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Abstract

Words of varying pre-experimental frequency were
presented up to 10 times each. On each presentation, three
responses were allowed—new, remember, and know—the
last for words that seem familiar, but give no conscious
recollection of an earlier presentation. A novel pattern of
results was predicted by the SAC memory model. SAC used
the same parameter values used in fits to other tasks and
provided good fits to the participants’ remember and know
responses.

Introduction

A dominant goal in cognitive science is to develop a theory
of cognitive behavior within a unified framework that can
explain a broad spectrum of human behavior without the
necessity of postulating a new theory denovo each time a
new task is to be explained. In this paper we describe a
theory that has such a goal: to account for individual subject
performance at a very detailed level of analysis for a wide
variety of cognitive phenomena. The model is restricted to
trying to account for phenomena associated with declarative
memory (e.g., Anderson, 1976, 1983; Cohen & Squire,
1980). We have tested the SAC (Source of Activation
Confusion) model of memory in a variety of research
paradigms, and have obtained precise fits of theory to data
without needing to postulate new variables for each new
task/data set. We have recently reported our efforts to use
this model to explain feeling of knowing and strategy
selection decisions (Reder & Schunn, 1996; Schunn er al.,
1997). In this paper we describe a more recent test of the
model’s generality by extending the model to a new domain
and testing the model’s novel theoretical predictions with
new empirical data. This empirical test of novel predictions
enables us to examine our model both at the conceptual
level and at the level of specific parameter values from
previous model fits.

The domain that we have chosen to explore is called the
Mirror Effect (Glanzer, Adams, Iverson & Kim, 1993),
using the Remember/Know Paradigm (Tulving, 1985) as a
magnifying glass to enable finer-grained predictions. The
Mirror Effect refers to the phenomenon that two distinct
classes of items (e.g., high and low frequency words)
produce opposite orderings in likelihood to respond “old”

in recognition tests, depending on whether the item had
actually been studied. That is, the proportion of responses
that are *hits” (correct recognition judgments for presented
items) is greater for low frequency than high frequency
words, while the proportion of “false alarms” (spurious
recognition judgments for items not studied) is greater for
high frequency than low frequency words. When these
results are plotted as two functions, one for hits and one for
false alarms, with frequency on the abscissa, they are mirror
images—hence the name. One reason this effect has
interested memory theorists is that, to the extent that
psychology aspires to provide mechanistic explanations of
phenomena, this pattern of data offers a clear set of
constraints that any theoretical account must satisfy.

The Remember/Know Paradigm was first developed by
Tulving (1985) to explore the recollective component of
memory and has become a popular paradigm among
researchers who subscribe to the view that there are two
processes for recognition judgments (e.g., Jacoby & Dallas,
1981; Mandler, 1980) or that there exist multiple memory
systems (e.g., Knowlton & Squire, 1995; Schacter &
Tulving, 1982; Squire, 1987; Tulving, 1985). In this
paradigm, participants study a list of words and are asked to
make old/new judgments as in standard recognition tests.
The difference is that after participants respond “old” (i.e.,
they believe the word had been on the list), they are then
also asked to decide whether this “old” judgment is based
on a recollective experience in which they can actually recall
having seen the word presented on the list (in their “mind’s
eye”’) or whether they are basing this “old” decision on a
sense of familiarity (i.e., they do not really remember seeing
the word on the list, but just “know” it must have been
presented because it seems so familiar). Although one might
question the validity of participant self-reports, the pattern of
data suggest that participants are not responding randomly.

We were drawn to investigating the Mirror Effect in the
context of a Remember/Know paradigm because our theory
of memory provided an explanation for the Mirror Effect that
made clear predictions for how the Mirror Effect would relate
to Remember/Know distinctions. The first prediction is
there will be more “remember” judgments for low frequency
words that are old (i.e., hits). The second prediction is that
there will be more “know” responses for high frequency
words than low frequency words, regardless of whether or
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Figure 1: An example semantic network representation of
nodes involved in a word recognition experiment.
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not the word had actually been studied (i.e., hits and false
alarms). In other words, low frequency words are more
memorable, but high frequency words are more familiar. The
details of these prediction are outlined below.

It is not difficult to generate theories that explain how a
person correctly identifies that a word was studied or explain
how a person correctly rejects a lure as not studied. Of more
theoretical interest is to explain, without making additional
assumptions, why people incorrectly accept some not
presented items as studied (false alarms) and why they fail to
recognize some items that were studied. Like other dual
process models of memory, we assume that there are two
ways to make a recognition judgment, one based on
familiarity of the word and one based on retrieval of the
study event. Our SAC model postulates two kinds of nodes:
a node to represent the concept of the studied word and
another node to represent the study episode. Figure I
illustrates the memory representation that we assume. The
familiarity of the word/concept node is affected by recent
study but it is also affected by how frequently it has been
seen in previous contexts (i.e., pre-experimental word
frequency will affect this feeling of familiarity). We expect
that an accurate recognition judgment is based on the
retrieval of the study event node, while responses based on
the word node are error prone.

Note in Figure 1 that higher frequency words not only
have a higher starting strength or familiarity from more
previous exposures, but that they also have more pre-
experimental associations from all the contexts in which the
word has been seen. According to SAC the amount of
activation that can spread from a concept node to the event
node must be divided among all links that fan out from the
node. If we assume that all links have equal strength, then
the amount of activation that can reach the event node is
much less in the case of high frequency words than low
frequency words because the former has much more
competition for the activation than the latter. This type of
theory would explain the Mirror Effect as follows: high
frequency words have a higher strength/familiarity of the
word node and hence there will be many “old” responses
based on the word node, regardless of whether or not the
word had actually been studied in the experiment. This will
cause more false alarms for high frequency words than low
frequency words. On the other hand, the greater fan out of
high frequency words means that it is more difficult to send

activation from the word node to the node that encoded the
episodic study event, leading to fewer correct recognitions of
high frequency words (fewer hits), the mirror result of the
greater false alarms,

The advent of the Remember/Know paradigm has made it
possible to bring evidence to bear on these predictions.
Words whose concept nodes have greater strength should
elicit more “know” judgments, i.e., higher frequency words
should elicit more “know” responses regardless of
presentation on the study list. SAC also predicts more
“remember” responses for low frequency words than for high
frequency words, provided that the word had actually been
studied. While previous experiments in the literature have
found the predicted effect for “remember” judgments, they
have not found the predicted effect for “know” judgments
(Gardiner & Java, 1990; Strack & Forster, 1995). We
designed a new experiment designed to replicate the
previous findings for “remember” judgments and to
establish whether our predictions for “know” judgments
would actually occur in an experiment with greater power
than that of the previous studies.

Additionally, to provide a more rigorous test of our
model, we modified the traditional experimental paradigm.
Specifically, we crossed pre-experimental word frequency
with experimental frequency because our model also allows
us to predict how much strengthening and forgetting there
should be as a function of number of presentations of a word
and the delay since it was last seen. Thus, we used a
continuous recognition paradigm in which participants were
required to make a remember /know/new judgment each
time a word was presented. Each participant received a
unique sequence of words and the same sequence was given
to the computer simulation. This enabled us to compare the
observed proportion of each type of judgment for each word
on each appearance of a given word with the predicted
proportion generated by the simulation. More details of the
model and how the precise model fits were generated are
described after the experimental results are reported.

Method

Participants. The participants were 28 Camegie Mellon
University undergraduates taking part for course credit.

Materials and Procedure. This experiment employed a
continuous recognition paradigm (e.g., Shepard &
Teghtsoonian, 1961). This design does not have the
separate study and test phases typically found in memory
experiments. Instead, the words are continuously presented
for judgment, and the participants have to keep track
constantly of which words have been presented and which
words have not.

Within this paradigm, we manipulated two factors, pre-
experimental word frequency and experimental presentation
frequency. The first factor had two levels, using 192 low
frequency and 192 high frequency words selected from the
MRC psycholinguistic database (Coltheart, 1981). Low and
high frequency words had Kucera and Francis (1967)
normative mean frequency counts of 1.6 and 142,
respectively, which were comparable to those used by
Gardiner and Java (1990).
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The second factor, presentation frequency, involved
randomly assigning words from each frequency category to
be presented either 10, 5, 3 or | times, with Ns of 16, 8, 8,
and 160 respectively. This produced a total of 384 trials.
The presentation order of the trials was random.

The stimuli were presented to the participants on the
computer over a single 25-minute session. The participants
were asked to read each word silently and make one of three
responses: “new” if they thought that the word had not been
presented previously in the experiment; “R™ if they
recognized the word as having been presented earlier in the
experiment and had conscious recollection of reading it
earlier; or K" if they recognized the word from earlier in the
experiment but did not have conscious recollection of
reading it earlier. Note that this differs from most
remember/know experiments where participants first made
new/old judgments before making remember/know
judgments for “old™ responses. We used this procedure in
order to get the participants’ first impressions. They were
told to make the judgment (using the keyboard) as quickly
as possibly without sacrificing accuracy.

To help participants understand the difference between the
R and K responses, they were given real-world examples
taken from Gardiner and Java (1990). In addition to the
examples of remember and know experiences, it was stressed
that the difference in the responses was not of memory
strength, but rather of two different states of memory.
Knowing did not necessarily entail a poorer memory. After
the examples were presented to them, the participants were
required to give two additional examples of their own to
establish that they had understood distinction.

Results and Discussion

Six participants were dropped from the analyses: two due to
errors with the equipment, and four due to misunderstanding
the distinction between R and K responses. The level of
significance for this experiment was set to p < .05, unless
otherwise noted.

Table 1 shows the mean probabilities of R and K
responses for each presentation number for both low and
high frequency words. The overall recognition was
computed as the sum of R and K responses. Note that
presentation 1 entails the lure trials for which the correct
response was “new”. Thus, these probabilities represent the
false alarm rates. Presentations 2-10 then constitute the old
trials. The overall hit rates were computed as the mean of
the probabilities from presentation 2-10.

A separate repeated measures ANOVA was carried out for
the hit and false alarm rates. For the hit rates, there was a
main effect of word frequency, F(1,21) = 7.40, MSe = 0.024,
such that low frequency words were recognized more than
high frequency words. Discriminability (d") scores also
showed this difference. Low frequency words were better
discriminated than high frequency words (4’ of 4.17 and
3.02 respectively). There was also a main effect of
presentation number, F(1,21) = 25.20, MSe = 0.049. This

Table 1: Proportion of R and K responses as a function of
word frequency and presentation number.

1 2 3 4 5 6 7 8 9 10]@2-10)

Low
R .01 .49 .69 .79 .83 .89 .87 .91 .92 .92].81
K .04 38 .28 .19 .16 .11 .13 .09 .07 .09].17

R .03 .38 .52 .67 .73 .77 .79 .86 .84 .80).71
K .13 .44 39 .30 .24 .23 (19 .12 .15 .16].25

is evident in the increase in the hit rate from presentation 2
to presentation 3. After presentation 3, participants appear to
be at ceiling. The main effect of response was also
significant, F(1,21) = 49.26, MSe = 60.45, such that there
were more R responses than K responses. The interaction of
word frequency by response type was significant, F(1,21) =
31.86, MSe = 1.70 as was the interaction between
presentation number and response type, F(8,168) =29.8,
MSe = 1.40. The word frequency by presentation number
interaction was marginally significant, F(8,168) = 1.90,
MSe = 0.002, p < .10, The three-way interaction was not
significant, F(8,168) = 1.20, MSe = 0.021.

Of most interest to us is the word frequency by response
type interaction. The left panel of Figure 2 shows this
interaction. Note that as predicted and consistent with the
previous findings, R responses were greater for low
frequency words than for high frequency words, #21) = 4.47.
However as our model predicts, this pattern is reversed for K
responses. There were more K response for high frequency
than for low frequency words, #(21) = 3.52.

The ANOVA conducted on the false alarms revealed a
main effect of word frequency, F(1,21) = 30.26, MSe =
0.087, such that participants made more false alarms to high
frequency words than to low frequency words. That is, there
were more R and K false alarms to high than to low
frequency words. The main effect of response type was also
significant, F(1,21) = 19.65, MSe = 0.095, as was the word
frequency by response type interaction, F(1,21) = 16.62,
MSe = 0.027. This last interaction is shown in the right
panel of Figure 2. As predicted by SAC, a contrast between
low and high frequency K false alarms revealed a reliable
difference, #(21) = 8.02. The contrast between R responses
for low frequency and high frequency words was also
significant, 1(21) = 2.26.

These findings are in agreement with SAC’s predictions:
The hit rates were greater for low frequency words than for
high frequency words. The reverse pattern was found for the
false alarm rates. Of more interest to us was the dissociation
between the R and K responses due to word frequency. The
proportion of R responses were greater for low frequency
words than for high frequency words. This result, predicted
by our model, is consistent with what other researches have
found, The pattern of results for K responses was in the
opposite direction. As predicted by our model, there were
more K responses for high frequency words than for low
frequency words. This result was not found previously.
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Figure 2. Human data in filled objects and solid lines,
simulation in open objects and dotted lines.

Simulation of Experiment Data

In this section, we present a simulation of the data from our
experiment as a test of SAC’s precise predictions. The
computer simulation was given as input the same words
presented to each participant. Since the presentation order of
the words was randomly determined for each participant, a
separate simulation was conducted for each participant's
exact study sequence. This precise yoking of the simulation
to participants was important because on a given trial the
expected activation level for a word would vary depending
on the exact sequence of trials. That is, for each participant
on a given trial, the number of links, the current activation,
and strength of the presented word would be different from
any other participant’s values. The simulation outputs a
probability of responding R and K on each trial. We will
now step through the process by which those probabilities
are determined.

At the beginning of the simulation, each participant’s
simulation is identical: the context node and the nodes for
all of the words to be presented in the experiment are
assumed to already exist, and the nodes for the study events
are assumed not to exist (i.e., these study events are novel).
The initial base-line strength of the word nodes are
determined by their respective Kucera and Francis (1967)
frequency counts, using a power-law learning function (i.e.,
raising the word-frequency to an exponent). The pre-existing
experimental context base-level strength and fan are set to a
constant, the specific value being irrelevant to the
simulations of the recognition process. When a word is seen
for the first time in the experiment, a study event node is
created for that word, as are the links from the word and
context nodes. The initial base-line strength of the study
event node and of links to it are determined by our standard
learning and decay parameters (presented below).

Increases and decreases in each node’s base-line strength
change according to a power function:

B=cy It ()
where B is the base level activation, and cy and dy are the
growth and decay constant for nodes, and t; is the time since
the i" presentation. This function captures both power law
decay of memories with time, and power law learning of
memories with practice,

In addition to the base or resting level of activation of a
node, there is also the current activation level of a node.
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The current level of a node will be higher than its base-line
whenever it receives stimulation from the environment. This
current activation decays exponentially towards the base
level. Let A represent the current level of activation and B
represent the base level of activation. Then, the decrease in
current activation will be:

AA=-p (A -B) )
such that, after each trial, the current activation will decrease
for every node by the proportion p times that node’s current
distance from its base level activation. In our simulations, p
is 0.8. Thus, current activation drops quite rapidly, and
only has noticeable effects on the trial on which it became
activated, and perhaps the trial immediately thereafter.

Activation spreads between nodes via links. For example,
links connect nodes representing the words to nodes
representing the study event. These links will vary in
strength depending on how often the word has been seen in
that context. Strength of links also depends on the delay
between exposures. Specifically, link strength is determined
by a power function given by:

Sg‘r =BL E ti-dL (3)
where S, is the strength of the link from the node s to node
t, t is the time since the i" co-exposure, and ¢, and d, are
the growth and decay constant for links.

On each trial, all nodes representing the study event are
activated by a constant amount. We assume that a basic
perceptual process activates these nodes. For example, when
the word torpedo is presented for the third time, the torpedo
word node and the context node are activated (see Figure 1).
Activation then spreads along the links from the word and
context nodes to all connected nodes (e.g., the node
representing the study event).

The amount of activation that is sent depends on the
activation level of the source (sending) node and on the
strength of the link from the source node to the receiving
node, relative to the strength of all other links emanating
from the same source node. The change in activation of
some node r is computed by summing the spread of
activation from all source nodes s directly connected to node
r, according to the equation:

AAr = Z(As A Ss,r ! ZSl,i) (4)
where AA, is the change in activation of the receiving node
r, A, is the activation of each source node s, S, is strength
of the link between nodes s and r, and IS,; is sum of the
strengths of all links emanating from node s. Equation 4 is
very similar to one used by Anderson (1993) to account for
data in fan effect paradigms (e.g., Anderson, 1974).

Once the activation has spread across these links, the
activation of the study event node and the word node can be
used to make the R and K judgments. Notc that the
activation of the study event node is not just affected by the
amount of activation it receives from the word node. It also
gets stronger (has a higher base level strength) each time it
is studied. So activation at the event node on a trial will be
stronger when it has been presented many times, both
because the event node itself is strengthened and because the
word node is sending more activation—the link from the
word node is strengthened and the word node has a
somewhat increased base strength.



We assume that Remember decision involves a fixed
activation threshold with normally distributed noise. Thus,
rather than producing a binary decision, the simulation
produces a probability of choosing R or K based on the
activation values. This means that if the activation value of
the study event node is high, the probability of responding
R is very high; conversely, when the activation is very low,
the probability of responding R is very low. Specifically,
this probability is computed by the formula:

P(R) = N[ (Ag- Te)/oe ] (5
where Ag is the activation of the event node, Ty is the
participant’s threshold for the study event node activation,
ok is the standard deviation of the study event node noise
distribution, and N[x] is the area under the normal curve to
the left of x for a normal curve with mean=0, and standard
deviation=1. Recall that we assume an interdependence
between R and K judgments. Consequently, the probability
of responding K is a calculated by the following formula:

P(K)={ 1 N[(Ae- Te)/oe ] }* N[(Aw- Tw)ow ] (6)

In essence, the probability of responding K is one minus the
probability of the study event node passing over threshold
times the probability of the word node being above its
threshold. The probability of responding “new” is simply
one minus the sum of the R and K probabilities.

After each trial, all the link strengths, node strengths and
node activations are updated using Equations 1, 2, and 3.
At this point, if a word is presented for the first time, then a
new study event node would be created as well as the links
connecting the new node to the word and context nodes.
The nodes in the network are updated in this fashion
regardless of whether the subject responds “new”, R, or K.

The present simulation just described involves ten
parameters. The values for each of these parameters are listed
in Table 2. The p, dn, and d. parameters were the same
parameter values used in a simulation of feeling-of-knowing
phenomena (Reder & Schunn, 1996; Schunn et al., 1997).
Because of differences in design and stimuli used in the
experiments, the Ky, Ki, ¢, and og parameters are new
parameters not found in the previous simulations. For
parsimony, ¢, and cy were given the same value.

However, in contrast to all the other values, which were
held constant across participants, we assume that
participants vary in their thresholds for responding R and K.
That is, some participants are conservative and have high
thresholds. Others, however, might be more liberal and have

Table 2: SAC model parameters descriptions and values.

Parameter Function Value
Kn convert K-F frequency to word node strength 0.3
Ko convert K-F frequency to word fan 0.7
p decay constant for current activation 0.8
CN node power-law growth constant 25
dn node power-law decay constant 0.175
cL link power-law growth constant 25
do link power-law decay constant 0.12
Te Study event node decision threshold 36-308
OE Study event node decision standard 40

deviation
Tw Word node decision threshold 46-80
Ow Word node decision standard deviation 8
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lower thresholds. The R decision threshold (Tg) and K
decision threshold (Ty,) values reflect the participant’s
overall base-rate of responding R and K, respectively. While
the participants might have differed on other dimensions as
well, there were no other obvious differences. So for
parsimony’s sake, the other eight parameters were held
constant across participants.

To compare SAC’s predictions to participants’ actual R
and K responses, we compared the model’s predicted R and
K probabilities to the participants’ actual R and K
probabilities for each condition. We present r' between
predicted and actual values for the overall recognition rates
(i.e,, sum of R and K) as well as for each response type
separately. The fit of the model to the data was defined as
the sum of the squared error between the model’s predicted
R rate for each participant in each condition and each
participant’s actual R rate in each condition plus the sum of
squared error between the models’ predicted K rate and the
participant’s actual K rate. The full, exhaustive
combinatorial space of possible parameters was not searched.
Instead, we used the same parameters from our earlier model
fits (Reder & Schunn, 1996; Schunn et al., 1997) when
possible, and iteratively tried a range of values for each of
the new parameters. We selected the value on each parameter
producing the lowest sum squared error.

Using these parameter values, the SAC model fit the data
quite well, producing an r* of 0.98 for the overall
recognition rate. In other words, the SAC model accounted
for a large percent of the variance of the participant’s R and
K judgments even at the individual participant level.

The fit of each type of response was also very good. For
the R judgment probabilities, a fit of the SAC model’s
predicted probabilities to the participants’ actual R

Simulation
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Figure 3: Proportion of Remember responses by word
frequency and presentation number. A) Data B) Simulation.
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Figure 4: Proportion of Know responses by word frequency
and presentation number. A) Data B) Simulation.



Jjudgment probabilities, produced an r’ of 0.95. For the fit of
the K responses, the r* was 0.86. Again, even after breaking
down the recognition judgment into the R and K
components, SAC accounted for a good portion of the
variance. Figure 3 plots the empirical R probabilities on the
left and model simulation on the right. Similarly, Figure 4
plots the K probabilities. Note that, consistent with the
empirical data, R judgments are consistently higher for low
frequency than for high frequency words; whereas for K
judgments, the model again correctly predicts more K
judgments for high frequency than for low frequency words.

These fits show that the model provides a very good
quantitative fit to the data. The fit of the model to the data
in Figure 2 shows that the model also accounts for the
predicted pattern of results for hits and false alarms rates.
Note that the model not only predicts the dissociation in R
judgments (which is consistent with SAC predictions and
previous findings), it also predicts the reverse dissociation
for the K responses. This reverse pattern for K judgment is a
novel finding that is accounted for by SAC. The only
qualitative difference between the model and predictions was
that the data showed a small increase in R false alarms,
whereas the model did not. Overall, the simulation from the
SAC model produced very good qualitative fits.

General Discussion

We were pleased with our ability to confirm our predictions,
especially given some of these results had not been found
before. While there are other models of remember/know data
and of the mirror effect, none have been applied previously
to both phenomena, and so it is unclear what their
predictions would be. It is possible that other models could
be extended to account for our results, e.g., by postulating
different thresholds for saying remember. However, we
consider these empirical and modeling results strong
support for our theory for several reasons: (1) Our
explanation comes from assumptions that have been tested
and confirmed in very different experimental paradigms; (2)
We made these predictions prior to conducting the
experiments; (3) We fit our data at a very fine grain size,
crossing pre-experimental exposure and experimental
presentation frequency; (4) We account for a great deal of
data using few parameters, many of which were estimated for
previous research in a different domain.

All this said, we think it unlikely that this theoretical
account is exactly right—no theory is likely to stand the
test of time without modification. Nevertheless, we think
this method of detailed fitting of behavioral data to precise
simulated predictions is a very profitable way for testing
theories.
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