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A B S T R A C T

Aluminum (Al) is a very common component of the earth’s mineral composition. It is not essential

element for life and is a constituent of rather inert minerals. Therefore, it has often been regarded as not

presenting a significant health hazard. As a result, aluminum-containing agents been used in the

preparation of many foodstuffs processing steps and also in elimination of particulate organic matter

from water. More recently, the reduced pH of bodies of water resulting from acid rain has led to

mobilization of aluminum-containing minerals into a more soluble form, and these have thus entered

residential drinking water resources. By this means, the body burden of aluminum in humans has

increased. Epidemiological and experimental findings indicate that aluminum is not as harmless as was

previously thought, and that aluminum may contribute to the inception and advancement of

Alzheimer’s disease. Epidemiological data is reinforced by indications that aluminum exposure can

result in excess inflammatory activity within the brain. Activation of the immune system not initiated by

an infectious agent, typifies the aging brain and is even more augmented in several neurodegenerative

diseases. The origin of most age-related neurological disorders is generally not known but as they are

largely not of genetic derivation, their development is likely triggered by unknown environmental

factors. There is a growing and consistent body of evidence that points to aluminum as being one such

significant influence. Evidence is presented that reinforces the likelihood that aluminum is a factor

speeding the rate of brain aging. Such acceleration would inevitably enlarge the incidence of age-related

neurological diseases.

� 2015 Elsevier Inc. All rights reserved.
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1. Aluminum in the Environment

Aluminum (Al) is the third most abundant element in the
earth’s crust (Priest et al., 1988). It was only in 1825 that this metal
was isolated in its elemental metallic form by the Danish physicist
Hans Oersted (Sigel and Sigel, 1988). Al products have many
modern applications. Adding aluminum sulfate and lime to water
causes aluminum hydroxide formation, which leads to coagulation
of pollutants. This procedure is used widely for water clarification
in reservoirs. Al-containing materials are also commonly found in
foods. These include emulsifying agents in processed cheese,
firming agents in pickles, baking powder, and several food
colorings. These aluminum-based colors also have cosmetic
applications. Infant formulae can have a significant aluminum
content (Dabeka et al., 2011; Burrell and Exley, 2010). Concentra-
tions as high as 1.8 mM Al can be reached in the fruit juice resulting
when acidic fruit is boiled in aluminum cookware (Fimreite et al.,
1997). Drinking water has variable Al content. Several cities have
reported concentrations as high as 0.4–1 mg/L of aluminum in
their water. Although the health effects of aluminum on humans
are not definitive, the Joint Food and Agriculture Organization/
World Health Organization Expert Committee on Food Additives
lowered the allowable intake of aluminum in 2006 – from 7 mg/kg
body weight to 1 mg/kg body weight per week. That is equivalent
to 63 mg of aluminum per week for a 140-pound adult. The average
commercial muffin alone has been reported to contain 28 mg of
aluminum.

Many medicines contain Al salts, notably aluminum oxide is
used as an effective adjuvant in vaccines in order to promote
immune activation. Antiperspirants, buffered aspirin and antacids
commonly contain Al (300–600 mg/tablet).

The most common form of human exposure to Al is by way of
the gastrointestinal tract. The rate of absorption here is around
0.2% (Priest et al., 1988). Once Al salts are transferred to the vascular
system in the blood, most of the metal is bound to transferrin (Harris
et al., 2003). Al3+ can enter the nervous system by transport
across the blood–brain barrier using receptor-mediated endocytosis
of transferrin. Approximately 0.005% of the aluminum-protein
complexes enter the brain by this means (Yokel et al., 2001).

Al in the environment was originally considered to be
innocuous, because Al salts form monomeric hydroxy compounds
in water which start to form increasingly high molecular weight
complexes as the solution ages. Because of the formation of these
colloidal insoluble Al species, its absorption was thought to be
restricted. However, Al compounds are known to be toxic to both
plants (Kochian and Jones, 1997) and animals (Sparling and
Campbell, 1997) and there has been an increased disquiet
concerning the metal’s potentially adverse effects on human
health (LaZerte et al., 1997). While concerns about Al toxicity to
humans have been expressed for over 80 years, the medical
establishment has continuously tended to discount them. For
example an article in the Journal of the American Medical
Association in 1935 stated, ‘‘Propaganda as to possible dangers
resulting from the use of aluminum cooking vessels is so persistent
that one suspects ulterior motives in its background’’ (Monier-
Williams, 1935).

The increasing prevalence of acid rain as a result of fossil fuel
combustion can lead to the liberation of larger amounts of Al salts
from insoluble minerals, resulting in greater bioavailability
(Smith, 1996).

2. Transitory exposure to high levels of aluminum can result in
neurological disturbance

The possibility of Al salts constituting a risk factor in enhancing
the likelihood of neurological disease has been originally raised by
a number of clinical studies. Thus, hemodialysis of patients with
severe kidney disease has led to toxic levels of Al in the blood,
from exposure to aluminum in dialysis fluid and from the
administration of high levels of aluminum-containing phosphate
binders among patients who cannot excrete it. The resulting
aluminum-induced dialysis encephalopathy following hemodial-
ysis is accompanied by elevated levels of Al in the brain (Russo
et al., 1992) and ingestion of Al salts can lead to the deposition of
insoluble Al-containing materials within the brain (Bowdler et al.,
1979). Clinical status is improved by therapeutic use of an Al
chelator, desferrioxamine (Erasmus et al., 1995). Blood concentra-
tions of Al as high as 7 mM, have been found in dialysis patients
even in the absence of overt dementia (Altmann et al., 1987).
Aluminum-induced encephalopathy also occurs in patients with
kidney failure, treated with bladder irrigation using 1% alum
(Phelps et al., 1999). A form of encephalopathy has been reported
in workers in the aluminum industry, and this is characterized by
intellectual deficits, loss of muscle control, tremor and spinocer-
ebellar degeneration (Polizzi et al., 2002). A typical report concerns
a chronic renal failure patient, who was treated phosphate-binding
Al-hydroxy gels for a prolonged period. And then developed Al-
induced encephalopathy nine months prior to death. Post-mortem
neuropathology showed pronounced proliferation of microglia and
astrocytes in specific brain areas (Shirabe et al., 2002).

Abnormal neurological signs have also been seen in some
patients receiving intramuscular injections of Al-containing
vaccines (Couette et al., 2009). In consequence, the World Health
Organization (WHO) Vaccine Safety Advisory Committee has
recognized that there may be a subset of predisposed individuals
who may be sensitive to Al adjuvants (Authier et al., 2001). Overall,
there is good evidence that high levels of aluminum exposure can
have adverse effects on human health.

In the past, inhalation of Al in the form of the powdered oxide
was used as a prophylactic agent against silicotic lung disease of
miners (Crombie et al., 1944). The procedure was described as
beneficial in an animal model of silicosis (Dubois et al., 1988) and
continued despite the conclusion that humans suffering from
silicosis, did not appreciably benefit from Al treatment (Kennedy,
1956). Harmful effects of inhaled Al, especially upon brain
function, were later described (Rifat et al., 1990). More recently,
a major accidental exposure of a rather large population to
excessive amounts of Al occurred in Camelford, U. K. caused by the
accidental release of large amounts of Al sulfate into a nearby
reservoir. The neurological consequences from this mishap are
being studied and there is already evidence of harmful effects on
neurological function in some of the exposed population (Altmann
et al., 1999). Pathological examination of the brain a person who
was exposed to Al at Camelford and later died of an undetermined
neurological condition, disclosed early-onset beta amyloid angio-
pathy in the cerebral cortical and leptomeningeal blood vessels.
High Al concentrations were also present in the more seriously
affected regions of the cortex (Exley and Esiri, 2006).

Correlative changes are never sufficient to irrefutably demon-
strate causation and it has been suggested that that Al entry into
the brain consequent to damage to the blood–brain barrier as a
secondary event. However, dialysis encephalopathy can be treated
with some success using the trivalent metal chelator desferriox-
amine. This indicated that Al is directly neurotoxic (McLachlan
et al., 1991). These results have not been followed up in recent
years, perhaps partly due to the unfavorable side effects of
desferrioxamine treatment that include muscle pain, nausea, and
erythema and visual deficits. There may be a lack of interest by
pharmaceutical companies in a promotion of a drug that is not
patentable. Treatment of aluminum-related bone disease using
desferrioxamine can mobilize Al from deposits in bone, has been
reported to lead to elevated serum Al and to the appearance of



S.C. Bondy / NeuroToxicology 52 (2016) 222–229224
symptoms resembling dialysis dementia (Sherrard et al., 1988).
While desferrioxamine is not a specific Al chelator, a causal
relation between high circulating levels of Al and dementia is
indicated by these reports. Other evidence of the neurotoxicity of
relatively high levels of Al comes from various clinical reports. One
such case resulting in a fatal outcome, implicated aluminum-
containing cements used in resection of an acoustic neuroma
(Reusche et al., 2001).

3. Inflammation is pronounced in the aging brain, and this is
further elevated in several neurodegenerative disorders

Aging of the brain is characteristically attended by increased
levels of inflammation (David et al., 1997; Sharman et al., 2004).
Neuroinflammatory changes become more pronounced during
normal aging in spite of the lack of identifiable immune stimuli
(Sharman et al., 2008; Lucin and Wyss-Coray, 2009). A further
worsening of inflammation appears to contribute to pathogenic
changes associated with many age-related neurodegenerative
disorders, including Alzheimer’s disease (AD), Parkinson’s disease
(PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis
(MS). The activated astrocyte count is elevated in AD and this is
especially pronounced at the loci of senile plaques (Cullen, 1997).
In the hippocampus of AD patients, there is an up-regulation of
expression of pro-inflammatory genes (Colangelo et al., 2002),
together with elevated concentrations of pro-inflammatory
cytokines in brain (Zhao et al., 2003) and cerebrospinal fluid
(Sun et al., 2003).

AD is accompanied by depositions of the toxic amyloid b-
peptide (Ab), produced from amyloid-b precursor protein (AbPP)
by proteolytic processes. The AD brain contains reactive microglia,
producing proinflammatory cytokines and acute phase proteins, in
proximity to Ab-containing neuritic plaques (Mrak et al., 1995;
Styren et al., 1998). Nasally instilled aluminum nanoparticles have
also been show to reach the brain by way of the olfactory tract, and
this leads to activation of both pro- and anti-inflammatory kinases
(Kwon et al., 2013).

Aluminum salts can promote Ab aggregation in vitro (Exley,
1997; Bondy and Truong, 1999; Bolognin et al., 2011), and
treatment of transgenic mice over-expressing AbPP, with Al salts
in the drinking water, leads to oxidative stress, Ab deposition, and
plaque formation in the brain (Pratico et al., 2002). However two
recent studies on Al and the promotion of Alzheimer pathology or
behavior has brought this finding into question (Poirier et al., 2011;
Akiyama et al., 2012). An incipient generalization may be that
aluminum’s behavioral effects are clearest in normal aging animals
while harder to detect in mutant strains of animals that are already
predisposed to plaque formation and memory deficits (Ribes et al.,
2008).

PD is a neurological disease whose hallmarks include abnor-
mally elevated levels of both oxidative and inflammatory events
(Selley, 2005). This disease is also characterized by activation of
microglia activation and the presence of high levels of pro-
inflammatory cytokines (Nagatsu and Sawada, 2005). The use of
non-steroidal anti-inflammatory drugs (NSAIDs) may delay the
onset and progression of PD (Hald et al., 2007).

When mice are treated with a wide-ranging inflammatory
stimulus such as lipopolysaccharide (LPS), levels of inflammatory
cytokines are rapidly elevated in serum and liver, but return to
basal levels within 1 week. However, such treatment leads to
inflammatory cytokine TNF-a being chronically maintained at
high levels without returning to resting levels in the brain for over
10 months, a significant fraction of the mouse lifespan. This
elevation is associated with both microglial activation and
continuing neuronal death (Qin et al., 2007). In consequence,
the aging brain can gradually accumulate evidence of prior insults
until a permanently damaging degree of inflammatory activity is
reached and maintained. These findings offer a clue as to why the
aged brain shows evidence of permanent inflammation with age
(Bondy and Sharman, 2010). The responses to short-lived
inflammatory events such as infections, which involve the whole
body, may be prolonged in the CNS for an extended period (Shi
et al., 2003; Bilbo et al., 2005; Galic et al., 2008). This chronic state
of inflammation can be a self-promoting process may play an
important role in advancing neurodegeneration (Block et al., 2007;
Lucin and Wyss-Coray, 2009). Many age-related neurological
diseases involve the appearance of an even higher level of
inflammation than that found in normal brain aging (Bondy, 2010).

4. Epidemiological evidence of a relation between aluminum
intake and the incidence of Alzheimer’s disease

Early reports of the neurotoxicity of Al such as those with
dialysis dementia involved relatively brief exposure to high levels
of Al. More recently and more controversially, adverse effects of
chronic exposures to lower levels of Al have been described. The
finding of high levels of Al in the brains of patients with AD relative
to controls has been reported [see above] and levels of Al are also
found higher in less common neurological disorders including the
Guamanian Parkinsonian-ALS complex and Hallervorden-Spatz
disease (Eidelberg et al., 1987; Garruto et al., 1988). This has raised
the question of whether Al plays a contributory role in the
initiation and progression of a variety of neurological disorders
(Kawahra and Kato-Negishi, 2011).

Chelation therapy in order to reduce the Al burden in AD
patients has been reported as beneficial (McLachlan et al., 1991;
Jannson, 2001) and new more Al-selective chelators for potential
use in AD treatment have recently been developed (Shin et al.,
2003).

A important indication of a link between exposure to Al and
neurodegenerative diseases is the growing number of population
studies linking the Al content of drinking water as being
proportional to the degree of incidence of neurological disease.
An early epidemiological study by McLachlan et al. (1996)
correlated the risk of developing Alzheimer’s disease with residing
in areas where Al concentrations in the municipal drinking water
are 100 mg/L or greater. A dose–response relationship between the
concentration of Al in the drinking water and risk of developing AD
was found. A more recent work, examining elderly populations,
also reported a similar link between exposure and the prevalence
of AD (Rondeau et al., 2009).

While the underlying mechanism by which Al exerts its effects
is uncertain, in several instances Al has been shown to promote
events connected to neurodegenerative changes in AD. Some
occupational epidemiological studies have focused on specific
groups of workers such as some groups of welders exposed to high
levels of Al. While one report found no significant correlation
between Al inhalation among welders and neurobehavioral
performance (Kiesswetter et al., 2009), another group reported
significant dose-related behavioral deficits in Al welders (Gior-
gianni et al., 2014). This latter paper emphasized that the tests
most susceptible to Al exposure, involved complex attention and
memory performance.

The relation between Al and Alzheimer’s disease appears
stronger than that for other neurological disorders but this may be
because the much higher prevalence of AD than other neurode-
generative diseases facilitates epidemiological research. However,
AD is also associated with other metal imbalances such as major
depression of copper levels and the issue of causality remains
elusive (Akatsu et al., 2012; Exley et al., 2012).

The case for a causal relation of the association between Al
exposure and AD is reinforced by findings of excessive levels of Al



S.C. Bondy / NeuroToxicology 52 (2016) 222–229 225
in post-mortem analyses of brain tissue from AD patients. The
original description of this connection (Perl and Brody, 1980) was
disputed due to the problem of obtaining accurate Al analyses and
the probability of sample contamination (Bjertness et al., 1996).
However, a wide range of more sophisticated analytical procedures
including laser microprobe mass analysis (Bouras et al., 1997),
instrumental neutron activation (Andrasi et al., 2005), an improved
graphite furnace atomic absorption method (Xu et al., 1992) or
energy-dispersive X-ray spectroscopy combined with transmis-
sion electron microscopy (Yumoto et al., 2009), have all basically
confirmed the original findings. Laser microprobe mass analysis
revealed the Al to be largely situated within the neurofibrillary
tangles associated with AD (Bouras et al., 1997). Increased levels of
Al have also been reported in the cerebral arteries of AD patients
(Bhattacharjee et al., 2013).

Systemic aluminum can induce AD-like behavioral deficits in
treated rats and this elevated has been correlated to a- and b-
secretase subtypes, together which appears to lead to increased
levels of Ab1-42 (Wang et al., 2014). In addition to leading to
behavioral deficits, chronic exposure to dietary Al also leads to
elevated levels of amyloid precursor protein (Walton and Wang,
2009).

The consequences of chronic exposure to rather low levels of Al
are difficult to isolate as they involve seeking evidence of an altered
incidence of relatively common neurological diseases such as
sporadic AD. Many possible confounding environmental factors
exist that may influence AD incidence. A survey, assembling results
from many sources and many areas but focused on Al-containing
antacid use, reported that this association is significant (Flaten,
2001). Another meta-analysis of nine studies concluded that there
was evidence that urinary Al concentrations below 135 mg/l have
an impact on cognitive performance (Meyer-Baron et al., 2007).

There are contradictory assertions on the hazard posed by levels
of aluminum present in the environment. These range from the
claims that ‘‘chronic aluminum intake can cause Alzheimer’s
disease’’ (Walton, 2014) and ‘‘aluminum may be the single most
aggravating and avoidable factor related to AD’’ (Tomljenovic,
2011), and the more qualified ‘‘exposure to aluminum dust may
possibly increase the risk of cardiovascular disease and dementia
of the Alzheimer’s type’’ (Peters et al., 2013). Negative reports
include the lack of finding of any correlation between AD incidence
and occupational exposure to aluminum (Santibáñez et al., 2007),
and the conclusion that ‘‘lifetime occupational exposure to Al is not
likely to be an important risk factor for AD’’ (Flaten, 2001). A recent
review reports that ‘‘consideration of the published research
concerning aluminum’s role in AD indicates that not one of the four
Bradford Hill criteria deemed necessary to establish causation with
respect to neurocognitive disorders such as AD has been satisfied’’
(Lidsky, 2014) while another review states that precisely these
criteria have been met (Walton, 2014). This illustrates the need for
more study rather than more polemics.

A recent overview suggests the possibility that conflicting
results may in part be due to lack of consideration of silicate levels
in drinking water in many reports. The presence of silicates in
water can act to protect against the toxic effects of Al in the same
water, presumably since the aluminosilicates do not readily cross
the gut (Krewski et al., 2007; Foglio et al., 2012). It has been
reported that aluminum in drinking water can increase the risk of
cognitive impairment when the silica concentrations were low
(Rondeau et al., 2009), and silicates may have utility in reducing
aluminum hazards (Gillette Guyonnet et al., 2007).

In summary, despite a voluminous literature, the relation
between AD and aluminum retains opacity. This is in part due
to the great difficulty in unambiguous interpretation of epidemi-
ological findings. Thus findings from laboratory results under
well-defined conditions and those from population studies are
not yet sufficiently and conclusively correlated so as to result in
a unanimous recognition of the hazards of environmental
aluminum.

5. Link between aluminum exposure and neurodegenerative
conditions other than Alzheimer’s disease

The connection between Al and less common neurological
disorders is uncertain. Aluminum oxyhydroxide (alum) is widely
used as a vaccine adjuvant (Girard, 2005; Sutton et al., 2009; Chang
et al., 2010; Alvarez-Soria et al., 2011; Shoenfeld and Agmon-Levin,
2011), and phagocytosed alum particles can accumulate in the
brain where they may then be re-solubilized by the acidic pH of
lysosomes (Gherardi et al., 2015). Injection of alum into neonatal
mice in amounts designed to correlate to those used in pediatric
vaccination schedules, may lead to behavioral changes, persisting
into adulthood (Shaw et al., 2013). There are still significant
amounts of Al in most infant formulae (100–756 mg/l) and this has
been proposed to constitute a developmental hazard (Chuchu
et al., 2013).

There is a series of articles reporting that use of vaccines may be
associated with increased incidence of multiple sclerosis. Al
excretion has been reported as elevated in MS patients (Exley
et al., 2006). On the other hand, Al-containing adjuvants within a
vaccine have also been suggested to have prophylactic value in the
treatment of MS (Wållberg et al., 2003).

There is also evidence linking Al and Parkinson’s disease, PD. An
association has been made between the frequency of gastric ulcers,
and PD, and it has been proposed that this linkage might be due to
the higher usage of Al-containing antacids by those suffering from
ulcers (Altschuler, 1999). Other indirect evidence in support of a
connection between Al and PD is the ability of Al to activate
monoamine oxidase B, an enzyme that is elevated with age and
reaches even greater levels in PD (Zatta et al., 1999). Monoamine
oxidase B is able to promote alpha-synuclein fibril formation and
this may account for the observed association between neurotoxic
metals and PD (Uversky et al., 2001). The initiation of inflammatory
processes by activation of the transcription factor NF-kB was found
to occur after simultaneous treatment of experimental animals
with the dopaminergic neurotoxin, MPTP and low levels of Al in
drinking water (Li et al., 2008), in a synergistic manner.

Neuropathological changes and behavioral deficits resembling
those found in ALS have been have been found in animals treated
with Al salts models. Specifically, injection of Al-containing
adjuvants at levels comparable to those that are administered to
human adults resulted in the death of motor neurons, impairments
in motor function, decrements in spatial memory capacity in
young mice and significant increases in activated astrocytes and
microglia (Petrik et al., 2007; Shaw and Petrik, 2009). Blood and
urine levels of Al may also be elevated in ALS (Perl et al., 1982) but
there is disagreement concerning this (Qureshi et al., 2008).

6. Experimental results from animals support a causal relation
between aluminum exposure and harmful effects on brain
function

Clinical findings on aluminum neurotoxicity, are supported by
numerous experimental animal models where systemically
administered Al caused behavioral deficits. These include reports
of in-coordination (Bowdler et al., 1979), changes in reactivity and
neuropathological changes reminiscent of those found with brain
aging (Miu et al., 2004).

These studies have entailed treatment with concentrations of Al
that are not commonly encountered among human populations.
However, other studies that better reflect common human
exposures have been conducted using more extended treatment
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with lower levels of Al resembling those found in some water
supplies or exposures more closely paralleling human intake. One
such study using Al in the drinking water, found indications of
heightened inflammatory activity within brain tissue (Campbell
et al., 2004) such as elevated levels of pro-inflammatory cytokines,
and nitric oxide synthetase. These changes were found after Al
salts had been in the drinking water of mice for three months at
concentrations below those found in some residential water
supplies. Other studies found that exposure to low levels of Al led
to elevation of glial fibrillary astrocytic protein (GFAP) a marker of
astrocytic activation (Yokel and O’Callaghan, 1998). Additional
persuasive data on the probable harmfulness of Al, comes from
observations of cognitive and neuropathological changes charac-
teristic of AD in aged rats after chronic exposure to Al equivalent to
that ingested by some human populations (Walton, 2009a,b;
Walton and Wang, 2009; Walton, 2012).

If the gradual inflammatory changes that characterize neuro-
senescence were furthered by the extended presence of low levels
of Al, this would reinforce the excess inflammatory events
associated with the evolution of many age-related neurodegener-
ative disorders. Thus, Al may act predominantly by promoting the
rate of brain aging. This acceleration could form a platform to then
enable an increased incidence of a range of distinctive neurode-
generative diseases.

7. Morphological and molecular changes produced in the brain
by aluminum

A clear mechanistic understanding of the molecular events
underlying Al neurotoxicity remains elusive. Despite the chemical
inertness of its salts, there are many potential mechanisms by
which Al can promote neurotoxic events (Tomljenovic, 2011). The
induction of glial activation and initiation of macrophage
responsivity by Al complexes has been frequently described many
times (Evans et al., 1992; Gorell et al., 1999; Platt et al., 2001) but
the means by which Al salts promote inflammatory events are
unclear. Aluminum salts can provoke inflammatory glial responses
in isolated systems as well as in intact animals, and so it is likely
that they can act directly upon responsive glial cells (Campbell
et al., 2002).

Aluminum is also capable of promoting free radical generation,
despite the fact that it is not a valence-labile metal and does not
have a strong affinity for sulfhydryl radicals. It may achieve this by
catalyzing the redox activity of trace amounts of iron. This ability of
aluminum to potentiate the pro-oxidant properties of iron is
evident even in the absence of biological tissue or proteins (Bondy
et al., 1998). The mechanism of action may entail providing a
colloidal surface for the sequestration of iron. This partial
complexation allows iron to undergo Fenton transformations
and such redox flux leads to production of reactive oxygen species
(Alexandrov et al., 2005; Bondy, 2009; Ruipérez et al., 2012; Bondy,
2009). A similar promotion of iron’s pro-oxidant potential by an
apparently inert mineral has been shown for silica fibers
(Napierska et al., 2012). More recently it has been proposed that,
since aluminum has an unusually high charge density Z2/r, this can
account for its ability to compact A-T rich chromatin domains
leading to repression of specific genes (Lukiw, 2010).

8. Is the passage of Al from the environment to the brain large
enough to justify disquiet?

The issue as to whether human aluminum intake from general
environmental sources is sufficient for concern remains conten-
tious. Drinking water can contain up to 2.7 mg Al/l, and foodstuffs
up to 730 mg Al/kg (Agency for Toxic Substances and Disease
Registry, 2008; Stahl et al., 2011). These estimates do not include
sources of unusually high aluminum intake such as antacid, baking
powder and some acidic fruit drinks. Overall, around 10 mg/d Al
from both water and food sources is estimated to be consumed
(Agency for Toxic Substances and Disease Registry, 2008). Up to
0.3% of this may be absorbed from the gut leading to plasma
concentrations in the region of 0.002 mgAl/l (Yokel, 2012).
However, it is likely that the uptake of aluminum from food can
vary at least 10-fold depending on the chemical forms present in
the intestinal tract (Aguilar et al., 2008). Brain tissue can contain
over 100 times the plasma concentration of Al (0.35 mg/kg, Yokel,
2012). This selective accumulation may result from major
bioconcentration by the cerebral vasculature (Bhattacharjee
et al., 2013). The ensuing content of Al in the brain (c. 0.1–
0.4 mg/kg, Exley, 2014) is within molarity range of 4–15 mM. This
is over ten times the concentration of Al that is toxic to isolated
human neuronal and glial cells (Lukiw and Pogue, 2007). For this
reason, while the exact chemical nature of Al is critical in
determining the extent of toxicity, the cerebral content of Al in the
population is sufficiently high to be a valid cause for concern.

9. Why does the neurological outcome of exposure to
environmental levels of aluminum remain contested?

While interest in this topic is ongoing but there is not yet an
explicit recognition of the hazards of environmental Al and for
the need to take more regulatory action. Examination of the
history of lead toxicity can give clues that may aid in
comprehending of some of the reasons underlying this failure
to reach a ‘‘critical takeoff velocity.’’ Lead has been used in
manufacturing for over 3000 years and has been intermittently
known to be neurotoxic since 700 B. C. Its prevalence has risen
greatly in the last 200 years and, in the last two decades the
harmfulness of even low levels of lead has been widely accepted.
As a result, legislative efforts to minimize lead exposure have
been effective. However, this was preceded by a period of heated
controversy during which the lead industry accused leading
scientists conducting low level lead research, of bias and fraud
(summarized in Needleman, 2008).

In contrast, Al has only had broad industrial use for just over a
century. As in the case of lead, the neurotoxicity of high levels of Al
is not disputed. However, also paralleling the situation for lead, the
toxicity of low levels of Al is fiercely contested since major
economic forces are concerned. Currently, no major efforts to
minimize Al levels in food or drinking water are being legislatively
considered. The considerably shorter history of Al use means that
we are at an earlier stage of awareness of its threat to human health
than is the case with lead. It is to be hoped that the next phase in
the advancement of acknowledgment of the neurotoxicity of
environmental aluminum, will soon occur.

10. Conclusions

Although the ability of absorbed aluminum to further the onset
and progression of neurodegenerative disease remains unresolved,
the following conclusions are relevant and incontrovertible.

(i) Al is widespread in the environment, ingested by humans and
can reach the brain.

(ii) Short exposure to high levels of Al can lead to clear signs of
neurological damage.

(iii) Levels of basal inflammatory activity within the brain increase
with age and this is worsened in many age-related neurode-
generative conditions.

(iv) Low concentrations of Al in the drinking water of experimental
animals that correspond to those found in some population
exposures, can heighten inflammatory activity within the
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brain and lead to pathological transformations, which resem-
ble those found in AD.

(v) Overall, there is a significant boy of literature showing that Al
exposure leads to higher levels of inflammatory activity within
the brain.

The median age in the United States is becoming longer and an
increasing prevalence of chronic neurodegenerative disorders
including AD, PD ALS and MS can be expected. These diseases are in
the main, non-genetic, idiopathic disorders implying that they are
likely to be initiated by unknown environmental factors. The
triggering agent of none of these diseases has been identified. Long
latent periods may take place between exposure to a harmful
environmental agent and the manifestation of clinical disease. This
can complicate the identification of the factors originally
responsible for initiating the disease process. Since aging forms
an indispensable basis for the development of neurodegenerative
disorders, an acceleration of changes taking place during normal
brain aging, could speed up the time of the onset and thus the
incidence of all such disorders. A postulated chain of events by
which Al could accelerate the development of age-related
neurological disease is presented in Fig. 1.

One of the most positive approaches to alleviation of progres-
sive neurodegenerative diseases, lies in the identification and
rectifying of those environmental factors, which can hasten those
changes that accompany normal aging.

The simplest way of integrating much of the data concerning Al
neurotoxicity is the concept that Al can accelerate the evolution of
brain aging. This could account for the epidemiological relation
between Al and Alzheimer’s disease, which is increasingly
prevalent in a large fraction of the very elderly. It could also
explain the more tenuous connection that has been proposed for Al
and several of less common age-related neurological diseases. The
premise behind this concept is that a non-selective component of
senescence, namely an elevated state of brain immune activity is
propelled by Al, leading to prolonged and futile neuroinflamma-
tion. Such a chronic state could form a basis for the emergence and
progression of more specific neurological conditions.
Fig. 1. Progression of events by which Al could promote age-related

neurodegenerative changes.
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