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Abstract At the first annual Conference on Machine
Intelligence in Medical Imaging (C-MIMI), held in
September 2016, a conference session on medical image data
and datasets for machine learning identified multiple issues.
The common theme from attendees was that everyone partic-
ipating in medical image evaluation with machine learning is
data starved. There is an urgent need to find better ways to
collect, annotate, and reuse medical imaging data. Unique
domain issues with medical image datasets require further
study, development, and dissemination of best practices and
standards, and a coordinated effort among medical imaging
domain experts, medical imaging informaticists, government
and industry data scientists, and interested commercial, aca-
demic, and government entities. High-level attributes of reus-
able medical image datasets suitable to train, test, validate,
verify, and regulate ML products should be better described.
NIH and other government agencies should promote and,
where applicable, enforce, access to medical image datasets.
We should improve communication among medical imaging
domain experts, medical imaging informaticists, academic
clinical and basic science researchers, government and indus-
try data scientists, and interested commercial entities.

Keywords Machine learning .Medical imaging . Imaging
informatics . Medical data . Radiology .Medical image
datasets

Introduction

The first annual Conference on Machine Intelligence in
Medical Imaging (C-MIMI) was held on September 12–13,
2016, in Alexandria, Virginia, under the auspices of the
Society for Imaging Informatics in Medicine (SIIM). This
paper summarizes a conference session which discussed med-
ical image data and datasets for machine learning. It also re-
views unique domain issues with medical image datasets.

The amount and quality of training data are dominant
influencers on a machine learning (ML) model’s performance.
The common theme from all attendees was that everyone par-
ticipating in medical image evaluation with machine learning
is data starved. This is a particularly pressing problem in the
new era of deep learning [1]. There is an urgent need to find
ways to collect and reuse medical imaging data. Beyond this
universal primary sentiment, the session identified a diverse
set of challenges, described here.

The Ideal Dataset for Medical Imaging Machine
Learning

The ideal medical image dataset for an ML application has
adequate data volume, annotation, truth, and reusability. At
base, each medical imaging data object contains data ele-
ments, metadata, and an identifier. This combination repre-
sents an Bimaging examination.^ A collection of data objects
or dataset must have enough imaging examinations to answer
the question being asked. To maximize algorithm
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development, both the dataset itself and each imaging exam-
ination must be described and labeled accurately. Ground
truth, the classification label(s) of each imaging examination,
should be as accurate and reproducible as possible.
Furthermore, an ideal dataset is Findable, Accessible,
Interoperable, and Reusable (FAIR) [2]. In the coming sec-
tions, we will describe features of machine learning datasets.

Use Cases

Use case is a computer science term that defines actions or
steps performed by an actor and a system to achieve a partic-
ular goal [3]. When it comes to medical imaging ML, we tend
to think of use cases as clinical questions: Can image texture
be used to predict MGMT methylation status of brain tumors
[4], or can we distinguish frontal from lateral chest radio-
graphs? [5] Other use cases could be administrative, prioritize
work within a queue, or otherwise facilitate machine and/or
human workflow.

An ideal use case defines a project which is specific, mea-
surable, and achievable, and has well-defined users and value.
Use cases also help to illustrate standards, or the need for
standards. Creating a good ML proposal is similar to creating
a good research question—it should be carefully designed,
and measurable.

Use cases can be made for medical imaging datasets
themselves: appropriately annotated datasets that can be
used to train, test, validate, and verify machine learning
algorithms. The value to industry, academia, and the public
is that machine learning algorithms will improve healthcare
outcomes and reduce healthcare costs. Customers of these
datasets will be industry, academic, and governmental re-
searchers and regulatory bodies. Each customer will have
different aims including building machine learning prod-
ucts, gaining new insights from medical images beyond
human perception, and understanding how to verify and
regulate machine learning products that consume and pro-
cess medical image data.

Use cases for medical ML datasets vary considerably.
Academicians may be satisfied with small, tightly focused
datasets to efficiently answer focused questions that result
in publications and further funding. In contrast, industry
desires data of sufficient volume, variety, and quality to
make ML models that work in disparate online production
environments. Commercial medical image ML products
will need independent verification and potential FDA ap-
proval. Verification datasets should include data elements
that stress or even break an ML product, to understand its
limits, biases, and even potential ethical issues. The larger
data science and business analytics communities may fed-
erate and mine these datasets for new insights. As the value
of these datasets becomes better appreciated, data

repositories and data publishing entities, whether public,
commercial, or academic, will develop business cases
around these datasets. Machines will define their own use
cases; over time, this scenario may be the prime originator
of new use cases.

Machine learning competitions, such as those hosted on
http://kaggle.com, may define distinctive dataset use cases
depending on competition goals. Datasets may be close to
their raw form, or in other cases transformed into an
anonymized feature matrix easily consumed by standard
supervised machine learning algorithms. Competitions
that use medical image datasets typically transform data:
limit to a relevant subset of rows, alter or remove columns,
choose an error metric, split the data into train/validation/
test sets, and try to identify and mitigate potential sources
of data leakage. In the next section, we will shift to
describing metadata important to machine learning
datasets.

Dataset Specifications—Metadata

Metadata for medical imaging ML include data generated
by an imaging modality, prescribed exam codes and de-
scription data based on an order, and annotations indicating
the content and/or anatomy of a particular image. Table 1
shows examples of commonly available metadata ele-
ments. As shown in Table 1, there are a variety of original
sources of metadata and associated storage mechanisms.
There are a variety of challenges to making metadata easily
understood by a computer or algorithm. These challenges
arise at both the institutional level and when sharing data
between institutions.

Consider the procedure description for an MR study
performed to evaluate rectal cancer staging. Today, some
centers would consider this an MRI Pelvis Without
Contrast, and other centers would have a more specific
description such as MRI Rectal Cancer Staging. It is rela-
tively easy for a human reading a radiology report to iden-
tify these discrepancies. Furthermore, it is likely that the
centers that have more specific study descriptions started
with something more generic, so the task of retrieving all
studies related to rectal cancer screening from an archive
requires institutional knowledge, and takes longer (and
costs more) than one might expect.

An additional wrinkle with exchanging data across in-
stitutions is study description heterogeneity between insti-
tutions. This can be addressed by asking all institutions to
utilize institutional knowledge to map local study descrip-
tions to the RadLex playbook [6]. This type of mapping is
reasonable for focused use cases, but becomes unwieldy
when trying to build larger federated datasets without au-
tomated tools [7].
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Dataset Specifications—Metadata—DICOM
Header

Digital Imaging and Communications in Medicine (DICOM)
is the standard file format definition and communication pro-
file for radiological and many other medical images. The
DICOM file format contains required and optional metadata
fields which describe the patient, exam details, and, in many
cases, individual image details. The individual image details
described in DICOM metadata typically relate to technical
aspects of the image (e.g., rows, columns, modality, manufac-
turer) rather than an inclusion of a particular organ, or diag-
nosis. The major benefit of DICOM is that it provides a stan-
dard for medical image storage and a set of network operations
for transmission and retrieval. In practice, however, data fields
may be filled incorrectly or left blank, somewith interoperable
and others with proprietary data [8]. While DICOM issues
usually do not interfere with clinical image viewing, they
may cause complex problems when federating datasets. In
some instances, de-identifying datasets may result in the re-
moval of metadata that is required for advanced processing. In
competitions, occasionally DICOM metadata quirks improve
algorithm performance, but are generalizably applicable out-
side the competition.

Dataset Specifications—Metadata—Private Tags

DICOM allows private data elements, and these are common-
ly used by individual OEMs and individual healthcare institu-
tions to enable distinctive workflow. Occasionally, these in-
clude personal health information (PHI), pathology-related
identifiers, or specific research or clinical protocols.

The DICOM standard is rich with specifications that are
underutilized by vendors. One such specification is structured
reporting (DICOM-SR) [9–11]; hopefully, this will come into
greater use in the future for storing a particular type of meta-
data—annotations.

Dataset Specifications—Metadata—Annotations

For this paper, we consider annotations as a special class of
metadata that pertain to the diagnoses, or anatomical or path-
ological regions contained within a particular image (Fig. 1).
Challenges with annotations fall into main two categories:
interoperability and ground truth.

Computer-based image recognition and analysis require
high-quality, annotated datasets that cover the entities described
in the use case, including normal cases and those with

Table 1 Examples of commonly available metadata

Element Source Example Storage location

PatientsName EHR/ADT MARY^JONES^B DICOM header

PatientID EHR/ADT 1232391-3 DICOM header

StudyDescription RIS CT BRAIN W/O DICOM header

Rows Imaging modality 512 DICOM header

Columns Imaging modality 512 DICOM header

BitsStored Imaging modality 12 DICOM header

Key Images Radiologist DICOM Key Object

Measurement Radiologist Various (AIM, DICOM PS, DICOM SR)

ADT admission, discharge, and transfer, EHR electronic health record, RIS radiology information system
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pathology ranging from very subtle findings to very severe.
Well-annotated datasets with representative label distribution
are crucial to training accurate, generalizable models.
Additionally, due to the large volume of image data required
for many ML projects, new annotation tools focused on effi-
ciency and rapid annotation are needed. Keen researchers will
focus on producing datasets in a manner that allows their robust
use in algorithm development, validation, and certification.

Unfortunately, and not without effort by several parties,
there is no universally applied syntax, format, or semantic
for radiologic image annotation and markup. Commercial
vendors use proprietary annotations and markups, few of
which are interoperable. The Annotation and Image Markup
(AIM) standard has been successful as a research tool, but has
not been widely implemented clinically [12]. DICOM presen-
tation state objects are a competing standard for storing and
transmitting annotations, which provides less functionality
than AIM. Currently, this means that measurements or regions
of interest made in one vendor’s workstation will not appear
when the images are moved and viewed on a different ven-
dor’s viewing platform, and labels may have different mean-
ings or definitions without use of some unified or standardized
vocabulary. Annotations overlaid on imagesmay include PHI,
clinical or pathology information, arrows, question marks, or
other potentially important but not easily discoverable or un-
derstandable data.

Robust solutions to segment anatomic structures are now
available for many organs, but the process is not standardized.
Segmentation annotations are rarely transferable among ven-
dors. Standards to document how a segmentation was per-
formed do not exist, or are proprietary.

Universally accepted methods to annotate ground truth of
medical images have not been developed. Where different
definitions of ground truth are used, the advantages and dis-
advantages of labeling methods are yet to be evaluated. The
process of ground truth annotation currently includes radiolo-
gists’ reports, pathology reports, surgical reports,
crowdsourced annotation, and clinical follow-up. Depending
on the clinical question, clinical follow-up may be fromweeks
to years.

In practice, medicine is more ambiguous than commonly
presented. Many features found in any single image exist on a
continuum. Thus, throughout medicine, clusters of findings
are arbitrarily grouped into categories, such as Bnormal,^ Bnot
quite normal,^ Bsuspicious for being abnormal,^ or Bdefinitely
abnormal.^ Cascades of these types of grading systems inter-
act with each other. For example, mammogram findings are
grouped into seven categories, from 0 to 6, depending on the
degree of suspicion. Category 4 is suspicious findings that
may require biopsy. In turn, pathology description of the bi-
opsy is similarly categorized along a spectrum of multiple
categories.

Radiologists’ reports are not definitive expressions of
ground truth [13–16]. A retrospective 20-year literature re-
view in 2001 suggested that the level of significant radiology
error ranged between 2 and 20% [17]. This is not limited to
radiology; a Mayo clinic study comparing clinical diagnoses
with postmortem autopsies reported that a major diagnosis
was missed clinically in 26% of patients [18].

Even using radiology reports to annotate Bnormal,^ or Bno
disease,^ is problematic. For example, one study showed that
90% of lung cancers detected on radiographs were visible in
retrospect on previous examinations [19]. This startling result
did not mean radiologists were terrible. Rather, in some cases,
lesions retrospectively noted on original exams were small,
indistinct, or otherwise had features of normal structures or
incidental findings. Even larger lesions are missed, however; a
review of non-small cell lung cancer diagnosed on radio-
graphs showed that 19% of lesions were missed, and the me-
dian diameter of missed nodules was 16 mm [20].

Dataset Specifications—Pixel Data

Historically, images used in object recognition ML have rela-
tively small matrix size, to decrease computation time. In con-
trast, medical images often have very high dimensionality. In
clinical practice, radiology image matrices may vary from
64 × 64 for some nuclear medicine exams, to over
4000 × 5000 for some mammogram images. CT and MRI
scans, which typically are 512 × 512 and 256 × 256, respec-
tively, for each image, may have well over 1000 images per
exam. The number of extracted features may be very large. In

Fig. 1 Three different types of image annotations: anatomic region of
interest segmentations (a), pathology region of interest segmentation such
as this urinary calculus (b), and measurements (c)

J Digit Imaging (2017) 30:392–399 395



order to train a network fully, each algorithm parameter re-
quires at least several pixels to compute features.

Radiographs and fluoroscopic pixels represent 2D informa-
tion, while CT, MR, PET, and ultrasound pixels represent 3D
voxels. Some exams acquire time-dependent, 4D, data.
Nuclear medicine has multi-dimensional, multi-frame images.
Among many variables, voxel characteristics may vary based
on patient characteristics such as size, shape, amount of fat,
and patient movement; image acquisition parameters; specific
vendor or machine acquisition, reconstruction, noise reduc-
tion, smoothing, and compression techniques; signal-to-
noise ratio; and voxel size and shape. For CT, voxel value is
measured in Hounsfield units, which are calibrated based on
tissue characteristics, with water having a value of 0, and air
−1000. For virtually all other medical imaging techniques, no
standard gray-scale relationship exists. Raw image data may
be acquired in forms uninterpretable by human eyes. Raw k-
space data from MRI looks to the eye like a starburst.
Commonly, k-space data are transformed via Fourier trans-
form into the images one commonly associates with MRI.
There is no reason why ML could not do as well, or better,
finding textural patterns in k-space data rather than from typ-
ical images that humans view. Raw data manipulation on a
similar scale occurs in many other types of medical imaging.
Raw datasets often are large. Most raw data are deleted at the
time of imaging or soon after based on local disk storage
capacity, so for practical purposes datasets of multiple cases
of raw data are unavailable.

While texture analysis is widely used for ML image anal-
ysis, it is rarely specifically evaluated by radiologists, and
seldom annotated or documented in their reports. There are
no standards for image texture, and no accepted descriptions
of typical anatomic object texture [1].

Most image noise is unstructured, but certain machines or
settings generate structured noise. Artifacts occur in every
setting; some are dramatic enough that theymay bementioned
in radiology reports or otherwise annotated, but in many cases
radiologists and technologists simply discount them without
mention. Artifacts can be specific to modalities, vendors, in-
dividual machines, or even unique situations such as imaging
device location (e.g., ICU artifacts on ultrasound) or embed-
ded medical appliances.

Dataset Specifications—Post Processing

Post processing includes such things as multi-planar reformats
or 3D reconstructions; fusion of images from different modal-
ities, time frames, or acquisition parameters; image filtering;
segmentation; physiologic function; and time and/or move-
ment analysis of objects. Some but not all post-processing
algorithms have been studied for accuracy, reproducibility,
and correlation among different vendors [21]. For example,

a comparison of four commercially available semiautomatic
packages for carotid artery stenosis measurement on CT angi-
ography showed good correlation among the packages, but
variable agreement for exact stenosis [22]. Other algorithms
such as CT perfusion have shown large value variability
among vendors [23].

Dataset Specifications—Sample Size

Sample size needed to trainML algorithms depends on factors
including use case; performance level desired; input features;
algorithm type and architecture; number of algorithm param-
eters; and data quality, including annotation quality, feature
distribution, and noise in the training data and extracted fea-
tures. Larger image matrix size, with more pixels, increases
algorithm architecture and requires a larger training sample.
The rule of 10 is commonly used, suggesting that a sample
size 10 times the number of an algorithm’s parameters is a
reasonable estimate of sample size needed for training.
Research on estimating data sample size to train ML algo-
rithms is ongoing [24–27].

Depending on the question to be answered and the meth-
odology used, training image analysis ML algorithms may
require large datasets. Such a large dataset exists for visible
light photographs: ImageNet, the dataset for many computer
image recognition competitions, has over 14 million catego-
rized images in 21,000 indexed synsets [28]. Many ImageNet
photographs are of low resolution and have relatively low
dimensionality.

In contrast, most publically available medical image
datasets have tens or hundreds of cases, and datasets with
more than 5000 well-annotated cases are rare. In the USA,
individual healthcare institutions may have 103 up to rarely
107 of an exam type. These common radiology exam types,
for example, chest radiographs, unenhanced brain CTs, mam-
mograms, and abdominal CTs, are often high-dimensional
data due to variations in pathology, technique, radiology in-
terpretation, patient population, and clinical setting.

Complete imaging examinations are high-dimensional
spaces, and datasets of these examinations provide relatively
sparse available data. This is challenging for any method that
requires statistical significance, where the needed sample size
often grows exponentially with dimensionality. In high-
dimensional data, many objects appear to be sparse and dis-
similar, which confounds common data organization and
search strategies based on detecting areas where objects form
groups with similar properties. In addition to absolute sample
size, class imbalance affects ML training. This is relevant with
medical data if real-world datasets contain only rare target
class examples of specific pathology, particularly when that
pathology has dramatic clinical consequences and should not
be missed.
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For tightly focused use cases and algorithms with relatively
few parameters, however, sample sizes as small as hundreds
of cases may be adequate for training [4]. Because of this,
much current academic medical image analysis ML research
occurs this way.

The required number of unique, original exams can be
decreased with hybrid approaches using augmentation and/
or pre-training with selected features. Augmentation uses
techniques to modify the dataset while keeping the key fea-
tures the algorithm needs. For images, this commonly in-
volves rotating, mirroring, or adjusting contrast or grayscale
of images or parts of images such as a mass or other pathology,
to generate new images from originals. For radiology exami-
nations, algorithms may be pre-trained on other image
datasets, even non-medical ones, in a process known as trans-
fer learning [5, 29].

Medical Image Dataset Specifications—Regulatory
and Business

In the USA, HIPAA mandates that unless specifically autho-
rized by the patient to release patient-identifiable data, all PHI
must be removed. HIPAA specifies 18 different identifiers that
must be removed, including Bfull-face photographs and any
comparable images.^Depending on the body part imaged, 3D
reconstruction of radiology exams into parts of a patient’s
image is possible. On the other hand, de-identification of
datasets may result in the removal of metadata that is required
for advanced processing.

The NIH requires applicants/grantees for most studies to
submit a plan to share their final research data, and encourages
all applicants to include a plan to address data sharing or to
state why data sharing is not possible [10, 30]. Datasets may
be shared by permitting access to a specific source or by shar-
ing datasets through NIH data repositories [31]. Despite these
requirements, applicable medical image datasets may not be
readily available. C-MIMI participants universally felt that
NIH should enforce adherence to data sharing regulations.

Though radiology societies express interest to develop med-
ical image dataset production, storage, and management infra-
structure, there is not yet a viable business case for them given
the expense and resource requirements to build and maintain.

The FDA’s Medical Device Development Tools (MDDT)
program is a way for the FDA to qualify tools that medical
device sponsors can use in the development and evaluation of
medical devices. Qualification means that the FDA has eval-
uated the tool and concurs with available supporting evidence
that the tool produces scientifically plausible measurements
and works as intended within the specified context of use
[32]. The FDA may be receptive to data submission to FDA
for incorporation into the biomarker MDDT pilot, and/or sub-
mit tools to manage datasets appropriate for ML.

For individual healthcare enterprises, patient privacy, busi-
ness case, and logistical issues are barriers to releasing or
otherwise using medical images. As these institutions realize
the value of those data, and the potential value of participating
in ML model development, some of them are starting to pur-
sue business relationships to expose data to data science busi-
nesses outside their firewalls. These same issues add complex-
ity to any proposed large, federated, commercially or publi-
cally available medical image datasets with exams acquired
from disparate healthcare institutions. Other countries with
more centralized image storage, interoperable medical image
management, and different regulatory and legal environments
may provide lower barriers to data access.

Because of HIPAA and legal requirements on data privacy,
as well as intellectual property issues, academic and other
healthcare settings are starting to host, test, and do research
with commercial algorithms inside their firewalls. This con-
cept of bringing algorithms to the data, rather than data to the
algorithm, is rapidly gaining favor. It allows these settings to
keep control over their data, and still permit industry to move
forward. One consideration with this approach is if institutions
should keep back some of the data to use for testing, valida-
tion, and verification and, if so, how it is managed.

Who owns radiology data is not legally defined in most
states. HIPAA does not specify, and most states have no leg-
islation regarding medical data ownership [33]. Obtaining pa-
tient consent for secondary reuse of clinical data is often dif-
ficult and impractical.

Medical Image Dataset Specifications—Cataloging
and Discovery

Widely used standards to catalog and discover medical image
datasets do not exist, nor does a framework to catalog datasets
specific to ML. Currently, mechanics of dataset discovery,
collection, curation, access, and use are typically one-off so-
lutions related to a specific research project. Medical multi-
media metadata are often dirty and inconsistent. Some require
high-level-domain expertise to understand, and others may
require institutional knowledge unique to the originating site.
Table 2 describes high-level metadata needed to catalog and
discover medical image datasets. Many of these metadata are
semantic. For example, under image type, if the modality is
MRI, further data ideally would include details such as ma-
chine vendor, machine strength, model number, coil details,
and contrast type and amount.

Recently, the scientific data community has proposed the
FAIR guiding principles to support reuse of scholarly data [2,
34]. These guiding principles—Findability, Accessibility,
Interoperability, and Reusability—should be no different for
medical imaging ML datasets and are summarized in Table 3.
Additionally, there is good reason to suggesting that the FAIR
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principles should apply not only to ML datasets but also to
tools, algorithms, and workflows created for ML.

Summary

The dominant influence on a machine learning (ML) model’s
performance is often the amount and quality of training data.
Attendees of the inaugural C-MIMI expressed the common
theme that everyone participating in medical image evaluation
with ML is data starved. There is an urgent need to find ways
to collect, annotate, discover, and, ideally, reuse adequate
amounts of medical imaging data.

Action items, and priority research topics, for this field of
study include the following:

& Describe, via a whitepaper, the high-level attributes of
reusable medical image datasets suitable to train, test, val-
idate, verify, and regulate ML products [35]

& Describe common categories of use cases for medical im-
age datasets, and understand unique dataset attributes ap-
plicable to each

& Describe the metadata, framework, and standards needed
to catalog and discover datasets of medical images appro-
priate for ML.

& Understand and describe business cases and models for
medical image datasets

& Work with NIH and other government agencies to pro-
mote and, where applicable, enforce, access to medical
image datasets

& Improve communication among medical imaging domain
experts, medical imaging informaticists, government and
industry data scientists, and interested commercial entities

At the second annual Conference on Machine Intelligence
in Medical Imaging (C-MIMI) meeting, to be held on

Table 3 The FAIR guiding principles for scientific data management—
Findability, Accessibility, Interoperability, and Reusability (https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC4792175/, Creative Commons
License)

The FAIR guiding principles

To be Findable:

F1. (Meta)data are assigned a globally unique and persistent identifier.

F2. Data are described with rich metadata (defined by R1 below).

F3. Metadata clearly and explicitly include the identifier of the data it
describes.

F4. (Meta)data are registered or indexed in a searchable resource.

To be Accessible:

A1. (Meta)data are retrievable by their identifier using a standardized
communications protocol.

A1.1 The protocol is open, free, and universally implementable.

A1.2 The protocol allows for an authentication and authorization
procedure, where necessary.

A2. Metadata are accessible, even when the data are no longer
available.

To be Interoperable:

I1. (Meta)data use a formal, accessible, shared, and broadly applicable
language for knowledge representation.

I2. (Meta)data use vocabularies that follow FAIR principles.

I3. (Meta)data include qualified references to other (meta)data.

To be Reusable:

R1. (Meta)data are richly described with a plurality of accurate and
relevant attributes.

R1.1. (Meta)data are released with a clear and accessible data usage
license.

R1.2. (Meta)data are associated with detailed provenance.

R1.3. (Meta)data meet domain-relevant community standards.

Table 2 Baseline metadata to catalog medical image data

1. Image types

a. Modality

b. Resolution

c. Number of images total and by series

2. Number of imaging examinations

3. Image examination source(s)

4. Image acquisition parameters

5. Image storage parameters (e.g., compression amount and type)

6. Annotation

a. Type

b. What is annotated, and how

7. Context

8. How is ground truth defined and labeled

9. Associated data

a. Demographic

b. Clinical

c. Lab

d. Genomic

e. Timeline

f. Social media

10. Date range of image exam acquisition

11. Log of dataset use

12. Who owns the data

13. Who is responsible for the data

14. Allowable usage

15. Access parameters

a. Accessibility

b. Costs and business agreements

16. Case distribution

a. % Normals vs abnormals

b. Summary of abnormal examinations

i. Number of examinations with each pathology

Many of these are semantic, with further subcategories not listed here
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September 26–27, 2017, at Johns Hopkins in Baltimore,
Maryland, and at the SIIM Annual Meeting on June 1–3,
2017, in Pittsburgh, Pennsylvania, these action items will be
reviewed further, as well as continuing the discussion on med-
ical image datasets for ML.
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