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Remote Interactive Direct Volume Rendering of AMR Data

Oliver Kreylos∗ Gunther H. Weber† E. Wes Bethel‡ John M. Shalf‡ Bernd Hamann∗

Kenneth I. Joy∗

Abstract

We describe a framework for direct volume rendering (DVR)
of adaptive mesh refinement (AMR) data that operates di-
rectly on the hierarchical AMR grid structure, without the
need to resample data onto a single uniform rectilinear grid.
The framework can be used for a range of renderers op-
timized for particular hardware architectures: a hardware-
assisted renderer for single-processor graphics workstations,
a parallel hardware-assisted renderer for clusters of graph-
ics workstations or multi-CPU graphics workstations, and a
massively parallel software-only renderer for supercomput-
ers. It is also possible to use the framework for distributed
rendering to visualize data sets only accessible by remote
rendering servers. By exploiting the multiresolution struc-
ture of AMR data, the hardware-assisted renderers can ren-
der large data sets at interactive rates, even if data is stored
remotely.

CR Categories: K.6.1 [Management of Computing and
Information Systems]: Project and People Management—
Life Cycle

Keywords: Interactive, Direct Volume Rendering, Mul-
tiresolution, Adaptive Mesh Refinement Data

1 Introduction

Adaptive Mesh Refinement (AMR) [1, 2, 3] is a grid gen-
eration approach used to discretize the physical domain for
numerical simulation. The discretization is adapted to the
varying complexity of geometry or dependent physical vari-
ables. AMR is a highly efficient technique supporting the use
of higher-resolution meshes in regions of greater complex-
ity. AMR technology is used, for example, in Computational
Fluid Dynamics (CFD) simulations, where small regions of
turbulence have to be resolved finely, and in astrophysical
simulations, where scales can span several orders of magni-
tude.

AMR methods represent a computational domain as a hi-
erarchy of grids of different cell sizes and possibly different
structures [4]. While there exist several different types of
AMR data for different application areas, our rendering al-
gorithm focuses on the Berger–Colella flavor of AMR and
requires data sets to satisfy the following properties:

• All grids are Cartesian.

• Grids in the same hierarchy level, i.e., grids having the
same cell size, do not overlap.
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• All refinement ratios, i.e., all ratios of cell sizes between
adjacent hierarchy levels, are integers (typically two or
four).

• Grid cells are never partially refined.

An example of a 2D AMR hierarchy with three levels and a
uniform refinement ratio of two is shown in Figure 1. Fig-
ure 2 shows the 3D grid structure of a real AMR data set.

(a) (b)

Figure 1: Three-level AMR hierarchy with a uniform refine-
ment ratio of two. Grid boundaries are denoted by bold lines.
All hierarchy levels consist of two grids. Note that finer grids
can cross boundaries between coarser grids. (a) View of
finest-resolution cells only. (b) “Exploded” view of AMR hi-
erarchy. Shaded cells are “hidden” by finer-resolution grids.

Though AMR methods are advantageous for the simu-
lation of certain physical phenomena, they pose problems
when one wants to visualize simulation results. Most ex-
isting visualization algorithms cannot handle AMR data di-
rectly, and the strategy used in the past was to resample
AMR data onto a uniform grid (typically at the finest res-
olution present in a given AMR hierarchy). This approach
does not work well, because the AMR grid structure – often
interesting itself – is lost, and, due to the AMR data’s multi-
ple resolution levels, resampled data tends to be too large to
support efficient visualization. Considering a 3D AMR data
set containing 16 levels of resolution (common in astrophys-
ical simulations) with a uniform refinement ratio of two, a

resampled grid would consist of at least
(
215
)3

cells.

Figure 2: Argon Bubble data set. AMR hierarchy consisting
of three levels, with refinement ratios of two and four, and
528 grids in total. Image shows AMR grid structure blended
into volume rendering.

It is therefore necessary to develop visualization algo-
rithms that can handle AMR data directly and exploit the



structure of AMR data for visualization. AMR hierarchies
are a collection of Cartesian grids, and efficient visualiza-
tion techniques exist for those; and AMR hierarchies are in-
herently multiresolutional. Even though coarser grids may
partially be overlaid by finer ones, the “hidden” cells still
contain meaningful data, albeit at a lower resolution. Thus,
it is possible to visualize low-resolution approximations of
the complete AMR hierarchy by ignoring some of the finer
levels.

Due to the size of typical AMR data sets (gigabytes to
terabytes) it is often not practical to move a data set to a
user’s machine for interactive visualization. Therefore, an
AMR visualization system should support remote render-
ing. In such a distributed system, the rendering takes place
on the machine that generated and/or stores the data, and
user interaction and display take place on the user’s ma-
chine. Remote rendering saves the cost of transmitting large
amounts of data to a user’s machine, and enables the use of
high-performance hardware located at a remote site. It is
highly desirable that remote rendering is interactive, even if
a user’s machine is connected to the rendering server via the
Internet.

We present an interactive volume visualization algorithm
that reads an AMR data set in its native file format, splits
the AMR hierarchy into a set of Cartesian grid patches
on-the-fly, renders those patches using standard DVR al-
gorithms, and composites the results into a final image. The
algorithm can easily be adapted to several machine architec-
tures by replacing the core rendering module, and it can be
parallelized by scattering grid patches across several CPUs
for independent rendering and gathering partial images dur-
ing compositing. We have implemented (i) a single-CPU,
hardware-assisted renderer for smaller data sets stored on
a user’s desktop computer; (ii) remote, parallel, hardware-
assisted renderers for clusters of PC-based graphics work-
stations or high-end multi-pipe graphics workstations; and
(iii) a remote, massively parallel, software-only renderer for
supercomputers. The “thin client” for remote rendering
could be implemented as a web browser applet.

2 Related Work

DVR algorithms have been an active area of research for at
least the last decade [5]. Many DVR algorithms are designed
for Cartesian grids, and most can be used for the core render-
ing module in our visualization systems, e. g., ray casting [6],
cell projection [7], shear-warp transform [8], and hardware-
assisted texture-based volume rendering [10, 11, 12]. Some
DVR algorithms suitable for unstructured grids, e. g., cell
projection [7], its polygonal approximation [13], and incre-
mental slicing [14], can also be applied to AMR hierar-
chies [15].

3 Volume Rendering AMR Data

We decided not to develop DVR techniques specific for AMR
data, but instead to homogenize a given AMR data set such
that it can be rendered with existing DVR algorithms for
Cartesian grids. This strategy allows us to adapt our ren-
derer to different machine architectures by merely replacing
the core rendering module. We split the process of rendering
AMR data into the following four steps:

(1) Grid homogenization. Most DVR algorithms are op-
timized for Cartesian grids. Considering this fact, in

the first step, we split an AMR hierarchy into a set of
non-overlapping Cartesian grid patches. This step is
performed only once, on-the-fly, while loading an AMR
data set’s grid structure, and does not involve resam-
pling. This step typically requires only a fraction of a
second.

(2) Domain decomposition. For parallel rendering, the
grid patches have to be distributed across processing
nodes for rendering. Nodes have to load only those
parts of an AMR data set that they are assigned to,
allowing us to render large AMR data sets that do not
fit into memory on a single processing node. We have
investigated two different methods to perform load bal-
ancing during domain decomposition that do not re-
quire communication between processing nodes.

(3) Back-to-front grid patch rendering. The grid pat-
ches assigned to a processing node are rendered us-
ing standard DVR algorithms. Our current software-
only renderer uses a simple cell projection algorithm,
whereas the hardware-assisted renderers employ the
3D texture mapping capabilites of high-end graph-
ics workstations or current consumer-level graphics
boards [10, 11, 12].

(4) Image compositing. For parallel rendering, the par-
tial images generated independently by the processing
nodes have to be composited into a single final image.
Currently, we use a simple binary-tree based composit-
ing algorithm. More advanced parallel compositing al-
gorithms, e. g., binary swap [19], will be investigated in
the future.

The following sections describe these steps in more detail.
Since Steps 2 and 4 only apply to the parallel rendering
algorithm, and since they are closely related to each other,
they are treated together in Section 3.3.

3.1 Grid Homogenization

For rendering, our algorithm splits an AMR data set into a
set of non-overlapping grid patches. A grid patch is defined
as a rectangular subgrid of a single grid in an AMR hierarchy.
This definition implies that all cells in a grid patch are of
identical size, and the grid patch’s data belongs to a single
grid and is therefore stored in a single contiguous region of
memory. These properties ensure that any grid patch can
be rendered by standard DVR algorithms. The set of grid
patches is constructed in such a way that it covers the entire
domain of the AMR data set, and that it represents the finest
resolution existing at any point. We call the process of tiling
a data set’s domain with grid patches grid homogenization.

Figure 3: Three overlapping grids from two different hierar-
chy levels split into grid patches. Boundaries between grids
are denoted by bold lines; individual grid patches are de-
noted by different textures.

Grid homogenization is performed by overlaying a kd-
tree [17] onto the domain of an AMR data set, such that



each grid patch in the homogenized AMR data set is rep-
resented by one kd-tree leaf. Initially, the tree consists of a
single leaf representing the entire domain. Grids from the
AMR hierarchy are subsequently inserted one-by-one, in or-
der of increasing resolution1. Each grid to be inserted is
implicitly split into a set of grid patches by existing interior
kd-tree nodes while traversing the tree downwards, see Fig-
ure 4(a–b). When an interior node is completely contained
inside one of those patches, it and its subtree are replaced
by a leaf representing that patch. If, on the other hand, an
existing kd-tree leaf is partially overlaid by a grid patch, that
leaf is recursively split into a set of non-overlapped patches
and a single overlaid patch. The latter is then replaced by
the new higher-resolution grid patch, see Figure 4 (c). The
complete kd-tree generated by homogenizing the AMR data
set from Figure 1 is shown in Figure 5.

(a) (b)

(c)

Figure 4: Inserting grid into kd-tree generated during grid
homogenization. (a) Kd-tree structure before insertion of
dashed grid. (b) Inserted grid split into patches after travers-
ing existing tree. (c) New kd-tree generated by splitting
partially overlaid leaves.

(a) (b)

(c)

Figure 5: Homogenizing AMR data set from Figure 1.
(a) Kd-tree after insertion of both level–0 grids. (b) Tree
after insertion of both level–1 grids. (c) Final tree after inser-
tion of both level–2 grids. Newly inserted grids are shaded.

3.2 Back-to-front Grid Patch Rendering

The idea behind our approach is to render each of the grid
patches generated during homogenization independently, us-
ing a standard DVR algorithm, and then to composite the
individual results. The compositing step is especially simple
if grid patches are rendered in back-to-front order [16]. If

1Grids inside the same hierarchy level do not need to be in-
serted in any particular order.

one grid patch has been rendered as an RGB image with
α-channel, it can be composited into the image representing
all patches behind it by performing an “over” operation [16],
either performed in software or in hardware as an α-blending
operation. In the special case of a texture-mapping based
hardware-assisted DVR algorithm [10, 11, 12], compositing
can be performed implicitly by rendering all grid patches
into the same frame buffer.

The view-independent kd-tree generated during grid ho-
mogenization is also used to efficiently enumerate all grid
patches in correct rendering order. An interior kd-tree node
can be interpreted as a plane dividing the node’s domain
into two regions, with one child node representing each re-
gion and no node in either subtree intersecting the dividing
plane. This interpretation leads to a directed depth-first
traversal scheme for the homogenizing kd-tree: At each in-
ternal node, the viewpoint is compared with the node’s di-
viding plane, and the subtree corresponding to the region
“behind” the plane (as seen from the viewpoint) is traversed
first; the other region is traversed second. Since the two
regions are separated by the dividing plane, no grid patch
rendered during the first traversal can occlude any grid patch
rendered during the second traversal. By applying this step
recursively we obtain a unique back-to-front ordering of all
grid patches in the kd-tree. This approach leads to correct
compositing, even if the viewpoint is inside the AMR data
set’s domain. Note that the ordering algorithm is based
solely on the viewpoint and is independent of viewing direc-
tion. The grid patch order imposed by traversing the kd-tree
from Figure 5 is shown in Figure 6.
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Figure 6: Grid patch order imposed by traversing the homog-
enizing kd-tree from Figure 5 in back-to-front order (view-
point indicated by “×”).

Once the grid patches are ordered correctly, they are
passed to the core rendering module individually. Our
current implementation contains two different renderers:
one is a standard cell-projection renderer [7] intended to
be used on massively parallel supercomputers, the other
one is a texture-mapping based, hardware-assisted ren-
derer [10, 11, 12] for single or clustered PC-based, desktop
graphics workstations using commodity graphics hardware
(NVidia GeForce3) or high-end graphics workstations (SGI
Onyx2 with multiple Infinite Reality2 pipes).

3.2.1 Hardware-assisted Rendering

A typical 3D texture-mapping based volume renderer defines
a 3D array of scalar data as a single intensity-only 3D texture
and the accompanying transfer function as a color table map-
ping from intensity to (RGB, α) tuples. The renderer sub-
sequently visualizes the volume by generating and rendering
textured slices inside the data’s domain. Typically, slices are
polygonal intersections between equidistant view-orthogonal
planes and the data’s domain, see Figure 7. Slices are pro-
cessed in back-to-front order, texture-mapped by generat-
ing appropriate texture coordinates for their vertices, and



rendered using α-blending, implicitly compositing them into
the frame buffer. If the frame buffer provides sufficient pre-
cision for accurate α-blending, this sequence of operations is
equivalent to numerically evaluating the volume rendering
integral [5]. The effect of varying frame buffer precision on
rendering results is shown in Figure 9.

(a) (b)

Figure 7: Generating view-orthogonal slices through a rect-
angular domain. (a) 2D example, with viewpoint (×) and
view direction indicated in the lower-left corner. (b) Iso-
metric view of 3D example, with viewing direction along the
cube’s main diagonal. Note that slices change from triangles
to hexagons and back to triangles.

In the algorithm described by van Gelder and Kim in [11],
slice polygons are generated by creating a stack of view-
orthogonal rectangles whose projections contain the do-
main’s projection. Those rectangles are clipped against the
domain using OpenGL’s clipping planes, and texture coordi-
nates for their vertices are generated using OpenGL’s texture
matrix. Yagel et al. [14] described a different approach to
slice generation based on a 3D generalization of scan conver-
sion. Their algorithm generates slices in software, by main-
taining a list of active edges intersected by a current slice,
and incrementing intersection points and (RGB, α) tuples as
the current slice moves towards the viewpoint. To adapt this
algorithm to texture-mapping based rendering, one has to it-
erate a current slice through a complete grid patch instead of
a single cell, and has to increment texture coordinates along
the active edges instead of color values. Unstructured grids
cannot always be ordered in back-to-front order; therefore,
the original slicing algorithm has to maintain an active cell
list of all cells intersected by the current slicing plane, and
it must increment all current slices in parallel. The adapted
version does not need an active cell list, and only needs to
slice one grid patch at a time. Grid patches can be ordered
by traversing the homogenizing kd-tree and can be rendered
individually.

We chose the algorithm in [14] as it does not suffer from
the inaccuracies inherent in vertex clipping and texture coor-
dinate generation that sometimes mar OpenGL implemen-
tations. Our algorithm renders a volume by compositing
multiple, independently rendered grid patches; therefore, it
is important that the generated polygons and their texture
coordinates match exactly across grid patch boundaries, see
Figure 8(a). Doubly rendered or missing pixels along the
boundaries would introduce highly visible artifacts. Using
our algorithm, polygons always match up “pixel-accurately,”
making the composited rendering indistinguishable from one
generated from a single block. Since the main CPU mostly
waits for OpenGL’s rasterization stage during slice render-
ing, the time needed to generate slices in software is hidden,
leading to no observable perfomance penalty.

Rendering grid patches of different cell sizes using tex-
tured slice polygons introduces two kinds of visual arti-
facts [18]. The first artifact stems from the limited precision
of color representation in consumer-level graphics boards.
Since grid patches containing higher-resolution data are ren-

dered using more slices, the opacity levels of the transfer
function for those slices have to be reduced properly. If the
reduced opacity values cannot be represented exactly, grid
patches of different resolution levels will appear to have dif-
ferent “total opacities,” illustrated in Figure 9. The second
kind of artifact is introduced by mismatching slice polygons
across different-resolution grid patch boundaries, illustrated
in Figure 8(b). The dotted lines parallel to the viewing di-
rection denote a region where a higher-resolution slice poly-
gon enters an image region rendered by two lower-resolution
slices. This leads to a “staircasing” effect in total opacity
along boundaries between grid patches of different resolu-
tions. It turns out that the second kind of artifact is much
less apparent than the first one; we could not detect it in
our renderings.

(a) (b)

Figure 8: Rendering multiple grid patches of varying reso-
lutions. (a) Slice polygons rendered for AMR data set from
Figure 1: slice distance inside a grid patch is proportional to
patch’s cell size. (b) Rendering artifact between two neigh-
bouring patches belonging to different hierarchy levels.

(a)

(b)

Figure 9: Effect of limited-precision color representation on
multiresolution rendering. (a) Image rendered on an NVidia
GeForce3 graphics card with 8 bits of color precision. (b) Im-
age rendered on an SGI Onyx2 with Infinite Reality2 graph-
ics pipe and 12 bits of color precision, using identical data
set and viewing parameters.

3.3 Domain Decomposition and Image Compositing

The major difficulty in parallelizing a volume rendering al-
gorithm is designing a domain decomposition strategy, i. e.,
a strategy deciding how to assign parts of a data set to each
processing node, and a compatible compositing strategy, i. e.,



a strategy deciding how to composite partial images. Avail-
able strategies have to be evaluated in terms of memory effi-
ciency, load balancing and compositing complexity. “Perfect
memory efficiency” is achieved when no data is stored by
more than one node; “perfect load balancing” is achieved
when all nodes require the same amount of time to render
their assigned parts of the data. Compositing complexity
is the time required to gather partial images from all nodes
and composite them into a final image.

Due to the irregular structure of AMR data, it is diffi-
cult to design a domain decomposition strategy that per-
forms optimally in all three regards. We have investigated
two different methods: cost range decomposition and domain
block decomposition. Both methods are based on the view-
independent kd-tree generated during grid homogenization
and are comparable in terms of compositing time, while the
former favors load balancing and the latter favors memory
efficiency. Both methods rely on the existance of an efficient
means to estimate a grid patch’s rendering cost. Consider-
ing the two rendering algorithms we have implemented, and
ignoring perspective foreshortening, the cost of rendering a
grid patch is roughly proportional to the number of cells it
contains, and to the projected size of each cell. The cell pro-
jection renderer has to process each cell individually and has
to generate ray segments for each pixel in each cell’s projec-
tion. The texture-mapping based renderer has to upload all
cell values into graphics card memory and has to compos-
ite all generated slice polygons into the frame buffer using
α-blending.

During grid homogenization, we store the rendering cost
for each kd-tree node. The cost of a leaf is the estimated
cost of rendering the grid patch it represents, and the cost
of an interior node is the sum of costs of its two children.
We describe our two decomposition strategies in detail in
the following sections.

3.3.1 Cost-range Decomposition

This decomposition strategy is based on the observation that
a back-to-front traversal of the homogenizing kd-tree im-
poses a unique view-dependent order on the kd-tree leaves.
When representing each kd-tree leaf as an interval as wide
as its estimated cost, and stacking those intervals next to
each other in rendering order, one effectively splits the to-
tal cost interval into many different-sized pieces. To assign
leaves to n rendering nodes for rendering, we split the to-
tal cost interval into n equal-sized sub-intervals, and assign
those leaves that are at least half inside sub-interval i to
rendering node i, see Figure 10(a). If the cost estimates
are accurate, this strategy leads to perfect load balancing
during rendering. The cost intervals are never really con-
structed; all decisions about traversing or skipping parts of
the kd-tree are made during back-to-front traversal, without
requiring additional communication between nodes.

Image compositing is especially simple when using this
strategy. Even though the domain regions assigned to each
node are typically irregular in shape, no grid patch G ren-
dered by node i can be occluded by any grid patch rendered
by node i− 1, and G can never occlude any grid patch ren-
dered by node i+ 1, see Figure 10(b–c). This fact is due to
ordering the grid patches in rendering order before assign-
ing regions. In order to create a final image, it is sufficient
to composite all partial images in order of (increasing) node
index. We have implemented a binary tree compositing algo-
rithm that requires dlogne compositing rounds for n nodes.
In each compositing round, a node either sends its image to

another node, receives an image and composites it into its
own image (using either software or hardware), or is idle.

(a)

node 1 node 2 node 3 node 4

(b)
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Figure 10: Cost-range decomposition for the example AMR
data set from Figure 1. (a) Cost interval determined by
back-to-front order from Figure 6; split into four equal-size
regions. (b) Grid patch assignment for viewpoint (×) to
the left of domain. (c) Different grid patch assignment for
viewpoint (×) below domain (cost interval not shown).

Cost-range decomposition achieves good load balancing in
practice, see Section 6. Its main drawback is poor memory
efficiency. Even when an AMR data set is rendered for the
first time, the view-dependent region assignment might as-
sign grid patches belonging to the same grid to multiple ren-
dering nodes, forcing each of those nodes to load all data as-
sociated with the grid. When changing the viewpoint during
interactive rendering, grid patches change assignment due to
changes in rendering order, see Figure 10(b–c), forcing the
algorithm to replicate data between more nodes. Though
reloading happens incrementally, and does typically not im-
pact interactive rendering, after several viewpoint changes
the entire data set might be replicated at every node.

3.3.2 Domain Block Decomposition

This decomposition strategy is based on the observation that
any intermediate stage in a breadth-first traversal of a ho-
mogenizing kd-tree can be rendered in back-to-front order.
If the entire kd-tree is split into n subtrees, and each sub-
tree is assigned to one of the n rendering nodes, there exists
a node ordering such that the same compositing strategy
used in cost-range decomposition can be used to composite
the partial images associated with each subtree. We split a
homogenizing kd-tree into roughly equal-cost subtrees using
the following heuristic: Initially, we create a priority queue
containing only the root node. While the number of nodes
in the queue is smaller than the number of rendering nodes,
the most expensive node is removed from the queue, and its
two children are inserted.

This domain decomposition is view-independent and
therefore does not require loading of data during interac-
tive rendering. There can still be data replication due to
grid patches belonging to the same grid being assigned to
multiple subtrees, but in practice memory efficiency is good.
Compositing time is almost as good as in cost-range de-



composition: After dlogne compositing rounds, the node
assigned to the “farthest” subtree will have created the fi-
nal image. In cost-range decomposition, this node is always
node 0, the master node. In domain block decomposition,
however, the final image might have to be sent to the master
node in an additional step.

The major drawback of domain block decomposition is
that good load balancing can only be achieved if the ho-
mogenizing kd-tree is well-balanced. As mentioned in Sec-
tion 3.1, grids inside the same hierarchy level can be inserted
into the kd-tree in any order; this freedom can be exploited
to construct better-balanced trees.

4 Remote Rendering

We have implemented distributed AMR volume renderers
based on the algorithms described above, to support render-
ing of AMR data sets that are too large to fit into desktop
computer memory, and to support using high-end graph-
ics hardware available at supercomputing centers. Unlike
the Visapult distributed rendering system [20], which uses
client-side compositing to guarantee limited interactivity in
the presence of network problems, our system follows a “thin
client” approach, i. e., data is only stored at a remote ren-
dering server, and all rendering and compositing occurs re-
motely. The client only receives final, composited RGB im-
ages from the server, and the client supports a user inter-
face to select rendering parameters and interactively change
viewpoints.

The absence of any 3D rendering requirements allows one
to implement a version of the client in a completely platform-
independent way, e. g., as a Java applet. The drawback of the
thin client approach, requiring a full round-trip and trans-
mission of a final image between client and server for each
update during interactive rendering, is offset by allowing on-
the-fly JPEG compression of transient images. Experiments
have demonstrated that the thin client approach supports
interactive visualization of large AMR data sets at several
frames per second, even under the latency and bandwidth
constraints of a consumer-level DSL Internet connection.

5 Ensuring Interactivity

To ensure interactive frame rates while rendering arbitrar-
ily large data sets, our system exploits the multiresolution
structure of AMR data. The simplest way to render lower-
resolution approximations is to ignore some of the more
refined levels during grid homogenization. Since coarser-
resolution cells that are overlaid by finer-resolution cells
contain valid data, ignoring increasing numbers of finer-
resolution levels will gracefully decrease image quality and
rendering time, see Figure 11.

More advanced strategies that take viewing parameters
into account to determine if, and at which resolution level,
to render parts of a data set could be developed as well. In
our current implementation, a user can adjust two settings:
the resolution level for rendering still images and the resolu-
tion level for rendering transient images during interactive
viewpoint changes. Another option is to reduce image reso-
lution during interaction, and to enlarge the resulting image
using OpenGL’s pixel zoom feature. Combining both tech-
niques, we have been able to achieve interactive rendering
rates of at least five frames per second for all data sets we
have used to date.

(a)

(b)

(c)

Figure 11: Rendering AMR data set at multiple levels of
resolution. (a) Base level only, consisting of three grids and
81,920 cells. (b) Levels zero and one, consisting of 26 grids
and 291,206 cells. (c) All three levels, consisting of 541 grids
and 6,788,900 cells.



Data # of Configurations

Set Levels Single PC SGI Onyx2 PC Cluster

Argon 1 0.00 0.00 0.00 0.1 0.1 0.1 0.1 0.1 0.1

Bubble 2 0.03 0.02 0.02 0.1 0.1 0.1 0.1 0.1 0.1

3 0.66 0.12 0.10 0.1 0.1 0.1 0.1 0.1 0.1

1 2.90 0.30 0.30 0.1 0.1 0.1 0.1 0.1 0.1

X-Ray 2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Cluster 5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

10 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 1: Performance measurements for two example data sets (Argon Bubble and X-Ray Cluster) for three rendering
configurations. Under each configuration, first columns list times needed to render initial image (including data load); second
columns list times needed to render static image; third columns list times needed to render transient image. (All measurements
in seconds)

6 Examples and Results

We have timed our algorithms for two example data sets (one
small, one very large) on several rendering environments.
The resulting rendering times per frame are listed in Table 1.

Data Set 1 (Argon Bubble). This time-varying data set,
provided by The Center for Computational Sciences and En-
gineering at the Lawrence Berkeley National Laboratory2,
consists of 501 timesteps. Each timestep contains three hi-
erarchy levels, using refinement ratios of two and four, and
between 200 and 900 grids in total (varying with timestep).
The domain size is 256 × 256 × 640 finest-level cells; actual
data size is between 2.5 and 9.5 million cells. Images of
several timesteps of this data set are shown in Figures 2, 9
and 11.

Data Set 2 (X-Ray Cluster). This data set, provided by
Mike Norman of SDSC and Greg Bryan of Princeton con-
tains ten hierarchy levels, using a uniform refinement ra-
tio of two, and 34,494 grids in total. The domain size is
131, 072 × 131, 072 × 131, 072 finest-level cells; actual data
size is 53,041,374 cells.

Desktop Graphics Workstation. The computer used was an
off-the-shelf PC (Intel Pentium 4, 1.8 GHz, 512 MB RAM,
AGP 4×, NVidia GeForce3, 64 MB, 60 GB EIDE HD). The
rendered data sets were stored on the local harddrive.

High-end Graphics Workstation. The computer used was
an 8-processor SGI Onyx2 visualization server with two In-
finite Reality2 graphics pipes (two RM7 on pipe 0, one RM9
on pipe 1, 64 MB texture memory each). The rendered data
sets were stored on a high-performance local disk array.

Cluster of PC-based Graphics Workstations. The comput-
ers used were off-the-shelf PCs (Intel Pentium 4, 2.0 GHz,
512 MB RAM, AGP 4×, NVidia GeForce3 Ti 200, 64 MB,
60 GB EIDE HD) connected via 100 Mbit/s Ethernet. The
rendered data sets were stored on the master’s local hard-
drive and accessed by the slaves via NFS.

2See http://seesar.lbl.gov/ccse,
http://seesar.lbl.gov/ccse/Research/Hyperbolic.

7 Conclusions and Future Work

We have presented an algorithm that renders AMR data sets
by splitting them into homogenuous grid patches on-the-fly
while loading a data set’s grid structure. The algorithm sub-
sequently renders grid patches independently using standard
DVR algorithms. By exploiting the multiresolution struc-
ture of AMR data, hardware-assisted implementations of our
algorithm can render extremely large data sets at interactive
rates, even when data is stored and rendered remotely. Using
a thin client approach that allows one to implement a ren-
dering client as a Java applet, the remote rendering system
can be integrated into distributed environments for scientific
computing.

Our current implementation could benefit from improve-
ments in two main areas: First, it will be worthwile in-
vestigating better strategies for domain decomposition and
image compositing for parallel rendering; and second, it
will be advantageous to replace the existing core rendering
modules with higher-quality renderers. Recent advances in
consumer-level graphics hardware enable many desirable im-
provements, including hardware-assisted illumination.
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