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Abstract
We propose a subject-aware contrastive learning deep fusion neural network framework for effectively classifying subjects’
confidence levels in the perception of visual stimuli. The framework, called WaveFusion, is composed of lightweight con-
volutional neural networks for per-lead time–frequency analysis and an attention network for integrating the lightweight
modalities for final prediction. To facilitate the training of WaveFusion, we incorporate a subject-aware contrastive learning
approach by taking advantage of the heterogeneity within a multi-subject electroencephalogram dataset to boost representa-
tion learning and classification accuracy. The WaveFusion framework demonstrates high accuracy in classifying confidence
levels by achieving a classification accuracy of 95.7% while also identifying influential brain regions.

Keywords Electroencephalogram · Deep learning · Fusion · Contrastive representation learning

1 Introduction

Electroencephalography (EEG) is a noninvasive and cost-
effective method for monitoring brain activity by collecting
voltage differences between electrodes placed on a subject’s
scalp. EEG signals offer a high temporal resolution, which
is well suited for monitoring fast brain processes such as
perceptual decision-making. Understanding the metacogni-
tion process using EEG signals is an important problem in
neuroscience. Confidence has been shown to boost serial
dependence in orientation estimation, while subjective con-
fidence is correlated with objective accuracy (Samaha et al.
2019; Fleming et al. 2010).Moreover, confidence is a predic-
tor of performance and of learning motor skills (Rosenqvist
and Skans 2015; Stevens et al. 2012). Therefore, by incorpo-
rating a subject’s confidence intoEEG-basedbrain–computer
interface (BCI) models, a richer understanding of a subject’s
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perceptive state can be achievedwhile also understanding the
quantity and quality of the evidence supporting the subject’s
actions (Yeung and Summerfield 2012).

Stimulation of the visual cortex has been linked to alpha-
band power oscillations in humans (Brandt and Jansen 1991;
Rajagovindan and Ding 2011). Samaha et al. show that
pre-stimulus alpha-band is negatively correlated with sub-
jective confidence ratings in classification tasks (Samaha
et al. 2017). Likewise, centro-parietal EEG activity has
been linked with perceived decision evidence and confidence
during decision-making tasks (Herding et al. 2019). Selim-
beyoglu et al. state that an individual’s subjective confidence
levels during decision-making tasks can be classified through
time and time–frequency analysis of EEG signals and that
EEG can be useful in the detection of subjective confidence
in single trials (Selimbeyoglu et al. 2012). Based on these
results, we work toward an explainable deep learning (DL)
model to classify confidence levels in subjects while they
identify visual stimuli.

In recent years, the number of DL approaches for classify-
ing EEG data and understanding cognitive tasks has grown,
and DL models are regularly used with BCIs to classify neu-
rological signals (Craik et al. 2019). Deng et al. create a BCI
containing a convolutional neural network (CNN) for classi-
fying motor-imagery (MI) EEG signals (Deng et al. 2021).
Similarly, Dai et al. use a combination of CNNs and auto-
encoders (AEs) to classify MI EEG data (Dai et al. 2019).
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Willet et al. create a BCI for generating text from neural rep-
resentations of handwriting using recurrent neural networks
(RNN) (Willett et al. 2021).

In addition to BCI applications, DL models are used to
classify mental states. Al-Ezzi et al. use a CNN long short-
term memory (CNN-LSTM) model to classify a subject’s
social anxiety from EEG signals (Al-Ezzi et al. 2021). Bălan
et al. combine DL and EEG input in a virtual reality system
for detecting fear levels and providing treatment for acropho-
bia (Bălan et al. 2020). DLmodels are also used to detect ictal
EEG signals (Yuan et al. 2018; Cho and Jang 2020; Tsiouris
et al. 2018).

While DL has been effectively employed in many neu-
roscience applications, challenges remain with the quality
and availability of the data (Banville et al. 2021; Younes
2017; Huang and Ma 2021). Recently, contrastive learning
has shown to be an effective self-supervised learning (SSL)
technique to address the issues of the limitation of the data
availability, noisy labels, and noisy data (He et al. 2020;
Zbontar et al. 2021; Grill et al. 2020). Contrastive learning
is often used as a pretext learning task in which DL mod-
els are trained to group learned representations of inputs
based on features within the input. Such contrastive learn-
ing approaches have been used to learn representations from
EEG data. Banville et al. use contrastive learning to extract
similar features inwindowedEEGdata (Banville et al. 2019).
Citing subject-invariant representations of emotion, Shen et
al. explore the use of contrastive learning to train a DLmodel
to extract cross-subject emotion representations (Shen et al.
2022). Han et al. also use self-supervised contrastive learning
to label EEG data for motor imagery classification (Han et al.
2021).Contrastive learninghas also increasedDLmodel gen-
eralizability with a limited sample size (Jiang et al. 2021).
Conversely, Kostas et al. use contrastive learning to aid DL
models in learning massive amounts of unlabeled EEG data
(Kostas et al. 2021).

Based on the principle that, for supervised learning tasks,
increasing the amount of information in input data boosts a
machine learning (ML)model’s generalizability, multimodal
fusion models have gained popularity as effective means for
dealing with limited or noisy data. Fusion models typically
consist of multiple ML models that learn data sampled from
different modes to predict the same outcome. Multimodal
models are commonly studied for detecting neurological dis-
orders. Alghowinem et al. combine linguistic queues (audio
data), head pose (image data), and eye gaze to monitor a sub-
ject’s depression level (Alghowinem et al. 2016).Wristbands
that capture multimodal data such as electrodermal activity
and accelerometer data have been used to train fusion mod-
els to detect Parkinson’s disease and detect seizures (Regalia
et al. 2019; Onorati et al. 2017). EEG-specific fusion models
have also been created to analyze neurological events. Briden
et al. create amultimodal fusionmodel that combines the out-

puts of 61 CNNs, each trained on data from a specific EEG
lead, to infer anxiety level (Briden and Norouzi 2021). Cai et
al. train a classifier on EEG data generated by subjects listen-
ing to positive or negative audio stimuli to detect depression
level (Cai et al. 2020).

In this work, we combine multimodal fusion and con-
trastive learning in order to create an explainable DL model
to infer a subject’s confidence in the perception of visual
stimuli. We train a multimodal WaveFusion Squeeze and
Excite (WaveFusion) (shown in Fig. 1) network through a
contrastive learning feature extraction approach (Briden and
Norouzi 2021). We first learn relevant short-time Fourier
transform (STFT) features by mapping STFT data to a
32-dimensional hyper-sphere using a WaveFusion with a
Projection Network (WFP). WFP’s weights are then trans-
ferred to a WaveFusion Classifier (WFC) where STFT data
are classified as either low or high confidence.

2 Dataset

The EEG data in this experiment contain readings from
25 subjects undergoing a perceptual decision-making task
(Samaha and Cohen 2022). The data are collected from 63
leads and one ground arranged in the 10-20 localization sys-
tem. Subjects viewed a 300 ms dot-motion stimulus (left or
right)with six interleaved levels ofmotion coherence ranging
between 0.01, 0.045, 0.08, 0.12, 0.25, and 0.4. The sub-
jects indicated their perceived direction of motion and their
confidence in their response on a scale from 1 to 4 (1 indi-
cates the lowest and 4 is the highest confidence level). The
fraction of dot during the initial cleaning, trials with exces-
sive noisewere removed, and recordingswere down-sampled
from 4000 to 500 Hz. We selected recordings from 10 sub-
jects with at least 60 high- and 60 low-confidence recordings.
Half of the trials from each subject were used for training,
and the other half was reserved for validation and testing.

We trained theWaveFusion architecture to recognize high
or low confidence levels in this analysis.We selected ten sub-
jects who had over a hundred high and low recordings. We
then split each subject’s recordings into high and low samples
into training and test sets. For each subject, we created 1000
averaged EEG recordings by averaging over 25 randomly
selected EEG samples from the subject’s high training set
samples (500 generated high-confidence samples) and the
subject’s low-confidence training set (500 generated low-
confidence samples). Likewise, the test set is comprised of
250 averaged samples for each patient and confidence level.
We then truncated each sample to stimulus onset to 1 sec-
ond afterward, down-sampled to 100 Hz, and applied STFT
to each sample with a window size of 80 Hz and overlap of
75% yielding 63 spectrograms (one for each EEG lead) of
size 39 × 11.
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Fig. 1 TheWaveFusion architecture contains 17 lightweight CNNs that
learn the time–frequency features of a specific EEG lead. During the
subject-aware contrastive learning (SAC) training phase, 128×1 feature

maps are forwarded to the projection network and embedded into the
unit sphere via SAC loss. During classification, the learned embeddings
are sent to a classification layer

To limit the size and scope of the WaveFusion frame-
work, we concatenated the posterior spectrograms to create
17 × 39 × 11 tensors which are forwarded to the models.
Samaha et al. showed that a cluster of posterior electrodes
displays high levels of alpha-band power between −500 ms
to stimulus onset (when averaged across all trials), which
biases decision confidence (Samaha et al. 2017). Moreover,
parietal error positivity (PE) has been linked to error moni-
toring and influencing decision confidence, while the parietal
cortex has been shown to play a role in decision confidence
in rhesus monkeys (Falkenstein et al. 1990; Kiani et al. 2009;
Boldt and Yeung 2015).

3 Models and algorithms

To learn latent space embeddings for STFT information, we
employ aWaveFusion framework which contains 17 individ-
ual CNNs trained on the STFT data specific to a single EEG
lead (Fig. 1). The feature maps from the CNNs are combined
using a lightweight Squeeze and Excite Attention Network
(SEN) before being embedded into the unit hyper-sphere
or classified. This section describes the WaveFusion frame-
work, including WaveFusion Projection (WFP) network and
WaveFusion Classifier (WFC), and the subject-aware con-
trastive learning (SAC) framework.

3.1 WaveFusion projection network

Lightweight Convolutional Neural Networks: The WaveFu-
sion models take in spectrogram tensors where each spec-
trogram is forwarded to 1 of the 17 lightweight 2D-CNNs
(LWCNNs). Each LWCNN learns features of a spectrogram
generated by one EEG lead using three convolution lay-
ers. The first two layers are followed by ReLU activation,
2 × 2 max-pooling, a dropout layer with a fixed drop rate
of 10%, and batch normalization (see Table 1). The last
convolution layer is followed by a fixed 10% dropout layer
with batch normalization and outputs a feature map of size
1 × 32.

As opposed to full-sized contemporary CNNs such as
ResNet, DenseNet, and Inception-V4, which can have up
to 50 convolutional layers, the LWCNNs contain only three
layers and are tasked with recognizing features specific to an
EEG lead rather than being chargedwith identifying a host of
natural images (Targ et al. 2016; Hasan et al. 2021; Szegedy
et al. 2017).

Squeeze and Excite Network: A lightweight attention
module is used to weigh the featuremaps generated by the 17
LWCNNs. Attention modules are often used in image seg-
mentation models and allow for CNN architectures to focus
on essential details in an image by up- and down-weighting
CNN activations (Vaswani et al. 2017). Hu et al. propose a
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Table 1 Architectures and parameters for the LWCNN and SEN modules

Operation Kernel Strides Padding Count BN? Dropout Nonlinearity

LWCNN: 1 × 39 × 11 input

2D Convolution 5 × 4 2 × 1 2 × 1 16 × 0.1 ReLU

2D max-pooling 2 × 2 16 ×
2D convolution 4 × 2 2 × 1 16 � 0.1 ReLU

2D max-pooling 2 × 2 16 ×
2D convolution 2 × 2 1 × 1 32 � 0.1

SEN: 17 × 32 input

Linear N/A N/A N/A 17 × ReLU

Linear N/A N/A N/A 5 × ReLU

Linear N/A N/A N/A 17 × Sigmoid

lightweight attention network called “squeeze and Excitation
Network” (SEN), which can be used in between DL model
layers in order to up-weight important CNN channels before
they are sent to the next CNN layer (Hu et al. 2018).

The 17 LWCNN outputs are combined to form the ten-
sor of feature maps U = [u1, u2, ...u17] ∈ R

17×32, which
SEN uses to generate attention weight, πi , for each map.
Table 1 outlines the SEN architecture. SEN consists of a
global pooling layer that reduces U to a 17 × 1 tensor of
averages, which are sent to an encoder–decoder model that
contains two dense layers. The dense encoder layer con-
denses the 17×1 input to 5×1, followed byReLU activation.
The dense decoder layer expands the output back to 17 × 1
where sigmoid activation with a temperature parameter com-
putes attention weights, πi . WaveFusion architectures tend
to over-fit when the SEN over-emphasizes a small number of
channels while down-weighting others. To address this issue,
the weights are flattened by using temperature τ within the
sigmoid activation function:

πi = ezi /τ

ezi /τ + 1
(1)

where zi is the summed and weighted input to the last fully
connected layer (Chen et al. 2020). This flattening drives
probability scores toward 0.5 and allows for even optimiza-
tion across the LWCNN models. The SEN, along with the
lightweightCNNs, can lead to the localization of neural activ-
ities in the human brain.

Subject-aware contrastive learning framework typical
contrastive learning methodologies group like representa-
tions by class or similarity Khosla et al. (2020). However,
these techniques do not account for multiple conditions
generated from a single subject, such as high- and low-
confidence recordings generated from a single subject. As
such, we develop a subject-aware contrastive learning frame-
work that contrasts data from a given condition and subject
with the rest of the data. We outline our process below.

First, we make use of three components commonly used
to facilitate contrastive learning: Data Augmentation, Aug():
For each �x in a batch, two augmentations, x̃ (called “views”
of �x), are generated by augmenting �x with Gaussian pink
noise, input dropout, and random Gaussian noise.

Encoder Network, Enc(): the encoder model is a combina-
tion of LWCNNs, SEN, a flattening layer, and a dense layer
to map inputs x̃ to a vector �r = Enc(x̃) ∈ R

128.
Projection network, Proj(): Specific to WFP, representa-

tions are sent to the projection network that maps �r to an
embedding vector �z = Proj(�r) ∈ R

32. The embedding �z is
then normalized to a unit hyper-sphere in D32, which allows
for measuring cosine similarity between projections.

We define a multi-label batch of N randomly sampled
pairs as B = {�xk, �y1,k, �y2,k}k=1,...,N where �y1,k ∈ {0, 1}
denotes the confidence label and �y2,k ∈ {1, 10} is a unique
subject ID label (Khosla et al. 2020).Augmentation is applied
to each STFT tensor in B to create the new batch of views
Bs = {x̃k, ỹ1,k, ỹ2,k}k=1,...,2N where ỹ1,2k−1 = ỹ1,2k = �y1,k
and ỹ2,2k−1 = ỹ2,2k = �y2,k . Letting i ∈ Is = {1, ..., 2N } be
the index of an arbitrary sample in Bs , we define the SAC
loss as

L = −
∑

i∈Is
log

⎛

⎝ 1

‖Q(i)‖
∑

q∈Q(i)

exp
( �zi · �zq/τ

)
∑

s∈S(i) exp ( �zi · �zs/τ)

⎞

⎠

(2)

where �zi serves as the anchor with τ ∈ R
+ as a tempera-

ture parameter. The set of positives, Q(i) = {q ∈ Is − {i} :
ỹ1,q = ỹ1,i and ỹ2,q = ỹ2,i }, contains all samples generated
from the same subject and of the same class as the anchor.
The set S(i) = N (i)r ∪ N (i)a is the set of negatives with
N (i)r = {s ∈ Is − {i} : ỹ1,s �= ỹ1,i and ỹ2,s �= ỹ2,i } con-
taining the inter-subject samples with the opposite class label
compared to the anchor’s and N (i)a = {s ∈ Is −{i} : ỹ1,s �=
ỹ1,i and ỹ2,s = ỹ2,i } containing intra-subject samples with
the opposite class label compared to the anchor’s.
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Table 2 Summary of the impact of subject-aware batch construc-
tion and SAC loss function on the confidence level classification task.
Column 1 shows the batch construction scheme (percentages of intra-

subject negatives, inter-subject negatives, and positives). Columns 2 to
5 summarize the F1 score and accuracy for low- and high-confidence
conditions. Column 6 shows the overall classification accuracy

Q(i) / N (i)r / N (i)a (%) Low High Overall

F1 Accuracy F1 Accuracy Accuracy

SupCon Loss 92.3 95.1 91.8 89.0 92.0

12.5/37.5/50 91.3 89.4 91.7 91.6 91.5

25/25/50 91.3 95.4 90.6 86.6 91.0

37.5/12.5/50 92.7 95.3 92.3 89.7 92.5

45/5/50 92.1 97.4 91.1 85.8 91.6

5/45/50 93.1 97.1 92.5 88.5 92.8

50/0/50 95.8 98.7 95.6 92.7 95.7

The best performing batch construction is highlighted in bold

One training epoch is completed when each sample in the
training set serves as the anchor. Thus, we aim to strategically
alter the composition of B and subsequently Q(i), N (i)r ,
and N (i)a in order to study the effects of SAC on inferring
subject’s confidence levelswith theWaveFusion architecture.

3.2 WaveFusion classification network

After WFP has been trained, the WaveFusion weights are
transferred to a WFC model for the classification task. A
dense classification layer with two nodes follows the Wave-
Fusion architecture to generate the logits required for softmax
classification. Spectrograms are fed to WFC in a standard
manner without augmentation, and WFC’s weights are fine-
tuned to achieve optimal classification.

4 Experiments and results

Weconductmultiple experiments to study the effects of batch
formulation on the WaveFusion framework, and localiza-
tion effects of the WFC model, and study the impact of
varying model configurations to gauge the impact of SAC
pre-training and SEN mechanism.

4.1 Batch construction

To observe the effect of the SAC training scheme and
the associated batch construction, we experimented with
the percentage of positive (same class from the same sub-
ject) and negative samples (intra-subject and inter-subject
negatives—other class from the same subject and other sub-
jects, respectively) in each batch.We also experimented with
the impact of the batch size and other model parameters to
find the best embedding for the confidence level classification
task. The accuracy and F1 score of the confidence level clas-
sification task for different levels of intra- and inter-subject

negative batch construction are shown in Table 2 (Hicks et al.
2022). The subject-awareWaveFusion model has 98.7% and
92.7% classification accuracy for low- and high-confidence
classes. The model also outperforms the same architecture
trained using a standard supervised contrastive loss function
(row 1 of Table 2).

When experimenting with different batch sizes, we con-
sidered all combinations of hyper-parameters, such as SAC
loss temperature and weight decay. Each WFP is trained for
25 epochs with a fixed learning rate of 0.05. We then trans-
fer the weights to WFC and perform a grid search over the
weight decay hyper-parameter with Adam optimizer with a
learning rate of 1×10−4 and train eachmodel for 150 epochs.
A WFP model using a batch size of 500 with 250 positives,
250 intra-subject negatives, no inter-subject negatives, loss
temperature of 0.25, and weight decay of 7 × 10−3 led to
the best overall WFC classification accuracy of 95.7% (see
Table 2).

Additionally, to study the impact of the batch size, we
trained themodel using batches of sizes 500, 1000, and 2000.
As shown in Fig. 2, the model performs best with the batch
size of 500.

4.2 Localizing neurological activities

After theWFCmodels are trained, we use the SENproperties
to identify influential brain activity regions.We then compare
the class activationmapsgeneratedby fourLWCNNs.Asam-
ple from the low-confidence and high-confidence classes are
used for illustration (Zhou et al. 2016). As described below,
the WFC models pre-trained with SAC show a higher capa-
bility for localizing brain activity. Our proposed approach
can localize brain activity at inference timewithout any addi-
tional post-processing.

To understand the impact of the contrastive learning train-
ing scheme in localizing neurological activities, we used
the 17 attention weights, πi , generated during the inference
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Fig. 2 Box and swarm plots of
the model classification
accuracy for given batch sizes.
Each dot represents the best
accuracy achieved by a model
during grid search

Fig. 3 Interpolation of most influential modalities onto a 2D topology
maps. Column 1 shows the interpolations generated by the SAC pre-
trained WFC, column 2 shows the interpolations generated by a WFC

without pre-training, and column 3 shows the interpolations generated
by a WFC pre-trained with standard supervised contrastive learning

phase and interpolated themonto brain and scalpmodels. The
attention weights display desirable properties for comparing
activity across regions. Since the weights are learned during
model training, the influence of each LWCNN has adjusted
automatically. Moreover, the SEN attention weights are pro-
portional to the amount of activation in each channel, but are
not prone to over-optimizing channel-specific details. Like-
wise, the SEN attention weights are limited to between 0 and
1, allowing for a fair comparison across modalities.

Column 1 of Fig. 3 illustrates the interpolation of atten-
tion weights corresponding to a high- and a low-confidence
recording generated from the subject-aware contrastive
learning WFC. In the low-confidence example, we see con-
siderable influence from P7 lead (indicated by dark red
areas). In the high-confidence example, influence is gener-
ated largely by P7 and P6 leads.

4.3 Network evaluation

To evaluate the impact of different components on the over-
all model performance, we create different configurations of
the WaveFusion model by removing components to observe
the effects of SAC pre-training and SEN on the WaveFu-
sion framework. Table 3 shows the classification results for
the different configurations used. When removing SAC pre-
training, WFC only achieves a classification accuracy of
85.8% percent. Likewise, when the SEN is removed from
the WaveFusion framework, WFC achieves a classification
accuracy of 91.6%, which suggests that SAC pre-training
boosts the altered model’s performance. Lastly, by removing
SEN and SAC pre-training from the framework, the WFC
achieves a classification accuracy of 90.7%.

Figure3 column 2 visualizes the interpolated attention
weights from a WFC model without pre-trained atten-
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Table 3 Component analysis on
SEN and SAC pre-training.
Classification accuracy and F1
score are given for each model
configuration

Configuration Low Confidence High Confidence Overall

F1 Accuracy F1 Accuracy Accuracy

SupCon Loss 92.3 95.1 91.8 89.0 92.0

Without SAC 86.8 92.7 84.8 79.0 85.8

Without SEN 91.8 94.2 91.4 89.0 91.6

No SAC, No SEN 90.8 91.7 90.6 89.8 90.7

SAC 95.8 98.7 95.6 92.7 95.7

The best performance for each metric is highlighted in bold

Fig. 4 a Class activation maps generated using a low-confidence example, by the WFC pre-trained with the subject-aware contrastive loss (middle
row) and without pre-training (bottom row) for a low-confidence example. b Class activation maps generated using a high-confidence example
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tion weights. In contrast, column 3 visualizes the weights
from aWFCpre-trainedwith standard supervised contrastive
(SupCon) learning. The interpolation for the non-pre-trained
WFC indicates that the model considers a high level of
attention frommultiple modalities compared to the SAC pre-
trained model, which suggests that the model struggles to
localize activity. The interpolated weights from the WFC
pre-trained with standard SupCon suggest a moderate level
of localization. Yet, the localization is not as clear as the
SAC pre-trained model. Figure4 provides a visual compari-
son betweenCAMS fromWFCmodelswith SACpre-trained
weights and non-pre-trained WFC for the low-confidence
(a) and high-confidence (b) examples. The middle rows of
Figs. 4.a show the CAMs generated by LWCNNs from a
WFC with pre-trained SAC weights while the bottom rows
show the CAMs from a non-pre-trained WFC for the low-
confidence input. 4.b shows the CAMS generated using a
high-confidence example. The CAMs generated from the
non-pre-trained LWCNNs suggest that the model focuses on
a time range of 0.0 to 0.5 seconds and a frequency range
of 0 to 18 Hz on the low-confidence example. The CAMs
generated from the pre-trained LWCNNs appear to learn a
richer set of features with activation covering a larger time
and frequency range of 0 − 36 Hz, which suggests that the
LWCNNs detect Beta oscillations correlated with perceptual
judgment in addition to the pre-stimulusAlpha activity found
by Samaha (Haegens et al. 2017; Samaha et al. 2017).

4.4 Detecting type 1 behavioral response

In addition to confidence level classification, we ran experi-
ments to determine whetherWaveFusion could detect a Type
1 behavior response: whether the dots moved left or right.
Likewise, we set up a binary classification task to deter-
minewhetherWaveFusion could distinguish betweenmotion
coherence of 0.01 and 0.4 from the EEG signals. The data
were constructed using the methodology outlined in Sect. 2.
While the direction detection experiment was inconclusive,
the WaveFusion architecture could detect motion coherence
with an appreciable degree of accuracy of 85.7%when using
a batch size of 500, and no inter-subject negatives. Table 4
shows the classification results and F1-score.

Table 4 Accuracies and F1 Score for the motion coherence classifica-
tion task

Low coherence (0.01) High Coherence (0.4) Overall

F1 Accuracy F1 Accuracy Accuracy

84.5 78.1 86.7 93.3 85.7

5 Conclusion

The proposed WaveFusion framework, along with the SAC
training scheme, is an important step toward 1) multimodal
EEG analysis through an attention-based fusion technique
and 2) using a SAC training scheme for an EEG classifica-
tion task. The framework illustrates the impact of building
an EEG contrastive learning representation learning scheme
in a subject-aware manner to boost feature learning and clas-
sification accuracy. We show that a batch comprising 50%
positives, 50% intra-subject negatives, and no inter-subject
negatives yields the best results during the classification task.
Moreover, we show that SEN displays important properties
for localizing neurological events and that SAC pre-training
reduces WaveFusion’s sensitivity to background neurologi-
cal events. We then demonstrate that WaveFusion can detect
motion coherence to an appreciable degree of accuracywhich
suggests that the architecture may be tailored for detecting
Type 1 Behavioral responses. Lastly, we show that theWave-
Fusion architecture effectively learns EEG representations
in an interpretable manner, using lead-specific lightweight
CNNs and attention to localize neural activities in the human
brain.
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