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ABSTRACT OF THE DISSERTATION

Monte Carlo Simulation in Systems Biology

by

Jan Schellenberger

Doctor of Philosophy in Bioinformatics and Systems Biology

University of California San Diego, 2010

Professor Bernhard Ø. Palsson, Chair

Professor Vineet Bafna, Co-chair

Constraint Based Reconstruction and Analysis (COBRA) is a framework

within the field of Systems Biology which aims to understand cellular metabolism

through the analysis of large scale metabolic models. These models are based

on meticulously curated reconstructions of all chemical reactions in an organism.

Instead of attempting to predict the exact state of the biological system, COBRA

describes the physiological constraints that the system must satisfy and studies

the range of solutions satisfying these constraints.

Monte Carlo Sampling is one of the COBRA methods used to study how

biological properties are distributed over the entire solution space. A set of ran-

domly distributed solutions is generated and serves as a proxy for the entire space.

Various aspects of Monte Carlo Sampling in Systems Biology are illustrated: 1)

Monte Carlo Sampling has been used historically (Chapter 1), 2) A faster and more

efficient procedure for generating Monte Carlo Samples is developed (Chapter 2);

3) Carbon 13 tracing experiments are an important tool for measuring reaction

rates through a network. Monte Carlo Sampling was used to optimize the choice

of label and explain and measure the dimensionality of output data (Chapter 3);

4) It is possible to incorporate the thermodynamic “loop-law” into many COBRA

methods including sampling (Chapter 4).

Additionally two software projects are presented which assist in analyzing

xvii



COBRA models: 1) the BiGG knowledgebase of reconstructions (Chapter 5) and

2) the COBRA Matlab toolbox v. 2.0 (Chapter 6). These two projects make

COBRA methods available to the scientific community.
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Chapter 1

The history of Monte Carlo

Sampling in Systems Biology

1.1 Abstract

Genome-scale metabolic network reconstructions in microorganisms have

been formulated and studied for about 8 years. The constraint-based approach

has shown great promise in analyzing the systemic properties of these network

reconstructions. Notably, constraint-based models have been used successfully to

predict the phenotypic effects of knockouts and for metabolic engineering. The

inherent uncertainty in both parameters and variables of large scale models is

significant and is well suited to study by Monte Carlo sampling of the solutions

space. These techniques have been applied extensively to the reaction rate (flux)

space of networks with more recent work focusing on dynamic/kinetic properties.

Monte Carlo sampling as an analysis tool has many advantages including: the

ability to work with missing data, the ability to apply post processing techniques,

ability to quantify uncertainty and optimize experiments to reduce uncertainty.

We present an overview of this emerging area of research in systems biology.

1
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Table 1.1: Different variables and constraints used in metabolic analysis

For metabolic analysis, the three major variables are fluxes, concentrations and

kinetic parameters. Each of these may be constrained by physiological constraints

and experimental measurements. Most research has focused on the flux rates

although recently there has been an interest in the kinetic/thermodynamic aspect

as well.
Variables Constraints Experimental Measure-

ments
Fluxes mass balance fluxomic isotope labeling

vmax secrection rate profiling
concentration charge balance metabolomics

osmotic balance
volume constraints
thermodynamics

kinetic parameters known dynamic behavior in vitro assays
thermodynamics expression profiling
regulatory rules proteomics

1.2 Introduction

The advent of whole genome sequencing has led to the curation of many

genome-scale metabolic reconstructions [1, 2]. These reconstructions are math-

ematically structured knowledge bases containing Biochemical, Genetic and Ge-

nomic (BiGG) information about a metabolic network. Whereas the content of

these network reconstructions can be fairly complete, the functional (i.e. phys-

iological) states that these networks can achieve are more difficult to determine

and such determination is an active area of research. The analysis of whole cell

metabolism comes with unknown quantities. Even a description of a steady state

condition may require knowledge of a large number of metabolite concentrations

and reaction rates (fluxes). Dynamical analysis adds additional complexity.

Although significant effort has gone towards measuring each of these quan-

tities through various high-throughput omics methods, obtaining all the needed

numerical values is a significant challenge that may not be met in full for a long

time. This incompleteness of data has created the need for analysis methods that
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Figure 1.1: Traditional versus Constraint based methods

Traditional analysis methods focus on one solution, which approximates the true

biological state as closely as possible. The error in this solution is often unknown

although techniques such as sensitivity analysis can give an idea as to its mag-

nitude. In contrast, constraint based analysis does not aim to predict the true

biological state but attempts to describe the space within which the solution must

lie. The properties of this space as a whole must contain the properties of the true

solution.
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are able to give meaningful results with only partial measurements. One approach

has been successfully used is so called Constraint Based Reconstruction and Analy-

sis (COBRA). This approach emphasizes describing the constraints that a system

must satisfy rather than computing an explicit solution. Some of the variables

and constraints that have been applied in the past are listed in Table 1.1. This

approach leads to the definition of a “solution space,” that contains the set of fea-

sible solutions that satisfy all imposed constraints. Figure 1.1 shows a schematic

of this approach and how it compares to the traditional simulation approach. If

the system equations are set up correctly, the “true state” of the network will lie

within the imposed constraints and may then be further analyzed.

Many approaches exist for studying this solution space [3, 4]. One of the

more recent approaches is randomized sampling of candidate solutions. In order

to study the space of solutions, a random set of points is chosen from it to act as

a surrogate for the entire space. Many of the properties that can be calculated for

one candidate solution can then be calculated for point throughout the entire space

and the properties of this set of solutions can be evaluated in a statistical fashion.

This procedure gives information about the how limiting the imposed constraints

are, and the results can be used to design further experiments to shrink the size

of the solution space.

The workflow associated with the constraint-based paradigm is outlined in

Figure 1.2. The scope of the biological system is defined as variables (fluxes, con-

centrations, pressure, etc.) and parameters (kinetic constants, thermodynamic val-

ues, etc.). Experimental measurements, biophysical constraints and other known

constraints are imposed on the system yielding a solutions space. It can then be

probed with a variety of methods including optimization and Monte Carlo Sam-

pling. The results from such studies are used to design further experiments to

further constrain the system.

The ultimate goal of large scale network analysis is to provide a framework

for understanding whole cell metabolism. This includes interpreting data from

various high throughput omics experiments, creating predictive models of how the

cell works, and ultimately being able to manipulate cells for medical or industrial
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Figure 1.2: Constraint based analysis work flow

The scope of the model is determined by variables and parameters. These are con-

strained with 1) experimental data and 2) physiological constraints. The solution

space is the intersection of all constraints. If this is empty, then the constraints

and experimental data are inconsistent and must be modified. If however they are

consistent, the solution space may be probed by a variety of methods. The solu-

tion space may be shrunk with further experimental data with the current solution

space aiding with the experimental design.
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purposes.

1.2.1 Steady state flux balance analysis

A metabolic network can be concisely described in matrix format using the

stoichiometric matrix, S (sometimes called N). Every row in this matrix represents

one metabolite and each column represents a reactions. A non-zero entry in si,j

indicates participation of a metabolite i in a reaction j. The rates of every reaction

(flux) can be written as a vector v forming the fundamental mass balance equations:

dx/dt = S ∙ v(x) (1.1)

Integrating this equation over time yields the time course of concentrations x(t).

In general, the rates of reaction, v are a function of the concentrations, x, as well as

enzyme kinetic constants and other parameters. Since it is hard to measure all the

kinetic constants needed to simulate dynamic responses, the steady states of the

system are often studied. Steady state implies dx/dt = 0 and therefore S ∙ v = 0.

A different way of stating this is that the (right) null space of S contains the steady

state flux distributions. This solutions space is finite in size given enzyme capacity

constraints (vmin < v < vmax) has it has been studied extensively and its properties

can be studied with a variety of approaches [5]. Recently it has become realized

that randomized sampling of solutions in the solutions space is an effective way to

characterize its contents.

1.3 Example uses of sampling in small spaces

A number of questions about solution spaces can be addressed using ran-

domized sampling. Three notable examples of studies of small solutions spaces are

now described.

1. Designing experiments: The existence of a solution space means that many

conceivable flux distributions satisfy the steady state condition. Even with

all uptake and secretion rates (inputs and outputs) measured, the internal
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flux rates are usually not uniquely specified. If there are two parallel path-

ways for the same process it will be impossible to distinguish which is being

used. This non-uniqueness of flux states was realized early [6], and thus ad-

ditional measurements are needed to further eliminate candidate solutions.

Sampling of the candidate solutions can be used to find the most informative

measurements to make [7, 8] . Many possible experiments were simulated

and Monte Carlo sampling was used to simulate random experimental noise

and propagate it through the network. The ratio of measurement noise to

computed noise was statistically quantified thus rejecting experiments with

poor design in favor of more informative ones.

2. Determining the shape of solution spaces: Smaller networks (<40 reactions)

have flux solution spaces which can be studied directly using techniques from

convex analysis. Wiback et. al. defined the flux space of the core Red Blood

Cell model and computed its volume using a mathematical techniques called

vertex enumeration [9]. A Monte Carlo elimination sampling was used to

describe the shape of the space by plotting the distribution of points as

a function of flux through each reaction. The shape flux space contains

important information about the likelihood of finding the true solution at

any particular flux value. A narrow space indicates low likelihood whereas a

wide space indicates greater likelihood. An updated method for computing

the volume of the space can be found in [10].

3. Consequences of genetic variation: A refined sampling approach was devel-

oped by Price et. al [11] which scaled to slightly larger networks. Enzy-

mopathies of the Red Blood Cell were studied by decreasing the Vmax of the

reaction catalyzed by enzymes with known biochemical deficiencies and clin-

ically observable altered phenotypes. It was shown that the enzymopathies

that decreased the volume of the flux space most significantly were more

likely to have a clinical effect in vivo. This paper first considered looking

at the correlations between points as another way of describing the shape of

the space and noted that these values tend to shift while simulating enzy-
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mopathies.

1.4 Determining global network properties

With the availability of genome-scale network reconstructions there has

been significant interested in characterizing them in an unbiased fashion. Two

unbiased approaches have emerged [5]. One approach has been the development of

network based pathways as convex basis vectors; such as Extreme Pathways [12]

and Elementary modes [13]. Monte Carlo Sampling provides an alternate unbi-

ased way. Both have significant numerical challenges at the genome-scale, with

the determination of convex pathways being potentially impractical [14], whereas

randomized sampling can be achieved at this scale.

1. Sampling methods. With the advent of Monte Carlo methods for the study

of the flux space of much larger networks, the dominant algorithm of choice

has been The Markov Chain Monte Carlo (MCMC), also known as hit and

run sampler. Unlike the elimination algorithm usable for smaller networks,

the MCMC algorithm produces a valid solution point at every iteration. An

initial valid point is moved repeatedly inside the space according to proba-

bilistic rules. The trail of valid generated points becomes the sample. One

key disadvantage of this algorithm is that there is no guarantee that these

points cover the entire space in a finite time. This behavior is known as

slow mixing. One improvement to the MCMC algorithm is artificial center-

ing (ACHR) [15]. Essentially all publications sampling of the flux space

have used this algorithm.

2. Elucidation of a high-flux-backbone: Barabasi and colleagues published two

papers that used Monte Carlo Sampling of the flux space to look at global

network properties. [16] demonstrates that E. coli flux space is dominated

by a few high capacity reactions (the high flux backbone) that is robust be-

tween different simulated media conditions. [17] compared the metabolic

reconstructions of H. pylori, E. coli and S. cerevisiae under randomly gener-
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ated media conditions and used Flux Balance Analysis to compute the flux

shifts between them. An activity core was defined based on reactions that

are always required for growth. This activity core varies in size between the

three reconstructions and is a reflection of the redundancy and robustness

built into these systems.

3. Definition of modules: modules can be determined based on correlations be-

tween reactions. When two reactions are correlated either perfectly (r2 = 1)

or nearly perfectly (r2 ∼ 1), the flux through them must be linearly related

at steady state. An example of this is two reactions in a linear pathway. This

concept was reviewed by Papin et al. [18] as one technique of network clas-

sification and applied to the M. tuberculosis network [19]. While correlated

sets based on extreme pathways and uniform random samples are distinct, a

comparison showed that the global network properties to be conserved [20].

1.5 Applications of sampling to study disease

states

Whereas global network properties are of academic interest, sampling has

also been used to study clinical issues.

1. Human Mitochondria: The human cardiac mitochondria network [21] was

analyzed using the sampling approach to characterize network capabilities

under different conditions, including various diets and simulating diabetic

conditions. A particularly striking result was the observation that the pyru-

vate dehydrogenase (PDH) flux in diabetic patients is constrained to be lower

than non-diabetic patients due to mass conservation constraints alone. This

result was surprising, because, although it had been known that PDH has

a decreased flux in diabetics, it was believed to be a consequence of un-

known regulatory mechanisms. The sampling approach thus demonstrated

how bottom-up reconstructions can describe real biochemical and physio-
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logical conditions and provide mechanistic insights into the cause and effect

relationships.

2. Co-sets and their applications: Another result of this study came from the use

of comprehensively sampled points in the flux space to calculate statistically

perfectly correlated sets of reactions, termed co-sets [18]. A non-zero flux in

one member of a co-set implies a non-zero flux in all other members of the

set and vice-versa. Hence co-sets define reactions that are used together as a

result of mass-conservation determined by network topology. These reaction

co-sets can be used to simplify the network and to enable analysis of disease

states and alternative drug targets in terms of causal pathways rather than

individual reactions. They can also be used to correlate the causality of SNPs

that appear in the enzymes participating in a co-set [22].

3. Human Neural Reconstruction: Occhipinti et al. [23] studied a 5 compart-

ment model of human neuron/astrocyte metabolism with Monte Carlo Sam-

pling and Statistical inference. The method was based on a previous pa-

per [24] and assumes a prior distribution on each flux in the network. Exper-

imental measurements are treated as observations which are used to update

the distributions of the fluxes. In this way, it is possible to test specific ex-

perimental hypotheses in silico. The study asked which metabolic pathways

are more active in brain metabolism at steady states with different neural

activities and was able to provide quantitative answers.

1.6 Extensions to analysis of dynamic states

Moving beyond a steady state framework to dynamic analysis presents a

new set of challenges. Kinetic parameters needed for dynamic analysis are numer-

ous and often unknown. Often in vitro techniques fail to give numerical values for

kinetic parameters that are consistent with those in vivo [25]. Obtaining such a

consistent set is expected to require whole systems approaches.

There is a strong need for developing methods that allow for global kinetic
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analysis since many of the important systemic properties lie in the dynamic domain.

Coupled with the recent development of metabolomic measurements we may be

able bridge the gap between steady state and fully dynamic descriptions. Because

of the inherent uncertainty in measurements, Monte Carlo Sampling can used to

further this aim:

1. K-cone analysis: Famili et al. proposed defining a space of feasibility within

which kinetic parameters must be found [26]. This was termed the k-cone.

It is analogous to the flux space in that every point represents a feasible set

of kinetic parameters. This construction assumes that the concentrations of

metabolites are known and that the system is at steady state. Famili was

able to show that; 1) Feasible kinetic parameters exist; 2) It is possible to

find the set of kinetic parameters that most closely match a measured set (by

optimization); and 3) by repeating this procedure under different conditions,

the set of kinetic parameters can be narrowed down.

2. Structural Kinetic Modeling: Steuer et al. proposed a different way of looking

at whole system kinetics [27, 28, 29]. Structural kinetic modeling makes no

assumptions about kinetic parameters and instead focuses on the feedback

parameters in a network. Equation 1.1 is linearized about a hypothesized

steady state value xss with a steady state flux of vss. The linearization

results in a Jacobian matrix, J, which contains dynamical properties of the

system. For example, the eigenvalues of J indicate whether the system is

stable or unstable near the steady state. Many of the feedback parameters

to build J are unknown. To study their effects Monte Carlo sampling was

used and statistical properties were determined (Grimbs, Selbig et al. 2007.

A ranking of a feedback sites stability was obtained.

3. Bayesian statistic approaches: Liebermeister and Klipp used Bayesian statis-

tics to describe the distribution of kinetic parameters [30]. Starting with a

stoichiometric model, various experimental data types (metabolic concentra-

tions, thermodynamic, kinetic) are integrated in a statistical fashion to pro-

duce a set of kinetic models. As a test example, a small threonine metabolism
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model was used to simulate noisy experimental measurements. The Bayesian

approach was able to narrow the possible range of kinetic parameters from a

very large range initially to a much narrower feasible range.

1.7 Challenges for the future

The challenges in this area are several. The main categories are as follows:

1. Computational: Sampling a solution space is difficult as the number of vari-

ables increases. This is known as the curse of dimensionality. Various tricks

have been employed to get around this limitation (for example ACHR) and

this is an area of active research. The flux space and K-cone formalism have

the advantage that the commonly used constraints form a convex space,

which has some “nice” properties. Writing a sampling procedure capable of

sampling a generic set of constraints may be quite difficult. Instead a careful

tradeoff between feasibility of sampling and expressiveness of the formalism

and constraints is required. The Cobra toolbox [31] contains tools for Monte

Carlo Sampling as well as other COBRA techniques.

2. Extend formalism to other parameters: As shown, Monte Carlo sampling has

been used to sample the flux space as well as the kinetic space. However, it

is conceivable to extend the formalism to many other areas. Recently there

has been attempts to describe regulatory networks in a stoichiometric fash-

ion [32]. The formalism uses an R (for regulatory) matrix which is analogous

to the S matrix. An R matrix has been constructed, based on the model

used in Covert, et al. [33], and interrogated using uniform random sampling.

The simulation results exhibited strong concordance for two environments for

which microarray experiments have been conducted. In addition, an analysis

of the row and column spaces demonstrated that these spaces describe all

possible gene expression states for E. coli in a given environment [34].

3. Thermodynamic constraints: Kümmel et al. used thermodynamic consid-

erations to describe a set of constraints on the concentrations of metabo-
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lites [35]. With the increasing availability of metabolomics data as well as

computational estimates of thermodynamic properties, constraints of this

type are sure to become more prevalent. Table 1.1 illustrates the variables,

parameters and constraints that have been defined for metabolic networks.

In all cases, it is not possible to obtain all measurements for a full descrip-

tion with current high-throughput techniques. There are however constraints

between variables which suggest that not every variable must be explicitly

measured. For some of these applications, Monte Carlo sampling has been

applied (Fluxes, and Kinetics). For others this has not been done yet.

One simplification to full thermodynamic considerations is the inclusion of

the so-called “loop-law”. This law places additional constraints on internal

metabolic fluxes to avoid circular flux distributions which are thermodynam-

ically infeasible. Price et al. studied this feasible space by sampling the space

of a H. pylori reconstruction and eliminating points which violate the loop

law [5]. While this method was shown not to scale to larger networks it has

the advantage of not requiring knowledge of thermodynamic constants.

1.8 Conclusions

Monte Carlo sampling is emerging as an approach to deal with the analysis

of genome-scale metabolic networks. Ideally we would like to know the true inter-

nal state of a cell at all times. As this is goal currently intractable, much effort has

been focused on giving an accurate description of the solution space within which

the true state must lie. Unbiased analysis of this space through randomized has

yielded many novel results and provides a framework by which further experiments

can be designed.

The text of Chapter One, with some modification, is a reprint of the material

as it appears in J. Schellenberger and B.Ø. Palsson. The use of randomized
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sampling for analysis of metabolic networks, JBC Minireview. 284(9): 5457-61

(2009). I was the primary author of this publication and the co-author participated

and supervised the research, which forms the basis for this chapter.



Chapter 2

Properties Of The GP-ACHR

Sampler

2.1 Abstract

Monte Carlo Sampling of convex spaces has been used in metabolic systems

biology to explore the shape and dimensions of the space of possible flux distribu-

tions. In this chapter we consider two algorithms that have been used for sampling

and propose a simple extension to one which provides a significant improvement

in computational time and result accuracy.

2.2 Introduction

The theory of Monte Carlo Sampling is well established and is not the

focus of this thesis. It is, however, important to point out some of the recent

work on the ACHR Sampler as it is part of the COBRA Toolbox (Chapter 6).

While conceivably many solution spaces may be defined in systems biology, early

work has focused on the flux (v) space which describes the set of possible flux

distributions. The space is defined by the bounds:

S ∙ v = 0

lb ≤ v ≤ ub

15
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One important property of this space is that it is convex. The definition of con-

vexity is that for any two points, x and y in a space, the line segment between

them (c ∙x+(1− c) ∙ y for c ∈ {0, 1}) is also in the space. This property is directly

used in the algorithm for ACHR sampling.

2.2.1 Elimination Sampling

As mentioned in Chapter 1, the first attempts at uniform sampling were

based on elimination sampling. The idea is quite intuitive and basically states

that in order to sample a complicated space, sample a larger space containing

your target space and remove points not in your target space. For example, in

order to sample a disk, it is possible to sample a circumscribing square and discard

(‘eliminate’) the points not in the disk. In this case, the so called ‘hit fraction’ is

π/4. This is an upper bound, though. Choosing any other enclosing rectangle will

result in a lower hit fraction and more points are required in order to achieve a fixed

number of final points. An illustrated example is shown in Figure 2.1. In practice,

elimination sampling works very well for low dimensional spaces however it tends to

fail as the dimension increases. This is known as the ‘curse of dimensionality’ and

the reason can be illustrated by the example of the disk in a square. Extending this

example to n dimensions, the volume of an n-dimensional unit sphere is π(n/2)
Γ(n/2+1)

1.

The volume of an enclosing cube is 2n. The hit fraction is the ratio of these two

which for even n looks like:

hit fraction =
(π
4

)(n/2) 1

(n/2)!

This ratio goes to 0 rapidly and for n = 30 it is already 2∙10−14. In order to generate

one randomly sampled point from a 30-sphere by elimination sampling requires on

the order of 1014 samples to be drawn from an enclosing hyper-cube. Figure 2.2

shows this trend. The sphere case is a worst-case analysis if the enclosing shape

is a hyper-rectangle and in practice it is easy to sample high dimensional spheres

by other means. In Systems Biology is is possible sample higher dimensional

spaces through elimination sampling by using parallelpipeds as the enclosing space.

1Γ(x) is the Gamma function. It behaves similarly to factorial.
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Figure 2.1: Elimination Sampling

A simple network is used to illustrate the method of elimination sampling. (A)

a simple network consisting of just one metabolite and three reactions. Plotting

the resulting steady state solutions in 3-D yields the bounds shown in (B). The

steady state portion of this space is shown in (C) and is a pentagon bounded on

all sides by vmin and vmax. (D) shows one of the possible parallelpipeds enclosing

the space. In this case vmax,3 is temporarily ignored and v3 becomes a dependent

variable on v1 and v2. Points can now be randomly sampled by choosing v1 and

v2 independently. If the resulting v3 is greater than vmax,3 then this point must be

eliminated. (D) also shows the resulting histograms for all three reactions. Figure

previously published in [4]
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Figure 2.2: The Curse of Dimensionality

Plot shows the ratio of volumes of an n-dimensional sphere to an n-dimensional

hypercube of side length 2. The exact formula of the sphere is π(n/2)
Γ(n/2+1)

. As a

function of n, the decay of this ratio is sub-exponential.

Parallelpipeds are the high dimensional extension of parallelograms and they match

the shape of the solution quite well such that the space is a parallelpiped with

corners missing. Nonetheless, it was shown that the hit fraction gets very small

for medium size networks and elimination sampling is not feasible.

2.2.2 Hit and Run Sampling

The alternative method to elimination sampling is hit-and-run sampling.

This method eliminates the problem of low hit fractions by only generating points

inside the space. The rough outline of the procedure is as follows:

1. Choose any point, x0 inside your space
2.

2. At each iteration, choose a random direction, c.

3. Compute the limits of a line through x0 along direction c. In other words,

compute the limits of α (αmin, αmax) so that the point xk+1 = xk+αc is still

inside the space.

2In the case of the flux space, this can be done by linear programming with a random objective
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4. Randomly choose an α between αmin and αmax and choose xk+1 = xk + αc.

This procedure generates a series of points x0, x1, ..., xk which form a uniform

random sample of the space as k −→∞.

While Hit and Run (HR) sampling does not have the low hit fraction prob-

lem, it suffers a problem known as ‘poor mixing’. This is because each point is

dependent on the previous point. The number of steps required to achieve ‘mix-

ing’, where point xk and point xk + n are independent can be huge. To illustrate

this problem, consider the two dimensional space defined by |x1| ≤ 1 and |x2| < a

for a parameter a << 1. Any point in this space will be very near the boundary

x2 = ±a and a line in a random direction will hit these boundaries in a distance

that is on the order of a. Then the series of sample points in this space can be

thought of as a random walk along one dimension, with step size on the order of

a. After n steps, a point will be expected to move a distance that is on the order

of a
√
n. So if a ∼ 10−3 then it would take on the order of 106 steps for a point to

move from one part of the space to another.

Generalizing a bit from this two dimensional case, Hit and Run sampling

shows poor mixing behavior if the sampled space is scaled poorly - i.e. it is much

‘longer’ in one dimension than in another. However this is precisely the property

seen in biological spaces where dimensions are fluxes. It is know that fluxes follow

a power law distribution [16] with low-flux reactions having rates several orders of

magnitude lower than high-flux reactions.

Fortunately, an enhancement to the Hit and Run Sampler was developed to

help with this problem [36]. The main idea is to choose a direction, c, not uniformly

randomly but in such a way as to maximize the step size and mix more rapidly.

The method suggested by Kaufmann et. al uses the history of points x0...xk to as

a basis for choosing the direction. First the midpoint is computed x̄ =
∑k
i=1 xi

and then c is chosen c = xi − x̄ for a random i. In other words, the direction is

chosen as the difference between a random previously visited point and the center

point. Why does this work? It assumes that the previously visited points already

have the shape of the space and therefore a random point will tend to be farther

away from the center precisely in the dimensions where the space is longest.
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A slight modification is necessary in the start procedure as it is impossible

to choose a direction until a sizeable set (at least the size of the dimension of

the sampled space) has already been drawn. The solution is to generate some

(minimum = dimension of space) so called ‘warmup’ points by other methods and

then employ the ACHR sampling technique subsequently. Generally, the warmup

points are generated the same way x0 is generated - by Linear Programming with

a random objective (see section 2.3.4).

2.3 Topics of Interest

There are several things that must be considered when running the ACHR

sampler. Here we introduce the generalized and parallel ACHR (GP-ACHR) sam-

pler.

2.3.1 Generalizing the ACHR Sampler

The initial ACHR Sampler as used for metabolic Systems Biology could

only sample spaces running through the origin. The space description was:

S ∙ v = 0

vmin < v < vmax

In general though, we may be interested in sampling 1) an affine space (one which

does not go through the origin) and 2) a space bounded by linear inequalities

(A ∙ v < b). Together these two conditions can be written as the general:

A ∙ x ≤=≥ b

vmin < v < vmax

where ≤=≥ is a vector of ≤, = or ≥.
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Sampling an affine space

As will be shown later, it is beneficial to have all the equality constraints

on the space be equal to 0. This indicates that the space is a subspace of Rn going

through the origin and it has some properties which make sampling easier. A space

not containing the origin may be sampled by applying a linear transformation of

variables. Consider the part of the constraints containing equalities: Aeq ∙ x = b.

Find any solution x0 to this system such that Aeq ∙x0 = b. Now transform variables

to y such that y = x− x0 or x = y + x0.

We now have that Aeq ∙ (y + x0) = b.

Aeq ∙ y + Aeq ∙ x0 = b

Aeq ∙ y + b = b

Aeq ∙ y = 0

We can therefore sample this homogeneous space (in y) and transform to x

later. From now on we can assume that this trick was performed and that without

loss of generality, A ∙ x ≤=≥ 0.

Sampling with Inequality Constraints

Adding inequality constraints is actually not a great challenge either. With-

out loss of generality it can be assumed that all inequalities are of the form A ≤ 0

as all constraints of the form A ≥ 0 can be reversed by multiplying both sides by

-1.

The ACHR algorithm must compute αmin and αmax at each step. For a

direction c and a point x0, this requires solving the equations:

lb ≤ x0 + α ∙ c ≤ ub

This vector inequality is easily solved one component at a time.

The equality constraint A ∙ x = 0 is automatically satisfied because x0

satisfies it as well as the direction c.
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Figure 2.3: Parallel Sampler and the Mixed Fraction

Several points are moved throughout the space of interest in parallel (a). The mixed

fraction is computed as follows: Axes are drawn along all principle directions (b)

and a count is tabulated of which points cross which boundaries (c). A ’0’ indicates

that a point crossed a certain axis and a ’1’ indicates the point is still on the same

side. The mean of all these entries is the mixed fraction. It is 1 initially (x0 = xf )

and tends towards .5 as the perfect mixing is achieved.

In order to add inequality constraints, an additional constraint is placed on

α.

x0 + α ∙ c ≤ b

This too can be solved one component at a time.

α
≤ (b− x0)/ci for ci > 0

≥ (b− x0)/ci for ci < 0

The minimum feasible range of α is computed based on these constraints.

2.3.2 Parallelization

The ’P’ in ’GP’ sampler stands for parallelization. The basic premise is

instead of moving one point throughout the space, move a large number of points
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in parallel. Figure 2.3 illustrates this idea. There are several reasons why paral-

lelization is an improvement:

1. Speed - When points move in parallel it is possible to move them in parallel

computationally. Most desktop computers and workstations are now multi-

core capable and our tests have shown that the running in parallel results

in a speedup of ∼ 70% what would be expected with perfect scaling (results

not shown).

2. Constant Memory - When performing conventional ACHR, the number of

points is always growing. At some point it exhausts the allocated memory

and then has to be written to a disk. If the ACHR algorithm has not been

run long enough for sufficient mixing then performing additional mixing will

necessarily generate more points. Very often the application requires a fixed

number of points that is known in advance. The parallel sampler can keep the

points constant while performing additional mixing. As long as the number

of points can be kept in main memory, no file accesses are required.

3. Independence of points - The ACHR sampler generates a sequence of points

which form a uniform random sample of the space. However the points

themselves are not independent from one another. This may not be an issue

in all cases but often having identical independently distrubted (iid) points is

desirable. The parallel sampler inherently solves this problem because each

point starts independently.

4. Termination Condition - Measuring when sufficient mixing has occured is

difficult. With the new parallel sampler I propose a parameter called the

’mixed fraction’ (detailed below) which measures the degree of mixing. While

it is not a sufficient condition to guarantee mixing, it is necessary and in

practice seems to work quite well.
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Figure 2.4: ACHR vs GP-Sampler

The hit fraction is plotted as a function of number of steps. The GP-Sampler is

indicated by the blue line and the ACHR sampler the green line. After 20,000

steps, both samplers have reached a mixed fraction of .5. The trajectory of the

GP sampler is faster however.

The Mixed Fraction Parameter

The mixed fraction (mf) measures the fraction of points that have crossed

the median in any direction. Figure 2.3c illustrates how this is done. The sampled

space is partitioned by a linear boundary. This boundary is chosen such that half

of the points are on each side. After a certain number of steps, the partition is re-

created. For each point it is tabulated whether it is on the same or opposite side of

the partition. If the points have been perfectly mixed and there is no dependence

between the initial position and final position, then the chance of crossing the

partition is exactly 50%. Therefore taking an average of all points would result in

a mixed fraction of .5 when mixing is achieved. Initially, before points have moved

at all, the mixed fraction is exactly 1 and the mixed fraction would be expected

to decrease exponentially towards .5.
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Figure 2.5: ACHR vs GP-Sampler distributions

The ACHR sampler and GP-ACHR sampler are compared for the reduced H. pylori

iIT341 model. Both samplers started with the same warmup points. In both cases,

after 20,000 points, the distributions look identical

Comparing Parallel ACHR and Parallel ACHR

To compare the ACHR versus GP-Sampler, a network was sampled using

both methods. The network used was the iIT341 model of H. pylori [37]. In both

cases the model was first reduced by eliminating extraneous reactions that carry

0 flux (reduceModel.m in the COBRA Toolbox). To create a fair comparison,

both the ACHR and GP-Sampler were run for an identical number of steps. 5000

points were generated with 20000 steps between points (ACHR) or 20000 steps

total (parallel ACHR).

Results are shown in Figure 2.4. After 20,000 steps, both the GP-Sampler

and the ACHR sampler had a mixed fraction of .5. The GP sampler however

reaches this value faster than the ACHR sampler. For larger models, the effect is

more noticable (results not shown). Figure 2.5 shows that both samplers produce

identical distributions (positive control).
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Figure 2.6: Biased Sampling

Sampling a skewed polytope with unbiased (a) and biased (b) sampling. Sampling

in a uniform fashion produces a marginal distribution with infrequent sampling of

the tail region to the right (solid line c).In this case the sampling bias makes the

marginal distribution uniform over the feasible flux range (dotted line in c) even

though the polytope is not sampled uniformly.
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2.3.3 Biased Sampling

The current ‘hit and run’ sampling algorithm [36] is designed to uniformly

sample a convex space. Applied to the steady state flux space, in silico uniform

sampling assumes that an in vivo flux has equal probability of residing in all regions

of the space. However sometimes it maybe desirable to sample a space in a way

that is biased. Figure 2.6 shows an example where the marginal distribution over

one particular reaction is kept uniform. An unbiased sampling tends to move all

points to just one region of the solution space.

While the general solution to sampling with arbitrary marginal distribu-

tions is quite difficult, there is a rather simple trick with the GP-ACHR sampler

that allows specifying one arbitrary marginal distribution. First, points are chosen

from the marginal distribution of the reaction of choice. The warmup points must

then be chosen to already match this distribution. With the conventional linear

programming approach this is not difficult. Finally, the only modification required

to the GP-ACHR algorithm is that the direction c that each point travels in is

modified such that ci = 0 where i is the direction of the imposed marginal distri-

bution. This small modification ensures that once the marginal distribution is set

in the warmup points, it never changes. Note that this trick is not possible with

the conventional ACHR algorithm as fixing a direction of motion would not allow

the points to cover the entire space. Also note that this trick cannot be applied

when more than one marginal distribution is imposed as the the joint distributions

must be fixed during the warmup point generation but are not known.

2.3.4 Warmup Point Generation

The ACHR algorithm requires a set of warmup points to initialize the al-

gorithm. The method used to generate these points has a important effect on

the mixing time on the algorithm. Ideally, of course, the warmup point generator

would generate points which are already uniformly distributed within the desired

space. If this were possible, mixing would not be necessary at all. However, having

points in different parts of the space is still desirable. Another desirable (in fact
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Figure 2.7: Problems with Warmup Point Stategies

Two wramup point strategies are compared. The orthonormal strategy mini-

mizes/maximizes each reaction in turn. In this case there are two reactions (di-

mensions) however the maximum/minimum coincide for both reactions, yielding

only two unique points. The random strategy maximizes and minimizes in a

random direction. Because of the shape of the space, most points will again end

up in the upper and lower corners. Only a small fraction of points will end up at

P1 and P2.
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necessary) property is that the warmup points span the entire space. In other

words, the entire space is reachable as a linear combination of warmup points.

Two strategies for linear programming have been proposed and used. The

first involves maximizing and minimizing each reaction sequentially and the other

involves maximizing and minimizing random objective functions. Both of these

strategies intuitively work but potentially have significant problems. One conceiv-

able problem is illustrated in Figure 2.7. In this aniosotropic space, maximizing

and minimizing in each direction yields points that do not span the entire space.

The random direction strategy would also have problems in this case as points P1

and P2 are improbable to be obtained by chance, depending on the degree to which

the space is anisotropic. This makes both strategies undesirable.

A solution to this problem is to use an adaptive strategy which ensures that

the points generated by the warmup sampler do in fact span the entire space. A

set of warmup points W can be checked whether it completely spans the solution

space by optimizing in all directions perpendicular to the space spanned by W .

First, the space of directions in W is computed by moving the space to the origin.

W̃ = W2..k−W1 The first point is subtracted from all subsequent points. Now the

orthonormal basis to this set is generated:

B = null(orth(W̃ T ))

where ’null’ is a function that returns a basis for the null space. ’Orth’ is optional

but will improve computation time if W̃ already has many points. Maximizing

and minimizing in the directions given by B is guaranteed to find any points not

already spanned by W . If the dimensionality of W does not increase with the

addition of the new points then W already spans the full solution space.

2.4 Conclusion

The ACHR sampler has been used in various studies to study the properties

of the flux space. With the recent development of the GP-ACHR sampler, it is

now a very practical algorithm for even large scale networks.



Chapter 3

Carbon 13 Analysis with Monte

Carlo Sampling

3.1 Abstract

Background Carbon 13 tracing experiments have been used to indirectly mea-

sure rates of reaction in large biological networks. The choice of labels is an

important consideration when designing these experiments. We present a novel

Monte Carlo algorithm for finding the optimal substrate input label for a variety

of experimental objectives. Unlike previous methods, this method does not require

knowledge of the flux distribution beforehand.

Results Using a large E. coli isotopomer model, it was shown that the choice of

optimal label is a function of the experimental objective. There is no universally

best label able to answer all experimental objectives. Many commercially available

labels were predicted to be outperformed by complex synthetic labeling patterns.

Based on Monte Carlo Sampling, the dimensionality of experimental data was

found to be considerably less than anticipated thus reducing effectiveness of C13

experiments in general.

Conclusion While Carbon 13 experiments are a useful tool in systems biology,

the high redundancy in the measured values reduces the number of degrees of

30
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freedom that can be obtained from each measurement. It is however possible to

compute these drawbacks before the experiment is run and predict whether, and

to what degree, a reaction can be elucidated.

3.2 Introduction

Metabolic systems biology aims to study metabolism through the use of

large scale metabolic models. One framework that is popularly used is COn-

straint Based Reconstruction and Analysis (COBRA) [3, 1]. COBRA relies on

accurate, manually curated, chemical reconstructions as a basis for models. Many

of these reconstructions have been generated [38] and the procedure well estab-

lished [1, 39]. Biochemical models are generated from reconstructions by the im-

position of physicochemical constraints - most commonly: steady state, reaction

reversibility, enzyme capacities and reaction bounds based on experimental mea-

surements. These models can then be used for a variety of methods such as com-

puting growth rates [40, 41], predicting the effects of gene knockouts [42, 40, 33],

predicting the endpoint of adaptive evolutions [43], and designing strains for indus-

trial production [44, 45]. A review of these methods can be found here [46, 1, 3].

One of the principle interests in metabolic systems biology is the rate of

chemical reactions through the metabolic network. Most internal reaction rates

cannot be directly measured and COBRA models tend to be under-determined [7]

yielding many possible flux states. One of the widely used experimental techniques

which can indirectly measuring the flux rates indirectly is isotope labeling [47]. By

measuring the enrichment for C13 in key metabolites after growing on a C13 labeled

substrate, inferences about the internal flux state can be made.

An overview of the general C13 methods is described in Figure 3.1. An iso-

topomer model is created which describes the fate of each carbon atom through the

stoichiometric network (Figure 3.1a). At steady state, with a known distribution

of reaction rates (v) the isotopomer distributions vector (IDV) can be computed

given a known carbon input label (Figure 3.1b). The isotopomer distributions are

compared to measured mass distributions vectors (MDV) from either Mass Spec-
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Figure 3.1: Isotopomer Overview

a) definition of the network including carbon fates. b) isotopomer balance equa-

tions. Solving these equations yields the Isotopomer Distribution Vector (IDV) c)

experimental data are compared to computed Mass Distribution Vectors (MDV)

yielding experimental fit. d) illustrates the two types of possible computations.

The forward computation uses a flux distribution as input to compute the MDV.

The inverse problem attempts to find the flux distribution which minimizes the

experimental discrepancy.
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trometry experiments or Nuclear Magnetic Resonance (NMR) experiment (Fig-

ure 3.1c). An experimental error is computed which summarizes how well a given

flux distribution (v) is explained by the C13 experiment. Then through the use of

a global optimization problem, the flux distribution v can be computed which min-

imizes the experimental error. While this forward calculation, ie. simulating C13

enrichment given a flux distribution is deterministic and easy, the inverse problem

is of greater interest yet significantly more difficult (Figure 3.1d). This problem

has been shown to be under-determined [48] indicating that many possible fluxes

(vs) have the same minimum error and explain the data equally well. Addition-

ally, the error minimization is computationally intensive and most methods are not

guaranteed to find the global optimum. A review of these methods and challenges

can be found in [49, 50, 51].

As these experiments are quite expensive both in terms of time and money,

there is the possibility to enhance the experimental success by computationally

optimizing experimental parameters before performing the experiment. Of partic-

ular note is the choice of substrate label. For a given n-carbon compound there are

2n possible C13 labels (and possibly mixtures as well) and choosing the best label

is known to affect the ability to elucidate reactions. Some work has been done in

this area[47, 52] however all these methods have required knowing (or guessing)

the flux distribution, v, of the organism. This is a restriction on the utility of

such methods. We propose a Monte Carlo sampling based method for choosing

the optimal label which does not require knowledge of the flux distribution of the

cell.

The intuition for this method comes from realizing that while the inverse,

data-fitting, problem is difficult and expensive, the forward computation is compar-

atively easy and fast. Initially, the flux distribution inside the cell is not known,

however it is a bounded set as described by COBRA methods. A general C13

experiment reduces the feasible space in which cell must operate. A good exper-

iment is one which reduces the space in a favorable way. This can be estimated

with Monte Carlo Sampling. An experiment is envisioned as determining which

of two regions a flux distribution came from (henceforth known as the ‘experi-
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Figure 3.2: Method overview

a) The space of flux distributions is partitioned in two parts corresponding to high

flux versus low flux. A uniform random sample is drawn from the space and is

also partitioned into partition 1 and partition 2. b) For each point in the space

the distribution of experimental measurements is simulated. Hypothetical Exper-

iment 1 and Experiment 2 with different glucose label mixtures produce different

measurement distributions. Experiment 2s distributions are more separated, indi-

cating parameters of experiment 2 are more conducive for differentiating between

the high and low partition.
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mental hypothesis’). A well designed experiment is one where the expected C13

measurements of one subspace differ greatly from the C13 measurements of an-

other. As seen in Figure 3.2, a hypothetical experiment 1 produces measurement

distributions which overlap whereas Experiment 2 shows greater separation. If

one were interested in differentiating between partition 1 and partition 2, experi-

ment 2 would be much preferable. This method allows for the scoring of any label

for any given experimental hypothesis without first knowing the true cellular flux

distribution v.

3.3 Materials and Methods

3.3.1 Isotopomer Network Description

The isotopomer network was derived from the iJR904 E. coli reconstruction.

The content is described in Appendix A. There are a total of 335 irreversible

reactions including 278 which track Carbon. All carbon tracking reactions are

broken into elementary forward and reverse reactions.

A central metabolic isotopomer model was generated that is equivalent in

reaction content to most previously published isotopomer models for E. coli [53,

54]. The model includes a total of 85 reactions. These 85 reactions include a

biomass production reaction, which drains the precursor metabolites used to make

biomass, and 14 system boundary exchange fluxes (for glucose, oxygen, phos-

phate, NO2, NO3, acetate, CO2, ethanol, formate, fumarate, glycerol, D-lactate,

pyruvate, and succinate). The biomass composition is based on one that was

reported previously [55, 40] and used in the biosynthetic isotopomer model (see

details below), but where the biomass components are replaced by the amount

of ATP, NADH, NADPH, and central metabolic precursors needed to synthesize

the biomass components (Appendix A). The remaining 70 reactions participate

in glycolysis, TCA cycle, pentose phosphate pathway, oxidative phosphorylation,

pyruvate metabolism, and anaplerotic metabolism. The central metabolic iso-

topomer model includes linear mass balance equations for 67 metabolites. Carbon
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atoms are tracked through 46 metabolites in the network.

To this central metabolic model were added additional catabolic and an-

abolic reactions. Changes to the central metabolic reactions include assigning fu-

marate reductase to reactions which utilize menaquinone and demethylmenaquinone

rather than ubiquinone, and using a phosphate transport reaction coupled to pro-

ton symport. The biomass reaction also differs since it uses the amino acids,

nucleotides, co-factors, and macromolecules rather than their precursor metabo-

lites. In addition, the biosynthetic model balances intracellular protons as well as

water molecules similar to iJR904 [40].

Aside from the central metabolic reactions contained in the central iso-

topomer model, the biosynthetic model also includes a number of other catabolic

and anabolic reactions. To build the biosynthetic isotopomer model, the iMC1010

metabolic network [33], derived from iJR904 [40], was evaluated to determine which

reactions can sustain non-zero fluxes during growth on glucose, acetate, or lactate

when only certain by-products are allowed to be secreted (acetate, formate, D-

lactate, pyruvate, succinate, glycerol, CO2, and ethanol). The blocked reactions,

which must have zero net flux at steady state, were subsequently omitted from

the biosynthetic isotopomer model along with reactions that were not expected to

be used. Analysis of the remaining reactions and metabolites identified groups of

reactions that could be merged together in order to reduce the number of variables

without affecting model results (see Appendix A). Large sets of biosynthesis reac-

tions that produce phospholipids, nucleotides, co-factors were also combined. Since

there are no experimental measurements for these high carbon metabolites, their

isotopomers were not specifically accounted for in the model; however by-products

that are formed as a result of their production (eg. CO2, formate, succinate,

fumarate, and pyruvate) that can enter back into the metabolic network, were

tracked and accounted for.

The resulting biosynthetic isotopomer model includes 189 metabolites (126

of which have tracked carbon atoms), 250 metabolic reactions (63 of which are re-

versible and involve tracked carbon atoms), and 8,612 isotopomer variables (which

is equal to the number of non-linear isotopomer mass balance constraints). The
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model also includes a biomass reaction and 19 system boundary exchange reac-

tions. Of the original 932 reactions in the complete metabolic iMC1010 network,

nearly a third is represented in the biosynthetic isotopomer model, either individ-

ually or as grouped (or combined) reactions. A complete listing of the reactions

and metabolites in the biosynthetic network can be found in Appendix A.

The fluxes were calculated with an additional constraint that flux through

formyltetrahydrofolate deformylase (which removes the C1 unit from 10-formyltetra-

hydrofolate) was less than or equal to the measured formate secretion flux. When

higher flux through this reaction was allowed the minimum error improved by only

0.3%, but the flux through this reaction was high (around half the glucose uptake

rate). As a result, the optimal flux distributions and confidence intervals were cal-

culated with this additional constraint on the formyltetrahydrofolate deformylase

flux.

3.3.2 Sampling Of The Network

To compute possible flux distributions, v of the E. coli model, The network

was sampled using a Markov Chain, Monte Carlo (MCMC) sampler. With tradi-

tional MCMC, a point is selected within the space which is then iteratively moved

around. At each step, a random direction is chosen and the next point is chosen

uniformly along this line. The set of points that this algorithm visits will converge

to a uniformly distributed set. Two modifications were made: 1) Artificial Cen-

tering [36] Because these biological spaces tend to be elongated in one direction,

it is often beneficial to choose directions along the “long” direction rather than

uniformly. This can be done by choosing the direction based on previously visited

points. At each step, the direction is chosen by drawing a vector from the center

of the previous points to one of the previous points chosen at random. 2) In place

sampling Instead of moving just one point throughout the space, many points are

moved simultaneously. In this way, no “history” is kept, only the updated position

of all the points. This method is described in greater detail in Chapter 2.
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3.3.3 Computing the Isotopomer Distribution

Each flux distribution and glucose input result in a unique isotopomer dis-

tribution. We used the cumomer method [56] as well as the EMU method [57],

and implemented it in Matlab. These methods involve solving several linear sys-

tems of equations to compute different groups of isotopomers. One small change

implemented for numerical reasons is that at every step, a routine is introduced

which checks whether all parts of the network are still connected. Disconnected

components can occur when fluxes to and from the component are zero. It is

then impossible to compute the isotopomer distribution within this subnetwork as

many isotopomers will satisfy the balance equations. By removing these compo-

nents first, the other metabolites can be solved in a numerically stable fashion.

A breadth first search (starting with the glucose node) is computed through the

network through reactions containing non-zero flux. All remaining metabolites are

discarded and are assigned a distribution of 100% unlabeled.

For each flux distribution, the resulting isotopomers for the amino acids

were transformed to mass distributions and concatenated into a long vector (length).

This way, any experiment was abstracted to a 5000 x (number of fragments) ma-

trix.

3.3.4 Generating and Evaluating C13 Experimental Hy-

potheses

An experimental hypothesis is defined as a partition of the solution space.

While many possible hypotheses could be considered, only two particular kinds

were studied. The first case attempts to elucidate whether a reaction has high

or low flux. The solution space is partitioned into all points with vi > threshold

versus vi < threshold. A different hypothesis is generated for each reaction i. The

threshold has chosen to be the median of all vi so that half (2500) points would

be in each of the two partitions. The second set of hypotheses tested was for

biologically relevant flux ratios. For each point the ratio of two reactions, vi/vj,

was determined to be above or below some threshold forming the partition.
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Scoring Hypotheses

Intuitively, a hypothesis score should be high if the isotopomer points com-

ing from one partition are distinguishable from points in the other partition. While

there are several ways of doing this, we chose a familiar one: Z-score The conven-

tional Z-score is used to determine the difference between two normally distributed

samples. While the samples of the MDVs are not always normally distributed, the

Z-scores is nonetheless appropriate as an approximation:

Zi =
|x̄hi − x̄lo|√
s2hi + s

2
lo

The Z score of each fragment is added together to give the Z-score of the experi-

ment.

Z =
∑

i

Zi

A slight modification is introduced.

Zi =
|x̄hi − x̄lo|√
s2hi + s

2
lo + σ

2

Where σ = .014. σ is on the order of magnitude of the uncertainty in measurements.

This slight modification accomplishes two tasks. First if both fragment i is of very

low abundance then in practice it cannot be measured accurately and the Z-score

will be low. Second, it is conceivable of having a high Zi by having tiny s
2 values.

In practice this cannot happen due to the experimental uncertainty.

3.3.5 Singular Value Decomposition of Samples

Singular Value Decomposition is a data reduction technique which allows

the estimation of data dimensionality. A data matrix M is decomposed into

M = U ∙ Σ ∙ V T where U and V are orthonormal basis and Σ is a diagonal matrix

containing the primary diagonal contains singular values in descending order. A

partial reconstruction of M is possible by taking only a subset of the largest sin-

gular values. For each condition, the number of singular values greater than some

threshold. These thresholds have a direct interpretation as the uncertainty with
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which a datapoint can be measured. A threshold cutoff of .01 indicates that the

remaining uncertainty of the data falls within .01 or 1% measurement error.

3.3.6 Code and Equipment

The code was written in the MATLAB environment and the COBRA tool-

box. Linear Programming was done with the Tomlab/CPLEX package and non

linear optimization with the TOMLAB/SNOPT interface. The EMU and cumo-

mer method were written in native Matlab but generated in Perl. Computations

were performed on a Dell Studio XPS desktops (2.6 Ghz core i7 with 9-12 GB

ram) and a custom Rocks cluster (100 dual Xeon 5500 series nodes).

3.3.7 Sample Preparation and C13 Measurement

Culture labeling

Prior to labeling, single colonies of E. coli K12 MG1655 were selected from

stock plates and inoculated directly into 250 ml M9 medium in 500 Erlenmeyer

flasks aerated by stirring at 1000 rpm. Cells were grown overnight, harvested,

washed twice with water and used to inoculate 50 ml flasks containing 25 ml

medium with 2 g/L 13C-labeled D-glucose, with initial OD600 0.005-0.01. Glucose

was supplied as either 100% 1-13C-labeled, 100% 6-13C-labeled, or a mixture of

20% uniformly (U-13C-) labeled with 80% natural glucose (which is randomly 1%

13C). Cells were grown to mid-log phase, corresponding to OD600 of 0.6 (WT) or

0.25 (mutant). 3 ml (WT) or 10 ml (mutant) of each culture was harvested by

centrifugation at 4C. Media were aspirated and analyzed with HPLC to determine

the remaining glucose concentration. Cell pellets were placed at -80C prior to

further analysis.

Derivatization and GC-MS analysis

Cells were resuspended in 0.1 ml 6 M HCl, transferred to glass vials and pro-

tein was digested into amino acids under a nitrogen atmosphere for 18 hr at 105C

in an Eldex H/D Work Station. Digested samples were dried to remove residual
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HCl, resuspended with 75 l each tetrahydrofuran and N-tert-butyldimethylsilyl-

N-methyltrifluoroacetamide (Aldrich), and incubated for 1 hr at 80C to derivatize

amino acids. Samples were filtered through 0.2 m PVDF filters, and injected into a

Shimadzu QP2010 Plus GC-MS (0.5 l with 1:50 split ratio). GC injection temper-

ature was 250C and the GC oven temperature was initially 130C for 4 min, rising

to 230C at 4C/min and to 280C at 20C/min with a final hold at this temperature

for 2 min. GC flow rate with helium carrier gas was 50 cm/s. The GC column

used was a 15 m x 0.25 mm x 0.25 m SHRXI-5ms (Shimadzu). GC-MS interface

temperature was 300C and (electron impact) ion source temperature was 200C,

with 70 eV ionization voltage. The mass spectrometer was set to scan m/z range

50-600.

Processing of GC-MS data

Mass data were retrieved from the GC-MS for fragments of 14 derivatized

amino acids: cysteine and tryptophan were degraded during amino acid hydrolysis;

asparagine and glutamine were converted respectively to aspartate and glutamate;

arginine was not stable to the derivatization procedure. For each fragment, these

data comprised mass intensities for the base isotopomer (without any heavy iso-

topes, M+0), and isotopomers with increasing unit mass (up to M+6) relative to

M+0. These mass distributions were normalized by dividing by the sum of M+0

to M+6, and corrected for naturally-occurring heavy isotopes of the elements H,

N, O, Si, S, and (in moieties from the derivatizing reagent) C, using matrix-based

probabilistic methods as described [58, 59] implemented in Microsoft Excel. Data

were also corrected for carry-over of unlabeled inoculum [58].

3.3.8 Computing Reaction rates from C13 Data

The inverse problem finding the flux distribution (reaction rates) that best

explains a set of C13 data is formulated as a non-linear optimization problem:

min
v
Error(v)
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subject to

vmin < v < vmax

S ∙ v = 0

The function Error(v) is a score of how well a given flux distribution fits

the experimental data. It is defined as:

Error(v) =
∑

i∈fragments

(fragmenti(v)−measuredi)
2

σ2

where measuredi is the measured fractional enrichment of fragment i, and frag-

menti(v) is the computed fractional enrichment of fragment i as a function of the

flux distribution v and σ is the standard deviation of the fragments as calculated

from repeat experiments.

A small variation was introduced to reduce the number of variables and

remove constraints. Let N be a basis for the null space of S. Then all valid fluxes

can be written as: v = N ∙ α.

min
α
Error(N ∙ α)

subject to:

vmin < N ∙ α < vmax

This reduced the number of variables from |v| = 335 to |α| = 139.

Optimization was performed with the Tomlab SNOPT package. This

method is an iterative local optimization and is therefore not guaranteed to find the

optimal solution. The procedure was therefore run with many randomly generated

starting points.

Computing confidence intervals

Confidence intervals for reaction rates were also computed by maximizing

and minimizing the value of each reaction in turn subject to a slightly relaxed

score.

min
α
/max

α
cTi ∙N ∙ α
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Table 3.1: Computational Evaluation of Glucoses

Potential glucose labels are evaluated based on three criteria a) Absolute Z-

score for various fluxes b) Z-scores normalized with respect to the best glu-

cose and c) the number of singular values of the sample greater than a thresh-

old (.03, .01, .003, .001). Glucose labels are listed on top including exotic la-

beling patterns (#111000 through #011111) and commercially available labels

(C1 through C6). C12 = C1,2 double labeled, CU = uniform labeled and C0

= unlabeled. Reaction and reaction ratio hypotheses are listed on the left.

The random hypotheses, as described in the methods, shows the level of noise.
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subject to:

vmin ≤ N ∙ α ≤ vmax

Error(N ∙ α) ≤ Errormax

Where ci = (0, 0, ...0, 1, 0...0)
T is a vector of all zeros with a 1 in position i. The

Errormax depends on the confidence value. Because different data sets provide dif-

ferent levels of consistency, Errormax was chosen to be 30 more than the minimum

error found.

3.4 Results and Discussion

A large scale isotopomer model was constructed of E. coli as described in

the methods section.

3.4.1 Scoring Experiments

From this model, 5000 candidate flux states were sampled uniformly and

experimental hypotheses tested. Z-scores were calculated for the hi-lo hypothesis

corresponding to 1) individual reactions 2) reaction ratios and 3) two random hi-lo

experiments. Raw Z-scores as well as normalized ones are presented in Table 3.1.

The random hypotheses (random 1 and random2) illustrate the level of noise as-

sociated with taking 5000 points and are on the order of 3.0. The reaction and

reaction ratio scores varied from the level of noise (example C4 + GLYK) to a

maximum of 69.1 (#000011 + GAPD/G6PDH2r).

The normalized Z-scores clearly show that there is no universally best la-

bel. ie. there is no single label that yields the best results for all experimental

objectives. The exchange of formate (‘EX for’) could be easiest measured with a

1,2 labeled glucose however this labeling pattern is bested by a Carbon 1 label for

the measurement of reaction ‘FTHFD’. This non-universality of labels in line with

expectations as it has been previously shown that the choice of labels can affect

the experimental outcome.
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There are certain reactions which are predicted to be difficult to measure.

The Z-scores for reaction ‘POX’ for example all lie within the level of noise.

For certain reactions, the best experiment that could be performed involves

exotic (non-commercially available) labels. One example is the ratio of ‘PFK’ to

‘FBP’. The best label was the 1,2,3 triple label (Z = 28.0) which is significantly

higher than the best commercially available label (1,2 double label, Z = 18.5). It

may be necessary to synthesize these compounds by other means in order to best

measure this reaction flux.

Visualization

Two sets of Z-scores corresponding to glucose lables ‘C1’ and ‘C6’ are also

plotted in Figure 3.3. Lighter colors indicate higher Z-scores and ease of measure-

ment. With this overview it is easy to compare two labels and their success at

measuring different pathways in the network. In this case, ‘C6’ scores higher at

measuring the Pentose Phosephate Pathway and most of lower glycolysis whereas

‘C1’ scores much higher at measuring malate synthase (‘MALS’ in the citric acid

cycle).

3.4.2 Dimensionality of Isotopomer Data

To determine the dimensionality of the isotopomer data, Singular Value

Decomposition (SVD) was performed on the entire solution space of several glucose

labels. The results are summarized in Figure 3.4B. Globally, the choice of glucose

labels affects the dimensionality of the resulting isotopomer data set. At the 1%

(.01) threshold, the label with the highest dimensionality was the exotic label

C110010 with 73. The three experiments performed in this study (C1, C6, CU)

had dimensions 53, 53 and 35 respectively. These values are all significantly lower

than the best label and in particular the uniform labeled experiment only produces

half of the dimensionality as the optimal experiment.

This result is highly important. Whereas 186 dimensions (pieces of infor-

mation) which are measured is enough to specify a unique flux vector, v (at least
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(b)

Figure 3.4: Data Dimensionality with SVD

The linear dimensionality of experimental data space is measured with Singular

Value Decomposition. a) The E. coli model has 335 reactions and 139 degrees of

freedom. The isotopomer fragments were computed for a random sample of flux

distributions and plotted in the 186 dimensional space of simulated measurements.

The upper bound on the number of degrees of freedom in this space was deter-

mined by Singular Value Decomposition on the samples. The number of singular

values was counted until the magnitude of the next singular value fell below the

instrument threshold. b) The number of significant singular values is tabulated

against the choice of glucose with values ranging from 26 to 100.
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(a) (b)

Figure 3.5: Comparing Predictions and Experimental Flux Ranges

a) For several reactions, the computed Z scores are compared to the resulting

measured flux ranges. Z-scores show (color coded) Z-scores for each of the 12

reactions and three glucose labels. FVA indicates the absolute allowable flux ranges

for three glucoses (‘C1’, ‘C6’, ‘CU’) as well as the range if no C13 data is imposed

(’none’). A normalized version of this table is also presented where all flux ranges

are divided by the FVA range thus showing the fraction of flux range remaining.

This quantity ranges from 0 (range fully specified) to 1 (no additional information).

b) A scatterplot of Z-scores versus the reduction of flux ranges. The correlation is

r = -.62.

in theory), the much lower true dimensionality is nowhere near enough. The best

setup specifies just over half (73/139 = .52) the degrees of freedom required and

the CU label only about 1/4 (.26).

The SVD computational is a linear operation and thus actually overesti-

mates the true dimensionality of the data.

3.4.3 Experimental Verification

Wild type E. coli was grown under three glucose media conditions: 1) 100%

C1 labeled glucose (‘C1’). 2) 100% C6 labeled glucose (‘C6’) 3) 20% Uniform

labeled + 80% natural labeled glucose (‘CU’). The experimental measurements

were corrected for natural isotope labeling and confidence intervals were generated
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Figure 3.6: Solution space size with different data sets

The range of allowable fluxes (vmaxvmin) were computed for each reaction, con-

strained by none, one, two or three sets of C13 data. Reactions are rank ordered

by range. The reaction order is potentially different between conditions.

for each reaction. Figure 3.5 compares Z-scores and computed reaction ranges.

From the color coding of the Z-scores (green = high score, red = low) and

the relative reaction ranges (green = low range, red = high range) it is apparent

that the Z-scores are an imperfect predictor of flux range. In fact a scatter plot of

Z-scores vs. relative flux ranges (Figure 3.5B) shows a correlation of -.62. This is

statistically significant and in particular the reactions which were most difficult to

elucidate (high relative flux range) all had Z-scores less than 10.

Global Glucose Properties

Reaction confidence ranges were computed for all reactions using all three

sets of C13 data and all combinations thereof. The reactions were rank ordered

by allowable flux in Figure 3.6. Using different labels provides different levels of

reaction confidence. Including no C13 data generates the largest solution ranges

(upper black line). Adding C13 data reduces the ranges. With almost no exception,
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including one experiment yields larger confidence intervals than any combination

of two carbon sources which in turn is a larger range than including all three sets.

Of the single experiment curves, the ‘CU’ curve provides notably worse ranges than

the other two experiments which agrees with the earlier result that ‘CU’ provides

less information to the model.

If a reaction confidence of 1 (mm ∙ gDW−1∙h−1) is desired, then without any

C13 data, 85 reactions meet this criterium. Performing the worst C13 experiment

(‘CU’) yields 105 reactions whereas the combination of all three C13 experiments

yields 125 reactions. In other words, performing all three experiments will increase

the number of elucidated reactions by 40 reactions or about 50%. This is somewhat

less than but on the same order of magnitude as the dimensionality of the C13

data.

3.5 Concluding Remarks

We introduce a new framework for dealing with the uncertainty inherent to

C13 experiments using Monte Carlo Sampling. This allows us to predict the success

of actual wet lab experiments before actually performing them. This framework

reveals several key findings:

• The choice of input label is important. Different labels perform better than

others. In particular, a 20% mixture of uniform label + 80% natural label

(‘CU’) was shown to elucidate reaction rates worse than either a ‘C1’ or

‘C6’ label. This can be established before performing any actual experiment

and without having information about the true flux distribution like other

methods [47, 52].

• There is no universally best label. The best label depends on the experimen-

tal objective. Certain reactions are easier measured with some labels than

others and no label is best at elucidating all reactions.

• With our method we were able to predict that certain exotic C13 labels of

glucose, in particular C1,2,3 and C1,2,5 triple labels are predicted to perform
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superior for elucidating many reactions to commercially available single la-

bels. It may be necessary to synthesize these isotopomer compounds to best

measure these key reactions.

• The C13 data dimensionality is less than anticipated. Whereas each C13

experiment can measure 186 pieces of information at a time, there is a high

degree of interdependence. We measured the true data dimensionality to

be in the 35-50 range for experiments tested and as high as 73 for certain

exotic labels. This high data redundancy can partially explain why C13

experiments still leave so many reactions with high uncertainties.

While steady state C13 analysis is clearly useful, it may be less useful at

restricting flux than would be expected.

The authors declare no conflicts of interest.
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Chapter 4

Elimination of

Thermodynamically Infeasible

Loops in Steady State Metabolic

Models

4.1 Abstract

The Constraint-Based Reconstruction and Analysis (COBRA) framework

has proved useful for studying steady state flux solutions in genome-scale metabolic

networks. One shortcoming of current COBRA methods is the possible violation of

the so called “loop law” in the computed steady state flux solutions. The loop law

is analogous to Kirchhoffs second law for electric circuits and it states that there

can be no net flux around a closed network cycle in the steady state. While the

consequences of loop law have been known for years, it has been computationally

difficult to work with and thus the limitations that it imposes have been overlooked.

We present a general Mixed Integer Programming (MIP) approach, called loopless

COBRA (ll-COBRA), to eliminate all steady state flux solutions not compatible

with the loop law. We demonstrate the approach to augment COBRA on two

previously published COBRA methods, Flux Variability Analysis and Monte Carlo

52
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sampling of the flux space, and find that in both cases the imposition of the loop

law improves published results.

4.2 Introduction

Systems Biology aims to understand the properties of large-scale biochem-

ical networks through the construction of predictive in silico models. One of the

most commonly used approach is the Constraint-Based Reconstruction and Anal-

ysis (COBRA) framework [60, 3, 4]. Genome-scale models for metabolism are

built in a bottom-up fashion from various sources of biological knowledge, such

as genome annotations, metabolic databases and bibliographic “legacy” data; re-

viewed in [1, 61, 39]. This quality controlled reconstruction process results in

validated mathematical models, capable of making predictions about the rates of

reaction inside a cell, leading to a variety of applications [46, 62, 63]. As these

models are generally under-determined, steady state flux solutions are calculated

by imposing constraints on the system and optimization of an objective func-

tion [3, 64, 46, 65]. Popular constraints include the steady state assumption,

reaction reversibilities and reaction capacities. A list of methods developed under

this framework have been reviewed [3, 1, 61, 66].

A COBRA model consists of at minimum a stoichiometric matrix (S), and

reaction lower and upper bounds (lb, ub). The stoichiometric matrix encodes

information about reactions (columns) and metabolites (rows) such that entry Si,j

is the stoichiometric participation of metabolite i in reaction j. The stoichiometric

matrix relates the rates of reaction (v) to the change in concentration of metabolites

(x) by the formula:
dx

dt
= S ∙ v

At steady state, concentrations are assumed not changing and this equation

reduces to S ∙ v = 0. The reaction bounds impose an upper and lower limit on

the rates of each reaction. Many reactions are considered irreversible (vi > 0).

Others, especially uptake and secretion reactions, are experimentally measured

(vi = vexp). If no information is available, arbitrarily large bounds are set (ie
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−10000 < vi < 10000). Together, the flux bounds and the steady state equation ,

define a closed space of possible flux states. Flux Balance analysis (FBA) attempts

to fine compute the likely state by optimizing a metabolic objective [67, 68]. Often

this is the production of biomass [46], production of ATP [69] or production of

biomass per unit input [65].

Classical FBA and many other COBRA methods often ignore the impo-

sition of the so-called ‘loop law’ [70]. The loop law is analogous to Kirchhoffs

second law for electrical circuits and it states that the thermodynamic driving

forces around a metabolic loop must add up to zero. As such, there cannot be a

net flux around a closed cycle in a network in a steady state. Methods for deter-

mining whether a computed flux distribution has a loop have been developed [71]

although they are quite cumbersome and not flexible enough to be included in

optimization computations [5].

An alternative approach to treating the loop law is to include additional

thermodynamic information. Methods that do so rely on the relation ΔGr =

ΔG0 + RT lnQ where Q is a ratio of metabolic concentrations and ΔGr is the

Gibbs energy of a reaction. ΔGr directly relates to the sign of the flux through

the associated reaction. If ΔGr > 0 and vnet < 0 and vice versa. This places

additional constraints on the reaction directions as well as concentrations. This

approach was used to compute potential regulatory sites [35], determine reaction

directionality [72] and compute feasible concentration ranges [73]. A slightly dif-

ferent formalism with decoupled forward and reverse reactions has been used to

modify FBA [74, 75]. All these methods require knowing the standard free en-

ergy change of reactions (ΔGr) or the standard energies of formation ΔGf of all

metabolites in the network. These values can be found in databases [76], or esti-

mated computationally with methods such as group contribution theory [77, 78]

although accuracy and coverage pose some challenges.

We have developed a simple method to incorporate the loop law constraints

into many current COBRA methods. This method requires no additional inputs

or data (such as concentrations, ΔGf , etc.) and turns any Linear, Quadratic or

Mixed Integer Problem (LP, QP, MIP) into a modified Mixed Integer Problem.
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The solution to this expanded problem solves the initial problem with the added

constraint that the fluxes may not contain loops. We demonstrate this technique on

three popular COBRA methods: Flux Balance Analysis (FBA), Flux Variability

Analysis (FVA) and Monte Carlo Sampling to produce loopless versions of each

(ll-FBA, ll-FVA, ll-sampling). Given the extensive use of COBRA methods this

simple method to eliminate steady state flux solutions with net fluxes through

loops is likely to find widespread use.

4.3 Methods

4.3.1 The ‘loopless’ condition

First, lets consider the simpler problem of determining if a given flux solu-

tion, v, contains a loop. In order for v to satisfy the loop law the reaction energies

around any cycle must add to zero. This condition can be written concisely as

vT ∙ G = 0 where G is a vector of energies of each reaction. Extreme Pathway

(ExPa) [12] and Elementary Mode analysis [79] have shown that the number of

loops (type III pathways) grows rapidly and enumerating all loops (v) has not

been possible for medium to large scale networks [14]. As it turns out, it is not

necessary to enumerate all loops. As shown in Fig. 4.1, all loops lie within the

internal network, Sint. Any steady state path in Sint is a loop and all such paths

can be expressed as a linear combination of the null basis of Sint [4]. All loops can

be expressed in the form v = Nint ∙ αi where Nint = null(Sint) and αi are weights.

If it can be shown that NTint ∙ G = 0 then it automatically follows that v
T ∙ G = 0

for all loops v.

The loopless condition forms a Linear Programming (LP) problem. A vec-

tor of continuous variables (Gi) indicates the driving force of each reaction. This

quantity can be thought of as being analogous the ΔGr of each reaction in that

sign(G) = sign(ΔGr) although numerically they may be quite different. A loop

is purely defined by the sign (direction) of the flux distribution [71] and there-

fore any solution to Nint ∙ Gi = 0 indicates that no loop is present. Verifying a
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Figure 4.1: Loops in metabolic networks

A small network illustrates pathways with and without loops. A network contains

five internal reactions and three exchanges (a,c). The internal part of the network is

shown in (b,d). Steady state pathways are superimposed in gray. Extreme Pathway

analysis [12] indicates that Type I and II pathways use exchange reactions and a

partial subset listed in c). Type III pathways do not contain exchange reactions

and form a set of loops. In this example there are 3 type III pathways (d). The first

two pathways form a basis of the internal null space (Nint) and the third pathway

can be written as a linear combination of the first two pathways.
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flux distribution therefore involves finding a solution to Nint ∙ G = 0 with these

constraints:

Gi < 0 for all vi > 0

Gi > 0 for all vi < 0

Gi ∈ < for all vi = 0

Nint ∙G = 0

In practice, it is necessary to restrict Gi to be strictly positive or strictly

negative to avoid the degenerate solution Gi = 0 for all i. This necessity is another

reason why Gi may not be interpreted directly as ΔGrs. The following correction

restricts Gi to [-1000,-1] or [1,1000] and Gi may never be exactly 0.

−1000 < Gi < −1 for all vi > 0

1 < Gi < 1000 for all vi < 0

Gi ∈ < for all vi = 0

Nint ∙G = 0

If a solution exists, then v contains no loops. If no solution exists, v contains

a loop. Note that unlike most LP problems, the objective (max cT ∙ΔG) is of no

concern; only the feasibility is relevant.

4.3.2 Adding the Loop Law Constraints to COBRA prob-

lems: ll-FBA

The linear loop law constraints described above can be added to almost

any COBRA LP, MILP, QP or MIQP problem as long as this problem contains

a variable, v, for each of the (internal) fluxes in the model. The only necessary

addition is the condition that ensure sign(v) = -sign(G). This is achieved by
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addition of a binary indicator variable (ai) for each internal reaction. The full set

of constraints can be expressed as follows:

ai =
0 if vi < 0

1 if vi > 0

Gi > 0 if ai < 0

Gi < 0 if ai > 0

Nint ∙G = 0

This is converted to the following MILP problem:

−1000(ai) + 1(1− ai) ≤ Gi ≤ −1(ai) + 1000(1− ai)

−1000(ai) ≤ Gi ≤ 1000(1− ai)

Nint ∙G = 0

ai ∈ 0, 1

Gi ∈ <

As before, Gi is now allowed to be 0 to avoid degenerate solutions. These

constraints may be added to almost any LP COBRA method. For example, the

full formulation for loopless Flux Balance Analysis (ll-FBA) is as follows:

max
v
cT ∙ v

subject to

∑

k

Skjvk = 0

lbj ≤ vj ≤ ubj

−1000(1− ai) ≤ vi ≤ 1000ai

−1000(ai) + 1(1− ai) ≤ Gi ≤ −1(ai) + 1000(1− ai)

Nint ∙G = 0
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ai ∈ {0, 1}

Gi ∈ <

i ∈ ‘internal’

Where Skj is the stoichiometric matrix, j iterates over all reactions, i iter-

ates over internal reactions, lbj, ubj are the lower and upper bounds of all reactions

and cj are the coefficients of optimization.

4.3.3 Performance enhancements

Several performance considerations can be made in order to speed up this

computation:

1. Null basis computation: The algorithm requires a set of basis vectors of

the internal part of the stoichiometric matrix, S. Nint = null(Sint). By

default, MATLAB will compute a dense orthonormal basis based on Singular

Value Decomposition. It was found to be many fold faster to use a sparse

representation of Nint based on a LU decomposition. As an added benefit,

calculating Nint in this fashion can be faster than computing the orthonormal

basis.

2. Elimination of unnecessary reactions: If there is no flux through a reaction, it

can be eliminated from consideration for the loop law formulation. This elim-

ination saves an indicator variable ai and its corresponding Gi. Reactions can

have no flux if lb = ub = 0, which is very easy to check. A more complete

check requires performing a Flux Variability Analysis (FVA) computation

that is itself expensive but may be worthwhile especially if many loop re-

moving computations will be computed. Depending on the MILP/MIQP

solver used, this optimization may not bring much benefit as a pre-processor

may catch these conditions automatically.

3. Combining reactions with the same direction: Often in a network reactions

are coupled such that their fluxes are either both active or both inactive. This
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Table 4.1: Network Description

Five models of increasing size are used throughout this paper. 1) The toy network

described in Fig. 4.2. 2) The Escherichia coli core model [80] 3) Helicobacter pylori

iIT341 [37] 4) Staphylococcus aureus iSA619 [81] 5) E. coli iAF1260 [82] and 6)

Homo sapiens Recon 1 [83].

Network Rxns Mets Genes
Toy Network 5 3 -
Core E. coli 95 72 137
H. pylori iIT341 554 485 339
S. aureus iSB619 743 655 619
E. coli iAF1260 2382 1668 1261
Human Recon 1 3742 2776 1905

happens for example if two reactions are part of the same linear pathway.

If two reactions i and j are coupled, then it is known that ai = aj and

one variable can be used instead. Gi and Gj must remain two separate

variables, however. In rare instances, two reactions are coupled inversely

where vi = −vj. In this case it is possible to combine ai and aj as ai = 1−aj.

Coupled reactions can be easily computed because their rows in Nint will be

similar (Nint(i, :) = kNint(j, :). k > 0 implies positive coupling. k < 0 implies

negative coupling).

4. Flux Variability Analysis only: It is comparatively inexpensive to compute

the classic FVA procedure before going to the loopless method. As a solution

pool of loopless distributions is formed, they can be checked for optimality for

any of the subsequent computations. If two reactions are in a linear pathway,

then a flux solution that optimally uses one reaction will also optimally use

the second. This saves time by eliminating expensive MILP computations.

For the E. coli model, the number of computations is cut by a factor of 2.
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4.3.4 Models

All COBRA models used below except the toy network were previously

published and the reader should refer to Table 4.1 for the references. The models

were exported from the BiGG knowledgebase [38] as SBML files and imported with

default parameters in the COBRA toolbox. The S. aureus model contains several

potential biomass objective functions and all but ‘biomass SA 8a’ (the default)

were removed.

4.3.5 Flux Variability Analysis: ll-FVA

Loopless Flux Variability Analysis (ll-FVA) was performed by using the

ll-FBA method described above and sequentially maximizing/minimizing each re-

action in the model. This computation was performed both with and without

the loop law constraints. Reactions where (maximini) differed by more than 10
−6

between FVA and ll-FVA were counted.

Sampling of the steady state solution space

Monte Carlo Sampling was used to generate a set of uniform flux distribu-

tions, possibly containing loops. The method is based on the Artificially Centered

Hit and Run (ACHR) algorithm with slight modifications [21]. Initially a set of

non-uniform pseudo-random points, called warm-up points, is generated.

In a series of iterations, each point is randomly moved, always remaining

within the feasible flux space. This procedure is achieved by 1) choosing a random

direction, 2) computing the limits of how far one can travel in that direction in

either positive or negative direction and 3) choosing a new point randomly along

this line. After many iterations, the set of points is mixed and approach a uniform

sample of the solution space.

Linear Programming (LP) was used to generate warm-up points. For each

point, the objective coefficients are set to a random vector with values in [-1,1].

This procedure generates a point at random corners in the solution space. The

direction of movement is chosen as described in [36]. The center point of all points
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is computed and the direction is the difference of a randomly selected point and

the center point. This method of choosing the direction has the effect of biasing

the directions in the longer directions of the solution space and speeds up the rate

of mixing while maintaining sample uniformity.

One drawback of the ACHR sampler is that the termination condition is not

clearly defined. Here we introduce the concept of the mixed fraction as a measure

of the number of iterations required for proper mixing. A partition is created over

the set of points by drawing a line at the median value with half the points on

either side of the line. The mixed fraction is a count of how many points cross

this line between the beginning of sampling and the end as a fraction of the total

number of points. Initially the mixed fraction is 1 as all points are on the same side

of the partition. When perfect mixing is achieved, each point has a 50% chance of

crossing the partition line so the mixed fraction will be close to 0.5. 2000 points

were generated and mixed for 1 hour at which point the mixed fraction was 0.495.

Removing Loops: ll-sampling

Sampling the loopless solution space can be implemented as a post-process-

ing step to this Monte Carlo Sampling. Once a set of flux distributions has been

generated, the loops can be removed. One of the several ways to do this is to find

the nearest loopless flux (call it wi) to a given flux distribution (vi):

min
w
|wj − vj|

subject to:
∑

k

Skj ∙ wk = 0

lbj ≤ w ≤ ubj

−1000(1− ai) ≤ wi ≤ 1000ai

−1000(ai) + 1(1− ai) ≤ Gi ≤ −1(ai) + 1000(1− ai)

NintG = 0

ai ∈ 0, 1
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Gi ∈ R

where |wi − vi| is the distance to be minimized. If the distance metric used is

the Euclidian norm (2-norm), then this becomes an MIQP problem. We minimize

(wj − vj)2. The Manhattan norm (1-norm) may be implemented as an MILP

problem by introducing two helper variables v+and v− such that |v−w| = (v++v−).

min
w
(v+j + v

−
j )

subject to:

v+j ≥ vj − wj

v−j ≥ wj − vj
∑

k

Skjvk = 0

lbj ≤ vj ≤ ubj

−1000(1− ai) ≤ vi ≤ 1000ai

−1000(ai) + 1(1− ai) ≤ Gi ≤ −1(ai) + 1000(1− ai)

Nint ∙G = 0

ai ∈ {0, 1}

Gi ∈ <

v+j , v
−
j > 0

4.3.6 Computer Configuration and Availability

Computations were performed in the MATLAB (Mathworks; Natick, MA)

version 2009b environment with the COBRA toolbox [31] and SBML toolbox [84].

Linear and Mixed Integer Linear programming was performed by the TOMLAB/-

CPLEX (Tomlab Research; Pullman, WA) package version 7.4. All computations

were run on a Dell Studio XPS workstation (core i7 920 processor, 12GB ram,

Windows 2003 R2, 64 bit). The parallel toolbox was used for both ll-FVA and

ll-sampling application to take advantage of multi-core architecture.
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The code used for the computations in this publication will be made avail-

able as part of the next release of the COBRA toolbox [31]. The optimizeCbModel

(FBA) and fluxVariability (FVA) functions now have an optional flag to exclude

loops. Monte Carlo Sampling is called through the new nearestLoopLessFlux func-

tion which returns the nearest loopless flux using the MILP or MIQP methods.

Internally, these three methods call an addLoopLawConstraints function which

adds loop law constraints to any COBRA LP, MILP, QP or MIQP problem and

turn it into an ll-COBRA problem.

4.4 Results

4.4.1 Flux Balance Analysis with a toy network

A toy network illustrating Flux Balance Analysis is shown in Fig. 4.2, a and

b. Its S matrix defines the topology of this network mathematically. Upper and

lower bounds are imposed on the reaction rates. In this case the internal reactions

(v1, v2 and v3) are reversible and bounded in the range [-10, 10]. Metabolite A

and C can be exchanged with the environment at lower rates [0,1]. This setup

is common as uptake and secretion rates may be constrained to experimentally

measured values whereas internal reaction bounds are often unknown. Maximizing

reaction v3 by conventional FBA yields the flux distribution shown in Fig. 4.3 c.

This solution is not unique, however, all the solutions have a flux of 10 through

v3 and at least 9 units through reactions v1, v2 and v3 forming a loop around

A → B → C → A. This scenario violates the second law of thermodynamics, as

there can be no chemical driving force for all three reactions at the same time.

The ll-FBA solution that maximizes flux through v2 is shown in Fig. 4.2 d. In this

case only 1 unit of flux through v3 and v1 and v2 remain unutilized.

4.4.2 Flux Variability Analysis

While the previous example is synthetic, imposing the looplaw also has an

effect on real biological networks. FVA is a common technique for evaluating the
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Figure 4.2: A toy network with loops

A five-reaction toy network is used to illustrate the effects of the loop law. A) The

structure of the network along with reaction bounds are represented graphically.

Reaction v1, v2 and v3 form a loop. B) The stoichiometric matrix (S), lower bounds

(lb) and upper bounds (ub) mathematically describe the network. The objective

coefficients (c) indicate which reaction should be maximized, in this case, reaction

vc. C) Classical FBA returns a solution that contains a loop. The objective value

is 10. D) Eliminating the loop results in a lower objective of 1 unit of flux through

reaction vc and none flowing around the center loop.
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scope of possible metabolic states a network can achieve (Fig. 4.3 A). Each reaction

is in turn minimized and maximized giving the range of use of a given reaction.

Several models of increasing size were tested with FVA (Table 4.1). They range

from the toy network with only 5 reactions to a whole human network containing

3742 reactions. The results of the six networks are shown in Fig. 4.3 B. In all

cases, two or more reactions can have a larger range if the loop law is not imposed.

Performance Considerations There is a marked reduction in computational per-

formance when ll-FVA is computed as compared to FVA alone. MILP is known

to be NP Complete and the running time is highly problem- and solver- specific.

Average running times for the Tomlab/CPLEX solver are shown in Fig. 4.3. The

running time of each iteration varied by several orders of magnitude (data not

shown) and the average is dominated by a few very slow iterations. For a medium

size problem such as the H. pylori model, the addition of the loop law constraints

increases the computation time by a factor of 12. A different solver (GLPK) was

not able to solve this problem after several hours.

4.4.3 Monte Carlo Sampling of networks

Monte Carlo Sampling of the steady state solution space is one of the tech-

niques to study the set of feasible flux distributions a network is capable of sup-

porting. For this study the iIT431 model was chosen. 2000 points were sampled

by a modified Artificially Centered Hit and Run (ACHR) method and then post-

processed to remove the loops by either the MILP or MIQP method as shown in

Fig. 4.4 a and described in the Methods section. All 2000 points contain loop

fluxes (Fig. 4.4 b). The MILP and MIQP methods show different properties in

removing looping reactions. On average, the MILP method altered 22.6 reactions

in the flux distribution, which is very close to the number of reactions with altered

FVA range [72]. The MIQP method on average shifted 252.6 reactions by 0.01

units or more.

These samples allow the visualization of the solution space within which the

cell operates. By plotting the samples on a histogram, the projection across the

solution space can be obtained along any reaction. The projections of 3 reactions
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Figure 4.4: Monte Carlo Sampling

A random Monte Carlo Sample of 2000 points was generated for the H. pylori

model [37]. a) Points are initially sampled from the complete steady state solution

space. Points which are in the infeasible region (grey) are moved to the nearest

feasible point using either a Euclidian distance (MIQP) or a Manhattan distance

(MILP). b) Differences between the two samples including the average distance

moved (|v − v0|), and the average number of reactions moving as the point is

corrected (#rxns > .01). c) Histograms showing the distributions across three

reactions (ACONT, ACKr, THRS) of initial points (v0), and MILP/MIQP loopless

points.
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are shown in Fig. 4.4 c. For many reactions, such as ACONT, the MILP loop

removal does not shift points whereas MIQP does. For other reactions, removing

loops shifts the bulk of points towards higher (ACKr) or lower (THRS) fluxes.

Performance Considerations

Removing loops in the iIT431 model with 554 reactions requires about 4.5

seconds of post processing per point using the MILP method. The MIQP method

requires about 16.9 seconds. It is possible to sample larger networks (iJR904 with

1075 reactions being the largest successfully sampled, results not shown) but there

is a limit. The larger E. coli model, iAF1260 and the human reconstruction could

not be sampled as described in the Methods section due to scaling issues. The

MILP/MIQP solver was not able to find the nearest solution in a reasonable time.

4.5 Discussion

We have presented an enhancement to classical FBA, and other COBRA

methods, that incorporate the constraints associated with the loop law by disal-

lowing steady state flux solutions that contain closed loops. We apply this method

to FVA as well as Monte Carlo Sampling as examples of many methods to which

it could be applied. In both cases we are able to show that the traditional method

(which allows loops) gives answers that are known to be infeasible and that ll-

COBRA provides a better solution.

The COBRA framework and methods such as FBA were in part developed

as an alternative to detailed kinetic models. FBA models lack of requirement for a

large numbers of parameters allows them to scale to larger size. Given the utility

of FBA-models, interest developed in creating hybrid methods that combine the

classical FBA approach with some elements of thermodynamics. In fact, there is

a spectrum of potential modeling methodologies, shown in Table 4.2, that strike

different points in the tradeoff between descriptive power and computational diffi-

culty and number of required parameters. The loop law method proposed in this

paper is again a hybrid method of classical FBA and the inclusion of a subset of
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thermodynamic constraints. The benefits over classical FBA are the exclusion of

loop containing fluxes. The benefits if the loopless approach is essentially “free,”

in the sense that it requires no additional parameters over classical FBA.

The loop law is a direct consequence of the second law of thermodynam-

ics. Incorporating thermodynamics into COBRA methods has been an ongoing

challenge. Most methods rely on ΔGf information of metabolites [35, 73]. These

quantities are often known in the literature or can be estimated computation-

ally [77, 85]. In theory the ΔGf along with the metabolic concentrations are all

that is needed to compute the reaction directionality of reactions and as such can

be exploited. One direct consequence of this formalism is that no flux distribu-

tions with loops are allowed however the thermodynamic constraints go further

than that as well. The disadvantage of such methods is the requirement for accu-

rate ΔGf values. When these values are not available, many of the thermodynamic

constraints can no longer be evaluated, with the loop law being an exception; thus

the loopless method is useful. It does not require any additional input not already

provided by the COBRA framework. The only reason to not include the loop law

these would be computational difficulty; however as Fig. 4.3 shows, for moderately

sized problems, it is quite tractable.

The reconstruction process for creating COBRA models has been described

before in great detail [1, 39]. Every reaction must be evaluated by hand and among

other things, its directionality determined. One of the important steps towards

their construction is ensuring that they produce viable results when optimizing for

physiological functions such as ATP production or biomass production. What can

often occur is an under constrained model will predict unbounded internal reac-

tion rates due to some loop. This unrealistic prediction is problematic and very

often the remedy involves changing the directionality of a reaction to eliminate the

loop. While this solves the problem of unbounded solutions, it may inadvertently

introduce an artificial constraint on the system. All reactions are inherently re-

versible and marking them as irreversible may restrict the accuracy of the model

under some extreme conditions. Several studies [86, 87] indicate that in the iJR904

model of E. coli most reactions are estimated to be near equilibrium. One reason
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that loopless FVA affects so few reactions (Fig. 4.3) is precisely because the model

was constructed to avoid loops. Using loopless FBA instead of classical FBA may

in the future produce better models in the future because many of these artificial

directionalities are simply not needed and eliminating loops when computing is

more accurate than eliminating them from the network description.

This study only covers two commonly used COBRA methods and the effects

that the loop law has on them. There are many other methods that could benefit

from this addition. All that is required is that the method 1) be a LP, MILP

or QP problem and 2) have a variable for each internal reaction. Some possible

candidate methods are: Minimization Of Metabolic Adjustment (MOMA) [88],

Regulatory On/Off Minimization (ROOM) [89], gene deletion studies [55], regula-

tory FBA [90], Flux Coupling Analysis [91] and geometric FBA [92]. Finally, there

is a special case worth noting. A recent manuscript [92] uses an iterative linear ap-

proach to find the geometric center of the optimal FBA solution space and thereby

return a unique solution. One consequence is that usually the solution is also free

of loops. While this method is fast computationally, it fails to remove loops in

cases where the objective is part of a loop, such as the toy example. By the nature

of the problem, it is unlikely that any purely linear programming approach would

be able to handle these cases.

4.6 Conclusion

Solutions to the classical FBA problem formulation can violate thermo-

dynamic constraints. The addition of the loop law constraints presented in this

manuscript requires no additional parameters or measurements not already present

in a typical COBRA model. The benefits of eliminating thermodynamically in-

feasible solutions are not as great with the loopless approach as some of other

thermodynamic methods. However, no additional parameters are required to im-

plement the limitations inherent in the loop law. An easy algorithm is presented

here.
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Chapter 5

The BiGG Knowledgebase

5.1 Abstract

Genome-scale metabolic reconstructions under the Constraint Based Re-

construction and Analysis (COBRA) framework are valuable tools for analyzing

the metabolic capabilities of organisms and interpreting experimental data. As the

number of such reconstructions and analysis methods increases, there is a greater

need for data uniformity and ease of distribution and use.

We describe BiGG, a knowledgebase of Biochemically, Genetically and Ge-

nomically structured genome-scale metabolic network reconstructions. BiGG in-

tegrates several published genome-scale metabolic networks into one resource with

standard nomenclature which allows components to be compared across different

organisms. BiGG can be used to browse model content, visualize metabolic path-

way maps, and export SBML files of the models for further analysis by external

software packages. Users may follow links from BiGG to several external databases

to obtain additional information on genes, proteins, reactions, metabolites and ci-

tations of interest.

BiGG addresses a need in the systems biology community to have access to

high quality curated metabolic models and reconstructions. It is freely available

for academic use at http://bigg.ucsd.edu.

74



75

5.2 Background

Metabolism is the structure and behavior of chemical reaction networks

that occur in living organisms in order to maintain life. It is intrinsically linked to

many other cellular functions and metabolic abnormalities are implicated as the

cause of various diseases. Over the last 100 years, the list of reactions comprising

an organisms metabolism has largely been catalogued. This reductionist process

has focused on characterizing individual reactions in great detail. However, as the

body of metabolic knowledge grew, so did the desire to integrate it into compre-

hensive models to simulate, predict and ultimately understand its behavior on a

systems level. Kinetic models utilizing a system of differential equations are an

established method of modeling biochemical pathways [93]. This field is an active

area of research with an extensive number of models [94, 95, 96, 97] as well as

computational tools [98, 99] available. Kinetic modeling suffers from the difficulty

of requiring comprehensive knowledge of kinetic parameters to sufficiently define

the system. The parameters have proven difficult to measure in a consistent fash-

ion and are often unknown [100, 26]. A consequence is that the scope of kinetic

models tends to be limited.

In contrast, constraint based modeling based on genome-scale metabolic

reconstructions aim to include every known reaction for an organism, through the

integration of genome annotation and biochemical knowledge. Reactions are de-

fined simply by their reaction stoichiometry, and the networks are easily converted

to mathematical models on which constraint-based analysis can be applied. In this

paradigm, model predictions depend on constraints through reaction fluxes and an

inferred metabolic objective, rather than on precisely defined kinetic parameters.

Metabolic reconstructions have proven broadly useful for a number of applications.

Case studies have been reviewed in [46].

In recent years, the publication of hundreds of genomes, with various data-

bases such as KEGG [101], Biocyc [102] and Reactome [103] describing their an-

notation, has simplified the task of creating drafts of genome-scale metabolic re-

constructions [104, 105]. This has spurred the development of an ever increasing
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number of reconstructions [1, 61, 60, 106, 107, 108, 109] . It is important to note

that reconstructions derived directly from genome annotation may contain several

gaps or incorrect annotations, leading to errors in model predictions. In order to

be useful for prediction, models must undergo multiple rounds of manual curation

and testing [39] . A number of widely-used manually-curated, component-by-

component (bottom-up) reconstructions of genomic and bibliomic data have been

published, creating the need for a systematized biochemically, genetically and ge-

nomically structured (BiGG) knowledgebase of metabolic reconstructions.

5.2.1 Model Reconstruction Process

A general bottom-up metabolic reconstruction process has been formulated

and detailed in [1, 39]. Initially, a parts list is assembled from existing databases

(most notably KEGG [101], EntrezGene [110]) giving a crude reconstruction scaf-

fold. This reconstruction is refined through an extensive review of primary litera-

ture, review articles, textbooks, and other specialized databases. A mathematical

representation (S matrix) of the reconstruction is created and used to validate

network structure by testing functionality, such as growth under some condition

or the ability to produce a specific metabolite. Furthermore, gap analysis iden-

tifies possible missing reactions by finding so called dead end metabolites which

can be produced by the network but not consumed. Failure of network validation

tests and the existence of gaps suggest targeted literature searches or experiments,

which can be used to improve the model. Each reaction is verified individually

and a confidence score can be assigned by the curator. A model may undergo

several iterative rounds of validation and changes before it reaches a satisfactory

state and is published, a process which can take up to a year of time. Because of

the great effort involved, there have been attempts to partially automate the pro-

cess [111, 112, 113, 114, 115, 115, 116] and split work through collaboration [117].
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Figure 5.1: Gene Protein Reactions Statements

GPR statements are shown for two Human Recon1 reactions. Each graph indicates

the relationship between genes (purple), transcripts (magenta), protein (green),

and reaction (teal). A) Sphingosine kinase 2 (SPHK21c) is associated with only

one gene. B) Platelet-activating factor acetylhydrolase (PAFH) can be transcribed

by either gene PAFAH2 or in combination of genes PAFAH1B1, PAFAH1B2, and

PAFAH1B3. The GPR expression for this reaction is (5051.1) or (5049.1 and

5050.1) or (5049.1 and 5050.1 and 5048.1).
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5.2.2 Gene-Protein-Reaction associations

Most biological reactions require enzymatic catalysis to occur. Thus the

on or off state of each reaction in the network is controlled by the genotype and

expression level of associated genes. In the simplest case, a reaction is catalyzed

by only a single enzyme which is coded for by a single gene. The expression and

translation of that gene implies the feasibility of the reaction, and vice versa. More

complex cases involve multiple genes and proteins whose relationship is described

using Boolean logic. A single protein may be composed of subunits coded by two

(or more) genes. If all of these subunits are required for the catalytic activity of the

protein, the activity is modeled as an and logic (gene A and gene B). Alternatively,

the model allows for equivalent proteins (isozymes) to catalyze the same reaction.

In this case, the presence of either protein is sufficient to establish the activity of

the reaction and an or logic is used (protein A or protein B). Other phenomena,

which are representable in the Boolean framework, are alternative splicing (or

logic) and obligate protein complexes (and logic). Collectively, these Boolean logic

statements relating genes, proteins, and reactions are named GPRs. If a GPR

statement of a reaction evaluates to true, then its corresponding reaction is said

to be feasible. Thus, GPRs may be used to evaluate the effects of gene knockouts

and gene regulation on the metabolic reconstructions, ruling out reactions whose

genes are not available. GPRs may also be displayed graphically. Figure 5.1 shows

two of the possible GPR associations found in BiGG.

5.3 Construction and content

5.3.1 Reconstructions

BiGG is currently capable of browsing and exporting the contents of seven

different genome-scale reconstructions of six organisms (see Table 5.1 1): Homo

sapiens Recon 1 [83], Escherichia coli iJR 904 [40] and iAF1260 [82], Saccha-

romyces cerevisiae iND750 [118], Staphylococcus aureus iSB619 [81],Methanosarcina

barkeri iAF692 [119] and Helicobacter pylori iIT341 [37]. These reconstructions
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span all three major branches of the tree of life and include two model organisms.

A global reconstruction of the human metabolic network, H. sapiens Recon

1, was recently completed [83]. The initial human reconstruction was based on gene

information from the KEGG, EntrezGene, and H-Invitational [120] databases and

was curated by evaluation of primary literature, reviews, and textbooks. Recon 1

represents a valuable tool as a scaffold for analysis of -omics data sets.

A variety of microorganisms have also been reconstructed. The E. coli

reconstructions, iJR904 and more recently iAF1260, are the most complete and

most used of these reconstructions. iJR904 has been used for the prediction of

adaptive evolution endpoints [121] and the engineering of lactate producing E. coli

strains [122]. H. pylori, another Gram-negative enterobacteria that lives in the

human stomach and has been shown to cause ulcers and gastritis, has a recon-

struction, iIT341. iAF692 is a reconstruction for the methanogenic archaebacteria

M. barkeri. iSB619 is a reconstruction of the infectious Gram-positive bacteria

S. aureus of interest due to high rates of infection and increasing resistance to

antibiotics. As more reconstructions are published, they will be added to BiGG.

All reconstructions in BiGG were developed on the Genomatica Simpheny

(TM) platform. This system includes quality control features to track genes, pro-

teins and reactions, as well as simulation tools to computationally validate models.

The models are built from a shared universal database of compounds and reac-

tions. It is therefore not possible to incorporate reconstructions developed with

other tools.

The reconstructions are stored on a Genomatica (San Diego, CA) supplied

server running an OracleTM database. Access to this database is provided by a

read-only client with several tables and views for accessing information on Reac-

tions, Metabolites, Genes, Proteins, Maps and Citations (Figure 5.2). All queries

are performed by a Linux/Apache/Perl Server using the CGI and DBI modules.

5.3.2 Browsing

The two main functions of BiGG are browsing content and exporting whole

reconstructions. The browser is designed for querying the content and compar-
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Figure 5.2: The BiGG Schema

BiGG is hosted on a Simpheny server running an Oracle database. Starred columns

indicate primary keys. Arrows indicate foreign key relationships. GPR table stores

the relationship between reactions, proteins, and genes. All tables and entries

shown in black are directly viewable by the user. Grey entries are used internally

only. GPRXML (marked by ∗) is a function which returns the XML formatted

GPR string given a reaction ID.
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ing different reconstructions whereas the exporter is primarily designed to enable

further computational analysis by other software packages.

The BiGG browser contains entries for metabolic reactions, metabolites,

genes, proteins, and literature citations (Figure 5.2). Reaction entries contain

information such as the balanced equation, compartment localization, EC num-

ber [123], reversibility, author comments, and links to references. Metabolite

entries contain information such as chemical formula and charge under physio-

logical conditions. The GPR relationships are displayed as text or graphs using

the graphviz package (http://graphviz.org). Hyperlinks to other databases are in-

cluded whenever provided by the authors of the reconstructions. These include

NCBI Entrez gene database [110], Uniprot/Swissprot [124] for genes, and KEGG

and CAS (www.cas.org) identifications for metabolites.

Reactions and metabolites can be searched through the Search Reactions

and Search Metabolites pages. Reactions may be searched for by name, EC num-

ber, or associated gene. Alternatively, all reactions in a model may be listed by

using the model name as the only search parameter. It is also possible to specify

compartment, pathway, or metabolite participation. Results may be limited by

only including reactions with known gene associations, high or low confidence, or

by excluding transport reactions. In addition, reactions may be searched across

reconstructions allowing for model comparison. Lists of reactions matching a set

of criteria may be exported as a tab delimited flat file. The exported files can

contain information for multiple models, simplifying model comparison.

Metabolites may be searched for by name, KEGG ID, CAS ID, or charge.

Just as for reactions, limiting searches by compartment, pathway, and organism is

possible. In addition to basic metabolite information such as formula and charge,

lists of reactions in which the metabolite participates are listed and categorized

by the metabolites role as a reactant or a product. Lists of metabolites matching

a set of search criteria may be exported as tab delimited flat file, and contain

information such as metabolite name, abbreviation, formula, KEGG ID, and CAS

ID. The browser interface is shown in Figure 5.3a.
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Figure 5.3: BiGG Screenshots

The BiGG knowledgebase can be accessed through a web browser. It has been

tested with Mozilla Firefox, Microsoft Internet Explorer, Opera, and Safari. Three

screenshots in Firefox show: (a) the content browser, (b) map viewer, and (c) the

export tool.



84

5.3.3 Maps

For visualization, curated metabolic maps are provided for many organisms

in BiGG. These maps show metabolites, reactions, and text markup. Some large

reconstructions (in particular human Recon 1) have several maps for different

metabolic subsystems. Maps are rendered with Scalable Vector Graphics (SVG)

for smooth scaling and are hyperlinked back to the entries in the database. A small

portion of a metabolic map from the human reconstruction is shown in Figure 5.3b.

5.3.4 Exporting

The second function of the BiGG knowledgebase is exporting reconstruc-

tions as Systems Biology Markup Language (SBML) files [125], which are specifi-

cally designed to work with the Matlab COBRA toolbox [31] and Systems Biology

Research Tool [126] for performing flux balance analysis and other computations.

This XML format is widely used for distributing systems biology models [125] .

By default, only entries for compartments, metabolites (the ¡species¿ tag), and

reactions are included. The user has several options available to customize export

as detailed below (see Figure 5.3c for interface).

Decompartmentalization

A reconstruction may be exported as a decompartmentalized model. A

compartment in a metabolic reconstruction is a distinct pool of metabolites and

their reactions. Metabolites are exchanged among compartments by transporter

reactions. All reconstructions included in BiGG have at least two compartments:

Cytosol and Extra-organism. Additionally, reconstructions of eukaryotic organ-

isms have internal compartmentalization modeling subcellular organelles. A par-

tially decompartmentalized reconstruction removes these internal compartments

and relocates their reactions and metabolites to the Cytosol. A full decompart-

mentalization removes internal compartments as well as the boundary between the

Extraorganism and Cytosol compartments, creating a single-compartment system.

In either case, internal transporters are removed.
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It should be noted that the utility of decompartmentalization lies in model

comparison rather than a basis for simulations. For instance, reactions such as ATP

synthase are driven by an electrochemical gradient across compartment boundaries.

In the decompartmentalized model there can be no gradients thus the ATP Syn-

thase reaction becomes thermodynamically incorrect, creating unpredictable out-

comes with some optimizations. As a rule, decompartmentalization should only be

used for comparative purposes. Computational studies should only be performed

on the full models.

Associated Genes, Proteins, and Citations

The exported SBML file may include information on genes, proteins and

citations. Because the SBML specification does not include fields for this kind of

data, this information is stored in the notes field of the reaction entries.

GPR statements. The notes field of the Reaction entries in the exported

SBML file can include Boolean strings corresponding to the GPR statements. The

GPR field is read and interpreted by the COBRA toolbox but should be ignored

by other programs.

From Reconstructions to Models

Reconstructions are the basis for computational models. The process of

converting a reconstruction into a model is performed by the curator and is re-

viewed in [3, 1]. Upper and lower bounds are placed on reaction rates, bounding

the space of flux distributions. An objective function is added, often correspond-

ing to the biomass production. The reconstruction, bounds and objective function

together comprise the model exported by BiGG.

Most of the simulations are run by default under parameters simulating

aerobic growth condition in glucose minimal medium. This is modeled by the

constraints on fluxes of the models exchange reactions. For instance, modeling

of an aerobic environment with glucose minimal media must allow for glucose,

oxygen, ammonium ion, salts, and other ions to be up-taken but other carbon

sources only excreted. These bounds are included in the SBML file along with the
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objective coefficients of each reaction and flux distribution. For simulating other

conditions there is a web based interface for changing the bounds on any reaction

by pressing the refine button. In this way, SBML files corresponding to different

media compositions can be created.

Compatibility

SBML files conform to the level 2 version 1 specification and are compati-

ble with the COBRA toolbox [31] which contains many computational procedures.

Using the COBRA toolbox, the SBML file exported from BiGG may be imported

as a network data structure into Matlab. This structure includes the stoichiomet-

ric matrix, gene and reaction information, and GPR associations. The toolbox

then allows the user to interrogate the models solution space using a variety of

tools, including flux balance and flux variability analysis, random sampling, and

robustness and gene deletion analysis. Matlab scripting can be used to combine

methods or develop new methods not provided in the toolbox. The JAVA based

Systems Biology Research tool [126] is another software package tested to work

with the SBML files exported from BiGG.

5.4 Utility

5.4.1 Querying General Statistics of Reconstructions

The capability of BiGG to browse and compare multiple reconstructions was

used to provide a comparison of the available reconstructions. The seven metabolic

reconstructions available via BiGG vary in size from 551 reactions in H. pylori, to

3743 reactions in the human reconstruction. The total number of metabolites in

BiGG is 2556, of which more than half (1509) are found in the Human Reconstruc-

tion (Table 5.1). A set of 96 core reactions is shared by all reconstructions, while

most reactions were found in only one reconstruction (Figure 5.4c). Ubiquitous

reactions include those involved in central metabolism, nucleotide and amino acid

metabolism, and several exchange reactions (results not shown). Translocation
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Figure 5.4: Content of BiGG

The three largest reconstructions in BiGG are E. coli iAF1260, S. cerevisiae

iND750, and H. sapiens Recon 1. Their shared content can be queried with BiGG:

a) The shared reactions. Non-exchange reactions are shown in parenthesis. b) The

number of shared metabolites. c) The distribution of reactions and metabolites

across all seven reconstructions.
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reactions tend to be unique to particular reconstructions. The three largest recon-

structions (H. sapiens, E. coli, S. cerevisiae) share a total of 240 reactions, 80 of

which are exchange reactions (Figure 5.4a).

The content distribution usage in BiGG is shown in Figure 5.4C. Most re-

actions are only found in one reconstruction although 1167 are shared between at

least two. Metabolites are shared more frequently. A smaller fraction of metabo-

lites is unique to just one reconstruction (Figure 5.4 b,c).

5.4.2 Case Study - Orphan reactions

All reconstructions have knowledge gaps where information on components

is not available. One example is orphan reactions which are reactions for which the

catalyzing enzyme is unknown. The BiGG knowledgebase can be used to study and

help fill in these knowledge gaps by 1) listing all orphan reactions and 2) displaying

any other reconstruction that use these reactions. E. coli metabolism has been

studied extensively and most of the predicted open reading frames have at least

putative functional assignments. The E. coli metabolic network reconstruction

has gone through several iterations and has become more complete [82]. The

iJR904 reconstruction contains 58 orphan reactions (Table 5.2). Six are labeled

spontaneous, meaning they can proceed without the aid of an enzyme and thus

do not require an associated gene. A further reaction is the ATP maintenance

requirement which is a virtual reaction representing the turnover of ATP to ADP

to maintain cellular functions. A total of seven reactions were removed in iAF1260,

including two lumped reactions (reactions which are stoichiometric representations

of more complex processes) which are also not gene associated. These two have

been replaced with elementary reactions. This leaves 44 reactions with missing gene

associations in iJR904. Fourteen now have genes in iAF1260 while the remaining 30

do not. Twelve of these 30 are found in at least one other reconstruction, forming

the basis for further searching. Analyses like these provide an overview of the state

of reconstructions and can pinpoint areas of future focus. Performing this analysis

without the BiGG knowledgebase would be possible although cumbersome.
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5.5 Future Development

5.5.1 Additional reconstructions

Two notable reconstructions in development are Bacillus subtilis and Hae-

mophilus influenzae. As they become available, they will be added to BiGG as

well. Currently, only E. coli has more than one reconstruction version, but in

the future, we plan on hosting different (older) versions of other reconstructions

as well. Currently, it is only possible to host reconstructions created within the

Simpheny software and at the moment there is no way to import other groups

reconstructions. This may change in the future.

5.5.2 Downloadable Maps

The BiGG knowledgebase is designed to work with the COBRA toolbox.

Version 2.0 of this toolbox will be released soon and will include a visualization

component. The BiGGmaps will be downloadable in a custom text format contain-

ing coordinates of all metabolites and reaction control points. This is imported

into COBRA and displayed in a customizable fashion. Colors and sizes can be

changed on a per-reaction basis to visualize biological results.

5.5.3 Pre-made constraints / Media

At present, exported models contain one set of lower and upper flux bounds.

Lower bounds of irreversible reactions are automatically set to 0 and upper bounds

are either set to arbitrarily large values (eg. 999999) or physiologically determined

rates. However, to run meaningful simulations, the bounds of the exchange fluxes

must be specified to match the environment. For instance, modeling of an aerobic

environment with glucose minimal media must allow for glucose, oxygen, ammo-

nium ion, and salts to be taken up, but not other extracellular species. Currently,

this must be done manually via the export “refine” button, but in the future, li-

braries of bounds (constraint) vectors will be added to the SBML files to allow the

user to specify media conditions.
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5.6 Discussion and Conclusions

The reconstructions and models in BiGG have several specific features nec-

essary to compute within the COBRA framework:

1. Each reconstruction in BiGG is manually curated. Exotic transformations

unique to an organism may be absent from databases and must be pulled

from primary literature.

2. BiGG uses both genetics and literature based data to assess whether a reac-

tion is present. If the genetic basis for a reaction is unknown but the reaction

is described in the literature, it will be included without associated genes (an

orphan reaction).

3. The curators of BiGG reconstructions have the option of providing confi-

dence levels for reactions which can be used when evaluating resultant mod-

els. These levels, along with reaction notes, provide an assessment of the

confidence that a reaction is correctly included in the model.

4. Boolean relationships between genes, proteins and reactions (GPRs) are de-

scribed in BiGG. This information is necessary for the proper modeling of

mutations or gene knockouts.

5. All reactions in BiGG are mass and charge balanced. In some metabolic

databases, simple species such as H+ and H2O are simply ignored [127].

Failure to balance reactions can result in unrealistic metabolic predictions.

6. Compartmentalization in BiGG gives an accurate description of reactions

involving membrane transporters. This is required for simulation of gradient

driven pump [82].

7. BiGG bridges the gap between a reconstruction and a model. The exported

SBML files have all been validated and can be used to make predictions

about growth rate, predicting the effect of gene deletions (MOMA [88]), and

other COBRA framework methods.
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Taken together, these 7 features allow BiGG to represent metabolic reconstructions

and the underlying chemistry in an accurate way. While individually these features

are not unique to BiGG, no other resource including all of these features. The

content of other genome-scale metabolic databases cannot be used directly for

modeling in the COBRA framework [60].

The advent of genome sequencing has led to an explosion of systems bi-

ology methods which attempt to study properties of whole networks rather than

individual parts. The results (often referred to as emergent properties) cannot

be explained by studying the individual parts separately. Due to the scale of the

models used, they are quite time consuming to develop and it is beneficial to share

them with other researchers. The BiGG knowledgebase provides the first collection

of curated, high quality metabolic reconstructions suitable for study with COBRA

methods. We expect it to continue to be a useful resource in the future as new

and updated models are added to the database.

5.7 Availability and Requirements

The BiGG knowledgebase is available online at http://bigg.ucsd.edu/. A

JavaScript enabled browser is required for browsing and exporting. The map

viewer requires SVG support. BiGG data and results require a password which is

made freely available for academic use.

The text of Chapter Five, in its entirety, is a reprint of material as it

appears in J. Schellenberger, Park, J. O., Conrad, T. C., and Palsson, B. Ø.,

BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic

reconstructions, BMC Bioinformatics, 11:213, (2010). I was the lead developer, and

primary author of this manuscript.



Chapter 6

COBRA Toolbox Version 2.0

6.1 Abstract

We present a major update to the COnstraint-Based Reconstruction and

Analysis (COBRA) Toolbox, a MATLAB package for manipulating and analyzing

genome-scale metabolic models. Over the last decade, a growing community of

researchers has used the COBRA framework to predict metabolic phenotypes such

as cell growth rate. Version 2.0 of the Toolbox expands the scope of possible sim-

ulations by including methods developed since its original release. New functions

include: (1) network gap filling, (2) C13 analysis, (3) metabolic engineering, (4)

omics-guided analysis, and (5) visualization. As with the first version, the COBRA

Toolbox reads and writes Systems Biology Markup Language (SBML) formatted

models. In this release, we improved performance, usability, and the level of doc-

umentation. A suite of test scripts can now be used to learn the core functionality

of the Toolbox and validate results. This Toolbox lowers the barrier of entry to

use powerful COBRA methods and makes them more accessible to non-technical

researchers.

93
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6.2 Introduction

COnstraints-Based Reconstruction and Analysis (COBRA) methods have

been successfully employed in the field of microbial metabolic engineering [128,

62, 46] and have begun to be extended to modeling transcriptional [33, 34, 129]

and signaling [130, 131] networks and the field of public health. Specifically, CO-

BRA methods have been used to guide metabolic pathway engineering, model

pathogens [81], model host-pathogen interactions and the impact of disease states

on human metabolism [21]. A wide variety of COBRA methods have been devel-

oped over the years [3, 31]. COBRA methods have been employed in hundreds of

research articles over the years [132, 60, 133].

The COBRA approach focuses on employing physicochemical constraints

to enumerate the set of feasible states for a biological network in a given con-

dition (Figure 6.1A). These constraints include compartmentalization, mass con-

servation, molecular crowding [134], and thermodynamic directionality [86, 87].

More recently, transcriptome data have been used to reduce the size of the set

of computed feasible states [135, 136]. Although COBRA methods may not pro-

vide a unique solution, they provide a reduced set of solutions that may be used

to guide biological hypothesis development [137]. The COBRA Toolbox provides

researchers with a high-level interface to a variety of COBRA methods. Detailed

descriptions of COBRA methods can be found in a variety of reviews [3, 68, 138].

The biological network models that are analyzed with COBRA methods are

constructed in a bottom-up fashion from bibliomic and experimental data and thus

represent Biochemically, Genetically, and Genomically (BiGG) consistent knowl-

edgebases [38]. BiGG knowledgebases are manually-curated 2-D genome annota-

tions that relate biological functions, such as metabolic reactions, to the genome

through the use of the gene-protein-reaction formalism [38, 1] (Figure 6.1B). Appli-

cation of the BiGG formalism to metabolism has been particularly successful, and

metabolic reconstructions are available for many organisms [82, 139, 140, 141, 142].

A detailed protocol describing the construction of high-quality BiGG knowledge-

bases for metabolism, and their transformation into mathematical models has been
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Figure 6.1: The philosophy of Constraints-Based Reconstruction and Analysis

(A) Constraints-Based Reconstruction and Analysis of biological networks involves

the creation of network models from a variety of biological data sources. The ca-

pabilities of the model are then assessed in the context of physical, chemical,

regulatory, and omics constraints (Reproduced from Becker et al.). (B) COBRA

models are often derived from BiGG knowledgebases which are essentially 2-D

annotations of the genome that relate metabolic activity to genomic loci. (left

inset) In Escherichia coli, the glyceraldehyde-3-phosphate dehydrogenase (GAPD)

activity can be provided by two isozymes (GapA or GapC); GapC is a heteromeric

protein that requires genes from two genomic loci. The contents of a BiGG knowl-

edgebase can be converted to a map (right) to facilitate visual interpretation. Or

a mathematical modeling formalism to develop and explore hypotheses, such as a

stoichiometric matrix (bottom) that can be used to explore mass flow through the

network. (Modified reproduction from Reed et al.).
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Table 6.1: Features of the COBRA Toolbox 1.0 and 2.0

recently published [39].

The first release of the COBRA Toolbox in 2007 provided access to a va-

riety of methods, including flux balance analysis, gene essentiality analysis, and

minimization of metabolic adjustment analysis (Table 6.1). Since the release of the

first version of the COBRA Toolbox, many additional COBRA-related methods

have been published [92, 143, 144, 145, 146]. In version 2.0 of the COBRA Tool-

box, we have extended the capabilities to include: geometric FBA [92], Loop law,

creation of context-specific subnetwork models using omics data [31, 136] Monte

Carlo sampling [3, 21, 9, 16], C13 fluxomics, gap filling [143, 147], metabolic engi-

neering [144, 145, 146], and visualization of computational models of metabolism

(Table 6.1 / Figure 6.2). This protocol aims to provide researchers with the ability

to use the in silico methods included in the Toolbox with only high-level knowledge

of the algorithms. Because of the wide range of creative uses for COBRA meth-

ods, not all of the Toolbox’s capabilities are described in this protocol; additional
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Figure 6.2: Overview of the COBRA toolbox.

(A) Seven categories of COBRA methods contained within version 2.0 of the CO-

BRA Toolbox. (B) The COBRA Toolbox contains solver interface functions for

linear, quadratic, mixed integer linear and quadratic, and nonlinear programming

problems. Functions to read and write models in several formats are available. A

test suite is included to validate installation as well as provide example implemen-

tation of many methods.
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functionalities are described in the documentation.

The COBRA Toolbox supports models in the Systems Biology Markup Lan-

guage (SBML) format [125, 148, 84]. Importation of the models into MATLAB is

dependent on libSBML [148] and SBML Toolbox [84]. Because SBML does not

yet provide complete support for a few key COBRA parameters, we provide an

explicit description of the COBRA extensions to SBML below and in the Sup-

plementary Material. The COBRA Toolbox is available for download from our

website (www.cobratoolbox.org).

6.3 Materials

6.3.1 Equipment

• A computer capable of running MATLAB

• Version 7.0 or above of MATLAB (Mathworks Inc.) numerical computation

and visualization software (http://www.mathworks.com)

• libSBML programming library 4.0.1 or above

• SBML Toolbox version 3.1.1 or above for MATLAB to allow reading and

writing models in SBML format

• The COBRA Toolbox version 2.0 or above

• A linear programming (LP) solver. Currently the COBRA Toolbox supports:

– CPLEX (ILOG Inc.) through Tomlab (Tomlab Optimization Inc.

http://tomopt.com)

– Gurobi (Gurobi Optimization. http://www.gurobi.com) through Gurobi

Mex (http://www.caam.rice.edu/ wy1/gurobi mex)

– GLPK (http://www.gnu.org/software/glpk) through glpkmex

(http://glpkmex.sourceforge.net)

– Mosek (MosekApS. http://www.mosek.com)
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– LINDO (LINDO Systems Inc. http://www.lindo.com)

– PDCO (Stanford University http://www.stanford.edu/group/SOL/

software/pdco.html)

• A quadratic programming (QP) solver. (optional) Currently the COBRA

toolbox supports:

– CPLEX (ILOG Inc.) through Tomlab (Tomlab Optimization Inc.

http://tomopt.com)

– QPNG (part of GLPK)

– Mosek (MosekApS. http://www.mosek.com)

– PDCO (Stanford University http://www.stanford.edu/group/SOL/

software/pdco.html)

• A nonlinear programming (NLP) solver. (optional) Currently the COBRA

toolbox supports:

– SNOPT through Tomlab

6.3.2 Equipment Setup

Installation

Microsoft Windows and GNU/Linux: Install MATLAB, libSBML, SBML

Toolbox, and one or more of the supported solvers following the software provider’s

installation instructions. To install the COBRA Toolbox, unzip the COBRA tool-

box files to the desired MATLAB accessible local directory.

Mac OS X: run the COBRA toolbox installer for Mac OS X.

COBRA-compliant SBML file

Documentation on the SBML standard is available on the SBML web-

site (http://sbml.org) and in the Supplementary Material. Sample models in

COBRA-compliant SBML may be downloaded from the BiGG knowledgebase
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(http://bigg.ucsd.edu) [38]. The model files must include the following informa-

tion for all calculations: stoichiometry of each reaction, upper and lower bounds

of each reaction and objective function coefficients for each reaction.

Several functions within the toolbox [145, 146] require information that is

not, yet, in the SBML standard or scheduled for removal in SBML 3 and beyond.

The gene-reaction associations are essential for relating the metabolic reactions to

the genome and the subsystem is useful for ontological classification. Metabolite

formulas and charges, are necessary to make sure the model is physically consis-

tent (no generation of mass or energy). Additional annotation parameters, such

as KEGG or CAS IDs, should be specified in the notes field.

<reaction>

...

<notes>

<html xmlns=http://www.w3.org/1999/xhtml>

<p>GENE ASSOCIATION: ((gene1) and (gene2)) or (gene3)</p>

<p>SUBSYSTEM: Transport Inner Membrane</p>

<p>KEGGID: </p>

...

</html>

</notes>

</reaction>

<metabolite>

... <notes>

<html xmlns=http://www.w3.org/1999/xhtml>

<p>FORMULA: C6H12O6</p>

<p>CHARGE: 0</p>

<p>CAS: </p>

</html>

</notes>

</metabolite>
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Metabolic map files

The visualization tools require text files of the coordinates for placing

metabolites and reactions on a map. Maps of many reconstructions are avail-

able from the BiGG knowledgebase. The COBRA Toolbox relates COBRA SBML

models to the map coordinate files via the reaction and metabolite ids. A map file

for glycolysis may be used with different organism SBML models as long as the

identifiers match.

6.4 Procedure

Notes on nomenclature: italics denotes a parameter that is supplied to a

function. A bracketed [parameter] is optional. >> denotes the Matlab command

line; anything following >> is meant to be entered on the command line. All time

estimates for the functions are predicate on a model of about 1200 genes, 2300

reactions, 1800, metabolites, and a 2.4 GHz Intel Core 2 Duo processor.

6.4.1 Initializing the Toolbox

Install MATLAB, the SBML and COBRA Toolbox, initialize paths and

check solver availability. Microsoft Windows and GNU/Linux users should open

MATLAB, navigate to the directory where you installed the Toolbox:

>> initCobraToolbox()

and save the paths added if desired.

Mac OS X users: This is performed for you during installation.

6.4.2 Changing COBRA solvers

Set the solvers used by the COBRA Toolbox using the following function:

>> changeCobraSolver(solverName, [solverType]);

Type the name of the solver to use as the solverName input and the solver type

(‘LP’, ‘MILP’, ‘QP’, ‘MIQP’, ‘NLP’) for solverType. By default, solvertype is set to
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‘LP’. The COBRA toolbox currently supports ‘LINDO’, ‘glpk’, ‘Mosek’, ‘Gurobi’,

and ‘CPLEX’ through Tomlab. When changeCobraSolver is called without any

arguments, it will return the names of the current solvers.

6.4.3 Run COBRA Toolbox test suite

The test suit contains scripts that test the functionality of scripts within

the toolbox. The scripts in the the testing directory provide useful examples of all

the Toolbox’s functions.

>> testAll()

This script sequentially navigates the test suite directory and runs each test. Upon

completion, it displays which tests were completed successfully and which failed.

If any tests fail see the TROUBLESHOOTING section. [∼ 103 s]

6.4.4 Read COBRA-compliant SBML models into MAT-

LAB

Load a COBRA-compliant model into MATLAB. To load a model, navigate

within MATLAB to the directory containing the model and call the following

function from the command window:

>> model = readCbModel([filename]);

When called with no arguments, readCbModel will prompt the user to select a file

using a dialog box. Currently readCbModel fully supports SBML-formatted (Level

2 versions 1 or 4) and SimPheny proprietary format files. SBML files for a variety

of organisms are available from the BiGG knowledgebase(http://bigg.ucsd.edu)27.

The function returns a COBRA Toolbox model structure containing the necessary

fields to describe the model for use with subsequent steps. See Supplementary

Material for a description of the fields in a COBRA Toolbox model structure;

hereafter, model denotes a COBRA Toolbox model structure. [∼ 102 s]
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Critical Step

If the model is not properly loaded into MATLAB, none of the following

functions will work. See TOUBLESHOOTING for tips on solving this issue. En-

sure that libSBML and SBML Toolbox are properly installed and accessible by

MATLAB and that the SBML file is formatted correctly. See also: testRead-

Write().

6.4.5 Modify COBRA toolbox models

Once the model is loaded into MATLAB by readCbModel, the model can

be modified to simulate different conditions. Reaction bounds can be modified

using the following function:

>> model = changeRxnBounds(model, rxnNameList, value, boundType);

The reactions in the cell array of strings rxnNameList will have their bounds

changed. boundType specifies which bounds to change for the reactions and can

take values of ‘l’, ‘u’, or ‘b’ for lower, upper, or both, respectively.

The objective of the constraint-based model is necessary to determine the

flux distribution which optimizes the objective, often a cellular biomass function50.

To change the objective function, use the following function:

>> model = changeObjective(model, rxnNameList, [objectiveCoeff]);

rxnNameList is either a string or a cell array of strings containing reaction(s) that

should be included in the objective. The coefficients of the objective vector for the

reactions in rxnNameList are set to the value specified in objectiveCoeff. All other

values in the objective vector are set to zero. The objectiveCoeff vector contains

values corresponding to the reactions in rxnNameList. If left empty, objectiveCoeff

is assumed to be 1.

Knock-out or knock-in strains can be simulated by removing or adding the

reactions. New reactions can be added to a COBRA toolbox model using the

following function:
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>> [model] = addReaction(model, rxnName, metaboliteList,

stoichCoeffList, [revFlag], [lowerBound], [upperBound],

[objCoeff], [subsystem], [grRule], [geneNameList],

[systNameList], [checkDuplicate]);

metaboliteList and stoichCoeffList contain the metabolites and their coefficients,

respectively. Additional information for the reaction may be specified using the

subsequent input variables. By default the function checks for reactions with the

same name or stoichiometic coefficients, however this can be disabled by setting

checkDuplicate to false.

To remove a reaction, call the following function:

>> [model] = removeRxns(model, rxnRemoveList)

Reactions listed in the rxnRemoveList cell array of strings will be removed. By

default, the function removes metabolites that are not involved in any reactions.

Note that the model may no longer function after reactions have been removed.

For more examples on model manipulation see: testModelManipulation().

6.4.6 Saving the model

COBRA Toolbox model structures may be saved as text, xls, or SBML.

>> writeCbModel(model, format, [fileName], [compSymbolList],

[compNameList], [SBMLLevel], [SBMLVersion]);

The name of the output file may be set using the fileName input. By default, the

function opens a dialogue box, prompting the user to specify where to save and

the name of the file. This feature is dependent on the SBML toolbox to generate

the xml file. The toolbox is able to output SBML level 2 versions 1 or 4. See also:

testReadWrite().

6.4.7 Omics-Guided Creation of Context-Specific Models

An emerging application of genome-scale reconstructions is integrating high-

throughput in a systems context [31, 136]. In particular, this procedure is useful

for building cell-, tissue-, or condition-specific models. createTissueSpecificModel
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is designed to map transcriptomic or proteomic data onto a reconstruction using

two established algorithms (GIMME [31] or Shlomi [136]). The GIMME algorithm

is an LP procedure that matches high-throughput data to an original flux distribu-

tion derived from the full model; thus the algorithm requires a predefined objective

function. Alternatively, the Shlomi algorithm is an MILP problem that matches

high-throughput data to pathway length, thus avoiding the need for a predefined

objective function. Novice users can utilize the GIMME algorithm with two in-

puts: the COBRA model and expression data; while more experienced users can

tweak many more parameters (see Documentation).

>> [tissueModel,Rxns] = createTissueSpecificModel(model,expressionData,

[proceedExp],[orphan],[exRxnRemove],[solver],[options],

[funcModel]);

model is a reconstruction with gene-protein-reaction associations. expressionData

is a structure that contains two inputs: .Locus (a vector of GeneIDs matching

with the model), and .Data (a vector of presence/absence calls). If using multiple

data sets for which the presence/absence calls have not been averaged, proceed-

Exp can be set to 0 for the data to be processed (by default proceedExp = 1).

Note: when setting proceedExp = 0, a third input (.Transcript) is required in the

expressionData structure (see createTissueSpecificModel Documentation).

Reactions with no known gene-protein-reaction associations are called or-

phan reactions. orphan controls whether or not these reactions are included with

Shlomi-. By default orphan = 1 and orphan reactions are included; orphan re-

actions are always included in the GIMME algorithm. Select exchange reactions

can be excluded from the model by including them in exRxnRemove. solver is

either ‘GIMME’ or ‘Shlomi’ and defaults to‘GIMME’. options is only used with

the GIMME algorithm, and it specifies which reaction(s) comprise the objective

function; by default, the objective function is chosen by the supplied c vector in

the model with a 90% (0.9) threshold. funcModel controls whether the output

tissueModel is fully functional (every reaction can carry a flux) or not when using

the GIMME algorithm.
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tissueModel is the final cell, tissue, or condition specific model generated

from the function. Rxns is a structure containing statistics about what reactions

were or were not expressed based on the high-throughput data and what reactions

were added or removed from the model (see createTissueSpecificModel Documen-

tation). [∼ 102 s]

6.4.8 Visualization

Visual representation of a metabolic network can aid in understanding the

model. Maps for a variety of metabolic pathways are available for many of the

models hosted in the BiGG knowledgebase (http://bigg.ucsd.edu). These maps

may be used for other organisms that have similar metabolic pathways, given that

the user uses the same metabolite and reaction ids as the BiGG model that was

used to create the map. After exporting maps from BiGG, the maps can be loaded

into MATLAB using the following command:

>> map = readCbMap([filename])

If readCbMap is called with no arguments, a dialog box will prompt to select a map

file. After the map has been read into MATLAB, it can be viewed as a MATLAB

figure or a scalable vector graphic (svg). To view the map as a MATLAB figure

set the CB map output setting and generate the map by calling the following

functions:

>> changeCbMapOutput(‘matlab’)

>> drawCbMap(map,[options],[varargin])

options is a structure containing the settings for the drawCbMap function such

as compound node and reaction arrow size and color. See documentation for

description of optional parameters. options is generated using the setMapOptions

function:

>> options = setMapOptions(options,[varargin])

If creating an options structure, set options to []. If adding or modifying parameters

within the options structure, pass in the options structure using the options input.
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Optional parameters are specified in a parameter, parameter value format. See

documentation for more information.

When the output is set to ‘matlab’, drawCbMap generates a figure in MAT-

LAB of the map. Generating a MATLAB figure may take several minutes for large

maps. To output the map as a svg, change the output setting and generate the

svg file.

>> changeCbMapOutput(‘svg’);

>> drawCbMap(map,[options],[varargin])

When the output is set to ‘svg’, drawCbMap will create the svg file, which can then

be viewed using any svg viewer including modern web browsers. By default, the

file created is named ‘target.svg’. The filename can be set by inputting additional

parameters:

>> drawCbMap(map,‘FileName’,filename)

On current MATLAB versions, generating svg output is significantly faster than

generating a MATLAB figure of the map.

Reaction flux or metabolite concentration data can be overlaid on the maps.

A flux variability map can also be generated. Examples of these functions are

provided in the ANTICIPATED RESULTS section. See also: testMaps(). [∼ 101

s]

6.4.9 Simulate optimal growth using flux-balance analysis

(FBA)

Simulating optimal growth using FBA is one of the fundamental COBRA

phenotypic calculations for metabolic network models. FBA is a method that

calculates the flow of metabolites through a metabolic network [68]. Growth is

simulated by optimizing the reconstruction for flux through the model’s biomass

function. The reaction to optimize is set using the c vector within the model

structure. Growth conditions are specified by setting the exchange reactions ac-

cordingly. The solution returned will have units based on the units used in the

model (typically mmol∙gDW−1 ∙ h−1).
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>> [solution] = optimizeCbModel(model, [osenseStr], [minNorm],

[allowLoops])

The osenseStr is either ‘max’ or ‘min’ to maximize or minimize the value of the

objective. The minNorm input offers functionality to minimize the Manhattan or

Euclidian Norm. Loops can be removed from the final solution using the loop law

algorithm by setting allowLoops to false. Note that this function optimizes the

model using the objective function and if the objective function is not set to a

biomass function, it will not simulate optimal growth.

The function will return a solution structure containing the following: the

objective value ‘f’, the primal solution ‘x’, the dual solution ‘y’, the reduced cost

‘w’, a universal status flag ‘stat’, a solver specific status flag ‘origStat’, and the

time to compute the solution ‘time’. The primal solution, ‘x’ represents the flux

carried by each reaction within the model. The dual solution, ‘y’ represents the

shadow prices for each metabolite and indicates how much the addition of the

corresponding metabolite will increase or decrease the objective value [64, 68].

The reduced cost, ‘w’, indicates how much each reaction affects the objective. A

solver status of 1 indicates that an optimal solution was found.

An alternative to optimizeCbModel is geometricFBA [92]. geometricFBA

attempts to return the minimal flux distribution central to the bounds of the

solution space while still maintaining optimal growth rate. The flux distribution

returned should then be reproducible regardless of solver used.

>> flux = geometricFBA(model,[varargin])

Optional parameters are passed in as optional argument/value pairs. The function

returns the vector ‘flux’ which contains the centered optimal flux distribution.

The optimal flux distribution obtained using optimizeCbModel or geomet-

ricFBA can be overlaid onto an existing map of the model using the following

function:

>> drawFlux(map, model, flux, [options], [varargin])

Pass in the map, model, and flux vector using the respective inputs; where map

and model were generated by readCbMap and readCbModel, respectively. options
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is the drawCbMap options structure. Optional input can also be entered following

the options input, in a parameter, parameter value format. To narrow the reaction

arrows for reactions which carry no flux, type ’zeroFluxWidth’, 1 for varargin. See

script header and testMaps.m for additional information and examples. [100−102s]

CRITICAL STEP

The subsequent steps in this protocol rely on the functionality of opti-

mizeCbModel. If optimizeCbModel fails to return a feasible flux distribution for

the examples within this protocol, the problem most likely lays with the installa-

tion of the LP solver. See TROUBLESHOOTING for tips to remedy this issue.

It is not necessary that geometricFBA return a solution for the subsequent steps.

See also: testFBA().

6.4.10 Solving COBRA problem structures

The COBRA toolbox has five function calls used for solving different op-

timization problems. Basic users will not need to call these low level functions

directly as higher level functions encapsulate these calls. These functions act as

a common interface for different LP, MILP, QP, MIQP, and NLP solvers ensuring

that labs can share code even when using different installed solvers.

The five solver functions use a similar input argument structure: problem

structure followed by optional argument/value pairs. The required fields in the

problem structure vary for each function to supply the required information to solve

the type of problem. For example, the mixed integer problem structures require a

field which specifies variable type (continuous, integer, binary). A description on

the format of COBRA problem structures can be found in Supplementary Material.

The COBRA solution structure also provides a common output format regardless

of the solver used.

>> [solution] = solveCobraLP(LPproblem, [varargin])

>> [solution] = solveCobraMILP(MILPproblem, [varargin])

>> [solution] = solveCobraQP(QPproblem, [varargin])

>> [solution] = solveCobraMIQP(MIQPproblem, [varargin])
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>> [solution] = solveCobraNLP(NLPproblem, [varargin])

See also: testSolvers() [100 s]

6.4.11 Simulating deletion studies

Deletion studies can be easily simulated with in silico models. Gene deletion

study methods within the Toolbox are dependent on the proper setup of the gene-

reaction matrix as well as the rules defining the Boolean relationship between

genes and reactions. Reactions that are affected by a gene deletion have their

upper and lower flux bounds set to zero and are therefore not functional. The set

of reactions on which a gene deletion has an effect is calculated using the gene

reaction association and rules.

The possible results from deletion studies are: 1) unchanged maximal growth,

2) reduced maximal growth, or 3) no growth (lethal). Deletion studies can be used

to predict gene/reaction essentiality. Perform a single gene deletion study using

the following function:

>> [grRatio, grRateKO, grRateWT, hasEffect, delRxns, fluxSolution]

= singleGeneDeletion(model, method, [geneList])

Valid calculation methods are ‘FBA’, ‘MOMA’ [88] and linear MOMA (‘lMOMA’).

By default, all genes are tested; however, a gene list can be specified if desired using

the geneList input. The growth rate of the knockouts (grRatioKO) and wild-type

(grRateWT) are calculated and the ratio of each knockout growth rate to wild-type

growth rate is calculated (grRatio). If the gene deletion has an effect on the model

(i.e. a reaction has its bounds constrained to 0), then hasEffect is true for that

gene, else hasEffect is false. delRxns contains a list of the reactions, the bounds

of which are set to 0 for each gene deletion. The flux solution for each deletion is

also returned.

Perform a pair-wise double gene deletion study using the following function:

>> [grRatioDble, grRateKO, grRateWT] = doubleGeneDeletion(model,

method, [geneList1], [geneList2])
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The calculation method can be set in the same manner as with singleGeneDeletion.

By default all gene pairs are tested. The function calculates the growth rates

(grRateKO) and ratios (grRatioDble) for the growth rate of each knockout pair

compared to wild type growth rate (grRateWT). See also: testDeletionStudy()

6.4.12 Flux Variability Analysis

12 — FBA only returns a single flux distribution that corresponds to max-

imal growth under given growth conditions. However, alternate optimal solutions

may exist which correspond to maximal growth as biological systems contain redun-

dancies that contribute to robustness. FVA calculates the full range of numerical

values for each reaction flux within the network [149]. Determine the minimum

and maximum flux values reactions within a model can carry while obtaining a

specific percentage of optimal growth rate.

>> [minFlux maxFlux] = fluxVariability(model, optPercentage,

[rxnNameList], [verbFlag], [allowLoops])

optPercentage can take any value between 0 and 100 and sets the required mini-

mum growth rate . By default the function only allows for optimal solutions (i.e.

optPercentage = 100). By default all reactions are optimized but a subset may be

passed with rxnNameList. If allowLoops is set to 0, only solutions with no loops

are considered. minFlux and maxFlux contain vectors of minimum and maximum

rate of each reaction. To better visualize the results from this function, a flux vari-

ability map can be generated from an existing reaction map, color coding reactions

based on flux directionality. Call the following function generate a flux variability

map:

>> drawFluxVariability(map, model, minFlux, maxFlux, [options])

map is the map structure corresponding to the model read in using readCbMap.

model is the corresponding COBRA model structure. minFlux and maxFlux are

vectors generated using fluxVariability. options is a structure containing optional

parameters such as edge and node color and size. Bi-directional reversible reactions

are colored green. Unidirectional reversible reactions that carry flux in the forward
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direction are colored magenta. Unidirectional reversible reactions that carry flux

only in the reverse direction are colored cyan. Irreversible fluxes are colored blue.

When output is set to .svg, a legend is generated at the bottom of the map. See

also: testFVA(). [∼ 102 s]

6.4.13 Sampling the solution space

FBA only returns a single optimal point and thus gives little information

about the entire solution space. An alternative approach is to characterize the

solution space using sampling [137]. Sample the solution space by calling the

following function:

>> [sampleStructOut, mixedFrac] = gpSampler(sampleStruct, [nPoints],

[bias], [maxTime], [maxSteps])

The generalized parallel sampler samples any arbitrary linearly-constrained space

by moving a fixed number of points in parallel. Here sampleStruct is the COBRA

Toolbox problem structure for linear programming problems; see Supplementary

Material. The number of sample points is set through nPoints. The maximum

sampling time and number of steps can be set (maxTime, maxSteps). The bias

structure can be used to impose marginal distributions on reactions. The function

returns sampleStructOut, which looks the same as sampleStruct with the addition

of the ‘points’ field containing the solutions. Additionally, mixedFrac gives an

estimate of how mixed the sampling solution is relative to the warmup points. A

mixedFrac value of 0.5 indicates complete mixing. See also: testSampling().

6.4.14 Fluxomics

Carbon 13 tracing experiments provide the ability to measure internal flux

rates in a metabolic network [53]. To use this data, additional information about

carbon tracking must be added to the COBRA model. This is stored in the .iso-

topomer field as described in Supplementary Material Section S.3. In order to use

the C13 solver, the functions must be generated:
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>> [experiment] = generateIsotopomerSolver(model, inputMet,

[experiment], [FVAflag]) (~101 s)

model is the COBRA model with the .isotopomer field. inputMet is a string

corresponding to the C13 labeled input. The solver requires a list of metabolites

that must be measured and this is provided via experiment. Finally there is an

option to remove reactions that cannot carry a flux by setting FVAflag. Two solvers

are generated, one based on the cumomer method [56] and one on the faster EMU

method [57].

A given flux distribution can be scored against a set of C13 data:

>> output = scoreC13Fit(v0,expdata,model)

where expdata is one or more sets of experimental data described in Appendix

B.3. [102 s]

The most optimal flux distribution can be found with a non-linear opti-

mization as such:

>> [vout] = fitC13Data(v0,expdata,model, [majorIterationLimit])

This function will return the flux with the lowest experimental score found by the

NLP solver. Very often it is useful to compute the confidence intervals of reactions

which are consistent with C13 data.

>> [vs, output, v0] = C13ConfidenceInterval(v0, expdata, model,

max_score, [directions], [majorIterationLimit]) (~10e2 s)

v0 is the initial guess. expdata is the experimental data that must be fit. max score

is the highest acceptable score. directions is the list of reactions and reaction

ratios which will be maximized and minimized (by default all reactions). See also:

testC13Fitting().

6.4.15 Gap Filling

Due to incomplete knowledge, a metabolic model may possess gaps. A gap

is defined as missing biochemical information which can explain discrepancies be-

tween model predictions and experimental data. Gaps are typically reactions that
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facilitate the conversion of an available metabolite in the model to one necessary

to achieve an objective. The COBRA Toolbox has two functions to help identify

gaps in metabolic models: detectDeadEnds and gapFind. Analyze the S matrix to

identify gaps by using the following function:

>> outputMets = detectDeadEnds(model, [removeExternalMets])

The detectDeadEnds function searches the S matrix for metabolites that partici-

pate in only one reaction (can only be produced or only be consumed) and returns

the corresponding indices for the metabolites in the model.mets field. Setting re-

moveExternalMets to true removes external metabolites from the results. Not all

gaps can be identified by simply inspecting the S matrix. Perform a more thorough

search calling the following function:

>> [allGaps, rootGaps, downstreamGaps] = gapFind(model, findNCgaps,

verbFlag)

This function identifies all gaps and all metabolites that are downstream from

a gap using the GapFind algrithm [143]. Set the lower bound of all exchange

reactions within model to -1. Set the upper bound on all reactions to a relatively

large positive number (i.e. 105) and the lower bound of all reversible reactions

to a relatively large negative number (i.e. −105) within model. The appropriate

bound magnitude required varies from model to model. If the bound mangnitudes

are too small, the algorithm will incorrectly identify many metabolites as gaps;

if this occurs, increase the bound magnitudes by 10-fold. Repeat this process as

necessary until the algorithm does not identify all metabolites as gaps.

This function can find metabolites that are products of a reaction that relies

on a metabolite that cannot be produced. The function returns the metabolite

index for all gaps (allGaps), metabolites that cannot be produced (rootGaps), and

metabolites that are produced on a reaction that requires a metabolite that cannot

be produced (downstreamGaps).

In addition to these two gap identification functions, the Toolbox includes

an optimization-based algorithm that predicts missing reactions [147]. growthExp-

Match identifies the minimum number of reactions from a universal reaction database
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that are required for a metabolic model to grow on a specified substrate. Identify

possible sets of reactions to add to allow a model to grow by using the following

function:

>> [solution] = growthExpMatch(model, KEGGFilename, compartment,

iterations, dictionary, logFile, threshold)

KEGGFilename is the name of the reaction .lst file downloaded from KEGG

(http://www.genome.jp/kegg). compartment is a string denoting which compart-

ment to generate exchange reactions for. The iterations variable controls the num-

ber iterations to run the function. dictionary is an n by 2 cell array that maps

metabolites to KEGG IDs. logFile is the name of the .mat file to save the solu-

tion to. threshold is the minimum value that the biomass function can take for

the model to be considered growing. Display the growthExpMatch solution by

printing the log file using the following function:

>> printSolutionGEM(dir, matFile)

dir is the directory containing the growthExpMatch solution .mat file. matFile

is the name of the growthExpMatch solution .mat file. See also testGrowthExp-

Match(). [∼ 102 s]

6.4.16 Metabolic Engineering

The COBRA Toolbox version 2.0 provides three methods for in silico meta-

bolic engineering: OptKnock [144], OptGene [145], and GDLS [146].

Determine a knockout list to optimize for flux through a specific reaction

using OptKnock, OptGene, or GDLS.

>> [OptKnockSol, biLevelMILPproblem] = OptKnock(model,

selectedRxnList, options, constrOpt, prevSolutions, verbFlag)

OptKnock runs the OptKnock algorithm to determine reaction sets to knockout

for the overproduction of a specific product when the model is optimized for in-

ternal cellular objectives [144]. selectedRxnList is a list of candidate reactions

to knock out. options is a structure which controls the target reaction to max-

imize flux through, the number of knockouts is and the maximum flux allowed
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for reactions. constrOpt is a structure which specifies specific constraints such as

a minimum growth rate. Initial solutions can be input using the prevSolutions

variable. verbFlag controls level of printing. See ANTICIPATED RESULTS for

an example setup of options and constrOpt structures. The OptKnockSol struc-

ture contains the best knockout set. biLevelMILPproblem is the MILP problem

generated by the algorithm and subsequently solved.

There are several things to take note of when calling the OptKnock function.

First the function does not use the upper and lower bounds set within the model

that is passed in. The model is first converted into irreversible format, splitting

reactions with a lower bound < 0 and upper bound > 0. The resulting set of

reactions has its lower bounds set to 0 and upper bounds set to options.vMax.

Use the constrOpt structure to apply constraints on reactions, such as a minimal

flux through the biomass function or ATP maintenance. Failure to set the proper

constraints may lead to incorrect predictions generated by the function.

OptGene is an evolutionary programming-based method to determine gene

knockout strategies for overproduction of a specific product [145]. It can handle

non-linear objective functions such as product flux multiplied by biomass.

>> [x, population, scores, optGeneSol] = OptGene(model, targetRxn,

substrateRxn, generxnList, maxKOs, population)

Pass in the reconstruction using model. targetRxn and substrateRxn specify the

reaction to be optimized for and the exchange reaction for the growth substrate

respectively. generxnList is a cell array of strings that specifies which genes or

reactions are allowed to be deleted. maxKOs sets the maximum number of knock-

outs. If resuming a previous simulation, the binary matrix (population) can be

specified. Scores are determined by the functions optGeneFitness or optGeneFit-

nessTilt. OptGene returns the best score (x), the binary matrix representing the

knockout sets (population), the scores for each individual knockout set (scores),

and the structure summarizing the results (optGeneSol). optGeneSol is in the

same format as that produced by the OptKnock function.

>> [gdlsSolution, biLevelMILPproblem, gdlsSolutionStructs] =

GDLS(model, targetRxns varargin)
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Table 6.2: Troubleshooting

Additional troubleshooting solutions can be found at the COBRA toolbox Google

group (http://groups.google.com/group/cobra-toolbox).

This function runs the Genetic Design Local Search (GDLS) algorithm [146] to

finding what to knockout to increase in silico production of desired metabolites.

The type of knockout (gene, gene set, or reaction) can be defined. By default all

genes, gene sets, or reactions are able to be deleted. A specific list of genes, gene

sets, or reactions that can be knockout out can also be specified. This approach

typically runs faster than the global search performed by OptKnock. It returns

the knockout solution (gdlsSolution), the bi-level MILP problem for the solution

(biLevelMILPproblem), as well as the intermediate solutions (gdlsSolutionStructs).
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6.5 Troubleshooting

Troubleshooting for several steps in the protocol is available (Table 6.2). If

your problem is not addressed here, the COBRA toolbox Google group is available

for discussing all aspects of the toolbox. See also: testOptKnock().

6.6 Anticipated Results

6.6.1 Displaying metabolic maps

Precompiled maps can be read into MATLAB and used to generate to MAT-

LAB figures. Navigate to the directory containing the map file ‘ecoli core map.txt’.

>> map = readCbMap(‘ecoli_core_map.txt’)

>> changeCbMapOutput(‘matlab’)

>> drawCbMap(map);

A MATLAB figure containing the E. coli core model should be generated. Maps

can also be generated in svg format.

>> changeCbMapOutput(‘svg’)

>> drawCbMap(map);

The file ‘target.svg’ will be saved in the working directory. This file, when opened

with a program capable of opening svg format (such as any modern web browser),

is a metabolic map of the E. coli core model. Metabolite concentrations and

reaction fluxes can also be overlaid onto maps and will be covered in the sections

pertaining to the data generation.

6.6.2 Optimal flux distributions and growth rates for Es-

cherichia coli core model

To read in the E. coli core model and predict a flux distribution for optimal

growth, move to a directory containing the E. coli core model and map file and

sequentially call the following functions:
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Figure 6.3: Flux balance analysis of E. coli core model

(left) Full E. coli core map. (right) Zoom in on the optimal flux distribution map

of the citric acid cycle. (bottom) Zoom in on the flux color scale. Reactions are

colored according to a scale of cyan (flux of 15 mmol ∙ gDW−1∙ h−1 or greater in

the reverse direction) to magenta (flux of 15 mmol ∙ gDW−1 ∙ h−1 or greater in the

forward direction). Reactions carrying zero flux have their corresponding arrows

narrowed.
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>> model = readCbModel(‘ecoli_core_model.xml’);

>> map = readCbMap(‘ecoli_core_map.txt’);

>> changeCbMapOutput(‘svg’);

>> solution = optimizeCbModel(model);

>> drawFlux(map, model, solution.x, [], ‘FileName’,

‘EcoreOptFlux1.svg’);

The expected optimal biomass flux is 0.87. The drawFlux function call generates

an svg file named EcoreOptFlux1.svg in the working directory. The reactions are

color coded using a linear scale from cyan (corresponding to a flux of -29.17) to

magenta (corresponding to a flux of 45.51). To more easily extract data from the

map, change the width of reactions arrows corresponding to reactions carrying

zero flux to 1 point. In addition, set the lower and upper bounds to -15 and 15

respectively.

>> drawFlux(map, model, solution.x, [], ‘ZeroFluxWidth’, 1, ‘lb’,

-15, ‘ub’, 15, ‘FileName’, ‘EcoreOptFlux2.svg’);

An svg file named EcoreOptFlux2.svg should be written to the working directory

with reactions color coded from cyan (flux of -15 or less) to magenta (flux of 15 or

greater) and reactions carrying zero flux have their corresponding arrows narrowed

(Figure 6.3).

6.6.3 Flux Variability Analysis of E. coli core model

To perform FVA for the E. coli core model under glucose limited aerobic

growth conditions with a minimum cellular growth of 90% of optimal, call the

following commands.

>> model = readCbModel(‘ecoli_core_model’);

>> map = readCbMap(‘ecoli_core_map’);

>> [minFlux maxFlux] = fluxVariability(model,90);

>> changeCbMapOutput(‘svg’)

>> drawFluxVariability(map, model, minFlux, maxFlux, [], ‘fileName’,

‘EcoreFluxVariability.svg’);

A reaction map with reactions color coded according to the flux directionality it

can carry should be created (Figure 6.4). Bi-directional reversible reactions are
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Figure 6.4: Flux variability analysis of E. coli

(right) Reaction map of E. coli core model. (left) Flux variability analysis of

part of glycolysis and pentose phosphate pathway in the E. coli core model when

growth rate is constrained to 90% of optimal. Bi-directional reversible reactions are

colored green. Unidirectional reversible reactions which carry flux in the forward

direction are colored magenta. Unidirectional reversible reactions which carry flux

only in the reverse direction are colored cyan. Irreversible fluxes are colored blue.

Unidirectional fluxes have enlarged arrowheads in the direction of the flux.
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Figure 6.5: Sampling histogram of glycolysis using the E. coli core model under

aerobic and anaerobic glucose minimal media conditions

There is a large shift in the probable flux through many of the reactions. In general,

the range of flux probabilities for each reaction became more constrained. PGI

switched from being able to carry flux in either direction with aerobic conditions

to only carrying flux in the forward direction with anaerobic conditions.

colored green. Unidirectional reversible reactions which carry flux in the forward

direction are colored magenta. Unidirectional reversible reactions which carry

flux only in the reverse direction are colored cyan. Irreversible fluxes are colored

blue. These colors can be specified within the options structure or optional inputs.

Unidirectional fluxes have enlarged arrowheads in the direction of the flux.

6.6.4 Sampling of the solution space of E. coli core model

aerobic versus anaerobic

To read in the E. coli core model and sample its solution space under

glucose minimal media and aerobic conditions with 200 points for 2 minutes, call

the following commands:

>> model_aerobic = readCbModel(‘ecoli_core_model’);

>> sampleStruct_aerobic = gpSampler(model_aerobic,200,[],120);

>> model_anaerobic = changeRxnBounds(model_aerobic,‘EX_o2(e)’,0,‘l’);

>> sampleStruct_anaerobic = gpSampler(model_anaerobic,200,[],120);

>> rxnList = {‘PGI’,‘PFK’,‘FBP’,‘FBA’,‘TPI’,‘GAPD’,‘PGK’,‘PGM’,‘ENO’,

‘PYK’};

>> plotSampleHist(rxnList, {sampleStruct_aerobic.points,
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sampleStruct_anaerobic.points }, {model_aerobic, model_anaerobic},

[],[2,5]);

Sampling results will be returned in the two structures sampleStruct aerobic and

sampleStruct anaerobic within the field points. A MATLAB figure will also be

generated showing the histograms for glycolysis with aerobic in blue and anaerobic

in green (Figure 6.5).

6.6.5 Identifying gaps in the E. coli iJR904 and E. coli

iAF1260 models

To find gaps in the Ec iJR904 model using the gapFind function, use the

following commands:

>> model = readCbModel(‘Ec_iJR904_glcMM’);

>> exchangeRxns = model.rxns(findExcRxns(model));

>> model = changeRxnBounds(model, model.rxns(logical(model.rev)),

-1e6, ‘l’);

>> model = changeRxnBounds(model, model.rxns, 1e6, ‘u’);

>> model = changeRxnBounds(model, exchangeRxns, -1, ‘l’);

>> [allGaps, rootGaps, downstreamGaps] = gapFind(model);

All reversible reactions have their lower bound set to -1e6. All reactions have upper

bounds changed to 1e6. All exchange reactions have bounds changed to -1 to allow

for uptake. There are a total of 64 metabolites identified as gaps: 28 root gaps

and 36 downstream gaps. Repeating the above commands using the Ec iAF1260

model yields a total of 111 metabolites identified as gaps: 55 root gaps, and 56

downstream gaps.

6.6.6 Filling gaps using growthExpMatch

Remove the PGK reaction from the E. coli core model and use growthExp-

Match to propose candidate reactions required to allow growth on glucose. Call

the following commands:

>> model = readCbModel(‘ecoli_core_model’);

>> modelKO = removeRxns(model,{‘PGK’});
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Table 6.3: growthExpMatch gap filling solutions

Solutions from five iterations of growthExpMatch on a PGK knockout growing on

glucose using the E. coli core model. The first solution returned is the knocked

out reaction. Solutions from iterations 2, 3, and 5 are reactions to utilize 3-

Phospho-D-glycerol phosphate while the solution from iteration 4 bypasses the

gap by converting D-Fructose 6-phosphate to D-Erythrose 4-phosphate and Acetyl

phosphate.

>> KEGGFilename = ‘2010_7_30_KEGG_reaction.lst’;

>> load(‘Dictionary.mat’);

>> growthExpMatch (model, KEGGFilename, ‘[c]’, 5, dictionary);

The PGK reaction is removed from the E. coli core model, removing the ability

of the model to produce biomass from glucose. The KEGG reaction list should be

downloaded from the KEGG website. However, a copy of the reaction list as well

as a copy of Dictionary.mat is available in the growthExpMatch test folder. The

resulting GEMLog file should contain 5 solutions (Table 6.3). The first solution

R01512 corresponds to the PGK reaction which was removed previously. The

remaining four solutions are alternate reaction sets that when added allow the

model to grow on glucose.
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Table 6.4: Expected results from OptKnock and GDLS optimizations for lactate,

succinate and pyruvate production growing on glucose

The solutions for succinate and pyruvate are the same for both methods. The

lactate solutions vary by two reactions; however, both resulting models have the

same production and growth rates.

6.6.7 Optimizing for product secretion from glucose using

the E. coli core model

To optimize for lactate with 5 deletions or less using the optKnock method,

use the following commands.

>> model = readCbModel(‘ecoli_core_model’);

>> model = changeRxnBounds(model, {‘EX_o2(e)’, ‘EX_glc(e)’}, [0 -20],

‘l’);

>> selectedRxns = {mode.rxns{ [1, 3:5, 7:8, 10, 12, 15:16, 18, 40:41,

44, 46, 48:49, 51, 53:55, 57, 59:62, 64:68, 71:77, 79:83, 85:86,

89:95]}}’;

>> options.targetRxn = ‘EX_lac-D(e)’;

>> options.vMax = 1000;

>> options.numDel = 5;

>> options.numDelSense = ‘L’;

>> constrOpt.rxnList = {Biomass_Ecoli_core_N(w/GAM)-Nmet2’, ‘ATPM’};

>> constrOpt.values = [0.05, 8.39];

>> constrOpt.sense = ‘GE’;

>> optKnockSol = OptKnock(model, selectedRxns, options, constrOpt);

The simulation is run for anaerobic growth with glucose uptake set to 20 mmol

∙ gDW−1 ∙ h−1. The selectedRxns variable contains a list of the reactions in the

model excluding exchange and transport reactions, biomass, and ATP maintenance

requirement. The resulting knockout list is alcohol dehydrogenase, fumarase, glu-
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tamate dehydrogenase, malic enzyme (NADP), pyruvate kinase. The resulting

knockout predicted growth rate of 0.142 and product excretion rate of 37.7. The

computational time required for this simulation was 28.1 seconds.

Call the following commands to optimize for the same product using the

GDLS algorithm.

>> model = readCbModel(‘ecoli_core_model’);

>> model = changeRxnbounds(model, {‘EX_o2(e)’, ‘EX_glc(e)’}, [0 -20],

‘l’);

>> selectedRxns = {model.rxns{[1, 3:5, 7:8, 10, 12, 15:16, 18,

40:41, 44, 46, 48:49, 51, 53:55, 57, 59:62, 64:68, 71:77, 79:83,

85:86, 89:95]}}’;

>> [gdlsSolution, bilevelMILPproblem, gdlsSolutionStructs] =

GDLS(model, ‘EX_lac-D(e)’, ‘minGrowth’, 0.05, ‘selectedRxns’,

selectedRxns, ‘maxKO’, 5, ’nbhdsz’, 3);

The resulting knockout list is acetaldehyde dehydrogenase, fumarate reductase,

glutamate dehydrogenase, phosphotransacetylase, and NAD(P) transhydrogenase.

The resulting knockout predicted growth rate of 0.142 and product excretion rate

of 37.7. The computational time required for this simulation was 4.9 seconds.

Both methods were also used to optimize for succinate product with a maximum

of 5 knockouts and pyruvate with a maximum of 3 knockouts. The same knockout

lists were produced for succinate and pyruvate, however, two reactions were dif-

ferent for lactate (Table 6.4). For lactate, OptKnock chose alcohol dehydrogenase

and fumarase, while GDLS chose acetaldehyde dehydrogenase, fumarate reductase.

However, both result in the same optimal flux distribution.
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Chapter 7

Conclusions

As we gain more knowledge about biology, at some point our minds are

no longer able to grasp the big picture into a coherent model. With the advent

of genome sequencing, micro-array expression profiling, ChIP on Chip, mass spec,

proteomics and many other -omics data types, we have reached a point where

the sheer amount of data being generated is impossible to comprehend without

powerful computational tools. One approach to dealing with a system that is just

too complex is reduction - studying only a small part at a time. This has been

the mantra of Biology for the last century and has taught us many things and will

undoubtedly continue.

There are, however, biological questions which cannot be answered by a

reductionist approach. These are questions that are inherently dependent on many

components and their interactions. Studying the parts of a car individually will be

able to answer many questions about the car, but not how fast the car can travel.

In a similar fashion, studying individual biological components cannot tell you tell

you how fast a cell can grow in a mechanistic fashion.

This is where Systems Biology has proven extremely useful. By placing an

emphasis on data-driven large-scale model building, it is possible to make predic-

tions about systems that are not obvious from just looking at individual parts.

Some have called such results ‘emergent properties’. It is the idea that ‘the system

is more than the sum of its parts.’

128
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Nonetheless, as models grow in complexity two problems begin to emerge.

The first is lack of data and the second is, paradoxically, that the available data

tends to be inconsistent. This is one area where Constraint Based Reconstruction

and Analysis - a sub field of Systems Biology (COBRA) - has proven extremely

useful. By attempting to model data as constraints on a system, missing data is

simply the lack of constraints. Inconsistent data can be dealt with by assuming

experimental error and relaxing constraints. The advantage of this framework

is that rather than having a low confidence in computing the exact state of the

system, COBRA brings a high confidence of knowing the range of possible states

of the system.

Once the solution space is defined, a whole host of methods are available

for analysis.

7.1 Looking Forward

This thesis is only the beginning of what Monte Carlo Sampling can do for

Systems Biology. Some avenues to consider pursuing in the future include:

1. Algorithmic Development - The GP Sampler developed in this thesis is still

quite limited. It can only deal with convex spaces with linear bounds. The

set of constraints that can be modeled as such is limited. There is an active

community working on algorithms in this area and I suspect they will be

very complex in nature and require toolboxes/APIs to be used successfully

by biologists.

2. Biological Extensions - The COBRA framework has mainly been used to

study flux rates through metabolic networks. There are several reasons why

these are well suited, for example the powerful steady state assumption which

is a powerful constraint on a network. A few other areas where Monte Carlo

Sampling could be useful were proposed in Chapter 1. In particular an inte-

grated framework for incorporating both metabolic concentrations and reac-

tion rates simultaneously would be very powerful. Thermodynamics links the
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two quantities in a fundamental way. Algorithmic challenges are formidable

though as the resulting solution space is not convex.

Part of this will be driven by new technologies. As new -omics data sets

emerge, additional constraints can be placed on models.

3. Visualization - Visualization and data representation are hindered by the

same kinds of problems that face biology in general. Some problems are sim-

ply so complex that even understanding the answer is challenging. A flux

distribution is a vector with as many entries as reactions in the model. This

is not easy to visualize, even with a map. Data reduction is key - looking at

pathways instead of reactions, metabolic pools instead of individual metabo-

lites. Humans are very good at laying out information in a visually pleasing

form. Getting machines to do the same is an ongoing challenge.

4. Better Software Tools - The COBRA toolbox is a major step towards bringing

together many functions into one coherent package. However, even this tool

is still too difficult for an average biologist to use. Most likely it will take

a point-and-click interface, perhaps web-based, to really bring these tools to

a wider audience. This means that new standards need to be developed for

various data types, interfaces, etc. There have been some advances in this

area [150, 151] and this will surely continue.



Appendix A

E. coli isotopomer model

A full description of the E. coli isotopomer model. Each reaction has entry

as follows:

Reaction Name; Range: lb to ub; Formula: Formula

Isotopomer Formula

The isotopomer description consists of a) a chemical formula and b) atom

mappings separated by ’ !’. Multiple mappings are possible if the reaction contains

symmetric compounds.

BiomassEcoliGALUi; Range: 0.44 to 0.44; Formula: 0.05 5mthf + 5e-005 accoa

+ 0.488 alaL + 0.001 amp + 0.281 argL + 0.229 asnL + 0.229 aspL + 45.7318

atp + 0.00645 clpnEC + 6e-006 coa + 0.126 ctp + 0.087 cysL + 0.0247 datp +

0.0254 dctp + 0.0254 dgtp + 0.0247 dttp + 1e-005 fad + 0.003 g1p + 0.25 glnL

+ 0.25 gluL + 0.582 gly + 0.154 glycogen + 0.203 gtp + 45.5608 h2o + 0.09 hisL

+ 0.276 ileL + 0.428 leuL + 0.0084 lpsEC + 0.326 lysL + 0.146 metL + 0.00215

nad + 5e-005 nadh + 0.00013 nadp + 0.0004 nadph + 0.09675 peEC + 0.0276

peptidoEC + 0.0232 pgEC + 0.176 pheL + 0.21 proL + 0.0026 psEC + 0.035 ptrc

+ 0.205 serL + 0.007 spmd + 3e-006 succoa + 0.241 thrL + 0.054 trpL + 0.131

131
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tyrL + 0.139 utp + 0.402 valL -> 45.5608 adp + 45.5574 h + 45.5628 pi + 0.7332

ppi

BiomassEcoliGALUi 0.05 x5mthf 0.00005 xaccoa 0.488 xalaL 0.281 xargL 0.229

xasnL 0.229 xaspL 0.087 xcysL 0.003 xg1p 0.25 xglnL 0.25 xgluL 0.582 xgly 0.154

xglycogen 0.09 xhisL 0.276 xileL 0.428 xleuL 0.326 xlysL 0.146 xmetL 0.176 xpheL

0.21 xproL 0.035 xptrc 0.205 xserL 0.007 xspmd 3e-006 xsuccoa 0.241 xthrL 0.054

xtrpL 0.131 xtyrL 0.402 xvalL > !#a #bc #def #ghijkl #mnop #qrst #uvw

#xyzABC #DEFGH #IJKLM #NO #PQRSTU #VWXYZ1 #234567 #89abcd

#efghij #klmno #pqrstuvwx #yzABC #DEFG #HIJ #KLMNOPQ #RSTU

#VWXY #Z123456789a #bcdefghij #klmno >

EX ac; Range: 3.5 to 3.5; Formula: ace ->

EX ac 1 xace > !#ab >

EX co2; Range: 0 to 100; Formula: co2e ->

EX co2 1 xco2e > !#a >

EX etoh; Range: 0 to 100; Formula: etohe ->

EX etoh 1 xetohe > !#ab >

EX for; Range: 0 to 100; Formula: fore ->

EX for 1 xfore > !#a >

EX fum; Range: 0 to 100; Formula: fume ->

EX fum 1 xfume > !#abcd > !#dcba >

EX glc; Range: -9 to -9; Formula: glcDe ->

EX glc 1 xglcDe > !#abcdef >

EX glyc; Range: 0 to 100; Formula: glyce ->

EX glyc 1 xglyce > !#abc > !#cba >

EX h; Range: -100 to 100; Formula: he ->

EX h2o; Range: -100 to 100; Formula: h2oe ->

EX lacD; Range: 0.4 to 0.4; Formula: lacDe ->

EX lacD 1 xlacDe > !#abc >

EX lacL; Range: 0 to 100; Formula: lacLe ->

EX lacL 1 xlacLe > !#abc >

EX nh4; Range: -100 to 0; Formula: nh4e ->



133

EX no2; Range: 0 to 100; Formula: no2e ->

EX no3; Range: 0 to 100; Formula: no3e ->

EX o2; Range: -14.9 to -14.9; Formula: o2e ->

EX pi; Range: -100 to 0; Formula: pie ->

EX pyr; Range: 0 to 100; Formula: pyre ->

EX pyr 1 xpyre > !#abc >

EX so4; Range: -100 to 0; Formula: so4e ->

EX succ; Range: 0 to 100; Formula: succe ->

EX succ 1 xsucce > !#abcd > !#dcba >

ABTA; Range: 0 to 100; Formula: 4abut + akg -> gluL + sucsal

ABTA 1 x4abut 1 xakg > 1 xgluL 1 xsucsal !#abcd #efghi > #efghi #abcd

COMBO2; Range: 0 to 100; Formula: akg + h2o + nad + ptrc -> 4abut + gluL

+ 2 h + nadh

COMBO2 1 xakg 1 xptrc > 1 x4abut 1 xgluL !#abcde #fghi > #fghi #abcde

!#abcde #ihgf > #fghi #abcde

ACALDi; Range: 0 to 100; Formula: acald + coa + nad -> accoa + h + nadh

ACALDi 1 xacald > 1 xaccoa !#ab > #ab

COMBO3; Range: 0 to 100; Formula: accoa + atp + gluL -> acg5p + adp +

coa + h

COMBO3 1 xaccoa 1 xgluL > 1 xacg5p !#ab #cdefg > #cdefgab

COMBO4; Range: 0 to 100; Formula: 2obut + 2 h + nadph + pyr -> 3mop +

co2 + h2o + nadp

COMBO4 1 x2obut 1 xpyr > 1 x3mop 1 xco2 !#abcd #efg > #abfcdg #e

ACKr; Range: 0 to 100; Formula: ac + atp -> actp + adp

ACKr 1 xac > 1 xactp !#ab > #ab

COMBO5; Range: 0 to 100; Formula: 2 h + nadph + 2 pyr -> 23dhmb + co2

+ nadp

COMBO5 1 xpyr 1 xpyr > 1 x23dhmb 1 xco2 !#abc #def > #debcf #a

ACODA; Range: 0 to 100; Formula: acorn + h2o -> ac + orn

ACODA 1 xacorn > 1 xac 1 xorn !#abcdefg > #fg #abcde

rACONT; Range: 0 to 100; Formula: cit -> icit
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rACONT 1 xcit > 1 xicit !#abcdef > #abcdef

ACOTA; Range: 0 to 100; Formula: acorn + akg -> acg5sa + gluL

ACOTA 1 xacorn 1 xakg > 1 xacg5sa 1 xgluL !#abcdefg #hijkl > #abcdefg #hijkl

ACS; Range: 0 to 100; Formula: ac + atp + coa -> accoa + amp + ppi

ACS 1 xac > 1 xaccoa !#ab > #ab

ACt2r; Range: 0 to 100; Formula: ace + he -> ac + h

ACt2r 1 xace > 1 xac !#ab > #ab

ADHEr; Range: 0 to 100; Formula: accoa + 2 h + 2 nadh -> coa + etoh + 2

nad

ADHEr 1 xaccoa > 1 xetoh !#ab > #ab

ADK1; Range: 0 to 100; Formula: amp + atp -> 2 adp

ADK3; Range: 0 to 100; Formula: amp + gtp -> adp + gdp

COMBOSPMD; Range: 0 to 100; Formula: 2 atp + h2o + metL + prpp + ptrc

-> adp + amp + co2 + dkmpp + h + pi + 2 ppi + spmd

COMBOSPMD 1 xmetL 1 xprpp 1 xptrc > 1 xco2 1 xdkmpp 1 xspmd !#abcde

#fghij #klmn > #a #fghije #klmndcb !#abcde #fghij #nmlk > #a #fghije

#klmndcb

COMBO9; Range: 0 to 100; Formula: 2 atp + gtp + 2 h2o + so4 + trdrd ->

adp + amp + gdp + 3 h + 2 pi + ppi + so3 + trdox

COMBO10; Range: 0 to 100; Formula: aspL + gtp + imp -> amp + fum + gdp

+ 2 h + pi

COMBO10 1 xaspL > 1 xfum !#abcd > #abcd !#abcd > #dcba

AGPR; Range: 0 to 100; Formula: acg5sa + nadp + pi -> acg5p + h + nadph

AGPR 1 xacg5sa > 1 xacg5p !#abcdefg > #abcdefg

ALAR; Range: 0 to 100; Formula: alaL -> alaD

ALAR 1 xalaL > 1 xalaD !#abc > #abc

ALATAL; Range: 0 to 100; Formula: akg + alaL -> gluL + pyr

ALATAL 1 xakg 1 xalaL > 1 xgluL 1 xpyr !#abcde #fgh > #abcde #fgh

ALDD2x; Range: 0 to 100; Formula: acald + h2o + nad -> ac + 2 h + nadh

ALDD2x 1 xacald > 1 xac !#ab > #ab

COMBO15; Range: 0 to 100; Formula: chor + glnL + prpp -> 3ig3p + co2 +
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gluL + h2o + ppi + pyr

COMBO15 1 xchor 1 xglnL 1 xprpp > 1 x3ig3p 1 xco2 1 xgluL 1 xpyr !#abcdefghij

#klmno #pqrst > #tsrqbgfedcp #a #klmno #ihj

ARGSL; Range: 0 to 100; Formula: argsuc -> argL + fum

ARGSL 1 xargsuc > 1 xargL 1 xfum !#abcdefghij > #abcdef #jghi !#abcdefghij

> #abcdef #ihgj

ARGSS; Range: 0 to 100; Formula: aspL + atp + citrL -> amp + argsuc + h +

ppi

ARGSS 1 xaspL 1 xcitrL > 1 xargsuc !#abcd #efghij > #efghijbcda

ASAD; Range: 0 to 100; Formula: aspsa + nadp + pi -> 4pasp + h + nadph

ASAD 1 xaspsa > 1 x4pasp !#abcd > #abcd

ASNN; Range: 0 to 100; Formula: asnL + h2o -> aspL + nh4

ASNN 1 xasnL > 1 xaspL !#abcd > #abcd

ASNS1; Range: 0 to 100; Formula: aspL + atp + glnL + h2o -> amp + asnL +

gluL + h + ppi

ASNS1 1 xaspL 1 xglnL > 1 xasnL 1 xgluL !#abcd #efghi > #abcd #efghi

ASNS2; Range: 0 to 0; Formula: aspL + atp + nh4 -> amp + asnL + h + ppi

ASNS2 1 xaspL > 1 xasnL !#abcd > #abcd

ASPK; Range: 0 to 100; Formula: aspL + atp -> 4pasp + adp

ASPK 1 xaspL > 1 x4pasp !#abcd > #abcd

ASPTA; Range: 0 to 100; Formula: akg + aspL -> gluL + oaa

ASPTA 1 xakg 1 xaspL > 1 xgluL 1 xoaa !#abcde #fghi > #abcde #fghi

ATPM; Range: 7.6 to 7.6; Formula: atp + h2o -> adp + h + pi

ATPS4r; Range: -100 to 100; Formula: adp + pi + 4 he -> atp + 3 h + h2o

CBPS; Range: 0 to 100; Formula: 2 atp + glnL + h2o + hco3 -> 2 adp + cbp +

gluL + 2 h + pi

CBPS 1 xglnL 1 xhco3 > 1 xcbp 1 xgluL !#abcde #f > #f #abcde

CHORM; Range: 0 to 100; Formula: chor -> pphn

CHORM 1 xchor > 1 xpphn !#abcdefghij > #ihjbcdefga

CHORS; Range: 0 to 100; Formula: 3psme -> chor + pi

CHORS 1 x3psme > 1 xchor !#abcdefghij > #abgfedchij
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CO2t; Range: 0 to 100; Formula: co2e -> co2

CO2t 1 xco2e > 1 xco2 !#a > #a

CS; Range: 0 to 100; Formula: accoa + h2o + oaa -> cit + coa + h

CS 1 xaccoa 1 xoaa > 1 xcit !#ab #cdef > #fedbac

CYSDS; Range: 0 to 100; Formula: cysL + h2o -> h2s + nh4 + pyr

CYSDS 1 xcysL > 1 xpyr !#abc > #abc

CYSS; Range: 0 to 100; Formula: acser + h2s -> ac + cysL + h

CYSS 1 xacser > 1 xac 1 xcysL !#abcde > #de #abc

COMBO22; Range: 0 to 100; Formula: 5mthf + cysL + h2o + homL + succoa

-> coa + h + metL + nh4 + pyr + succ + thf

COMBO22 1 x5mthf 1 xcysL 1 xhomL 1 xsuccoa > 1 xmetL 1 xpyr 1 xsucc !#a

#bcd #efgh #ijkl > #efgha #bcd #ijkl !#a #bcd #efgh #ijkl > #efgha #bcd

#lkji

CYTBD; Range: 0 to 100; Formula: 2 h + 0.5 o2 + q8h2 -> h2o + q8 + 2 he

CYTBO3; Range: 0 to 100; Formula: 2.5 h + 0.5 o2 + q8h2 -> h2o + q8 + 2.5

he

CYTK1; Range: -100 to 100; Formula: atp + cmp -> adp + cdp

DLACt2; Range: 0 to 100; Formula: he + lacDe -> h + lacD

DLACt2 1 xlacDe > 1 xlacD !#abc > #abc

DAPDC; Range: 0 to 100; Formula: 26dapM + h -> co2 + lysL

DAPDC 1 x26dapM > 1 xco2 1 xlysL !#abcdefg > #g #abcdef !#gfedcba > #g

#abcdef

DAPE; Range: 0 to 100; Formula: 26dapLL -> 26dapM

DAPE 1 x26dapLL > 1 x26dapM !#abcdefg > #abcdefg !#gfedcba > #abcdefg

!#abcdefg > #gfedcba !#gfedcba > #gfedcba

COMBO25; Range: 0 to 100; Formula: e4p + h2o + pep -> 3dhq + 2 pi

COMBO25 1 xe4p 1 xpep > 1 x3dhq !#abcd #efg > #efdcbag

DHAD1; Range: 0 to 100; Formula: 23dhmb -> 3mob + h2o

DHAD1 1 x23dhmb > 1 x3mob !#abcde > #abcde

DHAPT; Range: 0 to 100; Formula: dha + pep -> dhap + pyr

DHAPT 1 xdha 1 xpep > 1 xdhap 1 xpyr !#abc #def > #abc #def !#cba #def
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> #abc #def

COMBO26; Range: 0 to 100; Formula: aspsa + nadph + pyr + succoa -> coa

+ h2o + nadp + sl2a6o

COMBO26 1 xaspsa 1 xpyr 1 xsuccoa > 1 xsl2a6o !#abcd #efg #hijk > #abcdgfe-

hijk

DHQD; Range: 0 to 100; Formula: 3dhq -> 3dhsk + h2o

DHQD 1 x3dhq > 1 x3dhsk !#abcdefg > #abcdefg

DKMPPD; Range: 0 to 100; Formula: dkmpp + h2o + o2 -> 2kmb + formate

+ 2 h + pi

DKMPPD 1 xdkmpp > 1 x2kmb 1 xformate !#abcdef > #bcdef #a

DKMPPD2; Range: 0 to 100; Formula: dkmpp + 3 h2o -> 2kmb + formate +

6 h + pi

DKMPPD2 1 xdkmpp > 1 x2kmb 1 xformate !#abcdef > #bcdef #a

EDA; Range: 0 to 100; Formula: 2ddg6p -> g3p + pyr

EDA 1 x2ddg6p > 1 xg3p 1 xpyr !#abcdef > #def #abc

EDD; Range: 0 to 100; Formula: 6pgc -> 2ddg6p + h2o

EDD 1 x6pgc > 1 x2ddg6p !#abcdef > #abcdef

ENO; Range: 0 to 100; Formula: 2pg -> h2o + pep

ENO 1 x2pg > 1 xpep !#abc > #abc

ETOHt2r; Range: 0 to 100; Formula: etohe + he -> etoh + h

ETOHt2r 1 xetohe > 1 xetoh !#ab > #ab

F6PA; Range: 0 to 100; Formula: f6p -> dha + g3p

F6PA 1 xf6p > 1 xdha 1 xg3p !#abcdef > #abc #def !#abcdef > #cba #def

FBA; Range: 0 to 100; Formula: fdp -> dhap + g3p

FBA 1 xfdp > 1 xdhap 1 xg3p !#abcdef > #abc #def

FBP; Range: 0 to 100; Formula: fdp + h2o -> f6p + pi

FBP 1 xfdp > 1 xf6p !#abcdef > #abcdef

FDH2; Range: 0 to 100; Formula: formate + 3 h + q8 -> co2 + q8h2 + 2 he

FDH2 1 xformate > 1 xco2 !#a > #a

FDH3; Range: 0 to 100; Formula: formate + 3 h + mqn8 -> co2 + mql8 + 2 he

FDH3 1 xformate > 1 xco2 !#a > #a
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FHL; Range: 0 to 100; Formula: formate + h -> co2 + h2

FHL 1 xformate > 1 xco2 !#a > #a

FORt; Range: 0 to 100; Formula: fore -> formate

FORt 1 xfore > 1 xformate !#a > #a

FRD2; Range: 0 to 100; Formula: fum + mql8 -> mqn8 + succ

FRD2 1 xfum > 1 xsucc !#abcd > #dcba !#dcba > #dcba !#abcd > #abcd

!#dcba > #abcd

FRD3; Range: 0 to 100; Formula: 2dmmql8 + fum -> 2dmmq8 + succ

FRD3 1 xfum > 1 xsucc !#abcd > #dcba !#dcba > #dcba !#abcd > #abcd

!#dcba > #abcd

FTHFD; Range: 0 to 100; Formula: 10fthf + h2o -> formate + h + thf

FTHFD 1 x10fthf > 1 xformate !#a > #a

rFUM; Range: 0 to 100; Formula: fum + h2o -> malL

rFUM 1 xfum > 1 xmalL !#abcd > #abcd !#dcba > #abcd

FUMt22; Range: 0 to 100; Formula: fume + 2 he -> fum + 2 h

FUMt22 1 xfume > 1 xfum !#abcd > #abcd !#dcba > #abcd !#abcd > #dcba

!#dcba > #dcba

FUMt23; Range: 0 to 100; Formula: fume + 3 he -> fum + 3 h

FUMt23 1 xfume > 1 xfum !#abcd > #abcd !#dcba > #abcd !#abcd > #dcba

!#dcba > #dcba

G1PP; Range: 0 to 100; Formula: g1p + h2o -> glcD + pi

G1PP 1 xg1p > 1 xglcD !#abcdef > #abcdef

G3PD2; Range: 0 to 100; Formula: glyc3p + nadp -> dhap + h + nadph

G3PD2 1 xglyc3p > 1 xdhap !#abc > #abc

G3PD5; Range: 0 to 100; Formula: glyc3p + q8 -> dhap + q8h2

G3PD5 1 xglyc3p > 1 xdhap !#abc > #abc

G3PD6; Range: 0 to 100; Formula: glyc3p + mqn8 -> dhap + mql8

G3PD6 1 xglyc3p > 1 xdhap !#abc > #abc

G3PD7; Range: 0 to 100; Formula: 2dmmq8 + glyc3p -> 2dmmql8 + dhap

G3PD7 1 xglyc3p > 1 xdhap !#abc > #abc

G5SADs; Range: 0 to 100; Formula: glu5sa -> 1pyr5c + h + h2o
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G5SADs 1 xglu5sa > 1 x1pyr5c !#abcde > #abcde

COMBO34; Range: 0 to 100; Formula: atp + gluL + h + nadph -> adp +

glu5sa + nadp + pi

COMBO34 1 xgluL > 1 xglu5sa !#abcde > #abcde

G6PDH2r; Range: 0 to 100; Formula: g6p + nadp -> 6pgl + h + nadph

G6PDH2r 1 xg6p > 1 x6pgl !#abcdef > #abcdef

GAPD; Range: 0 to 100; Formula: g3p + nad + pi -> 13dpg + h + nadh

GAPD 1 xg3p > 1 x13dpg !#abc > #abc

GHMT2; Range: 0 to 100; Formula: serL + thf -> gly + h2o + mlthf

GHMT2 1 xserL > 1 xgly 1 xmlthf !#abc > #ab #c

GK1; Range: -100 to 100; Formula: atp + gmp -> adp + gdp

GLCP; Range: 0 to 100; Formula: glycogen + pi -> g1p

GLCP 1 xglycogen > 1 xg1p !#abcdef > #abcdef

COMBO36; Range: 0 to 100; Formula: atp + g1p -> adp + glycogen + ppi

COMBO36 1 xg1p > 1 xglycogen !#abcdef > #abcdef

GLCpts; Range: 0 to 100; Formula: pep + glcDe -> g6p + pyr

GLCpts 1 xglcDe 1 xpep > 1 xg6p 1 xpyr !#abcdef #ghi > #abcdef #ghi

GLNS; Range: 0 to 100; Formula: atp + gluL + nh4 -> adp + glnL + h + pi

GLNS 1 xgluL > 1 xglnL !#abcde > #abcde

GLUDC; Range: 0 to 100; Formula: gluL + h -> 4abut + co2

GLUDC 1 xgluL > 1 x4abut 1 xco2 !#abcde > #edcb #a

GLUDy; Range: 0 to 100; Formula: gluL + h2o + nadp -> akg + h + nadph +

nh4

GLUDy 1 xgluL > 1 xakg !#abcde > #abcde

GLUN; Range: 0 to 100; Formula: glnL + h2o -> gluL + nh4

GLUN 1 xglnL > 1 xgluL !#abcde > #abcde

GLUSy; Range: 0 to 100; Formula: akg + glnL + h + nadph -> 2 gluL + nadp

GLUSy 1 xakg 1 xglnL > 2 xgluL !#abcde #fghij > #fghij !#abcde #fghij >

#abcde

GLXCL; Range: 0 to 100; Formula: 2 glx + h -> 2h3oppan + co2

GLXCL 1 xglx 1 xglx > 1 x2h3oppan 1 xco2 !#ab #cd > #abd #c
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COMBO37; Range: 0 to 100; Formula: coa + nad + thrL -> accoa + gly + h +

nadh

COMBO37 1 xthrL > 1 xaccoa 1 xgly !#abcd > #cd #ab

GLYCDx; Range: 0 to 100; Formula: glyc + nad -> dha + h + nadh

GLYCDx 1 xglyc > 1 xdha !#abc > #abc !#abc > #cba !#cba > #abc !#cba

> #cba

GLYCK; Range: 0 to 100; Formula: atp + glycR -> 3pg + adp + h

GLYCK 1 xglycR > 1 x3pg !#abc > #abc

GLYCL; Range: 0 to 100; Formula: gly + nad + thf -> co2 + mlthf + nadh +

nh4

GLYCL 1 xgly > 1 xco2 1 xmlthf !#ab > #a #b

GLYCLTDx; Range: 0 to 100; Formula: glx + h + nadh -> glyclt + nad

GLYCLTDx 1 xglx > 1 xglyclt !#ab > #ab

GLYCLTDy; Range: 0 to 100; Formula: glx + h + nadph -> glyclt + nadp

GLYCLTDy 1 xglx > 1 xglyclt !#ab > #ab

GLYCTO2; Range: 0 to 100; Formula: glyclt + q8 -> glx + q8h2

GLYCTO2 1 xglyclt > 1 xglx !#ab > #ab

GLYCTO3; Range: 0 to 100; Formula: glyclt + mqn8 -> glx + mql8

GLYCTO3 1 xglyclt > 1 xglx !#ab > #ab

GLYCTO4; Range: 0 to 100; Formula: 2dmmq8 + glyclt -> 2dmmql8 + glx

GLYCTO4 1 xglyclt > 1 xglx !#ab > #ab

GLYCt; Range: 0 to 100; Formula: glyc -> glyce

GLYCt 1 xglyc > 1 xglyce !#abc > #abc !#abc > #cba !#cba > #abc !#cba >

#cba

GLYK; Range: 0 to 100; Formula: atp + glyc -> adp + glyc3p + h

GLYK 1 xglyc > 1 xglyc3p !#abc > #abc !#cba > #abc

COMBO38; Range: 0 to 100; Formula: dhap + h2o -> h + lacD + pi

COMBO38 1 xdhap > 1 xlacD !#abc > #cba

GMPS2; Range: 0 to 100; Formula: atp + glnL + h2o + xmp -> amp + gluL +

gmp + 2 h + ppi

GMPS2 1 xglnL > 1 xgluL !#abcde > #abcde
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GND; Range: 0 to 100; Formula: 6pgc + nadp -> co2 + nadph + ru5pD

GND 1 x6pgc > 1 xco2 1 xru5pD !#abcdef > #a #bcdef

H2Ot; Range: -100 to 100; Formula: h2oe -> h2o

HCO3E; Range: 0 to 100; Formula: co2 + h2o -> h + hco3

HCO3E 1 xco2 > 1 xhco3 !#a > #a

HEX1; Range: 0 to 100; Formula: atp + glcD -> adp + g6p + h

HEX1 1 xglcD > 1 xg6p !#abcdef > #abcdef

HSDy; Range: 0 to 100; Formula: homL + nadp -> aspsa + h + nadph

HSDy 1 xhomL > 1 xaspsa !#abcd > #abcd

COMBO41; Range: 0 to 100; Formula: atp + h2o + homL -> adp + h + pi +

thrL

COMBO41 1 xhomL > 1 xthrL !#abcd > #abcd

HYD1; Range: 0 to 100; Formula: 2 h + h2 + q8 -> q8h2 + 2 he

HYD2; Range: 0 to 100; Formula: 2 h + h2 + mqn8 -> mql8 + 2 he

HYD3; Range: 0 to 100; Formula: 2dmmq8 + 2 h + h2 -> 2dmmql8 + 2 he

ICDHyr; Range: 0 to 100; Formula: icit + nadp -> akg + co2 + nadph

ICDHyr 1 xicit > 1 xakg 1 xco2 !#abcdef > #abcde #f

ICL; Range: 0 to 100; Formula: icit -> glx + succ

ICL 1 xicit > 1 xglx 1 xsucc !#abcdef > #ab #fcde !#abcdef > #ab #edcf

ILETA; Range: 0 to 100; Formula: akg + ileL -> 3mop + gluL

ILETA 1 xakg 1 xileL > 1 x3mop 1 xgluL !#abcde #fghijk > #fghijk #abcde

IMPD; Range: 0 to 100; Formula: h2o + imp + nad -> h + nadh + xmp

IPMD; Range: 0 to 100; Formula: 3c2hmp + nad -> 3c4mop + h + nadh

IPMD 1 x3c2hmp > 1 x3c4mop !#abcdefg > #abcdefg

IPPMIa; Range: 0 to 100; Formula: 3c2hmp -> 2ippm + h2o

IPPMIa 1 x3c2hmp > 1 x2ippm !#abcdefg > #abcdefg

IPPMIb; Range: 0 to 100; Formula: 2ippm + h2o -> 3c3hmp

IPPMIb 1 x2ippm > 1 x3c3hmp !#abcdefg > #abcdefg

IPPS; Range: 0 to 100; Formula: 3mob + accoa + h2o -> 3c3hmp + coa + h

IPPS 1 x3mob 1 xaccoa > 1 x3c3hmp !#abcde #fg > #fgbcdae

LLACD2; Range: 0 to 100; Formula: lacL + q8 -> pyr + q8h2
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LLACD2 1 xlacL > 1 xpyr !#abc > #abc

LLACD3; Range: 0 to 100; Formula: lacL + mqn8 -> mql8 + pyr

LLACD3 1 xlacL > 1 xpyr !#abc > #abc

LLACt2r; Range: 0 to 100; Formula: he + lacLe -> h + lacL

LLACt2r 1 xlacLe > 1 xlacL !#abc > #abc

LDHD; Range: 0 to 100; Formula: lacD + nad -> h + nadh + pyr

LDHD 1 xlacD > 1 xpyr !#abc > #abc

LDHD2; Range: 0 to 100; Formula: lacD + q8 -> pyr + q8h2

LDHD2 1 xlacD > 1 xpyr !#abc > #abc

LEUTAi; Range: 0 to 100; Formula: 4mop + gluL -> akg + leuL

LEUTAi 1 x4mop 1 xgluL > 1 xakg 1 xleuL !#abcdef #ghijk > #ghijk #abcdef

MALS; Range: 0 to 100; Formula: accoa + glx + h2o -> coa + h + malL

MALS 1 xaccoa 1 xglx > 1 xmalL !#ab #cd > #cdba

MDH; Range: 0 to 100; Formula: malL + nad -> h + nadh + oaa

MDH 1 xmalL > 1 xoaa !#abcd > #abcd

MDH2; Range: 0 to 100; Formula: malL + q8 -> oaa + q8h2

MDH2 1 xmalL > 1 xoaa !#abcd > #abcd

MDH3; Range: 0 to 100; Formula: malL + mqn8 -> mql8 + oaa

MDH3 1 xmalL > 1 xoaa !#abcd > #abcd

ME1; Range: 0 to 100; Formula: malL + nad -> co2 + nadh + pyr

ME1 1 xmalL > 1 xco2 1 xpyr !#abcd > #d #abc

ME2; Range: 0 to 100; Formula: malL + nadp -> co2 + nadph + pyr

ME2 1 xmalL > 1 xco2 1 xpyr !#abcd > #d #abc

MTHFC; Range: 0 to 100; Formula: h2o + methf -> 10fthf

MTHFC 1 xmethf > 1 x10fthf !#a > #a

MTHFD; Range: 0 to 100; Formula: mlthf + nadp -> h + methf + nadph

MTHFD 1 xmlthf > 1 xmethf !#a > #a

MTHFR2; Range: 0 to 100; Formula: h + mlthf + nadh -> 5mthf + nad

MTHFR2 1 xmlthf > 1 x5mthf !#a > #a

NACODA; Range: 0 to 100; Formula: acg5sa + h2o -> ac + glu5sa

NACODA 1 xacg5sa > 1 xac 1 xglu5sa !#abcdefg > #fg #abcde
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NADH10; Range: 0 to 100; Formula: h + mqn8 + nadh -> mql8 + nad

NADH5; Range: 0 to 100; Formula: h + nadh + q8 -> nad + q8h2

NADH6; Range: 0 to 100; Formula: 4.5 h + nadh + q8 -> nad + q8h2 + 3.5 he

NADH7; Range: 0 to 100; Formula: 3 h + mqn8 + nadh -> mql8 + nad + 2 he

NADH8; Range: 0 to 100; Formula: 2dmmq8 + 3.8 h + nadh -> 2dmmql8 +

nad + 2.8 he

NADH9; Range: 0 to 100; Formula: 2dmmq8 + h + nadh -> 2dmmql8 + nad

NADK; Range: 0 to 100; Formula: atp + nad -> adp + h + nadp

NAt31; Range: -100 to 100; Formula: na1 + he -> h + na1e

NAt315; Range: 0 to 100; Formula: 2 na1 + 3 he -> 3 h + 2 na1e

NAt32; Range: 0 to 100; Formula: na1 + 2 he -> 2 h + na1e

NDPK1; Range: 0 to 100; Formula: atp + gdp -> adp + gtp

NDPK2; Range: -100 to 100; Formula: atp + udp -> adp + utp

NDPK3; Range: -100 to 100; Formula: atp + cdp -> adp + ctp

NH4t; Range: -100 to 100; Formula: nh4e -> nh4

NO3R1; Range: 0 to 100; Formula: 2 h + no3 + q8h2 -> h2o + no2 + q8 + 2 he

NO3R2; Range: 0 to 100; Formula: 2 h + mql8 + no3 -> h2o + mqn8 + no2 +

2 he

NO2t2r; Range: -100 to 100; Formula: he + no2e -> h + no2

NO3t7; Range: 0 to 100; Formula: no2 + no3e -> no3 + no2e

NTPP6; Range: 0 to 100; Formula: atp + h2o -> amp + h + ppi

NTRIR2x; Range: 0 to 100; Formula: 5 h + 3 nadh + no2 -> 2 h2o + 3 nad +

nh4

O2t; Range: -100 to 100; Formula: o2e -> o2

OCBT; Range: 0 to 100; Formula: cbp + orn -> citrL + h + pi

OCBT 1 xcbp 1 xorn > 1 xcitrL !#a #bcdef > #bcdefa

OMCDC; Range: 0 to 100; Formula: 3c4mop + h -> 4mop + co2

OMCDC 1 x3c4mop > 1 x4mop 1 xco2 !#abcdefg > #abcdeg #f

ORNDC; Range: 0 to 100; Formula: h + orn -> co2 + ptrc

ORNDC 1 xorn > 1 xco2 1 xptrc !#abcde > #a #bcde !#abcde > #a #edcb

P5CD; Range: 0 to 100; Formula: 1pyr5c + 2 h2o + nad -> gluL + h + nadh
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P5CD 1 x1pyr5c > 1 xgluL !#abcde > #abcde

P5CR; Range: 0 to 100; Formula: 1pyr5c + 2 h + nadph -> nadp + proL

P5CR 1 x1pyr5c > 1 xproL !#abcde > #abcde

PDH; Range: 0 to 100; Formula: coa + nad + pyr -> accoa + co2 + nadh

PDH 1 xpyr > 1 xaccoa 1 xco2 !#abc > #bc #a

PFK; Range: 0 to 100; Formula: atp + f6p -> adp + fdp + h

PFK 1 xf6p > 1 xfdp !#abcdef > #abcdef

PFL; Range: 0 to 100; Formula: coa + pyr -> accoa + formate

PFL 1 xpyr > 1 xaccoa 1 xformate !#abc > #bc #a

COMBO47; Range: 0 to 100; Formula: 3pg + gluL + h2o + nad -> akg + h +

nadh + pi + serL

COMBO47 1 x3pg 1 xgluL > 1 xakg 1 xserL !#abc #defgh > #defgh #abc

PGI; Range: 0 to 100; Formula: g6p -> f6p

PGI 1 xg6p > 1 xf6p !#abcdef > #abcdef

PGK; Range: 0 to 100; Formula: 3pg + atp -> 13dpg + adp

PGK 1 x3pg > 1 x13dpg !#abc > #abc

PGL; Range: 0 to 100; Formula: 6pgl + h2o -> 6pgc + h

PGL 1 x6pgl > 1 x6pgc !#abcdef > #abcdef

PGM; Range: 0 to 100; Formula: 2pg -> 3pg

PGM 1 x2pg > 1 x3pg !#abc > #abc

PGMT; Range: 0 to 100; Formula: g1p -> g6p

PGMT 1 xg1p > 1 xg6p !#abcdef > #abcdef

PHETA1; Range: 0 to 100; Formula: akg + pheL -> gluL + phpyr

PHETA1 1 xakg 1 xpheL > 1 xgluL 1 xphpyr !#abcde #fghijklmn > #abcde

#fghijklmn !#abcde #fghinmlkj > #abcde #fghijklmn !#abcde #fghijklmn >

#abcde #fghinmlkj !#abcde #fghinmlkj > #abcde #fghinmlkj

PIabc; Range: 0 to 100; Formula: atp + h2o + pie -> adp + h + 2 pi

PIt2r; Range: -100 to 100; Formula: he + pie -> h + pi

POX; Range: 0 to 100; Formula: h2o + pyr + q8 -> ac + co2 + q8h2

POX 1 xpyr > 1 xac 1 xco2 !#abc > #bc #a

rPPA; Range: 0 to 100; Formula: h2o + ppi -> h + 2 pi
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PPC; Range: 0 to 100; Formula: co2 + h2o + pep -> h + oaa + pi

PPC 1 xco2 1 xpep > 1 xoaa !#a #bcd > #bcda

PPCK; Range: 0 to 100; Formula: atp + oaa -> adp + co2 + pep

PPCK 1 xoaa > 1 xco2 1 xpep !#abcd > #d #abc

PPND; Range: 0 to 100; Formula: nad + pphn -> 34hpp + co2 + nadh

PPND 1 xpphn > 1 x34hpp 1 xco2 !#abcdefghij > #abcdefghi #j !#abcdefghij

> #abcdihgfe #j

PPNDH; Range: 0 to 100; Formula: h + pphn -> co2 + h2o + phpyr

PPNDH 1 xpphn > 1 xco2 1 xphpyr !#abcdefghij > #j #abcdefghi !#abcdefghij

> #j #abcdihgfe

PPS; Range: 0 to 100; Formula: atp + h2o + pyr -> amp + 2 h + pep + pi

PPS 1 xpyr > 1 xpep !#abc > #abc

PROD2; Range: 0 to 100; Formula: fad + proL -> 1pyr5c + fadh2 + h

PROD2 1 xproL > 1 x1pyr5c !#abcde > #abcde

PRPPS; Range: 0 to 100; Formula: atp + r5p -> amp + h + prpp

PRPPS 1 xr5p > 1 xprpp !#abcde > #abcde

PSCVT; Range: 0 to 100; Formula: pep + skm5p -> 3psme + pi

PSCVT 1 xpep 1 xskm5p > 1 x3psme !#abc #defghij > #defghijbac

PTAr; Range: 0 to 100; Formula: accoa + pi -> actp + coa

PTAr 1 xaccoa > 1 xactp !#ab > #ab

PYK; Range: 0 to 100; Formula: adp + h + pep -> atp + pyr

PYK 1 xpep > 1 xpyr !#abc > #abc

PYRt2r; Range: 0 to 100; Formula: he + pyre -> h + pyr

PYRt2r 1 xpyre > 1 xpyr !#abc > #abc

RNTR1; Range: 0 to 100; Formula: atp + trdrd -> datp + h2o + trdox

RNTR2; Range: 0 to 100; Formula: gtp + trdrd -> dgtp + h2o + trdox

RNTR3; Range: 0 to 100; Formula: ctp + trdrd -> dctp + h2o + trdox

RPE; Range: 0 to 100; Formula: ru5pD -> xu5pD

RPE 1 xru5pD > 1 xxu5pD !#abcde > #abcde

RPI; Range: 0 to 100; Formula: r5p -> ru5pD

RPI 1 xr5p > 1 xru5pD !#abcde > #abcde
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SDPDS; Range: 0 to 100; Formula: h2o + sl26da -> 26dapLL + succ

SDPDS 1 xsl26da> 1 x26dapLL 1 xsucc !#abcdefghijk >#abcdefg #hijk !#abcde-

fghijk >#gfedcba #hijk !#abcdefghijk >#abcdefg #kjih !#abcdefghijk >#gfed-

cba #kjih

SDPTA; Range: 0 to 100; Formula: akg + sl26da -> gluL + sl2a6o

SDPTA 1 xakg 1 xsl26da > 1 xgluL 1 xsl2a6o !#abcde #fghijklmnop > #abcde

#fghijklmnop

SERAT; Range: 0 to 100; Formula: accoa + serL -> acser + coa

SERAT 1 xaccoa 1 xserL > 1 xacser !#ab #cde > #cdeab

SERDL; Range: 0 to 100; Formula: serL -> nh4 + pyr

SERDL 1 xserL > 1 xpyr !#abc > #abc

SHK3Dr; Range: 0 to 100; Formula: 3dhsk + h + nadph -> nadp + skm

SHK3Dr 1 x3dhsk > 1 xskm !#abcdefg > #abcdefg

SHKK; Range: 0 to 100; Formula: atp + skm -> adp + h + skm5p

SHKK 1 xskm > 1 xskm5p !#abcdefg > #abcdefg

SSALx; Range: 0 to 100; Formula: h2o + nad + sucsal -> 2 h + nadh + succ

SSALx 1 xsucsal > 1 xsucc !#abcd > #abcd !#abcd > #dcba

SSALy; Range: 0 to 100; Formula: h2o + nadp + sucsal -> 2 h + nadph + succ

SSALy 1 xsucsal > 1 xsucc !#abcd > #abcd !#abcd > #dcba

SUCCabc; Range: 0 to 100; Formula: atp + h2o + succe -> adp + h + pi +

succ

SUCCabc 1 xsucce > 1 xsucc !#abcd > #abcd !#dcba > #abcd !#abcd > #dcba

!#dcba > #dcba

SUCCt22; Range: 0 to 100; Formula: 2 he + succe -> 2 h + succ

SUCCt22 1 xsucce > 1 xsucc !#abcd > #abcd !#dcba > #abcd !#abcd > #dcba

!#dcba > #dcba

SUCCt23; Range: 0 to 100; Formula: 3 he + succe -> 3 h + succ

SUCCt23 1 xsucce > 1 xsucc !#abcd > #abcd !#dcba > #abcd !#abcd > #dcba

!#dcba > #dcba

SUCCt2b; Range: 0 to 100; Formula: h + succ -> he + succe

SUCCt2b 1 xsucc > 1 xsucce !#abcd > #abcd !#abcd > #dcba !#dcba > #abcd
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!#dcba > #dcba

SUCD1i; Range: 0 to 100; Formula: fad + succ -> fadh2 + fum

SUCD1i 1 xsucc > 1 xfum !#abcd > #dcba !#abcd > #abcd !#dcba > #dcba

!#dcba > #abcd

SUCD4; Range: -100 to 100; Formula: fadh2 + q8 -> fad + q8h2

SUCFUMt; Range: 0 to 100; Formula: succ + fume -> fum + succe

SUCFUMt 1 xfume 1 xsucc > 1 xfum 1 xsucce !#abcd #efgh > #abcd #efgh

!#dcba #efgh > #abcd #efgh !#abcd #efgh > #dcba #efgh !#dcba #efgh

> #dcba #efgh !#abcd #efgh > #abcd #hgfe !#dcba #efgh > #abcd #hgfe

!#abcd #efgh > #dcba #hgfe !#dcba #efgh > #dcba #hgfe !#abcd #hgfe

> #abcd #efgh !#dcba #hgfe > #abcd #efgh !#abcd #hgfe > #dcba #efgh

!#dcba #hgfe > #dcba #efgh !#abcd #hgfe > #abcd #hgfe !#dcba #hgfe >

#abcd #hgfe !#abcd #hgfe > #dcba #hgfe !#dcba #hgfe > #dcba #hgfe

SUCOAS; Range: 0 to 100; Formula: atp + coa + succ -> adp + pi + succoa

SUCOAS 1 xsucc > 1 xsuccoa !#abcd > #abcd !#dcba > #abcd

SULR; Range: -100 to 100; Formula: 3 h2o + h2s + 3 nadp -> 5 h + 3 nadph +

so3

SULabc; Range: 0 to 100; Formula: atp + h2o + so4e -> adp + h + pi + so4

TALA; Range: 0 to 100; Formula: g3p + s7p -> e4p + f6p

TALA 1 xg3p 1 xs7p > 1 xe4p 1 xf6p !#abc #defghij > #ghij #defabc

TESTAKGDH; Range: 0 to 100; Formula: akg + coa + nad -> co2 + nadh +

succoa

TESTAKGDH 1 xakg > 1 xco2 1 xsuccoa !#abcde > #a #bcde

TESTNADTRHD; Range: 0 to 100; Formula: nad + nadph -> nadh + nadp

THD2; Range: 0 to 100; Formula: nadh + nadp + 2 he -> 2 h + nad + nadph

THRAr; Range: 0 to 100; Formula: thrL -> acald + gly

THRAr 1 xthrL > 1 xacald 1 xgly !#abcd > #cd #ab

THRDL; Range: 0 to 100; Formula: thrL -> 2obut + nh4

THRDL 1 xthrL > 1 x2obut !#abcd > #abcd

TKT1; Range: 0 to 100; Formula: r5p + xu5pD -> g3p + s7p

TKT1 1 xr5p 1 xxu5pD > 1 xg3p 1 xs7p !#abcde #fghij > #hij #fgabcde
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TKT2; Range: 0 to 100; Formula: e4p + xu5pD -> f6p + g3p

TKT2 1 xe4p 1 xxu5pD > 1 xf6p 1 xg3p !#abcd #efghi > #efabcd #ghi

TPI; Range: 0 to 100; Formula: dhap -> g3p

TPI 1 xdhap > 1 xg3p !#abc > #cba

TRDR; Range: 0 to 100; Formula: h + nadph + trdox -> nadp + trdrd

TRPAS2; Range: 0 to 100; Formula: h2o + trpL -> indole + nh4 + pyr

TRPAS2 1 xtrpL > 1 xindole 1 xpyr !#abcdefghijk > #kdefghij #abc

TRPS1; Range: 0 to 100; Formula: 3ig3p + serL -> g3p + h2o + trpL

TRPS1 1 x3ig3p 1 xserL > 1 xg3p 1 xtrpL !#abcdefghijk #lmn > #cba #lmnde-

fghijk

TRPS2; Range: 0 to 100; Formula: indole + serL -> h2o + trpL

TRPS2 1 xindole 1 xserL > 1 xtrpL !#abcdefgh #ijk > #ijkbcdefgha

TRPS3; Range: 0 to 100; Formula: 3ig3p -> g3p + indole

TRPS3 1 x3ig3p > 1 xg3p 1 xindole !#abcdefghijk > #cba #kdefghij

TRSAR; Range: 0 to 100; Formula: 2h3oppan + h + nadh -> glycR + nad

TRSAR 1 x2h3oppan > 1 xglycR !#abc > #abc

TYRTA; Range: 0 to 100; Formula: akg + tyrL -> 34hpp + gluL

TYRTA 1 xakg 1 xtyrL > 1 x34hpp 1 xgluL !#abcde #fghijklmn > #fghijklmn

#abcde !#abcde #fghijklmn > #fghinmlkj #abcde !#abcde #fghinmlkj > #fghi-

jklmn #abcde !#abcde #fghinmlkj > #fghinmlkj #abcde

UMPK; Range: -100 to 100; Formula: atp + ump -> adp + udp

UNK3; Range: 0 to 100; Formula: 2kmb + gluL -> akg + metL

UNK3 1 x2kmb 1 xgluL > 1 xakg 1 xmetL !#abcde #fghij > #fghij #abcde

VALTA; Range: 0 to 100; Formula: akg + valL -> 3mob + gluL

VALTA 1 xakg 1 xvalL > 1 x3mob 1 xgluL !#abcde #fghij > #fghij #abcde

HISSYN; Range: 0 to 100; Formula: 10fthf + atp + glnL + 2 h2o + 2 nad +

prpp -> akg + 5 h + hisL + imp + 2 nadh + pi + 2 ppi + thf

HISSYN 1 x10fthf 1 xglnL 1 xprpp > 1 xakg 1 xhisL !#a #bcdef #ghijk > #bcdef

#kjihga

UMPSYN1; Range: 0 to 100; Formula: aspL + cbp + h + prpp + q8 -> co2 +

h2o + pi + ppi + q8h2 + ump
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UMPSYN1 1 xcbp 1 xprpp 1 xaspL > 1 xco2 !#a #bcdef #ghij > #g

UMPSYN2; Range: 0 to 100; Formula: aspL + cbp + h + mqn8 + prpp -> co2

+ h2o + mql8 + pi + ppi + ump

UMPSYN2 1 xcbp 1 xprpp 1 xaspL > 1 xco2 !#a #bcdef #ghij > #g

CTPSYN; Range: 0 to 100; Formula: atp + glnL + h2o + utp -> adp + ctp +

gluL + 2 h + pi

CTPSYN 1 xglnL > 1 xgluL !#abcde > #abcde

IMPSYN1; Range: 0 to 100; Formula: 2 10fthf + aspL + 5 atp + 2 glnL + gly

+ h2o + hco3 + prpp -> 5 adp + fum + 2 gluL + 7 h + imp + 5 pi + ppi + 2 thf

IMPSYN1 2 x10fthf 1 xgly 1 xhco3 1 xprpp 1 xaspL 2 xglnL > 1 xfum 2 xgluL

!#a #bc #d #efghi #jklm #stuvw > #jklm #stuvw !#a #bc #d #efghi #jklm

#vutsw > #jklm #stuvw

IMPSYN2; Range: 0 to 100; Formula: 10fthf + aspL + 6 atp + formate + 2

glnL + gly + h2o + hco3 + prpp -> 6 adp + fum + 2 gluL + 7 h + imp + 6 pi

+ ppi + thf

IMPSYN2 1 x10fthf 1 xformate 1 xgly 1 xhco3 1 xprpp 1 xaspL 2 xglnL > 1 xfum

2 xgluL !#a #b #cd #e #fghij #klmn #opqrs > #klmn #opqrs !#a #b #cd #e

#fghij #klmn #opqrs > #klmn #opqrs

dTTPSYN; Range: 0 to 100; Formula: h + mlthf + nadph + trdrd + utp ->

dttp + h2o + nadp + thf + trdox

dTTPSYN 1 xmlthf > !#a >

COASYN; Range: 0 to 100; Formula: 3mob + aspL + 4 atp + ctp + cysL + h2o

+ mlthf + nadph -> 2 adp + amp + cmp + 2 co2 + coa + nadp + 3 ppi + thf

COASYN 1 x3mob 1 xmlthf 1 xaspL 1 xcysL > 2 xco2 !#abcde #f #ghij #klm

> #g !#abcde #f #ghij #klm > #k

FADSYN; Range: 0 to 100; Formula: 2 atp + gtp + h2o + nadph + 2 ru5pD ->

adp + fad + 3 formate + 2 h + nadp + nh4 + 3 pi + 2 ppi

FADSYN .0000000000001 x10fthf 1 xru5pD 1 xru5pD > 3 xformate !#a #bcdef

#ghijk > #e !#a #bcdef #ghijk > #j !#a #bcdef #ghijk > #a

CDPDAGSYN; Range: 0 to 100; Formula: 16.86 accoa + 14.86 atp + ctp +

glyc3p + 29.48 h + 14.86 hco3 + 28.48 nadph -> 14.86 adp + cdpdagEC + 14.86
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co2 + 16.86 coa + 14.86 h2o + 28.48 nadp + 14.86 pi + ppi

CDPDAGSYN 16.86 xaccoa 1 xglyc3p 14.86 xhco3 > 14.86 xco2 !#ab #cde #f >

#f

PSSYN; Range: 0 to 100; Formula: cdpdagEC + serL -> cmp + h + psEC

PSSYN 1 xserL > !#abc >

PESYN; Range: 0 to 100; Formula: cdpdagEC + serL -> cmp + co2 + peEC

PESYN 1 xserL > 1 xco2 !#abc > #a

PGSYN; Range: 0 to 100; Formula: cdpdagEC + glyc3p + h2o -> cmp + h +

pgEC + pi

PGSYN 1 xglyc3p > !#abc >

CLPNSYN; Range: 0 to 100; Formula: 2 cdpdagEC + 2 glyc3p + 2 h2o ->

clpnEC + 2 cmp + glyc + 2 h + 2 pi

CLPNSYN 2 xglyc3p > 1 xglyc !#abc > #abc !#abc > #cba

LPSSYN; Range: 0 to 100; Formula: 43 accoa + 44 atp + 7 ctp + 2 f6p + 2 g1p

+ 2 glnL + 52 h + 35 hco3 + 66 nadph + 2 peEC + 5 pep + 5 ru5pD + 3 s7p +

4 utp -> 2 ac + 44 adp + 2 cdp + 2 cdpdagEC + 3 cmp + 35 co2 + 43 coa + 2

gluL + 15 h2o + lpsEC + 66 nadp + 48 pi + 14 ppi + 3 udp + ump

LPSSYN 2 xf6p 2 xg1p 5 xpep 5 xru5pD 3 xs7p 43 xaccoa 2 xglnL 35 xhco3 > 2

xac 35 xco2 2 xgluL !#abcdef #ghijkl #mno #pqrst #uvwxyzA #BC #FGHIJ

#P > #BC #P #FGHIJ

PEPTIDOSYN; Range: 0 to 100; Formula: 26dapM + 2 accoa + 2 alaD + alaL

+ 5 atp + 2 f6p + 2 glnL + h2o + nadph + pep + 2 utp -> 5 adp + 2 coa + gluL

+ 7 h + nadp + peptidoEC + 7 pi + 2 ppi + udp + ump

PEPTIDOSYN 1 x26dapM 2 xaccoa 2 xalaD 1 xalaL 2 xf6p 1 xpep 2 xglnL > 1

xgluL !#abcdefg #hi #jkl #mno #pqrstu #vwx #yzABC > #yzABC !#gfedcba

#hi #jkl #mno #pqrstu #vwx #yzABC > #yzABC

NADSYN1; Range: 0 to 100; Formula: aspL + 2 atp + dhap + h + nh4 + prpp

+ q8 -> amp + co2 + 2 h2o + nad + pi + 3 ppi + q8h2

NADSYN1 1 xdhap 1 xprpp 1 xaspL > 1 xco2 !#abc #defgh #ijkl > #i

NADSYN2; Range: 0 to 100; Formula: aspL + 2 atp + dhap + h + mqn8 +

nh4 + prpp -> amp + co2 + 2 h2o + mql8 + nad + pi + 3 ppi
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NADSYN2 1 xdhap 1 xprpp 1 xaspL > 1 xco2 !#abc #defgh #ijkl > #i

THFSYN; Range: 0 to 100; Formula: 2 atp + chor + glnL + gtp + 4 h2o + nad

+ nadph -> adp + amp + formate + glyclt + 5 h + nadh + nadp + 2 pi + 2 ppi

+ pyr + thf

THFSYN 1 xglnL .0000000000001 x10fthf 1 xchor .0000000000001 xprpp > 1 xfor-

mate 1 xglyclt 1 xpyr !#abcde #f #ghijklmnop #qrstu > #f #tu #onp

G3PP; Range: 0 to 100; Formula: glyc3p + h2o -> glyc + pi

G3PP 1 xglyc3p > 1 xglyc !#def > #def !#fed > #def

EX co2 r; Range: 0 to 0; Formula: -> co2e

ACKr r; Range: 0 to 100; Formula: actp + adp -> ac + atp

ACKr r 1 xactp > 1 xac !#ab > #ab

rACONT r; Range: 0 to 100; Formula: icit -> cit

rACONT r 1 xicit > 1 xcit !#abcdef > #abcdef

ACOTA r; Range: 0 to 100; Formula: acg5sa + gluL -> acorn + akg

ACOTA r 1 xacg5sa 1 xgluL > 1 xacorn 1 xakg !#abcdefg #hijkl > #abcdefg

#hijkl

ACt2r r; Range: 0 to 100; Formula: ac + h -> ace + he

ACt2r r 1 xac > 1 xace !#ab > #ab

ADHEr r; Range: 0 to 100; Formula: coa + etoh + 2 nad -> accoa + 2 h + 2

nadh

ADHEr r 1 xetoh > 1 xaccoa !#ab > #ab

AGPR r; Range: 0 to 100; Formula: acg5p + h + nadph -> acg5sa + nadp + pi

AGPR r 1 xacg5p > 1 xacg5sa !#abcdefg > #abcdefg

ALAR r; Range: 0 to 100; Formula: alaD -> alaL

ALAR r 1 xalaD > 1 xalaL !#abc > #abc

ALATAL r; Range: 0 to 100; Formula: gluL + pyr -> akg + alaL

ALATAL r 1 xgluL 1 xpyr > 1 xakg 1 xalaL !#abcde #fgh > #abcde #fgh

ARGSL r; Range: 0 to 100; Formula: argL + fum -> argsuc

ARGSL r 1 xargL 1 xfum > 1 xargsuc !#abcdef #jghi > #abcdefghij !#abcdef

#ihgj > #abcdefghij

ASAD r; Range: 0 to 100; Formula: 4pasp + h + nadph -> aspsa + nadp + pi
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ASAD r 1 x4pasp > 1 xaspsa !#abcd > #abcd

ASPK r; Range: 0 to 100; Formula: 4pasp + adp -> aspL + atp

ASPK r 1 x4pasp > 1 xaspL !#abcd > #abcd

ASPTA r; Range: 0 to 100; Formula: gluL + oaa -> akg + aspL

ASPTA r 1 xgluL 1 xoaa > 1 xakg 1 xaspL !#abcde #fghi > #abcde #fghi

CO2t r; Range: 0 to 100; Formula: co2 -> co2e

CO2t r 1 xco2 > 1 xco2e !#a > #a

DLACt2 r; Range: 0 to 100; Formula: h + lacD -> he + lacDe

DLACt2 r 1 xlacD > 1 xlacDe !#abc > #abc

DAPE r; Range: 0 to 100; Formula: 26dapM -> 26dapLL

DAPE r 1 x26dapM > 1 x26dapLL !#abcdefg > #abcdefg !#abcdefg > #gfedcba

!#gfedcba > #abcdefg !#gfedcba > #gfedcba

DHQD r; Range: 0 to 100; Formula: 3dhsk + h2o -> 3dhq

DHQD r 1 x3dhsk > 1 x3dhq !#abcdefg > #abcdefg

ENO r; Range: 0 to 100; Formula: h2o + pep -> 2pg

ENO r 1 xpep > 1 x2pg !#abc > #abc

ETOHt2r r; Range: 0 to 100; Formula: etoh + h -> etohe + he

ETOHt2r r 1 xetoh > 1 xetohe !#ab > #ab

F6PA r; Range: 0 to 100; Formula: dha + g3p -> f6p

F6PA r 1 xdha 1 xg3p > 1 xf6p !#abc #def > #abcdef !#cba #def > #abcdef

FBA r; Range: 0 to 100; Formula: dhap + g3p -> fdp

FBA r 1 xdhap 1 xg3p > 1 xfdp !#abc #def > #abcdef

FORt r; Range: 0 to 100; Formula: formate -> fore

FORt r 1 xformate > 1 xfore !#a > #a

rFUM r; Range: 0 to 100; Formula: malL -> fum + h2o

rFUM r 1 xmalL > 1 xfum !#abcd > #abcd !#abcd > #dcba

G3PD2 r; Range: 0 to 100; Formula: dhap + h + nadph -> glyc3p + nadp

G3PD2 r 1 xdhap > 1 xglyc3p !#abc > #abc

G6PDH2r r; Range: 0 to 100; Formula: 6pgl + h + nadph -> g6p + nadp

G6PDH2r r 1 x6pgl > 1 xg6p !#abcdef > #abcdef

GAPD r; Range: 0 to 100; Formula: 13dpg + h + nadh -> g3p + nad + pi
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GAPD r 1 x13dpg > 1 xg3p !#abc > #abc

GLUDy r; Range: 0 to 100; Formula: akg + h + nadph + nh4 -> gluL + h2o +

nadp

GLUDy r 1 xakg > 1 xgluL !#abcde > #abcde

GLYCt r; Range: 0 to 100; Formula: glyce -> glyc

GLYCt r 1 xglyce > 1 xglyc !#abc > #abc !#cba > #abc !#abc > #cba !#cba

> #cba

HCO3E r; Range: 0 to 100; Formula: h + hco3 -> co2 + h2o

HCO3E r 1 xhco3 > 1 xco2 !#a > #a

HSDy r; Range: 0 to 100; Formula: aspsa + h + nadph -> homL + nadp

HSDy r 1 xaspsa > 1 xhomL !#abcd > #abcd

ICDHyr r; Range: 0 to 100; Formula: akg + co2 + nadph -> icit + nadp

ICDHyr r 1 xakg 1 xco2 > 1 xicit !#abcde #f > #abcdef

ILETA r; Range: 0 to 100; Formula: 3mop + gluL -> akg + ileL

ILETA r 1 x3mop 1 xgluL > 1 xakg 1 xileL !#fghijk #abcde > #abcde #fghijk

IPPMIa r; Range: 0 to 100; Formula: 2ippm + h2o -> 3c2hmp

IPPMIa r 1 x2ippm > 1 x3c2hmp !#abcdefg > #abcdefg

IPPMIb r; Range: 0 to 100; Formula: 3c3hmp -> 2ippm + h2o

IPPMIb r 1 x3c3hmp > 1 x2ippm !#abcdefg > #abcdefg

LLACt2r r; Range: 0 to 100; Formula: h + lacL -> he + lacLe

LLACt2r r 1 xlacL > 1 xlacLe !#abc > #abc

LDHD r; Range: 0 to 100; Formula: h + nadh + pyr -> lacD + nad

LDHD r 1 xpyr > 1 xlacD !#abc > #abc

MDH r; Range: 0 to 100; Formula: h + nadh + oaa -> malL + nad

MDH r 1 xoaa > 1 xmalL !#abcd > #abcd

MTHFC r; Range: 0 to 100; Formula: 10fthf -> h2o + methf

MTHFC r 1 x10fthf > 1 xmethf !#a > #a

MTHFD r; Range: 0 to 100; Formula: h + methf + nadph -> mlthf + nadp

MTHFD r 1 xmethf > 1 xmlthf !#a > #a

OCBT r; Range: 0 to 100; Formula: citrL + h + pi -> cbp + orn

OCBT r 1 xcitrL > 1 xcbp 1 xorn !#bcdefa > #a #bcdef
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PGI r; Range: 0 to 100; Formula: f6p -> g6p

PGI r 1 xf6p > 1 xg6p !#abcdef > #abcdef

PGK r; Range: 0 to 100; Formula: 13dpg + adp -> 3pg + atp

PGK r 1 x13dpg > 1 x3pg !#abc > #abc

PGM r; Range: 0 to 100; Formula: 3pg -> 2pg

PGM r 1 x3pg > 1 x2pg !#abc > #abc

PGMT r; Range: 0 to 100; Formula: g6p -> g1p

PGMT r 1 xg6p > 1 xg1p !#abcdef > #abcdef

PHETA1 r; Range: 0 to 100; Formula: gluL + phpyr -> akg + pheL

PHETA1 r 1 xgluL 1 xphpyr > 1 xakg 1 xpheL !#abcde #fghijklmn > #abcde

#fghijklmn !#abcde #fghijklmn > #abcde #fghinmlkj !#abcde #fghinmlkj >

#abcde #fghijklmn !#abcde #fghinmlkj > #abcde #fghinmlkj

PRPPS r; Range: 0 to 100; Formula: amp + h + prpp -> atp + r5p

PRPPS r 1 xprpp > 1 xr5p !#abcde > #abcde

PSCVT r; Range: 0 to 100; Formula: 3psme + pi -> pep + skm5p

PSCVT r 1 x3psme > 1 xpep 1 xskm5p !#defghijbac > #abc #defghij

PTAr r; Range: 0 to 100; Formula: actp + coa -> accoa + pi

PTAr r 1 xactp > 1 xaccoa !#ab > #ab

PYRt2r r; Range: 0 to 100; Formula: h + pyr -> he + pyre

PYRt2r r 1 xpyr > 1 xpyre !#abc > #abc

RPE r; Range: 0 to 100; Formula: xu5pD -> ru5pD

RPE r 1 xxu5pD > 1 xru5pD !#abcde > #abcde

RPI r; Range: 0 to 100; Formula: ru5pD -> r5p

RPI r 1 xru5pD > 1 xr5p !#abcde > #abcde

SDPTA r; Range: 0 to 100; Formula: gluL + sl2a6o -> akg + sl26da

SDPTA r 1 xgluL 1 xsl2a6o > 1 xakg 1 xsl26da !#abcde #fghijklmnop > #abcde

#fghijklmnop

SERAT r; Range: 0 to 100; Formula: acser + coa -> accoa + serL

SERAT r 1 xacser > 1 xaccoa 1 xserL !#cdeab > #ab #cde

SHK3Dr r; Range: 0 to 100; Formula: nadp + skm -> 3dhsk + h + nadph

SHK3Dr r 1 xskm > 1 x3dhsk !#abcdefg > #abcdefg
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SUCFUMt r; Range: 0 to 100; Formula: fum + succe -> succ + fume

SUCFUMt r 1 xfum 1 xsucce > 1 xfume 1 xsucc !#abcd #efgh > #abcd #efgh

!#abcd #efgh > #dcba #efgh !#dcba #efgh > #abcd #efgh !#dcba #efgh >

#dcba #efgh !#abcd #hgfe >#abcd #efgh !#abcd #hgfe >#dcba #efgh !#dcba

#hgfe > #abcd #efgh !#dcba #hgfe > #dcba #efgh !#abcd #efgh > #abcd

#hgfe !#abcd #efgh > #dcba #hgfe !#dcba #efgh > #abcd #hgfe !#dcba

#efgh > #dcba #hgfe !#abcd #hgfe > #abcd #hgfe !#abcd #hgfe > #dcba

#hgfe !#dcba #hgfe > #abcd #hgfe !#dcba #hgfe > #dcba #hgfe

SUCOAS r; Range: 0 to 100; Formula: adp + pi + succoa -> atp + coa + succ

SUCOAS r 1 xsuccoa > 1 xsucc !#abcd > #abcd !#abcd > #dcba

TALA r; Range: 0 to 100; Formula: e4p + f6p -> g3p + s7p

TALA r 1 xe4p 1 xf6p > 1 xg3p 1 xs7p !#ghij #defabc > #abc #defghij

THRAr r; Range: 0 to 100; Formula: acald + gly -> thrL

THRAr r 1 xacald 1 xgly > 1 xthrL !#cd #ab > #abcd

TKT1 r; Range: 0 to 100; Formula: g3p + s7p -> r5p + xu5pD

TKT1 r 1 xg3p 1 xs7p > 1 xr5p 1 xxu5pD !#hij #fgabcde > #abcde #fghij

TKT2 r; Range: 0 to 100; Formula: f6p + g3p -> e4p + xu5pD

TKT2 r 1 xf6p 1 xg3p > 1 xe4p 1 xxu5pD !#efabcd #ghi > #abcd #efghi

TPI r; Range: 0 to 100; Formula: g3p -> dhap

TPI r 1 xg3p > 1 xdhap !#cba > #abc

TRPAS2 r; Range: 0 to 100; Formula: indole + nh4 + pyr -> h2o + trpL

TRPAS2 r 1 xindole 1 xpyr > 1 xtrpL !#kdefghij #abc > #abcdefghijk

TYRTA r; Range: 0 to 100; Formula: 34hpp + gluL -> akg + tyrL

TYRTA r 1 x34hpp 1 xgluL > 1 xakg 1 xtyrL !#fghijklmn #abcde > #abcde

#fghijklmn !#fghinmlkj #abcde > #abcde #fghijklmn !#fghijklmn #abcde >

#abcde #fghinmlkj !#fghinmlkj #abcde > #abcde #fghinmlkj

VALTA r; Range: 0 to 100; Formula: 3mob + gluL -> akg + valL

VALTA r 1 x3mob 1 xgluL > 1 xakg 1 xvalL !#fghij #abcde > #abcde #fghij

GHMT2 r; Range: 0 to 100; Formula: gly + h2o + mlthf -> serL + thf

GHMT2 r 1 xgly 1 xmlthf > 1 xserL !#ab #c > #abc



Appendix B

COBRA toolbox v2 additional

specifications

B.1 Description of a COBRA compliant SBML

file structure

The format of the SBML files used in this work were generated using the

standards outlined in http://sbml.org/documents/specifications. COBRA compli-

ant SBML files should contain the following data:

• Unit definitions

• Compartments

• Metabolites (format: M <metabolite abbreviation> <compartment id>’)

• Metabolite name, compartment, charge, formula

• Reactions (format: R <reaction abbreviation>’)

• Reaction name, reversibility, reaction stoichiometry, gene-protein-reaction

(GPR) association, subsystem, E. C. number, lower bound, upper bound,

flux value, objective coefficient
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Unit definitions are listed in the <listOfUnitDefinitions> section of the

SBML file in the following format (example from ecoli core model.xml):

<listOfUnitDefintions>

<unitDefinition id=mmol per gDW per hr>

<listOfUnits>

<unit kind=mole scale=-3/>

<unit kind=gram exponent=1/>

<unit kind=second exponent=-1 multiplier= 0.000277777777777778”/>

</listOfUnits>

</unitDefinition>

</listOfUnitDefinitions>

Compartments are listed in the <listOfCompartments> section of the SBML

file in the following format (example from ecoli core model.xml):

<listOfCompartments>

<compartment id=c name=Cytoplasm/>

<compartment id=e name=ExtraOrganism/>

</listOfCompartments>

The compartment id should correspond to the compartment abbreviation

appended to metabolite names. The full name of the compartment is defined using

the name parameter.

Metabolites are listed in the <listOfSpecies> section of the SBML file in

the following format (example: acetaldehyde in the cytoplasm):

<listOfSpecies>

...

<species id=M ACALD c name=Acetaldehyde compartment=c/>

<notes>

<body xmins=http://www.w3.org/1999/xhtml>

<p>FORMULA: C2H4O</p>

<p>CHARGE: 0</p>

</body>
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</notes>

...

</listOfSpecies>

The compartment abbreviation should be appended to the end of the metabo-

lite id. The formula for metabolite is defined in the <notes> section. Note that

as the charge parameter was deprecated as of SBML Level 2 Version 2, metabolite

charge is now specified in the <notes> section.

Reactions are listed in the <listOfReactions> section of the SBML file in

the following format (example: D-lactate dehydrogenase):

<listOfReactions>

...

<reaction id=R LDH name=D-lactate dehydrogenase>

<notes>

<body xmlns=http://www.w3.org/1999/xhtml>

<p>GENE ASSOCATION: (b1380) or (b2133)</p>

<p>SUBSYSTEM: Pyruvate Metabolism</p>

<p>EC Number: 1.1.1.28</p>

<p>Confidence level: 0</p>

</body>

</notes>

<listOfReactants>

<speciesReference species=M lac DASH D c/>

<speciesReference species=M nad c/>

</listOfReactants>

<listOfProducts>

<speciesReference species=M h c/>

<speciesReference species=M nadh c/>

<speciesReference species=M pyr c/>

</listOfProducts>

<kineticLaw>
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<math xmlns=http://www.w3.org/1998/Math/MathML>

<ci> FLUX VALUE </ci>

</math>

<listOfParameters>

<parameter id=”LOWER BOUND” value=”-1000” units=

”mmol per gDW per hr”/>

<parameter id=”UPPER BOUND” value=”1000” units=

”mmol per gDW per hr”/>

<parameter id=”FLUX VALUE” value=”0” units=

”mmol per gDW per hr”/>

<parameter id=”OBJECTIVE COEFFICIENT” value=”0” units=

”mmol per gDW per hr”/>

</listOfParameters>

</kineticLaw>

</reaction>

...

</listOfReactions>

The gene-protein-reaction associations and subsystem for a reaction are

specified in the <notes> section. Reactants and products for a reaction are

listed in <listOfReactants> and <listOfProducts> sections respectively. The

lower bound, upper bound, and objective coefficient for a reaction are listed in

the <listOfParameters> section within the <kineticLaw> section.

Note that Sid entries in an SBML format file are limited to ‘0 to 9’, ‘A to

Z’, ‘a to z’, and ‘ ’. To compensate for this, several substitutions are used in place

of certain characters. convertSBMLToCobra and convertCobraToSBML are able

to handle translating these substitutions back and forth.
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B.2 Description of the COBRA toolbox model

structure

The model structure contains the following required fields:

• rxns: reaction name abbreviation; reaction ID; order corresponds to S matrix.

• mets: metabolite name abbreviation; metabolite ID; order corresponds to S

matrix.

• S: Stoichiometric matrix in sparse format.

• rev: logical array; true for reversible reactions, otherwise false

• lb: lower flux bound for corresponding reactions

• ub: upper flux bound for corresponding reactions

• c: objective coefficient for corresponding reactions

• metCharge: value of charge for corresponding metabolite

• metFormulas: Elemental formula for each metabolite

• rules: Boolean rule for the corresponding reaction which defines gene-

reaction relationship.

• genes: List of all genes within the model.

• rxnGeneMat: matrix with rows corresponding to reactions and columns

corresponding to genes

• grRules: rules field in a format readable format

• subSystems: subSystem assignment for each reaction

• description: A string describing the model (i.e. model name)

Additional fields which contain supplemental information may also be provided

using the following fields:
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• rxnNames: Full name of each corresponding reaction

• rxnReferences: Cell array of strings which can contain optional information

on references for each specific reaction.

• rxnECNumbers: E. C. number for each reaction

• rxnNotes: Cell array of strings which can contain optional information for

each specific reaction.

• confidenceScores: Confidence score for each reaction

• proteins: proteins associated with each reaction

• metNames: Full name of each corresponding metabolite

• metChEBIID: ChEBI ID for each corresponding metabolite

• metKeggID: KEGG ID for each corresponding metabolite

• metPubChemID: Pub Chem ID for each corresponding metabolite

• metInchiString: Inichi String for each corresponding metabolite

B.3 Description of the COBRA format for C13

tracing

B.3.1 Description of Network

The matlab structure must contain separate forward and reverse reactions

for every Carbon traced reaction. The Carbon information is stored in the following

additional field:

.isotopomer: a vector of strings of length n (number of reactions). For each

entry, if the corresponding reaction is carbon tracked, .isotopomer must contain

the following string:
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Unique label <space> coefficient/metabolite pairs describing reactants ‘>’

coefficient/metabolite pairs describing products ‘!’ corresponding carbon mapping

indicated with ‘#’.

If there are multiple possible mappings due to compound symmetry, another

‘!’ may follow. All possible mappings are treated with equal probability.

Example: .isotopomeri = ‘CYSS 1 xacser > 1 xac 1 xcysL!#abcde > #de

#abc’

B.3.2 Experimental data

Each experiment is stored as a structure comprising the following fields.

• .input vector of length 2(̂#carbons in input) corresponds to cumumer dis-

tribution of isotopomers. If only Isotopomer distribution is available then

function iso2cdv(input, carbons) will convert to cumomer.

• .inputfrag generated automatically from .input. Contains distribution of

C13 in input compound fragments. This field is used by the EMU method.

• .fragments A structure containing the actual measured data. Each field in

the structure is one fragment and is identified by a .fragment name. These

fragments contain fields:

– .met string of metabolite measured

– .fragment binary vector of which carbons were measured. A 1 indicates

inclusion in a fragment, 0 exclusion.

– .data A vector of length #carbons+1 corresponding to the fraction of

carbon labeled 0, 1, #carbons times.

– .metfrag a string comprising the metabolite name (.met) and .fragment

concatenated as a string.

• .std2 The standard deviation of experimental measurements. Used as a

scaling factor for goodness of fit testing.
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