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Spatial transcriptomics is a rapidly
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standardized tools for analyzing high-

resolution experiments, leading many

groups to write their own in-house tools.

To address this, Cisar et al. have

developed PIPEFISH, a semi-automated

and generalizable pipeline for performing

transcript annotation for FISH-based

spatial transcriptomics.
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SUMMARY
High-throughput spatial transcriptomics has emerged as a powerful tool for investigating the spatial distribu-
tion ofmRNA expression and its effects on cellular function. There is a lack of standardized tools for analyzing
spatial transcriptomics data, leading many groups to write their own in-house tools that are often poorly
documented and not generalizable. To address this, we have expanded and improved the starfish library
and used those tools to create PIPEFISH, a semi-automated and generalizable pipeline that performs tran-
script annotation for fluorescence in situ hybridization (FISH)-based spatial transcriptomics. We used this
pipeline to annotate transcript locations from three real datasets from three different common types of
FISH image-based experiments, MERFISH, seqFISH, and targeted in situ sequencing (ISS), and verified
that the results were high quality using the internal quality metrics of the pipeline and also a comparison
with an orthogonal method of measuring RNA expression. PIPEFISH is a publicly available and open-source
tool.
INTRODUCTION

Development of single-cell RNA sequencing (scRNA-seq) over

the past decade has allowed researchers to probe the heteroge-

neous nature of real tissue by characterizing the transcriptome of

individual cells. This has led to the discovery of many new cell

types and has enhanced our understanding of the mechanisms

of disease.1 However, in the process of separating single cells

from each other so that their transcriptomes can be sequenced

individually, the spatial context of each cell and the location of

each transcript within cells, both of which contain important bio-

logical information, are lost. Spatially resolved transcriptomics

methods can be used to characterize transcriptomes on a sin-

gle-cell level such that the spatial context of each transcript

and cell is also recovered. This spatial information is incredibly

useful biomedically, as many diseases can be characterized by

abnormal spatial patterns,2 and in developmental biology, where

many vital and early processes are driven by spatial relationships

between different biological factors3 and defects in their spatial

distributions can have serious consequences for the developing

organism.

Named as Nature’s ‘‘Method of the Year’’ in 2020,4 spatially

resolved transcriptomics is becoming increasingly prevalent in

new published research after the first multiplexed methods were

demonstrated in themid 2010s,5,6 with newmethods and discov-

eries being released at an ever increasing pace. The earliest

spatial transcriptomics methods were based on fluorescence in

situhybridization (FISH)probeswithspecificmRNAtargets,which
Cel
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could then be imaged with a microscope.7 These early methods

were very low throughput, only targeting a handful of genes,8

but more recent advances inmultiplexing thesemethods have al-

lowed for nearly whole-transcriptome-level targeting. Exposing

samples to many sequential rounds of hybridization with different

sets of FISH probes, called seqFISH,9 was used to go from a few

dozen target genes to hundreds and has been shown to be effec-

tive in both cell cultures10 and in tissue samples.11 A newer

version, seqFISH+,12 has shown that it is possible to characterize

the expression of over 10,000 different mRNA targets simulta-

neously. A similar approach is used in MERFISH but with more

advanced built-in error correction abilities, allowing for increased

accuracy of results.13 Another in situ imaging-based technique,

called in situ sequencing (ISS), takes advantage of short-read

sequencing technology to image the location of mRNA targets

as they are sequenced using traditional sequencing-by-synthesis

technology.5 Experiments based on this method have been able

to generate spatial maps of breast cancer tumors that could be

useful in clinical diagnostics of patients with cancer, leading to

improved patient outcomes.14 Advances in ISS methods have

led to increased throughput and accuracy.15

As these spatial transcriptomics methods further improve to

become higher resolution and throughput while also becoming

less complex to perform, the number of researchers who wish

to use them will also increase. Thus, it is also important to

have available standardized, open-source methods for process-

ing and analysis of the results from these spatial methods for the

purpose of reproducibility and easy comparison of results
l Genomics 3, 100384, September 13, 2023 ª 2023 The Authors. 1
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Figure 1. Overall schematic of processing pipeline

The workflow divides the processing into multiple discrete steps. (1) Raw images are optionally sorted into pseudorounds and pseudochannels and then

converted to the standardized SpaceTx format (STAR Methods). (2) Images undergo pre-processing such as registration, white tophat filtering, high-pass and

low-pass Gaussian filters, and histogrammatching. (3) Transcripts are identified within each image and listed in a table with (x,y,z) coordinate information. (4) Cell

boundaries are identified and transcripts are assigned a cell ID number. (5) QCmetrics for the experiment results and processing are calculated from the decoded

output.
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between different research groups. Much of the analysis done

for published research relies on in-house code with little docu-

mentation, making the adoption of these experiments difficult

and time consuming. Existence of publicly available, open-

source computational tools for analysis of spatial data will

make these types of experiments more accessible for labs that

wish to perform them, facilitating the generation of a larger

body of spatial data.

Although some current sequencing-based spatial transcrip-

tomics methods have open-source libraries16,17 or bundled tool-

kits18 available, FISH-based methods have significantly fewer

options at their disposal.19 Experimental apparatus must usually

be assembled in-house, and most labs write their own analysis

code. Written by the Chan-Zuckerberg Institute, starfish20 is an

open-source Python library containing methods and data types

for the processing and analysis of FISH-based spatial imaging

results. It is capable of taking raw image files and outputting de-

coded results detailing the spatial location of each transcript,

which cell it is located in, and where that cell is located in the

original image. These results can then be used in downstream

tools such as squidPy21 or stLearn.22 While useful, starfish is

lacking in several different areas, including requiring a large num-

ber of input parameters to carry out a full analysis, having only

several basic image pre-processing tools, lacking an adequate

seqFISH decoding algorithm, and the absence of quality control

metrics to determine the significance of the results.
2 Cell Genomics 3, 100384, September 13, 2023
We have created a universal spatial transcriptomics pipeline

for FISH-based methods called PIPEFISH using the CWL (Com-

monWorkflow Language) framework and an improved version of

the starfish package that includes a novel seqFISH decoding

method and PoSTcode23 as an ISS decoding option. PIPEFISH

organizes the tools available in our custom starfish module into

an ordered pipeline that can take raw image data from the

most popular FISH-based methods and extract spatially anno-

tated mRNA transcript counts from them. We have also devel-

oped a number of quality control metrics that can be used to

assess the performance of the pipeline results. Using the pipe-

line, we found spatially annotated transcripts from three different

in situ image datasets, seqFISH of amouse embryo, MERFISH of

humanU2-OS cells, and targeted ISS in amouse brain, and used

both the internal QC (quality control) metrics and an external

metric to show that our results are high quality.

RESULTS

A general SpaceTx pipeline
We have developed PIPEFISH, a general pipeline to extract tran-

script locations from the raw results of a FISH experiment (Fig-

ure 1). Input can be accepted in many forms so long as images

are validly encoded tiffs and a codebook describing the ex-

pected transcripts is provided. The codebook is expected to

have transcript names and their paired ‘‘barcodes,’’, which is
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the list of imaging round and color channel combinations where

the transcript is expected to fluoresce. Additional information

can be provided in a configuration json file with experimental

design details, such as the hamming distance between barco-

des if the experiment was designed such that incomplete barc-

odes can be recovered during decoding.

The configuration json file can also include parameters for

running image processing, such as detailing which auxiliary views

(if any) shouldbeused for image registrationorsubtracted fromthe

primary views as a background. Other tunable parameters for im-

age processing, such as the kernel radius for rolling ball back-

ground subtraction or a white tophat filter, can also be specified.

There are two primary types of image decoding: pixel based

and spot based. The pixel-based method treats each intensity

at a given (x,y,z) location as a value in a vector across all rounds

and channels and then assigns the barcode (if any) most likely to

match that vector. The spot-based method first identifies spots

in the image as local intensity peaks and then applies one of

several ‘‘decoding’’ methods to predict which spot locations

correspond to transcripts.

Transcripts can then be assigned cell IDs by applying a seg-

mentation mask. There are naive methods included to generate

a mask from a provided auxiliary view, using thresholding and

watershed based approaches or using the neural-network-

based CellPose segmentation tool.24 If using CellPose, the user

can choose one of the pre-trained models offered by CellPose

or they can use their own custom model. External masks, such

as those produced by Fiji or Ilastik, can also be imported.

Should troubleshooting of an individual step be needed, the

pipeline has been configured to allow for each step to be run indi-

vidually from prior output and the same json configuration file.

We hope to address the needs of all FISH experiments in this

comprehensive and simple-to-use pipeline.

An improved seqFISH decoder
We found that starfish decoding of seqFISH spots using star-

fish’s decoding methods consistently produced far fewer

mRNA targets than expected, which can reduce the accuracy

of many downstream analyses. This is a result of the starfish’s

seqFISH decoders requiring that spots must be at least mutual

nearest neighbors of each other to be connected into a barcode,

which is very sensitive to spot drift, a common problem in seq-

FISH experiments with high numbers of hybridizations. To

address this, we developed the CheckAll decoder, which con-

siders all possible spot combinations that could form barcodes

and chooses the best non-overlapping set (Figure S1).

The CheckAll decoder checks all possible barcodes that could

be formed from the given spot set and chooses those most likely

to represent true mRNA targets (STAR Methods). It is based on

the method used by the original seqFISH authors9 but features

some improvements and an additional option that allows for

adjustment of the precision/recall tradeoff. This ‘‘mode’’ param-

eter can take three different values and controls this tradeoff by

setting several parameters that are not under user control, with

high accuracymode resulting in higher precision but lower recall,

low accuracy mode having lower precision but higher recall, and

themedium accuracymode falling somewhere in between. Also,

unlike the current starfish decoders, the CheckAll decoder is
capable of decoding error-corrected barcodes. If each barcode

used has a hamming distance of at least two from every other

code, they can be uniquely identified even without a complete

barcode. These error-corrected transcripts foundwith an incom-

plete barcode are less accurate (more prone to false positives)

than those decoded with complete barcodes but can signifi-

cantly increase recall if that is preferred.

QC metrics
In order to provide qualitative confidence in the results from this

pipeline, we defined a set of internal QC metrics that can be

applied to the vast majority of experiment types. These QC re-

sults are automatically generated during a pipeline run and pro-

vide a variety of statistics and graphs for each provided field of

view (Figures S2 and S3). Some of these metrics rely on ‘‘off-

target’’ barcodes that do not correspond to actual experimental

probes included; these can be added to the codebook manually

or can be inserted automatically during the pipeline’s initial con-

version step. Off-target barcodes are treated identically to

normal barcodes during decoding and are regarded as false

positives in theQC step, something that has been experimentally

verified to be functionally identical to including false positive

probes that do not match any transcripts.13 We have found

that these off-target-based metrics are particularly useful for

directly comparing sets of results (Figure S2), as the false posi-

tive rates and the threshold of true decoded barcodes that can

be delineated from false positive barcodes give a quantifiable

point of comparison between datasets. Transcripts identified

through the error correction method, where the barcode does

not exactly match a known target and is still close enough to

be uniquely identified, tend to be more prone to false positives

than non-corrected transcripts. Because of this, we show results

both with and without error-corrected barcodes in the relevant

QC figures to allow users to determine whether they would like

to use the error-corrected transcripts in their analyses.

By comparing these QC results across different pipeline pa-

rameters, it is possible to determine which set of results is the

highest quality. Some of the additional metrics (Figure S3;

STAR Methods) may help to troubleshoot which pipeline stage

needs altered parameters. The inclusion of these metrics to the

pipeline allows for iterative parameter selection to get the best

results possible from a set of input data.

Pipeline performance on real FISH datasets
To show that the tools we have built are capable of obtaining high

quality results from a variety of FISH experiment types, we ran

PIPEFISHonpublicly accessibledata from threedifferent FISHex-

periments, each of a different type: seqFISH of a mouse embryo11

(351 genes), targeted ISS of a mouse brain23 (50 genes), and

MERFISH of human U2-OS cells25 (130 genes). After transcript lo-

cations were obtained, we evaluated QC metrics, using both the

aforementionedmethods internal to PIPEFISH and the orthogonal

methods external to PIPEFISH, to evaluate performance.

Internal quality check

For each dataset, we initially evaluated performance using the in-

ternal QC metrics produced by the pipeline. One set of metrics

that can be useful for all datasets are those that estimate the

background signal through the quantification of off-target
Cell Genomics 3, 100384, September 13, 2023 3



Figure 2. Quality control figures highlighting false positive off-target barcodes from pipeline output across all fields of view of each dataset

(A) Total counts of each barcode. Total count of each barcode colored by barcode type, and error-corrected count shown above non-corrected counts (in orange

or green) where applicable. Proposed minimum barcode count threshold is calculated as the upper end of the 95% confidence interval of a normal distribution

with the mean and standard deviation of the observed off-target tallies. This is calculated for non-corrected barcodes (dashed) and the combination of non-

corrected and corrected barcodes (solid).

(B) Transcript count per cell, with the same color scheme as (A). Median transcript count per cell for ISS, seqFISH, and MERFISH. EC, error corrected; NC, non-

corrected.
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barcodes inserted into the provided codebook. While this

method is beholden to how densely packed the codebook is, it

provides insight into the estimated false positive rate of the

experiment, which single handedly can be criteria to rerun the

experiment. Our results show that true on-target barcodes are

found at a significantly higher frequency than the off-target co-

des (Figure 2), indicating that there are likely to be few false pos-

itive transcripts in these results.
4 Cell Genomics 3, 100384, September 13, 2023
Additionally, we verified that the novel CheckAll decoder we

developed outperforms the native decoders from starfish. We

only compare results from starfish’s NearestNeighbor decoding

method, as the ExactMatchmethod could only find a handful of tar-

gets in our images. Performancewas evaluated using the false bar-

code metric to show that the CheckAll decoder was less prone to

false positiveswhile also findingmoremRNA targets (FigureS4; Ta-

ble 1). The cost for this increase in performance compared to the



Table 1. Summary of CheckAll decoder performance

starfish NN CA - high

CA - high

(% difference) CA - medium

CA - medium

(% difference) CA - low

CA - low

(% difference)

Precision (NC) 0.925 0.965 +4.23 0.927 +0.22 0.896 �3.19

Total on target (NC) 2.36 3 106 4.14 3 106 +54.77 4.91 3 106 +70.15 5.32 3 106 +77.08

Precision (NC + EC) 0.925 0.919 �0.65 0.847 �8.80 0.826 �11.31

Total on target (NC + EC) 2.36 3 106 6.03 3 106 +87.49 8.32 3 106 +111.61 8.65 3 106 +114.26

starfish NN, CA - high, CA - medium, and CA - low columns show precision and total on-target counts for the starfish NearestNeighbor decoder,

CheckAll decoder (high-accuracymode), CheckAll decoder (medium-accuracymode), and CheckAll decoder (low-accuracymode), respectively. Per-

centage difference columns show the performance difference between the starfish NearestNeighbor decoder and the CheckAll decoder for each ac-

curacy mode. The starfish NearestNeighbor decoder is not capable of detecting error-corrected targets, so NC and NC + EC values are identical. NN,

NearestNeighbor; CA, CheckAll; NC, not corrected; EC, error corrected.
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starfish decoders comes in the form of increased run times and

memory requirements. While the starfish decoders are nearly

instantaneous and require very littlememory, theCheckAll decoder

can take much longer and may require more memory to return re-

sults depending on the input (Figure S5). The CheckAll decoder is

capable of taking advantage of Python multiprocessing features in

order tomitigate the long run timesat thecost of additionalmemory.

External quality check

In addition to the internal metrics shown, we validated the results

given by the pipeline using a form of orthogonal validation for

each dataset. For the mouse embryo seqFISH dataset, in addi-

tion to the 351 genes measured by seqFISH, there were an addi-

tional 36 genes imaged by smFISH that were used to verify pre-

dicted expression of genes not measured by seqFISH in the

original study.11 We used the Python package Tangram26 to pre-

dict expression per cell for the 36 genes measured by smFISH

using seqFISH counts from the pipeline and cell-type-annotated

scRNA-seq counts from the Mouse Gastrulation Atlas27 and

compared this with the actual expression measured by smFISH

in the same cells (Figure 3A; STAR Methods). To achieve high-

accuracy matching and prediction of unmeasured genes, the

seqFISH counts must be accurate, and so we can use the accu-

racy of the predicted expression, using the smFISH counts as a

truth set, as a quality metric to assess the performance of the

pipeline at identifying transcripts in the images. The average

Pearson correlation between the predicted and measured

counts for the 36 smFISHgeneswas found to be 0.49 (Figure S6).

The large range of correlation coefficients (0.12–0.85) is likely a

result of differing image qualities between the smFISH genes.

As the smFISH images are not multiplexed, they are very sensi-

tive to the choice of threshold when identifying spots in the im-

ages. Thresholds for each gene were determined by plotting

the number of spots found at a large range of thresholds and

calculating the elbow point of the curve. The area under the

curve (AUC) can also be used as a rough estimate of how

much the intensities of the true fluorescent signal and the noise

in an image overlap, and large overlaps would make separating

signal from noise more difficult and less accurate. We found that

the correlation between predicted and smFISH counts to be

fairly strongly correlated with the AUC of the spot count vs.

threshold curve with a Pearson correlation of �0.67 (Figure S7),

indicating that the genes where performance is low are likely a

result of poor separation between signal and noise intensities

in that image and not poor-quality seqFISH counts.
As the MERFISH images used here were of a cell culture of a

single cell type, we could directly compare the average expres-

sion per cell from the pipeline with RNA expression values ob-

tained using some other standard method. We obtained FPKM

measurements calculated from bulk RNA-seq experiments of

the same cell type as used in the MERFISH images25 (personal

communication, J. Moffitt) and compared these values with the

average expression of the cells in the MERFISH images and

found them to be highly correlated with a Pearson correlation co-

efficient of 0.85 (STAR Methods) (Figure 3B), indicating that the

counts the pipeline produced are similar to those obtained by

bulk RNA-seq.

There exist abundant expression maps of the mouse brain,

which allowed us to compare the pipeline results on the targeted

ISS images with a trusted reference. We downloaded single

gene expression maps from similar sections of mouse brains

from the Allen Brain Atlas and found that the spatial distribution

of transcripts from the pipeline and the reference atlas images

matched for most genes (STAR Methods; Figures 3C and S8).

Out of the fifty genes probed, thirty-four had coronal section im-

ages in the Allen Brain Atlas Mouse Brain reference, and nearly

all of them showed a strong match between the spatial expres-

sion patterns found by our pipeline and in the reference data.

DISCUSSION

As spatial genomics continues to become more popular as an

investigation tool, there will be a growing need for computational

tools capable of extracting useful information from the raw image

data generated by these methods. We have developed this gen-

eral and customizable pipeline for those who wish to analyze

FISH-based spatial transcriptomics images as part of their

research. The pipeline’s versatility allows it to be used for any

experiment involving targeted barcoding of transcripts and in-

cludes options for pre-processing image data, a novel seqFISH

decoder, and automated quality metrics that can be used to

assess performance. Using real data from three different in situ

methods and a variety of qualitymetrics,we showed that the pipe-

line can be used to obtain high accuracy results that can then be

used in a number of downstream applications.

The pipeline is currently capable of obtaining annotated tran-

script locations from raw images with high fidelity but all subse-

quent analysis is focused on assessing the quality of the results

and not on answering any specific biological question. A future
Cell Genomics 3, 100384, September 13, 2023 5



Figure 3. External validation of pipeline results

(A) Comparison of predicted gene expression by Tangram with measured expression of the same gene by smFISH (top six correlating genes shown). Each

column corresponds to a gene, with the Tangram predicted expression above and the measured smFISH expression below. Pearson correlation coefficient is

printed below each.

(B) Correlation of MERFISH counts with bulk RNA-seq FPKM values.

(C) Comparison of spatial distribution of four genes found in the targeted ISS dataset by the pipeline with reference expression of the same genes in a similar brain

slice from the Allen Brain Atlas. In the top row, each yellow dot represents a transcript, while the image underneath is the DAPI stain of the sample; in the bottom

row, blue dots represent low expression, while more red dots represent higher expression (no color map provided by Allen Brain Atlas), while the image un-

derneath is the Nissl stain of the sample.
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version of the pipeline may include options for downstream ana-

lyses that could be automatically performed after the transcripts

have been decoded and assigned to cells. This could include

imputation of missing gene expression counts based on orthog-

onal scRNA-seq data, cell-type assignment, identification of

spatially variable genes, cell neighborhood/communication ef-

fects, and general spatial statistics on both the gene and cell level.

There already exists a numberof tools for anyof these analyses, so

this would involve testing each to find those worth including. This

would make the pipeline an end-to-end workflow for FISH-based

spatial transcriptomics analysis, streamlining what is typically a

difficult and confusing process.

Here, we have developed amultistage pipeline composed of a

series of carefully chosen image-processing algorithms. In the

future, it may be possible to use curated results of this pipeline
6 Cell Genomics 3, 100384, September 13, 2023
to train a neural-network- or similar machine-learning-based

approach to predict the presence of transcripts from FISH im-

ages in a single pass or with much less pre-processing. Such a

generalized learning approach could integrate additional sour-

ces of information to make more accurate predictions, such as

cellular location and neighborhood, or to simultaneously predict

cell segmentation and could potentially be made computation-

ally efficient through the use of hardware acceleration. We there-

fore view this work as an important prerequisite to future, more

generalized inference on this rich source of data.

Limitations of the study
PIPEFISH can be used to significantly simplify the process of

identifying transcripts in multiplexed FISH images. However,

there are non-insignificant hard-drive and RAM requirements in
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order to successfully run the pipeline. As each step is run on all

FOVs (fields of view) before proceeding to the next step, the

output for each step must be saved. Each individual image tile

will be duplicated up to three times in the pseudosort (optional),

conversion to SpaceTx format, and pre-processing steps, result-

ing in a large cost to hard-drive space, as multiplexed FISH im-

ages can already be quite large. Each FOV could instead be run

through the entire pipeline before moving on to the next FOV,

only saving the final results, in order to reduce this storage

requirement, though this would make it impossible to restart

the pipeline at a specific step during troubleshooting. A future

version of PIPEFISH could include an option to choose between

saving the output from every step and discarding all non-final re-

sults so that the user can choose which option suits their needs

best. In addition to requiring large amounts of hard-drive space,

certain PIPEFISH operations can also be quite RAM intensive,

such as the CheckAll decoder, which can require 30 GB+ RAM

to decode 2.5 million spots (Figure S5D). Also lacking from

PIPEFISH is support for parallelization between FOVs. While

some individual operations in PIPEFISH make use of CPU paral-

lelization, it is currently not possible to processmore than a single

FOV simultaneously. This can result in long run times when there

are a large number of FOVs. Toil28 is a pipeline management sys-

tem that can execute CWL jobs, and a planned update to

PIPEFISH will parallelize the decoding step when run with Toil.
STAR+METHODS
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J., Wilson, V., Göttgens, B., and Marioni, J.C. (2021). Diverse Routes to-

ward Early Somites in the Mouse Embryo. Dev. Cell 56, 141–153.e6.

https://doi.org/10.1016/j.devcel.2020.11.013.

https://doi.org/10.1016/j.ebiom.2019.09.009
https://doi.org/10.1126/science.1250212
https://doi.org/10.1093/bioinformatics/btx211
https://doi.org/10.1093/bioinformatics/btx211
https://doi.org/10.1093/gigascience/giac064
https://doi.org/10.1093/gigascience/giac064
https://doi.org/10.1038/ncomms14049
https://doi.org/10.5281/ZENODO.3758540
https://doi.org/10.5281/ZENODO.3758540
https://doi.org/10.21105/joss.02440
https://doi.org/10.21105/joss.02440
https://doi.org/10.1038/s41592-021-01358-2
https://doi.org/10.1101/2020.05.31.125658
https://doi.org/10.1101/2021.10.12.464086
https://doi.org/10.1038/s41592-022-01663-4
https://doi.org/10.1038/s41592-022-01663-4
https://doi.org/10.1073/pnas.1612826113
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41592-021-01264-7
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1038/s41586-019-0933-9
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/s41592-022-01409-2
https://doi.org/10.1038/nmeth.4500
https://doi.org/10.1038/nmeth.4500
https://doi.org/10.1261/rna.079073.121
https://doi.org/10.1261/rna.079073.121
https://doi.org/10.1016/j.devcel.2020.11.013


Article
ll

OPEN ACCESS
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Example Inputs for PIPEFISH Spatial

Transcriptomics Pipeline Tool

This paper https://doi.org/10.5281/zenodo.7909295

in situsequencing (ISS) of a whole coronal

slice of a mouse brain

Garatic, M. et al. https://doi.org/10.1101/2021.10.12.

464086

MERFISH of human U2-OS cell cultures Moffitt, J.R. et al. https://doi.org/10.1073/pnas.1612826113

seqFISH of a developing mouse embryo Lohoff, T. et al. https://doi.org/10.1038/

s41587-021-01006-2

Software and algorithms

PIPEFISH, the HuBMAP Spatial

Transcriptomics Pipeline

This Paper https://doi.org/10.5281/zenodo.8170106

https://github.com/hubmapconsortium/

spatial-transcriptomics-pipeline
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Lead contact
Further information and requests for data should be directed to and will be fulfilled by the lead contact, Cecilia Cisar (ccisar@
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Materials availability
No materials were used in this study.

Data and code availability
d PIPEFISH, the original code used to generate these results, is publicly available on Github as of the date of publication. URL

provided in the key resources table.

d Example data from each of the three datasets in this paper (seqFISH, ISS, and MERFISH) plus other necessary pipeline input

files have been deposited at Zenodo. DOI is listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Conversion to SpaceTx format
While there are a variety of published smFISH-based spatial transcriptomics assays, few have seen use outside their institution of

origin.29 This has resulted in the creation of many in-house codebases, oftentimes poorly documented and not understood by those

outside that institution. To address this need, starfish was created as a universal FISH-analysis tool by offering a universal set of tools

to format and extract information from all FISH experiment types. We have taken this one step further by simplifying the process of

converting any lab’s data into the format natively used by starfish, SpaceTx, by defining a small list of intuitive experiment-specific

pipeline parameters that are used to parse the input data files. Image files with any number of dimensions and sorted in any way

across folders can be parsed and formatted, so long as parameters are consistent between all files. Auxiliary views of images

with non-FISH information, such as a DAPI view, can also be included in the conversion for downstream analysis, such as image

registration or segmentation.

In some experiment types, it is common to use a ‘pseudocolor’ and ‘pseudoround’ indexing scheme to more efficiently pack barc-

odes into the experimentally available dye colors. This can offer computational advantages when computing the hamming distance

between barcodes, as it can be assumed that there is only one valid pseudocolor channel among the imaging rounds and channels

that comprise it.30 By providing input parameters that describe how the experimental imaging rounds and channels correspond to the

pseudocolors and pseudorounds used to define barcodes, the pipeline can automatically sort image channels into the desired pseu-

docolor scheme.
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CheckAll decoder
Starting from a set of spots of shape (round, channel, z, y, x), a codebook of barcodes of shape (round, channel)with no off rounds in

any barcode, and a search radius value, the spots are connected into a non-overlapping set of barcodes that each match a barcode

in the codebook. Two slightly different algorithms are used to balance the precision and recall. They share the same steps except the

order of two of the steps are switched between the different versions. The following is for the "filter-first" version.

1. For each spot in each round, find all spot neighbors in other rounds that are within the search radius.

2. For each spot in each round, build all possible full length barcodes based on the channel labels of each spot’s neighbors and

itself.

3. Choose the "best" barcode of each spot’s possible barcodes by calculating a score that is based on minimizing the spatial

variance and maximizing the intensities of the spots in the barcode (shown below). Each spot is assigned a "best" barcode

in this way.
Score = Q+Sv � C
Q = � logð1 = ð1 + ðRoundNum � QualSumÞÞ
RoundNum = Number of rounds in experiment
QualSum = Sum of normalized intensity values of all spots in barcode
Sv = � logð1 = 1+ðSi = x;y;z varðcoordsiÞÞÞ
coordsi = Vector of spot coordinate values for all spots in the ith dimension
C = constant ð2 hereÞ

4. Drop "best" barcodes that don’t have a matching target in the codebook.

5. Only keep barcodes/targets that were found as "best" using at least n of the spots that make each up (n is determined by the

mode parameter).

6. Find an approximate maximum independent set of the spot combinations so no two barcodes use the same spot.
e2 C
a. A graph is created where each node is a combination of spots that make up a decoded barcode and edges connect nodes

that share at least one spot.

b. Nodes are eliminated from the graph in order of highest number of edges to lowest, with ties being broken by choosing the

barcode with the higher score (described in step three), until there are no longer any edges in the graph.
The other method, called "decode-first", is the same except steps 3 and 4 are switched so that the minimum scoring barcode is

chosen from the set of possible codes that have a match to the codebook. The filter-first method will have lower recall but higher

precision while the other method will have higher recall but at the cost of lower precision.

Decoding is run inmultiple stages and the parameters change each stage to become less strict as it progresses. The high accuracy

algorithm (filter-first) is always run first followed by the lower accuracy method (decode-first), each with slightly different parameters

based on the choice of "mode" parameter. After each decoding, the spots found to be in decoded barcodes are removed from the

original set of spots before they are decoded again with a new set of parameters. In order to simplify the number of parameters to

choose from, we have sorted them into three sets of presets ("high", "medium", or "low" accuracy) determined by the "mode" de-

coding parameter.

Decoding is also done multiple times at different search radius values that start at 0 and increase incrementally until they reach the

specified search radius. This allows high confidence barcodes to be called first which makes things simpler in subsequent stages as

there are less spots to choose from.
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If the error_rounds parameter is set to 1, after running all decodings for barcodes that exactly match the codebook, another set of

decodings will be run to find barcodes that are missing a spot in exactly one round. If the codes in the codebook all have a hamming

distance of at least 2 from all other codes, each can still be uniquely identified using a partial code with a single round dropped. Barc-

odes decoded with a error-corrected code like this are inherently less accurate and so an extra column was added to the final output

table that labels each decoded target with the number of rounds that was used to decode it, allowing you to easily separate these less

accurate codes from your high accuracy set if you wish.

Quality control metrics
QCmetrics are automatically computed in the pipeline given the output from prior steps. The values are both calculated on a per-FOV

basis and for all combined FOVs, as described below.

Blank-based metrics (Figure 2) are key to understanding the accuracy of a decoded dataset. The values are calculated as follows.

1. Relative abundance of on-targets vs. off-targets: The total number of transcripts that match a given target are tallied. The sam-

ple average and standard deviation are calculated from the counts of off-target barcodes, and a two-tailed 95% confidence

interval for the normal distribution with the same average and standard deviation are used to calculate the proposed cutoff for

on-target barcodes. This CI is performed for both the uncorrected barcodes, and again for the combined corrected and un-

corrected barcodes.

2. False positive rate: Optionally during the conversion process, off-target barcodes are inserted into the codebook that do not

overlap within a specified hamming distance of existing codes. On a cell by cell basis, the count of transcripts and off-targets

are tallied, then the FPR is calculated as off � targets
off � targets+transcripts.

Additional spot and transcript metrics can provide insight into the reason for low precision or recall (Figure S3). Spot-basedmetrics

are not computed when the primary spot decoder is the PixelSpotDetector. Spots with no cell_id assigned from the segmentation

mask will be filtered before these QC values are calculated.

Most transcript-basedmetrics are run on all datasets, regardless of which decodingmethodwas used earlier in the pipeline. These

statistics can offer more specific insight into how well a given dataset has been processed.

3. Spots per round: The number of spots in each round of the data is tallied. The standard deviation and skew of these counts are

taken. If this is found to be increasing or decreasing across rounds, there is likely experimental error in the time between the

collected images.

4. Spots per channel: The number of spots in each channel of the data is tallied. The standard deviation and skew of these counts

are taken. If this is found to be significantly low or high in a particular channel, there may be issues with that fluorophore or with

the channel normalization during image processing.

5. Transcript source spot counts across rounds: The rounds that were used to decode each transcript are inferred and then tal-

lied. The standard deviation and skew of these counts are taken. If the codebook is redundant and spots are absent specific

rounds, this could point to that particular round consistently being omitted due to experimental or processing issues.

6. Transcript source spot counts across channels: The channels that were used to decode each transcript are inferred and then

tallied. The standard deviation and skew of these counts are taken. If the spots across channels are evenly distributed and the

spots used for decoding are not, then this points to a problem in the decoding method. Alternatively, if the codebook is redun-

dant, this could point to a particular channel consistently being omitted due to experimental or processing issues.

The above four metrics are also directly compared to each other in Figure S3A, where the normalized counts for both transcripts

sources and spots are displayed on the same plot together.

7. Transcript count per cell: The number of transcripts assigned to each cell id are tallied. The cells with a count lower than

median � 1:53ðthird quartile � first quartileÞ are suggested to be removed from analysis.

8. Spatial homogeneity of spots across each FOV:
a. The AstroPy ‘RipleyKEstimator’ is used, configured to match image size.

b. A total of 10 radii, r,i are evaluated on a range of 0 to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
image area

2

q
.

c. The estimator is applied to both the spot data and a poisson process for each r.

d. A 95%confidence interval for the null hypothesis (random poisson process) is generated by theMonte-Carlo method, sam-

pling from a uniform random distribution over the same FOV size with the same number of spots.
If the spots are indeed non-random, the data should have a higher score (and thus be more clustered) than the 95% confidence

interval for most calculated radii.

The following metrics are calculated automatically, but do not have a corresponding graph in the output pdf; they are exclusively in

the human-readable.yml output.

9. Spots per barcode: Divide the total number of spots by the length of the codebook.
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10. Fraction of spots used for transcripts: If a spot-based method was used, the number of spots that were used to decode the

transcripts is taken. This is then divided by the total tally of spots found. Only applicable when an experiment has a redundant

codebook. If barcodes are consistently using error correction, this suggests that either experimental protocol or processing/

decoding parameters could be improved.

Addition of noise for QC comparison
Multiplicative Gaussian noise was added to images to simulate images acquired with a shorter exposure time in Figure S2. Noise was

added as output = input + n � input, where n is a Gaussian random variable with mean=1.5 and variance=3.0.

Pipeline parameters used for results
The individual parameter values used for each of the three example datasets to obtain the results shown here are specified in the

metadata.json files found with the example data (Code and Data Availability).

smFISH processing
smFISH imageswere corrected by subtracting dark-field images from each, applying aGaussian high pass filter with a sigma value of

3, followed by deconvolution by the Richardson-Lucy method using a Gaussian point-spread-function with a sigma value of 3 for 15

iterations. Transcript locations were then identified using the detect_spots function from the FISH-quant Python package31 using a

voxel size of (4000, 110, 110) and a radius of 500. To calculate an optimal threshold for each transcript, spot finding was done in all

FOVs at a range of threshold values and the total number of spots was plotted at each threshold. The elbow point of this curve was

used as the final threshold for each transcript. The results were combined into a single expression table for all cells across all tiles for

the 36 smFISH genes. The E8.5 mouse embryo 10x Genomics scRNA-seq data was downloaded using the MouseGastrulationData

Bioconductor package. Cell type assignments for somitic and paraxial mesoderm types were amended with predictions from Gui-

bentif et al.32 (personal communication) and blood subtypes (erythroid 1, 2, and 3 and blood progenitors 1 and 2) were merged into

two major groups. Cell types with less than 25 cells were then dropped. We then joined the seqFISH data expression matrices for all

forty tiles, dropping any cells with fewer than 10 total transcripts or 5 unique transcripts.

The Tangram functionsmap_cells_to_space and project_geneswere used in ‘‘clusters’’ mode to predict full genome expression in

the seqFISH cells using the scRNA-seq counts. The predicted expression for the 36 genes measured by smFISH in each cell was

compared to measured expression and the mean Pearson correlation coefficient calculated across all cells.

Spot count curve as a noise metric
To show that the smFISH images used for the seqFISH external QC had varying levels of mixing between signal and noise intensities,

we calculated the area under the curve of the normalized spot count vs. threshold curve. For each gene, the threshold and total count

values were normalized by subtracting the respectiveminimum value from each and dividing by themaximum value (after subtracting

the minimum). The area under the curve was then calculated using Simpson’s method (scipy.integrate).

Comparison of MERFISH results to bulk RNA-seq
The average count of each gene measured by MERFISH per cell was calculated and compared against the FPKM of the same gene

measured by bulk RNA-seq in a sample of the same cell type. Bulk RNA-seq FPKMs were obtained from the original MERFISH au-

thors (Jeffrey Moffit, personal communication). The Pearson correlation coefficient of the MERFISH and bulk RNA-seq FPKMs was

then calculated and reported.

Comparison of ISS results to reference atlas
Pipeline ISS images were created by setting transcript pixel locations to maximum brightness, dilating for 3 iterations (for visibility)

and then adding the result to the DAPI image for each transcript. Atlas images were obtained from https://mouse.brain-map.org/ for

each transcript that had a coronal section present in the database. The slice used was chosen by identifying the slice in the atlas

images whose Nissl stain was most similar in morphology to the ISS dataset’s DAPI stain (both nucleus stains). The ‘‘Expression’’

and ‘‘ISH’’ image for that atlas slice were downloaded and merged and then cropped and rotated to match the pipeline ISS image.
e4 Cell Genomics 3, 100384, September 13, 2023
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