstly, to address the common overfitting

problem in FSL, we suggest to replace fine labels by coarse ones in the LDR regularization loss

as a relaxation of the strict fine grouping constraint in the FSL pipeline proposed in [43]. By

introducing this simple tweak to the baseline [43], our weakly-supervised LDR-guided FSL

framework further reduces overfitting and shows accuracy improvement for more complex

models which are more prone to overfitting. To make the exploratory study more comprehen-

sive, we evaluate a total of three different coarse label generation methods: purely random,

constrained random or manual. Interestingly, empirical evidence reveals that less human

knowledge in the grouping information results in better weakly-supervised LDR-guided FSL

performance. Upon these findings, we claim that it can lessen the severity of overfitting in

FSL if the models are empowered to learn underlying structural meaning from data with less

label bias. In addition, we look into another technique that is frequently used to alleviate

overfitting: data augmentation. It is seen that data augmentation reduces overfitting at

the cost of lower test accuracy in the adopted FSL framework. However, a weak guidance

toward LDR can reduce the test accuracy degradation caused by data augmentation and pro-

vide potential for better model optimization by monitoring only the training performance.

Additional experiments on single augmentation approach reveal that these straightforward

methods, such as random rotation, may introduce unwanted and/or impractical distortion

to the training set and make it harder for the classifier to extract useful information from

such a limited dataset.

To conclude, we show that the weak guidance toward LDR is useful in understanding

the underlying semantic features, is beneficial for the downstream tasks in practice and out-

performs the end-to-end cross-entropy-based training or hand-crafted data augmentation in

terms of reducing overfitting. Meanwhile, this method is compatible with any existing neural-

network-based FSL learning frameworks and introduces no extra computational burden at
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inference.
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Chapter 5

Artificial Neural Networks for Salinity

Estimation and Forecasting in the

Sacramento-San Joaquin Delta of

California

In this chapter, we first enhance the existing domain-specific multi-layer perceptron (MLP)

ANN architectures for salinity estimation in the Sacramento-San Joaquin Delta, California at

key monitoring stations. We present a novel multi-task learning (MTL) ANN framework with

shared hidden layers for joint salinity estimation at 12 salinity monitoring stations achieving a

reduction of 90% training and inference time. Then, we replace the predetermined input data

pre-processing by a trainable convolution layer, allowing more flexibility when transforming

input data into lower-dimensional representations. Numerical tests based on a simulated

dataset demonstrate the benefits of training time reduction, estimation error decrease, and

better feature extraction performance.

With the MTL framework and inspired by the idea of residual learning in the well-

know Residual Network (ResNet) [58] architecture, we further develop and apply two novel
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DL models: a Residual Long-Short-Term Memory (Res-LSTM) network and a Residual

Gated Recurrent Unit (Res-GRU) model to capture both the spatial and temporal variations

of salinity and compare their efficacy against the baseline MLP ANN. In this phase, we

expand to 23 monitoring stations in the Delta and train the models using historical salinity

measurements. Results indicate that the proposed novel DL models generally outperform

the baseline MLP model in simulating and predicting salinity on both daily and hourly scales

at the salinity monitoring stations.

5.1 Background and Problem Formulation

Salinity management is the keystone of water resources management in estuarine environ-

ments due to the underlying biological significance and inherently high variations in space

and time of salinity [39]. Understanding these variations and predicting variation patterns

under different potential future scenarios lay the foundation for informed water manage-

ment decision-making. This is especially true for areas with great ecological, social, and

economic importance including the Delta. The Delta is the confluence of freshwater inflows

from upstream rivers and saline tidal flows from the Pacific Ocean. Major streams like the

Sacramento River, San Joaquin River, and eastside tributaries enter the Delta (Fig. 1.2)

and the waters flow through the Delta in a complex network of intersecting channels which

ultimately flow west out to the Pacific Ocean or are diverted for agricultural and municipal

use inside and outside of the Delta. The salinity of water in the channels (concentration of

salt measured, for example, in milligrams of salt per liter of stream water) determines the

Part of this chapter is reprinted, with permission, from [S. Qi, Z. Bai, Z. Ding, N. Jayasundara, M. He,
P. Sandhu, S. Seneviratne and T. Kadir, “Enhanced Artificial Neural Networks for Salinity Estimation and
Forecasting in the Sacramento-San Joaquin Delta of California” in Journal of Water Resources Planning and
Management, Aug. 2021], [S. Qi, M. He, Z. Bai, Z. Ding, P. Sandhu, Y. Zhou, P. Namadi, B. Tom, R. Hoang
and J. Anderson, “Multi-location Emulation of a Process-based Salinity Model using Machine Learning” in
MDPI Water, 2022], [S. Qi, M. He, Z. Bai, Z. Ding, P. Sandhu, F. Chung, P. Namadi, Y. Zhou, R. Hoang,
B. Tom, J. Anderson, D. M. Roh. “Novel Salinity Modeling using Deep Learning for the Sacramento-San
Joaquin Delta of California”, MDPI Water, 2022] and followup modifications for final publication..
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suitability for fish and wildlife, growing crops (the Delta has approximately 420,000 acres

of prime agricultural lands), and urban indoor/outdoor use. Water salinities in the Delta

channels are affected by many factors including ocean tides, inflows to the Delta from inland

rivers and streams, and agricultural activities/practices within the Delta. Also, human ac-

tions related to water usage, such as diverting to the Delta islands for agricultural and urban

use or exports from the Delta through the State Water Project (SWP) and Central Valley

Project (CVP) pumping plants, would also change flows and salinities through the mixing

process. Freshwater flow releases from upstream reservoirs are managed to maintain Delta

salinity at levels that support water supply and environmental needs. This requires estimates

of salinity for various climate, flow, and operational conditions. To assist in the planning

and management of the water resources in the Delta, the California Department of Water

Resources (CDWR) has developed two key simulation models for use in planning studies: (1)

CalSim, a water allocation model of the SWP and CVP systems [153], and (2) Delta Simu-

lation Model 2 (DSM2), a hydrodynamics and water quality model [154], which is developed

based upon the mathematical flow-salinity relationship model presented in [155]. We refer

interested readers to an earlier paper [2] on detailed discussions of CalSim and DSM2 as

tools used in water resource management and their functionalities. There are 12 key water

quality monitoring stations in the Delta: Emmaton, Jersey Point, Collinsville, Rock Slough,

Antioch, Mallard Island, Old River at HWY 4, Martinez, Middle River Intake, Victoria

Intake, CVP Intake and Clifton Court Forebay (CCFB) Intake (see Fig. 1.2). However, run-

ning these models for long study periods under multiple scenarios can be computationally

expensive.

Similar to the approach described in [2], we aim to improve salinity estimation by lever-

aging the seven hydrological, water quality and operation parameters, namely Northern Net

flows (Sacramento River and East side Streams); San Joaquin river flows; Delta cross-channel

gate operation; net Delta consumptive use; tidal energy; San Joaquin River inflow salinity

at Vernalis; SWP and CVP exports via Banks pumping plant, Jones pumping plant, and
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Contra Costa canal (see Fig. 1.2). We will estimate salinities at a number of measurement

points which include Emmaton, Jersey Point, Collinsville and Rock Slough, among others.

The input data are the (pre-processed) seven input variables and their definitions can be

found in Table 5.1.
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Table 5.1: Input Features to Proposed ML Models.

Index Input Feature Name Definition

1 Northern Flow Sum of Sacramento, Yolo Bypass, Mokelumne River,

Cosumnes River, and Calaveras River flows.

2 San Joaquin River Flow San Joaquin River at Vernalis Flow.

3 Pumping Sum of pumping from Banks Pumping Plant, Jones

Pumping Plant, and Contra Costa Water District at Rock

Slough, Old River, and Victoria Canal.

4 Delta Cross-Channel Gate

Operation

Delta Cross-Channel Gate Openings.

5 Consumptive Use Net Delta Consumptive use estimated by Delta Channel

Depletion (DCD) and Suisun Marsh Channel Depletion

(SMCD) models.

6 Martinez Tidal Energy Tidal energy at Martinez, calculated as the daily maximum

– the daily minimum astronomical tide at Martinez.

7 San Joaquin River EC Electrical conductivity measured at San Joaquin River at

Vernalis.

8 Sacramento River EC Electrical conductivity measured at Sacramento River at

Greens Landing.

Following [2], each of the seven variables is pre-processed via an empirical convolution

process that converts the values of the input at the current day plus the antecedent 117
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days into 18 values, including one value from each of the current day plus the most recent

seven antecedent days along with 10 non-overlapping 11-day averages. Fig. 5.3 outline the

pipeline to obtain the estimated salinity levels in [2]. The complete pipeline in mathematical

notation is given in Fig. 5.1. For training and validation, we have access to monthly input

data and daily salinity data covering water years 1941-2015. In California, each water year

cycle runs from October 1 to September 30 of the following calendar year.

ANN 𝑦!
Pre-determined
pre-processing𝑧! ∈ ℝ"×$

𝑥! ∈ ℝ"×$!

Figure 5.1: Pipeline for ANNs with mathematical notations according to [2]

There is a total of N data samples (or days) in the dataset. In our problem, we select

M = 7 observation variables. Same as in CalSim [2], we pick T = 118 and Tr = 18 in the

baseline case and pre-process the data as denoted in Fig. 5.2.

For input variable m on day n, we extract 8 daily values:

x
(m)
n,i = z

(m)
n−i+1, (5.1)

where i ∈ {1, . . . , 8}. We also compute a total of 10 successive but non-overlapping 11-day

… …

…
…

…
…

…

Direct mapping
Average

z!,# ∈ ℝ$ 𝑥!,# ∈ ℝ$!

Figure 5.2: Pre-processing diagram
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moving averages before the first daily data x
(m)
n,i , i ∈ {1, . . . , 8} to be stored in

x
(m)
n,i+8 =

1

11

11∑
j=1

z
(m)
n−11i−j+4, (5.2)

where i ∈ {1, . . . , 10}. Altogether, for the M variables in each day n, we form M × Tr =

7× 18 = 126 values as the M × Tr input matrix xn to the ANNs.

Later for exploring a different ANN architecture to bypass this rather ad hoc pre-processing,

we would form a trainable convolution layer instead of applying the above pre-determined

pre-processing steps. In that case, those 118 daily values of each of the seven variables are

directly provided to the convolution layer. The corresponding details will be described in

Section 5.3.

The target outputs of ANNs are the salinity levels at one or more monitoring stations.

Each STL ANN’s output is salinity level at one single monitoring station, while each MTL

ANN’s outputs are salinity levels at all monitoring stations.

Different from the previous study [2], the current work randomly split 80% and 20% of

this dataset for training and validation, respectively.

5.2 Multi-task Learning

Jayasundara et al. (2020), for the first time, have developed and applied individual MLP

ANNs consisting of one input layer, two hidden layers, and one output layer, in simulating

salinity based on seven variables in the Delta, including water control gate operations, water

exports, tidal stage, as well as flow and salinity boundaries, to emulate DSM2 within CalSim

3, making runtimes much more practical. However, it is not efficient to train and inference

those 12 separate ANNs. In the context of our objective for simultaneously estimating

salinity levels at multiple monitoring stations based on the same set of inputs, we can view

this problem as a special case of multi-task learning (MTL). This formulation is motivated
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by the fact that the salinities at the multiple monitoring stations are all affected by the same

set of hydrological measurements within the same regional ecosystem.

MTL, in contrast to single-task learning (STL), is a machine learning strategy where

multiple tasks sharing commonalities are solved simultaneously. As shown in [156–158], the

domain-specific information contained in input data may allow one task to “eavesdrop” on

features discovered for other related tasks and may lead the model to prefer some hypotheses

over others. By leveraging the domain-specific information, MTL helps improve neural net-

works’ efficacy and generalizability. One of the most commonly used MTL methods is known

as hard parameter sharing, which is achieved by a joint architecture that requires multiple

tasks to share some hidden layers while keeping several task-specific layers towards the end

of model for each task [156]. The idea of hard parameter sharing has been applied to time

series prediction such as rainfall amount prediction[159] and water quality forecasting[160].

We design the MTL ANN for simultaneous estimation of salinity at multiple monitoring sta-

tions and this new paradigm enables the ANN to better extract the underlying data features

and generate better overall performance than the current STL model individually trained

and optimized for each monitoring station [2].

ANN

Estimated
salinity level

Pre-determined
pre-processing

Time series of 7 variables 
(flows, gate operations, etc.)

Pre-processed
time series
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Figure 5.3: Complete pipeline for ANNs according to [2]

As described in [157], multiple inter-related tasks may be learned jointly by training a

single ANN. The output layers shall include more neurons whereas the hidden layers are

shared by the monitoring stations. These hidden layers together serve as a joint mechanism

for feature extractions that can be used more consistently to generate salinity estimates at
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different monitoring stations. With MTL, an ANN can show better general performance over

multiple disjoint single-task ANNs. As shown in Fig. 5.4, the MLP architecture proposed in

[2] consists of two fully connected (FC) hidden layers and one output layer, with each layer

containing 8 neurons, 2 neurons and 1 neuron, respectively.
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Figure 5.4: Architecture of a single-task ANN

Based on the model in previous successful STL ANNs in Fig. 5.4, we build the multi-task

ANN architecture, which is an MLP network containing two hidden layers with sigmoid

activation functions and one output layer with a Leaky ReLU [161] activation function. As

illustrated in Fig. 5.5, we increase number of neurons by a factor of 12, which coincides with

the number of monitoring stations in the first part of this chapter, for all layers to build the

multi-task ANN, that is, the two hidden layers and output layer in multi-task ANN contain

96, 24 and 12 neurons respectively.
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Figure 5.5: Architecture of a multi-task learning ANN
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5.3 Trained Input Pre-processing via a Convolution

Layer

As discussed earlier, the authors of [2] utilized 8 newest daily values together with 10 non-

overlapping moving averages of the daily values immediately before the 8 daily values as

input data for salinity estimation (Fig. 5.2).

It should be recognized that the reported direct daily mappings and moving window

averages are special cases of convolution processing, except that the existing pre-processing

is not optimized through data training. Understanding the shortcomings of such a heuristic

pre-processing, we propose instead to include a trainable convolution layer for data pre-

processing in our novel ANN architecture. Mathematically, the convolution layer would

implement the following data processing through the training weights f
(m)
j,i :

x
(m)
n,i =

T∑
j=1

z
(m)
n−j+1 × f

(m)
j,i , (5.3)

where n ∈ {1, . . . , N}, m ∈ {1, . . . ,M} and i ∈ {1, . . . , Tr}. Clearly, by appropriately

setting the convolution weights f
(m)
j,i , the convolution layer is capable of delivering daily

value mapping and sliding window averaging. Moreover, this convolution layer is trainable

in conjunction with the additional layers in the ANN. The inclusion of the convolution layer

within the ANN allows the weights in this layer and other ANN layers be jointly optimized

to achieve better overall performance.

By including the convolution layer, the two respective novel architectures of single-task

and multi-task ANNs with a convolution layer are shown in Fig. 5.6. There are Tr = 18 filters

in a convolution layer such that the convolution layers are able to extract at least the same

8 daily values and 10 average values in the pre-determined pre-processing. The complete

pipeline with proposed convolution layer and the MTL ANN can be found in Fig. 5.7.
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Figure 5.6: STL (left) and MTL (right) ANN architectures with a convolution layer.
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Figure 5.7: Complete pipeline for proposed MTL ANNs

5.3.1 Implementation

We implement the newly developed ANNs using the popular open source library, Tensorflow

2.2.0 [75], with Python 3.6.9. We conduct the experiments through web-browser on Google

Colaboratory, which is a cloud-based Jupyter notebook environment with a Tesla T4 GPU.

We normalize inputs and outputs to the range [0.1, 0.9] by linearly converting the i-th daily

value of the k-th input variable in the n-th data sample x
(m)
n,i to

x̂
(m)
n,i =

x
(m)
n,i −

(
min

k=1,...,N
x
(m)
k,i

)
(

max
k=1,...,N

x
(m)
k,i

)
−

(
min

k=1,...,N
x
(m)
k,i

) × 0.8 + 0.1. (5.4)

We apply the same normalization to outputs yn representing the salinity at a monitoring

station on day n.

ŷn =

yn −
(

min
k=1,...,N

yk

)
(

max
k=1,...,N

yk

)
−
(

min
k=1,...,N

yk

) × 0.8 + 0.1. (5.5)
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The cost function used for training is the Mean Squared Error (MSE). For the LM optimizer,

we adopt the same settings as [2], where the starting learning rate is 0.005 and decay factor

is 10 and the training takes 150 epochs. For the Adam optimizer, the learning rate is

determined using a grid search. The starting learning rate is 0.01, and it is scaled by 0.1,

0.01, 0.001 and 0.0005 at epochs 80, 120, 160 and 180, respectively, and the training takes

200 epochs.

5.4 Residual Recurrent Neural Network (Res-RNN)

Architectures

Despite their scientific advances and practical values, the ML models introduced in the

first part of this chapter generally have four limitations [162]. Firstly, they are applied in

simulating salinity under different planning scenarios. The forecasting capability of the ML

models is largely unexplored. Reliable and intelligent forecasting is one major practical

application for water resources studies. Over the past decades, ML methods have gained

more popularity in this area [163, 164], due to their ability to handle big data at different

scales as well as their flexible structure to identify non-linear and complex relationships

between input and output data.

Secondly, the ML models focus on daily or coarser temporal scales probably due to

prohibitively expensive computing requirement associated with finer time scales. However,

sub-daily scales (e.g., tidal scale, hourly scale) are also meaningful to water resources planning

and management practices in the Delta. For instance, farmers may need to make water

diversion schedules on when to pump water from Delta channels to irrigate their crop lands

during a day. Understanding sub-daily variations of salinity would help inform their relevant

decision-making to avoid diverting salty water that may have a detrimental effect on crops.

Thirdly, the ML models are trained using salinity simulations from a process-based model,

DSM2. Simulated data are generally “noise-free” as they follow the physical laws embedded
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in the advection-dispersion governing equations hardwired in process-based models. This

characteristic makes it straightforward for ML models to learn the underlying patterns or

signals in simulated data. This limits the application of those ML models for certain ap-

plications including forecasting. To forecast the spatial and temporal variations of salinity

in the near future, it would be ideal that the ML models are trained and tested using field

observations directly so that they can be utilized to predict what would happen in the field.

These field observations reflect the real-world salinity conditions containing information not

captured by process-based models, which are, at most, simplified representations of reality.

We attempt to tackle these highlighted limitations by proposing two novel ML models:

Res-LSTM and Res-GRU, which are less complex but more efficient compared to their vanilla

versions (i.e., LSTM and GRU). In this part of our work, we utilize salinity observations as

the target to train the ML models and assesses their performance on both daily and hourly

time scales. Moreover, we explore the forecasting capability of the two proposed novel Res-

RNN models.

5.4.1 Forecasting Setup

In our previous work [49, 162], we focused only on the investigation of same-day salinity

estimation (i.e., the lead time is zero). In practice, forecasting near-term salinity is critical

to informing real-time water management decision-making. In this work, we extend the

scope of proposed Res-LSTM and Res-GRU models to salinity forecasting up to 14 days into

the future (lead time equals 14 days). Specifically, one ML model is trained for each lead

day. A total number of 14 Res-LSTM models and 14 Res-GRU models are developed.

For salinity forecasting on day t with a lead time of tl, we perform the following pre-

processing steps:

Step 1: We prepare model inputs the same way as discussed in Section 5.1, which consists

of x̂t
i, . . . , x̂

(t−7)
i (1 ≤ i ≤ 8) and x̂

(t−8)→(t−18)
i , . . . , x̂

(t−107)→(t−117)
i .
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Step 2: We formulate the target output values by shifting the salinity values forward by tl

days, represented by yt+tl
k , k = 1, 2, . . . , 23.

In this way, after training, the models shall be capable of predicting daily salinity levels

at the 23 monitoring stations ahead of time by tl days.

In the remaining of the paper, ML models trained with a lead time of zero (tl = 0) are

referred to as “salinity estimation” models, while models trained with a lead time of greater

than or equal to 1 (tl ≥ 1) are referred to as “salinity forecasting” models. It is worth noting

that forecasting models here differ from models applied in real-time forecasting operations

which use forecast model inputs to drive the model and generate forecasts. The forecasting

models developed for each lead time (i.e., day 1 through day 14 into the future) in the current

study use purely historical data up to the lead time of zero.

5.4.2 Evaluation Metrics

The proposed models are trained with the Adam optimization algorithm [73] based on the

widely used mean squared error (MSE) loss function. Four statistical evaluation metrics,

consisting of square of the correlation coefficient (r2), Bias, root mean standard deviation

ratio (RSR), and Nash-Sutcliffe Efficiency coefficient (NSE), are employed to assess the

ML model performance. Each of the four metrics evaluates modeled salinity performance

from a different perspective: r2 quantifies the strength of the linear relationship between

modeled salinity and the target salinity; percent bias indicates whether the models over- or

underestimate the salinity; RSR is a standardized representation of the root mean squared

error (RMSE) between model outputs and targets; NSE compares the predictive capacity

of the models with the global mean of target sequences. For r2 and NSE, a value close

to 1 indicates desirable model performance. For percent bias and RSR, a value close to 0

designates good model performance. Table 5.2 provides detailed descriptions and definitions

of these five metrics. Here, S represents the salinity sequence, S̄ indicates the overall average

value of the salinity levels S, the subscripts ANN and Observed indicate ANN-estimated
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and observed salinity, respectively.

Table 5.2: Study Metrics.

Name Definition Formula

MSE Mean Squared Error MSE =
∑T

t=tl+1 (S
t
Observed − St

ANN)
2

r2 Squared Correlation

Coefficient

r2 = (
∑T

t=tl+1 |(St
Observed−SObserved)×(St

ANN−SANN )|
T×σObserved×σANN

)
2

Bias Percent Bias Bias =
∑T

t=tl+1(S
t
ANN−St

Observed)∑T
t=tl+1 S

t
Observed

× 100%

RSR RMSE-observations

standard deviation ratio

RSR =

√∑T
t=tl+1 (S

t
Observed−St

ANN )2√∑T
t=tl+1 (S

t
Observed−SObserved)

2

NSE Nash-Sutcliffe Efficiency

coefficient

NSE = 1−
∑T

t=tl+1 (S
t
Observed−St

ANN )
2∑T

t=tl+1 (S
t
Observed−SObserved)

2

5.4.3 Implementation

Our experiments are carried out on a public platform: the Google Colaboratory. Hyper-

parameters such as batch size, learning rate and numbers of epochs may affect model perfor-

mance. In a different manner, we use a constant small learning rate of 0.001 with the Adam

optimizer [73] to train our models and stop training if the mean squared error (MSE) on the

test set does not decrease for 50 epochs. In addition, to prevent overtraining, we limit the

maximum number of epochs to 5000. In this way, we do not have to specifically optimize

the learning rate or the number of epochs.
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5.5 Results and Analysis

5.5.1 MTL ANNs

We evaluate the performance of the proposed MTL ANN models by calculating the unit-

less normalized mean square error (NMSE), which is computed on the normalized salinity

outputs ŷn based on the validation dataset. We compare the performance of several ANN

architectures.

To begin, the basic model is a 3-layer STL ANN with pre-processed input data, consisting

of two hidden layers and one output layer, as shown in Fig. 5.4. We train this baseline ANN

using both the LM algorithm (STL-LM) and the Adam optimizer (STL-Adam), to illustrate

the effects of optimizers. Both “STL-LM” and “STL-Adam” configurations are used as

baseline results for comparison.

In our proposed ANNs based on the novel MTL strategy, we consider two different ar-

chitectures: (a) a basic 3-layer MTL ANN with the pre-determined data pre-processing used

in the baseline model using the Adam optimizer (3-MTL) for training; and (b) a 4-layer

MTL ANN with a replacement of fixed data pre-processing by a trainable convolution layer.

We consider two initializations for the trainable convolution layer parameters: random (4-

MTL-R) and using the pre-determined pre-processing parameters (4-MTL-P) according to

equations 5.1, 5.2 and 5.3.

Results from each of the five configurations are labeled, respectively, by “STL-LM”,

“STL-Adam”, “3-MTL”, “4-MTL-R”, and “4-MTL-P”. Table 5.3 presents the NMSE re-

sults of the five different ANN configurations. Correspondingly, Table 5.4 evaluates their

respective training and inference time (complexity). From the performance comparison, we

make the following observations.

• With pre-determined data processing, the LM algorithm outperforms the Adam op-

timizer in training STL ANN to generate lower NMSE values than STL-Adam and

3-MTL do at all study stations, as shown in Table 5.3. However, the LM algorithm
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Table 5.3: Resulting NMSE×104 of different ANN architectures for salinity estimation. Both
inputs and outputs of ANNs are normalized.

STL-LM STL-Adam
3-MTL 4-MTL-R 4-MTL-P

(baseline) (baseline)

Optimizer LM Adam Adam Adam Adam

Emmaton 3.2 9.03 10.03 4.25 2.63
Jersey Point 5.35 14.78 16.18 5.74 3.28
Collinsville 5.09 15.92 15.56 6.20 3.86
Rock Slough 5.34 13.33 17.95 6.55 3.69
Antioch 1.84 7.85 9.73 3.50 2.60

Mallard Island 2.18 8.25 9.59 3.28 2.68
Old River at HWY 4 5.01 18.99 21.03 5.27 2.71

Martinez 0.61 3.15 6.66 2.53 1.63
Middle River Intake 5.21 16.71 17.72 5.20 2.66

Victoria Intake 6.12 15.41 16.47 5.33 2.88
CVP Intake 5.11 21.32 18.95 6.97 3.94

CCFB Intake Gate 5.64 20.57 19.38 6.23 3.32

requires 8 times longer training time (complexity) when compared with both STL and

MTL trained with the Adam optimizer as shown in Table 5.4.

• Using our newly proposed MTL architectures with a trainable convolution layer, train-

ing with the Adam optimizer can substantially improve the NMSE performance over

STL. In particular, the 4-MTL-P results are distinctly better (with smaller NMSE

values) when comparing with STL-Adam at all 12 stations. The 4-MTL-P scenario

outperforms STL-LM at 9 out of the 12 stations.

• The proposed 4-MTL architecture not only improves the salinity estimation perfor-

mance in providing generally lower NMSE values, but also requires much shorter train-

ing time (from 8.31 hours of STL-LM to 319 seconds of 4-MTL-P) as well as much

faster inference (from 8.52 ms to 1.3 ms). Therefore, applying MTL to multi-station

salinity estimation tasks can clearly improve training and inference efficiency.

• In 4-MTL, a trainable convolution layer significantly reduces NMSE as this data pro-

cessing layer can learn to extract data features and adapt to wider MTL ANN architec-
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Table 5.4: Training time and inference time of different ANN architectures

Model Information
Architecture

STL-LM STL-Adam 4-MTL-P

Number of parameters 981 981 16962
Optimizer LM Adam Adam

Training time (sec. per model) 2493 315 319
Inference time (ms. per sample) 0.71 0.71 1.3

Number of models needed 12 12 1

Total training time 8.31 hrs 1.05 hrs 319 secs
Total inference time for all 12 stations

8.52 8.52 1.3
(ms. per day)

ture through training. Our pre-determined initialization helps reduce the probability

of being trapped in a local minimum.

• From Table 5.3, Antioch, Mallard Island and Martinez are the 3 outliers in 4-MTL-P

with slightly higher NMSE values than their counterparts from the STL-LM scenario.

The reason is that stations located further west are more influenced by ocean tides of

high salinity and are less effected by the input flows. Indeed, we can see from Fig. 1.2

that all these three stations are in the western part of the Delta.

5.5.2 Res-RNNs

This section presents the results of the two novel Res-RNN models together with four baseline

models for comparison: MLP, ResNet, LSTM and GRU. Firstly, the training and testing

performance of all six models is scrutinized in terms of skill metrics described in Section 5.4.2

as well as visual inspection of modeled salinity against the corresponding observations. Next,

the forecasting capability of the two proposed novel models is examined. Finally, model

performance is evaluated on the finer hourly time step.
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5.5.3 Model Performance on the Daily Scale

Figure 5.8: Comparison of six models on observed data at daily time step. Each box repre-
sents the interquartile range from the 25th to the 75th percentiles. The line inside each box
represents the median value. The open circles represent outliers.

Fig. 5.8 illustrates the performance of the two exploratory ANNs, Res-LSTM and Res-GRU,

in comparison with the original four basic networks, MLP, ResNet, LSTM, and GRU, in

terms of four study metrics (r2, Bias, RSR, and NSE). The figure reveals that the two

new models (Res-LSTM and Res-GRU) have satisfactory performance. Specifically, the

training results in Fig. 5.8(a–d) indicate that both Res-LSTM and Res-GRU outperform
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MLP, while at similar level with ResNet, LSTM, and GRU. The former is most likely due to

the learning compensation of the shortcut side branch from Res-LSTM and Res-GRU than

MLP. The latter suggest that the new and simpler structures of Res-LSTM and Res-GRU

could successfully achieve similar performance as their more complex counterparts LSTM

and GRU. Meanwhile, the test results in Fig. 5.8(e-h) suggest that Res-LSTM and Res-GRU

yield better or similar results as the four original models. All in all, Res-LSTM has slight

edge over other models as it has slightly more desirable metrics. Simulations from Res-LSTM

are further examined and compared with the observed salinity in different ways.

Figure 5.9: Exceedance probability plot and time series plot of Res-LSTM simulated versus
observed salinity at daily time step.
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Fig. 5.9 shows the corresponding exceedance probability curves and daily time series plots

of Res-LSTM simulations comparing with the observed data at selected locations. Both types

of plots demonstrate that the simulations mimic the target observed salinity very well, with

the latter showing capture of temporal pattern and magnitude in general. Another notable

pattern is that, despite the marginal discrepancies in the full salinity spectrum between the

two models, time series plots reveal that Res-LSTM slightly underestimates high salinity,

especially for RSAC092 and RSAN018.

Figure 5.10: Heatmap showing Res-LSTM performance at different salinity ranges on the
daily time step: low-middle range (lowest 75%), high range (75 to 95 percentile), and extreme
high range (highest 5%) at the monitoring stations.

Fig. 5.10 shows the statistical metrics for each study location, calculated at three ranges,

illustrating the performance of the Res-LSTM model compared to observed data on a daily

time step. For metrics r2, NSE, and RSR, “yellow” indicates satisfactory performance. For

the percent bias metric, shaded blue and orange represent underestimation and overestima-

tion, respectively. Overall, model performance is most satisfactory when the salinity is in the

low-middle range (0-75%) and decreases with high (75-95%) and extremely high (95-100%)
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salinity ranges. Several notable observations are further discussed below.

Performance at location RSAC092 (Sacramento River at Emmaton) is lower in the low

salinity range but is consistent with the other locations in the high and extremely high ranges.

Despite the departure from the other stations, overall r2, NSE, and RSR for RSAC092 are ac-

ceptable. The Res-LSTM model underestimates salinity in the low-middle range, where the

percent bias is -11%. This is because the Res-LSTM often estimates zero EC at Emmaton,

but this generally does not occur in the observed data. At location RSAC064 (Port Chicago)

r2, NSE, and RSR are acceptable in the low-middle and extremely high ranges, but less sat-

isfactory under the high range. The Res-LSTM is less able to capture the salinity variability

at Port Chicago under the high range, but the percent bias is acceptable and consistent with

other locations. At locations in the Suisun Marsh (SLMZU011, SLSUS012, SLCBN002), the

Res-LSTM tends to overestimate salinity, especially in the low-middle range.

In short, the novel Res-LSTM and Res-GRU models can satisfactorily estimate salinity

at the locations studied, while achieving similar or better performance compared with their

more complex LSTM and GRU counterparts. Generally, performance is best at stations

with lower median salinity and variability and degrades at stations with higher salinity

and variability. The combination of a simpler architecture paired with comparably good

performance to vanilla LSTM and GRU models indicate that the new models show promise

in estimating Delta salinity on a daily time step.

5.5.4 Forecasting Performance

Fig. 5.11 compares the forecasting performance of the Res-LSTM model during the training

(panels (a-d)) and test (panels (e-h)) runs, using box and whisker plots for four types of

metrics consisting of r2, percent bias, RSR, and NSE. Each plot includes one box and

whisker for each lead time evaluated.

Generally speaking, model performance declines smoothly as lead time increases and all

the metrics are within a reasonable range. Even with a lead time of 14 days, the Res-LSTM
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model predictions are satisfactory. For all lead times evaluated under training and testing,

NSE is above 0.94, r2 is above 0.95 and percent bias centers around zero percent, indicat-

ing excellent predictive performance without a tendency to systematically underestimate or

overestimate.

Figure 5.11: Salinity forecasting performance of Res-LSTM.

Fig. 5.12 shows the corresponding performance of Res-GRU models based on four criteria

(r2, bias, RSR, and NSE) in two rows. The first row (panels (a-d)) and the second row (panels

(e-h)) display the performance of Res-GRU for training and test datasets, respectively. As

a performance indicator for ML algorithms, results of the test dataset (panels (e-h) indicate

that the nowcasting (forecasting with 0 lead time) model has the best performance, and the

forecasting model’s accuracy decreases when the lead time increases, which is reasonable

for every forecasting model. However, the forecasting model with 6 and 12 days lead time
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does not follow this pattern, and the forecasting model with 6 days lead time provides the

worst performance but still satisfactory (r2 and NSE are high while RSR and bias are low).

This suggests that historical data up to lead time 0 alone may not be ideal to forecast these

two days for the Res-GRU model. Overall, all the metrics are within a reasonable range.

For all lead times evaluated under training and testing, NSE is above 0.94, r2 is above

0.94 indicating satisfactory performance overall. The percent bias metric indicates higher

variability than the Res-LSTM predictions (Fig. 5.8) but does not show a clear systematic

bias towards underestimation or overestimation.

Figure 5.12: Salinity forecasting performance of Res-GRU.

All in all, for all lead times considered, Res-LSTM and Res-GRU can forecast salinity

levels at all monitoring stations with satisfactory performance. Model performance generally

decreases as the lead time increases.
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5.5.5 Model Performance on the Hourly Scale

The results presented so far are all trained and tested using daily salinity data aggregated

from the hourly observations of salinity. In this sub-section, the six ML models proposed

are trained using the hourly observations directly though the input data supplied to the

models are still on the daily scale. Fig. 5.13 compares the performance of these models

during the training (panels (a-d)) and test (panels (e-h)) runs, using box and whisker plots

for four types of metrics consisting of r2, percent bias, RSR, and NSE. Each plot includes one

box and whisker for each model evaluated. Based on these metrics, the Res-LSTM model

generally outperforms all the other ML models tested during training and test runs. On

average, Res-LSTM has the highest r2 and NSE. It also has the lowest bias and RSR for

both training and testing. The performance of Res-GRU is close to but not as ideal as that

of Res-LSTM. In contrast, ResNet has slightly inferior performance compared to other ML

models, followed by MLP. Compared to their counterparts on the daily scale (Fig. 5.8), the

skill metrics r2, RSR, and NSE are notably inferior, indicative of stronger performance on

the daily (versus hourly) scale for all six models.
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Figure 5.13: Comparison of six models on observed data at hourly time step with daily
inputs.

Fig. 5.14 shows the corresponding exceedance probability curve and hourly time series

plots to evaluate the performance of Res-LSTM at six selected locations in the Delta. In

general, the differences between model simulations and the corresponding observations are

marginal. However, the time series subplots indicate that the Res-LSTM models slightly

underestimate the peak values at some of these specified locations. Nevertheless, the plots

show remarkable similarity between models and observations, and the Res-LSTM model can

skillfully capture the temporal pattern of observed salinity. Compared Res-LSTM perfor-
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mance on the daily scale (Fig. 5.9) versus the hourly scale (Fig. 5.14), the metrics associated

with the daily scale are generally superior, Particularly, the r2 and NSE are slightly higher

while the RSR is generally lower on the daily scale. This is also observed for other models

as illustrated in Figs. 5.8 and 5.13.

Figure 5.14: Exceedance probability plot and time series plot of Res-LSTM simulated versus
observed salinity at daily time step with daily inputs.
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Figure 5.15: Heatmap showing Res-LSTM performance at different salinity ranges on the
hourly time step: low-middle range (lowest 75%), high range (75 to 95 percentile), and
extreme high range (highest 5%) at the monitoring stations.

As in Figs. 5.10 and 5.15 shows heatmaps which summarize the performance of the Res-

LSTM model with hourly time steps using the statistical metrics r2, percent bias, RSR, and

NSE for each study location. In general, model performance is most satisfactory for salinities

in the low-middle range across most stations, but lower for the high and extreme high ranges.

Compared to the daily time step simulation results in Fig. 5.10,the metrics associated with

the hourly time step are inferior for most locations.

In a nutshell, all six proposed models can achieve satisfactory performance at a finer

hourly scale, and Res-LSTM slightly outperforms the other five. The differences between

model simulations and the corresponding observations are small on average. The performance

of Res-LSTM is highest in the low-middle range, but relatively lower for the high and extreme

high ranges. Compared to their counterparts on the daily scale, the ML models on the hourly

scale generally have slightly degraded performance.
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5.6 Summary

In the first part of this chapter, we develop enhancements to the Delta salinity modeling

ANNs for the purposes of training time reduction, estimation error reduction, and better

feature extraction. The enhancements include structural redesign on two fronts: 1) in-

corporation of the MTL architecture and 2) addition of a convolution layer in input data

pre-processing. The updated ANNs are further adapted to conduct salinity forecasting which

is rarely investigated previously. The enhanced ANNs have the potential to be incorporated

into the current modeling practice and provide more robust and timely information to guide

water resources planning and management in the Delta.

Built upon the success of relevant previous studies that explored ML applications in

salinity modeling in the Delta, we further develop two novel ML models, Res-LSTM and Res-

GRU and apply them in both salinity simulation and prediction as well as on a finer hourly

time scale that had never seen investigated before. Experimental results show that both novel

architectures proposed can effectively simulate and predict salinity at all monitoring stations

across the Delta with a moderate model complexity increase compared with the baseline

MLP ANN. The effectiveness and efficiency of Res-RNNs make them viable supplements

to operational process-based models in terms of providing salinity estimates to inform both

real-time and long-term water management and planning practices.

111



Chapter 6

Conclusions and Future Work

In this chapter, we highlight the contributions of this dissertation and point out potential

future research directions.

6.1 Summary

The goal of this dissertation is to adapt deep-learning-based approaches to complex prob-

lems under certain conditions in both emerging and traditional domains. Machine learning

architectures and algorithms should actively take into consideration of practical limitations

such as storage and communication bandwidth. Particularly, we investigate the image clas-

sification and salinity modeling problems. These approaches identify key information behind

the input data, enable efficient feature extraction and improve the task performance.

6.2 Optimizing Image Compression for Classification

We explore both conventional and learning-based image compression codecs, which are orig-

inally implemented for better visual reconstruction quality. In a band-limited distributed

learning setting, we embed the image codecs together with an existing classifier model, tar-

geting at a downstream learning task: image classification. It is obvious that image classifi-
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cation requires less information than reconstruction, while these features shall preserve the

discriminative characteristics. Inspired by the fact, we modify the architecture so that the

encoder module can be guided to disregard unrelated information, cut down the transmission

bit rate and increase the classification accuracy.

In Chapter 2, we propose an end-to-end image compression and classification framework

integrated with the conventional JPEG encoding module in networked cloud application

scenarios in the IoT systems. We claim that for lower resolution images and a shallow

classifier, the quantization parameters can be easily optimized by our proposed framework

and then deployed to edge devices. For large scales images, we further show that a deeper

neural network is able to learn directly in the frequency domain, hence image reconstruction

(JPEG decoder) can be bypassed and CPU computation load is reduced.

In Chapter 3, we move forward to a learning-based image compression codec, the auto-

encoder (AE). Within the same distributed learning environment setup, some structural

modifications in a traditional AE is required. With a side branch attached to the encoder

during training, we guide the encoder for an in-class-compact and between-class-separable

feature extraction via the principal of Maximal Coding Rate Reduction (MCR2). During

inference, this side branch will be removed hence there is no extra computational or storage

cost.

We propose two hierarchical learning strategies that are compatible with the modified

AE structure, where the dual tasks of compression and classification get split. We assign

the sub-task of efficient feature extraction to the encoder and accurate classification to the

decoder. Unlike common multi-objective learning frameworks where the objective function is

the summation of various loss terms, our explicit task separation avoids the intensive tuning

of trade-off hyper-parameters. In the first proposed dual-phase learning (DuPHiL) strategy,

we alternate between encoder and decoder training. We observe as good performance as

the baseline in this phase. Meanwhile, the encoders become more robust against model

pruning, more tolerable to training label corruptions and more flexible with reconfigured

113



decoders. In the second proposed three-step learning strategy, we further incorporate self-

supervised learning as an additional phase to obtain AEs that are amenable to common image

distortions. We also investigate the effects of proposed learning strategy by visualizing the

discriminative power of each layer and discuss the impact of bottleneck layer dimension

selection in AE-based codecs. It is worth to note that both strategies proposed in this

chapter can be applied directly to existing AE architectures as a plug-and-play integration.

6.3 Weakly-Supervised Few-Shot Learning

In Chapter 4, we turn to the problem of Few-Shot Learning. With a similar structural mod-

ification as in Chapter 3, it has been proved in [29,43] that by enhancing the between-class

discriminability and within-class compactness of the embeddings extracted for subsequent

classification can help addressing the unavoidable overfitting problem in FSL. Following [43],

we adopt the principle of MCR2 in training the encoder to promote such characteristics in la-

tent embeddings but observed that the hard constraint may conflict with the label-dependent

classification loss and lead to a sub-optimal local minima. As a soft relaxation, we replace

the accurate grouping information in the regularization term by coarse groupings. Results

show that the simple modification leads to further accuracy improvements and less overfit-

ting, especially for complex models. In addition, we show that the weak guidance toward

LDR works better when less human ingenuity is introduced in coarse labeling, which in turn

proves our claim that the principle of MCR2 relies less on accurate labeling information.

Next, for exploratory purposes, we analyze the effects of the augmentation methods, includ-

ing grayscale conversion, color jitter, flipping and rotation. Experimental results show that

data augmentation is capable of reducing overfitting while sacrificing test accuracy. Among

the four considered approaches, rotation has critical negative impact on test performance

while others have only marginal negative effects. The accuracy degradation introduced

by data augmentation can be alleviated when the proposed weakly-supervised LDR-guided
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training method is incorporated.

The proposed method is compatible with any existing neural-network-based FSL frame-

work and brings no extra computational cost to the original model. Finally, it is worth

noting that the test accuracy continues decreasing when the model’s complexity rises, and

no matter fine/coarse guidance toward LDR or data augmentation can completely overcome

this overfitting problem.

6.4 Delta Flow-Salinity Modeling

In Chapter 5, we present an adapted framework to jointly learn input pre-processing and

salinity estimation/forecasting. The task-driven enhancements include structural redesign

on two fronts: 1) incorporation of the multi-task learning (MTL) idea and 2) addition of

learnable input data pre-processing. We demonstrate that a three-layer MLP model with

the proposed learning framework can faithfully emulate the operational process-based model

DSM2 for simulation purposed. The estimation/forecasting performance can be further im-

proved by substituting MLP backbone for a recurrent neural network (RNN) at the cost of

training convergence time and inference time. To leverage the trade-offs between inference

speed and estimation/forecast performance, we design a novel residual RNN (Res-RNN) ar-

chitecture following the concepts of shortcut path and residual learning in ResNets [58], which

can be directly utilized in the proposed enhanced framework. To build such a task-specific

Res-RNN, we attach a shortcut path with a single “thin” RNN layer to the MLP model in

order to capture the residuals missed by the main path. With a moderate model complexity

increase, the proposed Res-RNNs can simulate/forecasting salinity faster than DSM2 and

vanilla RNNs, emulate DSM2 more accurately than MLP or vanilla RNNs and outperforms

DSM2 on historical data. Altogether, the flexible trainable time series processing, MTL

framework and faster backbone models enable the finer resolution (hourly) real-time salinity

modeling in the Delta. Overall, we demonstrate the effectiveness, efficiency and feasibility
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of DL-based models in supplementing the existing operational models in processing environ-

mental variables and providing accurate real-time or long-term estimates of salinity to guide

water management decision making.

6.5 Extensions

• Reducing training data with DuPHiL strategy We design a training strategy

to train an encoder-decoder network in a distributed manner that is adaptable for a

verity of applications. Relying less on the accurate grouping information, the pro-

posed DuPHiL strategy lead to an accuracy gain compared with conventional end-to-

end cross-entropy-based training strategy. In other words, theoretically, the DuPHiL

strategy demands less information to obtain the same performance as the traditional

methods. With that being said, the amount of available training data can be reduced

and/or data augmentation can be adopted to introduce variety to image datasets.

• Leveraging Latent Guidance and Learning Objective We observe that the

straightforward integration of two loss functions via linear combination either requires

intensive hyper-parameter tuning or results in a sub-optimal local minima. In the

first part of this dissertation, we propagate the regularization term via a side branch

as a relaxation, but this also weakens the effectiveness of the guidance. An archi-

tecture redesign that takes the hierarchical objectives into account and leverages the

latent guidance and subsequent objectives may be considered. Additionally, further

works may also determine the broad appeal of this guided learning principle in other

bandwidth constrained machine-learning applications.

• Weakly-Supervised Few-Shot Learning with Coarse Labels Only We show

that a guidance on embeddings from weakly-supervised coarse labeling information

contributes to a performance improvement for FSL tasks. As the classifier loss in our

framework still relies on the fine labeling information, the amount of human efforts
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for data annotation is not alleviated. A practical enhancement to the framework is to

consider only coarse labeling information in both classification loss and the embedding

guidance loss. One possibility is to augment the coarse labels into pseudo fine ones

with a separate coarse-to-fine classifier [165] or clustering [150]. Another interesting

topic is to effectively select samples from the coarsely labeled dataset.

• Incorporating additional information in salinity estimationWe use eight empir-

ical variables as input features to the proposed salinity estimation models and achieve

desirable performance at the selected monitoring locations. Other variables, including

tidal energy, precipitation and wind speed, also influence the circulation and mixing of

freshwater and sea water and thus affect the salinity level in the Delta. The impacts of

considering these additional input features can be explored. Moreover, data augmen-

tation is a technique to generate synthetic data for model training, which develops an

enlarged and diversified dataset to better represent extreme conditions and possible

future conditions. With the DSM2 salinity simulator, several modifications can be

applied to the input variables, such as (1) scaling the magnitude of major boundary

flows; (2) temporally shifting major boundary flows; and (3) changing operations of

key Delta structures, such as operable gates. All of the above aim to reduce overfitting

and thus improve the generalization ability of the trained neural networks.
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[94] C. J. Pérez, F. J. Girón, J. Mart́ın, M. Ruiz, and C. Rojano, “Misclassified multinomial
data: a bayesian approach.” RACSAM, vol. 101, no. 1, pp. 71–80, 2007.

[95] V. Mnih and G. E. Hinton, “Learning to label aerial images from noisy data,” in
Proceedings of the 29th International conference on machine learning (ICML-12), 2012,
pp. 567–574.

[96] G. Patrini, F. Nielsen, R. Nock, and M. Carioni, “Loss factorization, weakly supervised
learning and label noise robustness,” in International conference on machine learning.
PMLR, 2016, pp. 708–717.

[97] B. Biggio, B. Nelson, and P. Laskov, “Support vector machines under adversarial label
noise,” in Asian conference on machine learning. PMLR, 2011, pp. 97–112.

[98] M. S. Shelke, P. R. Deshmukh, and V. K. Shandilya, “A review on imbalanced data
handling using undersampling and oversampling technique,” Int. J. Recent Trends Eng.
Res, vol. 3, no. 4, pp. 444–449, 2017.

[99] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance
problem in convolutional neural networks,” Neural networks, vol. 106, pp. 249–259,
2018.

[100] R. M. Pereira, Y. M. Costa, and C. N. Silla Jr, “Toward hierarchical classification
of imbalanced data using random resampling algorithms,” Information Sciences, vol.
578, pp. 344–363, 2021.

[101] I. Mani and I. Zhang, “knn approach to unbalanced data distributions: a case study
involving information extraction,” in Proceedings of workshop on learning from imbal-
anced datasets, vol. 126. ICML, 2003, pp. 1–7.

[102] S.-J. Yen and Y.-S. Lee, “Cluster-based under-sampling approaches for imbalanced
data distributions,” Expert Systems with Applications, vol. 36, no. 3, pp. 5718–5727,
2009.

[103] M. Koziarski, “Radial-based undersampling for imbalanced data classification,” Pat-
tern Recognition, vol. 102, p. 107262, 2020.

125



[104] B. Liu and G. Tsoumakas, “Dealing with class imbalance in classifier chains via random
undersampling,” Knowledge-Based Systems, vol. 192, p. 105292, 2020.

[105] M. S. E. Shahabadi, H. Tabrizchi, M. K. Rafsanjani, B. Gupta, and F. Palmieri, “A
combination of clustering-based under-sampling with ensemble methods for solving
imbalanced class problem in intelligent systems,” Technological Forecasting and Social
Change, vol. 169, p. 120796, 2021.

[106] G. E. Batista, R. C. Prati, and M. C. Monard, “A study of the behavior of several
methods for balancing machine learning training data,” ACM SIGKDD explorations
newsletter, vol. 6, no. 1, pp. 20–29, 2004.

[107] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “Smote: synthetic
minority over-sampling technique,” Journal of artificial intelligence research, vol. 16,
pp. 321–357, 2002.

[108] J. Li, Q. Zhu, Q. Wu, and Z. Fan, “A novel oversampling technique for class-imbalanced
learning based on smote and natural neighbors,” Information Sciences, vol. 565, pp.
438–455, 2021.

[109] H. He, Y. Bai, E. A. Garcia, and S. Li, “Adasyn: Adaptive synthetic sampling ap-
proach for imbalanced learning,” in 2008 IEEE international joint conference on neural
networks (IEEE world congress on computational intelligence). IEEE, 2008, pp. 1322–
1328.

[110] S. K. Roy, J. M. Haut, M. E. Paoletti, S. R. Dubey, and A. Plaza, “Generative adver-
sarial minority oversampling for spectral–spatial hyperspectral image classification,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1–15, 2021.

[111] M. Pavan Kumar and P. Jayagopal, “Multi-class imbalanced image classification using
conditioned gans,” International Journal of Multimedia Information Retrieval, vol. 10,
no. 3, pp. 143–153, 2021.

[112] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multivariate mixed
data via lossy data coding and compression,” IEEE Trans. on Pattern analysis and
Machine Intelligence, vol. 29, no. 9, pp. 1546–1562, 2007.

[113] A. Skodras, C. Christopoulos, and T. Ebrahimi, “The jpeg 2000 still image compression
standard,” IEEE Signal processing magazine, vol. 18, no. 5, pp. 36–58, 2001.

[114] A. P. Byju, G. Sumbul, B. Demir, and L. Bruzzone, “Remote-sensing image scene
classification with deep neural networks in jpeg 2000 compressed domain,” IEEE Trans.
on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 3458–3472, 2020.

[115] L. Gueguen, A. Sergeev, B. Kadlec, R. Liu, and J. Yosinski, “Faster neural networks
straight from jpeg,” Advances in Neural Information Processing Systems, vol. 31, pp.
3933–3944, 2018.

126



[116] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning filters for efficient
convnets,” arXiv preprint arXiv:1608.08710, 2016.

[117] S. Anwar, K. Hwang, and W. Sung, “Structured pruning of deep convolutional neural
networks,” ACM Journal on Emerging Technologies in Computing Systems, vol. 13,
no. 3, pp. 1–18, 2017.

[118] P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Pruning convolutional neu-
ral networks for resource efficient inference,” arXiv preprint arXiv:1611.06440, 2016.

[119] J. Zou, T. Rui, Y. Zhou, C. Yang, and S. Zhang, “Convolutional neural network
simplification via feature map pruning,” Computers & Electrical Engineering, vol. 70,
pp. 950–958, 2018.

[120] Z. Zhuang, M. Tan, B. Zhuang, J. Liu, Y. Guo, Q. Wu, J. Huang, and J. Zhu,
“Discrimination-aware channel pruning for deep neural networks,” in Proceedings of
the 32nd International Conference on Neural Information Processing Systems, 2018,
pp. 883–894.

[121] Z. Hou and S.-Y. Kung, “A feature-map discriminant perspective for pruning deep
neural networks,” arXiv preprint arXiv:2005.13796, 2020.

[122] Q. Tian, T. Arbel, and J. J. Clark, “Task dependent deep lda pruning of neural
networks,” Computer Vision and Image Understanding, vol. 203, p. 103154, 2021.

[123] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”
2009.
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