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Abstract

Building Efficient Vision Models for Ecological and Earth Observation Studies

by

Satish Kumar

Numerous large vision models for natural images, such as SAM, Florence-2, and GPT-

4, have achieved state-of-the-art (SOTA) performance, largely due to vast amounts of

image and text data available online. Smaller models like EfficientSAM and CLIP have

also shown the potential of achieving significant results with comparatively less data.

However, real-world scientific problems, particularly in remote sensing, present unique

challenges due to the complexity of the data and scarcity of annotations. These problems

often require data from multiple sources, such as hyperspectral sensors on airplanes and

multispectral sensors on satellites, which are expensive and time-consuming to acquire.

This dissertation addresses the key question: how can large vision models be built

and trained effectively under data constraints? The proposed solution involves integrat-

ing domain-specific knowledge into large vision models, specifically vision transformers,

to optimize their performance and training efficiency. By incorporating core signal pro-

cessing techniques, domain-specific knowledge is encoded as prior information, guiding

the feature extraction process and refining randomly initialized queries via a query refiner

module. This approach accelerates convergence with limited training data.

Three key applications are explored: (1) methane detection in remote sensing from

aerial imagery, (2) animal detection and classification in large grasslands for ecological

studies, and (3) estimation of physiological signals such as ECG and ISTI for stress

assessment in biomedical contexts.

This research establishes an optimal methodology for embedding domain-specific

xi



knowledge into deep learning models, thereby enhancing performance in data-limited

environments. It provides valuable insights for improving the applicability of vision

transformer-based models across various domains, contributing to advancements in com-

puter vision research and its practical real-world applications.
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Chapter 1

Introduction

The field of computer vision has witnessed unprecedented growth over the past decade,

driven by the advent of deep learning and the availability of large-scale datasets. Large

vision models, such as the Segment Anything Model (SAM) [3], Florence-2 [4], and

GPT-4 [5], have set new benchmarks in various computer vision tasks, including object

detection, image segmentation, and image generation. These models have been trained on

vast amounts of data, with SAM leveraging 11 million images and 1 billion annotations,

Florence-2 using 126 million images and 5.4 billion annotations, and GPT-4 utilizing

13 trillion tokens. The sheer volume of data has enabled these models to learn robust

features and achieve high performance across diverse applications.

The primary challenge in applying large vision models to scientific problems lies in

the scarcity of annotated data and the inherent complexity of the data itself. For exam-

ple in the remote sensing domain, the problem of methane detection have very limited

annotated dataset available, acquiring such dataset and annotation is requires expen-

sive instruments and we need a subject matter experts to interpret and annotate such

high-dimensional data. State-of-the-art large vision models in natural image domain

that rely on massive amounts of labeled data are impractical in scientific domains, ne-
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cessitating alternative strategies to build and train models effectively. The limitations

in data availability are further exacerbated by the specialized nature of the data for ex-

ample hyperspectral data requires an domain-expert knowledge to interpret and utilize

effectively.

Addressing these challenges requires a paradigm shift in how large vision models are

designed and trained for scientific applications. Instead of relying solely on large volumes

of data, there is a need to integrate domain-specific knowledge (e.g. need to know the

chemical reactive properties of methane gas with solar radiations) into the models to

enhance their performance with limited data. This involves developing techniques to

extract and encode prior information about the domain into the model, enabling it to

focus on the most relevant features and achieve faster convergence during training.

1.1 Motivation

Motivated by the above mentioned problems, we set out to develop models dealing

with complex data in different problem contexts and modalities.

Remote Sensing Applications : In the context of remote sensing, for example,

the data obtained from hyperspectral and multispectral sensors is vastly different from

the natural images commonly used to train large vision models. These sensors capture

detailed spectral information that can provide insights into material composition, veg-

etation health, and other environmental factors. However, this richness in data comes

at the cost of increased complexity, making it difficult to apply conventional computer

vision techniques directly.

Biomedical Applications : Similar challenges are faced in the field of biology, partic-

ularly in the detection and analysis of physiological signals. For instance, multispectral

2



Introduction Chapter 1

biomedical imaging techniques captures complex data that require expert interpretation.

The detection of physiological signals, such as heart rate variability from electrocardio-

grams (ECGs) or brain activity patterns from electroencephalograms (EEGs), involves

intricate data that is difficult to annotate accurately and abundantly. The complexity of

physiological data, combined with the scarcity of annotated datasets, makes it challenging

to develop robust models for tasks such as disease diagnosis, monitoring of physiological

conditions, and personalized medicine.

Ecology Applications : Another challenge lies in the field of ecology, specifically in

the detection and monitoring of animals in the wild, such as in large open grasslands.

Remote sensing techniques, including satellite imagery and drone footage, are increasingly

used to monitor wildlife populations and track animal movements. However, these images

often have varying resolutions and conditions, such as different times of day and weather,

making it difficult to identify and count animals accurately. The annotated datasets

required to train models for these tasks are limited, as capturing and annotating data in

the wild is resource-intensive and logistically challenging. The sparse and noisy nature

of ecological data further complicates the task, necessitating sophisticated models that

can effectively discern animals from their natural habitats and deal with occlusions and

varying backgrounds.

1.2 Challenges

One of the most pressing issues is the limited availability of annotated data. In

many scientific domains, the process of annotating datasets is both expensive and time-

consuming. This is particularly true in specialized areas such as methane emission detec-

tion, where obtaining accurate annotations requires sophisticated hyperspectral sensors
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and expert knowledge.

Furthermore, scientific computer vision tasks often necessitate the integration of mul-

tiple sources of information. For instance, in the context of methane emissions, hyper-

spectral imagery from airplane based sensors, multispectral imagery from satellite based

sensors, ground release information, and wind speed data. Each of these data sources

provides unique insights, but combining them effectively poses a significant challenge.

Integrating these diverse datasets requires advanced data fusion techniques and robust

algorithms capable of handling the inherent variability and noise present in each modality.

Another critical challenge is the acquisition of annotated datasets. Given the spe-

cialized nature of scientific computer vision problems, creating comprehensive and high-

quality datasets involves significant logistical and financial hurdles. Additionally, the

expertise required to annotate such datasets accurately is scarce, adding another layer of

complexity to the process. Combining data from multiple modalities also presents tech-

nical difficulties. Different sensors and measurement instruments have varying spatial

and temporal resolutions, as well as differing levels of sensitivity and accuracy. Aligning

and integrating these disparate data sources into a cohesive framework requires sophis-

ticated preprocessing and calibration methods. Moreover, the computational demands

of processing and analyzing multimodal data can be substantial, necessitating the use of

high-performance computing resources.

In summary, the challenges in scientific computer vision are multifaceted and stem

from the inherent complexity of the problems, the limited availability of annotated data,

and the difficulties associated with integrating multiple data modalities.
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1.3 Summary of Contributions

This thesis research focuses on making large vision models by incorporating domain-

specific knowledge by using advanced signal processing techniques. By leveraging the

unique characteristics and requirements of specific scientific domains, We aim to enhance

the performance and applicability of these models. This approach not only improves the

accuracy of detection, segmentation, quantification, and localization tasks but also re-

duces the computational cost required. Additionally, this work extends to the application

of these models across various modalities of data such as hyperspectral, multispectral and

thermal imagery along with other modalities. The contributions are as follows:

1. In the context of methane emission detection, we developed a series of novel works

to detect and segment methane gas plumes from satellites as-well-as drones, cov-

ering multiple spatial scales. We can handle and synthesize data from different

sources. Using such imagery we can segment methane gas plume mask, estimate

concentration and potential emission source. This is discussed further in detail in

chapter 2 and 3 in the thesis

2. In the context of ecological applications, we collaborated with the Smithsonian

Institution, Kenya Wildlife Trust, and Wildlife Research and Training Institute in

Kenya to develop a novel method for detecting and classifying animal species from

aerial imagery in the vast open grasslands of the Masai Mara Conservancy in Kenya.

As discussed in chapter 4, this innovative work significantly enhances wildlife

accounting, enabling faster and more accurate monitoring of animal populations.

By providing detailed and timely data on species distribution and abundance, our

approach plays a crucial role in accelerating conservation efforts and informing

effective wildlife management strategies.
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3. In the context of biomedical applications, we worked on developing a series of

innovative methods for detecting stress experienced by individuals using thermal

imagery as discussed in chapter 5. By analyzing thermal videos, we were able to

reconstruct various physiological signals such as Impedance Cardiography (ICG),

Electrocardiography (ECG), and Initial Systolic Time Interval (ISTI) through our

models. These reconstructed signals allowed us to estimate the amount and type of

stress experienced by individuals with high accuracy. This non-invasive approach

to stress detection provides valuable insights into the physiological responses to

stress, offering a promising tool for both research and practical applications in

health monitoring and stress management.

This versatility ensures that the proposed can be applied to a wide range of scientific

problems, from environmental monitoring to biomedical imaging to ecological monitoring,

thereby demonstrating the broad impact and potential of my research.

1.4 Organization of Thesis

The organization of the thesis is as follows:

Chapter 2, MethaneMapper discusses the development of large vision models

for remote sensing applications, specifically targeting methane detection from hyper-

spectral data. Our research explores methane detection using hyperspectral imagery

collected from airplanes, addressing this challenge through the lenses of signal process-

ing, computer vision, and machine learning. We developed the spectral linear filter as

a part of initial exploration of methane detection using deep learning. This filter is

an integral to MethaneMapper, our large vision model designed for methane detection.

MethaneMapper leverages the vision transformer architecture to approach the problem

as a segmentation task. By using the spectral linear filter in the feature extraction pro-
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cess, MethaneMapper achieves faster convergence, improving the efficiency and accuracy

of methane detection from hyperspectral imagery.

Figure 1.1: Data collection processing using aerial imagery and detection of methane plumes

Chapter 3: In this chapter, we present the development of MethaneMapper for

processing multispectral data from satellites. Our primary focus is on multispectral data

from Sentinel-2 and LandSat-8 satellites. MethaneMapper incorporates a pretrained vi-

sion transformer model into its architecture, with a redesigned spectral feature generator

based on the Beer-Lambert law. This generator identifies potential methane hotspots,

which are then refined by the Query Refiner module to guide the feature extraction pro-

cess from the encoded features provided by the transformer encoder. We demonstrate the

effectiveness of MethaneMapper through test results on data from the Sentinel-2 satellite

over Los Angeles County and LandSat-8 imagery from Algeria, showcasing its capability

7



Introduction Chapter 1

to accurately detect methane hotspots from multispectral satellite data.

Chapter 4: WildlifeMapper, this chapter discusses the application of our large

vision models in ecology, specifically for detecting and identifying animals in aerial im-

agery. We introduce WildlifeMapper, a model designed to identify animals in large open

grasslands, where the animals occupy less than 0.01% of the image pixels. We explore

methods to guide the feature extraction process to capture relevant features from the

imagery. Our approach includes developing a high-frequency feature generator and uti-

lizing patch-level filtering to accurately locate animals and capture their context within

the image. We also cover the real-world application of WildlifeMapper. Park rangers will

use our online platform, BisQue [6], to detect and identify animals, thereby supporting

conservation efforts.
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Figure 1.2: Data collection processing using aerial imagery and detection of wild an-
imals. The bottom image is a zoomed in version of the aerial imagery. The Green
boxes represents cattle and the Red boxes represents shoats (sheep and goats).

Chapter 5: StressNet, This chapter explores the biomedical applications of our

large vision models, focusing on our work with StressNet. StressNet processes multispec-

tral data (RGB + thermal) of the human face to estimate physiological signals such as

Electro Cardio Graph (ECG), Impedance Cardio Graph (ICG), and Initial Systolic Time

Interval (ISTI). These signals are used to determine whether a subject is experiencing

physical stress. To build StressNet, we developed an emission representation model to

simulate the reflection, refraction, and absorption of light by different sources. We inte-

grated this emission representation model to our large vision model to guide the feature

extraction process within the vision transformer model. We validated StressNet through
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experiments involving 60 subjects from UCSB, using the Cold Pressor Test (CPT), where

individuals experience physical stress by immersing their hands in cold water.

Figure 1.3: Representation of the Cold Pressor Test (CPT) for StressNet, Left image
shows video recording of the face of person, Right image shows physiological signal
(ECG) collection .

Chapter 6: We discuss some future directions and conclude this dissertation in this

chapter.

In summary, this dissertation introduces novel methodologies for building large vi-

sion models tailored to diverse scientific imaging problem contexts and applications. By

leveraging the unique characteristics of specific scientific domains, these models improve

accuracy in detection, segmentation, quantification, and localization tasks, while reduc-

ing computational costs. This research extends across various data modalities, including

hyperspectral, multispectral, and thermal imagery, demonstrating the versatility and

impact of large vision models in environmental monitoring, wildlife conservation, and

healthcare.
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Chapter 2

MethaneMapper

We consider the problem of detecting and localizing methane (CH4) plumes from multi-

spectral/hyperspectral imaging data. Fig. 2.1 represents an example source of methane

emission and its presence in visible and beyond visible domain. Detecting and localiz-

ing potential CH4 hot spots is a necessary first step in combating global warming due to

greenhouse gas emissions. Methane gas is estimated to contribute 20% of global warming

induced by greenhouse gasses with a Global Warming Potential (GWP) 86 times higher

than carbon dioxide (CO2) in a 20 year period. To put into perspective, the amount of

environmental damage that CO2 can do in 100 years, CH4 can do in 1.2 years. Hence

it is critical to monitor and curb the CH4 emissions. The longstanding CH4 has a mean

atmospheric residence of 7.9 years [7] and its presence in the atmosphere has been in-

creasing since the industrial revolution [8]. In this chapter, we explain the methane

detection using hyperspectral imagery from aerial survey. We first introduce the spec-

tral linear filter as part of Hyperspectral Mask-RCNN (H-MRCNN) [9] work, and later

discuss about how spectral linear filter is used in MethaneMapper [10] to accurately delin-

eate methane plumes. The results of this chapter are published in Computer Vision and

Pattern Recognition (CVPR) 2023 conference and Winter Conference on Applications of
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Computer Vision (WACV) 2020.

Figure 2.1: Representation of information in visible and beyond visible( multispec-
tral/hyperspectral domain ) domain

2.1 Introduction

CH4 emission has many sources as shown in Fig. 2.2, the ones of particular interest are

those from oil and natural gas industries. According to the United States Environmental

Protection Agency report, CH4 emissions from these industries accounts to 84 million

tons per year [11,12]. These CH4 emissions emanate from specific locations, mainly from

pipeline leakages, storage tank leak or leakage from oil extraction point.

Current efforts to detect these sources mostly depend on aerial imagery. The Jet

Propulsion Laboratory (JPL) has conducted thousands of aerial surveys in the last decade

to collect data using an airborne sensor AVIRIS-NG [13]. Several methods have been

proposed to detect potential emission sites from such imagery, for example, see [14–19].
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However, these methods are in general very sensitive to background context and land-

cover types, resulting in a large number of false positives that often require significant do-

main expert time to correct the detections. The primary reason is that these pixel-based

methods are solely dependent on spectral correlations for detection. Spatial information

can be very effective in reducing these false positives as CH4 plumes exhibit a plume-like

structure morphology. There has been recent efforts in utilizing spatial correlation using

deep learning methods [9, 20], however, these works don’t leverage spectral properties

to filter out confusers. For example, methane has similar spectral properties as white-

painted commercial roofs or paved surfaces such as airport asphalts [21]. This chapter

presents a novel deep-network based solution to minimize the effects of such confusers in

accurately localizing methane plumes.

Figure 2.2: Biogenic and Anthroproenic sources of methane emissions

In this chapter we explore the development of large vision models for methane de-

tection from hyperspectral data. We use hyperspectral imagery collected from airplanes,

addressing this challenge through the lenses of signal processing, computer vision, and

machine learning. We will discuss two works named: Hyperspectral Mask-RCNN (H-

MRCNN) [9] and MethaneMapper(MM) [10]. H-MRCNN is the basis of MM. During
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the development of H-MRCNN, we developed a matched filtering approach and used a

Mask-RCNN based deep convolutional neural network to solve the problem as a segmen-

tation mask task. In MM, we improved on the limitations of H-MRCNN, and curated

a comparatively larger and diverse dataset and efficient transformer based detection al-

gorithm. We will discuss H-MRCNN first in brief and have a detailed discussion about

MM in the following chapter.

2.2 Related Works

Existing machine learning-based hyperspectral image analysis methods primarily fo-

cus on classification, with a smaller subset dedicated to target detection, as discussed

in [22]. One commonly used method in this domain is logistic regression, particularly

for land cover classification in remote sensing applications, where it performs pixel-wise

classification [23]. Despite its widespread use, this method often suffers from high false-

positive rates due to its sensitivity to noise and variations in the data. To address this,

more advanced methods such as multinomial logistic regression (MLR) [24] have been

developed. MLR, a discriminative approach, directly models the posterior class distribu-

tions and is particularly effective in applications involving the linear spectral unmixing

process, where it can provide more accurate classifications by focusing on the most rele-

vant spectral features.

Support vector machines (SVMs) are another popular choice in hyperspectral data

analysis, widely recognized for their ability to generate decision boundaries with the

maximum margin of separation between data samples from different classes [25]. How-

ever, when it comes to target detection, SVM’s related algorithm, support vector data

description (SVDD) [26, 27], is often employed. SVDD generates a minimum enclosing

hypersphere containing the targets, which can be particularly useful in identifying anoma-
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lies or specific targets within a hyperspectral image. Nonetheless, a significant limitation

of SVDD is its failure to account for the underlying distribution of the scene data, which

can result in an inability to distinguish targets from the background distribution, leading

to false positives.

Gaussian mixture models (GMMs) have also been applied to hyperspectral data anal-

ysis, where they represent the probability density of the data as a weighted summation of

a finite number of Gaussian densities, each with distinct means and standard deviations.

This approach allows for the clustering of hyperspectral data and the segmentation of

images into homogeneous areas [28], providing a more structured analysis of the data.

Latent linear models, such as principal component analysis (PCA), are also commonly

used in hyperspectral imagery. PCA performs a linear transformation to find a latent

representation of the data, projecting it onto an orthogonal set of axes to reduce di-

mensionality while preserving the most significant variance in the data [29–31]. This

technique is particularly valuable as a preprocessing tool, helping to simplify the data

before applying more complex analysis methods.

Ensemble learning, another powerful approach, involves combining the predictions

of multiple base models to produce a more accurate overall result. This technique has

been successfully applied to hyperspectral classification tasks, where it leverages the

strengths of various models to improve prediction accuracy [32]. In addition, kernelized

PCA, followed by deep learning methods, offers a promising solution for target detection

in hyperspectral imagery [33–35]. For example, the work by Chen et al. [36] intro-

duces a three-dimensional convolutional neural network (CNN) that outperforms two-

dimensional CNNs by directly learning spatial-spectral features. This three-dimensional

CNN approach, which spans both spatial and spectral axes, significantly improves the

model’s ability to capture complex patterns within the data, though it requires large

training datasets to perform effectively.
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In the specific context of methane plume detection using airborne imaging spectrom-

eter data like AVIRIS-NG [13], traditional methods have been widely employed. These

include the Iterative Maximum a Posterior Differential Optical Absorption Spectroscopy

algorithm (IMAP-DOAS) [19,37] and matched filters [14–18]. IMAP-DOAS, while effec-

tive, requires data from both airborne and ground-based hyperspectral sensors, making it

impractical for many real-world applications due to the logistical challenges and resource

requirements. On the other hand, matched-filter methods, which normalize spectral sig-

nals using background statistics and match them with the CH4 spectral signature at each

spatial location, are more commonly used. However, these methods are highly sensitive

to surface albedo and land cover, often resulting in spurious detections that resemble

methane plumes. Consequently, domain experts must manually inspect each flight line

to distinguish between real CH4 plumes and false positives [2].

To mitigate the high rate of false positives, clustering techniques have been intro-

duced, such as the cluster-tuned matched filter [16, 38], which involves clustering pixels

with similar spectral properties using methods like k-means clustering. While these tech-

niques improve detection accuracy, both IMAP-DOAS and matched filters remain prone

to false positives due to their reliance on pixel-wise processing, which does not adequately

capture the complex interactions between different elements in the scene.

Machine learning approaches have also been explored for methane detection in hy-

perspectral imagery, leveraging algorithms like SVMs, GMMs, and deep learning models.

For instance, Methanet [20], a more recent model, focuses on estimating methane con-

centrations from matched-filter data, yet it still faces limitations in effectively addressing

confusers in CH4 spectral signatures.

To address the limitations of existing methods, our proposed works: H-MRCNN 2.3

and MethaneMapper 2.4 advances methane plume detection by integrating both spectral

and spatial correlations, thereby providing a more robust and accurate delineation of CH4
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plumes. These approaches effectively mitigates the issues of false positives and enhances

the reliability of methane detection in complex environments.

Datasets: The only dataset publicly available with annotation for CH4 plume detection

is JPL-CH4-detection2017-V1.0 dataset [2]. It contains only 46 AVIRIS-NG [13] flight

lines in the US Four-Corners region. Deep learning architectures require a large number

of annotated samples, and for this reason we introduce the new MHS dataset with over

1200 annotated flightlines and ∼ 4000 plume sites discussed in section 2.5.1.

2.3 Hyperspectral Mask-RCNN (H-MRCNN)

Effective analysis of hyperspectral imagery is essential for gathering fast and action-

able information of large areas affected by atmospheric and green house gases. Existing

methods, which process hyperspectral data to detect amorphous gases such as CH4 re-

quire manual inspection from domain experts and annotation of massive datasets. These

methods do not scale well and are prone to human errors due to the plumes’ small pixel-

footprint signature. The first proposed Hyperspectral Mask-RCNN (H-mrcnn) uses prin-

cipled statistics, signal processing, and deep neural networks to address these limitations.

H-mrcnn introduces fast algorithms to analyze large-area hyper-spectral information and

methods to autonomously represent and detect CH4 plumes. H-mrcnn processes informa-

tion by match-filtering sliding windows of hyperspectral data across the spectral bands.

This process produces information-rich features that are both effective plume represen-

tations and gas concentration analogs.

2.3.1 Proposed H-mrcnn solution

The proposed approach tackles two datasets derived from AVIRIS-NG instrument by

Jet Propulsion Laboratory (JPL) [39]; Dataset A is a rectified 4-band dataset defined
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Figure 2.3: Relation between dataset A (χA) and dataset B (χB). The 432-bands
data from dataset B are processed through a matched filter to yield dataset A. Detect-
ing plumes using this information poor dataset (Dataset A) is challenging. H-mrcnn
addresses this challenge by modeling terrain absorption using ensemble and decision
fusion methods.

in [39]. This data contains 4-band datum with three bands comprising red, green, and

blue reflectance intensities and a fourth band comprising CH4 relative concentration in

ppm per meter (parts per million per meter). The fourth channel is generated from 432-

bands. The 432-band measurements are processed into one single-channel array using

conventional match-filtering techniques with the CH4 signature as the target. The con-

ventional match-filtering technique takes 180 minutes per datapoint to process 432bands

into 1 single channel output. The optimized implementation has reduced this processing

time to 15 minutes per datapoint. The single channel array is stacked with three other

bands, each selected from the visual red, blue, and green wavelengths. The proposed

naive single-band solution uses dataset A to evaluate and validate the initial findings

and tune a binary plume detector.

Dataset B is an unrectified, 432-band (i.e., raw data) dataset. It is acquired in

VSWIR(Visible Shortwave Infrared) range, measuring over 432 spectra of color channels

ranging from ultraviolet (380nm) to shortwave infrared (2510nm). The images are taken

over large areas, creating a three-dimensional data cube of radiance, where two dimen-

sions are the spatial domain (i.e., 2D-image) and the third one is in the spectral domain
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(i.e., wavelength) as shown in Figure 2.3, which visualizes the relationship between the

two datasets. This data is collected in “Four Corner Area” (FCA), the geographical

US-Mexico border. This dataset is used to design, develop, and evaluate the proposed

H-mrcnn solution, which is the formalized naive single-band detector. H-mrcnn is a com-

bination of an optimized matched filter and Mask-RCNN that identifies the correlation

both in spectral and spatial domains respectively and detects the presence and shape

CH4 plume.

2.4 MethaneMapper

The H-MRCNN approach has limitations in scalability, geographic generalizability,

and efficiency. To address these challenges, we propose a novel end-to-end spectral ab-

sorption wavelength aware transformer network, MethaneMapper, to detect and quantify

the emissions. MethaneMapper introduces two novel modules that help to locate the most

relevant methane plume regions in the spectral domain and uses them to localize these

accurately. Thorough evaluation shows that MethaneMapper achieves 0.63 mAP in de-

tection and reduces the model size (by 5×) compared to the current state of the art. In

addition, we also introduce a large-scale dataset of a methane plume segmentation mask

for over 1200 AVIRIS-NG flight lines from 2015-2022. It contains over 4000 methane

plume sites. Our dataset will provide researchers the opportunity to develop and ad-

vance new methods for tackling this challenging green-house gas detection problem with

significant broader social impact.

Our proposed approach, referred to as the MethaneMapper (MM), adapts the

DETR [40], a transformer model that combines the spectral and spatial correlations in

the imaging data to generate a map of potential methane (CH4) plume candidates. These

candidates reduce the search space for a hyperspectral decoder to detect CH4 plumes and
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remove potential confusers. MM is a light-weight end-to-end single-stage CH4 detector

and introduces two novel modules: a Spectral Feature Generator and a Query Refiner.

The former generates spectral features from a linear filter that maximizes the CH4-to-

noise ratio in the presence of additive background noise, while the latter integrates these

features for decoding.

A major bottle neck for development of CH4 detection methods is the limited avail-

ability of public training data. To address this, another significant contribution of this

research is the introduction of a new Methane Hot Spots (MHS) dataset, largest of

its kind available for computer vision researchers. MHS is curated by systematically

collecting information from different publicly available datasets (airborne sensor [41],

Non-profits [42, 43] and satellites [44]) and generating the annotations as described in

Section 2.6.2. This curated dataset contains methane segmentation masks for over 1200

AVIRIS-NG flight lines from years 2015 to 2022. Each flight line contains anywhere from

3-4 CH4 plume sites for a total of 4000 in the MHS dataset.

Our contributions can be summarized as follows:

1. We introduce a novel single-stage end-to-end approach for methane plume detection

using a hyperspectral transformer. The two modules, Spectral Feature Generator

and Query Refiner, work together to improve upon the traditional transformer

design and enable localization of potential methane hot spots in the hyperspectral

images using a Spectral-Aware Linear Filter and refine the query representation for

better decoding.

2. A new Spectral Linear Filter (SLF) improves upon traditional linear filters by

strategically picking correlated pixels in spectal domain to better whiten back-

ground distribution and amplify methane signal.

3. A new benchmark dataset, MHS, provides the largest (∼ 35×) publicly available
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dataset of annotated AVIRIS-NG flight lines from years 2015-2022.

Figure 2.4: Depiction of data collection process. Each flightline is ∼ 300 km long. An
array of 598 sensors records data at 1.5m/pixel spatial resolution. All flightlines are
ortho-corrected. Each data-cube is of dimension ∼ 25000× ∼ 1500× 432.

Our work is at the intersection of hyperspectral data for CH4 detection, deterministic

linear filtering methods for spectral features and encoder-decoder based transformer.

MethaneMapper uses both spectral and spatial correlation to accurately delineates CH4

plumes.

2.5 MethaneMapper (MM) Architecture

2.5.1 Data Overview

AVIRIS-NG hyperspectral imaging sensors capture spectral radiance values from N0

(N0 = 432) channels corresponding to wavelengths ranging from 400nm − 2500nm as

shown in Fig. 2.4. The complete hyperspectral image is represented as x ∈ RH0×W0×N0

where H0,W0 are the height & width, respectively, and N0 = 432 is number of channels.

This hyperspectral data includes a very weak signature of CH4 around 2100-2400nm,
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Figure 2.5: Overview of MethaneMapper (MM) architecture. Given a hyperspectral
image, our RGB (400nm− 700nm) and SWIR (2000nm− 2500nm) band-pass filters
passes a subset of channels in desired wavelength range and feed them to CNN back-
bones (ResNet) to extract features. These features are concatenated and fed to Trans-
former Encoder. Parallelly, our Spectral Feature Generator (SFG) modules takes in
all channels of input image and generate methane candidates features. Next these can-
didates are sent to Query Refiner (QR) to refine queries. Then these queries decoded
using encoded feature from Transformer Encoder. Finally each decoded query is used
to predict a plume mask via Mask Prediction and, bounding box and class via FFNs
(Feed Forward Network).

conflated with radiations from the surrounding land cover and background clutter. A

single flight-line could be over a couple miles long (about 25K pixels in one of the dimen-

sions), with an array of sensors recording the data at 1.5m/pixel resolution. The images

are orthorectified before processing.

2.5.2 Technical Overview

Referring to Fig.4.3, MM contains the following main components: (i) 2 CNN back-

bones to extract a compact feature representation of the spectral regions of interest from

the hyperspectral image, (ii) a Spectral Feature Generator (SFG), and (iii) a Query Re-

finer (QR) in between an encoder-decoder pair (inspired by GTNet [45], SSRT [46]). The

hyperspectral image is first processed through two separate band-pass filters to select the

channels in visible (400−700nm) and short-wave infrared (SWIR)(2000−2500nm) wave-

length regions, and are then passed through CNN backbones. Output of these backbones

are concatenated together and then encoded using a transformer encoder.
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The SFG (Sec. 2.5.4) takes in all channels of the hyperspectral image and process

them through a spectral linear filter. The SFG exploits the spectral correlation to gen-

erate methane candidates feature maps and passes them to QR. The QR (Sec. 2.5.5)

uses these methane candidates to refine the learnable queries. Our hyperspectral decoder

takes the encoded features from the encoder and refined queries from QR to generate the

embeddings. The mask-prediction layer processes these embeddings along with the fea-

ture pyramid from the backbone layers to generate the final methane-plume segmentation

prediction.

These individual blocks are discussed in more detail below.

2.5.3 Bandpass filtering for the Encoder

The HSI is processed by two parallel band-pass filters; a visible wavelength (400 −

700nm) (RGB) and a short-wave infrared wavelength (2000 − 2500nm) (SWIR) band-

pass filter. The RGB filter results in a 3 channel output corresponding to the normal

red, green, and blue wavelengths. The SWIR generates channels, approximately 5nm

apart. The filtered outputs are xrgb ∈ RH0×W0×3 and xswir ∈ RH0×W0×100. Using xrgb and

xswir, two conventional CNN backbones (e.g. ResNet-50 [47, 48]) generate two feature

maps respectively of size ∈ RH×W×N . Here H = H0

32
, W = W0

32
and N = 2048 typically.

We concatenate these feature maps along channel dimension and project through a 1× 1

convolution layer to retain channel dimension of N . The resulting output is fcomb ∈

RH×W×N .

Following the standard architecture of transformer encoder from previous works [40,

45, 46, 49, 50], we reduce the channel dimension of fcomb using 1 × 1 convolution to fz

∈ RH×W×d and supplement position information by adding a fixed positional embedding

p ∈ RH×W×d. The encoder consists of a stack of multi-head self-attention modules and
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feed-forward networks (FFN). The encoded feature map is fe ∈ RH×W×d:

fe = Encoder(fz, p) (2.1)

2.5.4 Spectral Feature Generator (SFG)

In parallel, the input hyperspectral image is processed by the SFG module to generate

methane candidates feature map fmc, providing the QR module with spatial information

to help the network delineate the methane plumes.

The SFG consist of a spectral linear filter (SLF) and a Feature Extractor (e.g.ResNet-

50 [47]). The most common linear filtering approach for detecting CH4 is to take each

pixel from the input hyperspectral image {xij | xij ∈ R1×1×N0}H0,W0

i,j=1 and project it

onto a CH4 spectral absorption signature vector of same size [1]. This is to reduce the

interference from ground terrain and amplify the CH4 visibility in that pixel. Accurately

modeling SLF is critical given that it is designed to reduce ground terrain interference.To

model SLF we use the most common approach to matched filtering from information

theory [51].

Spectral Linear Filter (SLF): The design of SLF is dependent on the spectral ab-

sorption pattern of CH4 gas [1] and distribution of ground terrain. Since our signal of

interest, CH4, is very weak, traditional methods of linear filtering [16,17] are not effective.

The conventional methods to whiten the ground terrain noise includes calculating the

covariance (Cov ∈ RN0×N0) of background by selecting a set of 10-15 adjacent columns

{xi | xi ∈ R1×H0×N0}W0
i=1). However, in a given flight-line, the terrain changes frequently,

from water bodies to bare soil, vegetation, buildings and other urban structures. There-

fore single approximation of the covariance can not provide correct estimate of CH4 and

a localized context-based whitening will be more effective. To address this problem, we
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took a very simple and effective approach of doing land cover classification and segmenta-

tion [52–54], and then compute covariance per class from the land cover. More details in

supplementary materials. This improves the quality of methane candidates in presence of

confusers (materials with similar spectral absorption patterns as CH4) and also in cases

where CH4 concentration is low. The final SLF design with per class covariance is:

SLF(xij) =
(xij − µk)TCov−1

k t√
tTCov−1

k t
∀ (i, j) ∈ class k (2.2)

where t represents the spectral absorption pattern [1] of CH4 gas, and Covk, µk are

the covariance and mean of kth class respectively. xij represents the pixel in input hy-

perspectral image at (i, j) index in kth class. This operation generates a 2-D spatial

CH4 candidates map of size RH0×W0 . Next this CH4 candidates map is fed to a Feature

Extractor to generate CH4 candidates feature map fmc. Details of the land cover segmen-

tation/classification and complete SLF derivation are in the Supplementary materials.

fmc = FeatureExtractor( SLF(xij) ∀ i, j) (2.3)

2.5.5 Query Refiner (QR)

Next the methane candidate feature map fmc ∈ RH×W×d is fed to the QR module

along with a set of 100 learnable queries Q ∈ R100×d. The fmc refines the learnable

queries via cross-attention mechanism. This operation provides a narrow search space

for the queries. The QR module follows a transformer decoder-like architecture inspired

from [45, 46]. The randomly initialized queries Q ∈ R100×d are first passed through a

self-attention layer to attend to themselves. Next, these queries attend to our methane

candidates feature map fmc from SFG module through a cross-attention layer. The
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methane candidates feature map serves as key-values pairs in our attention architecture.

The output of QR is Qref .

Qref = QR(fmc, Q) (2.4)

2.5.6 Hyperspectal Decoder

The Qref is fed to the decoder module along with encoder output fe to generate output

embeddings. Our hyperspectral decoder follows the standard architecture with a minor

difference. There are no self-attention layers, just stack of multi-headed cross attention

layers. The refined queries are transformed into output embeddings Eout ∈ R100×d.

Eout = Decoder(fe, p, Qref ) (2.5)

2.5.7 Box and Mask Prediction

The decoder output embeddings (Eout) are fed to two Feed Forward Network (FFNs)

and a Mask prediction layer. The outputs of the FFNs are the bounding boxes covering

each CH4 plume and a confidence score corresponding to each box. The mask-prediction

module follows the standard segmentation head of DETR [40]. It computes multi-head

attention scores of each embedding over the fe (Eq. 2.1), generating a low-resolution

heatmap for each embedding. To make the final prediction a Feature Pyramid Net-

work [55] like structure is used. Each heatmap is designed to capture one methane

plume. A simple thresholding is used to merge the heatmaps as final segmentation mask.

mask = Mask pred(Eout, fe, fcomb) (2.6)
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2.5.8 Training and Inference

We train MethaneMapper in two stages; first we train bounding box detection cor-

responding to each CH4 plume, and second by freezing the box detection network and

training only the mask prediction module. We also trained both box and mask predic-

tion modules end-to-end and achieved similar performance. We use a similar two-stage

loss strategy for training MethaneMapper as that used in DETR [40]: first stage is the

bipartite matching between the predictions and the ground truths both in bounding box

and mask prediction, and then second stage is loss calculation for the matched pairs. The

bipartite matching employs the Hungarian algorithm [40] to find the optimal matching

between the predictions and the ground truths. After this matching, every prediction is

associated with a ground truth. Next, we calculate the l1 and GIoU loss on both box

and mask predictions and cross entropy loss for class prediction [40].

Inference: The inference pipeline is similar to training pipeline and can be imple-

mented using approximately 50 lines of code. During inference, we first filter the de-

tections with confidences below 50% and a per-pixel max to determine which pixels are

predicted to belong to a CH4 plume.

2.6 Methane Hot Spots (MHS) dataset

Another significant contribution of this work is a large scale curated MHS dataset. It

contains the AVIRIS-NG spectral data with wavelength ranging from 380nm to 2510nm,

a 5nm sampling [13], and capturing 432 channels per pixel. The images from the flight-

line are orthorectified and of size ∼ 23K× ∼ 1.5K × 432. The only currently publicly-

available dataset with methane plume segmentation masks is the JPL-CH4-detection-

V1.0 [2] dataset released by JPL-NASA in 2017.
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Figure 2.6: Sample images from MHS dataset. The colormap in black circle shows
concentration maps corresponding to the plume mask shown in red. We are showing
different types of leakage sources and land cover types. For better visualization, we
plotted the binary mask on color image created using visible bands of hyperspectral
image.

The MHS dataset has approximately 4000 plume sites corresponding to approximately

1200 AVIRIS-NG flightlines as shown in Table 2.1. MHS also has higher diversity data

with flight lines spanning from 2015-2022 and covering terrain from 6 states– California,

Nevada, New Mexico, Colorado, Midland Texas, and Virginia.
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Dataset
MHS (Ours)

Dataset
JPL-CH4

detection-V1.0
[2]

# plume sites 3961 161
# flightlines 1185 46
# point source 3675 114
# diffused source 286 57

Time period
2015 - 2022
( 8 years)

2015
( 1 year)

Segmentation Mask Yes Yes
Bonding box Yes No
Concentration map Yes No
Number of Regions 6 1

Table 2.1: Statistics shows MHS dataset comparison with JPL-CH4-detection-V1.0 [2]
dataset. Each flightline have multiple large and small plume sites. Each flightline have
atleast 4 plume sites. The Point Source represents high concentration (300kg/hr) to
leakage from sources like pipeline leak, storage tanks, oil and gas refineries. Diffused
Source represent low concentration leakages from sources like biomass degradation in
landfills. Our dataset is covers more diverse type of terrain over 6 states.

Data Pruning: We selected AVIRIS-NG flight lines over varying regions as it covers

a wide variety of CH4 plume sources, such as leaks in oil and gas refineries, oil and gas

extraction points, natural seeps, leaking underground storage tank, coal mines, dairy

farms, landfill sites, and pipeline leaks. Along with varying emission sources, we selected

regions with different types of ground terrains like, bare soil, rocks, mountains, light

vegetation, water bodies and dense vegetation as shown with few samples in Fig. 2.6.

Different types of ground terrain exhibit widely varying albedo and thus have a major

impact on the quality of CH4 detections as shown in Fig. 2.7. Given this, training models

with diverse ground terrain data leads to a more robust model.

2.6.1 Concentration map and Segmentation mask

Concentration map is provided in the form of a matrix of spatial dimensions same

as the flightline (∼ 23k× ∼ 1.5k × 1). There is one concentration map per flight-line

(orthorectified). It shows methane concentration in parts-per-million (ppm) per-pixel on
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the ground. Pixel-regions with no methane presence are set to zero.

Segmentation mask provided in the format of a “png” image file with three channels

and of the same spatial dimension as the corresponding flight line (∼ 23k× ∼ 1.5k × 3).

The segmentation mask is obtained from the concentration mask file by setting all pixel

values above zero to represent methane plumes. We manually annotated Point Source and

Diffused Source based on the type of ground terrain and concentration of methane gas.

Following the benchmark dataset [2], three channels are used to color code Point Source

(Red) and Diffused Source (Green). The distinction of Point Source and Diffused Source

is derived from the JPL-CH4-detection-V1.0 benchmark dataset [2]. Our annotation style

is also consistent with the JPL-CH4-detection-V1.0 benchmark dataset [2], so that both

datasets can be merged seamlessly.

2.6.2 Constructing Concentration map

Concentration maps are generated by mapping expert-annotated methane-plume con-

centration maps to the ortho-corrected AVIRIS-NG flightlines. These methane plume

annotations are systematically collected from a non-profit [42] entity. They provide con-

centration masks of methane emissions in 150 × 150 size patches along with location

information from different sources (airborne sensors [41], satellites [44]). In order to

map these patches from different sources to the AVIRIS-NG flight-lines, we use the pixel

coordinate locations provided for both the annotations and flight-lines. We use this in-

formation to create a homography transformation to map each pixel to its corresponding

location in the flight-line. Fig. 2.6 shows a sample of varying types of terrains with CH4

segmentation mask in red and concentration mask in black circle. Details about match-

ing the resolution, ortho-correction, and transformation are discussed in supplementary

materials. The patch annotations are verified by experts visiting the physical location
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of emission the same day [56]. Most of the regions in California are verified by physical

visits by California Air Resource Board [42,56].

2.6.3 MHS Statistics

MHS statistics and properties are summarized in Table 2.1.

Annotations: MHS provides both segmentation masks and concentration maps which

enable development of deep learning algorithms than can produce both CH4 plume loca-

tion and concentration predictions.

Diversity: MHS dataset includes AVARIS-NG flightlines spanning 8 years (2015 - 2022)

from six states in the U.S.: California, Nevada, New Mexico, Colorado, Texas, and

Virginia.

Data Split: We divide MHS dataset into train/test splits of 80-20% with overlap-

ping time periods and locations. Our dataset covers 6 states. Each state has sub-

regions/locations (e.g. Permian basin) that are covered by multiple non-overlapping

flightlines (25k×1.5k×432 pixels). These flightlines are split into train and test sets. In

each set, we create patches (256 × 256 × 432 pixels) from the corresponding flightlines.

From the patches/tiles, we take all positives patches (methane (CH4)) and randomly

sample equal number of negative (no-CH4) patches. This is done for both train and test

sets separately to balance the data and we refer to Section 2.8.2 for detailed ablation

studies.

2.7 Experimental settings

Evaluation Metrics: Following the evaluation protocol of H-mrcnn [9] we report our

performance in mean intersection-over-union (mIOU). Here, mIOU indicates the over-

lap between the predicted and the ground truth CH4 plume masks. ED represents the

31



MethaneMapper Chapter 2

accuracy in plume core prediction. Additionally, as first stage of our two stage training

procedure contains bounding box prediction, we also report our performance in predict-

ing plume bounding boxes in terms of mean Average Precision (mAP) which tells us the

effectiveness of MethaneMapper in eliminating the false positives in plume prediction.

Data Pre-Processing: Each input hyperspectral image is approximately of size 25000×

1500×432 taking up memory space of 55−60 GB. We create tiles of each image in spatial

domain, each tile is of size 256× 256× 432 [9] with an overlap of 128. The CH4 plume is

available in very few pixels in the whole image, 90% of the tiles are negative samples (no

methane, just ground terrain). We can not use the whole hyperspectral image because

of GPU memory limitations

Implementation Details: The band-selectors module takes 432-channels hyperspec-

tral image as input, the RGB band-selector picks 60 channel from 400nm − 700nm

wavelength range and creates a 3-channel RGB image, the SWIR band-selector picks 100

channel from wavelength range 2000nm − 2500nm. These input images are passed to

two ResNet-50 [47] feature extractor backbones. The backbone networks are initialized

with DETR [40] trained on COCO dataset [57] and input layer initialized randomly [58].

The transformer encoder-decoder and our query refiner have 6 layers and 8 heads. We

initialized the transformer encoder-decoder with weights extracted and stripped from

DETR [40] model. The dimension of transformer architecture is 256 and number of

queries is 100. The SFG module takes in all 432-channels hyperspectral image and gen-

erates 1-channel output map of same spatial dimension as input. The feature extractor

in SFG is ResNet-50 [47] initialized with DETR [40] trained on COCO dataset [57].

The decoder output embeddings are of size 512. The feature pyramid network in mask

prediction module has 3 layers. More details are mentioned in supplementary materials.
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Methods
Back
bone

SFG
F.Ext.

#params mAP mIOU

JPL-CH4-detection-v1.0 Dataset
1 Hu et. al R-50 - 75M 0.26 0.48
2 H-mrcnn R-50 - 353M 0.53 0.86
3 MM R-50 R-50 80M 0.63 0.91

MHS (Ours) Dataset
4 SpectralFormer R-50 - 84M 0.33 0.41
5 UPSNet (stuff) R-50 - 69M 0.32 0.38

6
UPSNet (stuff
+ things)

R-50 - 69M 0.29 0.35

7 DETR R-18 * 33M 0.37 0.56
8 DETR R-50 * 59M 0.44 0.59

10 R-18
Linear
Layer

39M 0.45 0.60

11 R-18 R-18 44M 0.52 0.63
12

MM
R-50 R-50 80M 0.59 0.68

Table 2.2: Comparison with baselines. “-” represent Not Applicable and “*” represent
no SFG module and a random query used for transformer decoder. The top section
shows performance on JPL-CH4 dataset [2]. MethaneMapper achieves better results
than heavily tuned H-mrcnn with ∼ 5× fewer parameters. The overall detection ac-
curacy is higher on this dataset because the type of ground terrain is uniform across
all flightlines. In MHS dataset, MM outperforms multiple baselines as shown in rows
4-12. MM accuracy is lower in MHS than JPL-CH4 dataset because MHS dataset has
more variety of ground terrain spreading over 6 states

2.8 Results

In this section we will discuss and validate all the design choices for MethaneMapper

(MM) with ablations. We show that MM achieves state-of-the-art results in overall

performance compared all other methods shown in Tables 4.2 & 2.3.

2.8.1 Performance comparison

Deep Learning methods: We trained MM with ResNet-50 [47] backbone on the same

dataset that H-mrcnn [9] (JPL-CH4-detection-V1.0 [2]) was trained on for fair compar-

ison. To align with H-mrcnn we used the same split and input image size. The MM

model with 80M parameters trained for 250 epochs outperforms by significant margin
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Methods mAP mIOU
LogReg [23] - 0.05
SVM [28] - 0.29
PCA + LogReg - 0.06
PCA + SVM - 0.31
MM (R-50) 0.63 0.91

Table 2.3: Comparison with classical machine learning methods. “-” represent Not
Available. The classical ML methods are not suited for the CH4 detection task.
MethaneMapper outperforms all methods on JPL dataset [2]

the H-mrcnn model with 352M parameters. Results are summarized in Table 4.2 that

includes the performance of MM on the new larger MHS dataset. We note that though

the code for H-mrcnn is available, many of the modules are deprecated and can not

be reproduced. The ’Backbone’ column represents backbones used for feature extrac-

tion from input image,’SFG F.Ext.’ represents the feature extractor in SFG module in

MethaneMapper. We observed (qualitatively) that H-mrcnn fails to detect small CH4

plumes with concentration lower than 100kg/hr while MM detects those.

We did evaluation by implementing 3 baseline models [40, 59, 60] shown rows 4-8

of Table 4.2. These methods were not designed for CH4 detection task, therefore we

needed to modify their input channel size. The poor performance of these methods may

be attributed to the weak signal of interest in a high dimensional data, high number

of confusers, and limited annotated data. Additionally, the only hyperspectral baseline

method SpectralFormer [59] has low efficiency due its pixel-wise training scheme.

Classical ML methods: We trained and tested multiple existing machine learning

based approaches that are used for methane detection, performance shown in Table 2.3.

Logistic regression (LogReg) [23] and multinomial logistic regression (MLR) [24] failed to

produce any meaningful detection with 90% false positive detections. We also trained a

Support Vector Machine (SVM) [26,28] based classifier, it performed slightly better than
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LR and MLR methods with an IOU of 21%. SVMs are prone to false positives detections

same as Gaussian Mixture Models [28]. We observed that all traditional methods are

not suited for the task of CH4 detection. We also tested reducing the dimension using

principal component analysis (PCA) or just taking bands which shows maximum CH4

absorption. In the later case, the traditional methods performed better than using all

432 bands, this backs our idea of just using bands from SWIR region.

Qualitative results. Fig. 4.5 shows comparison of MM’s mask and bounding box

prediction with ground truth mask on different ground terrains. The Leakages are from

different type of sources such as, oil refinery, pipeline and storage tank. MM makes

correct predictions in varying scenarios. A detailed discussion on good and bad cases of

detection is shown in Appendix MethaneMapper, chapter 7.

2.8.2 Ablation Studies

We did the experiments for ablation on MHS dataset with ResNet-50 as backbone

and validate the design choices. One parameter is changed for each ablation and others

kept at best settings. More ablations in Supplementary.

Spectral Feature Generator Module: In Table 4.2 lower section, we show the ef-

fectiveness of our SFG module for the query refiner block. Our baseline is standard

implementation of DETR [40] for segmentation task represented by row-1 and row-2 of

Tab. 4.2 lower section. Using CH4 candidates feature from SFG improves the bound-

ing box detection performance by 0.14 mAP and mask prediction by 0.09 mIOU. This

demonstrate that guiding queries with CH4 candidates feature generated by SFG pro-

duces better embeddings as compared to random queries.

Along with this, we explored the provision of CH4 candidates feature at 2 places,

(i) at input level concatenating it with fcomb; and (ii) as input to query refiner. We see
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Figure 2.7: Comparison of SLF with traditional filter in SFG module. White pixels
represent methane and black no-methane. Red boundary represents ground-truth plume
mask. SLF module generates better CH4 candidates

an improvement of 0.09 mAP and 0.08 mIOU when SFG module output is passed to

query refiner. We hypothesize that this is because on concatenating with input features,

the CH4 candidates feature information gets lost, while as cross-attention with queries

reduces the search space for decoder and generate better embeddings.

We also experimented with different types of feature extractors for SFG module, and

observed that a Resnet18 or Resnet50 [47] is more effective than a 2 linear layer feature

extractor as shown in Table 4.2.

Spectral Linear Filter: We experimented with SLF for computing covariance (Cov)

using different subset of columns in the input hyperspectral image. We observed that

the SLF is most effective when covariance is computed class-wise based on land cover.

Class-wise Cov ensures that the radiance absorption by ground terrain is same for all

the pixels while computing CH4 enhancement. As can be seen in Fig. 2.7, SLF amplifies

CH4 candidate detection and reduces false positives. SLF leads to a 0.03 mAP improved

36



MethaneMapper Chapter 2

in detection compared to traditional filters. The prediction from MM is shown row-1 of

Fig. 4.5.

Figure 2.8: Sample ground truths and predictions on MHS dataset. We show robust-
ness of MethaneMapper predictions on different kind of ground terrain, rows 1 and
3 shows leakage at a refinery, row 2 shows leakage from pipeline in agricultural land,
row 4 shows leakage from storage tank with concrete background.

Geographic generalization: To assess the geographical generalization capabilities of
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MM, we trained it on MHS data from all states except California and tested it on flight-

lines from California. We observed a slight drop of 0.04 mAP in detections. However,

when trained on all data except Virginia, we noticed a significant drop of 0.09 mAP in

detections. We attribute this to the fact that the land cover in Virginia is dense and

moist vegetation, has a lower solar reflectance compared to the arid regions of California,

Texas, and Nevada.

Temporal generalization: Testing MM on 2015 after training on data from 2016-2022

showed no performance drop.

Unbalanced test set: MM’s performance dropped by 0.05 mAP on an unbalanced test

set with only 10% positive samples (CH4) and 90% negative samples (no-CH4). This

highlights the challenges in CH4 detection. Future work will address this issue.

2.9 Conclusion

This paper presents MethaneMapper – a hyperspectral Transformer for methane

plume detection. It utilize spectral and spatial correlations using a spectral feature

generator and a query refiner, to accurately delineate the CH4 plumes. Additionally, we

curated a large-scale dataset for the task, a first of its kind, which is made available to

all researchers via web platform BisQue [6]. The proposed MethaneMapper significantly

improves upon the current methods in terms of detection and localization accuracy, as

our extensive experiments demonstrate. Future work will extend the model to global

monitoring [61] using multispectral satellite imaging data.



Chapter 3

Methane SatelliteMapper

In chapter 2 we discussed methane emission monitoring from aerial imagery. But aerial

imagery has several limitations, such as limited coverage, and limited frequency of revisits

at the same location. To address these limitation, we present the development of Satel-

liteMapper for processing multispectral data from space borne sensor on satellites. Our

primary focus is on multispectral data from Sentinel-2 and LandSat-8 satellites. The ini-

tial exploration content of this chapter is published in a workshop in Neural Information

Processing Systems (NeurIPS) 2022 [62] and 2024 conference.

Recent studies have shown that imagery from the multi-spectral instrument on the

Sentinel-2 satellite is capable of detecting and estimating large methane emissions. How-

ever, most of the current methods rely on temporal relations between a ratio of shortwave-

infrared spectra and assume relatively constant ground conditions, and availability of

ground information on when there was no methane emission on site. To address such

limitations we propose a guided query-based transformer neural network architecture,

that will detect and quantify methane emissions without dependence on temporal in-

formation. The guided query aspect of our architecture is driven by a Spectral Linear

Filter (SLF ) approach, also discussed in this paper. Our network uses all 12 spectral

39



Methane SatelliteMapper Chapter 3

channels of Sentinel-2 imagery to estimate ground terrain and detect methane emissions.

No dependence on temporal data makes it more robust to changing ground and terrain

conditions and more computationally efficient as it reduces the need to process historical

time-series imagery to compute a single date emissions analysis.

3.1 Introduction

The increases in atmospheric CH4 have prompted governments to enact regulations

and action plans such as the ‘U.S. Methane Emissions Reduction Action Plan’ in 2021

and the ‘Global Methane Pledge Energy Pathway’ in 2022 to curb CH4 emission [63,64].

Accurately identifying and tracking the contribution of various sources to the methane

budget will be paramount to enforce these regulations.

Given the strong potential of satellite-based instruments for data collection at high-

frequency (multiple times a month) on global scales and even remote and hard-to-access

regions, recent research has depicted the potential of deploying methane emissions anal-

ysis on public, global-mapping, multi-spectral instruments like the ESA Sentinel-2 mis-

sion [65,66,66–68]. With two polar-orbiting, sun-synchronous satellites, the Multispectral

Instrument (MSI) onboard the Sentinel-2 satellites measures the reflected radiance from

Earth in multiple bands covering various areas of the electromagnetic spectrum [44].

Among these bands, band 11 (∼ 1500nm−1660nm) and band 12 (∼ 2090nm−2290nm)

are able to capture methane’s SWIR (Short Wave InfraRed) absorption features at a spa-

tial resolution of 20m2, leading to a large breadth of work and studies on using Sentinel-2

data to detect and quantify methane emissions [65,69–71].

Most previous Sentinel-2-based methane analysis approaches use similar approaches

to the methane column retrieval method in [65], building large parts of signal exploitation

on an analysis of temporal deviation between times of excessive methane concentrations
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Figure 3.1: Qualitative visualization of SFG intermediate steps and final estimation.

in the atmosphere and times without, merged with ratios between methane-sensitive

and less-methane-sensitive bands. While this method, and variations of it [71] have

revolutionized capabilities of detecting methane emissions with public satellite data, the

strong dependency on time-series analysis of spectral reflectance data expose the approach

to risky assumptions on (a) knowing when emissions did not exist and (b) temporal albedo

stability of the background - that the albedo of a certain area stays constant over time.

Consequently, these assumptions lead to high amounts of false positives, especially in

areas with heterogeneous, temporally deviating land cover [65, 69].

To overcome shortcomings of time-series based methane analytics methods, we pro-

pose a deeper exploitation of signals from other non-methane-sensitive spectral bands of

Sentinel-2 multi-spectral data. We propose two approaches to explore this: first is Beer-

Lambert law to model the drop in intensity of light as it passes through a medium [72],

and second is matched filtering [9,15,18,73] as discussed in the previous chapter. Building

on the recent advancements in signal processing techniques and the successful application

of Machine Learning models for methane emissions analysis [9], we propose a two-step

methodology: (1) the generation of potential methane candidates using a Spectral Feature

Generator (SFG), and (2) the integration of SFG into a Transformer-based Convolutional

Neural Network architecture [45, 74], as illustrated in Figure 3.2. Using the full spectral
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response captured by Sentinel-2 instruments, we expect the SFG to support Signal to

Noise separation by classifying confusing and hard-to-detect land cover types, artifacts

and temporal deviations, such as water bodies, dark green vegetation, calcite, and white

painted roofs which are never considered in current band/channel ratio methods. Us-

ing these classes, SFG computes statistical properties for each class separately for the

whitening of background pixels.

3.2 Related Work

Over the past decade, several satellites such as GOSAT [75], OCO-2, TROPOMI [76]

have been launched to detect and quantify greenhouse gas (GHG) emissions from fossil

fuel activities, enabling continuous monitoring of carbon dioxide and methane levels.

The Sentinel-5P (TROPOMI) mission [76], for example, provides hyperspectral imagery

in the shortwave infrared (SWIR) spectrum, where methane (CH4) strongly absorbs light.

This satellite offers daily measurements of CH4 column mole fractions across the globe,

although at a relatively low spatial resolution of 5 − 7 km [68, 77, 78]. This resolution

is sufficient for identifying large emissions and regional anomalies, but it falls short in

detecting smaller emissions (≤ 25 tCH4/hr) or pinpointing emissions to specific facilities

in densely populated oil and gas regions [79].

To address this limitation, high spatial-resolution hyperspectral satellite imagery from

instruments like PRISMA [66] and GHGSat-C [80] has been utilized, offering much lower

emission detection thresholds. PRISMA and GHGSat-C can detect emissions as small

as 0.2 tCH4/hr and 0.1 tCH4/hr, respectively. However, their tasking nature and rela-

tively small fields of view limit their viability for persistent global monitoring. Airborne

campaigns, such as those using AVIRIS [81], provide even better spatial resolution and

lower detection limits, down to 0.01 tCH4/hr. Other systems, like Scientific Aviation’s
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in-situ measurements, Kairos’s passive imaging system [82], and Bridger Photonics’ ac-

tive system [83], offer detection thresholds as low as 0.005 tCH4/hr, 0.01 tCH4/hr, and

0.002 tCH4/hr, respectively, depending on wind speed. Yet, similar to high-resolution

satellite imagery, these airborne campaigns also suffer from limited spatial coverage.

Standard retrieval algorithms estimate vertical column concentrations of atmospheric

methane by fitting a radiative transfer model to remotely sensed SWIR spectra. These

algorithms typically analyze highly resolved spectra with full-width at half-maximum

ranging from 0.1 to 10 nm and involving tens to thousands of spectral samples [66, 70,

84]. This high spectral resolution allows for the joint optimization of methane, other

trace gases, and surface albedo from a single observation. However, methane column

concentrations can, in principle, be retrieved with just two spectral measurements: one

with methane absorption and one without. This can be achieved within a single spectral

band by comparing observations of the same scene with and without a methane plume, or

by using two adjacent spectral bands that differ in their methane absorption properties

but are close enough to have similar surface and aerosol reflectance properties. Techniques

like these have previously been employed to retrieve methane column concentrations

using ground-based [85] and airborne [14, 86] remote sensing instruments. For instance,

in this work the Spectral Linear Filter utilized Sentinel-2 bands 11 and 12 to demonstrate

the retrieval of potential methane candidates by exploiting their differences in methane

absorption properties.

The Sentinel-2 mission, although not specifically designed for methane detection,

provides persistent multi-spectral imagery in the SWIR range with a revisit time of two

to ten days. By leveraging its bands that are sensitive to methane, it is possible to

detect and quantify large CH4 emissions. As shown by Varon et al. [65], combining the

two SWIR bands affected by methane increases the contrast of the plumes, and using a

reference image taken at a different time without a methane anomaly can further enhance
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this contrast.

In this context, our proposed SatelliteMapper advances methane plume detection by

integrating both spectral and spatial correlations, providing a more robust and accurate

delineation of CH4 plumes. SatelliteMapper’s approach effectively mitigates the issues of

false positives and enhances the reliability of methane detection in complex environments,

addressing the limitations of previous methods while utilizing the strengths of advanced

spectral analysis techniques.

3.3 Approach

The proposed approach is a transformer [87] based neural network architecture with

a SLF guidance. The input to the network is B1-B12 bands from Sentinel-2 Level 1C

data [44]. The output is a segmentation mask that is used with a radiative transfer

model for methane emissions analysis. The overall architecture (Figure ??) presents 2

feature extraction blocks (ResNet [47]) as shown in Figure ??, that will extract useful

features from the input, the RGB channels of the image and a stack of B1-B12 bands from

Sentinel-2 Level 1C data [44]. While the singled-out RGB image will provide information

about land cover (e.g. Urban areas), the full B1-B12 stack provides additional land cover

feature extraction (e.g. water bodies) while also capturing information about methane

presence. Extracted features will be projected in a common subspace via a MLP [88]

and passed on to the transformer encoder network along with positional information of

each pixel in the image as shown in Figure 3.2. The output attention map [87] from the

transformer encoder along with project features are passed onto the transformer decoder.

The decoder network uses SFG to generate a query of the potential methane emission

sites. The SFG is discussed in more detail Section 3.3.2.
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Figure 3.2: Overview of Methane SatelliteMapper (MSM) architecture. Given a mul-
tispectral image, our RGB (B1, B2, B3) is passed to Feature Extractor which is a
CNN backbone (ResNet) to extract features. Parallely, all channels (B1-B12) of the
multispectral input as passed to Spectral Feature Generator (SFG). The SFG module
generates methane candidates features. Next these candidates are sent to Query Re-
finer (QR) to refine queries. Then these queries decoded using encoded feature from
Transformer Encoder. Finally each decoded query is used to predict a plume mask via
Mask Prediction and, bounding box and class via FFNs (Feed Forward Network

3.3.1 Dataset

We will be training and testing the proposed network on a mix of large-eddy based

methane plume simulation data (synthetic data) [89] and single-blind release, human-

labelled data [90]. The synthetic data includes images that contain simulated methane

emissions on different types of background terrain. Each image is be a 10km × 10km

tile with 12 channels at different spatial resolutions per pixel. Next to the simulation

data, we propose model validation to happen on manually selected emissions data from

controlled ground releases [90]. The labels used in training corresponding to each multi-

spectral image will be a binary segmentation mask (methane, no-methane) with the same

spatial dimension as the input image. Along with that, we have a concentration mask,

representing the concentration of methane per pixel in the mol/m2.
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3.3.2 Spectral Feature Generator (SFG)

The SFG is designed to generator potential methane candidates. These candidates can

be generated either using the Beer-Lambert model or using Sentinel Enhanced Matched

Filter (SEMF). Boths of these approaches are discussed in details below:

Beer-Lambert (Channel Ratio): We use a simple absorption model to characterize

the attenuation due to the presence of methane. The Beer-Lambert law states that for a

light source with intensity I0 and a wavelength λ.

I = I0e
−ΣN

i=0Ai(λ)li (3.1)

where the light goes through N gases defined by their absorption Ai(λ) and equivalent

optical path length li defined as the product of the actual optical path and the concen-

tration of the ith gas. In our case, the N gases correspond to the atmosphere and I0 is

the sunlight in the SWIR spectrum. We can also reasonably assume I0 to be constant

for all wavelengths λ in each band respectively. Taking into account that the sensor of a

satellite integrates over a band of wavelengths described by a sensitivity function s, the

intensity of the light seen by a space-borne sensor becomes

I = I0

∫
s(λ)α(λ)e−γΣN

i=0Ai(λ)lidλ (3.2)

where the two passes through the atmosphere are taken into account in γ (which is

a function of both the sun azimuth angle and the satellite view angle). The reflection

coefficient of the ground is represented in the formula by the surface albedo α(λ).

In the presence of a methane emission, characterized by lleak, the intensity of the light

seen by the sensors becomes
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Ileak = I0

∫
s(λ)α(λ)e−γΣN

i=0Ai(λ)lie−ACH4
(λ)lleakdλ (3.3)

Supposing that we have both the exact same observation with and without a methane

emission, it becomes very easy to detect the emission. Now to estimate the methane path

length enhancement, we exploit the correlation between SWIR bands, similar to multiple-

band-multiple-pass (MBMP) [65]. We take ratio of Ileak (represents the target date of

leakage) and I (reference day when there was no leak).

Sentinel Enhanced Matched Filter (SEMF): SEMF model is effective when the

spectral resolution is relatively higher (≥ 20 bands) then two bands of Sentinel-2 satellite,

such as data from multispectral data from TROPOMI, PRISMA satellites. SEMF is in-

spired by a deterministic linear match-filtering approach of finding CH4 [9,15]. The linear

approach is taking a n-dimensional (number of spectral channels) feature α, and apply as

a dot product to each pixel (n-dimension) in the multi-spectral image to generate a scalar

output per pixel. The α vector is “matched filter” [9, 15], making the process of finding

the best-fitting α critical for signature exploitation in the ground terrain distribution at

hand.

In ideal instances when there is no background (i.e. all white ground terrain) and

just CH4 gas present, the α is just the scaled version of the CH4 signature (t). However

in real-world scenarios with spatially varying ground terrain this is not the case. For

example, water has strong absorption of solar radiations, therefore the methane on such

backgrounds has very weak visibility [91]. On the other hand, bare soil, rocks, etc have

lower absorption, and the methane present in such background has strong visibility.

An understanding of ground terrain and underlying albedo properties (especially in the

methane sensitive spectral ranges) is critical to improve Signal to Noise ratios in our

Sentinel-2 data. To account for spatial albedo differences in real-world scenes, we did a
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land cover classification as shown in Figure 3.1 and use that land cover information to

build our SEMF . The final SEMF used in our architecture is:

α̂k(ri) =
(ri − µk)TCov−1

k ϵt√
ϵtTCov−1

k ϵt
∀ i ∈ k, (3.4)

SEMF (ri) =
(ri − µ)TCov−1t√

ϵtTCov−1t
(3.5)

where α̂k(ri) is the estimated methane column enhancement, ri is the captured radiance

at ith pixel in the multispectral image, µk & Cov−1 are the mean and the inverse of

covariance matrix for kth class and ϵ represent the chemical properties of CH4. An

example of α̂k(ri) estimations is shown in column-4 of Figure 3.1. Our approach is simple

and effective, it can be implemented with basic python code. Details about SEMF can

be found in the Appendix A at the end of the thesis.

3.4 Training and Inference

Training Process: The training process for the proposed transformer-based neural

network architecture involves a specialized fine-tuning approach utilizing knowledge dis-

tillation from the original MethaneMapper model [10]. Knowledge distillation allows the

transfer of learned representations from a pre-trained model to the new model, enhancing

its ability to detect methane emissions with high accuracy. In this setup, the transformer

encoder and decoder, which are critical components of the model, are kept frozen during

training. This strategy ensures that the high-level representations learned by the original

MethaneMapper model are retained and not altered during the fine-tuning process.

48



Methane SatelliteMapper Chapter 3

The focus of the fine-tuning is on the feature extractor, backbone, query refiner,

and feed-forward network (FFN) layers. These components are adjusted to better suit

the specific dataset and task at hand, ensuring that the model can accurately identify

methane plumes from satellite imagery.

The training is conducted on a curated dataset containing 1200 methane plumes with

corresponding ground truth locations [10,13,65,72]. This dataset has been meticulously

compiled from various reputable sources, including papers published in leading journals

and conferences. By using this well-documented dataset, the model is fine-tuned to

capture subtle variations in methane emissions, improving its detection capabilities.

The objective function used during training includes a combination of segmentation

loss and a specialized loss function tailored to enhance methane plume detection. This

loss function encourages the model to prioritize the identification of methane emissions

while maintaining accuracy in land cover classification. The model is trained using a

stochastic gradient descent (SGD) optimizer with a learning rate scheduler to gradu-

ally reduce the learning rate as training progresses, ensuring convergence to an optimal

solution.

Inference Process: During inference, the trained model takes Sentinel-2 Level 1C

data as input, specifically utilizing the B1-B12 bands to generate segmentation masks that

highlight potential methane emission sites. The RGB channels of the imagery provide

critical information about land cover, aiding in the contextual understanding of the

detected emissions. These segmentation masks are then used in conjunction with a

radiative transfer model to analyze methane emissions.
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3.5 Results

In this section, we present the qualitative results from a pilot test conducted in

collaboration with an Oil and Gas operator based in Los Angeles as shown in Fig. 3.3.

Figure 3.3: Sites of Oil and Gas operator in Los Angeles where pilot was conducted.
The images (10km × 10km in size) represent the RGB channels from Sentinel-2 satel-
lite. The red pin represents the location of interest

For the test, we focused on two sites of interest, using Sentinel-2 satellite data collected

between 2016 and 2022. Our analysis on these sites revealed 11 instances of methane

emissions at Site 1, while no emissions were detected at Site 2. Few sample visualizations

are shown in Fig. 3.4. The relatively low number of detection instances can be attributed

to the stringent regulations in Los Angeles, which likely result in fewer large emissions

exceeding the 1000 kg/hr detection threshold of the Sentinel-2 satellite.

It’s important to note that there may have been additional emission events that

were not detected by our model. These undetected instances likely involved smaller

concentrations of methane that were below the sensitivity threshold of the satellite sensor.
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Despite this, the preliminary results are encouraging and highlight the potential for

further refinement and validation of our model in future studies.

Figure 3.4: Detection of methane emissions at the sites of Oil and Gas operator where
pilot was conducted. The images shows an overlay of concentration mask on the RGB
imagery. The red pin represents the location of interest. Total instances of detections
were 11, we are only showing two here for site 1 and one for site 2. Site 2 shows an
unknown detection in a neighboring area of almost 1200kg/hr concentration
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3.6 Conclusion

This paper presents Methane SatelliteMapper – a hyperspectral Transformer specifi-

cally designed for methane plume detection. Methane SatelliteMapper effectively lever-

ages both spectral and spatial correlations through an advanced spectral feature generator

and a query refiner to accurately delineate CH4 plumes. Building on the success of our

existing model, MethaneMapper, we demonstrate its effectiveness on satellite data by

distilling its weights and fine-tuning Methane SatelliteMapper on a focused dataset of

approximately 1,200 samples. Additionally, we present promising results from an ongo-

ing pilot test conducted over six years of data from an oil and gas site in Los Angeles.

Future work will focus on enhancing this model by collecting additional ground truth

data samples and adapting the MethaneHotSpot dataset for use with Sentinel-2 satellite

imagery. These efforts aim to further refine Methane SatelliteMapper’s capabilities and

expand its utility for global methane monitoring.
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WildlifeMapper

As discussed in the previous 2 chapters, guided feature extraction places a key role detec-

tion performance of the large vision models. In this chapter we talk about the application

of our large vision models for detecting and identifying animals in aerial imagery. Specif-

ically, We introduce WildlifeMapper(WM) , a model designed to identify animals in large

open grasslands, where the animals occupy less than 0.01% of the total image pixels. It

addresses the limitations of traditional, labor-intensive wildlife population assessments

that are central to advancing environmental conservation efforts worldwide. While a

number of methods exist to automate this process, they are often limited in their ability

to generalize to different species or landscapes due to the dominance of homogeneous

backgrounds and/or poorly captured local image structures. WM introduces two novel

modules that help to capture the local structure, and the context of the objects of interest

to accurately localize and identify them, achieving a state-of-the-art (SOTA) detection

rate of 0.56 mAP. Further, we introduce a large aerial imagery dataset with more than

11k Images and 28k annotations verified by domain experts. WM also achieves SOTA

performance on three other publicly available aerial survey datasets collected across four

different countries, improving mAP by 42%. Source code and trained models are available
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at Github 1. The results of this chapter are published in Computer Vision and Pattern

Recognition (CVPR) [92] 2024 conference.

4.1 Introduction

This paper introduces WildlifeMapper (WM) - an automated and scalable method for

counting wildlife in aerial imagery. Aerial wildlife surveys are recognized as a cornerstone

of modern conservation biology. By facilitating large-scale biological monitoring in remote

landscapes, this technique has underpinned the ability to track changes in the abundance

and distribution of wildlife across open landscapes for decades. However, traditional

survey approaches often rely on manual observers to identify, count, and validate species

of interest. This labor-intensive process can be time-consuming and error-prone, which

potential to limits the utility of final results [93–95].

Automated approaches offer a promising alternative for efficient and accurate de-

tection of wildlife in aerial survey images. Recent work, for example, illustrates how

artificial intelligence is used to count a variety of species from the air, including antelope

in grasslands [96], whales in the ocean [97], and seals on the beach [98]. When combined

with advancements in low-cost, high-resolution imaging platforms (e.g., UAVs), these

case studies underscore the potential for such data to significantly reduce the effort and

cost of traditional wildlife census methods. However, the majority of these techniques

struggle to generalize to new species or landscapes due to the dominance of homogeneous

backgrounds and poorly captured local structures [99–102].

WM overcomes these limitations by adapting a novel application of the segment

anything transformer model [3]. This model combines high frequency component corre-

lations and spatial correlations in the image data to generate a map of potential locations

1https://github.com/UCSB-VRL/WildlifeMapper

54



WildlifeMapper Chapter 4

(a
)

(b
)

(c)
(d

)

(e
)

(f)

Tr
ain

Te
st

Va
lid

ati
on

Im
ag

e L
oc

ati
on

20
 K

M

F
ig
u
re

4.
1:

S
u
m
m
a
ry

o
f
M
a
ra
-W

il
d
li
fe

d
a
ta
se
t.

(a
)
S
a
te
ll
it
e
vi
ew

in
d
ic
a
ti
n
g
th
e
fo
u
r
fl
ig
h
t
tr
a
je
ct
o
ri
es
,
ea
ch

re
p
re
se
n
te
d
in

a
d
iff
er
en

t
co
lo
r.

(b
,
c,

d
,
e,

f,
g)

A
n
n
o
ta
ti
o
n
s
o
f
(b
)
ze
br
a
,
(c
)
h
a
rt
eb
ee
st
,
(d
)
ca
tt
le
,
(e
)
sh
oa
ts

(s
h
ee
p

a
n
d
go
a
ts
),

a
n
d
(f
)
ze
br
a
.
T
h
es
e
a
re

th
e
zo
o
m
ed

in
ve
ri
o
n
o
f
a
er
ia
l
im

a
ge
s.

T
h
e
p
ix
el

fo
o
tp
ri
n
t
o
f
o
bj
ec
t
o
f
in
te
re
st

is
≤

0
.0
0
1
%

o
f
th
e
im

a
ge
.
B
es
t
vi
ew

ed
in

co
lo
r.

55



WildlifeMapper Chapter 4

of objects of interest (i.e., wildlife, livestock). In addition, we address the challenge of

identifying multiple species from a relatively small footprint in these images.

To demonstrate the WM analysis workflow, we provide a case study example across

the Masai Mara Ecosystem in southwestern Kenya. Renowned for its rich biological diver-

sity, the abundance of large mammals (such as buffalo (Syncerus caffer), giraffe (Giraffa

tippelskirchi), and wildebeest (Connochaetes taurinus)) have declined precipitously over

the past few decades [103]. Our analysis incorporated 11, 151 images of size 8400× 5500

collected from a digital camera affixed to the bellyport of a Partenavia P68 airplane

during Systematic Reconnaissance Flight (SRF) surveys. Part of these images were an-

notated by trained observers with 28, 146 annotations of 21 species of large mammals

(≥ 15kg), providing an unprecedented opportunity to develop species detection models

across a complex, heterogeneous environment. The dataset was systematically verified

by trained observers as described in Section 4.3. Our contributions can be summarized

as follows:

1. A novel, single-stage end-to-end approach for animal detection. The modules, a

High Frequency Feature Generator, a Feature Refiner, and a Query Refiner, work

together to improve upon the traditional methods of object detection in aerial

imagery and enable generalizability across different habitats. The high frequency

features reduce dependence on dominant backgrounds/landscapes.

2. An input patch embedding layer that is specifically designed to capture contextual

information to help in identifying individual animal species.

3. The release of a new benchmark dataset via the data owner (Kenya’s Wildlife

Research and Training Institute - WRTI) once all approvals are in place. An

international user community is already engaged in further enhancing these data

and using the WM through the BisQue [6] platform.
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Dataset
# of annot.

images
# of annot.

tiles
# of
species

# of
annotation

Image
size

GSD
(cm)

Location

Virunga 739 30069 6 5664 6000x4000 2.4 DRC
Garamba 158 6429 6 1611 6000x4000 2.0 DRC

AED 2067 69387 1 15581 5500x3600 2.4-13.0
Bostwana, Namibia,

South Africa

Mara-Wildlife 1012 77966 21 28146 8256x5504 1.45
Masai Mara

National Reserve

Table 4.1: Comparison of Mara-Wildlife dataset with other publicly available dataset.
Mara-Wildlife dataset has ×3 more unique species than the total of all other datasets.
Each image is significantly larger and higher ground resolution making 77k unique
images of size 1024 × 1024 with 21 different animal species. GSD: ground sampling
distance; DRC: Democratic Republic of Congo.

Figure 4.2: Distribution of (≥ 15kg) mammals identified in digital imagery collected
across the Masai Mara Ecosystem, Kenya.

4.2 Related Works

Manual Methods: Aerial surveys using Front- and Rear-Seat Observers (FSO and

RSO, respectively) are commonly used to inventory wildlife populations across open

landscapes [104]. However, several important biases can impact these counts, including

the experience level and fatigue of the human observers [105].

Deep Learning Methods: To address these issues, researchers have begun incorporat-

ing digital cameras on piloted aircraft and UAVs [101,106,107].

This minimizes the influence of observer bias while increasing transparency and repro-

ducibility of results. For example, [108] replaced RSOs with an oblique camera mount

system minimized the influence of observer bias while producing comparable estimates of

large mammals under partial canopy cover. Similarly, [96] used a nadir mounted camera
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to improve the accuracy and efficiency of manual counts of large antelope in an open

grassland ecosystem.

However, detecting animals in the wild from aerial imagery poses many challenges.

For example, most publicly available datasets for aerial object detection are focused on

identifying relatively distinct features such as buildings, roads, vehicles, and other man-

made structures [109–111]. Animals, tend to blend in with their surroundings [112],

can be occluded by trees, exhibit considerable variation in color and pattern, or have

behavioral adaptations that make them difficult to detect [99,100,113,114].

[113] proposed a solution for this problem involving a two-branch CNN model based

on AlexNet to perform animal recognition and localization. [99] evaluated three state-

of-the-art object detection algorithms, including Faster-RCNN, Libra-RCNN, and Reti-

naNet on six African wild mammals. All three algorithms, however, showed poor perfor-

mance in animal detection when animals were grouped closely together in herds. [102]

adopted a segmentation approach, employing a UNet model to detect livestock from

drone imagery. [114] uses a comparable model to analyze high-resolution satellite im-

agery, producing segmentation masks of wildebeest-sized animals, which are subsequently

utilized for detection and counting.

Transformers: WM adopts a transformer architecture based on past success in modeling

different types of aerial imagery. Examples include incorporating multispectral imagery

for change detection [115], landcover classification [116], greenhouse gas (GHG) emission

detection [10,62] and RGB aerial imagery for object detection [117–119].

The most effective applications of transformer-based models have been tailored for

standard object detection tasks [40, 120–123]. These works leverage the self-attention

to model dependencies among the patches in an end-to-end fashion, unlike CNN-based

models [124, 125]. However, when directly applied to aerial imagery, these models can-

not effectively exploit the local structures as they divide the image into a sequence of
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patches. This limits the detection of small-scale objects in a homogeneous and dominant

background.

Dataset: The existing publicly available animal aerial imagery datasets are listed in

Table 4.1. The Virunga dataset [99] was collected in Virunga National Park, Democratic

Republic of Congo (DRC). This dataset contains 897 annotated images of 6 animal

species. The Garamba dataset was collected in Garamba National Park, DRC and con-

tains 7034 images. Only 158 images have been annotated, containing 7 animal species.

The aerial elephant dataset (AED) [126] was collected across a mosaic of woodland, open

shrubland, and grassland habitats in Botswana, Namibia, and South Africa. Only a

single species (i.e., elephant) was targeted during SRF surveys. See Table 4.1 for details.

4.3 Mara-Wildlife Dataset

The Mara-Wildlife dataset is a distinctive dataset that captures the essence of the

Masai Mara ecosystem through a compilation of 77966 images of size 1024 x 1024. This

habitat is heterogeneous, including woodland, shrubland, and grassland vegetation with

21 unique animal species.

4.3.1 Image Collection

Flightline Details: Data collection was in collaboration with the Smithsonian National

Zoo and Conservation Biology Institute (SNZCBI), Kenya’s Wildlife Research and Train-

ing Institute (WRTI), the Kenya Wildlife Trust (KWT), and the Directorate of Resource

Surveys and Remote Sensing (DRSRS). In March 2022, we fitted a Partenavia P68 with

a Nikon D850 digital camera and collected high resolution (8256 × 5504) digital images.

During data acquisition, the aircraft adhered to a predetermined flight trajectory, de-

picted in Figure 4.1, at 400 ft above ground level (agl). This trajectory was optimized to
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encompass open grassland areas across the Masai Mara ecosystem, including the Masai

Mara National Reserve, 22 adjacent private conservancies, and unprotected peripheral

areas.

The aerial survey was conducted during a wet season period when the Serengeti

migratory population of wildebeest have moved southward to locate more suitable forage

in Tanzania. Thus, the survey primarily captured resident species, including wildebeest,

zebra, topi, hartebeest, giraffe, and other large (≥ 15 kg) antelope. Data collection was

conducted in the early mornings (prior to 10:00 EAT) and late afternoons (after 15:00

EAT) when lighting conditions were optimal and animals are most active.

The geographical positioning of each image was acquired through a GPS system that

recorded the plane’s altitude, speed, and geographical coordinates. These data were

then synchronized with the image using the image capture timestamps, enabling us to

determine the geographic location of the centroid of each image. The camera was placed

in the bellyport of the airplane, capturing a nadir view of the landscape every two seconds

along the flight path.

4.3.2 Image Annotation

Initial bounding box annotations (21796) generated using AIDE platform [127] were

exported in CSV format. These were then imported into BisQue [6] for further valida-

tion and correction. Finally, these annotations underwent validation by a single trained

observer specializing in ecology, resulting in 28146 annotations in total.

4.3.3 Dataset Statistics

The Mara-Wildlife dataset showcases a detailed assemblage of wildlife, inclusive of 21

distinct species classes. The dataset is composed of approximately 77, 966 tiled images,
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derived from 1, 012 original rasters (Table. 4.1) The meticulous process of annotation

has culminated in labeling 28, 146 animals. Species identified include domestic cattle

(Bos taurus), white-bearded wildebeest (Connochaetes taurinus), topi (Damaliscus luna-

tus), shoats (domesticated sheep and goats), kongoni (Alcelaphus buselaphus), waterbuck

(Kobus ellipsiprymnus), impala (Aepyceros melampus), Grant’s gazelle (Nanger granti),

Thomson’s gazelle (Eudorcas thomsonii), Cape buffalo (Syncerus caffer), zebra (Equus

quagga), ostrich (Struthio camelus), Masai giraffe (Giraffa tippelskirchi), warthog (Phaco-

choerus africanus), eland (Taurotragus oryx ), donkey (Equus africanus), hyena (Crocuta

crocuta), hippopotomus (Hippopotamus amphibius), lion (Panthera leo), and elephant

(Loxodonta africana).

These represent just a few of the many potential applications. We believe the Mara-

Wildlife dataset, with its distinctive combination of rich imagery and detailed metadata,

will stand as a foundational resource for both ecological studies and computer vision

research, ushering in innovations and novel solutions.

In summary, Mara-wildlife dataset is a comprehensive dataset, that aids both founda-

tional research and advanced studies in wildlife recognition using computer vision. More

details about the dataset are in Appendix B.

4.4 WildlifeMapper Architecture

4.4.1 Technical Overview

WildlifeMapper’s architecture is inspired by the success of the Segment Anything

Model (SAM) [3], created to segment small/large (all sizes) of objects. Referring to

Fig. 4.3, WM contains the following main components: (i) A patch embedding layer

designed to capture long-range context, (ii) a High-Frequency Feature Generator (HFG),
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(iii) a Feature Refiner (FR) followed by ViT based image encoder [3, 10, 87], and (iv)

a Query Refiner (QR) module followed by a box decoder module. The input image is

first processed through two separate branches, the patch embedding layer which captures

long-range context [128] and HFG which suppresses all the low-frequency components

in the image and generates a feature embedding. The HFG (Sec. 4.4.3) exploits prior

knowledge that aerial images from areas such as forests, grasslands, and shrublands have a

homogeneous and dominant background representing the dominant low frequency image

content. Fig. 4.4 shows that on suppressing the lower frequencies, the object of interest

is easy to locate.

The FR (Sec. 4.4.4) takes the embeddings from each of the two branches and generates

a high quality embedding that contains information about potential locations of animals

and captures the local context. The QR modules refines a set of learnable queries using

the location information from FR module. These refined queries are passed to the box

decoder. The box decoder takes the refined queries and encoded features image encoder

to generate the final detection box and class of the object.

4.4.2 Patch Embed

The patch embeddidng layer utilizes a larger kernel convolution with an increasing di-

lation rate. This design rapidly expands the receptive field, allowing explicit extraction of

features rich in contextual information. This approach is particularly beneficial for aerial

imagery, where the small sized object makes classification based on appearance alone

challenging. Contextual information thus becomes crucial for the accurate recognition of

these objects.
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4.4.3 High-frequency Feature Generator (HFG)

Along with patch embedding, the input image is processed in parallel by the HFG

module to generate features with information about the location of the animal or cluster

as shown in Fig. 4.4. The HFG module is inspired from the limitation of ViT models [87].

ViT models face challenges in efficiently utilizing local structures. They segment an image

into patches and apply self-attention to model relationships, but this approach often falls

short in capturing detailed local features [129,130].

Local features in images are closely linked to high-frequency components [131, 132].

We hypothesize that suppressing low-frequency components can mitigate the influence

of a dominant homogeneous background. To test this, we performed a discrete Fourier

Transform (DFT) on the images, filtering out the low-frequency components before re-

constructing the images, as shown in Fig. 4.4.

For a given input image I ∈ RH×W×C , where C is channel dimension, we compute

Discrete Fourier Transform (DFT ) of I. In next step we suppress the low frequency

components with a controlling parameter and construct the image I with inverse DFT

(IDFT ).

I ′ = IDFT [hpf(DFT (I)] (4.1)

F (u, v) = DFT (I) (4.2)

I ′ = IDFT [hpf(F (u, v))] (4.3)

where hpf is a high pass filter. Then we reduce the dimension of the reconstructed

image I ′ via an embedding layer to generate embedding hfcemb and pass them to the FR

module. See supplementary materials for more details.

64



WildlifeMapper Chapter 4

4.4.4 Feature Refiner (FR)

Next, the features from the patch embedding layer (fimg) and HFG (hfcemb) are fed to

the FR module. The fimg are refined with the hfcemb via cross-attention mechanism. The

FR is a simple module with cross-attention and linear layers [87]. The output contains

information about the potential location of the object and the long-range context.

Following the standard architecture of SAM [3], we pass FR output to our ViT

based image encoder supplemented with learnable positional embeddings p. The encoded

feature map is femb:

femb = ViT [FR(fimg, hfcemb), p] (4.4)

Query Refiner (QR): The QR follows a transformer decoder like architecture and

takes as input a set of 100 learnable queries Q ∈ R100×d and output of FR module. Here

d = 256 is same as channel dimension of femb from image encoder. The FR output refines

the Q via a cross-attention mechanism. The refined queries narrows the search space for

box decoder module to accurately locate and identify object of interest. [?, 10].
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Figure 4.4: The sample output visualization from the High-Frequency Feature Genera-
tor (HFG) module. The illustration shows the effectiveness of the module in suppress-
ing the homogeneous and dominant background, while highlighting objects of interest
(i.e., animals). The top image shows bomas, natural structures constructed to contain
livestock, and paths that have been suppressed. Animals, however, are clearly identi-
fied, especially inside the boma. The bottom image shows a water body (a dam created
for livestock) that has been suppressed by the module. Animals can again be highlighted
throughout the image.
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4.4.5 Box Decoder

Next, the refined queries are sent to the box decoder module. We concatenate these

queries with the femb and pass box decoder’s self attention layer as qfemb. This is inspired

from the idea of class token used by Vaswani et.al. [87] to make decoding process memory

efficient. The transformer network takes 4 input variables, those are position embeddings

of queries and image embeddings, qfemb, and femb. Our transformer model uses two-way

attention inspired from [3, 40, 133] and our box decoder uses self-attention and cross-

attention in two directions (queries-to-image embedding and vice-versa) to update all

embeddings. We keep the box decoder very light weight (two blocks). The top 100

(equal to number of queries) indexes from the output of the final block is passed to two

separate MLP blocks to regress the output bounding box prediction and class of the

predicted box.

4.4.6 Training and Inference

We’ve trained WM using a single-stage, end-to-end approach to determine bounding

boxes and classify them. The loss strategy we applied for WM is akin to what’s used

in DETR [40]. Initially, we perform bipartite matching to align our model’s predictions

with the actual bounding box data. Then, we proceed to compute the loss for these

matched pairs. To achieve the best possible match between our predictions and the real

data, we use the Hungarian algorithm [134]. Once matched, each prediction is paired

with its respective ground truth. We then measure the l1 (L1 distance) and GIoU loss

for the bounding box and the cross entropy loss for the classification [40].

Inference: The inference pipeline is straightforward and similar to training code. Dur-

ing inference, we first filter the detections at 50% threshold and then use non-maximal

suppression to remove any overlapping boxes.
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4.5 Experiments

Train-val-test split: There is no data leak in train-val-test split. Fig. 4.1 shows the

flight paths with location of each image represented by a circle. Each color coded flight

path represents the train-val-test image set. No images taken while the airplane was

cutting across the transects plus turn-around points as can be seen there are no circles.

We created a spatial disjoint of 20km distance between the transects as shown in Fig. 4.1

and achieved consistent performance (0.56mAP ).

Evaluation Metrics: We report our performance on multiple metrics. Following the

protocols of standard object detection, we report the performance in mean average-

precision (mAP) for detection and mean intersection-over-union (mIOU) for localization

of animals. We also report a commonly used metric by the ecologists on the team, the

class-wise mean absolute error (MAE) indicating the counting accuracy of each species:

MAE =
1

I

I∑
i=1

C∑
c=1

|n̂i,c − ni,c| , (4.5)

Where I is the number of images, C is the number of classes, n̂i,c and ni,c are the predicted

and ground truth counts for class c in image i.

Implementation Details: Each image taken from the drone is 8256 × 5506 × 3. We

create tiles for each image in the spatial domain, with the size of 1024×1024×3 with 25%

of overlap. The Patch Embed layer uses a single CNN layer with a large kernel of size

16× 16 with stride 16. In the parallel branch, the High-Frequency Feature Generator, we

use DFT to compute the Fourier transform, the mask is a binary disk with the radius set

to 128. The HFC Embed layer uses 3 CNN layers with ReLU activation with a kernel of

size 3×3 and a global average pool at the end. The Feature Refiner (FR) module consists

of one cross attention layer with 1 linear layer. The image encoder is a pre-trained ViT
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model [3] with 24 transformer layers and 16 heads. The Query Refiner (QR) module

takes in 100 queries each of channel dimension 256, those are cross attended with hfcemb

output. The box decoder contains 3 layers of two-way attention with 8 heads. We train

WM with AdamW optimizer [135] setting the learning rate to 10−4 for the FR, QR and

box decoder with a weight decay to 10−4. We set the learning rate for the Patch Embed

and HFC Embed layer to 10−5. We load the image encoder with pre-trained weights

from segment anything [3] and keep it frozen.

Data Augmentation: In the train and test datasets, we incorporated an equal number

of images without any objects to assess the model’s robustness against empty background

images. We applied multiple data augmentation techniques, including HSV (hue, satu-

ration, and value) (10%), rotation (5%), translation (10%), affine transformation (20%),

scale (10%), shear (5%) and mosaic (70%) augmentation [125]. Mosaic augmentation is

proven to be the most effective, with an improvement of 0.07 mAP

Hard Negative Mining: After training for 100 epochs, we take all the False Positives

(FP) predictions having IOU≤ 0.10 with ground truth box and mark them as background

class. Then fine-tuning for 20 epochs improved the performance of FP reduction for

detecting rocks, dead tress or other artifacts on ground as animal.

4.6 Results

4.6.1 Performance Comparison

We trained WM separately on Mara-Wildlife dataset and Virunga-Garamba-AED

dataset for comparison with existing works, see Table 4.2 for a summary of the results on

all of the tested datasets. The mAP values are compared for IoU of 0.50-0.95 and 0.50.

We also provide the average counting error in animal counting per image. We trained
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Methods #epochs mAP mAP50
Counting

Error
Mara Wildlife Dataset

1 Faster-Rcnn [124] 100 0.24 0.58 2.59
2 DETR [40] 200 0.22 0.57 2.75
3 Co-DETR-R50 [136] 100 0.27 0.66 2.72
4 Co-DETR-swingL [136] 100 0.28 0.65 2.60
5 Yolo v5 [137] 100 0.30 0.67 2.12
6 Yolo v8 [138] 100 0.27 0.61 3.97
7 LSKNet [118] 100 0.29 0.66 -
8 DroneDetect [139] 100 0.18 0.48 -
9 WildlifeMapper 120 0.56 0.79 1.9

Virunga-Garamba-AED Datasets
1 Faster-Rcnn 120 0.34 0.65 0.27
2 DETR 200 0.30 0.62 0.45
3 Yolo v5 100 0.48 0.78 0.12
4 Yolo v8 100 0.48 0.77 0.42
5 WildlifeMapper 80 0.68 0.85 0.11

Table 4.2: Comparison with baseline models. The top section shows performance on
species detection on Mara-wildlife dataset and low section shows performance on the
mixed dataset from Virunga-Garamba-AED dataset. The overall detection accuracy
is generally higher in Virunga-Garamba-AED dataset because there are only 6 species
and the terrain is quite similar in all images.
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HFG FR QR mAP
✗ ✗ * 0.46
✓ ✓ * 0.54
✓ ✗ ✓ 0.49

WM

✓ ✓ ✓ 0.56

Table 4.3: HFG module effectiveness in refining the image features and queries. “✗”
represents not used, “✓” represents used and “*” represents that random queries are
used but there was not refining with HFG features.

all the baseline models with the default set of conditions on Mara-Wildlife dataset. We

merged the Virunga, Garamba, and AED datasets and created the train-val-test split

according to [99]. The combination of these datasets contains 6 unique animal species

and diversity of landscapes such as woodland, savannahs, open shrubland, and grasslands

across multiple countries – Democratic Republic of Congo (DRC), Botswana, Namibia,

and South Africa. WM outperforms all current SOTA methods by a significant

margin as shown in Table 4.2. We note that in [99] the authors did not make the

code base or trained model public, hence we could not verify the results. We implemented

these methods from the original public repositories and trained according to the training

strategy detailed in [99]. We attribute the model poor learning performance due to salient

features of the homogeneous background being learned more than the object of interest.

The detection of the object of interest is then dependent on the landscape properties

instead of object properties. Hence when used on a slight variations of landscapes for the

same object, the models struggle to detect. This limitation is specifically addressed in

the WM, where the HFG modules suppresses the background and highlights the object

of interest.

Qualitative results: Fig. 4.5 shows the quality of detection by WM in different sce-

narios. Those include, detection when animal is partially visible under a tree, or a big

clustering. WM makes correct predictions in varying scenarios. Some examples are shown

in the Appendix B.

71



WildlifeMapper Chapter 4

4.6.2 Ablation Studies

We performed all ablation experiments on Mara-Wildlife (MW) dataset and validate

the design choices.

High-frequency Feature Generator Module: In Table 4.3, we show the effective-

ness of the HFG module. We experimented with HFG’s output in 3 ways: first, we

passed HFG’s output to Feature Refiner (FG) module. It leads to significant improve-

ment in detection by 0.09 mAP over the baseline. This demonstrate that providing

potential location candidates features to image encoder module produce better embed-

dings. Second, we pass the HFG’s output to Query Refiner (QR) module only. This

leads to an improvement of 0.03 mAP over baseline. This shows the effectiveness of guid-

ing queries with location candidates features. In the third case, we passed the HFG’s

output to both FR and QR modules and achieved an improvement of 0.11 mAP over the

baseline. We hypothesize that this reduces the dominance of features from homogeneous

and dominant background in aerial imagery. The also observed this while testing WM

across flightlines different types of terrain such as green grasslands, dry grasslands, and

forest areas.

Feature Refiner Module: We tested hfcemb and fimg merging by 3 ways: addi-

tion, concatenation and cross-attention. Cross-attention is most effective, because with

addition and concatenation, the hfcemb get lost, while cross-attention generates better

embeddings giving attention to potential location candidates.

Kernel Size: We observed that a larger kernel size of 31×31 results in reduced misclas-

sification. For example, a topi or warthog cannot be found inside a boma because only

domestic species are kept in bomas. So context helps in making the right class detection.

We observed an improvement of 0.02 mAP. Experiments were done in 3 kernel sizes. 1.
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7 × 7: 0.55 mAP, 2. 16 × 16: 0.558 mAP; 3. 32 × 32: 0.57 mAP.

Query Refiner Module: We experimented with only providing random queries and

guiding the queries with HFG module output. We merged them with direct addition or

concatenation and cross-attention. With cross-attention, we observed an improvement

in performance of 0.03mAP.

Geographic generalization: To test the geographic generalizability of WM across

different terrains, we trained WM only on images from Kenya; and tested on images

from Democratic Republic of Congo, Botswana and Namibia. The test was done on 4

common species which were present in both the ecosystems. WM achieved a detection

performance of 0.48 mAP. This shows the adaptability of WM across varying landscapes.

Domain generalization: We train-test WM on a different domain, a bird species

tern [140], commonly found on/near water bodies. Live in huge clusters. WM achieved

the accuracy of 0.71 mAP. Showing adaptability of WM across different domains.

Failure Cases: The detections from WM are inaccurate when animals are clustered in

shadows, such as when animals are located inside bomas and the sun angle makes a strong

shadow on the enclosure. These are some of the difficult cases shown in Fig. 4.6. Other

cases of false positives are the small rocks or trees that sometimes resemble animals.

Some examples are shown in the Appendix B.

4.7 Conclusion

This paper presents WildlifeMapper (WM) - a transformer based approach for the

detection of animals of varying densities and sizes across natural backgrounds. The

WM utilizes a high frequency features generator, feature refiner, and query refiner to
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accurately locate and classify 8 animal species. WM stands to significantly improve the

efficiency and accuracy of wildlife monitoring and conservation efforts. Future work will

extend this model and dataset to a larger number of species and habitats.

Community Adoption The practical use of WildlifeMapper (WM) extends beyond

theoretical and computational success and is operationalized through BisQue [6]. WM

is made available to users through a series of training modules that demonstrate how to

(i) upload digital imagery, (ii) create annotations, (iii) apply and/or improve existing

models, (iv) evaluate model fit, (v) improve annotations and re-fit models, and (vi)

generate summary statistics. In the future, we envision WM to be of great value to

ecologists, wildlife managers, and government officials, providing accurate information

about the state of wildlife populations in near real-time, facilitating decision-making

processes, and improving the conservation of ecosystems globally.
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Chapter 5

StressNet

This chapter explores the biomedical applications of our large vision models. In this

chapter we explored the key role of feature guiding in videos. The video data contains

thermal imagery of the human face. We explored feature guiding in temporal domain

using which we built StressNet. StressNet processes this data to estimate physiological

signals such as Electro Cardio Graph (ECG), Impedance Cardio Graph (ICG), and Initial

Systolic Time Interval (ISTI). These signals are used to determine whether a subject is

experiencing physical stress. The results of this chapter has been published in Winter

Conference on Applications of Computer Vision (WACV) [48] 2021.

Precise measurement of physiological signals is critical for the effective monitoring

of human vital signs. Recent developments in computer vision have demonstrated that

signals such as pulse rate and respiration rate can be extracted from digital video of

humans, increasing the possibility of contact-less monitoring. This paper presents a

novel approach to obtaining physiological signals and classifying stress states from ther-

mal video. The proposed network–”StressNet”–features a hybrid emission representation

model that models the direct emission and absorption of heat by the skin and underly-

ing blood vessels. This results in an information-rich feature representation of the face,

77



StressNet Chapter 5

which is used by spatio-temporal network for reconstructing the ISTI ( Initial Systolic

Time Interval : a measure of change in cardiac sympathetic activity that is considered to

be a quantitative index of stress in humans). The reconstructed ISTI signal is fed into a

stress-detection model to detect and classify the individual’s stress state (i.e. stress or no

stress). A detailed evaluation demonstrates that StressNet achieves estimated the ISTI

signal with 95% accuracy and detect stress with average precision of 0.842. The source

code is available on Github1

5.1 Introduction

As the world has come to a standstill due to a deadly pandemic [141], the need for

non-contact, non-invasive health monitoring systems has become imperative. Remote

photoplethysmography (rPPG) provides a way to measure physiological signals remotely

without attaching sensors, requiring only video recorded with a high-resolution camera

to measure the physiological signals of human health. Much of the recent research in

the area of rPPG [142] has focused on leveraging modern computer vision based systems

[143–146] to monitor human vitals such as heart rate and breathing rate. More recent

work has expanded these methods to detecting more complex human physiological signals

and using them to classify stress states [144–146].

Whereas all recent datasets for rPPG only collect electrocardiogram (ECG) as the

cardiovascular ground truth signal, here we recorded both ECG and impedance cardiog-

raphy (ICG). ICG is a noninvasive technology measuring total electrical conductivity of

the thorax. It is the measure of change in impedance due to blood flow. With these two

signals, we have the ability to estimate more accurate quantifiers of cardiac sympathetic

activity [147]. Two common metrics are pre-ejection time (PEP) and initial systolic time

1https://github.com/UCSB-VRL/StressNet-Detecting-stress-from-thermal-videos
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Figure 5.1: Example of ECG and ∂Z/∂t waveforms computed from the present data.
∂Z/∂t represents the change in impedance recorded by ICG (Z) signal with time.
After each ECG peak value there exists an ∂Z/∂t peak value. The time difference
between these two values is known as the initial systolic time interval (ISTI).

interval (ISTI).

PEP is the strongest cue for cardiac sympathetic activity. It is defined as the interval

from the onset of left ventricular depolarization, reflected by the Q-wave onset in the

ECG, to the opening of the aortic valve, reflected by the B-point in the ∂Z/∂t (derivative

of ICG or Z) signal [148,149] as can be seen in Figure 5.1. Unfortunately, measuring PEP

from ECG and ∂Z/∂t signals is quite difficult as the Q and B points that define PEP are

subtle and very difficult to pinpoint [150,151]. Accuracy of methods to estimate PEP are

low and precision differs highly among studies [150,152]. Instead, ISTI can be used as a

reliable index of cardiac sympathetic activity [147]. ISTI is a straightforward calculation

defined as the time difference between the consecutive peaks of ECG and ∂Z/∂t. ISTI is

considered a strong index of myocardial contractility [151,153] and numerous efforts have

shown that ISTI can be used to analyze different physiological phenomena e.g. stress,
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Figure 5.2: Model Architecture. Green boxes are the different modules of the model.
Yellow boxes are the variables throughout the model. The Emission model processes
the raw input data which is then fed into spatial and temporal modules. The Detector
network predicts ISTI value for each of the frames from the output of these modules.
This ISTI signal is used as input in our stress detection network.

blood pressure [153,153–155].

Here we introduce StressNet, a non-contact based approach to estimating ISTI. To

the best of our knowledge this approach is the first of it’s kind. StressNet leverages the

ISTI signal to classify whether a person is experiencing stress or not. To estimate the

ISTI signal, a spatial-temporal deep neural network has been developed along with an

emission representation model. Other physiological signals like heart rate (HR) or heart

rate variability (HRV) cannot measure the changes in contractility, which are influenced

by sympathetic, but not by parasympathetic activity, in humans [156].

Recently a number of studies have applied deep learning methods to the detection of

HR or HRV from face videos [143, 144, 157, 158]. Most of these methods either fail to

correctly identify the peak information in ECG or do not properly exploit the temporal

relations in the face videos [144]. Recent work by [144] has developed a spatial-temporal

deep network to measure rPPG signals such as heart rate variability (HRV) and average

heart rate (AHR). Although these measurements are important, we show that in our

experimental setup, the ground-truth ISTI signals allow for more accurate classification
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of stress state than AHR or HRV.

In addition, thermal images mitigate some privacy concerns because the true likeness

of the face is not being stored unlike RGB based models [159].

StressNet is an end-to-end spatial-temporal network that estimates ISTI signal and

attempts to classify stress states based on thermal video recordings of the human face. An

extensive analysis of the detailed dataset developed for this work has shown correlation

between the estimated signal and ground truth. The effectiveness of this predicted ISTI

signal is further validated by the model’s ability to accurately classify an individual’s

stress state.

Technical Contributions:

• An emission representation module is proposed that can be applied to infrared

videos to model variations in emitted radiation due to motion of blood and head

movements.

• A spatial temporal deep neural network is developed to estimate ISTI.

• A simple classifier is then trained to estimate the stress level from the computed

ISTI signal. To the best of our knowledge this is the first attempt to directly

estimate ISTI and stress from thermal video.

5.2 Related Works

ISTI has been proposed as an effective, quantitative measure of psychological and

physiological stress [160–164]. Measurement of ISTI requires both the ECG and ∂Z/∂t

signals. Heart rate variability has also been used in several studies to index psychological

and physiological stress [143, 144, 157, 158]. Different camera modalities have also been
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used, namely, infrared, visible RGB, and five-channel multi-spectral [143, 144, 146, 165,

166]. A distinction is also made between research that takes place under laboratory and

real-world settings. In the latter, environmental variables can complicate the detection

and/or estimation task.

While no other works have included ISTI estimation or the ICG signal in their frame-

works, the common video and ECG inputs lend themselves to similar network designs.

Several works for estimation of heart rate rely solely upon registration and classical

signal processing techniques. For example, work from [167] registered a region of interest

on the face, took the mean of the green channel, and passed that signal through a

bandpass filter to estimate the heartbeat signal. At its time of publication in 2014,

it achieved state-of-the-art performance on the MAHNOB-HCI dataset with a mean-

squared error of 7.62 bpm [167].

Several studies have investigated heart rate variability estimation, using a variety of

sensor types [145,146,168,169].

The first end-to-end trainable neural network for rPPG was DeepPhys [143]. It re-

placed the classical face detection methods with a deep learning attention mechanism.

Temporal frame differences are fed to the model, in addition to the current frame, to

allow the network to learn motion compensation.

A more recent model built on DeepPhys is PhysNet [144]. This work incorporated a

recurrent neural network (RNN), specifically long short term memory (LSTM) over the

temporal domain. For tasks such as heart rate detection and pulse detection, modest

gains were observed over DeepPhys. The addition of the LSTM also allowed the network

to be trained on the task of atrial fibrillation detection.
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Figure 5.3: Discrete ISTI values are plotted against the peak positions of the ECG sig-
nal for a single participant. The ”Base”, ”Prep”, ”Immersion” and ”Recovery” labels
refer to different phases of our stress induction protocol, whereby participants immerse
their feet in either ice-water (”stress” condition) or lukewarm water (”no-stress” con-
dition). The data shown were randomly selected from the ”no-stress” condition. See
section 5.4.1 for a detailed description of the protocol.

5.3 Method

Using raw thermal videos, our emission representation model generates the input for

the spatial-temporal network. This network, along with the detection network predicts

the ISTI signal from the raw input thermal videos. Our proposed model architecture is

shown in Figure 5.2.

5.3.1 Generating ISTI signal

Electrocardiography (ECG) and Impedance cardiography’s (ICG or Z) derivative

(∂Z/∂t) act as the gold-standard physiological signals. ISTI is defined as the inter-

val from the onset of left ventricular depolarization, reflected by the Q-wave onset in the
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ECG, to the peak blood flow volume through aortic valve, reflected by the Z-point in the

∂Z/∂t signal. This time interval is computed from each peak of ECG and corresponding

∂Z/∂t peak. The discrete time interval value of ISTI is plotted at corresponding ECG

peak positions as shown in Figure 5.3 and then interpolated with cubic interpolation to

form a continuous signal. In Figure 5.3, the x-axis represents time (ms) while y-axis

values represent the ISTI value (ms) for a particular ECG peak at that time of the video.

The interpolated continuous ISTI signal is used as the ground truth for ISTI prediction.

5.3.2 Emission Representation Model

According to [142], RGB video based physiological signal measurement involves mod-

eling the reflection of external light by skin tissue and blood vessels underneath. However,

in the case of thermal videos, the radiation received by the camera involves direct emis-

sions from skin tissue and blood vessels, absorption of radiation from surrounding objects,

and absorption of radiation by atmosphere [170,171]. Here, we build our learning model

based on Shafer’s dichromatic reflection model (DRM) [142] as it provides a basic idea to

structure our problem of modeling emissions and absorption. We can define the radiation

received by the camera at each pixel location (x, y) in the image as a function of time:

Wx,y(t) = Ex,y
ems(t) + Ex,y

abs(t) + Ex,y
atm(t) (5.1)

where W(t) is an energy vector (we drop the (x, y) pixel location index in the following

for simplicity.) Eems(t) is the total emissions from skin tissue and blood vessels; Eabs(t)

is absorption of radiations by skin tissue and blood vessels; Eatm(t) is the absorption of

radiation by atmosphere. In current experimental setup the person is in a closed envi-

ronment and 3ft from thermal camera, therefore the atmospheric absorption is negligible.

According to [172], human skin behaves as a black-body radiator, therefore the reflections
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are close to zero and emission is almost equivalent to absorption.

This implies that the only variation in energy comes from the head motion and from

blood flow underneath skin. If we decompose the Eems(t) and Eabs(t) into stationary and

time-dependent components:

Eems(t) = Eo . (ϵs + ϵb . f1(m(t), p(t)) (5.2)

where Eo is the energy emitted by a black body at constant temperature, it is modulated

by two components: ϵs, is the emissivity of skin and ϵb, is the emissivity of blood.

f1(m(t), p(t)) represents the variations observed by thermal camera; [142, 143] m(t)

denotes all non-physiological variations like head rotations and facial expressions; p(t) is

the blood volume pulse (BVP). In a perfect black body, emissivity is equal to absorbtivity,

therefore the absorbed energy is:

Eabs(t) = Eab(t) . (ϵs + ϵb . p(t)) (5.3)

where Eab is the energy absorbed that changes with surrounding objects and their posi-

tions with respect to skin tissue.

Eab(t) = Eo . (1 + f2(m(t), p(t))) (5.4)

where f2(m(t), p(t)) represents the variation observed by the skin tissue. After substitut-

ing (5.4), (5.3), (5.2) in equation (5.1) and fusing constants; then neglecting the product

of f1 and f2 as it is generally complex non-linear functions. Neglecting product of varying
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terms, we get an approximate W(t) as :

W(t) ≈ K + Eo . ϵb . (p(t) + f1(m(t), p(t)))

+Eo . ϵs . f2(m(t) , p(t))

(5.5)

where K is 2Eo . ϵs. We can get rid of this constant by taking first order derivative in the

temporal domain.

W′(t) = p′(t) . Eo . (ϵb + ϵb .
∂f1
∂p

+ ϵs .
∂f2
∂p

)

+m′(t) . Eo . (ϵb .
∂f1
∂m

+ ϵs .
∂f2
∂m

)

(5.6)

This representation encompasses all the factors contributing to variations in radiation due

to blood and face motion captured by the camera. Thus, we can suppress all possible

non-necessary elements from data recorded by the camera. We use log non-linearity

on each pixel to suppress any outlier in each image and separate the Eo, as its spatial

distribution does not contribute to the physiological signal. The non-linearity looks as

follows.

X(t) = sign(W′(t)) . log(1 + mod W′(t)) (5.7)

To remove high frequency components, we do a Gaussian filtering with σ = 3 in the

spatial domains, and σ = 4 in the temporal domain. This filtered X(t) is the input to

our deep learning model.

5.3.3 Deep Learning Model

Spatial-Temporal Network: Spatial-Temporal networks are highly successful in

action detection and recognition tasks [49, 173,174]. More recently, such networks have

been used to process multispectral signals [9,175,176] The input to our spatial-temporal
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Figure 5.4: Stress detection network. Estimated ISTI signal is directly fed into the
classifier network to predict the probability that the subject is under stress.

network is the stacked features from the emission representation model, which are then

fed to a backbone network (e.g. resnet-50 [47]). This backbone network serves as a feature

extractor. We mainly tested with object detection networks without the classification

blocks as backbone networks.

Weights of these backbone networks are initialized with ImageNet pretrained values

so that they can converge quickly on thermal videos. Global average pooling operation

follows by the backbone block.

f0 = GAP (B (X(t)) (5.8)

where B( . ) stands for the backbone network, GAP is global average pooling operation,

X(t) is from equation[ 5.7] (all processed frames stacked horizontally) and fo is the output

feature vector.

The backbone network is followed by long short term memory (LSTM) [177, 178]

network, which captures the temporal contextual connection information from the ex-

tracted spatial features. LSTM [179] units include a ’memory cell’ that capture long

range temporal context. A set of gates is used to control the flow of information which
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in turn helps the LSTM network learn temporal relations among the input features. The

extracted feature vector from the backbone network is fed to the LSTM network.

lo = LSTM (f0) (5.9)

where lo is the feature output from LSTM network, LSTM( . ) stands for LSTM network

and f0 is the extracted feature vector from the backbone network.

Detection Network: Instead of directly predicting the continuous value of the ISTI

signal from the output of LSTM network, we have divided the whole range [0,1] of ISTI

values in n number of bins following [180]. To obtain the exact value of the ISTI signal

(ÎSTI) from each frame the expectation of the probability is taken for over all bins

(îstibins),

îstibins = D (lo); ÎSTI = E (îstibins) (5.10)

where D stands for detection network which consists of fully connected layers, îstibins is

the probability of each bin, E is the Expected value, ÎSTI is the predicted ISTI value of

each frame. This two stage approach makes our network more robust.

The predicted ÎSTI signal is fed to stress detection network which consists of fully

connected layers, see Figure 5.4. The output of this network is probability of stress for

the subject whose ISTI signal is estimated by our spatial-temporal network.

5.3.4 Multi Loss Approach

Previous works which predicted heart rate, breathing rate, or blood volume pulse

mostly use mean squared error (MSE) loss. Another approach bins the regression output,
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Figure 5.5: CPT/WPT Setup and Protocol. An example of a fully instrumented
participant is shown. Participants followed instructions for the protocol presented
on a computer monitor. After the baseline period the participant is instructed to
position both feet on the edge of the bucket and prepare for immersion (prep). They
then immerse the feet for 90s, then withdraw the feet and rest them on a towel for a
40 s recovery period.

and modifies the network output layer to be a multi-class classification. This method

provides more stability to outliers than MSE, but its accuracy is limited by the number of

bins. So for the ISTI signal prediction model, we use the multi loss approach used by [180].

This type of loss is a combination of two components: a binned ISTI classification and

an ISTI regression loss.

L (Θ) = BCE (îstibins, istibins) +

α . MSE(ÎSTI, ISTI)

(5.11)

For the stress detection network only binary cross entropy (BCE) is used as loss

function.
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5.4 Experiments

5.4.1 Dataset

42 healthy adults (22 males, mean age 20.35 years) were recruited as part of the

Biomarkers of Stress States (BOSS) study run at UC Santa Barbara, designed to in-

vestigate how different types of stress impact human brain, physiology and behavior.

Participants were considered ineligible if any of the following criteria applied: heart con-

dition or joint issues, recent surgeries that would inhibit movement, BMI > 30, currently

taking blood pressure medication or any psychostimulants or antidepressants. Informed

consent was provided at the beginning of each session, and all procedures were approved

by Western IRB and The U.S. Army Human Research Protection Office, and conformed

to UC Santa Barbara Human Subjects Committee policies.

Participants attended the lab for five sessions on five separate days as part of the BOSS

protocol. For collection of impedance cardiography (ICG), 8 electrodes were placed on

the torso and neck, two on each side of the neck and two on each side of the torso. For

electrocardiogram (ECG), 2 electrodes were placed on the chest, one under the right

collarbone. For videos, thermal camera (Model A655sc, Flir Systems, Wilsonville, OR,

USA),was positioned ∼65 cm from the participant’s face and set to record at 640 × 240

pixels and 15 Hz frame rate. A large metal bucket was then positioned in front of the

participant’s feet. In the Cold Pressor Test (CPT) session, the bucket was filled with

ice water (∼ 0.5 ◦ C), whereas the in the control session (Warm Pressor Test; WPT),

the bucket was filled with lukewarm water (∼ 34 ◦ C). In each session, participants were

required to immerse their feet in the water five times for 90 s, following the test protocol

outlined in Figure 5. The CPT is popular method for inducing acute stress in humans

in the laboratory. It causes pain and a multiplex of physiological responses e.g. elevated

heart rate and blood pressure and increased circulating levels of epinephrine and nore-
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pinephrine [181, 182]. The WPT was devised as an ”active” control task, designed such

that participants engaged in exactly the same protocol as with the CPT, but without

the discomfort of cold-water immersion. This ensured that any psychological or phys-

iological effects induced by engaging in the protocol and immersing the feet in water,

were controlled for. Each of the five CPT/WPT immersions were separated by ∼ 25

minutes. Between immersions, participants completed tests designed to measure perfor-

mance across a range of cognitive domains (these data are not reported in this paper).

Session order was counterbalanced between participants.

Nine participants’ data were excluded due to technical failures (the thermal imaging

camera failed to record one or more sessions). Thirty-three participants’ data were used

for modeling. This sample is similar in size to existing public data sets of a similar nature

[183,184].

5.4.2 Evaluation Metrics

Performance metrics for evaluating ISTI prediction are Mean Squared Error (MSE)

and Pearson’s correlation coefficient (R). For stress detection, average precision (AP) is

used as the validation metric.

Mean Squared Error is a model evaluation metric used for regression tasks. The

main reason for using MSE as evaluation metric is that the precise value of predicted

ISTI signal is important.

Pearson Correlation coefficients are used in statistics to measure how strong a rela-

tionship is between two signals. It is defined as covariance of the two signals divided

by the product of their standard deviations. Pearson correlation is also used here as an

extra validator on the predicted ISTI signal, signifying that the shape of predicted curve
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also corresponds well with the ground-truth.

ρX,Y =
cov( X, Y )

σX . σY

Average Precision (AP) is the most commonly used evaluation metric for object

detection tasks [185]. It estimates the area under the curve of precision and recall plot.

Precision measures how many predictions are correct. Recall calculates the correctly

predicted portion of the ground truth values.

5.4.3 Implementation Details

In experiments, the effectiveness of the spatio-temporal network is evaluated. The

dataset is split as follows: 80% training, 10% validation and 10% testing set. The input

video frames are cropped to 360 × 240 to remove the lateral blank areas before being fed

to our emission representation model.

For backbone model, experiments with different architectures of resnet were per-

formed, those are resnet18, resnet34, resnet50, resnet101. In the final model resnet50

is used as feature extractor. The output of resnet50 is average-pooled instead of max-

pooling operation. The reason for that is removing a less important feature from impor-

tant feature (max-pool operation) can reduce the signal-to-noise ratio in physiological

measurement, so average pooling is used to keep even the less important feature vector

information. Before feeding to temporal network, the average-pooled feature vector is

reshaped so that each input sequence to LSTM consists of 1 second of time information.

The reasoning was that since the peaks of ECG and ∂Z/∂t signal occurs almost once

per second, the LSTM network will better captures the relation between adjacent peaks.

For the temporal network, we experimented with a number of LSTM layers (2-8), 6

LSTM layers are best suited for capturing the temporal contextual information. Hidden
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Name of the Method PC Coefficient MSE
Baseline 0.170 103.829
DeepPhys [143] 0.575 47.530
I3D [186] + Detection Network 0.84 5.227
StressNet 0.843 5.845

Table 5.1: StressNet’s performance in predicting ISTI signal. The performance is
measured on Pearson-Correlation Coefficient(PC Coefficient) and mean square error.
Our model clearly outperforms the existing methods by a good margin.

unit size is kept at half the feature vector length from the spatial network (resnet50),

hidden unit size is 256 × frame rate, ensuring that the number of memory cells is suf-

ficient enough to transfer information from previous LSTM cell to next. The number of

fully connected layers following LSTM is two, with ReLU added as non-linearity. The

output of the final fully connected layer is 33 bins output. 33 bins is an empirical value.

The emission representation model works online in the pipeline and is loaded on the

same machine on which deep learning model is trained. Each video is approximately of

size (frames × H × W) 2500 × 640 × 240 with 16bit depth information per pixel. Due

to memory constraints on the GPU, batch size is kept at 500 frames. The learning rate

for resnet50 is started at 0.001, for LSTM and FC layers at 0.01, which reduces after

every 10 epochs by a factor of 0.1. Stochastic Gradient Descent is used as optimizer for

the network.

5.5 Results

The proposed method is evaluated in two main criteria. First we evaluated the quality

of our predicted ISTI signal, then we tested the effectiveness of the predicted ISTI signal

in detecting stress.

Predicting ISTI Signal: For the first part, as mentioned in the evaluation metrics

section, the model performance is evaluated on Mean Squared Error (MSE) and Pearson
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Figure 5.6: Quality of our predicted ISTI signal in stress and no-stress conditions.
Data shown are examples from a single participant’s data (selected at random). The
”Base”, ”Prep”, ”Immersion” and ”Recovery” labels refer to the different phases of
the CPT/WPT procedure.

Correlation coefficient (PC Coefficient). In Table 5.1 our model’s performance can be

seen compared to the other methods. Our model outperforms the other methods in both

of the evaluation metrics with a good margin. As shown in Figure 5.6, our model agrees

well with the ground truth signal in both stress and no-stress cases.

Since no work has been done on detecting the ISTI signal before, to validate our model

we have implemented DeepPhys [143]. As can be seen in Table 5.1 our implementation

of DeepPhys model [143] did not perform well in detecting the ISTI signal. This poor

performance mostly stems from two main reasons. First, DeepPhys model is designed
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to predict periodic physiological signals and since ISTI is non-periodic in nature, loss in

DeepPhys does not suit this particular task. Second, the skin reflection model in [143]

does not expand properly for modeling the infrared radiation. For baseline methods, ECG

signal is extracted from the face using simple statistical filtering methods. According

to [187–189] temperature changes in the tip of the nose and forehead can index different

stress states, so for our baseline approach we tracked these regions and then band-pass

filtered to extract the signal. This signal is quite noisy which contributes to our baseline’s

poor performance.

Figure 5.7: Importance of ISTI signal in detecting stress. Ground truth ISTI data from
a single participant (randomly selected) are shown. Clearly, ISTI signal in the stress
condition is different from the ISTI signal in no-stress condition. The ”Base”, ”Prep”,
”Immersion” and ”Recovery” labels refer to the different phases of the CPT/WPT
procedure.

Detecting Stress: For the second part of stress detection, we evaluate whether the

ISTI signal provides a robust index for stress detection.

An example of the ISTI response to CPT/WPT in a single participant is shown in
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Input Signal AP (Average Precision)
Heart Rate (HR) 0.753
Heart Rate Variability(HRV) 0.814
ISTI (Ground Truth Signal) 0.902
ISTI (StressNet Predicted) 0.842

Table 5.2: StressNet can classify stress state with greater AP using contact-less ISTI
estimates when compared to other commonly used contact-less signal estimates (HR
and HRV).

Figure 5.7. Here, we observe a clear distinction in ISTI in anticipation of cold- vs. warm-

water immersion (i.e. during the prep period) as well as during immersion and recovery.

To evaluate the predictive validity of the ISTI signal, we compare it to heart rate

(HR) and heart rate variability (HRV) by entering these alternative signals into our

model. We compare ISTI with HR and HRV because these measures are considered

to be reliable indices of stress [190] and have been used in many stress classification

studies [146, 191]. Here, we compute them from the ground truth ECG signal. HR is

computed by counting number of beats in a sliding window approach with window size

15 (seconds) and stride 1 (seconds). For HRV, time between R peaks is recorded over

a defined time interval (15 seconds) and then HRV is computed according to the Root

Mean Square of Successive Differences (RMSSD) method [192].

In Table 5.2 we can see how our predicted ISTI signal is better in detecting stress

state than HR (12% higher AP) and HRV (4 % higher AP). Also, higher AP with the

ground truth ISTI signal confirms that ISTI is the most reliable index of stress state in

the context of our dataset.

5.5.1 Ablation Study

Analysis of Emission Representation Model: The overall architecture of Stress-

Net consists of three main models: the emission representation model, the spatial-
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Name of the Backbone PC Coefficient MSE
vgg19 [193] 0.605 33.164
resnet18 [47] 0.749 15.095
resnet34 [47] 0.815 6.223
resnet50 [47] 0.843 5.845
resnet101 [47] 0.779 14.373

Table 5.3: Comparison of different backbones’ performance. In the task of estimating
ISTI signal resnet50 is better than all other backbones.

temporal model and the detection model. To evaluate how each model affects the overall

performance, we evaluated the spatial-temporal model with and without the emission

representation model. The fully pre-trained network was tested without the emission

representation model and we observed a 1.119 increase in the mean squared error in

predicting the ISTI signal. The best results for ISTI signal prediction as mentioned in

table 5.1 are obtained using all three models mentioned above.

Analysis with Backbone CNNs: The spatial-temporal model is evaluated with

all the ResNet models [47]. We also tested with VGG19 [193] as our backbone. The

performance comparison is shown in table 5.3.

Analysis with Breathing signal: The breathing signal is captured by tracking the

area under the nostrils for changes in temperature. The computed time series signal is

passed through band-pass filter with low and high cutoff frequencies of 0.1 Hz and 0.85

Hz, respectively. This breathing signal is also used as an input to our stress detection

model and the predictions from this model are multiplied with the predicted ISTI signal

input. This process boosts the stress detection results by 0.1774 AP. This shows how

ISTI can be combined with other physiological signals to detect stress.

Limitations of the Model: Despite being instructed to stay still, participants

occasionally made large head movements and/or obscured their face with a hand (see

Figure 5.8). There were also occasions where the ECG/ICG signal was noisy due to
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movement or bad electrode connections. In these instances the model fails to detect

ISTI.

Different Spatial Temporal Network: To validate the effectiveness of spatial

temporal networks in detecting ISTI signal, we implemented I3D [186] architecture,

a 3D convolution based spatial-temporal network proposed for action recognition. We

replaced the classification branch in I3D with our detection network. The performance

is similar to StressNet’s performance.

Figure 5.8: Example StressNet failure cases. Network performance is impaired when
the face is outside the video frame or obscured.

5.6 Conclusion

Here we present a novel method for the estimation of ISTI from thermal video and

provide evidence suggesting ISTI is a better index for stress classification than HRV or

HR. Overall, our method is more accurate than existing methods when performing binary

stress classification on thermal video data.

Our model achieved state-of-the-art performance, and performance could potentially

be boosted even further by using different spatial-temporal models. The most successful

backbone model used only spatial data from each frame independently, compared to the

I3D network [186] that employed simultaneous processing of both spatial and temporal

information. However, to test this we require larger dataset, that would allow for im-

proved pre-trained initialization of the spatial-temporal backbones and better transfer
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learning performance.

This work has several limitations. First, it is unclear whether StressNet’s performance

can generalize to the classification of different forms of stress e.g. social stress, physi-

cal and mental fatigue. Second, it is possible that exposure to lukewarm-water in the

control condition may have induced eustress (beneficial stress), meaning that StressNet

is actually classifying distress vs. eustress, not distress vs. neutral states, and this may

impact performance. Third, the data used to test StressNet were collected under con-

trolled laboratory conditions, so it is unclear how performance may be impacted in real

world use case scenarios that may by subject to increased atmospheric noise and move-

ment artifacts. Further testing with a diverse range of datasets collected under different

stress conditions and scenarios is required to determine the efficacy and generalizability

of StressNet in the real world.
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Discussions and Future Work

6.1 Conclusions

This thesis has focused on addressing the challenges inherent in building and train-

ing large vision models for scientific applications, where data is often complex, scarce,

and requires domain-specific knowledge for effective interpretation. The work presented

here has explored the integration of advanced signal processing techniques with domain-

specific knowledge to enhance the performance of vision models across various problem

contexts, including remote sensing, biomedical applications, and ecological monitoring.

By developing novel methods for detection, segmentation, and analysis, this research has

significantly contributed to the advancement of large vision models, making them more

applicable and efficient in specialized scientific domains.

The primary contributions of this thesis include the development of advanced method-

ologies for methane detection, as discussed in Chapters 2 and 3. In these chapters, we

introduced MethaneMapper, a powerful tool for detecting methane emissions using both

hyperspectral and multispectral data. By addressing the challenges of training large vi-

sion models with limited data, MethaneMapper integrates domain-specific knowledge,
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such as the chemical properties of methane, into the model, enabling accurate detection

across multiple spatial scales. This work not only improves the efficiency and accuracy

of methane detection but also sets a foundation for applying similar approaches to other

environmental monitoring tasks.

In Chapters 4 and 5, we extended the principles developed in MethaneMapper to solve

problems in ecology and biomedical field. In Chapter 4, we introduced WildlifeMapper,

a model designed to detect and identify animals in large open grasslands using aerial im-

agery. This work significantly enhances wildlife monitoring by addressing the challenges

of sparse and noisy data, ensuring accurate detection even in complex environmental

conditions. In Chapter 5, we presented StressNet, a model for estimating physiological

signals from multispectral facial imagery to detect stress. This non-invasive approach

has proven effective in reconstructing signals like ECG and ICG, offering a valuable tool

for healthcare and personalized medicine. These applications demonstrate the versatility

and impact of the developed models, showcasing their potential across diverse scientific

domains.

6.2 Future Work

The pressing global challenges of our time, such as climate change, biodiversity loss,

and public health crises, demand innovative, interdisciplinary solutions. The convergence

of different scientific domains can provide new insights and methodologies that are essen-

tial to tackling these complex issues. An interesting pathway in future could be, how can

we detect traces of gas from aerial imagery or space borne imagery. One way to do that

could be integrating plant sciences with advanced computer vision techniques to develop

innovative new methods for global pollution assessment and mitigation.
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6.2.1 Expanding the Scope of Pollution Monitoring

Pollution monitoring is a critical component in addressing climate change and envi-

ronmental degradation. Traditional methods typically rely on high-resolution data from

satellites, aerial imagery, or costly ground-based sensors, each designed to detect specific

types of pollutants [9, 10, 65, 72]. However, these methods come with significant limi-

tations, including the high cost of sensor deployment [13, 44] and the need for different

sensors to detect different pollutants. Furthermore, these methods often fail to capture

the intricate interactions between pollutants and the natural environment. To overcome

these challenges, we can use plants as natural bioindicators of pollution and model the

spectral changes in plants due to certain type of pollutants.

Plants are ubiquitous, and exhibit specific, measurable responses to various pollu-

tants which can be measured cost effectively. These responses include changes in growth

patterns, leaf morphology, pigmentation, and overall health, making plants effective and

sensitive indicators of environmental pollution. By leveraging plants as the “eyes and

ears” of pollution monitoring, we can develop a more comprehensive, scalable, and cost-

effective system for detecting environmental stressors on a global scale.

6.2.2 Research Objectives and Methodology

The future research can focus on two primary objectives:

1. Identification of Bioindicator Species: A good first step would be to identify

plant species that exhibit distinct physiological and morphological responses to

specific pollutants. We can begin by studying species known for their sensitivity to

air pollution, such as mosses, lichens, and ferns. Mosses and lichens are particularly

sensitive to sulfur dioxide (SO2) and heavy metals, while ferns like the sensitive

fern (Onoclea sensibilis) and the bracken fern (Pteridium aquilinum) are known to
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Figure 6.1: Depiction of visible morphological and pigment change in plants due to
pollution. It can be seen that the green color of the leaves turning white and brown
shows pigment change in the plant due to presence of certain pollutants around, in
this specific case, this is due to presence of SO2 in the atmosphere as shown in Red
boxes.

respond to ozone (O3) and nitrogen dioxide (NO2). By establishing a correlation

between these species’ spectral signatures and the concentration of pollutants, we

can create a detailed map of environmental stress across different regions. This

phase will involve extensive fieldwork, laboratory analysis, and collaboration with
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botanists and environmental scientists to accurately document the responses of

these bioindicator species to various pollutants [194, 195]. Understanding these

relationships will be critical to developing a robust model that can be generalized

across different ecosystems and pollutant types.

2. Development of Advanced Multimodal AI models: Once the bioindicator

species are identified, the next step will be to develop deep learning models capable

of detecting subtle changes in plant health from hyperspectral and multispectral

imagery. Hyperspectral imagery captures a wide range of spectral bands [10, 62,

196], allowing for the detection of minute variations in reflectance that are indicative

of stress. The initial approach will involve using deterministic methods, such as

matched filtering and band ratio techniques to analyze the spectral signatures of

healthy plants versus those exposed to pollutants.

Building on this foundational analysis, I will employ transformer networks [87],

known for their ability to model long-range dependencies and relationships in data

to detect and interpret these spectral variations. These networks will be trained

on high-resolution data collected from ground-based sensors and drones, with the

goal of identifying pollution-induced stress at a fine-grained level. The training

process will leverage semi-supervised learning and contrastive learning frameworks

to enhance the model’s ability to distinguish between healthy and stressed plants

under varying environmental conditions.

To capture pollution-induced stress effectively, my research will focus on several key

indicators, including changes in leaf morphology and pigmentation. For example,

pollution can cause leaves to become smaller, thicker, or develop abnormal shapes,

and it can also lead to changes in their chlorophyll content. These morphological

and pigmentary changes are strong indicators of pollution exposure, particularly
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for pollutants like nitrogen dioxide, particulate matter, sulfur dioxide, and ozone.

Monitoring these changes through multispectral sensors operating in the visible and

near-infrared wavelengths (400 nm - 1100 nm) will provide a reliable method for

early detection of environmental stress.

6.2.3 Scaling to Global Applications

Once the deep learning models are validated on high-resolution, ground-based data,

the research will focus on scaling these methods to work with satellite imagery. This

scaling process will involve fine-tuning the models to adapt to the lower resolution of

satellite data while maintaining accuracy in detecting pollution-induced stress. One of

the key challenges in this phase will be the adaptation of models trained on detailed,

high-resolution images to the broader, less detailed context of satellite imagery. This will

require innovative techniques, such as knowledge distillation, where insights gained from

high-resolution models are transferred to models designed for lower-resolution data.

The use of satellite imagery will enable large-scale, continuous monitoring of bioindi-

cator species across diverse geographical areas, providing a global perspective on pollution

levels and their impacts on ecosystems. By leveraging my expertise in computer vision,

particularly in the detection of small objects in high-dimensional data, I aim to optimize

these models for accuracy and efficiency, ensuring that they can be effectively applied in

real-world scenarios.

6.3 Long-term Impact and Vision

The long-term impact of this research lies in its potential to revolutionize how we

monitor and respond to environmental pollution. By utilizing bioindicator species in

conjunction with advanced imaging and deep learning techniques, this approach offers a
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scalable, cost-effective solution that addresses many of the limitations of current pollution

monitoring methods. The findings from this research will provide valuable data for

policymakers, environmental scientists, and conservationists, aiding in the development

of informed strategies to mitigate pollution and protect both human health and the

environment.

Moreover, this research aligns with the broader goals of sustainable development,

contributing to the creation of more resilient ecosystems and communities. The integra-

tion of plant sciences with computer vision not only advances our understanding of how

plants respond to environmental stress but also opens new avenues for interdisciplinary

research and innovation.
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MethaneMapper Appendix

A.1 Introduction

In this section, we provide will all the details about the data collection and annotations
creation process. We also provide with the complete derivation of Spectral Linear Filter
(SLF) along with a pseudo implementation of SLF algorithm. Next in the document we
provide some more qualitative examples of success and failure cases of MethaneMapper.
Towards the end of the document we provide graph plots about training convergence of
all the ablation experiments with Spectral Feature Generator (SFG) and Query Refiner
(QR) module.

A.1.1 Dataset

AVIRIG-NG

AVIRIS-NG [13] is an acronym for the Airborne Visible InfraRed Imaging Spectrom-
eter - Next Generation developed by Jet Propulsion Laboratory (JPL) in 2009. JPL
conducted thousands of flight lines recording data with AVIRIS-NG instrument in last
7 years. On the AVIRIS-NG instrument an array of total 598 sensors in push-broom
order captures an unortho-rectified data-cube of spatial dimension ∼ 23k × 598, where
each sensor records a spectral wavelengths ranging from 380nm − 2510nm [197] mak-
ing a dimension of 432 channels. It has 34o field of view with a 1 mrad instantaneous
field of view the generates spatial resolution of 1 − 8m based on altitude. This data
is then rectified using a geometric lookup table and the resulting data cube is of size
∼ 23k× ∼ 1.5k× 432. The data is provided in Band Interleaved by Line (BIL) ordering.
BIL ordering signifies the 3D matrix is indexed first by image row, then by channel, and
then by the image column [2]. One can find details about the naming convention and the
type of data each files contain in “README.txt” file in each flightline folder. The data
can be loaded into a numpy array easily using python libraries. All data is orthorectified.

107



MethaneMapper Appendix Chapter A

Annotations

Figure A.1: Depiction of data collection process. Each flightline is ∼ 300 kms long.
An array of 598 sensors records data at 1.5m/pixel spatial resolution. All flightlines
are ortho-corrected. Each data-cube is of dimension ∼ 23k× ∼ 1.5k × 432.

Transformation and Ortho-correction. First step is to read the annotation GeoTiff
patch of size 150 × 150 of a methane concentration mask and convert its Coordinate
Reference System (CRT) to AVIRIS-NG flightlines’ CRT (EPSG 4326). Next, we use
the corresponding AVIRIS-NG flightlines’ geometric lookup table and unortho-corrected
geographic pixel location to generate ortho-corrected geographic pixel location data of
the flightline. Next, we find the flightline’s geographic indices that are closest to the
geographic indexes of the methane concentration mask (annotation GeoTiff). Finally, we
use these corresponding pixels to compute a homography transform matrix that maps the
methane concentration mask (annotation GeoTiff) to the AVIRIS-NG flightline’s spatial
dimensions. We repeat this process for each plume in the flightline in order to generate
the CH4 concentration map for the entire flightline.
Resolution matching. To match the resolution of transformed annotation GeoTiff
patch to AVIRIS-NG flightline, we use nearest-neighbor resampling. A pixel from the
transformed annotation GeoTiff patch may be repeated multiple times in the CH4 con-
centration map for the entire flightline.
Annotation Style. The Point Source and Diffused Source are coded following the same
standard as JPL-CH4-detection-V1.0 [2] dataset. The 3-channels have values in [0-255]
range.

• Red (255,0,0): plume, believed to be associated with a Point Source

• Blue (0,0,255): plume, believed to be associated with a Diffuse Source

• Black (0,0,0): no plume (or unlabeled)
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Figure A.2: Spectral absorption pattern of CH4 gas. The x-axis show the channel
number ranging from 0-400 corresponding to wavelength range (400nm− 2500nm). It
is obtained from the public repository HITRAN [1].

We kept our annotation style consistent with JPL-CH4-detection-V1.0 benchmark
dataset [2] so that both JPL-CH4-detection-V1.0 and MHS datasets can be merged
seamlessly.

A.1.2 Spectral Linear Filter(SFL)

Traditional Matched Filter

Passive hyperspectral imaging sensors captures spectral radiances values from N0

(N0 = 432) spectral channels corresponding to wavelengths ranging from 400nm −
2500nm as shown in Fig. A.1 with sample data-cube. The complete hyperspectral image
is represented as x ∈ RH0×W0×N0 where H0,W0&N0 are height, width and number of
channels respectively. In this hyperspectral data, we are looking for a very weak sig-
nature of interest hidden in background. In this case the signature of interest is CH4

and the background is ground terrain. CH4 shows strong absorption patterns around
2100nm− 2500nm wavelength.

The most common linear approach for finding CH4 candidates is taking a N0-dimension
(same as number of spectral channels) vector α, and apply as a dot product to each pixel
(N0-dimension) in the hyperspectral image to generate a scalar output per pixel. This
operation is supposed to reduce or remove the ground terrain, sensor noise and amplifies
CH4 signature. The α vector used here is called as “matched filter”. Therefore computing
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right α is very critical for generating better candidates of CH4 emission. It is dependent
on absorption pattern of CH4 and on the distribution of the ground terrain. To model
α, let ri ∈ Rn be a ith pixel from the hyperspectral image representing the ground
terrain pixel and sensor noise, and t be the CH4 absorption pattern [1]. This is modeled
as the additive perturbation as shown below:

xi = ri + t, (A.1)

where xi is the spectrum when CH4 is present. The CH4 absorption pattern t represents
the change in radiance units of the background caused by adding a unit mixing ratio
length of CH4 absorption [9, 38]. Figure A.2 shows the spectral absorption pattern of
CH4 per channel. In the ideal scenario where only CH4 gas is present in signal (i.e. all
white background), the matched filter output is αT t. In case there is no gas and just
ground terrain and sensor noise, the matched filter output is αT ri. The variance (V ar)
of αT ri for latter is represented by:

V ar(αT ri) = ⟨(αT ri − αTµ)2⟩ = αTCovα, (A.2)

where Cov and µ are covariance and mean respectively computed for ri. Inspired from
[9,38] we define the Methane-to-Ground terrain Ratio (MGR) is:

MGR =
|αT t|2

αTCovα
, (A.3)

We can see that the magnitude of α does not affect MGR. According to [9, 38, 198], the
MGR can be maximized subject to constraints(zero mean and αTKα constraint to 1).
The matched filter α is then represented by:

α =
Cov−1t√
tTCov−1t

. (A.4)

In ideal instances when there is no background (i.e. all white background) and just CH4

gas present. The matched filter in equation A.5 is directly proportional to t. This is just
the target signature (t) itself scaled so that the filtered output has variance of one. The
methane enhancement per pixel can be computed as follows:

α̂(xi) =
(xi − µ)TCov−1t√

tTCov−1t
, (A.5)

where α̂(xi) is the per pixel estimation of methane, on other words, column enhancement
of methane. The covariance matrix (Cov) used is not known as prior and is estimated
from data. It is computed as outer product of the mean subtracted radiance over all the
pixels. In other words, the traditional matched filter from equation A.5 computes the
covariance (Cov) of ground terrain with an underlying assumption that in all elements
have similar absorption pattern. Same covariance matrix (Cov) matrix is used to whitens
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the varying ground terrain and amplify the CH4 present. But in realistic scenarios,
the ground terrain is varying, the type of terrain changes frequently, there is water
bodies, bare soil, vegetation, dense vegetation, building structures in cities, roads etc
in a single image. For example, water have a strong absorption of solar radiations,
therefore the methane on such backgrounds have a very weak visibility. Similarly, wet
fields dense vegetation have similar behaviour. On the other hand, bare soil, rocks, etc
have lower absorption, the methane present on such background have strong visibility.
A simple and single approximation of the covariance (Cov) of ground distribution can
not provide the right and effective estimate of methane enhancement. To tackle this
limitation, we developed an spectral linear Filter (SLF) that does land cover classification
and segmentation and reduces the noise as discussed in the next sections.

Landcover Classification and Segmentation

In this section, we improve upon the limitations mentioned in the previous section.
We start with taking hyperspectral bands from visible spectrum (400nm− 700nm) and
near-mid infrared region (800nm − 1350nm). We recreated the RGB representation of
the ground terrain by a weighted normal distribution for each color band. Same is done
for near infrared region. Next we take a simple, very effective and efficient approach for
doing landcover classification and segmentation. We compute the Normalized Difference
Vegetation Index (NDVI) [53,199] and Normalized Difference Water Index (NDWI) [54].
NDVI quantifies vegetation by measuring the difference between near-infrared (which
vegetation strongly reflects) and red light (which vegetation absorbs) [53]. It ranges
from −1 to +1. It is a very effective index and has been used in literature for more
than 4 decades. [54] created NDWI and used it to highlight open water features in a
satellite image, allowing a water body to “stand out” against the soil and vegetation. It
is calculated using the GREEN-NIR (visible green and near-infrared) and ranges from
−1 to +1. Its primary use today is to detect and monitor slight changes in water content
of the water bodies.

ndvi =
NIR−R

NIR + R
; ndwi =

NIR−MIR

NIR + MIR
(A.6)

where NIR is near infrared region normalized around 880nm, MIR is mid infrared
normalized around 1240nm and R is red, normalized around 660nm. We take advantage
of these indexes and create segmentation maps for different types of vegetation, water
bodies, bare soil, rocks, mountains, city/urban areas, roads etc. We take the classification
thresholds from [52, 200]. For simplification, we also tested by splitting the scale −1 to
+1 in 20 classes, each with a range of < 0.1 >. We obtained comparable results as
compared to using classification ranges from [52,200]. This simple, effective and efficient
approach gives three fold boost to our spectral linear filter CH4 candidates estimation.
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Covariance (cov) per class

We take the segmented image from previous step, we will call segmented image as
segmentation mask for simplicity now onward. In practice we have 20 classes, each with
a segmentation mask. We merged two or more adjacent classes into one if the number of
pixels in that class is less 10000 . The Number of pixels in each class is kept higher to
ensure that while computing the covariance (Cov) matrix, the methane signal does not
have any or have negligible effect. It is okay to merge adjacent classes into one because
they have almost similar radiance/reflectance, for example, light vegetation and normal
vegetation have similar reflectance, etc. For each class we compute a separate mean and
covariance matrix. The covariance Covk of kth class is computed as:

Covk =
1

N

i=j∑
i=1

(xi − µk)(xi − µk)T ∀ j ∈ k, (A.7)

where N is the number of pixels (> 10000) in kth class and µk is the mean of kth class. For
each class we compute the mean µk, covariance matrix Covk. While iterating through
each pixel of hyperspectral image, we check to which class k the pixel xi belongs to and
use those pre-computed values. The final Spectral Linear Fitler (SLF) is shown as below:

SLF(xi) =
(xi − µk)TCov−1

k t√
tTCov−1

k t
∀ (i) ∈ class k (A.8)

where Cov−1 is the inverse of covariance matrix. Next to suppress the sensor noise,
we exploit the simple method of tracking each sensor. Each sensor have different physical
properties, that can influence the data captured by it. We track each individual sensor
in the flight line. Since the data is rectified, the data from each sensor does not belong
to single column, instead it is spread randomly across all the columns. This is dependent
on the flight path and the movement in the airplane while moving. We used simple data-
structure algorithms like depth first search. Tracked each boundary pixels and assigned
them to single sensor. We used data from 10-15 adjacent sensor at one time, normalize it
and then compute the covariance matrix in previous step with segmentation mask. Our
approach is very simple and straight forward.

The algorithm A.1.2 shows the pseudo code for our Spectral Linear Filter (SLF).

Training policy

We trained MethaneMapper in two styles, (i) pre-training the bounding box and class
detection first and then freezing the pre-trained model parameters and training only the
mask prediction layer; and (ii) trained whole pipeline end-to-end and achieved similar
performance on both the cases.
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Qualitative Results

In this section we show few more qualitative examples of CH4 plume mask prediction
and few cases where MM failed to detect any CH4 gas emission.Figure. A.3 shows the
CH4 detections in different types of background terrain and different types of emission
source.

Figure A.4 shows some examples of missed CH4 plume detections. We observed that
going back to dataset samples and checking the timelines, these flightlines were recorded
during the evening time. We believe that this might be because of evening time, the
reflectance from the ground terrain is very weak and small. Hence we believe there is
minimum absorption of reflected solar radiation by CH4 gas present in the atmosphere
and the plume goes undetected.

A.1.3 Ablations Studies

Attention Type: We also explored different attention mechanisms to encode and decode
information. We replaced only the attention layers with deformable-attention [121] in
the our architecture that resulted in a drop of 0.1 mAP in the baseline model.
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Figure A.3: Sample ground truths and predictions on MHS dataset. We are showing
different type of terrains and CH4 predictions on them. The type of emission source
in all samples varies too.

Implementation details

The whole network is trained with AdamW [135] optimizer, batch size of 12, with
initial learning rate for backbones set to 10−5 and for transformer the learning rate is set114
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Figure A.4: Samples where MM fails to detect the CH4 plume. We observed that these
samples were recorded during the evening time and hence reflectance from the ground
terrain is very weak. Therefore the absorption of reflected solar radiations by CH4 is
very low and hence the emissions goes undetected.

to 10−5 with a weight decay of 10−4. The learning rate for mask prediction module is set
to 10−4. The learning rate is dropped at every 150 epochs, we train for 300 epochs. The
baseline model is trained on 2 V100 GPUs.
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WildlifeMapper Appendix

B.1 Introduction

We provide all the additional information related to WildlifeMapper (WM) and the
Mara-Wildlife (MW) dataset here. We also provide qualitative examples.

Methods mAP
Counting
Error

Mara Wildlife Dataset
1 Faster-Rcnn 0.24 2.59
2 DETR 0.22 2.75
3 Co-DETR-R50 0.27 2.72
4 Co-DETR-swingL 0.28 2.60
5 Yolo v5 0.30 2.12
6 Yolo v8 0.27 3.97
7 LSKNet 0.29 -
8 DroneDetect 0.18 -
9 WildlifeMapper 0.56 1.9

Table B.1: Comparison with baseline models. The top section shows performance on
species detection on Mara-wildlife dataset and low section shows performance on the
mixed dataset from Virunga-Garamba-AED dataset. The overall detection accuracy
is generally higher in Virunga-Garamba-AED dataset because there are only 6 species
and the terrain is quite similar in all images.

B.1.1 Method

High Frequency Feature Generator (HFG): This section covers the detailed deriva-
tion and implementation information of our HFG module. The input image is processed
in parallel by the HFG module to generate features with information about the location
of the animal or cluster. The HFG module is inspired from the limitation of ViT mod-
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els [87]. ViT models face challenges in efficiently utilizing local structures. They segment
an image into patches and apply self-attention to model relationships, but this approach
often falls short in capturing detailed local features [129,130].

Research indicates that local features in images are closely linked to high-frequency
components [131, 132]. We hypothesize that suppressing low-frequency components can
mitigate the influence of a dominant homogeneous background. To test this, we per-
formed a discrete Fourier Transform (DFT) on the images, filtering out the low-frequency
components before reconstructing the images..

For a given input image I ∈ RH×W×C , where C is channel dimension, we compute
Discrete Fourier Transform (DFT ) of I. In next step we suppress the low frequency
components with a controlling parameter and construct the image I with inverse (IDFT )
to get back image I ′. The DFT is computed as:

F (u, v) =
H−1∑
x=0

W−1∑
y=0

I(x, y) · e−j2π(ux/H+vy/W ) (B.1)

where F (u, v) is the magnitude spectrum, u and v are the frequency coordinates,
and j is the imaginary unit. Next, we shift the lower frequency components to center of
frequency spectrum as:

F ′(u, v) = F

(
(u +

H

2
) mod H, (v +

W

2
) mod W

)
, (B.2)

where mod is modulus operation. Next we mask the lower frequencies with a controlling
parameter r. The modified Fourier transform G with mask M is defined as:

G(u, v) = M(u, v) ⊙ F ′(u, v) (B.3)

where M =

{
1 if(u−H/2)2 + (v −W/2)2 ≤ r2

0 otherwise
(B.4)

Given the modified Fourier transform G, the reconstructed image I ′ is given by:

I ′(x, y) =
H−1∑
u=0

W−1∑
v=0

G(u, v) · ej2π(ux/H+vy/W ) (B.5)

Next we reduce the dimension of the reconstructed image I ′(x, y) via an embedding
layer to generate embedding hfcemb and pass them to the FR module
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B.1.2 Implementation Details

Each image taken from the drone is 8256 × 5506 × 3. We create tiles for each image
in the spatial domain, with the size of 1024 × 1024 × 3 with 25% of overlap. The Patch
Embed layer uses a single CNN layer with a large kernel of size 16 × 16 with stride 16.
In the parallel branch, the High-Frequency Feature Generator, we use DFT to compute
the Fourier transform, the mask is a binary disk with the radius set to 128. The HFC
Embed layer uses 3 CNN layers with ReLU activation with a kernel of size 3 × 3 and a
global average pool at the end. The Feature Refiner (FR) module consists of one cross
attention layer with 1 linear layer. The image encoder is a pre-trained ViT model [3]
with 24 transformer layers and 16 heads. The Query Refiner (QR) module takes in
100 queries each of channel dimension 256, those are cross attended with hfcemb output.
The box decoder contains 3 layers of two-way attention with 8 heads. We train WM
with AdamW optimizer [135] setting the learning rate to 10−4 for the FR, QR and box
decoder with a weight decay to 10−4. We set the learning rate for the Patch Embed and
HFC Embed layer to 10−5. We load the image encoder with pre-trained weights from
segment anything [3] and keep it frozen.

B.1.3 Mara-Wildlife Dataset:

Flight path details The chosen flight path prioritized vast open grasslands, as they
frequently serve as habitats and transit routes for larger fauna. The survey was conducted
in March. March is typically a rainy month when grasses are green. The Serengeti
migratory herd of wildebeest have already moved south from the region. Data collection
was typically scheduled during the early mornings or late afternoons. These times are
when animals are most active, avoiding the midday sun. Although the evening presents
challenges due to diminished sunlight, the majority of the data was acquired between
7AM and 10AM local time to ensure optimal lighting conditions.

Camera Settings and Specifications: We mounted a NIKON D850 camera to the
bellyport of the airplane. The camera was placed in a NADIR view and configured with
an intervalometer to collect an image every two seconds along flight transects.

B.1.4 Rich Metadata for Computer Vision Benchmarks:

Each raster included in the dataset is accompanied with detailed metadata, the times-
tamp of the image capture, and other camera EXIF (Exchangeable Image File Format)
information such as focal length, FNumber, ISO, and ExposureTime. We collected lati-
tude and longitude and elevation information from the GPS log of the pilot and merged
this information using the camera data and time. If released with the data, these meta-
data properties enrich the dataset’s ecological value and unlock the potential for a myriad
of computational applications.

118



While the primary intent of our analysis was to provide an estimate of the abundance
of large mammals across the Masai Mara ecosystem, the dataset’s comprehensive nature
presents opportunities that extend beyond wildlife studies. These include: Sun Angle
Prediction, Image Registration, GPS Estimation, Elevation Prediction.

• Sun Angle Prediction: Given the timestamp and known location of each image
capture, the dataset could be employed to develop models that predict the sun’s
angle based on the image content. Such applications can benefit fields ranging from
photovoltaic systems to architectural planning.

• Image Registration: The dataset provides a platform for researchers to work on
algorithms that align or ’register’ multiple images of the same region, even if taken
from varying angles or times. Such tasks find relevance in areas like medical imaging
and satellite image analysis.

• GPS Estimation: The precise latitudinal and longitudinal coordinates embedded
in the metadata allow for the creation of models that predict the GPS location
of specific objects or even individual pixels using only the image content. This
potential extends the bounds of localization models in the realm of computer vision.

• Elevation Prediction: The dataset’s rich elevation data provides an avenue to train
models that can estimate the altitude at which an image was taken, based purely
on visual cues. Such models can have vast applications, from aviation to drone
technology.

These represent just a few of the many potential applications. We believe the Mara-
Wildlife dataset has the potential to be a foundational resource for both ecological studies
and computer vision research, ushering in innovations and novel solutions.

B.1.5 Results

In this section, we present more qualitative results of detection of WildlifeMapper on
the Mara-Wildlife dataset. Good detection samples are shown in Fig. B.1 and the failure
cases are shown in Fig.

Good cases: Each column in Fig. B.1 shows detections of different types of animals.
Column-1 shows large animals: cattle, buffalo; Column-2 shows detection of small ani-
mals: warthog, topi. Column-3 shows detection of animals hidden or occluded in Row 1
& 2, Row 3 & 4 show examples of other categories (i.e., lion).

Failure cases: Fig. B.2 shows examples of where WildlifeMapper struggled to make
an accurate detection. Each image shows a unique scenario where the detection was
either missed or misclassified or confused from the contextual information. For example
in Column-1, Row-1, the dry wooden log is detected as an object and misclassified as
shoat(sheep or goat) since shoats almost always occur in a group. Hence, the additional
object identified was mislabeled a shoat. Figures are on next page.
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Figure B.1: Good cases. Each column shows different category of detection. Column-1
shows large animals: cattle, buffalo; Column-2 shows detection of small animals
(warthog, topi), Column-3 shows detection of animals hidden or occluded.
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Figure B.2: Failure cases. The animals hiding in the shade are difficult to detect.
Additional examples of misclassification also provided.
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