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Abstract 

Early word learning may be supported by a developmental 
feedback loop: the kind of words a child learns early on 
support the development of attentional biases, which in turn 
facilitate further word learning. In neural network simulations 
and a longitudinal study of toddlers we investigated how the 
emergence of an attentional bias to shape in word learning 
impacts vocabulary growth with respect to different kinds of 
words. If this relationship is causal, we should see that the 
emergence of a shape bias leads to an increase in the rate of 
learning of shape-based words relative to other kinds of 
words. The networks supported this prediction, showing an 
acceleration of shape- compared to material-based word 
learning. However, in toddlers, shape- and material-based 
words were learned similarly around the shape bias 
emergence. Implications are discussed for the developmental 
feedback loop account and causal relationships between 
attentional bias development and vocabulary growth. 

Keywords: Word learning; shape bias; neural networks; 
longitudinal study. 

Introduction 
Children are skilled word learners, in part because of 
constraints on the range of things they consider when 
inferring the referent of a new word. These constraints, 
sometimes referred to as biases, operate by helping children 
direct attention, resulting in sensitivity to what information 
matters most in the context of learning different kinds of 
words. Although there is debate on the origin of these 
attentional biases (e.g., Samuelson & Bloom, 2008), 
evidence from children and from networks suggest that 
children can learn biases based on the kinds of nouns they 
acquire early on in their vocabularies (e.g., Colunga & 
Smith, 2005; Gerhshkoff-Stowe & Smith, 2004). This 
account entails a developmental feedback loop: the early 
nouns that children learn give rise to attentional biases, and 
those biases in turn guide further word learning and impact 
the structure of children’s growing vocabularies. In the 
current paper we use data from neural networks and toddlers 
to investigate the latter part of this loop, focusing on how 
different types of words are learned right around the pivotal 
moment of word learning bias development.  

Children’s Early Vocabularies 
Words are an important building block in language and 
cognitive development. Children make the process of word 
learning look deceptively simple, typically acquiring their 
first word around the age of 1 year and experiencing a spike 
in vocabulary development around 18 months of age 
(Goldfield & Reznick, 1990). Some researchers have 
observed that this vocabulary spike does not tend to occur 
until a child has at least 50 words in his or her vocabulary 
(Lucariello, 1987). Other work shows that the vocabulary 
spike is not only a function of the number of words a child 
knows, but also depends on the kinds of words that children 
learn. For example, Goldfield and Reznick (1990) observed 
that children exhibiting a vocabulary spike tended to add 
many words for objects (i.e., nouns) to their vocabularies. 
Children who did not show this dramatic increase in 
vocabulary size were steadily adding various types of words 
instead. This result suggests that while vocabulary size may 
be one key factor in children’s language development, the 
specific kinds of words that children learn also play a role. 

More recent research has investigated the question of why 
learning nouns may help accelerate subsequent vocabulary 
growth. One reason is that many different nouns have a 
basic property in common: they tend to refer to categories of 
things that are alike in shape. For example, a child will hear 
the word “ball” used to label a variety of spherical objects. 
Over time, children may pick up on the general pattern that 
shape is an important feature when talking about things in 
the world, and this insight in turn facilitates further word 
learning. Support for this account comes from a longitudinal 
study of young children’s vocabularies (Gershkoff-Stowe 
and Smith, 2004). Over a three month period, 17-month-old 
children had a greater increase in object label nouns 
compared to other types of words. Over this same time 
period, children attended more to shape, over and above 
other features, when generalizing a newly learned word to 
novel objects. This result suggests that as children learn 
certain kinds of words, they also learn reliable patterns or 
constraints about how those words are used in the world. In 
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this paper we focus on one word learning constraint in 
particular: the shape bias. 

The Shape Bias in Early Word Learning 
The shape bias is the tendency for children to generalize 
newly learned nouns to other objects based on similarity in 
shape. This is typically tested in novel noun generalization 
(NNG) tasks (Landau, Smith, & Jones, 1988). In this type of 
task a child may be taught a novel name for a novel solid 
object. A shape bias is shown when the child extends that 
name to other objects matching the original in shape, even if 
the shape match differs from the original in texture, color, or 
size. Children show a reliable shape bias by 2 years of age 
(Samuelson & Smith, 1999). 

There is evidence that the emergence of the shape bias 
can guide children in learning new words. For instance, in 
one study 17-month-olds were trained on shape-based 
categories of words, effectively teaching them the shape 
bias (Smith et. al, 2002). Not only did these children 
develop a shape bias earlier than the control group, they also 
showed accelerated growth in overall vocabulary. This 
suggests that there is an interaction between the 
development of word learning biases, particularly the shape 
bias, and vocabulary growth. This finding is one piece of 
evidence for a developmental feedback loop between 
vocabulary development and word learning constraints. 

A Developmental Feedback Loop 
Smith and colleagues (2002) showed that teaching children 
the shape bias can promote vocabulary growth, but what 
about the other way around? Many of the previously 
mentioned studies show a correlation between these two 
factors. However, rather than word learning biases simply 
causing vocabulary growth, perhaps these are coupled 
phenomena that reciprocally influence each other. Previous 
modeling research suggests this. For instance, Colunga and 
Sims (2012) trained neural networks with early- and late-
talker vocabulary structures as input and then tested for the 
development of word learning biases. Results showed that 
networks given late-talker vocabulary input produced 
different biases than networks with early-talker input. This 
shows that given only the structure of a child’s vocabulary, 
the network can develop quantitatively different biases, 
suggesting that vocabulary growth affects bias development. 
These findings, combined with the experiments of Smith 
and colleagues (2002), indicate that vocabulary structure 
and word learning biases may be part of a development 
feedback loop in which both processes affect one another. 
Here we investigate the dynamics of this loop in both neural 
networks and in children. 

In prior work, we explored dynamics of and interactions 
between the shape bias and other word learning biases over 
time. Neural networks were trained on a typical 30-month-
old child’s vocabulary structure, then the bias dynamics 
were observed. We found that as the shape bias emerged, 
the development of other word learning biases diminished, 
suggesting a shift in attention as the shape bias is learned 

(Schilling, Sims & Colunga, 2012). These results were 
replicated in behavioral data from a longitudinal study of 
18- to 30-month-old children (Sims, Schilling, & Colunga, 
2012). 

In this paper, we look at the same emergence window, but 
this time concentrate on how different kinds of words are 
learned before, during and after shape bias emergence. That 
is, we focus on the other piece of the developmental 
feedback loop: how vocabulary structure changes as word 
learning biases develop. What kinds of words do networks 
and children learn right around the pivotal point of shape 
bias emergence? To test this, we used network models and 
vocabulary data from a longitudinal behavioral study. 

Approach and Overview 
Our approach is to train a network on a typical early child 
vocabulary in order to observe learning over time that is 
similar to children’s vocabulary development. We use a 
neural network to model the process of word learning, 
which differs from some other approaches to modeling word 
learning. For example, Bayesian networks extract 
generalities in order to produce a structured system 
representative of the real world (e.g., a mapping of a child’s 
word representations; see Xu & Tenebaum, 2007). Our 
networks instead begin with structured representations as 
input and produce attentional biases. In order to investigate 
the developmental feedback loop, we are interested in the 
process: how the network forms these attentional biases 
from vocabulary structure input. We tested both networks 
and children on novel word generalization (using a virtual 
NNG task with the networks and a lab NNG task with 
children; see Sims et al., 2012 for details) over multiple 
points of vocabulary development. From this data, we 
identified the point in word learning at which the shape bias 
emerged for each individual network and child. Finally, we 
looked at the kinds of words that networks and children 
learned around their respective emergence points. 

Network Simulations 

Method 
Our network was implemented in the Emergent software 
package (O’Reilly, Munakata, Frank, & Hazy, 2012), to 
model word learning. The network was given input 
structured like that of a typical 30-month-old’s vocabulary. 
Throughout learning, we tracked what kinds of words the 
network successfully learned and tested for attentional 
biases. By analyzing the word learning biases the network 
developed and how they affected vocabulary structure, we 
were able to focus on the developmental feedback loop 
between attentional biases and vocabulary growth over time. 
Network Dynamics  

Our models use the Leabra algorithm (Local, Error-driven 
and Associative, Biologically Realistic Algorithm), which 
combines Hebbian and error-driven learning (O’Reilly et al., 
2012). The Hebbian, self-organizing learning uses longer 
time-scale statistics about the environment and is useful for 
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extracting generalities. However, this type of learning is not 
as good at compensating for specific, complicated patterns. 
Therefore, we use error-driven learning, which actively 
utilizes differences between expectations and outcomes. The 
total weight change in the network is the sum of that of the 
error-driven learning and that of the Hebbian learning. 

The network uses a function called the eXtended 
Contrastive Attractor Learning (XCAL) rule. This function 
uses sending and receiving activity input and has a floating 
threshold that regulates changes in weights over learning. 
This function is used for both the Hebbian and error-driven 
learning with different inputs to the function. Inputs affect 
threshold changes and therefore different inputs elicit 
different weight change dynamics. 

The error-driven weight changes are updated based on the 
short-term average connection activity (<xy>s) and the 
medium-time scale average connection activity (<xy>m). 

 
∆𝑤!""#" = 𝑓!"#$ < 𝑥𝑦 >!,< 𝑥𝑦 >! =   𝑓!"#$ 𝑥!𝑦!,   𝑥!𝑦!  

 
Where <xy>m represents the emerging expectation about a 

current situation and <xy>s reflects the actual outcome and 
therefore the result of the received error information. 

The Hebbian weight changes are based on the short-term 
connection activity (xys) and long-term average activity of 
the receiving unit (<y>l). 

 
∆𝑤!"##$%& = 𝑓!"#$ 𝑥𝑦!, 𝑥 < 𝑦 >! =   𝑓!"#$ 𝑥𝑦!,   𝑥𝑦!  

 
Based on <y>l, the threshold for weight change is 

adjusted, making the weights more likely to change in the 
direction given by xys. This creates the structure of 
generalization for the Hebbian learning mechanism. The 
combination of these two types of learning mechanisms 
allows for a balance of feed forward information to form 
categories and back propagation to allow adjustments based 
on errors. For more details on network dynamics, see 
O’Reilly et al. (2012). 
Network Architecture 
The architecture is adapted from Colunga & Smith (2005) 
and is implemented as shown in Figure 1. Words are 
represented discretely and are input on the Word Layer. 
Features are represented as distributed patterns over several 
dimensions on the Perceptual Layer. For example, the shape 
and material of an object (e.g., the roundness of a particular 
ball and its yellow rubbery material) are represented by an 
activation pattern along the Perceptual Layer, with 12 units 
for shape and 12 units for material. Solidity is represented 
locally; one unit stands for Solid and another for Non-Solid. 
Finally, there is a 25 unit Hidden Layer that is connected to 
all the other layers and to itself. The Hidden Layer serves as 
the bridge between the Word Layer (the sending units) and 
the Perceptual Layer (the receiving units) and it is where 
learning occurs. Learning progresses as internal 
representations, or weights, update and form representations 
which connect the other two layers.

Figure 1. Network architecture and example input patterns. 
 
Vocabulary Structure: Network Input Patterns 
The input patterns used to train the network capture the 
structure of a child’s vocabulary and are based on those 
used in Colunga and Smith (2005). They consisted of 100 
noun representations, divided into 6 categories, with a 
structure analogous to the vocabulary of a typical 30-month-
old child (Fenson et. al, 1993). Categories were divided by 
both solidity (solid or non-solid) and characteristic feature 
(shape, material, or both), based on adult judgments. From 
these, the structure of a typical early vocabulary can be 
expressed as proportions of each category. Therefore, the 
network learning the entire set of training patterns 
represents a child learning a typical vocabulary. See Table 1 
for the 6 categories and proportions used in the study. 

These input patterns have a correlational structure such 
that a network learning them should produce a shape bias 
for solids (and indeed this was first shown by Colunga & 
Smith, 2005). This means that learning in the network arises 
from the structure of the input patterns themselves. The 
purpose of the network, then, is not to help us discover 
structure in the input, but to observe the process of 
leveraging this structure over the course of word learning. 

 
Table 1: Noun category percentages and example words. 

Network Training and Testing 
Over the course of training, the network formed biases 

based on the structure of the vocabulary input. On each trial 
of training, a word was paired with a pattern of features 
representing the features of the noun category. For example, 

 Shape Material Both 

Solid 

52% 

 
ball 

10% 

 
chalk 

12% 

 
penny 

Non-Solid 

4% 
 

bubble 

16% 

milk 

6% 

 
jeans 

Solidity 
Perceptual Layer 

Material Shape 

Word Layer 

Hidden Layer 
                          

Shape Material Solidity 

                          
                          

ball 

ball 

ball 
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a word for a solid item characterized by shape (like a ball) 
should be used to label things that are like each other in 
shape but differ from each other in material. To simulate 
this pattern, we randomly selected an input vector to 
represent, for example, ball shape. On individual training 
trials, we paired that shape pattern with the label ball and a 
randomly selected material pattern. Therefore over multiple 
training trials, a word for a solid item characterized by shape 
would be represented by the same shape but different 
material patterns (see Figure 1). We did this for each of the 
100 nouns in the training set. 

We tested 10 runs of the network at multiple points 
throughout word learning. Weights and words learned from 
each of the 6 categories of interest were recorded at thirteen 
discrete checkpoints during the course of each training run. 
For example, the network was tested at 5 words learned, 10 
words learned, and so on. The endpoint of learning was at 
500 epochs of training, which was around when the network 
learned 75 words. For more information on network testing 
procedures, see Schilling et al. (2012). 

Rationale and Predictions 
We focused our analyses of early child vocabulary 
composition, particularly shape-based and material-based 
words, on the period of time during which each network 
developed a shape bias in the context of solid objects. This 
approach may offer further insights into the relationship 
between attentional shifts in word learning and the course of 
vocabulary acquisition. As skilled attention to shape in the 
context of solid objects emerges, the networks should more 
easily learn shape-based words. Also, increased attention to 
shape may facilitate the learning of shape-based words over 
and above the learning of material-based words. This would 
be seen in a relatively lower rate of learning for material-
based compared to shape-based words. 

Results 
The first question is how the networks learned shape-based 
words over the time window in which the shape bias 
emerged. The dependent measure was proportion of shape-
based words learned at a given time point relative to the 
total number of shape-based words in the input vocabulary. 
Proportions of shape-based words learned were submitted to 
a linear regression with time point (before, at, or after shape 
bias emergence) as the predictor variable. Shape-based word 
learning increased significantly over time, b = 0.06, t(28) = 
7.70, p < .001. The networks showed significant increases in 
proportions of shape-based words learned from before shape 
bias emergence (M = .01, SD = .02) to the point of 
emergence (M = .06, SD = .03), and from emergence to the 
following time point (M = .14, SD = .06; t(9) > 4.60, p ≤ 
.001, Cohen’s d > 1.45 for both paired comparisons). That 
is, the networks’ learning of shape-based words increased 
over time, and showed a particularly large increase 
following the emergence of the shape bias. 

The next question is whether the networks’ learning of 
shape-based words differed from learning of material-based 

words over the same time period. Proportions of material-
based words learned were similarly computed relative to the 
total number of material-based words in the input 
vocabulary. Proportions of words learned were submitted to 
a multiple regression including time, word type, and the 
interaction between the two. Overall, these variables 
explained a significant proportion of the variance in the 
networks’ word learning, R2 = .69, F(3, 56) = 40.90, p < 
.001. Consistent with the result above and the fact that the 
networks continually learned new words over time, time 
was a significant predictor of word learning overall, b = .03, 
t(56) = 4.80, p < .001. The networks showed increases in 
learning both shape- and material-based words over the time 
window of interest (see Figure 2). Word type was also a 
significant predictor of learning, in that the networks on 
average learned a greater proportion of shape-based than 
material-based words, b = .03, t(56) = 4.03, p < .001. 
Additionally, the interaction between time point and word 
type predicted learning, b = .03, t(56) = 3.07, p < .01. As 
can be seen in Figure 2, there was a steeper increase in the 
trajectory of learning for shape- compared to material-based 
words over the time window of interest. 

Figure 2. Shape- and material-based word learning in the 
network simulations over time. 

Discussion 
The results of the network simulations show that the 
emergence of the shape bias coincided with changes in 
vocabulary acquisition for different kinds of words. Before 
the emergence of the shape bias, the networks steadily 
increased the amount of both shape- and material-based 
words in their vocabularies to an equal extent. However, 
after the emergence of the shape bias, learning of shape-
based words outpaced learning of material-based words. 
This result adds support to a developmental feedback loop 
account of word learning. Adding to previous work showing 
that networks can learn attentional biases from the 
vocabulary input of a typical toddler (Colunga & Smith, 
2005; Schilling et al., 2012), the current study shows that in 
these same kinds of networks, attentional biases in turn 
influence the trajectories of subsequent vocabulary learning. 
Next we tested our network predictions in a behavioral 
study of toddlers. 
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Behavioral Study 

Rationale and Predictions 
To test the predictions of the network simulation we 
conducted a similar analysis on a longitudinal sample of 
toddlers. To explore vocabulary learning over time we 
looked at a parent-filled, standardized vocabulary inventory 
(the MacArthur-Bates Communicative Development 
Inventory [MCDI]; Fenson et al., 2007) that had been 
collected every month for a year for each child in the 
sample. As in the networks, we centered our analyses of 
child vocabulary development on the time at which each 
child first showed a shape bias for solid objects. 

The network simulations predict that the emergence of the 
shape bias for solids leads to a change in the course of 
subsequent vocabulary learning. Specifically, this change 
was seen in the trajectory of shape-based relative to 
material-based word learning. If this prediction bears out in 
children, we should see a similar pattern in the toddler data. 

Method 
Participants 
Nineteen children were recruited from the Boulder, CO 
area. Two children were excluded from the current analyses 
because they knew greater than 80% of the nouns in the 
MCDI at the beginning of the time window of interest. The 
final sample analyzed here included 17 children (Mage = 
22.09 mo., SD = 2.69 mo., 9 girls). 
Progression of Word Learning 
Children participated in 12 monthly visits over the course of 
one year. At each visit children were tested for attentional 
biases in novel word learning. There were three different 
stimuli sets, each consisting of an exemplar, and five test 
items matching the exemplar in shape, material and/or color. 
The children saw a single set in each visit and thus rotated 
through the three sets every three months. We calculated the 
point of emergence of the shape bias as in Sims et al. 
(2012), for each individual child, as defined by the child 
having shown a persistent shape bias during three 
consecutive visits, that is, for all three stimuli sets.  

Vocabulary development was measured longitudinally 
through parent-completed, monthly MCDI checklists of 
words their child knew at the time of each visit to the lab. 
We focused our analyses on children’s noun learning over 
the time period of interest. At the beginning of the analysis 
windows, children had on average 108 nouns (SD = 84 
nouns) from the MCDI in their vocabularies. To explore 
shape- and material-based word learning separately, we 
used the vocabulary structure classifications collected by 
Colunga and Smith (2005; see Table 1), combining solid 
and non-solid shape-based nouns, and solid and non-solid 
material-based nouns to get our two categories of interest. 

Results 
As in the network simulation analyses, the first question we 
investigated in the behavioral data was whether children’s 
learning of shape-based words increased over the window 

during which each child developed a shape bias. The 
dependent measure was children’s proportions of shape-
based words learned at a given time point relative to each 
child’s total number of shape-based words attained at the 
end of the study. These proportions were submitted to a 
linear regression with time point as the predictor. Shape-
based word learning increased significantly over the time 
window of interest, b=0.13, t(43) = 2.26, p = .03. Post-hoc 
paired comparisons showed increases in words learned from 
before shape bias emergence (M = .50, SD = .34) to the 
point of emergence (M = .64, SD = .32), and to the time 
point after emergence (M = .76, SD = .23; t(14) > 3, p < .01, 
d > .90 for both). 

Next we compared children’s learning of shape-based 
words to their learning of material-based words over the 
same time window. Proportions of words learned were 
submitted to a multiple regression including time, word 
type, and the interaction between the two. Overall, these 
predictors explained a significant proportion of the variance 
in children’s word learning, R2 = .13, F(3, 86) = 4.32, p < 
.01. Time point was a significant predictor, showing that the 
proportions of both shape- and material-based words 
increased over the time window of interest, b = .13, t(86) = 
2.18, p = .03. Word type was a marginally significant 
predictor of learning, b = .12, t(86) = 1.86, p = .07. As can 
be seen in Figure 3, the proportion of shape-based words 
learned (M = .63, SD = .32) tended to be higher than the 
proportion of material-based words learned (M = .51, SD = 
.34) across all time points. The interaction between time 
point and word type was not a significant predictor of 
learning. That is, children’s learning of shape- and material-
based words followed the same trajectory. 

 
Figure 3. Shape- and material-based word learning in the 

behavioral study of toddlers over time. 

Discussion 
These results show that there is an increase in the number of 
shape based words that children learn as the shape bias 
emerges. This result is consistent with the networks and 
supports one piece of the developmental feedback loop in 
children. However, unlike the network simulations, the 
increases in children’s word learning did not show a marked 
acceleration for shape-based words. Although 
proportionally more shape-based words were learned 
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compared to material-based words, the trajectory of learning 
for these two types of words did not differ significantly 
within this time window. 

General Discussion 
In the current studies we found that vocabulary learning 
around the emergence of the shape bias supported the 
developmental feedback loop account in our network 
simulations, but toddlers showed a different pattern. Adding 
to our previous work with these word learning networks, the 
current simulations contribute evidence for the effects of 
attentional biases on subsequent vocabulary learning. The 
behavioral data show ambiguous results in relation to the 
developmental feedback loop. There are several possible 
reasons for this pattern that will inform future research. 

Methodological constraints could have contributed to 
these intriguing results. For example, the networks’ 
performance in the generalization task is much more 
consistent than the children’s performance. Even though 
individual networks do vary on the epoch at which they 
show a shape bias, once it emerges, it stays. This is not the 
case for children. To deal with this, we used a stringent 
criterion to define the time of emergence for the children by 
making sure that the preference for shape was present 
during three consecutive visits, for three different stimuli 
sets. Probably because of this criterion, the points of bias 
emergence that we identified tended to occur when children 
had on average over 100 nouns, with high variation between 
individuals. This suggests that we may have identified shape 
bias emergence relatively late in vocabulary development 
for some of the children in the sample, at least when 
compared with the criterion used in Gershkoff-Stowe & 
Smith (2004). A related possibility is that our network 
shows bias emergence and subsequent vocabulary changes 
at a relatively earlier (or “younger”) point than the toddlers 
in our sample. If this is the case, vocabulary changes in the 
network may be easier to detect because it has progressed 
less far in the proportion of words learned and thus can 
statistically show greater growth compared to the toddlers. 
On the other hand, when the shape bias emerges in toddlers, 
they already know over half of the words in the MCDI, and 
thus have relatively less room for growth. Nonetheless, we 
would still expect to see differences in how toddlers learn 
shape- and material-based words, yet these interactions are 
either not present or not being captured by our current 
measures. In future analyses we plan to explore other 
measures such as rate of vocabulary growth that may better 
equate learning in the network and in toddlers. We also plan 
to look at dynamic attention to shape as a continuous 
measure over the entire trajectory of learning. Perhaps the 
emergence of the shape bias puts into motion long-term, 
rather than immediate, changes in the trajectory of 
vocabulary growth.  

More interesting than methodological explanations are the 
theoretical implications of this finding. The behavioral 
results, along with our previous work (Sims et al., 2012), 
suggest that vocabulary growth precedes bias development, 

but the causality of this relationship may not go the other 
way. Perhaps once children have a consistent shape bias for 
solids, and those words come easy, they begin to focus on 
other kinds of words that do not conform to their 
expectations of naming categories organized by shape. 
Further work is necessary to see if that is the case. Overall, 
our novel approach using neural networks allows us to 
explore not just a causal effect of biases on vocabulary, but 
the dynamic feedback relationship between the two, the very 
relationship that builds the developmental trajectory. 
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