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Artificial intelligence (AI)-based decision support 
improves reproducibility of tumor response assessment 
in neuro-oncology: An international multi-reader study 
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Abstract
Background. To assess whether artificial intelligence (AI)-based decision support allows more reproducible and 
standardized assessment of treatment response on MRI in neuro-oncology as compared to manual 2-dimensional 
measurements of tumor burden using the Response Assessment in Neuro-Oncology (RANO) criteria.
Methods.  A series of 30 patients (15 lower-grade gliomas, 15 glioblastoma) with availability of consecutive MRI 
scans was selected. The time to progression (TTP) on MRI was separately evaluated for each patient by 15 investi-
gators over two rounds. In the first round the TTP was evaluated based on the RANO criteria, whereas in the second 
round the TTP was evaluated by incorporating additional information from AI-enhanced MRI sequences depicting 
the longitudinal changes in tumor volumes. The agreement of the TTP measurements between investigators was 
evaluated using concordance correlation coefficients (CCC) with confidence intervals (CI) and P-values obtained 
using bootstrap resampling.
Results. The CCC of TTP-measurements between investigators was 0.77 (95% CI = 0.69,0.88) with RANO alone and 
increased to 0.91 (95% CI = 0.82,0.95) with AI-based decision support (P = .005). This effect was significantly greater 
(P = .008) for patients with lower-grade gliomas (CCC = 0.70 [95% CI = 0.56,0.85] without vs. 0.90 [95% CI = 0.76,0.95] 
with AI-based decision support) as compared to glioblastoma (CCC = 0.83 [95% CI = 0.75,0.92] without vs. 0.86 
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[95% CI = 0.78,0.93] with AI-based decision support). Investigators with less years of experience judged the 
AI-based decision as more helpful (P = .02).
Conclusions.  AI-based decision support has the potential to yield more reproducible and standardized as-
sessment of treatment response in neuro-oncology as compared to manual 2-dimensional measurements 
of tumor burden, particularly in patients with lower-grade gliomas. A fully-functional version of this AI-based 
processing pipeline is provided as open-source (https://github.com/NeuroAI-HD/HD-GLIO-XNAT).

Key Points

•	 Artificial intelligence (AI)-based decision support improved the concordance of TTP 
ratings over Response Assessment in Neuro-Oncology (RANO) alone.

•	 AI-based decision support was more useful for lower-grade gliomas as compared 
to glioblastoma.

•	 Less experienced investigators judged the AI-based decision support as more 
helpful.

Magnetic resonance imaging (MRI) is used extensively in 
cancer research during drug development, including clin-
ical trials, as well as for the routine management of cancer 
patients.1 It is particularly valuable for brain tumors, which 
are located in one of the most vulnerable and hard-to-reach 
regions of the human body. However, the assessment of 
imaging data by radiologists still relies primarily on quali-
tative (subjective) visual interpretation, which may increase 
the burden of time and expenditure on clinical trials, and 
which may also hamper the validity of imaging biomarkers 
used in clinical trials and clinical practice for assessing 
treatment response. The criteria for assessing treatment re-
sponse and efficacy in neuro-oncology are essentially based 
on longitudinal measurements of the largest diameters of 
contrast-enhancing target lesions on imaging as formalized 
by the Response Assessment in Neuro-Oncology (RANO) 
criteria.2,3 The RANO criteria are widely adopted in neuro-
oncology clinical trials to yield a standardized and reproduc-
ible assessment of treatment response. Underlying the use 
of RANO is the assumption that the two-dimensional meas-
urement of a contrast-enhancing lesion’s largest diameter 
on MRI is a surrogate marker of the overall tumor burden. 

However, this assumption is not always accurate, since 
brain tumors frequently display very complex shapes and 
anisotropic growth, influenced in part by the surrounding 
anatomic boundaries, host tissue–tumor interface, or treat-
ment related effects (eg, areas of necrosis and surgical cav-
ities). Consequently, reproducible assessment of tumor 
burden and treatment response and/or disease progression 
between different radiologists using RANO criteria may be 
challenging and thus potentially limiting its value for clinical 
decision making. Reproducible assessment is further com-
plicated by the assessment of nonenhancing T2/FLAIR le-
sions as an additional criterion besides contrast-enhancing 
lesions for evaluating treatment response and/or disease 
progression.

In the light of that, there has been long-standing interest 
in using volumetric assessment of tumor burden3,4 with 
previous studies indicating that volumetric measurements 
may be more reliable and accurate as compared to 2-di-
mensional measurements of tumor diameters in arbitrarily 
chosen slices (Figure 1).5,6 In the present study we investi-
gated the clinical utility of artificial intelligence (AI)-based 
decision support with automated volumetric quantification 

Importance of the Study

The Response Assessment in Neuro-Oncology (RANO) 
criteria are widely adopted in neuro-oncology, however 
the prescribed manual measurements of tumor burden 
on MRI may be challenging and potentially limit the re-
producibility of the RANO criteria for reliable assessment 
of treatment response. There has been long-standing 
interest in using volumetric assessment of tumor 
burden with previous studies indicating that volumetric 
measurements may be more reliable and accurate as 
compared to 2-dimensional measurements of tumor 
diameters in arbitrarily chosen slices. The present study 

demonstrates that artificial intelligence (AI)-based deci-
sion support has the potential to yield more reproducible 
and standardized assessment of treatment response in 
neuro-oncology as compared to manual 2-dimensional 
measurements of tumor burden. Particularly the evalua-
tion of lower-grade gliomas where reliable assessment 
of the TTP may be challenging due to the slow-growing 
nature of these tumors may benefit from AI-based deci-
sion support. A  fully functional version of this AI-based 
processing pipeline is provided as open-source (https://
github.com/NeuroAI-HD/HD-GLIO-XNAT).

https://github.com/NeuroAI-HD/HD-GLIO-XNAT
https://github.com/NeuroAI-HD/HD-GLIO-XNAT
https://github.com/NeuroAI-HD/HD-GLIO-XNAT
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of tumor burden on MRI in neuro-oncology and evaluated 
whether it enables more reproducible and standardized as-
sessment of treatment response as compared to manual 
2-dimensional measurements of tumor burden using the 
RANO criteria.

Methods

Study Design and Participants

This study was institutional review board-approved 
and informed consent was waived (S-784/2018). For the 
present study, a nonconsecutive series of n  =  30 adult 
brain tumor patients (including n  =  15 glioblastoma 
WHO °IV and n  =  15 lower-grade gliomas, the latter 
encompassing n  =  2 IDH-mutant astrocytoma WHO °II, 
n = 3 IDH-mutant astrocytoma WHO °III, n = 8 IDH-mutant 
1p/19q codeleted oligodendroglioma WHO °II and 
n  =  2 IDH-mutant 1p/19q codeleted oligodendroglioma 
WHO °III) previously treated at Heidelberg University 
Hospital. The selection of patients that were included 
for the present study was performed on consensus by 
three local investigators from Heidelberg University 
Hospital (P.V., W.W., and M.B.) aiming at representing 
different clinical scenarios from different disease stages 
in neuro-oncology. The MRI exams were acquired during 
the period of 09/2009 and 02/2019 with a standardized 
imaging protocol7 and included 3D T1-weighted im-
ages before (T1-w) and after contrast agent administra-
tion (cT1-w) as well as axial 2D FLAIR and T2-weighted 
(T2-w) images as well as diffusion-weighted MRI with 
apparent diffusion coefficient (ADC) maps. To increase 
the diversity of the dataset, longitudinal MRI scans 
were selected from the primary treatment setting in 
12 cases (with the postradiation MRI scan used as the 
first imaging timepoint; except in patients that did not 

receive radiation therapy the postsurgery MRI scan was 
used as the first imaging timepoint) and the recurrent 
treatment setting in 18 cases (with the MRI scan prior 
to change of therapy as the first imaging timepoint). The 
last imaging timepoint was the MRI scan showing de-
finitive tumor progression with subsequent change of 
treatment. Specifically, a median of 5 consecutive MRI 
scans (IQR, 5–10) was selected for each patient with a 
median of interval of 3.1 months (IQR, 2.5–3.6 months) 
between the scans. The interval between scans was sig-
nificantly longer for lower-grade gliomas as compared 
to glioblastoma (p < .0001) with 3.5  months (IQR, 3.0–
5.6  months) for lower-grade gliomas and 2.8  months 
(IQR, 1.5–3.1 months) for glioblastoma. Supplementary 
Table 1 contains information on patient and treatment 
characteristics.

The 15 participating investigators were neuroradiologists 
(namely P.V., R.Y.H., F.B., J.E.P., Y.W.P., S.S.A., R.J., M.S., 
W.B.P., M.B.) or neuro-oncologists (namely N.G., M.J.v.d.B, 
M.W., P.Y.W., W.W.) and the majority (11/15, 73%) are ac-
tive members of the RANO working group and/or the brain 
tumor group (BTG) from the European Organization for 
Research and Treatment of Cancer (EORTC). The investiga-
tors represented 11 institutions from 5 countries (Germany: 
n = 4, USA: n = 4, Netherlands: n = 3, South Korea: n = 3, 
Switzerland: n = 1) and all of them are authors of this article. 
None of the investigators used AI-based decision support 
for assessment of treatment response in neuro-oncology 
prior to this study. Prior to the start of the study, all investi-
gators reached consensus on the number and composition 
of patients to be included (ie, n = 30 patients including both 
lower-grade gliomas and glioblastomas from both primary 
and recurrent treatment settings). This consensus decision 
enabled each of the 15 participating investigators would 
manage to interpret  all cases in a reasonable timeframe 
while still including patients from a broad range of clinical 
scenarios.

  
Radiologist A: 4.47 × 4.94 = 22.08 cm2

Radiologist B: 3.00 × 5.74 = 17.22 cm2

Difference of 28% between RANO
measurements of Radiologist A and B 

Automated AI-based volumetric quantification of tumor burden

Tu
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e

Time

Overcoming interrater variability between different radiologists towards
standadized & reproducible assessment of drug efficacy

Contrast-enhancing
tumor volume (red):

54.90 cm3

ceT1 FLAIR

Non/enhancing T2/FLAIR signal
abnormality volume (green):

280.70 cm3

AI-based volumetric
quantification

Fig. 1  Use of automated AI-based volumetric quantification of tumor burden to overcome the interrater variability of RANO measurements of 
tumor diameters towards a more standardized & reproducible assessment of treatment efficacy in neuro-oncology.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
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Image Interpretation

In the first assessment round of the study investigators 
were provided with the consecutive MRI scans (including 
T1-w, cT1-w, FLAIR, T2-w, DWI, and ADC sequences for 
each timepoint) as well as relevant clinical information 
(integrated diagnosis according to the WHO 2016 classi-
fication of CNS tumors, current tumor-specific treatment, 
and in case of recurrent tumors the number of recur-
rences) from each patient. The investigators received no 
information regarding at what timepoint when treatment 
was changed during the period covered by the available 
MRI scans.

All MRI scans were provided in DICOM format, stripped 
of patient information (with allocated patient identifiers 
being subject_01 to subject_30), and delivered to inves-
tigators. Investigators used their personal workstations 
with RadiAnt (Medixant, Poland) or OsiriX Lite (Pixmeo, 
Switzerland) as DICOM viewer. The investigators were 
asked to assess the timepoint of tumor progression on 
MRI in each patient by applying the 2D RANO concept 
with bi-perpendicular measurements of tumor burden as 
a general guide as outlined in the RANO criteria for high-
grade3 and lower-grade gliomas4 and complete all reads 
at a typical clinical pace within a 2-month timeframe. The 
investigators received no feedback following submis-
sion of their readings. An illustrative case depicting the 
MRI sequences from consecutive timepoints during the 
first round of the assessment is shown in Supplementary 
Figure 1.

The second assessment round of the study started after 
a 1-month wash out period. Patient identifiers within the 
image and clinical data were reordered to impede the 
re-use of the TTP assessment from the first round. The in-
vestigators received all the information from the first as-
sessment round (MRI scans as well as relevant clinical 
information) as well as additional MRI sequences for each 
MRI scan generated using a previously developed and val-
idated in-house AI-based processing pipeline, including 
deep-learning based skull stripping (https://github.com/
NeuroAI-HD/HD-BET) and deep-learning based tumor 
segmentation (https://github.com/NeuroAI-HD/HD-GLIO) 
as core components.6,8 To allow unbiased evaluation of 
the performance we did not perform any manual adjust-
ments to the output of the AI-based processing pipe-
line (eg, editing of tumor segmentation masks). Thereby 
for each MRI scan three additional MRI sequences were 
provided: (1–2) cT1-w and FLAIR sequences with color-
coded overlays that indicate the contrast-enhancing and 
T2/FLAIR-hyperintense tumor identified by the AI-based 
processing pipeline, and (3) a DICOM sequence depicting 
a graph with the absolute and relative change in these 
tumor volumes over time (plotting contrast-enhancing and 
T2/FLAIR-hyperintense tumor volumes from the current 
and all previous MRI scans). Identical to the first assess-
ment round the investigators were asked to assess the 
timepoint of tumor progression on MRI in each patient by 
incorporating this additional information and complete all 
reads at a typical clinical pace within a 2-month timeframe. 
As a general guideline, investigators were told that a 25% 
increase in the bi-perpendicular diameter would corre-
spond to a 40% increase in the tumor volume (assuming 

spherical configuration of the tumor),6 however final judg-
ment (strict adherence to this volumetric threshold vs. 
subjective interpretation of the growth curve) was done 
at the discretion of the investigators. An illustrative case 
depicting the additional AI-enhanced MRI sequences from 
consecutive timepoints provided during the second round 
of the assessment are shown in Supplementary Figure 2. 
Moreover, investigators were asked to record whether the 
additional information from the AI-based decision sup-
port was perceived as helpful or not (specified as “1” or 
“0”) for each of the assessed patients. The investigators re-
ceived no feedback following submission of their readings. 
Subsequently, a questionnaire was circulated among the 
investigators to collect information about the years of their 
experience with neuro-oncology imaging.

Statistical Analysis

All statistical analyses were performed with R version 4.1.2 
(R Foundation for Statistical Computing, Vienna, Austria). 
The agreement as well as disagreement in the individual 
readings for the timepoint of tumor progression between 
first and second round of the assessment (overall 450 pairs 
ie, from 30 patients * 15 investigators) were analyzed with 
descriptive metrics (absolute and relative agreement); dif-
ferences were assessed with a 2-sample test for equality of 
proportions.

The time to progression (TTP) for each reading was cal-
culated from the date of baseline MRI until the timepoint 
of tumor progression specified by the readings from each 
of the investigators. For those cases where the investi-
gator did not judge tumor progression until the last MRI 
timepoint, an interval of 3 months (equivalent to one fol-
low-up interval) was added as a workaround to the TTP 
measurement prior calculating the concordance correla-
tion coefficient (CCC) and the standard deviation (SD) of the 
TTP measurements. This procedure allowed that none of 
the readings needed to be excluded when calculating these 
metrics while preserving statistical validity. The agreement 
of the TTP measurements between the investigators (sep-
arately for the first and second round of the assessment) 
was evaluated for the whole patient cohort as well as for 
the glioblastoma and lower-grade glioma subgroups using 
the CCC.9 The reported 95% confidence intervals (CI) were 
calculated using bootstrapping (with n  = 1000 iterations) 
with the bias-adjusted and accelerated bootstrap method. 
Empirical P-values were computed from the bootstrap dis-
tribution to assess differences between the CCC from the 
first and second round for the whole patient cohort as 
well as for the glioblastoma and lower-grade glioma sub-
groups. The SD of the TTP measurements from all investi-
gators was computed for each patient (separately for the 
first and second round of the assessment) and was used 
as an additional metric beyond the CCC to evaluate agree-
ment between investigators on a per-patient level. The re-
ported 95% CI were calculated using bootstrapping (with 
n = 1000 iterations) with the bias-adjusted and accelerated 
bootstrap method. A  Pearson correlation test was used 
to evaluate the association (1) between the percentage 
of investigators judging AI-based decision support as 
helpful for assessing the TTP in patients and the standard 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
https://github.com/NeuroAI-HD/HD-BET
https://github.com/NeuroAI-HD/HD-BET
https://github.com/NeuroAI-HD/HD-GLIO
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data


537Vollmuth et al. AI decision support for response assessment in neuro-oncology
N

eu
ro-

O
n

colog
y

deviation of the TTP measurements in the second round 
of the assessment, as well as (2) between the percentage 
of patients where investigators judged AI-based decision 
as helpful for assessing the TTP and the experience of the 
investigators with neuro-oncology imaging. P-values <.05 
were considered significant.

Results

The CCC of TTP measurements between investigators was 
0.77 (95% CI = 0.69–0.88) in the second round of the as-
sessment without AI-based decision support and increased 
to 0.91 (95% CI  =  0.82–0.95) with AI-based decision sup-
port (p = .005) (Figure 2). This effect was more pronounced 
for patients with lower-grade gliomas, where the CCC 
was 0.70 (95% CI  =  0.56–0.85) without AI-based decision 
support, as compared to 0.90 (95% CI  =  0.76–0.95) with 
AI-based decision support (p  =  .008). In contrast, for pa-
tients with glioblastoma the CCC was 0.83 (95% CI = 0.75–
0.92) without AI-based decision support, as compared to 
0.86 (95% CI = 0.78–0.93) with AI-based decision support 
(p = .016). Similarly, the median SD for the TTP measure-
ments between the investigators was 6.1  months (95% 
CI = 4.3–9.6 months) without AI-based decision support and 
decreased to 4.8 months (95% CI = 3.7–6.2 months) with 
AI-based decision support (p = .004) (Figure 3). Thereby a 
greater decrease in the SD when using additional AI-based 
decision support was observed for patients with lower-
grade gliomas (−1.7 months [95% CI: −4.2 to −1.1 months]) 

as compared to glioblastoma (−0.1 months [95% CI: −0.5 
to 0.0 months]) (p < .001). Illustrative cases from two rep-
resentative cases which demonstrate improved agreement 
in the TTP among investigators when using additional 
AI-based decision support are shown in Figures 4 and 5 
and Supplementary Figure 3.

Comparison of all available pairs of TTP assessments 
from the first and second round of the assessment (450 
pairs ie, 30 patients × 15 raters) showed that the assess-
ment performed with RANO alone was kept unchanged 
with additional AI-based decision support in 251/450 in-
stances (56%) and were changed for the remaining 199/450 
instances (44%) (Supplementary Table 2). Thereby, the 
probability of changing the TTP assessment with addi-
tional AI-based decision support was higher for the subset 
of patients with lower-grade gliomas (114/225 [51%]) as 
compared to glioblastoma (85/225 assessments [38%], 
p = .008). The AI-based decision support did not systemat-
ically shift the judgment of tumor progression towards an 
earlier or later timepoint, instead the probability between 
shifting towards an earlier timepoint (105/450 instances 
[23%]) as compared towards shifting to a later timepoint 
(94/450 instances [21%]) with additional AI-based decision 
support was balanced (p = .42).

The percentage of patients where individual investi-
gators judged AI-based decision as helpful (median, 57% 
[IQR, 47–63%]) was negatively correlated with the expe-
rience of the investigators with neuro-oncology imaging 
(median of 19  years [IQR, 12–24  years]; Pearson correla-
tion coefficient = −0.52; p = .02) that is, investigators with 
less years of experience judged the AI-based decision 
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Fig. 2  Concordance correlation coefficients (CCC) of tumor response assessment between investigators in the first round of the study without 
AI-based decision support and the second round of the study with AI-based decision support. The central line of the boxplot denotes the median 
and the edges of the boxplot denote the first and the third quartile of the bootstrap distribution of the CCC. The lines extending from the boxes 
(whiskers) indicating variability outside the upper and lower quartiles. The outliers are denoted by black dots at the end of the whisker lines.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac189#supplementary-data
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support as more helpful (Figure 6A). Moreover, the per-
centage of investigators who judged the information pro-
vided through AI-based decision support as helpful for 
assessing the TTP in individual patients (median, 64% [IQR: 
45–79%]) was negatively correlated with the SD of the TTP 
measurements in the second of the assessment (Pearson 
correlation coefficient = −0.34; p = .03) that is, the more in-
vestigators who judged the AI-based decision support to 
be helpful for a given patient, the better the agreement on 
TTP measurements for that patient (Figure 6B).

A fully functional version of AI-based processing pipeline 
that was used in the present study (illustrative case shown 
in Supplementary Figure 2) is provided through https://
github.com/NeuroAI-HD/HD-GLIO-XNAT as open-source 
and allows seamless manufacturer neutral integration into 
existing radiological infrastructures through the XNAT 
framework as a Container Service Plugin10 (Supplementary 
Figure 4).

Discussion

The importance and meaningful clinical use of AI algo-
rithms for automated quantification of tumor burden in 
neuro-oncology is reflected in the growing body of lit-
erature showing that accurate automated delineation 
of the various tumor sub-compartments can offer the 
basis for generating quantitative and reproducible im-
aging endpoints in neuro-oncology.5,6,11–13 Specifically, 
AI algorithms for automated volumetric segmentation of 
tumor burden proved to be highly accurate with spatial 

overlap agreement between the predicted and the ex-
pert ground truth tumor annotation of more than 90% 
for the segmentation of contrast-enhancing tumor, as 
well as nonenhancing T2/FLAIR signal abnormality,5,6,11 
even when applying the AI algorithm to unseen data 
from a multicenter phase II/III trial.6 The findings from the 
present study now provide additional evidence regarding 
the clinical value of AI-based decision support towards 
establishing high-quality imaging endpoints in neuro-
oncology. Specifically, we demonstrate within the setting 
of an international multi-reader study with 15 investiga-
tors that automated AI-based volumetric quantification 
of tumor burden allows to improve the reproducibility 
and agreement of tumor response assessment measure-
ments as compared to standard RANO criteria within a 
simulated clinical setting. We demonstrate that particu-
larly lower-grade gliomas where reliable assessment of 
the tumor progression may be challenging due to their 
slow growing nature of these tumors may benefit from 
AI-based decision support with a potentially clinically 
meaningful and relevant decrease in the SD (by a me-
dian of 1.7  months) of the TTP measurements between 
the investigators. In contrast, when investigators used 
the AI-based decision support in patients with glioblas-
toma, there was comparatively less impact on the repro-
ducibility of tumor response assessment. Potentially, this 
may reflect that tumor growth dynamics are compara-
tively more robust to discern when assessing tumors with 
a faster growth trajectory, thereby limiting the impact of 
AI-based decision support.

The principal benefits of AI-based decision support 
may be useful not only in a routine clinical scenario, but 
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especially in the context of clinical trials, where the as-
sessment of treatment efficacy on MRI is – besides overall 
survival – a key endpoint for the approval of new treat-
ment concepts. Therefore, blinded central assessment 
of treatment efficacy by independent radiologists is fre-
quently requested by regulatory authorities14 to mitigate 

over- or under-estimation of the true effect of treatments 
(ie, systematic bias) when only relying on the local RANO 
readings where investigators are not blinded to the pa-
tients’ treatment assignments and clinical information.15 
Moreover, central RANO reading by expert radiologists is 
labor and time intensive and thus increases the burden of 
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time and expenditure on clinical trials. Consequently, AI al-
gorithms for automated volumetric delineation of tumor 
burden and tumor response assessment may assist inves-
tigators during central reading of the imaging data to yield 
high-quality imaging endpoints in neuro-oncology. As part 
of this study, we provide a fully functional version of the 
AI-based processing pipeline as open-source, enabling 
seamless manufacturer neutral integration into existing 
radiological infrastructures through the XNAT frame-
work10 (Supplementary Figure 4) and thus may hold great 
promise for enhancing future research efforts in the field of 
neuro-oncology.

Our study also demonstrates that the information pro-
vided through the AI-based decision support is perceived 
as more helpful by comparatively less experienced in-
vestigators. Moreover, perceiving AI-based decision sup-
port as helpful by a greater number of investigators for 
determining the TTP in a specific patient, directly trans-
lated into a better agreement in the TTP measurements 
for this patient. Both findings taken together, highlight 
(1) that the confidence and validity of tumor response as-
sessment readings could be augmented through AI-based 
decision support especially for less experienced inves-
tigators, and (2) that investigators were able to readily 
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the second round of the assessment and visualize the contrast-enhancing tumor volumes and T2-w/FLAIR abnormality volumes which were au-
tomatically generated by the AI-based decision support for each timepoint. The last row visualizes the time to progression (TTP) measurements 
from the 15 investigators based on RANO alone (first round; blue colored boxplot) vs. additional AI-based decision support (second round; purple 
colored boxplot). The boxplots demonstrate higher agreement of the TTP measurements from the 15 investigators with additional AI-based deci-
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identify appropriate cases where AI-based decision sup-
port is helpful and thereby leading to a more reproducible 
assessment of treatment efficacy in neuro-oncology.

Our study has some limitations. First, we acknowledge 
the retrospective nature of the study and the selection 
of a nonconsecutive patient series. However, we aimed 
to simulate a realistic clinical scenario including pa-
tients with different tumor subtypes from both primary 
and recurrent treatment situations and a broad range 
of treatment scenarios. Although further validation in a 
prospective clinical scenario is needed to better estab-
lish the value of AI-based decision support and to specif-
ically assess whether more reliable surrogate endpoints 
can be obtained from MRI, it may be challenging to 
adopt a rigorous prospective multi-reader design with/
without AI-based decision support as performed in the 
present study.

Second, the AI-based processing pipeline applied in 
the present study makes use of our previously trained 
and validated artificial neural networks for automated 
skull-stripping8 and automated tumor segmentation 
which has been developed using >3000 MRI examin-
ations from >1400 brain tumor patients.6 However, the 
potential underrepresentation of atypical or particularly 
challenging in these data used for training the artificial 
neural networks may affect the performance in a real-
world clinical scenario and potentially lead to false-
positive or false-negative detection of tumor burden. 
Consequently, this may have negatively affecting the 
perceived usefulness of the AI-based decision support 
among the investigators in the present study. Although 
data sharing initiatives with public deposition of anno-
tated cases (eg, through collaborative efforts such as 
the Cancer Genome Imaging Archive [TCIA] or the Brain 
Tumor Segmentation Challenge [BraTS] for gliomas11,16) 
is a crucial first step to address this limitation, medical 
data privacy regulations often pose a significant chal-
lenge towards establishing a centralized data reposi-
tory.17 Recent technical developments in the field of AI, 
specifically federated learning which allows multiple 
healthcare institutions to share their data to train an AI 
model while still guaranteeing medical data privacy, aim 
to address this challenge.17–20

Third, the differentiation of T2/FLAIR hyperintensities as 
well as contrast-enhancing lesions during the follow-up 
into treatment or tumor-related changes, may still be a 
challenge in the field of neuro-oncology, particularly with 
treatment concepts that incorporate immunotherapies or 
anti-angiogenic drugs.21,22 Consequently, the future incor-
poration of advanced MRI modalities such as diffusion or 
perfusion-weighted imaging23,24 or metabolic imaging with 
radiolabeled molecules from positron emission tomog-
raphy (PET)25 will be important to overcome limitations of 
structural MRI and may allow to further optimize the clin-
ical value of the AI-based decision support applied in the 
present study.

In conclusion, AI-based decision support has the po-
tential to yield more reproducible and standardized as-
sessment of treatment response in neuro-oncology as 
compared to manual 2-dimensional measurements of 
tumor burden. Particularly the evaluation of patients with 

lower-grade gliomas where reliable assessment of the TTP 
may be challenging due to their slow growing nature of 
these tumors may benefit from AI-based decision support. 
To enhance future research efforts in the field of neuro-
oncology imaging, we provide a fully functional version of 
the AI-based processing pipeline as open-source which can 
readily be integrated into existing radiological (research) 
infrastructures.
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Supplementary material is available at Neuro-Oncology 
online.
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