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In this study, the combined effects of geometrical distribution and geomechanical deformation of frac-
ture networks on fluid flow through fractured geological media are investigated numerically. We
consider a finite-sized model domain in which the geometry of fracture systems follows a power-law
length scaling. The geomechanical response of the fractured rock is simulated using a hybrid finite-
discrete element model, which can capture the deformation of intact rocks, the interaction of matrix
blocks, the displacement of discrete fractures and the propagation of new cracks. Under far-field stress
loading, the locally variable stress distribution in the fractured rock leads to a stress-dependent variable
aperture field controlled by compression-induced closure and shear-induced dilatancy of rough frac-
tures. The equivalent permeability of the deformed fractured rock is calculated by solving for the
fracture-matrix flow considering the cubic relationship between fracture aperture and flow rate at each
local fracture segment. We report that the geometrical connectivity of fracture networks plays a critical
role in the hydromechanical processes in fractured rocks. A well-connected fracture system under a high
stress ratio condition exhibits intense frictional sliding and large fracture dilation/opening, leading to
greater rock mass permeability. However, a disconnected fracture network accommodates much less
fracture shearing and opening, and has much lower bulk permeability. We further propose an analytical
solution for the relationship between the equivalent permeability of fractured rocks and the connectivity
metric (i.e. percolation parameter) of fracture networks, which yields an excellent match to the nu-
merical results. We infer that fluid flow through a well-connected system is governed by traversing
channels (forming an “in parallel” architecture) and thus equivalent permeability is sensitive to stress
loading (due to stress-dependent fracture permeability), whilst fluid flow through a disconnected system
is more ruled by matrix (linking isolated clusters “in series”) and has much less stress dependency.
� 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Natural fractures often form complex networks in the Earth’s
crust and serve as important pathways for fluid migration in sub-
surface geological media (Tsang and Neretnieks, 1998). The
geometrical distribution of these natural discontinuities controls
(X. Wang).
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
the global connectivity of passage systems (Bonnet et al., 2001),
while the geomechanical deformation of contacting fracture sur-
faces under in situ stress loading dominates the local transmissivity
of individual channels (Rutqvist and Stephansson, 2003). Thus, the
understanding of fluid flow in fractured geological formations re-
quires a comprehensive characterisation of both the geometrical
properties and geomechanical responses of the embedded natural
fracture networks (Zimmerman and Main, 2004; Lei et al., 2017a).

Fracture patterns are spatially organised by mechanical in-
teractions that emerge during their growth (Pollard and Aydin,
1988), which creates a hierarchical geometry exhibiting long-
range correlations from macroscale frameworks to microscale
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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fabrics (Barton, 1995). Such geometrical complexities are often
depicted in terms of fracture size, density, orientation and aper-
ture as well as connectivity (Bonnet et al., 2001). By mimicking the
distributions of these properties following statistical/stochastic
principles, synthetic discrete fracture networks are often gener-
ated to represent natural discontinuity systems (Dershowitz and
Einstein, 1988), based on which subsurface fluid flow properties
and processes can be studied (Long et al., 1982; Long and Billaux,
1987; Berkowitz, 2002; Min et al., 2004a; Wang et al., 2017). Many
theoretical and numerical investigations have suggested that the
hydraulic connectivity of fracture networks, embedded in
impervious or low permeability rocks, crucially controls the bulk
permeability and fluid movements (Hestir and Long, 1990;
Berkowitz, 1995; Bour and Davy, 1997, 1998; Renshaw, 1999; de
Dreuzy et al., 2001a; Liu et al., 2016). In addition, the non-trivial
impacts of variable fracture apertures on fluid flow have been
analysed via making ad hoc hypotheses for their statistics (de
Dreuzy et al., 2001b; Baghbanan and Jing, 2007; Klimczak et al.,
2010), whereas the sensitive nature of fracture openings in
response to geomechanical processes was often omitted.

The presence of natural fractures can induce strong local stress
perturbations in geological media subjected to far-field stress
loading (Lei and Gao, 2018, 2019). The locally varying stress dis-
tribution leads to variable normal and/or shear forces across
fracture walls of widely-ranging sizes and orientations, producing
a variety of fracture responses such as closure, sliding, dilatancy
and propagation (Min et al., 2004b; Latham et al., 2013; Lei et al.,
2016). Since the conductivity of fractures is critically dependent
on the third power of fracture apertures (Witherspoon et al.,
1980), these geomechanical processes accommodated in frac-
tures can considerably affect the bulk hydrological properties of
fractured porous media, especially if the matrix is much less
permeable than fractures (Rutqvist, 2015). Overburden-induced
confinement of fractured rocks tends to reduce fracture aper-
tures and suppress fluid flow (Bandis et al., 1983; Barton et al.,
1985), leading to the general trend of decreased rock mass
permeability with increased formation depth (Rutqvist and
Stephansson, 2003). On the other hand, large differential
stresses imposed within the critically stressed crust can promote
sliding and dilatancy along rough fractures, resulting in flow
localisation and permeability enhancement, as revealed by many
numerical results (Sanderson and Zhang, 1999; Min et al., 2004b;
Baghbanan and Jing, 2008; Latham et al., 2013; Lei et al., 2014,
2015; 2017b; Lang et al., 2018; Kang et al., 2019; Jiang et al.,
2019). However, these previous modelling studies mainly
focused on sophisticated geomechanical processes while placing
little emphasis on the role of geometrical properties, and there-
fore the analysis was usually only based on a specifically selected
or generated fracture network.

In reviewing the extensive studies in the literature about hy-
dromechanical processes in fractured rocks (Rutqvist and
Stephansson, 2003; Lei et al., 2017a), we identify that little effort
has been devoted to understanding the mutual effects of fracture
network geometry and geomechanics on subsurface fluid flow as
well as distinguishing the relative importance of each process.
Thus, in this paper, we aim to use the state-of-the-art numerical
simulation to gain insights into how these two aspects interactively
affect the hydrological properties of fractured rocks. The remainder
of the paper is organised as follows. Section 2 describes a set of
approaches for modelling fracture network geometry, solid skel-
eton deformation, rough fracture behaviour and fluid flow field.
Section 3 presents the model setup and boundary conditions for
numerical experiments, with the numerical results further eluci-
dated in Section 4. Finally, a discussion is given and conclusions are
drawn in Section 5.
2. Methodology

2.1. Fracture network model

Natural fracture systems often exhibit a broad range of fracture
lengths that can be described by a power-law statistical model with
a density function given as (Bonnet et al., 2001; Lei and Wang,
2016):

nðl; LÞ ¼ aLDl�a ðl˛ ½lmin; lmax�Þ (1)

where l is the fracture length, L is the domain size, a is the power-
law length exponent,D is the fractal dimension, and a is the density
term. The only intrinsic characteristic length scales in this model
are the smallest and largest fracture lengths, i.e. lmin and lmax,
respectively. In numerical simulations, L is the scale of the model-
ling domain, which usually meets lmin << L << lmax. Extensive
outcrop data suggest that D value generally varies between 1.5 and
2, and a falls between 1.5 and 3.5 (Bonnet et al., 2001).

The fracture intensity g (also known as the mass density), i.e.
total length of fractures per unit area, is related to the first moment
of the density distribution of fracture lengths as

g ¼ 1
L2

ð
AL

nðl; LÞl0dl (2)

where l0 denotes the fracture length included in the domain of an
area AL¼ L2. The percolation parameter p as a connectivity metric of
fracture networks is given by (Bour and Davy, 1997):

p ¼ 1
L2

ð
AL

nðl; LÞl02dl (3)

The higher the p is, the more connected the system is. The
network is statistically connected if p is greater than the percolation
threshold pc, whose value is in general scale-invariant and within a
narrow range between 5 and 7, i.e. pc ¼ 6 � 1 for two-dimensional
(2D) random fracture networks with D ¼ 2 (Bour and Davy, 1997).
2.2. Geomechanical model

The geomechanical model is based on a hybrid finite-discrete
element method (FDEM) (Munjiza, 2004), which can realistically
capture the stress/strain evolution in intact rocks, interaction be-
tween matrix blocks, deformation of pre-existing fractures, and
propagation of new cracks (Lei et al., 2017a). The FDEM model
represents 2D fractured rock using an unstructured, fully-
discontinuous mesh of three-node triangular finite elements,
which are linked by four-node joint elements (see Fig. 1). There are
two types of joint elements: unbroken joint elements inside the
matrix and broken joint elements along fractures (Lei et al., 2016).
The joint elements (either broken or unbroken) are created and
embedded between the edges of triangular element pairs before
the numerical simulation and no remeshing is performed during
later computation.

Themotion of finite elements is governed by the forces acting on
the elemental nodes (Munjiza, 2004):

M €xþ f int ¼ f ext (4)

where M is the lumped nodal mass matrix; x is the vector of nodal
displacements; fint is the internal nodal force induced by the
deformation of triangular elements; and fext is the external nodal
force including external load fl contributed by boundary conditions



Fig. 1. Representation of a 2D fractured rock using an unstructured, fully-
discontinuous mesh of three-node triangular finite elements linked by four-node
joint elements.
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and body forces, cohesive bonding force fb caused by the defor-
mation of unbroken joint elements, and contact force fc generated
by the contact interaction via broken joint elements. The defor-
mation of intact rocks is captured by linear-elastic constant-strain
finite elements with the continuity constrained by the bonding
forces of unbroken joint elements (Munjiza et al., 1999). The
interaction of discrete matrix bodies is calculated based on the
penetration of finite elements via broken joint elements (Munjiza
and Andrews, 2000). The elasto-plastic fracturing in formation
rocks is modelled by a smeared crack (i.e. cohesive zone) method
that can capture the nonlinear stress-strain behaviour of the plastic
zone ahead of each fracture tip (Munjiza et al., 1999). The equations
of motion of the FDEM model are solved through an explicit time
integration scheme based on the forward Euler method.
2.3. Fracture constitutive model

The closure of rock fractures under compression is calculated
based on a hyperbolic relation (Bandis et al., 1983) (Fig. 2a):

vn ¼ snvm
kn0vm þ sn

(5)

where vn is the normal closure, sn is the effective normal
compressive stress derived from the Cauchy stress tensor of adja-
cent finite elements, kn0 is the initial normal stiffness, and vm is the
maximum allowable closure.
Fig. 2. Fracture deformation model: (a) Normal closure vn as a function of effective norma
displacement vs as a function of shear displacement u.
The shear deformation of rock fractures is calculated based on
an elasto-plastic constitutive model with strain-softening
(Goodman, 1976; Saeb and Amadei, 1992) (Fig. 2b). In the elastic
phase, the shear stress s increases linearly with the shear
displacement u, and the slope of the stress-displacement curve is
given by the shear stiffness ks. During this stage, the opposing
fracture walls ride over each other’s asperities, resulting in dila-
tional displacement in the normal direction (Fig. 2c). The peak
shear stress sp is eventually reached when the displacement ar-
rives at the peak shear displacement up, beyond which the as-
perities begin to shear off and irreversible damage on the surfaces
starts to occur. If the fracture continues to slide, the shear stress
decreases linearly to the residual shear stress sr, during which the
asperities are crushed and sheared off and the dilation continues.
Finally, when the displacement exceeds the residual displacement
ur, the shear stress remains constant (i.e. s ¼ sr), and no further
dilation develops. The dependency of the shear behaviour of
fractures on normal stress loading is described using a constant
displacement model characterised with fixed up and ur values
(Goodman, 1976).

The peak shear stress sp is given by (Ladanyi and Archambault,
1969; Saeb and Amadei, 1992):

sp ¼ sn tanðfb þfiÞð1� asÞ þ asc (6)

where as is the proportion of total fracture area sheared through
asperities; fi is the dilation angle; c is the shear strength of the
asperity (i.e. cohesion of the intact rock); and fb is the basic friction
angle which, for unweathered conditions, can be substituted using
the residual friction angle fr (Barton and Choubey, 1977). If sn does
not exceed the uniaxial compressive strength of the intact rock su,
the values of as and fi are respectively given as (Ladanyi and
Archambault, 1969):

as ¼ 1�
�
1� sn

su

�m1

(7)

tan fi ¼
8<
:

�
1� sn

su

�m2

tan fi0 ðu � urÞ

0 ðu > urÞ
(8)

where fi0 is the initial dilation angle when sn ¼ 0; and m1 and m2
are the empirical parameters with suggested values of 1.5 and 4,
respectively. The residual shear stress sr is given as (Barton and
Choubey, 1977):
l stress sn; (b) Shear stress s as a function of shear displacement u; and (c) Dilational



Fig. 3. The geometry of generated fracture networks (domain size L ¼ 10 m) associated with various power-law length exponent a and mean fracture intensity g. The percolation
parameter p of each network is calculated for each network. Note that ten realisations are created for each combination of a and g, but only one realisation for each case is shown here.
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sr ¼ sn tan fr (9)
The dilational displacement vs under a constant normal stress
condition is related to the shear displacement in an incremental
form as (Saeb and Amadei, 1992):

dvs ¼ � tan fidu (10)

The fracture aperture h under coupled normal and shear load-
ings is thus given by (Lei et al., 2016):

h ¼
�
h0 þw ðsn < 0Þ
h0 � vn � vs ðsn � 0Þ (11)

where h0 is the initial aperture, andw is the separation of opposing
fracture walls if the fracture is under tension. The local fracture
permeability is then calculated based on the cubic law as h2/12
(Witherspoon et al., 1980).
2.4. Fluid flow model

Fluid flow through fractured rock with multiple intersecting
fractures and permeable matrix is further solved. Single-phase
steady-state flow of incompressible fluid with constant viscosity
through porous media, in absence of sources and sinks, is governed
by the continuity equation and Darcy’s law, which is reduced to a
Laplace equation as

V , ðkVPÞ ¼ 0 (12)

where k is the intrinsic and isotropic permeability of the porous
media with local variability permitted, and P is the fluid pressure
calculated at the nodes of unstructured finite element grids. The
element-wise constant barycentric velocity is resolved based on
the pressure gradient vector field by applying Darcy’s law given by

ue ¼ � ke

m
VPe (13)

where ue is the vector field of element-wise constant velocities; Pe

is the local element pressure field; m is the dynamic fluid viscosity;
and ke is the local permeability of a matrix volumetric element with
an assumed constant value or a lower dimensional fracture element
having a stress-dependent value, i.e. h2/12. By applying a prescribed
macroscopic pressure differential on each pair of opposite
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boundary surfaces with no-flow conditions on the remaining ones
parallel to the flow direction, the pressure diffusion is computed for
all the fracture and matrix elements of the entire domain. The
equivalent permeability of the fractured media is then derived
using element volume weighted averaging of pressure gradients
and fluxes:

1
V

X
e

ð
Ve

uej dV
e ¼ kij

m

1
V

X
e

ð
Ve

vPe

vxi
dVe (14)

where uej is the element-wise barycentric velocity in the j direction,
vPe/vxi is the element pressure gradient along xi, and kij is the
component of the permeability tensor.

3. Model setup

In this study, we generate a series of 2D synthetic fracture
networks in a square domain of size L ¼ 10 m (Fig. 3). The location
and orientation of fractures are assumed purely random, i.e.
nominally homogeneous (i.e. D ¼ 2) and isotropic. The fracture
lengths follow the power-law scaling, with the bounds given by
lmin ¼ L/50 ¼ 0.2 m and lmax ¼ 50L ¼ 500 m. We explore five
different length exponent cases, i.e. a ¼ 1.5, 2, 2.5, 3 and 3.5, and
four mean fracture intensity scenarios, i.e. g ¼ 1.25 m�1, 2.5 m�1,
3.75 m�1 and 5 m�1. For each combination of a and g, ten re-
alizations are generated, with their p values also derived. As shown
in Fig. 3, when a � 2, the system is dominated by domain-sized,
very large fractures; when a � 3, the system mainly consists of
small fractures; when 2< a< 3, both large and small fractures tend
to be important. It can also be noted that an increased a leads to a
reduction in the geometrical connectivity, i.e. decreased p. The
fracture networks generated here cover the scenarios of below
(p < 5), around (5 � p � 7) and beyond (p > 7) the percolation
threshold, representing the disconnected, transitional and con-
nected regimes, respectively.

The assumedmaterial properties of the fractured rocks are given
in Table 1, based on the typical ranges for crystalline rocks in the
literature (Lama and Vutukuri, 1978; Bandis et al., 1983; Zoback,
2007). The energy release rates are estimated based on empirical
correlations (Zhang, 2002; Jin et al., 2011). The problem domain
containing distributed fractures is discretised using an unstruc-
tured mesh with an average element size of 0.05 m. The penalty
term and damping coefficient are chosen to be 500 GPa and
2 � 105 kg/(m s), respectively, based on the recommendations in
Table 1
Material properties of the fractured rocks (Lama and Vutukuri, 1978; Bandis et al.,
1983; Zoback, 2007).

Material Property Unit Value

Intact rocks Density, r kg/m3 2700
Young’s modulus, E GPa 50
Poisson’s ratio, n 0.25
Internal friction angle, fint

� 45
Tensile strength, ft MPa 20
Cohesion, c MPa 40
Uniaxial compressive strength, su MPa 193.1
Mode I energy release rate, GI J/m2 158.4
Mode II energy release rate, GII J/m2 198
Matrix permeability, km m2 1 � 10�18

Fractures Initial aperture, h0 mm 0.1
Maximum allowable closure, vm mm 0.09
Initial normal stiffness, kn0 GPa/m 50
Residual friction angle, fr

� 31
Peak shear displacement, up mm 1
Residual shear displacement, ur mm 3
Initial dilation angle, fi0

� 10
the literature (Munjiza, 2004; Mahabadi, 2012). Effective far-field
stresses are loaded orthogonally to the model (Fig. 4a), and we
consider three different scenarios: (i) Sx ¼ 5 MPa, Sy ¼ 5 MPa, (ii)
Sx ¼ 10 MPa, Sy ¼ 5 MPa, and (iii) Sx ¼ 15 MPa, Sy ¼ 5 MPa, such that
the effective far-field stress ratio Sx/Sy is 1, 2, and 3, respectively.
Single-phase steady-state fluid flow through the deformed frac-
tured rock having a stress-dependent aperture field is further
modelled by imposing the classical permeameter boundary con-
dition (Fig. 4b): two opposite boundary surfaces of the model
domain have a fixed pressure drop (i.e. 10 kPa), while the two
orthogonal boundaries parallel to the flow direction are imper-
vious. Matrix permeability km is assumed to be 1�10�18 m2, which
gives a high fracture-matrix permeability contrast so that the flow
is predominated by fractures (Matthäi and Belayneh, 2004).

The constructed models are numerically solved using the
methods described in Section 2. It is worth pointing out that the
advantages of our approaches, compared to many other previous
studies/methods (e.g. Min et al., 2004b; Baghbanan and Jing, 2008),
include simulation of crack growth in intact rocks and consider-
ation of fluid flow in permeablematrix. Newly-formed cracks under
stress loadings may cause coalescence of initially isolated fractures/
clusters, capture what is essential for modelling the hydrome-
chanical behaviour of fracture networks around the percolation
threshold. The consideration of fluid flow in permeable matrix is
important for studying fracture networks below the percolation
threshold, where fluid cannot migrate purely through fractures.

4. Results

4.1. Geomechanical responses

We analyse the geomechanical responses of the fractured rocks
associated with a range of combinations of length exponent a and
fracture intensity g values under different far-field stress condi-
tions. The numerical results for the case of g¼ 2.5m�1 are shown in
Fig. 5, while the results for other cases of g¼ 1.25m�1, 3.75m�1 and
5 m�1 are given in Figs. A1, A2 and A3, respectively (see Appendix).
Below, we take Fig. 5 as an example to elucidate the key geo-
mechanical processes in fracture networks and similar phenomena
or trends can also be observed in Figs. A1-A3.

Fig. 5a shows the distributions of local maximum principal
stresses in the fractured rocks with g ¼ 2.5 m�1 and different a
values. When the far-field stress condition is isotropic, i.e.
Sx ¼ Sy ¼ 5 MPa, the local stress distribution is very uniform. As
the far-field stress ratio Sx/Sy increases, stress fluctuations emerge
in the system, especially when Sx/Sy reaches 3. It can be seen that
the high stress bands tend to align with the orientation of the
applied far-field maximum principal stress but are significantly
distorted due to the presence of pre-existing discontinuities. It
seems that with the increase of a (i.e. the system is more domi-
nated by small fractures), the stress patterns become less
heterogeneous.

Fig. 5b shows the distribution of shear displacements in the
stressed fracture networks. When the far-field stresses are iso-
tropically loaded, almost no shear displacement occurs in the sys-
tem, irrespective of the geometrical distribution of fracture
populations. As Sx/Sy value increases to 2, noticeable shear dis-
placements are accommodated along some of the large fractures
that are oriented to favour frictional sliding. When Sx/Sy equals 3,
preferentially-oriented, large fractures in the networks of a � 2 are
highly reactivated for shear slip, whereas the remaining relatively
smaller fractures experience much less shearing. In the fracture
networks of a � 3, which are dominated by small cracks, frictional
sliding is strongly suppressed, although some intermediate frac-
tures might exhibit slight shear. In the fracture networks of 2 < a <



Fig. 4. Model setup for (a) geomechanical simulation and (b) fluid flow simulation. Sx and Sy denote the effective far-field stresses loaded orthogonally to the model. P1 and P2 gives
the macroscopic pressure difference imposed across the domain.

Q. Lei et al. / Journal of Rock Mechanics and Geotechnical Engineering 12 (2020) 780e792 785
3, which consist of both large and small fractures, some large
structures tend to bemoderately shearedwhile the small cracks are
mostly restrained for any sliding.

In Fig. 5c, we show the distribution of fracture apertures in the
fractured networks under the combined effects of compression-
induced closure and shear-induced dilatancy. When Sx/Sy ¼ 1, all
fractures are evenly compressed and exhibit an aperture much
lower than the initial value, i.e. 0.1mm. As Sx/Sy increases to 2, some
traversing fractures in the networks of a� 2 exhibit large apertures
because of shear-induced dilation along these dominant structures
that are preferentially-oriented for sliding. However, some small
fractures sub-parallel to Sy seem to be more closed due to the
increased Sx, compared to those under isotropic compression.
When Sx/Sy reaches 3, in the networks of a� 2, drastic enlargement
of fracture apertures occurs along those highly-sheared large dis-
continuities due to the dilational behaviour of dislocated rough
fracture walls. However, the fracture networks of a � 3 exhibit
much less fracture opening, although some intermediate fractures
still experience small amount of shear-induced aperture increase.
In the fracture networks of 2 < a < 3, large fractures are associated
with shear-induced wider apertures while small fractures only
exhibit closure manner.

We further calculate the length-averaged mean shear
displacement u and mean fracture aperture h of each fracture
network and examine their variation as a function of various
geometrical properties, i.e. a, g and p, under different far-field
stress loading conditions (Fig. 6). When Sx/Sy ¼ 1, u is almost
zero and insensitive to the change of a, g or p (Fig. 6a, c and e),
while h is also independent of a, g or p (Fig. 6b, d and f) and ex-
hibits a value much lower than the initial aperture of h0 ¼ 0.1 mm.
As Sx/Sy increases, more frictional sliding is accommodated in the
system due to the enhanced differential stress load. When Sx/
Sy > 1, u increases significantly with the decrease of a (Fig. 6a) or
increase of p (Fig. 6e), suggesting that the fracture networks
associated with larger fractures or better connectivity tend to
accommodate more frictional sliding driven by deviatoric stress
loading. Similarly, h increases considerably with the decrease of a
(Fig. 6b) or increase of p (Fig. 6f), as a result of fracture dislocation
and dilation under differential stresses. Especially, in the well-
connected fracture systems (p > pc) subjected to high stress ratio
loading (Sx/Sy¼ 3), the resulting aperture h can become even larger
than the initial aperture h0 (Fig. 6f) due to the combined effects of
geometrical properties and geomechanical processes. In addition,
it is noticed that both u and h seem to be almost uncorrelated with
g (Fig. 6c and d). A further interpretation and discussion can be
found in in Section 5.
4.2. Hydrological properties

We derive the hydrological properties of the deformed fractured
porous rocks from the single-phase steady-state flow simulation.
Fig. 7 shows the distribution of local fluid flow velocity in different
fracture systems subjected to the far-field stress condition of
Sx ¼ 15 MPa and Sy ¼ 5 MPa and with the macroscopic pressure
drop imposed along the x- (Fig. 7a) or y-direction (Fig. 7b). The
numerical results for other far-field stress conditions are given in
the Appendix (see Figs. A4 and A5). In the networks that are below
the percolation threshold (p < pc), the flow velocity is extremely
low, since fluid has to migrate via intact rocks of low permeability
that bridge disconnected fractures. On the other hand, the well-
connected networks (p > pc) accommodate significantly high
flow velocities along through-going discontinuities, whereas the
“background” small cracks with “dead-ends” provide much lower
velocities. If the system is around the percolation threshold
(pz pc), e.g. the fracture network of a¼ 2.5 and g¼ 5m�1, only one
or two globally-connected pathways exist(s) for fast fluid migra-
tion, whereas other locally-connected clusters permit much slower
flow. In such a critically-connected system (p z pc), multiple
clusters bounded by large fractures seem to exhibit distinct regimes
of velocity magnitudes, implying the dominant roles of large dis-
continuities on the flow field.

Fig. 8 shows the variation of the equivalent permeability keq
(either kxx or kyy) of the fractured rocks as a function of various
geometrical properties, i.e. a, g and p, under different far-field
stress loading conditions. It can be seen that, with the increase
of a, the permeability generally decreases (Fig. 8a and b), because
the system becomes more controlled by small fractures, which
geometrically have less probability to form connected pathways
(i.e. poorer connectivity) and geomechanically have less oppor-
tunity to experience frictional sliding (i.e. smaller dilation). Due
to these geometrical and geomechanical effects, keq is very sen-
sitive to stress loading if a is small (e.g. a ¼ 1.5), whilst almost
independent of the far-field stress state if a is large (e.g. a ¼ 3.5).
The rock mass permeability seems to increase with g, but the
trend exhibits large uncertainties (Fig. 8c and d). On the contrary,
the correlation between keq and p is very significant (Fig. 8e and
f). If the fracture network is disconnected (p < pc), keq is very
small, due to the flow-restriction caused by low-permeability
rocks that isolate discrete fractures or fracture clusters from
connecting with each other across the entire domain. The stress-
dependent fracture deformational behaviour therefore exerts
very minor impacts on keq. However, as the fracture network
becomes gradually connected (p � pc), an abrupt increase in keq



Fig. 5. Distributions of (a) local maximum principal stress, (b) shear displacement, and (c) fracture aperture in the fractured rocks with a fixed fracture intensity g ¼ 2.5 m�1 and
various length exponents a ¼ 1.5, 2, 2.5, 3 and 3.5, under different far-field stress conditions.
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Fig. 6. The mean shear displacement u (left panel) and mean fracture aperture h (right panel) of the fractured network as a function of different geometrical properties, i.e. (a, b)
length exponent a, (c, d) fracture intensity g, and (e, f) percolation parameter p, under different far-field stress conditions. The error bars denote �1 standard deviation of the ten
realisations. The zone bounded by dotted lines in (e, f) corresponds to the percolation threshold pc ¼ 6 � 1.
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occurs, since the interconnected backbones of high trans-
missivity (compared to matrix rocks) start to play the controlling
role in carrying fluid migration, which further leads to the vari-
ation of keq in response to the change of boundary stress loading
as a result of the important geomechanical processes illustrated
in Fig. 5, A1 and A2.

We further derive analytical solutions to investigate the rela-
tionship between keq and p. We characterise their correlation based
on the three different regimes: disconnected (p < pc), transitional
(p z pc) and connected (p > pc). If the system is connected, fluid
flow is controlled by interconnected fractures that form the major
pathways and the equivalent permeability of the percolated frac-
ture systemmay be predicted using the percolation theory (Stauffer
and Aharony, 1985):
keq ¼ kcðp� pcÞb ðp>pcÞ (15)
where b is a universal exponent and equals 1.1 for 2D systems
(Hestir and Long, 1990; Berkowitz and Balberg, 1993), and kc is the
equivalent permeability when p�pc equals unity. kc is expected to
be controlled by single fracture permeability, because the system is
close to the percolation threshold and the connectivity is ruled by a
limited number of “red links” (Davy et al., 2006). Thus, we postulate
that kc ¼ lh3/(12L), where l is the number of red links. We take
pc ¼ 6, L ¼ 10 m and l ¼ 3 (p approaches pc from above). Then, for
the three different stress cases of Sx/Sy ¼ 1, 2 and 3, we choose
h ¼ 0.05 mm, 0.07 mm and 0.11 mm (Fig. 6), respectively, and thus
derive k0 to be 3 � 10�15 m2, 8.6 � 10�15 m2 and 2.5 � 10�14 m2,
respectively. The analytical solutions based on these parameters



Fig. 7. Distribution of flow velocity in the fracture networks associated with various length exponents a and fracture intensities g under the far-field stress condition of Sx ¼ 15 MPa
and Sy ¼ 5 MPa. The macroscopic pressure drop is imposed along either the (a) x or (b) y direction.
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show an excellent match to the numerical results for the connected
regime (see the dashed lines in the region of p > pc in Fig. 8e and f).
For the disconnected regime (p < pc), keq is related to lacunarity
which characterises the gaps (i.e. rock bridges) between isolated
fractures or clusters. Thus, keq is insensitive to stress loading that
mainly affects fractures. We suspect the equivalent permeability
follows

keq ¼ km

�
pc

pc � p

�z

ðp<pcÞ (16)
where keq ¼ km if p ¼ 0, and z is an exponent. The value of z is
derived as follows: if pc�p is unity, keq ¼ kmpc

z ¼ kc, which gives
z¼ log10(kc/km)/log10pc. By taking pc ¼ 6 and l ¼ 1 (p approaches pc
from below), we also obtain an excellent match to the simulation
data (see the dashed lines in the region of p < pc in Fig. 8e and f).
The rationale of determining the number of red links l is given as
follows. When p approaches pc from below, i.e. p approaches 5, one
red link is expected and therefore l¼ 1.When p approaches pc from
above, i.e. p approaches 7, two more traversing flow channels may
be added and thus l ¼ 3 (see the definition of the percolation
parameter in Eq. (3), which indicates that if p increases by 1, one
more domain-sized percolating channel is added into the system).



Fig. 8. The equivalent permeability kxx (left panel) and kyy (right panel) of fractured rocks as a function of different geometrical properties, i.e. (a, b) length exponent a, (c, d) fracture
intensity g, and (e, f) percolation parameter p, under different far-field stress conditions. The error bars denote �1 standard deviation of the ten realisations. The insets present
permeability on the logarithmic scale. In (e, f), the zone bounded by dotted lines corresponds to the percolation threshold pc ¼ 6 � 1; and the dashed lines correspond to the
analytical solutions, i.e. Eqs. (15) and (16).
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For the narrow transitional regime (p z pc), we only use a simple
interpolation from the solutions of the two neighbouring regimes
(see the dashed lines in the region of p z pc in Fig. 8e and f). We
have further tested the analytical formulation for a different matrix
permeability value (km ¼ 1 � 10�21 m2) in the Appendix (Fig. A6),
and a good match to numerical results is also obtained.

5. Discussion and conclusions

In this paper, we presented a systematic investigation into the
hydromechanical processes (e.g. stress distribution, fracture
closure, shear dilation and fluid flow) in fracture networks of a
broad range of geometrical distributions subjected to different
stress loading conditions. We examined the variation of hydro-
mechanical properties (e.g. shear displacement, fracture aperture
and equivalent permeability) as a function of various geometrical
properties (e.g. length exponent a, fracture intensity g and perco-
lation parameter p). We found that fracture intensity g is not a good
proxy for the hydromechanical behaviour of rockmasses, because it
poorly (or not at all) indicates the connectivity state of fracture
networks (as manifested in Fig. 3 where the networks with the
same g value can have very different connectivity conditions). This
observation is consistent with our field characterisation data at the
Grimsel Test Site, Switzerland, where a very poor correlation was
found between the interval transmissivity (derived from pulse
tests) and fracture spacing (fracture intensity measured in one
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dimension based on borehole logs) (Brixel et al., 2020a, b). Thus, it
is essential to characterise the length distribution of fracture pop-
ulations in addition to the measurement of fracture intensity (or
fracture spacing), as suggested by many previous studies (Bonnet
et al., 2001; Davy et al., 2010). The combination of the informa-
tion of fracture length and intensity permits the calculation of the
percolation parameter, which is metric of the fracture network
connectivity and serves as an excellent proxy to the hydrome-
chanical behaviour of fractured rocks. This is consistent with past
research findings in the literature about the connectivity control on
the solid deformation (Zhang and Sanderson, 1998; Harthong et al.,
2012; Lei and Gao, 2018) and fluid flow (Hestir and Long,1990; Bour
and Davy, 1997; Renshaw, 1999; de Dreuzy et al., 2001a) of frac-
tured geological media, while our work further advanced the un-
derstanding on the mutually-existing, interactively-acting impacts
of geometrical connectivity and geomechanical condition on hy-
drological performance of the system.

Based on our numerical results in Section 4, it seems that the
“connectedness” of the fracture system is a prerequisite for
notable hydromechanical processes taking effect in fractured
rocks. Thus, the system is almost insensitive to the stress loading
conditions if it is disconnected. This is because when the fracture
network is not percolated, fluid needs to migrate via isolated
clusters and the matrix in between them. Hence, the system has
an “in series” flow structure (i.e. isolated clusters are linked with
each other by matrix), such that the bulk permeability is
approximated by the harmonic mean of the permeabilities of
different components (de Marsily, 1986) and thus more ruled by
the matrix (because it has a low permeability and dominates the
harmonic mean). As the system gradually approaches the
percolation threshold from below, the size of matrix blocks that
form the gaps between isolated clusters is reduced and, there-
fore, the equivalent permeability increases although the system
is still disconnected (Fig. 8e and f). For the connected regime, the
system has an “in parallel” flow structure consisting of multiple
traversing channels, such that the bulk permeability is approxi-
mated by the arithmetic mean of the permeabilities of different
components (de Marsily, 1986) and thus controlled by fractures
(because they have high permeability and dominate the arith-
metic mean). Since fracture aperture (and thus fracture perme-
ability) is dependent on the stress state, the equivalent
permeability of fractured rocks also shows a strong dependency
on the far-field stress loading. However, it is worth pointing out
that the shear-induced aperture enlargement under high stress
ratio conditions tends to enlarge the bulk permeability by several
times but still within an order of magnitude. We inferred that
geomechanical processes tend to exert a secondary-order influ-
ence (compared to the first-order role of geometrical connec-
tivity) causing stress-dependent variation of permeability within
about one order of magnitude, for which similar permeability
variation ranges were also reported in previous studies based on
2D fracture networks (Min et al., 2004b; Baghbanan and Jing,
2008; Latham et al., 2013; Lei et al., 2014). However, more pro-
nounced stress effects might be expected in three-dimensional
(3D) fracture systems (Lei et al., 2015, 2017b), which may be of
interest for further investigations based on computationally
expensive 3D simulations. Further work may also be needed to
explore more complicated scenarios of fracture networks, such as
anisotropic discontinuity orientations (Lei et al., 2014), multiple
domain sizes (Min et al., 2004a), variable initial apertures (Kang
et al., 2019), fractal spatial organisations (Davy et al., 2006), and
nonlinear mechanical-to-hydraulic aperture correlations
(Renshaw, 1995) for testing the generality and sensitivity of the
observed phenomena in the current paper.

To conclude, we observed that the geometrical connectivity of
fracture networks plays a critical role in the hydromechanical
processes in fractured rocks. A well-connected fracture system
under a high stress ratio exhibits intense frictional sliding and
considerable fracture opening, eventually leading to fast fluid
migration and large bulk permeability. Such a connected network is
more suppressed for shearing activities under a more isotropic
compression, exhibiting a lower permeability compared to that
under a high stress ratio loading. A disconnected fracture network
is composed of multiple clusters isolated from each other by geo-
mechanically stiffer and hydraulically less permeable matrix rocks,
producing mainly fracture closure behaviour and slow fluid flow,
with low equivalent permeability insensitive to the far-field stress
state. We derived an analytical solution for the relationship be-
tween the equivalent permeability of fractured rocks and the
percolation parameter of fracture networks, which showed an
excellent match to the numerical results. We suggested that the
flow through a well-connected system is governed by traversing
fractures or clusters “in parallel” and thus the equivalent perme-
ability is sensitive to stress loading (due to the stress dependency of
fracture permeability), whilst the flow through a disconnected
system is more ruled by matrix, which links isolated clusters “in
series”, and therefore very insensitive to stress loading. The
observation and analysis of interactively superimposed geometrical
and geomechanical effects on hydrological properties of fractured
geological media as presented in this paper have important im-
plications for understanding heterogeneous subsurface fluid flow
and upscaling rock mass permeability.
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