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ABSTRACT OF THE DISSERTATION

Structure and Computation of Equilibria in Markov Games

By

Fivos Kalogiannis

Master of Science in Computer Science

University of California, Irvine, 2024

Assistant Professor Ioannis Panageas, Chair

A Nash equilibrium is an important solution concept in most forms of strategic interactions.

We are interested in computing Nash equilibria in Markov games. In turn, Markov games are

a family of games that apart from instantaneous reward incorporate a dynamically changing

environment whose state changes according to the transition dynamics which depend on the

decisions of the agents. Of course, this computational problem in its full generality is known

to be intractable. Even more, relaxed notions of equilibria were recently (Deng et al. ’21,

Daskalakis et al. ’22, Jin ’22) proven comparably intractable to compute.

For this purpose, we examine several structural assumptions on the games themselves in the

hope of being able to provide favorable finite-time computational guarantees. We examine

reward-potential, zero-sum polymatrix, and adversarial team Markov games.

These assumptions along with certain others placed on the transition functions of the game

allow us to obtain favorable results with regards to equilibrium computation. Further, we

observe that without assumptions on the transition dynamics of the game, the task of equi-

librium computation remains as hard as the general case even in place of very strong as-

sumptions on the reward functions.
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Chapter 1

Introduction

Algorithmic game theory is the discipline concerned with the computational aspect of mul-

tiagent games. In this context, the term game signifies any strategic interactions between

multiple self-interested agents. Agents are assumed to be rational in the sense that they are

always pursuing the maximization of their own utility. A cornerstone concept of game theory

is the concept of the Nash equilibrium (NE). A Nash equilibrium of the game, describes a

profile of collective (possibly randomized) behavior —better said, strategies— from which

no agent has an incentive to deviate. In a sense, it is a concept of a stable state of the game

as no agent will be motivated to change their strategy. It is crucial to note that in an NE

the possibly randomized individual strategies do not share a common source of randomness

— figuratively, every player would have to roll their own dice in order to decide which action

to take.

For the sake of this introductory discussion, let us provide some additional informal defini-

tions. A normal-form game is defined as a collection of a finite number, n, of players (or

agents), each of whom is equipped with a finite set of actions, and an individual utility func-

tion for every player. The game itself does not change even if it is repeated for more than one
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round. On the other hand, a Markov game is played over a (possibly infinite) time horizon

H. In each time step, the game can find itself in any state from the set S which is common

for all players; every state changes the reward function rk of each player k ∈ {1, . . . , n}, and

most importantly, the players’ joint action define the probability of transitioning from the

current state to the next one through the transition rule P. Players in a Markov game strive

to maximize their expected sum of rewards over the time horizon of the game. Finally, a two

player normal-form (or Markov game) is said to be zero-sum when the utilities (or rewards)

of the two players always sum to zero; otherwise, the game is said to be of general-sum.

In both multiagent normal-form and Markov games an NE is guaranteed to exist (Nash,

1951; Fink, 1964). The NE is broadly considered a solution concept ; nevertheless, a NE is

intractable, relaxed notions of equilibria are considered which are also guaranteed to exist

and usually enjoy a more favorable complexity of being computing. Intractability of an

NE in even a two-player general-sum game was a celebrated result in algorithmic game

theory (Daskalakis et al., 2009; Chen and Deng, 2006). It lead economists turn skeptic

over the notion of an NE as relevant to real-world markets in the spirit that is captured

by the quote: “If your laptop cannot find it, neither can the market”. To be a bit more

precise, the problem of computing an NE in a general-sum is complete for the complexity

class PPAD (Papadimitriou, 1994). In turn, the complexity class PPAD lies within FNP, the

search problem counterpart of the class NP. Even more, PPAD is the class of computational

problems which a solution is guaranteed to exist by virtue of the Brouwer fixed point theorem

(or —as recently proven— the Kakutani fixed point theorem (Papadimitriou et al., 2022)).

In (Deng et al., 2021), authors pose the question of whether computing an NE in a Markov

game can be harder than a normal-form game. They answer in the negative and demonstrate

that computing an NE in a Markov games is PPAD-complete — i.e., it is as hard and no

more so than computing it in a normal-form game. This means that the complexity of com-

puting an approximate NE in a Markov game is no harder than computing an approximate

2



NE in a general-sum normal-form game. As we will discuss, most common assumptions

(which come from normal-form games) for the structure of the reward rk function do not

manage to make the complexity of computing equilibria more favorable. Our main message

is that the outcome of the game is overwhelmingly defined by decisions regarding the state

transitions. In fact, PPAD-completeness of the problem of computing a NE survives most

of the assumption on the rewards which would otherwise make solving a normal-form game

a decisively more tractable task. Even more so, the reward functions of each state can be

assumed independent of actions for each state and player, and still, computing a NE would

still be PPAD-hard; i.e., as hard as the general case with no assumptions on the reward

functions. Although the matter is more nuanced, we feel the urge to exclaim that, a Markov

game is the game of state transitions.

1.1 Multi-agent Reinforcement Learning and Markov

Games

Markov games (MGs) — or stochastic games — (Shapley, 1953) are a generalization of

multi-agent Markov decision processes (MDPs). The joint action of all players affects the

transitions of the process and not just the individual instantaneous rewards of each agent.

MGs have long stood as the theoretical framework used to formulate and address questions in

field of multi-agent reinforcement learning (MARL) (Littman, 1994). A computational issue

which has been encountered by MARL literature is the curse of multiagents. Effectively, the

curse of multiagents signifies an algorithmic complexity of achieving a given objective (e.g.

computing an equilibrium) that depends exponentially on the number of agents and/or each

agent’s actions.
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1.2 Searching for Structure

In general, characterizing the complexity of a computational problem results from the proof

of the existence of a hard worst-case instance. Nevertheless, it is conventional wisdom that

the worst-case instance might never be encountered in practice. Indeed, frequently used

approaches of tackling a problem usually exhibit favorable empirical performance. To the

end of rigorously arguing about performance guarantees of conventional methods beyond

the worst-case one can either perform smoothed analysis (Spielman and Teng, 2004) of the

problem, or investigate common ways in which the problem instances are structured. I.e., one

might want to recognize certain characteristics of classes of the problem instances that make

the computational complexity of the given task provably more favorable than the worst-case.

In light of the robustness of the hardness of computing a Nash equilibrium in the smoothed

analysis setting (Chen and Deng, 2006; Boodaghians et al., 2020), we aim our efforts in

examining classes of Markov games.

1.3 Our Contribution

We experimented with a multitude of structural assumptions on reward functions, transi-

tions functions, and both. Namely, we showed some very favorable results for adversarial

team Markov games (i.e., games where a team of identically interest agents competes a sin-

gle player) — in this setting, there was no need of making assumptions on the transition

function. Then, we investigated games where the reward functions in every state follow

monotone and potential game structures; in those games we concluded that it is necessary

to make assumptions on the transition functions. Otherwise, the computational problem of

computing a NE is as hard as the general case of computing a NE in a general-sum Markov

game.

4



Chapter 2

Preliminaries

2.1 Normal-Form Games

A normal-form game is the tuple Γ
(
n, {Ak}k∈[n]{uk}k∈[n]

)
; every player i is endowed with

pure strategies Ak ∈ Ak; their mixed strategies are denoted as xi ∈ ∆(Ak), and we mark

x := (x1, . . . ,xn). The utility of player i is denoted as ui(x). Depending on the assumptions

on utility functions ui we retrieve different classes of games.

2.2 Markov Games

Formally, we define a Markov game (MG) with n finite numbers players as the tuple

Γ(H,S, {Ak}k∈[n],P, {rk}k∈[n], γ,ρ), where:

• H ∈ N+ denotes the time horizon, or the length of each episode,

• S, with cardinality S := |S|, represents the state space,
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• {Ak}k∈[n] is the collection of each player’s action space, with A := A1 × · · · × An

denoting the joint action space; an element of this set, a joint action, is generally

noted as a = (a1, . . . , an) ∈ A,

• P := {Ph}h∈[H] is the set of all transition matrices, with Ph : S ×A → ∆(S); Ph(·|s,a)

indicates the probability of transitioning to each state given that the joint action a is

selected at time h in state s — in infinite-horizon games P does not depend on h and

the index is dropped,

• rk := {rk,h} is the reward function of player k at time h; rk,h : S × A → [−1, 1] yields

the reward of player k at a given state and joint action — in infinite-horizon games,

rk,h is the same for every h and the index is dropped,

• γ > 0 is the discount factor, which is generally set to 1 when H <∞, and γ < 1 when

H →∞,

• ρ ∈ ∆(S) is the initial state distribution.

Policies and Value Functions. We will define stationary and nonstationary Markov

policies. When the horizon H is finite, a stationary policy equilibrium need not necessarily

exist even for a single-agent MG, i.e., a Markov decision process; in this case, we seek

nonstationary policies. For the case of infinite-horizon games, it is folklore that a stationary

Markov policy Nash equilibrium always exists.

We note that a policy is Markovian when it depends only on the present state. A nonsta-

tionary Markov policy πk for player k is defined as πk := {πk,h : S → ∆(Ak), ∀h ∈ [H]}. It

is a sequence of mappings of states s to a distribution over actions ∆(Ak) for every timestep

h. By πk,h(a|s) we will denote the probability of player k taking action a in timestep h and

state s. A Markov policy is said to be stationary if it outputs an identical probability dis-

tribution over actions whenever a particular state is visited, regardless of the corresponding

6



timestep h.

Further, we define a nonstationary Markov joint policy σ := {πh, ∀h ∈ [H]} to be a sequence

of mappings from states to distributions over joint actions ∆(A) ≡ ∆(A1× · · · ×An) for all

time steps h in the time horizon. In this case, the players can be said to share a common

source of randomness, or that the joint policy is correlated.

By fixing a joint policy π we can define the value function of any given state s and timestep

h for every player k as the expected cumulative reward they get from that state and timestep

h onward,

V π
k,h(s1) = Eπ

[
H∑

τ=h

γτ−1rk,τ (sτ ,aτ )
∣∣s1] = e⊤s1

H∑
τ=h

(
γτ−1

τ∏
τ ′=h

Pτ ′(πτ ′)

)
rk,τ (πτ ).

Depending on whether the game is of finite or infinite horizon we get the followin displays,

• In finite-horizon games, γ = 1, the

value function reads,

• In infinite-horizon games, the value

function of each state is,

V π
k,h(s1) = e⊤s1

H∑
τ=h

(
τ∏

τ ′=h

Pτ ′(πτ ′)

)
rk,τ (πτ ), V π

k (s1) = e⊤s1 (I− γ P(π))−1 r(π).

Where Ph(πh),P(π) and rh(πh), r(π) denote the state-to-state transition probability matrix

and expected per-state reward vector for a given policy πh or π accordingly. Additionally,

es1 is an all-zero vector apart of a value of 1 in its s1-th position. Also, we denote V π
k,h(ρ) =∑

s∈S ρ(s)V π
k,h(s).

Best-response policies. Given an arbitrary joint policy σ, we define the best-response

policy of a player k to be a policy π†
k := {π†

k,h, ∀h ∈ [H]}, such that it is a maxi-

mizer of maxπ′
k
V

π′
k×σ−k

k,1 (s1). Additionally, we will use the following notation V
†,σ−k

k,h (s) :=

7



maxπ′
k
V

π′
k×σ−k

k,h (s).

Notions of equilibria — Finite Horizon. Having defined what a best-response is, it is

then quite direct to define different notions of equilibria for Markov games.

Definition 2.1 (CCE). We will say that a joint (potentially correlated) policy σ ∈ ∆(A)H×S

is an ϵ-approximate coarse-correlated equilibrium if it holds that, for an ϵ > 0,

V
†,σ−k

k,1 (s1)− V σ
k,1(s1) ≤ ϵ, ∀k ∈ [n]. (CCE)

Further, we will define a Nash equilibrium policy,

Definition 2.2 (NE). A joint, product policy π ∈
∏

k∈[n] ∆(Ak)H×S is an ϵ-approximate

Nash equilibrium if it holds that, for an ϵ > 0,

V
†,π−k

k,1 (s1)− V π
k,1(s1) ≤ ϵ, ∀k ∈ [n]. (NE)

It is quite evident that an approximate Nash equilibrium is also an approximate coarse-

correlated equilibrium while the converse is not generally true. For infinite-horizon games

the definitions are analogous and are deferred to the appendix.

Notions of equilibria — Infinite Horizon. Analogous to the finite-horizon MGs, infinite-

horizon MGs assert an array of equilibria that are guaranteed to exist. We will define the

notions that are relevant, namely approxiamte CCEs and approximate NEs.

Definition 2.3 (CCE—stationary). For an ϵ ≥ 0, a joint product policy π ∈ ∆(A)S is

8



• an ϵ-approximate Markov-perfect coarse correlated equilibrium if,

V
†,π−k

k (s)− V π
k (s) ≤ ϵ, ∀k ∈ [n],

• an ϵ-approximate (Markov) coarse correlated equilibrium if,

V
†,π−k

k (ρ)− V π
k (ρ) ≤ ϵ, ∀k ∈ [n].

Definition 2.4 (NE—stationary). For an ϵ ≥ 0, a joint product policy π ∈
∏n

k=1 ∆(Ak)S is

• an ϵ-approximate Markov-perfect Nash equilibrium if,

V
†,π−k

k (s)− V π
k (s) ≤ ϵ, ∀k ∈ [n],

• an ϵ-approximate (Markov) Nash equilibrium if,

V
†,π−k

k (ρ)− V π
k (ρ) ≤ ϵ, ∀k ∈ [n].

2.2.1 Further Background on Markov Decision Processes

Additionally, we will need some further preliminaries on Markov decision processes (MDPs).

First, the (discounted) state visitation measure effectively measures the “discounted” ex-

pected amount of time that the Markov chain—induced by fixing the players’ policies—

spends at a state s given that it starts from an initial state s. That is, every visit is

multiplied by a discount factor γt, where t is the time of the visit. We note that the authors

of (Agarwal et al., 2021) use the definition that makes it a probability measure, in the sense

that for a given initial state distribution ρ the discounted state visitation distribution sums

to 1. For convenience, we will work with the unnormalized definition found in (Puterman,

9



2014, Chapter 6.10) that instead sums to 1
1−γ

; this is the reason why we use the term measure

instead of distribution.

Definition 2.5. Consider an initial state distribution ρ ∈ ∆(S) and a stationary joint policy

π ∈ Π. The state visitation measure dπs is defined as

dπs (s) =
∞∑
t=0

γt P(s(t) = s|π, s(0) = s).

Further, overloading notation, we let

dπρ (s) = Es∼ρ [dπs (s)] .

With a slight abuse of notation, we will also write dx,yρ (s) to denote the state visitation

measure induced by strategies (x,y) ∈ X × Y .

Definition 2.6 (Distribution Mismatch Coefficient). Let ρ ∈ ∆(S) be a full-support distri-

bution over states, and Π be the joint set of policies. We define the distribution mismatch

coefficient D as

D := sup
π∈Π

∥∥∥∥dπ
ρ

ρ

∥∥∥∥
∞
,

where
dπ
ρ

ρ
denotes element-wise division.

2.2.2 Properties of the Value Function

The value function of each player, for the case of direct parametrization, asserts some quite

favorable properties as demonstrated in (Agarwal et al., 2020). First, it is the case that

is smooth. Second, it holds that the value function satisfies what is known as a gradient

dominance condition, or, a K L- condition (Karimi et al., 2016).
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Lemma 2.1 (Value Function Lipschitz Continuity). For any initial distribution ρ, the value

function V π
k (ρ) is

√∑
k |Ak|

(1−γ)2
-Lipschitz continuous and

2(
∑

k |Ak|)
(1−γ)3

-smooth:

|V π
k (ρ)− V π′

k (ρ)| ≤
√∑n

k=1 |Ak|
(1− γ)2

∥π − π′∥ ; and∥∥∥∇V π
k (ρ)−∇V π′

k (ρ)
∥∥∥ ≤ 2 (

∑n
k=1 |Ak|)

(1− γ)3
∥π − π′∥ ,

for all π,π′ ∈
∏n

k=1 ∆(Ak)S.

The following property effectively tells us that stationarity implies optimality and gives

bound on the optimality gap depending on the accuracy of an approximately stationary

point.

Lemma 2.2 (Gradient Dominance). Let Γ be an infinite-horizon Markov game. It is the

case that for any joint policy π := (π1, . . . ,πn) and every player k,

max
π⋆
k∈Πk

V
π⋆
k,π−k

k (ρ)− V π
k (ρ) ≤ 1

1− γ
D max

π′
k∈Πk

(π′
k − πk)⊤∇πk

V π
k (ρ).

Thanks to the latter condition, an NE computation problem can be cast as a variational

inqeuality problem of the form,

(π′
k − πk)⊤∇πk

V π
k (ρ) ≤ 0, ∀π′

k ∈ Πk,∀k ∈ [n].
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Chapter 3

Structure and Equilibrium

Computation: Normal-Form Games

3.1 Monotone Normal-Form Games

We have to begin by stating that monotone games (Rosen, 1965) include games that are

not of normal-form, namely, continuous games. Monotone games are an important class of

games that include two-player zero-sum normal-form games, convex-concave games, socially

concave games (Even-Dar et al., 2009), polymatrix zero-sum games (Bregman and Fokin,

1987), etc. Here, we will discuss monotone normal-form games and specifically, two-player

zero-sum and polymatrix zero-sum games.

In a monotone game the gradient operator of utilities F (x) := (∇xi
ui(x))i∈[n] satisfies the

following inequality:

⟨F (x)− F (x′),x− x′⟩ ≤ 0, ∀x,x′ ∈ X .
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3.1.1 Two-Player Zero-Sum Games

Zero-sum games are a fundamental family of games in game theory, where one participant’s

gain is balanced by another’s loss. John von Neumann initiated game theory by formalizing

zero-sum games and developing the minimax theorem. This theorem states that in a zero-

sum game, each player can minimize their maximum possible loss by choosing an optimal

strategy. Von Neumann’s work, along with economist Oskar Morgenstern, laid the foundation

for modern game theory in their book (von Neumann and Morgenstern, 2007).

An array of favorable properties make NE computation easy to compute as well as to learn

as well. Arguably, the most crucial property is the fact that the duality gap is equal to zero.

Theorem 3.1 (Sion’s Minimax Theorem). Let X ⊂ Rn and Y ⊂ Rm be compact convex sets

and a real-valued function f : X × Y → R for which:

• f(·,y) is lower-semicontinuous and quasi-convex for every fixed y

• f(x, ·) is upper-semicontinuous and quasi-concave for every fixed x.

Then:

inf
x∈X

sup
y∈Y

f(x,y) = sup
y∈Y

inf
x∈X

f(x,y).

We can also deduce the following corollary for convex-concave functions:

Corollary 3.1. Let X ⊂ Rn and Y ⊂ Rm be compact convex sets and function f : X×Y → R

be a continuous function that is convex-concave, i.e.:

• f(·,y) is convex for every fixed y

• f(x, ·) is concave for every fixed x.
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Then:

min
X

max
Y

f(x,y) = max
Y

min
X

f(x,y).

This corollary which is also known as the Von Neumann Minimax Theorem effectively tells

as that in a zero-sum game it does not matter which one of the two players commits first to

their strategy and which one has the opportunity to adapt.

Computing and Learning NE in Two-Player Zero-Sum Games. As we discussed, a

NE equilibrium can efficiently be computed in two-player zero-sum games. In fact, computing

a NE is equivalent to solving a linear program (Adler et al., 2009).

Further, researchers have showed interest in learning in two-player zero-sum games and

showed promising results of learning processes that are independently followed by the play-

ers (Robinson, 1951). Research in this direction has culminated to learning processes with

finite-time convergence guarantees of independent learning processes that achieve optimal

convergence rates (Syrgkanis et al., 2015).

3.1.2 Zero-Sum Polymatrix Games

Another class of monotone normal-form games is known as zero-sum polymatrix games or

zero-sum network separable games. For this class of games, Daskalakis and Papadimitriou

(2009) observe that the time-averages of the strategies of no-regret dynamics converge to a

NE. A similar property had been demonstrated in (Even-Dar et al., 2009) for socially concave

games which are monotone games as well. Following works (Cai and Daskalakis, 2011; Cai

et al., 2016) demonstrated that it is the case that all coarse-correlated equilibria collapse to

the set of Nash equilibria.

14



By collapse we mean that, given a CCE σ ∈ ∆ (
∏n

k=1Ak), then the joint mixed strategy xσ

is a NE where xk(ak) =
∑

a−k∈A−k
σ(ak,a−k).

Computing and Learning NE in Zero-Sum Polymatrix Games. Further, the more

general results on monotone games readily apply to these games that span the full spec-

trum of centralized computation approaches to learning approaches with bandit feedback

(Nemirovski, 2004; Bravo et al., 2018; Cai et al., 2022).

3.2 Potential Games

A potential game (Monderer and Shapley, 1996; Rosenthal, 1973) is a game that asserts a

function ψ :
∏n

k=1Ak → R, such that ∀x ∈
∏n

k=1 ∆(Ak),∀k ∈ [n], ∀x′
k ∈ ∆(Ak)

ψ(x′
k,x−k)− ψ(x) = uk(x′

k,x−k)− uk(x).

Computing and Learning NE in Potential Games. For this class of games, numer-

ous algorithms guarantee convergence to a Nash equilibrium, namely, best-response dynam-

ics (Monderer and Shapley, 1996), no-regret dynamics (Anagnostides et al., 2022), etc.

3.3 Adversarial Team Games

An adversarial team game, represented in normal form, is defined by a tuple Γ(N ,M,A,B, U).

Γ consists of a finite set of n := |N | players belonging to the same team A, and a single

adversarial player, B. Each player from team A has a finite and nonempty set of available

actions Ak, so that A :=
∏n

k=1Ak denotes the ensemble of all possible action profiles of
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team A. The adversary, B, has a finite and nonempty set of actions B. We will denote

by a = (a1, . . . , an) ∈ A the action profile of team A, and b ∈ B the action of the player

in team B. Each team’s payoff function is denoted by UA, UB : A × B → R, so that the

individual utility of a player is identical to their teammates: Uk(a, b) = UA(a, b) for all

joint action profiles (a, b) ∈ A × B and for all players i ∈ N . The utility of the adversary

player is UB(a, b) = U(a, b). Further, the game is assumed to be zero-sum, in the sense

that UB(a, b) = −UA(a, b) = U(a, b). As a result, the adversary player, B, aims to maxi-

mize U—thereby referred to as the maximizer, while players in team A aim to minimize U

(hereinafter, minimizers).

Nash Equilibrium. In these games, a NE gets the particular form of,

U(x̂, ŷ) ≤ U(xi, x̂−i, ŷ) + ϵ and U(x̂, ŷ) ≥ U(x̂,y)− ϵ. (NE)

Computing and Learning NE in Adversarial Team Games. In (Anagnostides et al.,

2023), among some complexity results, it was shown that Algorithm 1 can compute an

approximate NE in time poly(1/ϵ,Γ). Also, the arguments we use in Appendix D.4 for

adversarial team Markov games can directly be used to prove the extendibility result found in

(Anagnostides et al., 2023). We further note that the two time-scale gradient descent/ascent

approach of (Lin et al., 2020) can be used along adding a smoothing strongly-concave function

h(y) for the adversary guaranteeing convergence to a NE.
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Chapter 4

Structure and Equilibrium

Computation: Markov Games

4.1 Structured transitions

As we intend to demonstrate, the transition function can essentially be used to simulate

any general-sum normal form game even when the reward function form a potential game.

This goes to show that computing approximate stationary equilibria is not only hard in

infinite-horizon games; transition functions in their full generality can make even finite-

horizon nonstationary equilibria intractable. As such, we will present several assumptions

that are standard in the literature of MGs and we shall see that under those, approximating

equilibria is a tractable problem. We will highlight the structural assumptions of (i) a single

controller, (ii) switching-control, and (iii) additive transitions. Each of these assumptions is

strictly contained to the one that follows it.

single controller ⊆ switching control ⊆ additive transitions.

17



Single controller. The single controller assumption in words translates to the fact that

only one player out of the many of a MG can affect the transitions from one state to another.

This assumption is one that has been studied extensively in past as well as contemporary

literature (Parthasarathy and Raghavan, 1981; Sayin et al., 2020).

Switching control. A slightly more general assumption on the structure of the transitions

is that of switching control (Vrieze et al., 1983; Mohan and Raghavan, 1987; Kalogiannis and

Panageas, 2023). When an n-player MG is characterized by switching control, the state-space

is divided into disjoint subsets {Si}i∈[n], with S = ∪n
i=1Si; in every such set Si, it is only

player i that controls the transitions.

Additive transitions. Finally, the more general transition structure we will present is

that of additive transitions. This structure contains all previous assumptions as special

cases and has been investigated in an array of works (Raghavan et al., 1985; Flesch et al.,

2007; Park et al., 2023). It can be seen as inducing an interpolation between independent

(or, product) state-space games (Flesch et al., 2008) and standard MGs.

Definition 4.1 (Additive transitions). A Markov game is said to exhibit additive transitions

when in every state s and timestep h of the horizon, it holds that,

Ph(s′|s,a) =
∑
i∈[n]

ωi,s,h Pi,h(s′|s, ai),

where ωi,s,h ≥ 0,∀i ∈ [n] and
∑

i∈[n] ωi,s,h = 1.1

Remark 4.1. The Markov games with decomposable state-spaces (Flesch et al., 2008; Sayin,

2023; Zhang et al., 2023; Qin and Etesami, 2023), also known as product action spaces or

games with indepdent Markov chains are captured by the single controller assumption.

1When, ωs,h,j = 1 and ωs,h,i = 0,∀k ̸= i we retrieve the switching-control setting.
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An Example: Turn-based MGs. Turn-based MGs are a class of structured MGs that

has proven useful in advancing the understanding of the computational complexity of equlib-

ria in MGs (Daskalakis et al., 2022; Jin et al., 2022; Deng et al., 2021).

Definition 4.2 (Turn-based Markov game—TBMG). In an n-player turn-based MG, the

state space S is split into disjoint sets {Si}i∈[n]. In every such set Si, player i (called the

controller) determines entirely through their actions both the transitions and the reward func-

tions of all players.

One can observe that turn-based MGs are a special case of MGs with switching control.

Further, correlated policies are equivalent to product policies in those games, making CCEs

and NEs equivalent may they be stationary or nonstationary and perfect or not. We will

refer to them as equilibria without further specification.

4.2 Two-Player Zero-Sum Markov Games

Two-player zero-sum Markov games were first defined by (Shapley, 1953) and in a way have

initiated the literature of MGs. Also, it was this class of games studied which contemporary

research focused on and initiated computational approaches to equilibrium computation in

MGs with finite-time guarantees (Daskalakis et al., 2020).

Since we focus on two-player zero-sum Markov games, we simplify the notation by using

V ·
h=1(s) := V ·

2,1(s)—i.e., player 1 is the minimizing player and player 2 is the maximizer. We

show the following theorem:

Theorem 4.1 (Collapse in two-player zero-sum MG’s). Let a two-player zero-sum Markov

game Γ′ and an ϵ-approximate CCE policy of that game σ. Then, the marginalized product

policies πσ
1 ,π

σ
2 form a 2ϵ-approximate NE.
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Proof. Since σ is an ϵ-approximate CCE joint policy, by definition it holds that for any π1

and any π2,

V
σ−2×π2

h=1 (s1)− ϵ ≤ V σ
h=1(s1) ≤ V

π1×σ−1

h=1 (s1) + ϵ.

Due to Claim D.1, the latter is equivalent to the following inequality,

V
πσ
1 ×π2

h=1 (s1)− ϵ ≤ V σ
h=1(s1) ≤ V

π1×πσ
2

h=1 (s1) + ϵ.

Plugging in πσ
1 ,π

σ
2 alternatingly, we get the inequalities:


V

πσ
1 ×π2

h=1 (s1)− ϵ ≤ V σ
h=1(s1) ≤ V

πσ
1 ×πσ

2
h=1 (s1) + ϵ

V
πσ
1 ×πσ

2
h=1 (s1)− ϵ ≤ V σ

h=1(s1) ≤ V
π1×πσ

2
h=1 (s1) + ϵ

The latter leads us to conclude that for any π1 and any π2,

V
πσ
1 ×π2

h=1 (s1)− 2ϵ ≤ V
πσ
1 ×πσ

2
h=1 (s1) ≤ V

π1×πσ
2

h=1 (s1) + 2ϵ,

which is the definition of a NE in a zero-sum game.

4.3 Markov Potential Games

An important class of MGs that has gained traction in recent literature is the class of Markov

potential games (MPGs) (Leonardos et al., 2021; Zhang et al., 2021; Mguni et al., 2021).

The latter references are the ones that have provided finite-time computation of approximate

NE; nevertheless, the same setting is present in other works that considered asymptotic

convergence guarantees (Fudenberg and Levine, 1988; Macua et al., 2018). In this class
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of games, there exists a state-dependent potential function for the value functions of the

players, rather than just the reward functions. In (Leonardos et al., 2021) it is highlighted

that an MPG can be zero-sum in the rewards of one state and potential in the rewards of

another. We remark that for an MPG, it is assumed that there exists a potential function

for the value functions of the game, rather than the rewards. One is encouraged to revise

the counterexamples provided in (Leonardos et al., 2021; Zhang et al., 2021) for MGs which

fail to be an MPG even though every stage game is a potential game, or MGs with stage

games which are zero-sum games, yet they are MPGs.

Definition 4.3 (Markov potential game — MPG). An MG is a Markov potential game if

there exists a state-dependent potential function, Φπ(s), such that for all players k ∈ [n],

joint policies π, and unilateral deviations π′
k,

Φπ(s)− Φπ′
k,π−k(s) = V π

k (s)− V π′
k,π−k

i (s).

We include a list of conditions placed upon the reward functions that do not suffice to make

an MG an MPG. These conditions appeared in (Zhang et al., 2021).

Proposition 4.1 ((Zhang et al., 2021)). None of the following conditions imply that an MG

is an MPG,

1. There exists a function ϕ : S ×A in for each state, such that,

rk(s,a)− rk(s, a′k,a−k) = ϕ(s,a)− ϕ(s, a′k,a−k), ∀s ∈ S,∀a, a′i.

2. There exists a function ϕ : S ×A such that,

rk(s, a′−k,a−k)− rk(s′, a′′k,a−k) = ϕ(s, a′−k,a−k)− ϕ(s′, a′′k,a−k),

∀s, s′ ∈ S,∀a, a′i, a′′i .
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3. Reward functions are independent of state s, such that,

rk(a)− rk(a′k,a−k) = ϕ(a)− ϕ(a′k,a−k), ∀a, a′k.

The referenced papers (Leonardos et al., 2021; Zhang et al., 2021; Mguni et al., 2021) do not

offer an answer regarding the tractability of computing equilibria in games that satisfy any of

the previous conditions; assumptions of all three items hold true in our construction in The-

orem 4.5 — hence, with no assumption on the transition function, computing approximate

nonstationary NEs is PPAD-hard.

4.4 Adversarial Team Markov Games

We define an adversarial team Markov game (or an adversarial team stochastic game) to

be the Markov game extension of static, normal-form adversarial team games (Von Stengel

and Koller, 1997). We consider the infinite-horizon discounted setting in which a team of

identically-interested agents win what the adversary loses. Formally, the game Γ is defined

as a tuple Γ(S,N ,A,B, r,P, γ, ρ) whose components are:

• S is a finite and nonempty set of states, with cardinality S := |S|;

• N is the set of players, partitioned into a set of n team agents NA := [n] and a single

adversary

• Ak is the action space of each player in the team k ∈ [n], so that A :=×k∈[n]Ak, while

B is the action space of the adversary. We also let Ak := |Ak| and B := |B|;2

• r : S×A×B → (0, 1) is the (deterministic) instantaneous reward function3 representing

2To ease the notation, and without any essential loss of generality, we will assume throughout that the
action space does not depend on the state.

3Assuming that the reward is positive is without any loss of generality
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the (normalized) payoff of the adversary, so that for any (s,a, b) ∈ S ×A× B,

r(s,a, b) +
n∑

k=1

rk(s,a, b) = 0, (4.1)

and for any k ∈ [n],

rk(s,a, b) = rteam(s,a, b). (4.2)

• P : S×A×B → ∆(S) is the transition probability function, so that P(s′|s,a, b) denotes

the probability of transitioning to state s′ ∈ S when the current state is s ∈ S under

the action profile (a, b) ∈ A× B;

• γ ∈ [0, 1) is the discount factor ; and

• ρ ∈ ∆(S) is the initial state distribution over the state space. We will assume that ρ

is full-support, meaning that ρ(s) > 0 for all s ∈ S.

In other words, an adversarial team Markov game is a subclass of general-sum infinite-

horizon multi-agent discounted MDPs under the restriction that all but a single player (the

adversary) have identical interests (see (4.2)), and the game is globally zero-sum—in the

sense of (4.1).

Since the game follows an adversarial team structure, we can argue about the equilibria of

the game solely by the adversary’s value function:

Vs(πteam,πadv) := E(πteam,πadv)

[
∞∑
t=0

γtr(s(t),a(t), b(t))
∣∣s0 = s

]
. (4.3)
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For this class of games, the NE takes the form,

 Vρ(π⋆
team,π

⋆
adv) ≤ Vρ((π′

k,π
⋆
−k),π⋆

adv

)
+ ε, ∀k ∈ [n],∀π′

k ∈ Πk,

Vρ(π⋆
team,π

⋆
adv) ≥ Vρ(π⋆

team,π
′
adv)− ε, ∀π′

adv ∈ Πadv.
(4.4)

4.4.1 Main Result

Theorem 4.2 (Informal). There is an algorithm (IPGmax) that, for any ϵ > 0, computes an

ϵ-approximate stationary Nash equilibrium policy profile in adversarial team Markov games,

and runs in time

poly

(
|S|,

n∑
k=1

|Ak|+ |B|,
1

1− γ
,
1

ϵ

)
.

In this section, we sketch the main pieces required in the proof of our main result, The-

orem 4.2. We begin by describing our algorithm in Section 4.4.2. Next, in Section 4.4.3,

we characterize the strategy x̂ ∈ X for the team returned by IPGmax, while Section 4.4.4

completes the proof by establishing that x̂ can be efficiently extended to an approximate

Nash equilibrium. The formal proof of Theorem 4.2 is deferred to the Appendix.

4.4.2 Our Algorithm

In this subsection, we describe in more detail IPGmax, our algorithm for computing ϵ-

approximate Nash equilibria in adversarial team Markov games (Algorithm 1). IPGmax

takes as input a precision parameter ϵ > 0 (Line 1) and an initial strategy for the team

(x
(0)
1 , . . . ,x

(0)
n ) = x(0) ∈ X :=×n

k=1
Xk (Line 2). The algorithm then proceeds in two phases:

• In the first phase the team players are performing independent policy gradient steps

(Line 7) with learning rate η, as defined in Line 3, while the adversary is then best

responding to their strategy (Line 6). This process is repeated for T iterations, with T
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as defined in Line 4. We note that Proj {·} in Line 7 stands for the Euclidean projection,

ensuring that each player selects a valid strategy. The first phase is completed in Line 9,

where we set x̂ according to the iterate at time t⋆, for some 0 ≤ t⋆ ≤ T − 1. As we

explain in Section 4.4.3, selecting uniformly at random is a practical and theoretically

sound way of setting t⋆.

• In the second phase we are fixing the strategy of the team x̂ ∈ X , and the main goal is

to determine a strategy ŷ ∈ Y so that (x̂, ŷ) is an O(ϵ)-approximate Nash equilibrium.

This is accomplished in the subroutine AdvNashPolicy(x̂), which consists of solving a

linear program—from the perspective of the adversary—that has polynomial size. Our

analysis of the second phase of IPGmax can be found in Section 4.4.4.

Algorithm 1 Independent Policy GradientMax (IPGmax)

1: Precision ϵ > 0
2: Initial Strategy x(0) ∈ X
3: Learning rate η := ϵ2(1−γ)9

32S4D2(
∑n

k=1 Ak+B)
3

4: Number of iterations T :=
512S8D4(

∑n
k=1 Ak+B)

4

ϵ4(1−γ)12

5: for t← 1, 2, . . . , T do
6: y(t) ← arg maxy∈Y Vρ

(
x(t−1),y

)
7: x

(t)
k ← ProjXk

{
x
(t−1)
k − η∇xk

Vρ
(
x(t−1),y(t)

)}
▷ for all agents i ∈ [n]

8: end for
9: x̂ ← x(t⋆)

10: ŷ ← AdvNashPolicy(x̂) ▷ defined in Algorithm 2
11: return (x̂, ŷ)

Algorithm 2 Algorithm for computing AdvNashPolicy

Input: An ϵ-nearly stationary point x̂ ∈ X of ϕ(x) ≡ maxy∈Y Vρ(x,y)
1: Let v̂ be the best-response value vector for the adversary
2: Compute the coefficients of the linear program LPadv

3: Let λ be any feasible solution of LPadv

4: Let ŷs,b = λ(s,b)∑
b′∈B λ(s,b′)

for all s ∈ S, b ∈ B
5: return ŷ
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4.4.3 Analyzing Independent Policy GradientMax

In this subsection, we establish that IPGmax finds an ϵ-nearly stationary point x̂ of ϕ(x) :=

maxy∈Y Vρ(x,y) in a number of iterations T that is polynomial in the natural parameters of

the game, as well as 1/ϵ; this is formalized in Proposition 4.2.

First, we note the by-now standard property that the value function Vρ is L-Lipschitz con-

tinuous and ℓ-smooth, where L :=

√∑n
k=1 Ak+B

(1−γ)2
and ℓ :=

2(
∑n

k=1 Ak+B)
(1−γ)3

(Lemma 2.1). An

important observation for the analysis is that IPGmax is essentially performing gradient

descent steps on ϕ(x). However, the challenge is that ϕ(x) is not necessarily differentiable;

thus, our analysis relies on the Moreau envelope of ϕ, defined as follows.

Definition 4.4 (Moreau Envelope). Let ϕ(x) := maxy∈Y Vρ(x,y). For any 0 < λ < 1
ℓ
the

Moreau envelope ϕλ of ϕ is defined as

ϕλ(x) := min
x′∈X

{
ϕ(x′) +

1

2λ
∥x− x′∥2

}
. (4.5)

We will let λ := 1
2ℓ
.

Crucially, the Moreau envelope ϕλ, as introduced in (4.5), is ℓ-strongly convex; this fol-

lows immediately from the fact that ϕ(x) is ℓ-weakly convex, in the sense that ϕ(x) +

ℓ
2
∥x∥2 is convex (see Lemma B.1). A related notion that will be useful to measure the

progress of IPGmax is the proximal mapping of a function f , defined as proxf : X ∋ x 7→

arg minx′∈X
{
f(x′) + 1

2
∥x′ − x∥2

}
; the proximal of ϕ/(2ℓ) is well-defined since ϕ is ℓ-weakly

convex (Proposition B.1). We are now ready to state the convergence guarantee of IPGmax.

Proposition 4.2. Consider any ϵ > 0. If η = 2ϵ2(1 − γ) and T = (1−γ)4

8ϵ4(
∑n

k=1 Ak+B)2
, there

exists an iterate t⋆, with 0 ≤ t⋆ ≤ T − 1, such that
∥∥x(t⋆) − x̃(t⋆)

∥∥
2
≤ ϵ, where x̃(t⋆) :=

proxϕ/(2ℓ)(x
(t⋆)).

26



The proof relies on the techniques of (Lin et al., 2020), and it is deferred to Appendix D.5.

The main takeaway is that O(1/ϵ4) iterations suffice in order to reach an ϵ-nearly stationary

point of ϕ—in the sense that it is ϵ-far in ℓ2 distance from its proximal point. A delicate

issue here is that Proposition 4.2 only gives a best-iterate guarantee, and identifying that

iterate might introduce a substantial computational overhead. To address this, we also show

in Corollary D.3 that by randomly selecting ⌈log(1/δ)⌉ iterates over the T repetitions of

IPGmax, we are guaranteed to recover an ϵ-nearly stationary point with probability at

least 1− δ, for any δ > 0.

4.4.4 Efficient Extension to Nash Equilibria

In this subsection, we establish that any ϵ-nearly stationary point x̂ of ϕ, can be extended

to an O(ϵ)-approximate Nash equilibrium (x̂, ŷ) for any adversarial team Markov game,

where ŷ ∈ Y is the strategy for the adversary. Further, we show that ŷ can be computed

in polynomial time through a carefully constructed linear program. This “extendibility”

argument significantly extends a seminal characterization of Von Stengel and Koller (1997),

and it is the crux in the analysis towards establishing our main result, Theorem 4.2.

To this end, the techniques we leverage are more involved compared to (Von Stengel and

Koller, 1997), and revolve around nonlinear programming. Specifically, in the spirit of (Filar

and Vrieze, 2012, Chapter 3), the starting point of our argument is the following nonlinear

program with variables (x,v) ∈ X × RS:
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(Q-NLP)

min
∑
s∈S

ρ(s)v(s) + ℓ∥x− x̂∥2

s.t. r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′) ≤ v(s), ∀(s, b) ∈ S × B; (Q1)

x⊤
k,s1 = 1, ∀(k, s) ∈ [n]× S; and (Q2)

xk,s,a ≥ 0, ∀k ∈ [n], (s, a) ∈ S ×Ak.

(Q3)

Here, we have overloaded notation so that r(s,x, b) := Ea∼xs [r(s,a, b] and P(s′|s,x, b)) :=

Ea∼xs [P(s′|s,a, b)]. For a fixed strategy x ∈ X for the team, this program describes the

(discounted) MDP faced by the adversary. A central challenge in this formulation lies

in the nonconvexity-nonconcavity of the constraint functions, witnessed by the multilin-

ear constraint (Q1). Importantly, unlike standard MDP formulations, we have incorporated

a quadratic regularizer in the objective function; this term ensures the following property.

Proposition 4.3. For any fixed x ∈ X , there is a unique optimal solution v⋆ to (PNE).

Further, if x̃ := proxϕ/(2ℓ)(x̂), and ṽ ∈ RS is the corresponding optimal, then (x̃, ṽ) is the

global optimum of (PNE).

The uniqueness of the associated value vector is a consequence of Bellman’s optimality equa-

tion, while the optimality of the proximal point follows by realizing that (PNE) is an equiv-

alent formulation of the proximal mapping. These steps are formalized in Appendix D.4.2.

Having established the optimality of (x̃, ṽ), the next step is to show the existence of non-

negative Lagrange multipliers satisfying the KKT conditions (recall Definition A.2); this is

non-trivial due to the nonconvexity of the feasibility set of (PNE).

To do so, we leverage the so-called Arrow-Hurwicz-Uzawa constraint qualification (Theo-

rem A.1)—a form of “regularity condition” for a nonconvex program. Indeed, in Lemma D.9

we show that any feasible point of (PNE) satisfies that constraint qualification, thereby im-
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plying the existence of nonnegative Lagrange multipliers satisfying the KKT conditions for

any local optimum (Corollary D.2), and in particular for (x̃, ṽ):

Proposition 4.4. There exist nonnegative Lagrange multipliers satisfying the KKT condi-

tions at (x̃, ṽ).

Now the upshot is that a subset of those Lagrange multipliers λ̃ ∈ RS×B can be used to

establish the extendability of x̂ to a Nash equilibrium. Indeed, our next step makes this

explicit: We construct a linear program whose sole goal is to identify such multipliers, which

in turn will allow us to efficiently compute an admissible strategy for the adversary ŷ.

However, determining λ̃ exactly seems too ambitious. For one, IPGmax only granted us

access to x̂, but not to x̃. On the other hand, the Lagrange multipliers λ̃ are induced by

(x̃, ṽ). To address this, the constraints of our linear program are phrased in terms of (x̂, v̂),

instead of (x̃, ṽ), while to guarantee feasibility we appropriately relax all the constraints of

the linear program; this relaxation does not introduce too much error since ∥x̂ − x̃∥ ≤ ϵ

(Proposition 4.2), and the underlying constraint functions are Lipschitz continuous—with

constants that depend favorably on the game G; we formalize that in Lemma D.10. This

leads us to our main theorem, summarized below (see Theorem D.7 for a precise statement).

Theorem 4.3. Let x̂ be an ϵ-nearly stationary point of ϕ. There exist a linear program,

(LPadv), such that:

(i) It has size that is polynomial in G, and all the coefficients depend on the (single-agent)

MDP faced by the adversary when the team is playing a fixed strategy x̂; and

(ii) It is always feasible, and any solution induces a strategy ŷ such that (x̂, ŷ) is an O(ϵ)-

approximate Nash equilibrium.

The proof of this theorem carefully leverages the structure of adversarial team Markov games,

along with the KKT conditions we previously established in Proposition 4.4. The algorithm
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for computing the policy for the adversary is summarized in Algorithm 2 of Appendix D.4.

A delicate issue with Theorem 4.3, and in particular with the solution of (LPadv), is whether

one can indeed efficiently simulate the environment faced by the adversary. Indeed, in the

absence of any structure, determining the coefficients of the linear program could scale expo-

nentially with the number of players; this is related to a well-known issue in computational

game theory, revolving around the exponential blow-up of the input space as the number of

players increases (Papadimitriou and Roughgarden, 2008). As is standard, we bypass this by

assuming access to natural oracles that ensure we can efficiently simulate the environment

faced by the adversary.
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4.5 Reward-Potential Markov Games

We define the class of reward-potential MGs to be the set of MGs whose reward functions in

every state are characterized by the existence of a potential function. I.e., when players uni-

laterally deviate from a given joint policy, changes in the utility of each player are described

by the change in the potential function. Formally:

Definition 4.5 (Reward-potential Markov game — RPMG). We call a Markov game reward-

potential when for every state s (and timestep h of the horizon), there exists a function

ϕh : S ×∆(A)→ R such that for all players i ∈ [n], joint policies π ∈ ∆(A), and unilateral

deviations π′
i ∈ ∆(Ai),

ϕh(s,π)− ϕh(s,π′
k,π−k) = rk,h(s,π)− rk,h(s,π′

k,π−k).

Remark 4.2. In our opinion, this is a justified and reasonable alternative Markovian ex-

tension of the class of potential games. Further, the proposed assumption is rather minimal,

a lot more so than the existence of a potential function for the value functions of the play-

ers. Moreover, a state based potential game defined in (Marden, 2012) is both an MPG and

RMPG. In this class of games, there exists a potential function for the rewards of each state

(rendering it an RPMG), while the fact that state transitions are independent of the players’

actions satisfy a sufficient condition for it to be an MPG (see Proposition 4.1).

Theorem 4.4 (PPAD-hardness for perfect equilibria — (Daskalakis et al., 2022, Theorem

3.1)). There exists a constant ϵ > 0 such that the problem of computing an ϵ-approximate

perfect NE in 2-player, turn-based stochastic games with γ = 1/2 is PPAD-hard. As such, the

problem of computing an ϵ-approximate perfect CCE in 2-player, infinite-horizon stochastic

games with γ = 1/2 is PPAD-hard.

Observation 4.1. Computing an ϵ-approximate stationary CCE in reward-potential Markov

games is PPAD-hard.
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Let us make the latter observation clearer. We denote the controller of state s ∈ Sk, ctrlr(s) =

k. From the definition of TBMG, there exist functions r′j for each player j, such that

rj(s,a) = r′j(s, actrlr(s)). Similarly, there exist P′ such that P(s′|s,a) = P′(s′|s, actrlr(s)).

Now, we can observe that in a TBMG, the sum of rewards in every state is trivially a

potential function for the rewards of that state,

ϕ(s,a) =
∑
k∈[n]

rk(s,a) =
∑
k∈[n]

r′k
(
s, actrlr(s)

)
.

i.e., it holds that,

ϕ(s, a′j,a−j)− ϕ(s,a) = rj(s, a
′
j,a−j)− rj(s,a).

Hence, TBMGs are in fact a special case of reward-potential Markov games. Next, we

show that when transitions assert full generality, even the computation of nonstationary

approximate NE is PPAD-hard for finite-horizon games. Our main complexity contribution

is that:

Theorem 4.5. Computing a nonstationary Markovian ϵ-approximate NE policy in reward-

potential Markov games is PPAD-hard.

Proof. Consider a 2-player general-sum game Γ with payoff matrices (U,V) for player 1, 2

accordingly. Pure strategies of players 1 and 2 are denoted ai, bj, accordingly, with i ∈ [m]

and j ∈ [n]. Hence, U,V ∈ Rm×n.

We construct a 2-player reward-potential Markov game Γ′ as follows:

• the time horizon of the game is H = 3,

• players 1, 2 have the same set of available actions as players in game Γ;
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and {ai}i∈[m], {bj}j∈[n],

• there is an initial state s0,

• for every pair of actions ai, bj of the initial game there is a state sij;

i.e., S = {sij, ij ∈ [m]× [n]}

• in state sij player 1 gets reward Uij, player 2 gets Vij; in s0, they both get reward 0,

• transitions are deterministic and P(sij|s0, ai, bj) = 1, while states skj are absorbing.

In the following figure we offer an illustration of how this simple construction works.

u11 u12 . . . u1m

u21 u22 . . . ...

...
...

. . .

unmun1 un2 . . .

U

v11 v12 . . . v1m

v21

...
. . .

vnmvn1 vn2 . . .

V

s11 s12 . . . s1m

s21 s22 . . . ...

...
...

. . .

snmsn1 sn2 . . .

S

s0

a1,b1

a1,b2

a1,bm

a2,b1

a2,b2an,b1

an,b2

an,bm

s11 s12 . . . s1m

s21 s22 . . . ...

...
...

. . .

snmsn1 sn2 . . .

Figure 4.1: Emulating a two-player general-sum normal-form game

The value functions of players 1, 2 for policies in s0, where x := π1(s0, h = 1) and y :=
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π2(s0, h = 1), are:


V1(s0) = 0 +

∑
a,b

∑
sij∈S x(a)y(b)P(sij|s0, a, b)Uij

=
∑
x(ai)y(bj)Uij = x⊤Uy

V2(s0) = x⊤Vy.

Hence, Nash equilibria of game Γ coincide with the x,y policies of Nash equilibria in game

Γ′ and the complexity of approximating them is known due to (Chen et al., 2009; Daskalakis

et al., 2009).

A Short Remark on Additive Transitions. Before proceeding any further, we would

like to make it clear that additive transitions is the most general assumption that we can place

on the transition function of a tabular MG with finite action-spaces and finite state-spaces.

By definition, the transition function is a multilinear function of the individual policies. By

our main theorem, Theorem 4.5, we have established that in general, bilinear transition

functions can emulate any two-player general-sum normal-form game; in our construction, it

is even true that the rewards will be constant in each state and independent of the actions

of the players. Additive transitions result in the most general multilinear function that does

not lead to intractability of equilibria and consequently the most general assumption on the

transitions.

4.5.1 NE Computation in RPMGs with Additive Transitions

Having decisively proven the necessity of assuming a structure on the transitions of the game,

we state our main algorithmic result for RPMGs with additive transitions.

First, we remark that the NE-Oracle in Algorithm 3 can be implemented in a fully-decentralized
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fashion using mirror descent. For completeness, we include the theorem we invoke.

Theorem 4.6 ((Anagnostides et al., 2022)). Assume a potential game Γ with an L-Lipschitz

continuous potential function Φ :
∏n

i=1Ai → R. Suppose that each player k employs mirror-

descent with a strongly convex and smooth regularizer R. Then, after O
(
Φmax

Lϵ2

)
iterations,

the mirror-descent dynamics converge to an ϵ-approximate Nash equilibrium. Where Φmax is

the maximum possible value of Φ.

For the special case of R(·) = 1
2
∥·∥2, mirror-descent take the form of projected gradient

ascent:

πt+1
i = ProjΠk

{
πt

k + η∇uk(πt)
}
.

Where, uk is player k’s utility and ProjΠk
is the projection operator to the set of feasible

policies.

As such, we can state our first positive result for RPMGs.

Theorem 4.7 (Informal version of Theorem D.2). Algorithm 3, with a NE-Oracle imple-

mented by every player running mirror descent, computes an ϵ-approximate nonstationary

NE for an RPMG with additive transitions in time O
(

nH5|S|2 maxi∈[n] |Ai|5/2

ϵ2

)
.

Algorithm 3 Backwards-Inductive NE Computation in Reward-Potential MGs

1: input: n,S, H and accuracy parameter ϵ.
2: initialization: V̂i,H = 0 for all agents i ∈ [n]
3: for h = H − 1 to 1 do
4: // Approx. NE for subgame Γs,h for all s with accuracy ϵ/H

5: xs,h ← NE-Oracle
(

ϵ
H
,
{
rh,ph, V̂h+1

})
// for all s ∈ S

6: // Update value function

7: V̂i,s,h ← ri,h(s,xh) + ph(s,xh)V̂i,s,h+1

8: end for
9: return {xh}h∈[H]
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Implementing the NE-Oracle. The NE-Oracle takes as input the desired accuracy of an

approximate NE and the game. The crucial part regarding Algorithm 3 is the computational

cost of implementing the NE-Oracle. In our setting, due to lemma D.1, the oracle can

be implemented in a decentralized and distributed manner and its iteration complexity is

polynomial in the inverse of the approximation accuracy and the natural parameters of

the game. In (Anagnostides et al., 2023) it was proven that the complexity of computing

an approximate NE in adversarial potential games matches that of computing a mixed

approximate NE in potential games (Rubinstein, 2017).

4.5.2 Properties of RPMGs with Additive Transitions

We conclude this subsection by noting an interesting property of RPMGs. They do inherit

the property of asserting pure NEs from their counterpart in nomral and static form. In the

case that it was desirable, we could modify the implementation of NE-Oracle in Algorithm 3 in

such that could compute pure NE in every state and also retrieve deterministic nonstationary

NE policies for RPMGs.

Theorem 4.8. Finite-horizon reward-potential games with additive transitions assert pure

Nash equilibria.

A further note we would like to include is the fact that infinite-horizon RPMGs attain

deterministic approximate nonstationary equilibria by the standard trick of truncating the

horizon of the game. Namely, we set H = log(1/ϵ)
1−γ

and modifying the reward functions such

that ri,h(s, ·) = γh−1ri(s, ·).

Corollary 4.1. Infinite-horizon RPMGs with discount parameter γ, attain a deterministic

nonstationary approximate NE that can be computed in time poly
(

1
ϵ
, 1
1−γ

,
∑

i∈[n+1] |Ai|, |S|
)
.
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4.5.3 An Extension: Adversarial Reward-Potential Markov Games

As an extension, we consider ARPMGs, i.e., MGs whose rewards follow an adversarial

potential game structure. It is then straightforward to derive the following corollary of

Theorem 4.5,

Corollary 4.2. Computing a nonstationary Markovian ϵ-approximate NE policy in adver-

sarial reward-potential Markov games is PPAD-hard.

Finally, using the algorithm of (Anagnostides et al., 2023) to implement the NE-Oracle, we

see that:

Theorem 4.9. An ϵ-approximate NE of a finite-horizon ARPMG with additive transitions

can be computed in time poly(1/ϵ,
∑

i∈[n+1] |Ai|, |S|, H).

The proof is defered to the appendix.

4.5.4 Conclusions

We studied Markov games, focusing on the structure of rewards rather than making stronger

assumptions about the structure of individual value functions. This setting is often implicitly

defined in many modern texts, but its computational aspects have not been thoroughly

explored. We addressed the question of the computational complexity of computing equilibria

in these games and identified the necessary assumptions for their efficient computation.

Additionally, we presented algorithms for this purpose.
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4.6 Zero-Sum Polymatrix Markov Games

In this section, we focus on the setting of zero-sum polymatrix switching-control Markov

games. This setting encompasses two major assumptions related to the reward functions in

every state {rk}k∈[n] and the transition kernel P. The first assumption imposes a zero-sum,

polymatrix structure on {rk}k∈[n] for every state and directly generalizes zero-sum polymatrix

games for games with multiple states.

Assumption 4.1 (Zero-sum polymatrix games). The reward functions of every player in

any state s are characterized by a zero-sum, polymatrix structure.

Polymatrix structure. For every state s there exists an undirected graph Gs(V , Es) where,

• the set of nodes V coincides with the set of agents [n]; the k-th node is the k-th

agent,

• the set of edges Es stands for the set of pair-wise interactions; each edge e =

(k, j), k, j ∈ [n], k ̸= j stands for a general-sum normal-form game played between

players k, j and which we note as
(
rkj(s, ·, ·), rjk(s, ·, ·)

)
with rkj, rjk : S×Ak×Aj →

[−1, 1].

Moreover, we define adj(s, k) := {j ∈ [n] | (k, j) ∈ Es} ⊆ [n] to be the set of all neighbors

of an arbitrary agent k in state s. The reward of agent k at state s given a joint action a

depends solely on interactions with their neighbors,

rk,h(s,a) =
∑

j∈adj(k)

rkj,h(s, ak, aj), ∀h ∈ [H],∀s ∈ S,∀a ∈ A.
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Further, the zero-sum assumption implies that,

∑
k

rk,h(s,a) = 0, ∀h ∈ [H],∀s ∈ S,∀a ∈ A. (4.7)

In the infinite-horizon setting, the subscript h can be dropped.

A further assumption (switching-control) is necessary in order to ensure the desirable prop-

erty of equilibrium collapse.

Assumption 4.2 (Switching-control). In every state s ∈ S, there exists a single player (not

necessarily the same), or controller, whose actions determine the probability of transitioning

to a new state.

Remark 4.3. It is direct to see that Markov games with a single controller and TBMG, are

special case of Markov games with switching controller.

4.6.1 Main results

In this section we provide the main results of this paper. We shall show the collapsing

phenomenon of coarse-correlated equilibria to Nash equilibria in the case of zero-sum, single

switching controller polymatrix Markov games. Before we proceed, we provide a formal

definition of the notion of collapsing.

Definition 4.6 (CCE collapse to NE). Let σ be any ϵ-CCE policy of a Markov game.

Moreover, let the marginal policy πσ := (πσ
1 , ...,π

σ
n ) be defined as:

πσ
k (a|s) =

∑
a−k∈A−k

σ(a,a−k|s), ∀k, ∀s ∈ S,∀a ∈ Ak.

If πσ is an O(ϵ)-NE equilibrium for every σ then we say the set of approximate CCE’s

collapses to that of approximate NE’s.
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4.6.2 Equilibrium collapse in finite-horizon polymatrix Markov

games

In this section, we focus on the more challenging case of polymatrix Markov games which

is the main focus of this paper. For any finite horizon Markov game, we define (PNE) to be

the following nonlinear program with variables π,w:

(PNE)

min
∑
k∈[n]

(
wk,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh)

)
s.t. wk,h(s) ≥ rk,h(s, a,π−k,h) + Ph(s, a,π−k,h)wk,h+1,

∀s ∈ S,∀h ∈ [H],∀k ∈ [n],∀a ∈ Ak;

wk,H(s) = 0, ∀k ∈ [n], ∀s ∈ S;

πk,h(s) ∈ ∆(Ak),

∀s ∈ S,∀h ∈ [H],∀k ∈ [n],∀a ∈ Ak.

Using the following theorem, we are able to use (PNE) to argue about equilibrium collapse.

Theorem 4.10 (NE and global optima of (PNE)). If (π⋆,w⋆) yields an ϵ-approximate global

minimum of (PNE), then π⋆ is an nϵ-approximate NE of the zero-sum polymatrix switching

controller MG, Γ. Conversely, if π⋆ is an ϵ-approximate NE of the MG Γ with corresponding

value function vector w⋆ such that w⋆
k,h(s) = V π⋆

k,h (s)∀(k, h, s) ∈ [n]× [H]× S, then (π⋆,w⋆)

attains an ϵ-approximate global minimum of (PNE).

Following, we are going to use (PNE) in proving the collapse of CCE’s to NE’s. We observe

that the latter program is nonlinear and in general nonconvex. Hence, duality cannot be

used in the way it was used in (Cai et al., 2016) to prove equilibrium collapse. Nevertheless,

we can prove that given a CCE policy σ, the marginalized, product policy×k∈[n] π
σ
k along

with an appropriate vector wσ achieves a global minimum in the nonlinear program (PNE).
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More precisely, our main result reads as the following statement.

Theorem 4.11 (CCE collapse to NE in polymatrix MG). Let a zero-sum polymatrix switching-

control Markov game, i.e., a Markov game for which Assumptions 4.1 and 4.2 hold. Fur-

ther, let an ϵ-approximate CCE of that game σ. Then, the marginal product policy πσ, with

πσ
k,h(a|s) =

∑
a−k∈A−k

σh(a,a−k), ∀k ∈ [n],∀h ∈ [H] is an nϵ-approximate NE.

Proof. Let an ϵ-approximate CCE policy, σ, of game Γ. Moreover, let the best-response

value-vectors of each agent k to joint policy σ−k, w†
k.

Now, we observe that due to Assumption 4.1,

w†
k,h(s) ≥ rk,h(s, a,σ−k,h) + Ph(s, a,σ−k,h)w†

k,h+1

=
∑

j∈adj(k)

r(k,j),h(s, a,πσ
j ) + Ph(s, a,σ−k,h)w†

k,h+1.

Further, due to Assumption 4.2,

Ph(s, a,σ−k,h)w†
k,h+1 = Ph(s, a,πσ

argctrlr(s),h)w†
k,h+1,

or,

Ph(s, a,σ−k,h)w†
k,h+1 = Ph(s, a,πσ)w†

k,h+1.

Putting these pieces together, we reach the conclusion that (πσ,w†) is feasible for the non-

linear program (PNE).

What is left is to prove that it is also an ϵ-approximate global minimum. Indeed, if∑
kw

†
k,h(s1)≤ϵ (by assumption of an ϵ-approximate CCE), then the objective function of

(PNE) will attain an ϵ-approximate global minimum. In turn, due to Theorem 4.10 the
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latter implies that πσ is an nϵ-approximate NE.

We can now conclude that due to the algorithm introduced in (Daskalakis et al., 2022) for

CCE computation in general-sum MG’s, the next statement holds true.

Corollary 4.3 (Computing a NE—finite-horizon). Given a finite-horizon switching control

zero-sum polymatrix Markov game, we can compute an ϵ-approximate Nash equilibrium policy

that is Markovian with probability at least 1− δ in time poly
(
n,H, S,maxk |Ak|, 1ϵ , log(1/δ)

)
.

In the next section, we discuss the necessity of the assumption of switching control using a

counter-example of non-collapsing equilibria.

4.6.3 No equilibrium collapse with more than one controllers per-

state

Although Assumption 4.1 is sufficient for the collapse of any CCE to a NE in single-state (i.e.,

normal-form) games, we will prove that Assumption 4.2 is indispensable in guaranteeing such

a collapse in zero-sum polymatrix Markov games. That is, if more than one players affect

the transition probability from one state to another, a CCE is not guaranteed to collapse to

a NE.

Example 4.1. We consider the following 3-player Markov game that takes place for a time

horizon H = 3. There exist three states, s1, s2, and s3 and the game starts at state s1. Player

3 has a single action in every state, while players 1 and 2 have two available actions {a1, a2}

and {b1, b2} respectively in every state.

Reward functions. If player 1 (respectively, player 2) takes action a1 (resp., b1), in either

of the states s1 or s2, they get a reward equal to 1
20
. In state s3, both players get a reward
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equal to −1
2
regardless of the action they select. Player 3 always gets a reward that is equal to

the negative sum of the reward of the other two players. This way, the zero-sum polymatrix

property of the game is ensured (Assumption 4.1).

Transition probabilities. If players 1 and 2 select the joint action (a1, b1) in state s1,

the game will transition to state s2. In any other case, it will transition to state s3. The

converse happens if in state s2 they take joint action (a1, b1); the game will transition to

state s3. For any other joint action, it will transition to state s1. From state s3, the game

transitions to state s1 or s2 uniformly at random.

At this point, it is important to notice that two players control the transition probability from

one state to another. In other words, Assumption 4.2 does not hold.

s1 s2

s3

1/2 1/2

1− π1(a1|s1)π2(b1|s1)

π1(a1|s1)π2(b1|s1) π1(a1|s2)π2(b1|s2)

1− π1(a1|s2)π2(b1|s2)

Figure 4.2: A graph of the state space with transition probabilities parametrized with respect
to the policy of each player.

Next, we consider the joint policy σ,

σ(s1) = σ(s2) =

b1 b2 a1 0 1/2

a2 1/2 0

.
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Claim 4.1. The joint policy σ that assigns probability 1
2
to the joint actions (a1, b2) and

(a2, b1) in both states s1, s2 is a CCE and V σ
1,1(s1) = V σ

2,1(s1) = 1
20
.

Yet, the marginalized product policy of σ which we note as πσ
1 × πσ

2 does not constitute a

NE. The components of this policy are,



πσ
1 (s1) = πσ

1 (s2) =

a1 a2( )
1/2 1/2

,

πσ
2 (s1) = πσ

2 (s2) =

b1 b2( )
1/2 1/2

.

I.e., the product policy πσ
1 ×πσ

2 selects any of the two actions of each player in states s1, s2

independently and uniformly at random. With the following claim, it can be concluded that in

general when more than one player control the transition the set of equilibria do not collapse.

Claim 4.2. The product policy πσ
1 × πσ

2 is not a NE.

In conclusion, Assumption 4.1 does not suffice to ensure equilibrium collapse.

Theorem 4.12. There exists a zero-sum polymatrix Markov game (Assumption 4.2 is not

satisfied) that has a CCE which does not collapse to a NE.

4.6.4 Equilibrium collapse in infinite-horizon polymatrix Markov

games

In proving equilibrium collapse for infinite-horizon polymatrix Markov games, we use similar

arguments and the following nonlinear program with variables π,w,
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(P′
NE)

min
∑
k∈[n]

ρ⊤ (wk − (I− γ P(π))−1rk(π)
)

s.t. wk(s) ≥ rk(s, a,π−k) + γ P(s, a,π−k)wk,

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak;

πk(s) ∈ ∆(Ak),

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak.

We note that Example 4.1 can be properly adjusted to show that the switching-control

assumption is necessary for equilibrium collapse in infinite-horizon games as well. Compared

to finite-horizon games, infinite-horizon games cannot be possibly solved using backward

induction. They pose a genuine computational challenge and, in that sense, the importance

of the property of equilibrium collapse gets highlighted.

Computational implications. Equilibrium collapse in infinite-horizon MG’s allows us to

use the CCE computation technique found in (Daskalakis et al., 2022) in order to compute an

ϵ-approximate NE. Namely, given an accuracy threshold ϵ, we truncate the infinite-horizon

game to its effective horizon H := log(1/ϵ)
1−γ

. Then, we define reward functions that depend on

the time-step h, i.e., rk,h = γh−1rk. Finally,

Corollary 4.4. (Computing a NE—infinite-horizon) Given an infinite-horizon switching

control zero-sum polymatrix game Γ, it is possible to compute a Nash equilibrium policy that

is Markovian and nonstationary with probability at least 1− δ in time

poly

(
n,

1

1− γ
, S,max

k
|Ak|,

1

ϵ
, log(1/δ)

)
.
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4.6.5 Hardness without assumptions on transitions

Theorem 4.13. Finite-horizon zero-sum polymatrix Markov games with more than one

controller are PPAD-hard.

Proof. TL;DR:For any 2-player general-sum game Γ we can construct (in polynomial time)

a 3-player zero-sum polymatrix Markov game Γ′ with two controllers such that a NE in Γ′

can be used to retrieve in polynomial time NE in Γ.

Consider a 2-player general-sum game Γ with payoff matrices (U,V) for player 1, 2 accord-

ingly. Pure strategies of players 1 and 2 are denoted ai, bj, accordingly, with i ∈ [m] and

j ∈ [n]. Hence, U,V ∈ Rm×n.

We construct a 3-player polymatrix zero-sum Markov game Γ′ as follows:

• the time horizon of the game is H = 3,

• players 1, 2 have the same set of available actions as players in game Γ; {ai}i∈[m], {bj}j∈[n]

; tha action-set of player 3 is a singleton (dummy player),

• there is an initial state s0,

• for every pair of actions ai, bj of the initial game there is a state sij; i.e., S = {sij, ij ∈

[m]× [n]}

• in state sij player 1 gets reward Uij, player 2 gets Vij and player three gets −(Uij +Vij);

in s0, they all get reward 0,

• transitions are deterministic and P(sij|s0, ai, bj) = 1, while states sij are absorbing.
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sij

s0

ij ∈ [m]× [n]

P(sij|s0, ai, bj) = 1

Initial bimatrix game (U,V)

player 1 player 2

player 3

Vij

Uij

−Uij
0

−Vij
0

rewards in sij have

zero-sum polymatrix struct.

equal to ij-entry of matrices U,V resp.

Figure 4.3: PPAD-hardness of nonstationary NE proof constuction.

The value functions of players 1, 2 for policies in s0 x := π1(s0, h = 1),y =: π2(s0, h = 1)

are: 
V1(s0) = 0 +

∑
a,b

∑
sij∈S x(a)y(b)P(sij|s0, a, b)Uij

=
∑
x(aj)y(bj)Uij = x⊤Uy

V2(s0) = x⊤V y.

Hence, Nash equilibria of game Γ coincide with the x,y policies of Nash equilibria in game

Γ′.
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4.6.6 Conclusion

In this section, we unified switching-control Markov games and zero-sum polymatrix normal-

form games. We highlighted how numerous applications can be modeled using this framework

and we focused on the phenomenon of equilibrium collapse from the set of coarse-correlated

equilibria to that of Nash equilibria. This property holds implications for computing approx-

imate Nash equilibria in switching control zero-sum polymatrix Markov games; it ensures

that it can be done efficiently.
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Chapter 5

It’s all about Transitions

In this chapter we will briefly demonstrate how any two-player general-sum Markov game

can be transformed into a strategically-equivalent Markov game with a polynomially larger

state space where the rewards of the two players are constant. Doing so, we highlight our

main message that, in general, a Markov game is a game of state transitions.

5.1 A Simple Insightful Construction

Observation 5.1. The computation of a Markov-perfect equilibrium in a Markov game Γ,

with Γ(H,S, {A,B},P, {r1, r2}, γ,ρ), can be reduced to the problem of computing an equi-

librium in a constant-reward Markov game Γ′(H ′,S ′, {A,B},P′, {r′1, r′2}, γ′,ρ′) whose size is

polynomial in the parameters of Γ. I.e., a Markov game Γ′ where

rk(s, a, b) = rk(s, a′, b′), ∀a, a′ ∈ A, b, b′ ∈ B,∀k ∈ {1, 2}, ∀s ∈ S ′.

We use the construction used in proving Theorem 4.5 for the reward functions of every state
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of the game Γ. In short, using the previous construct, we add a small number of states to

emulate the reward function of each state of the original game.

In particular, in place of every state sκ ∈ S of the initial game we put a new set of states Sκ

with size |Sκ| = 1 +mn. (Reminder: |A| = m, |B| = n).

u11 u12 . . . u1m

u21 u22 . . . ...

...
...

. . .

unmun1 un2 . . .

r1(s
κ, ·, ·)

v11 v12 . . . v1m

v21

...
. . .

vnmvn1 vn2 . . .

r2(s
κ, ·, ·)

sκ11 sκ12 . . . sκ1m

sκ21 sκ22 . . . ...

...
...

. . .

sκnmsκn1 sκn2 . . .

Sκ

sκ0

a1,b1

a1,b2

a1,bm

a2,b1

a2,b2an,b1

an,b2

an,bm

sκ11 sκ12 . . . sκ1m

sκ21 sκ22 . . . ...

...
...

. . .

sκnmsκn1 sκn2 . . .

Figure 5.1: Emulating the reward function

In detail, we let,

• S ′ := {sκ0} ∪ {sκij}i,j∈[m]×[n], with S ′
0 := {sκ0};

• r1(s
κ
0 , ·, ·) = r2(s

κ
0 , ·, ·) = 0;

• r′1(s
κ
ij, ·, ·) := 1√

γ
r1(s

κ, ai, bj) and r′2(s
κ
ij, ·, ·) := 1√

γ
r2(s

κ, ai, bj);

• P′(sκ
′
0|sκij, ·, ·) := P(sκ

′ |sκ, ai, aj);

• for ρ′ it suffices that
∑

sκ
′

ij ∈S′ P(sκ0 |sκ
′

ij )ρ′(sκ
′

ij ) = 1
2
ρ(sκ), and ρ′(sκ0) = 1

2
ρ(sκ);
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sκ11 sκ12 . . . sκ1m

sκ21 sκ22 . . . ...

...
...

. . .

sκnmsκn1 sκn2 . . .

Sκ

sκ0

sκ11 sκ12 . . . sκ1m

sκ21 sκ22 . . . ...

...
...

. . .

sκnmsκn1 sκn2 . . .

sκ
′

11 sκ
′

12
. . . sκ

′
1m

sκ
′

21 sκ
′

22
. . . ...

...
...

. . .

sκ
′

nmsκ
′

n1 sκ
′

n2
. . .

sκ
′

0

P(sκ
′ |sκ, a1, b1)

P(sκ
′ |sκ, a1, b2)

P(sκ
′ |sκ, a1, bm)

P(sκ
′|sκ, a2, b1)

P(sκ
′|sκ, a2, b2)

Sκ′

sκ
′

0

sκ
′

11 sκ
′

12
. . . sκ

′
1m

sκ
′

21 sκ
′

22
. . . ...

...
...

. . .

sκ
′

nmsκ
′

n1 sκ
′

n2
. . .

Figure 5.2: Emulating the transition function
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• γ′ =
√
γ;

• H ′ = 2H.

We do not define ρ′ ∈ ∆(S ′) in the seemingly more intuitive way of ρ′(sκ0) = ρ(sκ), ∀sκ ∈

S,∀sκ0 ∈ S ′. We want to circumvent having to deal with the technicality of having an initial

state distribution that is not of full support. For this reason an additive dummy term will

appear in the value of each player which does not affect the equilibria.

Claim 5.1. The value functions of the states S of game Γ and that of the subset S0 of the

game Γ′ are equal when π(sκ0) = π(sκ).

Proof.

Ṽ π
1 (sκ0) = 0 + γ′

∑
sκij ,∀(i,j)

π1(ai|sκ0)π2(bj|sκ0)Ṽ π(sκ
′

ij )

= γ′
∑

sκij ,∀(i,j)

π1(ai|sκ0)π2(bj|sκ0)

r′1(sκ′

ij ) + γ′
∑

sκ
′

0 ∈S0

P′(sκ
′

0 |sκij)Ṽ π
1 (sκ

′

0 )


=
√
γ
∑

sκij ,∀(i,j)

π1(ai|sκ)π2(bj|sκ)

 1
√
γ
r1(s

κ, ai, bj) +
√
γ
∑

sκ
′

0 ∈S0

P′(sκ
′

0 |sκ, ai, bj)Ṽ π
1 (sκ

′

0 )


= r1(s

κ,π1,π2) + γ
∑

sκ
′

0 ∈S0

P′(sκ
′

0 |sκ, ai, bj)Ṽ π
1 (sκ

′

0 )

Hence, the entries of S0 of the value vector Ṽ π
1 satisfy the Bellman equations of the original

game Γ.

It is rather direct to observe that for a Markov perfect ϵ-approximate Nash equilibrium of
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the game Γ′, π̂, i.e.,

Ṽ1
†,π̂2

(s)− Ṽ1
π̂

(s) ≤ ϵ, ∀s ∈ S ′;

Ṽ2
π̂1,†

(s)− Ṽ2
π̂

(s) ≤ ϵ, ∀s ∈ S ′.

it is the case that,

V1
†,π̂2(s)− V1π̂(s) ≤ ϵ, ∀s ∈ S;

V2
π̂1,†(s)− V2π̂(s) ≤ ϵ, ∀s ∈ S.

For s ∈ S ′
0, it follows from the previous claim. For s ∈ S ′ \ S ′

0, we observe that varying

policies do not alter the value vector Ṽ of any given player.

5.2 Conclusion

After considering a number of assumptions on the reward function structure of Markov

games, we were able to retrieve an array of positive as well as negative results. After

experimenting with monotone and potential structures, we are able to retrieve the hardness

results of (Deng et al., 2021) even for the case of Markov games where the rewards are

independent of the actions, and only varying from state to state. We conclude that, in

general, assumptions on the structure of the rewards are only necessary for tractability of

equilibria. Further, even a quite strong such assumption, constant-per-state rewards, is

ineffective in ameliorating the computational hardness of equilibrium computation. In our

opinion, one lesson to be learned is that one needs to dive deeper into the exciting world of

Markov games viewed from a perspective of distributed control of state visitation. What are

the natural assumptions that we can distill from observing real-world strategic interactions

in dynamic environments?
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Appendix A

Background on Nonlinear

Programming

In this chapter, we provide additional background on the theory of nonlinear program-

ming (Mangasarian, 1994).

When dealing with a constrained minimization problem, we aim to identify conditions that

confirm the presence of (nonnegative) Lagrange multipliers that adhere to the Karush-Kuhn-

Tucker (KKT) conditions. In the case where there are no constraints, this criterion aligns

with the gradient being zero at a local optimum (Fermat’s Theorem). However, in cases with

constraints, additional regularity conditions regarding the feasible set must be satisfied. This

requirement is formalized through what are known as constraint qualifications (Bazaraa et al.,

1972; Giorgi et al., 2018). For our needs, we will use the so-called Arrow-Hurwicz-Uzawa

constraint qualification (Arrow et al., 1961; Mangasarian, 1994) (see Theorem A.1) to show

that the set of (local) optima of a particular constrained optimization problem is contained

within the set of KKT points (Lemma D.9).

We first define the nonlinear program that encodes a constrained minimization problem.
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Then, we state the Karush-Kuhn-Tucker optimality conditions for a given feasible point of

the problem.

Constrained optimization problems. In a constrained optimization problem in a Eu-

clidean space Rd, where d is a natural number, the objective is to optimize a given function

f : Rd → R over a nonempty set D ⊆ Rd. The function f is referred to as the objective

function, and D is the constraint or feasibility set. Such problems are denoted as follows:

“Minimize f(z) subject to z ∈ D”,

or more concisely as

“min{f(z) | z ∈ D}.”

A global solution to such a problem is a point z∗ in D such that f(z∗) ≤ f(z) for all z ∈ D;

the existence of such a solution is typically guaranteed by Weierstrass’ theorem.

Relaxing the requirement of global optimality, we define a local minimum as follows:

Definition A.1 (Local minimum). For a function f : Rd → R and a point z0, a constrained

local minimum occurs at z0 ∈ D, where D ⊆ Rd, if there exists δ > 0 such that

f(z0) ≤ f(z), ∀z ∈ {z | z ∈ B(z0, δ) ∩ D},

where B(z0, δ) denotes the set of all points belonging to the open ball with radius δ and center

at z0.

We now turn to study constrained optimization problems with feasible sets defined by in-
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equality constraints. Namely, the constraint set will have the form

D = {z ∈ U | gi(z) ≤ 0,∀i = 1, . . . ,m}, (A.1)

where U ⊆ Rd is an open set in Rd, and m is the number of the necessary inequalities to

describe the feasible set D. The minimization problem can now be written as follows.

min f(z)

s.t. gi(z) ≤ 0, ∀i ∈ [m].
(MP)

In the sequel, we say that an inequality constraint gi(z) ≤ 0 is active at a point z∗ if the

constraint holds as an equality at z∗, that is, we have gi(z
∗) = 0; otherwise, it is called

inactive. Below we introduce the KKT conditions (e.g., see (Boyd et al., 2004, Chapter

5.5.3)).

Definition A.2 (Karush-Kuhn-Tucker Conditions). Suppose that f : U → R and gi :

U → R are differentiable functions, for any i = 1, . . . ,m. Further, let L(z,λ) := f(z) +∑m
i=1 λigi(x) be the associated Lagrangian function. We say that a point (z∗, λ∗) satisfies

the KKT conditions if

λ∗i gi(z
∗) = 0, ∀i = 1, . . . ,m; (Complementary Slackness)

gi(z
∗) ≤ 0, ∀i = 1, . . . ,m; (Primal Feasibility)

λ∗i ≥ 0, ∀i = 1, . . . ,m; and (Dual Feasibility)

∇zL(z∗,λ∗) = ∇zf(z∗) +
m∑
i=1

λ∗i∇zgi(z
∗) = 0. (First-Order Stationarity)

(KKT)

In general, while these conditions are necessary for optimality, they are not necessarily

sufficient. We also remark that for the unconstrained case, i.e., {gi(z) ≡ 0}, the (KKT)

conditions generalize the necessary condition of a gradient equal to zero.
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The Arrow-Hurwicz-Uzawa constraint qualification. The establish the KKT condi-

tions under nonconvex constraints, a number of different constraint qualifications have been

developed (Bazaraa et al., 1972; Giorgi et al., 2018). We recall that constraint qualifications

ensure that all the local minimizers acquire a set of (nonnegative) Lagrange multipliers that

(jointly) satisfy the KKT conditions (Definition A.2). For our purposes, we will use the

Arrow-Hurwicz-Uzawa constraint qualification (henceforth AHU-CQ for brevity), which is

recalled below (see (Mangasarian, 1994, Ch. 7)).

Theorem A.1 (AHU-CQ (Mangasarian, 1994)). Consider a constrained minimization prob-

lem with a feasibility set D given in (A.1). Further, let z0 be a feasible point and let A(z0)

denote the set of active constraints at z. We differentiate between concave A′(z0) and non-

concave A′′(z0) active constraints, so that A(z0) = A′(z0) ∪ A′′(z0). If there exists a vector

w ∈ Rd such that
w⊤∇zgi(z0) ≥ 0, ∀i ∈ A′; and

w⊤∇zgi(z0) > 0, ∀i ∈ A′′,

(A.2)

then, the Arrow-Hurwicz-Uzawa constraint qualification at point z0 is satisfied.

The importance of this theorem lies in the following implication, which provides sufficient

conditions for the satisfaction of the KKT conditions.

Corollary A.1. Consider a local minimum z0 of (MP). If the Arrow-Hurwicz-Uzawa con-

straint qualification is satisfied at z0, there exist (nonnegative) Lagrange multipliers satisfying

the (KKT) conditions of Definition A.2.

It is important to stress that the Arrow-Hurwicz-Uzawa constraint qualification—see (A.2)—

does not involve the objective function; this is the case more broadly for constraint qualifi-

cations.
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Appendix B

Weak Convexity, the Moreau

Envelope, and Near-Stationarity

In this subsection, we provide some necessary background on optimizing nonsmooth func-

tions. We refer the interested reader to (Davis and Drusvyatskiy, 2019) for a more complete

discussion on the subject.

Throughout this subsection, we will tacitly assume that X and Y are nonempty, convex and

compact subsets of a Euclidean space. We will also denote by dist the distance between a

vector x and Y , defined as follows.

dist(x;Y) = min
y∈Y
∥x− y∥2.

Definition B.1 (Weak Convexity). A function f : Rd → R is said to be convex if for any

x1,x2 ∈ Rd and any t ∈ [0, 1], it holds that f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2).

Additionally, a function f : Rd → R is said to be λ-weakly convex if the function f(x)+ λ
2
∥x∥2

is convex.
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The following corollary is an immediate consequence of the definition of weak convexity, and

the fact that the function λ
2
∥x∥2 is λ-strongly convex.

Corollary B.1. Let f : X ∋ x 7→ R be a λ-weakly convex function. Then, the function

f(x) + λ∥x∥2 is λ-strongly convex.

A notion closely related to weak convexity within optimization literature is the Moreau

envelope (also knwon as Moreau-Yosida regularization). Namely, the Moreau envelope of a

function is defined as follows for λ > 0.

fλ(x) := min
x′∈X

{
f(x′) +

1

2λ
∥x− x′∥2

}
.

Moreover, when λ < 1
ℓ
, with ℓ being the corresponding parameter of weak convex, the Moreau

envelope fλ is C1-smooth, and its gradient given by ∇fλ = λ−1(x−proxλf (x)) (Rockafellar,

1970, Theorem 31.5), where proxλf (·) is the proximal mapping. Namely, for a convex and

continuous function f : X → R we define its proximal operator proxf : Rd → Rd as follows.

proxf (x) = arg min
x′∈X

{
f(x′) +

1

2
∥x− x′∥2

}
. (B.1)

The point x̃ := proxf (x) that results by applying the proximal operator (B.1) on x is called

the proximal point of x. The proximal point of the scaled function λf coincides with the

solution of the minimization problem needed in order to determine the Moreau envelope of

f at x. The proximal operator of an ℓ-weakly convex function is well-defined, as as long as

λ is sufficiently small:

Proposition B.1 (Lin et al. (2020)). Let ϕ be a ℓ-weakly convex function. Then, proxϕ/(2ℓ)(x)

is well-defined.
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Minimization of weakly convex functions. Generally, in a minimization problem we

are interested in computing minima of a function subject to constraints. If no convexity

assumption holds for the objective function, even computing local minima is NP-hard (Murty

and Kabadi, 1985). Instead, one is often interested in computing an approximate stationary

point of the objective function.

More precisely, an ϵ-approximate stationary point x0 of a nondifferentiable function is a

point such that dist(0; ∂f(x0)) ≤ ϵ where ∂f(x0) is the subdifferential of f at x0 (see (Davis

and Drusvyatskiy, 2019, Sec. 2.2)). However, such a measure of stationarity for nonsmooth

objective functions is so restrictive that, in fact, it can be shown as difficult as solving the

optimization problem exactly—e.g., if we let f(x) = |x| then x = 0 is the only ϵ-approximate

stationary point for ϵ ∈ [0, 1).

The alternative notion of near stationarity for a nonsmooth function f(x), contributed

by Davis and Drusvyatskiy (2019), has become standard (see Propositions 4.11 and 4.12

in (Lin et al., 2020)) for optimization of weakly convex functions. (For a more in depth

discussion see (Drusvyatskiy and Paquette, 2019, Section 4.1).) More precisely, we measure

stationarity by means of the proximal operator:

Definition B.2 (ϵ-nearly stationary point). Let f : X → R be a continuous, nonsmooth

function, and some ϵ > 0. We say that a point x0 ∈ X is ϵ-nearly stationary if

∥x0 − x̃0∥2 ≤ ϵ,

where x̃0 := proxλf (x0) is the proximal point of x0.

The Moreau envelope of f offers a number of useful properties for the analysis of convergence

to near stationarity, as formalized below.

Fact B.1 ((Davis and Drusvyatskiy, 2019)). Let f : X → R be an ℓ-weakly convex function
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and λ < 1
ℓ
. Further, let x ∈ X and x̃ := proxλf (x) be its proximal point. Then,


∥x− x̃∥2 ≤ λ∥∇fλ(x)∥;

f(x̃) ≤ f(x);

dist(0; ∂f(x)) ≤ ∥∇fλ(x)∥.

Remark B.1. An ϵ
λ
-approximate first-order order stationary point of fλ is an ϵ-near sta-

tionary point of f .

Properties of the max function. In our analysis of IPGmax, we will measure progress

based on the function ϕ(x) = maxy∈Y f(x,y), where f corresponds to the value function in

our setting; using ϕ is fairly common in the context of min-max optimization. The following

lemma points out some useful properties of ϕ.

Lemma B.1 (Lin et al. (2020)). Let f : X × Y → R be L-Lipschitz and ℓ-smooth. Then,

the function ϕ(x) = maxy∈Y f(x,y) is

• L-Lipschitz continuous; and

• ℓ-weakly convex.
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Appendix C

Auxiliary Lemmata for Markov

Games

Boundedness of value.

Fact C.1. Let the reward functions be bounded in [0, 1], i.e., 0 ≤ rh(s,a) ≤ 1, ∀s ∈ S,∀aA,

it holds that,

• Vi,h(s) ≤ H − h, ∀i ∈ [n],∀h ∈ [H];

• Qi,h(s, a) ≤ h, ∀i ∈ [n],∀H − h ∈ [H],∀a ∈ Ai.

Lipschitz continuity of rewards and transitions.

Claim C.1. In a MG Γ
(
n,H,S,A,P, {ri}i∈[n], γ,ρ

)
with additive transitions, the following

inequalities hold true for any πs,h,π
′
s,h and any s ∈ S:

• ri,h(s,πs,h)− ri,h(s,π′
s,h) ≤

√∑
i∈[n] |Ai|

∥∥πs,h − π′
s,h

∥∥;
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•
∣∣∑

s′∈S (Ph(s′|s,πh)− Ph(s′|s,π′
h))Vi,h+1(s

′)
∣∣ ≤ H|S|maxi∈[n]

√
|Ai|.

Proof. We use standard inequalities:

• Fixing any i, s, h ∈ [n]× S × [H], we have

ri,h(s,π) = Ea∼π[ri,h(s,a)] =
∑

(a1,...,an)∈A

ri,h(s,a)
n∏

i=1

πi,s,h(ai).

As a result,

|ri,h(s,π)− ri,h(s,π′)|

=

∣∣∣∣∣∣
∑

(a1,...,an)∈A

ri,h(s,a)
n∏

i=1

πi,s,h(ai)−
∑

(a1,...,an)∈A

ri,h(s,a)
n∏

i=1

π′
i,s,h(ai)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(a1,...,an)∈A

ri,h(s,a)

(
n∏

i=1

πi,s,h(ai)−
n∏

i=1

π′
i,s,h(ai)

)∣∣∣∣∣∣
≤

∑
(a1,...,an)∈A

∣∣∣∣∣
n∏

i=1

πi,s,h(ai)−
n∏

i=1

π′
i,s,h(ai)

∣∣∣∣∣ (C.1)

≤
n∑

k=1

∥πi,s,h − π′
i,s,h∥1 = ∥πs,h − π′

s,h∥1

≤

√√√√ n∑
i=1

Ai

 ∥πs,h − π′
s,h∥2, (C.2)

where (C.1) follows from the fact that |ri,h(s, ·)| ≤ 1 and the triangle inequality. (C.2)

follows from the fact that the total variation distance between two distributions is

bounded by the sum of total variation distances between their respective marginal

distributions (Hoeffding and Wolfowitz, 1958), and the equivalence between ℓ1-norm

and ℓ2-norm — i.e., ∥x∥1 ≤
√
m∥x∥2 for x ∈ Rm).

• the second item is proved using the same line of arguments along with the assumption
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of additive transitions and the fact that
∣∣V π

i,h(s)
∣∣ ≤ H − h.
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Appendix D

Missing Proofs and Statements

D.1 Statements for Section 4.2

Claim D.1. Let a two-player Markov game where both players affect the transition. Further,

consider a correlated policy σ and its corresponding marginalized product policy πσ = πσ
1 ×

πσ
2 . Then, for any π′

1,π
′
2,

V
π′
1,σ−1

k,1 (s1) = V
π′
1,π

σ
2

k,1 (s1),

V
σ−2,π′

2
k,2 (s1) = V

πσ
1 ,π′

2
k,2 (s1).

Proof. We will effectively show that the problem of best-responding to a correlated policy

σ is equivalent to best-responding to the marginal policy of σ for the opponent. The proof

follows from the equivalence of the two MDPs.
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As a reminder,

πσ
1,h(a|s) =

∑
b∈A2

σh(a, b|s)

πσ
2,h(b|s) =

∑
a∈A1

σh(a, b|s)

As we have seen in Section 2.2, in the case of unilateral deviation from joint policy σ, an

agent faces a single agent MDP. More specifically, agent 2, best-responds by optimizing a

reward function r2,h(s, b) under a transition kernel P2 for which,

r2,h(s, b) = Eb∼σ [r2,h(s, a, b)] = Eb∼πσ
1

[r2,h(s, a, b)] = r2,h(s,πσ
1 , b).

Similarly,

r1,h(s, b) = r1,h(s, a,πσ
2 ).

Analogously, for each of the transition kernels,

P2,h(s′|s, b) = Ea∼σ [P2,h(s′|s, a, b)] = Ea∼πσ
2

[P2,h(s′|s, a, b)] = P2,h(s′|s,πσ
1 , b),

as for agent 1,

P1,h(s′|s, a) = P1,h(s′|s, a,πσ
2 ).

Hence, it follows that, V
σ−2×π′

2
2,1 (s1) = V

πσ
1 ×π′

2
2,1 (s1), ∀π′

2 and V
π′
1×σ−1

1,1 (s1) = V
π′
1×πσ

2
1,1 (s1), ∀π′

2.
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D.2 Missing statements and proofs for Section 4.5

D.2.1 Proof of Theorem 4.7: NE computation in RPMGs

Auxiliary lemmata. There are two key lemmata in the proof of Theorem 4.7; one of them

tells us that the game with individual utilities
{
ri,h(s, ·) +

∑
s′∈S P(s′|s, ·)Vi,h+1(s

′)
}
i∈[n] is a

potential game —w.r.t. policies πh of the corresponding timestep h— no matter the (fixed)

value vector, Vi,h+1, of the future states. The second lemma parametrizes the latter games

with vectors Vi,h+1 that correspond to δ-approximate NE for the Γs,h+1 subgames; then, it

is demonstrated that an ϵ-approximate NE in this game is also a (δ + ϵ)-approximate NE of

the Γs,h subgames.

Lemma D.1 (Potential game when future values fixed). Fix a timestep h ∈ [H] and let

arbitrary vectors {vi ∈ R|S|}i∈[n]. Moreover, for every s ∈ S assume game with individual

utilities {ri,h(s, ·) +
∑

s′∈S Ph(s′|s, ·)vi(s)}. Each such game is a potential game.

Proof. Indeed, let function ψh(s, ·) = ϕh(s, ·) +
∑

i∈[n]
∑

s′∈S ωi,s,h Pi,h(s, ·)vi(s′). We remind

the reader that Ph(s′|s,π) =
∑

i∈[n] ωi,s,h P(s′|s,πi) due to the additive transitions assump-

tion. It holds for function ψh(s, ·), that,

ψh(s,πh)− ψh(s,π′
i,h,π−i,h)

= ϕh(s,πh)− ϕh(s,π′
i,h,π−i,h) + ωi,s,h

∑
s′∈S

(Pi,h(s′|s,πi,h)v(s′)− Pi,h(s′|s,π′
i.h)v(s′))

= ri,h(s,πh)− ri,h(s,π′
i,h,π−i,h) + ωi,s,h

∑
s′∈S

(Pi,h(s′|s,πi,h)v(s′)− Pi,h(s′|s,π′
i.h)v(s′))

The last inequality follows from the reward-potential assumption and completes the proof.

For brevity, we simplify the notation for the following claim that we need for the promised
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second lemma.

Claim D.2 (Approximate best reponses). Let v̂,v† ∈ RS such that ∥v̂−v†∥∞ ≤ δ. Further,

let function r : A → R and transition kernel p : A → ∆(S), it holds that,

∣∣∣∣∣ max
x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
− max

x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}∣∣∣∣∣ ≤ δ.

Proof. It follows that for every a ∈ A,

r(a) +
∑
s′∈S

p(s′|a)v̂(s′)−

(
r(a) +

∑
s′∈S

p(s′|a)v†(s′)

)
=
∑
s′∈S

p(s′|a)
(
v̂(s′)− v†(s′)

)
≤ δ.

Since the difference,

∣∣∣∣∣ max
x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
− max

x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}∣∣∣∣∣ . (D.1)

From linearity, it holds that,

max
x′∈∆(A)

{
r(x′) +

∑
s′∈S

p(s′|x′)v̂(s′)

}
= max

a∈A

{
r(a) +

∑
s′∈S

p(s′|a)v̂(s′)

}

and

max
x′′∈∆(A)

{
r(x′′) +

∑
s′∈S

p(s′|x′′)v†(s′)

}
= max

a∈A

{
r(a) +

∑
s′∈S

p(s′|a)v†(s′)

}

.

The last two displays in combination with (D.1) which holds for all a ∈ A complete the

proof of the claim.
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The last claim proves the following lemma,

Lemma D.2. Let {V̂i,h+1}i∈[n] be a collection of value vectors that corresponds to a δ-

approximate NE, {πτ}τ∈{h+1,...,H}, for the subgames {Γs,h+1}s∈S . Further, let an ϵ-approximate

NE, π̂h of the games with individual utilities
{
ri,h(s, ·)+

∑
s′∈S Ph(s′|s, ·)V̂i,h+1(s

′)
}

i∈[n]
. Then

{πτ}τ={h,...,H} is a (δ + ϵ)-approximate NE for subgames {Γs,h}s∈S .

The complexity of implementing the NE-Oracle. Now, we invoke a theorem that

bounds the number of iterations needed to compute an ϵ-approximate NE in a potential

game when every player employs the mirror-descent algorithm with a fixed stepsize.

Theorem D.1 (Theorem B.6 in (Anagnostides et al., 2022)). Assume a potential game

Γ
(
n, {Ai}i∈[n], {ui∈[n]}

)
with potential function Φ :

∏n
i=1Ai → R. Φ is L-Lipschitz continu-

ous. Suppose that each player i employs mirror-descent

• with stepsize η = 1
2L
,

• with regularizer Ri(x), and ∇Ri(x) G-Lipschitz continuous,

• and Diam is the maximum diameter of the a player’s probability simplex due to their

use of regularizer Ri.

Further, let T =
⌈
ηΦmax

ϵ2

⌉
+ 2, then it holds that, ∃t⋆ ∈ [T ], such that, xt⋆ is an

ϵ
(

GDiam
η

+ maxi∈[n]
√
|Ai|

)
-approximate Nash equilibrium.

Bounding the total iteration complexity. Equipped with the latter bound, we are

ready to state our bound on the iteration complexity of computing an approximate NE in

RPMGs.

Theorem D.2 (Full version of Theorem 4.7). Algorithm 3 with NE-Oracle implemented

using projected gradient descent with stepsize η = 1
2L

for every agent i ∈ [n], input accuracy
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ϵ/H for every h, computes an ϵ-approximate nonstationary NE for an RPMG with additive

transitions converges with a total number of iterations

128nH5|S|2 maxi∈[n] |Ai|5/2

ϵ2
.

Proof. We remind the reader that the projected gradient descent algorithm is equivalent to

mirror descent with Ri(·) = 1
2
∥ · ∥2. Hence, order to achieve accuracy ϵ/H, every projected

gradient descent subroutine needs T =
⌈
8LΦmaxG2Diam2 maxi∈[n] |Ai|

ϵ2

⌉
+ 2 iterations. In our

context, this translates to:

T =

⌈
128nH2|S|maxi∈[n] |Ai|5/2

ϵ2

⌉
+ 2.

Where we have taken Diam = 2 maxi∈[n]
√
|Ai|, G = 1, Φmax = H. and we have bounded

the Lispchitz-continuity parameter of each Γs,h subgame by L = 4nH|S|maxi∈n
√
A due to

Claim C.1. Then, we inductively invoke lemma D.2 to conclude that after H (backwards)

inductive steps, we accumulate an approximation error at most H ϵ
H

= ϵ.

Concluding, we need |S|H calls to the NE-Oracle with accuracy ϵ/H, raising the total itera-

tion complexity to the stated number.

D.2.2 Proofs for Section 4.5.1

Theorem D.3. Finite-horizon reward-potential games with additive transitions assert pure

Nash equilibria.
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Proof. By convention Vi,H(s) = 0,∀i ∈ [n],∀s ∈ S. Further, for h = H − 1, the game played

in every state s asserts at least one pure Nash equilibrium (Monderer and Shapley, 1996).

Then, by Lemma D.1 and Lemma D.2 the claim holds.

Following using a standard trick we prove the following:

Corollary D.1. Infinite-horizon RPMGs with discount parameter γ, attain a deterministic

nonstationary approximate NE that can be computed in time poly
(

1
ϵ
, 1
1−γ

,
∑

i∈[n+1] |Ai|, |S|
)
.

Proof. As proposed in (Daskalakis et al., 2022, Theorem 4.2), the infinite-horizon game can

be converted into a finite-horizon one in order to compute nonstationary policies of the initial

game. These nonstationary policies of course cannot span the whole horizon of the game; it

suffices that they only consider the first H := log(1/ϵ)
1−γ

steps of the game where ϵ is the desired

accuracy of the equilibrium that is sought after.

After truncating the horizon into a finite one, every reward function is scaled according to the

initial discounting factor, i.e., ri,h(s, ·) = γh−1ri(s, ·), where ri(s, ·) are the reward functions

of the infinite-horizon game.

The complexity of computation follows from known results about the computational com-

plexity of pure approximate NE in potential games (Fabrikant et al., 2004) and the use of

backwards induction.

D.2.3 Proofs for Section 4.5.3: ARPMGs

First, we prove that although the subgames defined are not adversarial potential games per

se, the variational inequalities corresponding to their approximate NE coincide with the

variational inequalities of a certain adversarial team game.
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Proposition D.1. Let an ARPMG with additive transitions, Γ(n + 1, H,S,A,P, r, γ,ρ),

and V̂i,h+1 be the value vector for the δ-approximate NE of the subgames Γs,h+1. Let the

adversarial team normal-form games Γ′
s,∀s ∈ S, each with n players in the team and one

adversary. Define the utility function of the team to be,

u(s,π) :=ϕh(s,π) +
∑
s′∈S

∑
j∈[n]

ωj,s,h Pj,h(πj)V̂j,h+1(s
′)

−
∑
s′∈S

ωadv,s,h Padv,h(πadv)V̂adv,h+1(s
′).

An ϵ-approximate NE of each subgame Γ′
s is also an (ϵ + δ)-approximate NE of the Γs,h

subgame.

Proof. For brevity, let xi := πi,h,∀i ∈ [n], with x := (x1, . . . ,xn), and y := πadv,h. Further,

X :=
∏

i∈[n] ∆(Ai) and Y := ∆(An+1). Then, we write us(π) = us(x,y). An ϵ-approximate

NE to the game is computed by solving the following variational inequality problem,

∇xu(s,x⋆,y⋆)⊤(x⋆ − x) ≤ ϵ,∀x ∈ X

and

∇yu(s,x⋆,y⋆)⊤(y⋆ − y) ≥ −ϵ,∀y ∈ Y .

By computing such a point (x⋆,y⋆), it is also the case that,

∇y

(
radv,h(s,x⋆,y⋆) +

∑
s′∈S

Ph(s′|s,x⋆,y⋆)V̂adv,h+1(s
′)

)

= ∇y (−u(s,x⋆,y⋆))
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We observe that,

∇y

(
radv,h(s,x,y) +

∑
s′∈S

Ph(s′|s,x,y)V̂adv,h+1(s
′)

)

= ∇y

(
−ϕs,h(x,y) +

∑
s′∈S

Ph(s′|s,x,y)V̂adv,h+1(s
′)

)

= −∇yu(s,x,y).

By computing such a point (x⋆,y⋆), it is also the case that,

∇x

(
ϕh(s,x,y) +

∑
s′∈S

Ph(s′|s,x,y)V̂adv,h+1(s
′)

)⊤

(y⋆ − y) ≤ ϵ,∀y ∈ Y ,

∇y

(
radv,h(s,x,y) +

∑
s′∈S

Ph(s′|s,x,y)V̂adv,h+1(s
′)

)⊤

(y⋆ − y) ≥ −ϵ,∀y ∈ Y .

Concluding, such a strategy (x⋆,y⋆) is also a (δ + ϵ)-approximate NE for the subgame

Γs,h.

This translates to the fact that the template algorithm, Algorithm 3, can be modified in order

to compute apprximate NEs for ARPMG using the algorithm proposed in (Anagnostides

et al., 2023).

D.3 Missing statements and proofs for Section 4.6

D.3.1 Proof of Theorem 4.10

The best-response program. First, we state the following lemma that will prove useful

for several of our arguments,
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Lemma D.3 (Best-response LP). Let a (possibly correlated) joint policy σ̂. Consider the

following linear program with variables w ∈ Rn×H×S ,

(PBR)

min
∑
k∈[n]

wk,s(s1)− e⊤s1
H∑

h=1

(
h∏

τ=1

Pτ (σ̂τ )

)
rk,h(σ̂h)

s.t. wk,h(s) ≥ rk,h(s, a, σ̂−k,h) + Ph(s, a, σ̂−k,h)wk,h+1,

∀s ∈ S, ∀h ∈ [H],∀k ∈ [n],∀a ∈ Ak;

wk,H(s) = 0, ∀k ∈ [n],∀s ∈ S.

The optimal solution w† of the program is unique and corresponds to the value function of

each player k ∈ [n] when player k best-responds to σ̂.

Proof. We observe that the program is separable to n independent linear programs, each

with variables wk ∈ Rn×H ,

min wk,1(s1)

s.t. wk,h(s) ≥ rk,h(s, a, σ̂−k,h) + Ph(s, a, σ̂−k,h)wk,h+1,

∀s ∈ S,∀h ∈ [H],∀a ∈ Ak;

wk,H(s) = 0, ∀k ∈ [n],∀s ∈ S.

Each of these linear programs describes the problem of a single agent MDP (Neu and Pike-

Burke, 2020, Section 2) —that agent being k— which, as we have seen in Best-response

policies, is equivalent to the problem of finding a best-response to σ̂−k. It follows that the

optimal w†
k for every program is unique (each program corresponds to a set of Bellman

optimality equations).
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Properties of the NE program. Second, we need to prove that the minimum value of

the objective function of the program is nonnegative.

Lemma D.4 (Feasibility of (P′
NE) and global optimum). The nonlinear program (P′

NE) is

feasible, has a nonnegative objective value, and its global minimum is equal to 0.

Proof. Analogously to the finite-horizon case, for the feasibility of the nonlinear program,

we invoke the theorem of the existence of a Nash equilibrium. We let a NE product policy,

π⋆, and a vector w⋆ ∈ Rn×S such that w⋆
k(s) = V

†,π⋆
−k

k (s), ∀k ∈ [n]× S.

By Lemma D.3, we know that (π⋆,w⋆) satisfies all the constraints of (PNE). Additionaly,

because π⋆ is a NE, V π⋆

k,h (s1) = V
†,π⋆

−k

k,h (s1) for all k ∈ [n]. Observing that,

w⋆
k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π⋆
τ )

)
rk,h(π⋆

h) = V
†,π⋆

−k

k,h (s1)− V π⋆

k,h (s1) = 0,

concludes the argument that a NE attains an objective value equal to 0.

Continuing, we observe that due to (4.7) the objective function can be equivalently rewritten

as,

∑
k∈[n]

(
wk,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh)

)

=
∑
k∈[n]

wk,1(s1)− e⊤s1
H∑

h=1

(
h∏

τ=1

Pτ (πτ )

)∑
k∈[n]

rk,h(πh)

=
∑
k∈[n]

wk,1(s1).

Next, we focus on the inequality constraint

wk,h(s) ≥ rk,h(s, a,π−k,h) + Ph(s, a,π−k,h)wk,h+1
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which holds for all s ∈ S, all players k ∈ [n], all a ∈ Ak, and all timesteps h ∈ [H − 1].

By summing over a ∈ Ak while multiplying each term with a corresponding coefficient

πk,h(a|s), the display written in an equivalent element-wise vector inequality reads:

wk,h ≥ rk,h(πh) + Ph(πh)wk,h+1.

Finally, after consecutively substitutingwk,h+1 with the element-wise lesser term rk,h+1(πh+1)+

Ph+1(πh+1)wk,h+2, we end up with the inequality:

wk,1 ≥
H∑

h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh). (D.3)

Summing over k, it holds for the s1-th entry of the inequality,

∑
k∈[n]

wk,1 ≥
∑
k∈[n]

H∑
h=1

(
h∏

τ=1

Pτ (πτ )

)
rk,h(πh) = 0.

Where the equality holds due to the zero-sum property, (4.7).

An approximate NE is an approximate global minimum. We show that an ϵ-

approximate NE, π⋆, achieves an nϵ-approximate global minimum of the program. Utilizing

Lemma D.3, setting w⋆
k(s1) = V

†,π⋆
−k

k,1 (s1), and the definition of an ϵ-approximate NE we see

that,

∑
k∈[n]

(
w⋆

k,1(s1)− e⊤s1
H∑

h=1

(
h∏

τ=1

Pτ (π⋆
τ )

)
rk,h(π⋆

h)

)
=
∑
k∈[n]

(
w⋆

k,1(s1)− V π⋆

k,1 (s1)
)

≤
∑
k∈[n]

ϵ = nϵ.

Indeed, this means that π⋆,w⋆ is an nϵ-approximate global minimizer of (PNE).
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An approximate global minimum is an approximate NE. For the opposite direction,

we let a feasible ϵ-approximate global minimizer of the program (PNE), (π⋆,w⋆). Because a

global minimum of the program is equal to 0, an ϵ-approximate global optimum must be at

most ϵ > 0. We observe that for every k ∈ [n],

w⋆
k,1(s1) ≥ e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π⋆
τ )

)
rk,h(π⋆

h), (D.4)

which follows from induction on the inequality constraint over all h similar to (D.3).

Consequently, the assumption that

ϵ≥
∑
k∈[n]

(
w⋆

k,1(s1)− e⊤s1
H∑

h=1

(
h∏

τ=1

Pτ (π⋆
τ )

)
rk,h(π⋆

h)

)
,

and Equation (D.4), yields the fact that

ϵ ≥ w⋆
k,1(s1)− e⊤s1

H∑
h=1

(
h∏

τ=1

Pτ (π⋆
τ )

)
rk,h(π⋆

h)

≥ V
†,π⋆

−k

k,1 (s1)− V π⋆

k,1 (s1),

where the second inequality holds from the fact that w⋆ is feasible for (PBR). The latter

concludes the proof, as the display coincides with the definition of an ϵ-approximate NE.

D.3.2 Proof of Claim 4.1

Proof. The value function of s1 for h = 1 of players 1 and 2 read:

V σ
1,1(s1) = e⊤s1 (r1(σ) + P(σ)r1(σ))

= −9σ(a1, b1|s1)
20

+
σ(a1, b2|s1)

20
+

(1− σ(a1, b1|s1)) (σ(a1, b1|s2) + σ(a1, b2|s2))
20

,
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and,

V σ
2,1(s1) = e⊤s1 (r2(σ) + P(σ)r2(σ))

= −9σ(a1, b1|s1)
20

+
σ(a2, b2|s1)

20
+

(1− σ(a1, b1|s1)) (σ(a1, b1|s2) + σ(a2, b1|s2))
20

.

We are indifferent to the corresponding value function of player 3 as they only have one

available action per state and hence, cannot affect their rewards. For the joint policy σ, the

corresponding value functions of both players 1 and 2 are V σ
1,1(s1) = V σ

2,1(s1) = 1
20

.

Deviations. We will now prove that no deviation of player 1 manages to accumulate a

reward greater than 1
20

. The same follows for player 2 due to symmetry.

When a player deviates unilaterally from a joint policy, they experience a single agent Markov

decision process (MDP). It is well-known that MDPs always have a deterministic optimal

policy. As such, it suffices to check whether V
π1,σ−1

1,1 (s1) is greater than 1
20

for any of the four

possible deterministic policies:

• π1(s1) = π1(s2) =

(
1 0

)
,

• π1(s1) = π1(s2) =

(
0 1

)
,

• π1(s1) =

(
1 0

)
, π1(s2) =

(
0 1

)
,

• π1(s1) =

(
0 1

)
, π1(s2) =

(
1 0

)
.

Finally, the value function of any deviation π′
1 writes,

V
π′
1×σ−1

1,1 (s1) = −π
′
1(a1|s1)

5
− π′

1(a1|s2) (π′
1(a1|s1)− 2)

40
.

We can now check that for all deterministic policies V
π′
1×σ−1

1,1 (s1) ≤ 1
20

. By symmetry, it

follows that V
π′
2×σ−2

2,1 (s1) ≤ 1
20

and as such σ is indeed a CCE.
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D.3.3 Proof of Claim 4.2

Proof. In general, the value functions of each player 1 and 2 are:

V π1×π2
1,1 (s1) =− π1(a1|s1)π2(b1|s1)

2
+
π1(a1|s1)

20
− π1(a1|s2) (π1(a1|s1)π2(b1|s1)− 1)

20
,

and

V π1×π2
2,1 (s1) =− π1(a1|s1)π2(b1|s1)

2
+
π1(b1|s1)

20
− π1(b1|s2) (π1(a1|s1)π2(b1|s1)− 1)

20
.

Plugging in πσ
1 ,π

σ
2 yields V

πσ
1 ×πσ

2
1,1 (s1) = V

πσ
1 ×πσ

2
2,1 (s1) = − 13

160
. But, if player 1 deviates to say

π′
1(s1) = π′

1(s2) =

(
0 1

)
, they get a value equal to 0 which is clearly greater than − 13

160
.

Hence, πσ
1 × πσ

2 is not a NE.

D.3.4 Proof of Theorem 4.12

Proof. The proof follows from the game of Example 4.1, and Claims 4.1 and 4.2.

D.3.5 Proofs for Infinite-Horizon Zero-Sum Polymatrix Markov

Games

In this section we will explicitly state definitions, theorems and proofs relating to the infinite-

horizon discounted zero-sum polymatrix Markov games.
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D.3.5.1 Definitions of equilibria for the infinite-horizon

Let us restate the definition specifically for infinite-horizon Markov games. They are defined

as a tuple Γ(H,S, {Ak}k∈[n],P, {rk}k∈[n], γ,ρ).

• H =∞ denotes the time horizon

• S, with cardinality S := |S|, stands for the state space,

• {Ak}k∈[n] is the collection of every player’s action space, while A := A1 × · · · × An

denotes the joint action space; further, an element of that set —a joint action— is

generally noted as a = (a1, . . . , an) ∈ A,

• P : S ×A → ∆(S) is the transition probability function,

• rk : S,A → [−1, 1] yields the reward of player k at a given state and joint action,

• a discount factor 0 < γ < 1,

• an initial state distribution ρ ∈ ∆(S).

Policies and value functions. In infinite-horizon Markov games policies can still be

distinguished in two main ways, Markovian/non-Markovian and stationary/nonstationary.

Moreover, a joint policy can be a correlated policy or a product policy.

Markovian policies attribute a probability over the simplex of actions solely depending on

the running state s of the game. On the other hand, non-Markovian policies attribute a

probability over the simplex of actions that depends on any subset of the history of the

game. I.e., they can depend on any sub-sequence of actions and states up until the running

timestep of the horizon.
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Stationary policies are those that will attribute the same probability distribution over the

simplex of actions for every timestep of the horizon. Nonstationary policies, on the contrary

can change depending on the timestep of the horizon.

A joint Markovian stationary policy σ is said to be correlated when for every state s ∈ S,

attributes a probability distribution over the simplex of joint actions A for all players, i.e.,

σ(s) ∈ ∆(A). A Markovian stationary policy π is said to be a product policy when for every

s ∈ S, π(s) ∈
∏n

k=1 ∆(Ak). It is rather easy to define correlated/product policies for the

case of non-Markovian and nonstationary policies.

Given a Markovian stationary policy π, the value function for an infinite-horizon discounted

game is defined as,

V π
k (s1) = Eπ

[
H∑

h=1

γh−1rk,h(sh,ah)
∣∣s1] = e⊤s1

H∑
h=1

(
γh−1

h∏
τ=1

Pτ (πτ )

)
rk,h(πh).

It is possible to express the value function of each player k in the following way,

V π
k (s1) = e⊤s1 (I− γ P(π))−1 r(π).

Where I is the identity matrix of appropriate dimensions. Also, when the initial state is

drawn from the initial state distribution, we denote, the value function reads V π
k (ρ) =

ρ⊤ (I− γ P(π))−1 r(π).

Best-response policies. Given an arbitrary joint policy σ (which can be either a corre-

lated or product policy), a best-response policy of a player k is defined to be π†
k ∈ ∆(Ak)S

such that π†
k ∈ arg maxπ′

k
V

π′
k×σ−k

k (s). Also, we will denote V
†,σ−k

k (s) = maxπ′
k
V

π′
k,σ−k

k (s).

It is rather straightforward to see that the problem of computing a best-response to a given

policy is equivalent to solving a single-agent MDP problem.
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Notions of equilibria. Now that best-response policies have been defined, it is straight-

forward to define the different notions of equilibria. First, we define the notion of a coarse-

correlated equilibrium.

Definition D.1 (CCE—infinite-horizon). A joint (potentially correlated) policy σ ∈ ∆(A)S

is an ϵ-approximate coarse-correlated equilibrium if it holds that for an ϵ,

V
†,σ−k

k (ρ)− V σ
k (ρ) ≤ ϵ, ∀k ∈ [n].

Second, we define the notion of a Nash equilibrium. The main difference of the definition

of the coarse-correlated equilibrium, is the fact that a NE Markovian stationary policy is a

product policy.

Definition D.2 (NE—infinite-horizon). A joint (potentially correlated) policy π ∈
∏

k∈[n] ∆(Ak)S

is an ϵ-approximate coarse-correlated equilibrium if it holds that for an ϵ,

V †,π−k
k (ρ)− V π

k (ρ) ≤ ϵ, ∀k ∈ [n].

As it is folklore by now, infinite-horizon discounted Markov games have a stationary Marko-

vian Nash equilibrium.

D.3.6 Main results for Infinite-Horizon MGs

The workhorse of our arguments in the following results is still the following nonlinear

program with variables π,w,
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(P′
NE)

min
∑
k∈[n]

ρ⊤ (wk − (I− γ P(π))−1rk(π)
)

s.t. wk(s) ≥ rk(s, a,π−k) + γ P(s, a,π−k)wk,

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak;

πk(s) ∈ ∆(Ak),

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak.

As we will prove, approximate NE’s correspond to approximate global minima of (P′
NE) and

vice-versa. Before that, we need some intermediate lemmas. The first lemma we prove is

about the best-response program.

The best-response program. Even for the infinite-horizon, we can define a linear pro-

gram for the best-responses of all players. That program is the following, with variables

w,

(P′
BR)

min
∑
k∈[n]

ρ⊤ (wk − (I− γ P(σ̂))−1rk(σ̂)
)

s.t. wk(s) ≥ rk(s, a, σ̂−k) + P(s, a, σ̂−k)wk,

∀s ∈ S,∀k ∈ [n],∀a ∈ Ak.

Lemma D.5 (Best-response LP—infinite-horizon). Let a (possibly correlated) joint policy

σ̂. Consider the linear program (P′
BR). The optimal solution w† of the program is unique

and corresponds to the value function of each player k ∈ [n] when player k best-responds to

σ̂.
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Proof. We observe that the program is separable to n independent linear programs, each

with variables wk ∈ Rn,

min ρ⊤wk

s.t. wk(s) ≥ rk(s, a, σ̂−k) + γ P(s, a, σ̂−k)wk,

∀s ∈ S,∀a ∈ Ak.

Each of these linear programs describes the problem of a single agent MDP —that agent being

k. It follows that the optimal w†
k for every program is unique (each program corresponds to

a set of Bellman optimality equations).

Properties of the NE program. Second, we need to prove that the minimum value of

the objective function of the program is nonnegative.

Lemma D.6 (Feasibility of (P′
NE) and global optimum). The nonlinear program (P′

NE) is

feasible, has a nonnegative objective value, and its global minimum is equal to 0.

Proof. For the feasibility of the nonlinear program, we invoke the theorem of the existence

of a Nash equilibrium. i.e., let a NE product policy, π⋆, and a vector w⋆ ∈ Rn×H×S such

that w⋆
k,s(s) = V

†,π⋆
−k

k (s), ∀k ∈ [n]× S.

By Lemma D.5, we know that (π⋆,w⋆) satisfies all the constraints of (P′
NE). Additionally,

because π⋆ is a NE, V π⋆

k (ρ) = V
†,π⋆

−k

k (ρ) for all k ∈ [n]. Observing that,

ρ⊤ (w⋆
k − (I− γ P(π⋆))−1rk(π⋆)

)
= V

†,π⋆
−k

k (ρ)− V π⋆

k (ρ) = 0,

concludes the argument that a NE attains an objective value equal to 0.

Continuing, we observe that due to (4.7) the objective function can be equivalently rewritten
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as,

∑
k∈[n]

(
ρ⊤wk − ρ⊤(I− γ P(π))−1rk(π)

)
=
∑
k∈[n]

ρ⊤wk − ρ⊤(I− γ P(π))−1
∑
k∈[n]

rk(πh)

=
∑
k∈[n]

ρ⊤wk.

Next, we focus on the inequality constraint

wk(s) ≥ rk(s, a,π−k) + γ P(s, a,π−k)wk

which holds for all s ∈ S, all players k ∈ [n], and all a ∈ Ak.

By summing over a ∈ Ak while multiplying each term with a corresponding coefficient

πk(a|s), the display written in an equivalent element-wise vector inequality reads:

wk ≥ rk,h(π) + γ P(π)wk.

Finally, after consecutively substitutingwk with the element-wise lesser term rk(π)+γ P( π)wk,

we end up with the inequality:

wk ≥ (I− γ P(π))−1 rk(π). (D.7)

We note that I + γ P(π) + γ2 P2(π) + · · · = (I− γ P(π))−1.

Summing over k, it holds for the s1-th entry of the inequality,

∑
k∈[n]

wk ≥
∑
k∈[n]

(I− γ P(π))−1 rk(π) = (I− γ P(π))−1
∑
k∈[n]

rk(π) = 0.
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Where the equality holds due to the zero-sum property, (4.7).

Theorem D.4 (NE and global optima of (P′
NE)—infinite-horizon). If (π⋆,w⋆) yields an

ϵ-approximate global minimum of (P′
NE), then π⋆ is an nϵ-approximate NE of the infinite-

horizon zero-sum polymatrix switching controller MG, Γ. Conversely, if π⋆ is an ϵ-approximate

NE of the MG Γ with corresponding value function vector w⋆ such that w⋆
k(s) = V π⋆

k (s)∀(k, s) ∈ [n]× S,

then (π⋆,w⋆) attains an ϵ-approximate global minimum of (P′
NE).

Proof.

An approximate NE is an approximate global minimum. We show that an ϵ-

approximate NE, π⋆, achieves an nϵ-approximate global minimum of the program. Utilizing

Lemma D.5 by setting w⋆
k = V†,π⋆

−k(ρ), feasibility , and the definition of an ϵ-approximate

NE we see that,

∑
k∈[n]

(
ρ⊤w⋆

k − ρ⊤ (I− γ P(π⋆))−1 rk(π⋆)
)

=
∑
k∈[n]

(
ρ⊤w⋆

k − V π⋆

k (ρ)
)

≤
∑
k∈[n]

ϵ = nϵ.

Indeed, this means that π⋆,w⋆ is an nϵ-approximate global minimizer of (P′
NE).

An approximate global minimum is an approximate NE. For this direction, we let

a feasible ϵ-approximate global minimizer of the program (P′
NE), (π⋆,w⋆). Because a global

minimum of the program is equal to 0, an ϵ-approximate global optimum must be at most

ϵ > 0. We observe that for every k ∈ [n],

ρ⊤w⋆
k ≥ ρ⊤ (I− γ P(π⋆))−1 rk(π⋆), (D.8)

which follows from induction on the inequality constraint (D.7).
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Consequently, the assumption that

ϵ≥ρ⊤w⋆
k − ρ⊤ (I− γ P(π⋆))−1 rk(π⋆)

and Equation (D.8), yields the fact that

ϵ ≥ ρ⊤w⋆
k − ρ⊤ (I− γ P(π⋆))−1 rk(π⋆)

≥ V
†,π⋆

−k

k (ρ)− V π⋆

k (ρ),

where the second inequality holds from the fact that w⋆ is also feasible for (P′
BR). The latter

concludes the proof, as the display coincides with the definition of an ϵ-approximate NE.

Theorem D.5 (CCE collapse to NE in polymatrix MG—infinite-horizon). Let a zero-sum

polymatrix switching-control Markov game, i.e., a Markov game for which Assumptions 4.1

and 4.2 hold. Further, let an ϵ-approximate CCE of that game σ. Then, the marginal product

policy πσ, with πσ
k (a|s) =

∑
a−k∈A−k

σ(a,a−k), ∀k ∈ [n] is an nϵ-approximate NE.

Proof. Let an ϵ-approximate CCE policy, σ, of game Γ. Moreover, let the best-response

value-vectors of each agent k to joint policy σ−k, w†
k.

Now, we observe that due to Assumption 4.1,

w†
k(s) ≥ rk(s, a,σ−k) + γ Ph(s, a,σ−k)w†

k

=
∑

j∈adj(k)

r(k,j),h(s, a,πσ
j ) + γ P(s, a,σ−k)w†

k.

Further, due to Assumption 4.2,

P(s, a,σ−k)w†
k = P(s, a,πσ

argctrlr(s))w
†
k,
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or,

P(s, a,σ−k)w†
k = P(s, a,πσ)w†

k.

Putting these pieces together, we reach the conclusion that (πσ,w†) is feasible for the non-

linear program (P′
NE).

What is left is to prove that it is also an ϵ-approximate global minimum. Indeed, if∑
k ρ

⊤w†
k≤ϵ (by assumption of an ϵ-approximate CCE), then the objective function of (P′

NE)

will attain an ϵ-approximate global minimum. In turn, due to Theorem D.4 the latter implies

that πσ is an nϵ-approximate NE.

D.3.6.1 No equilibrium collapse with more than one controllers per-state

Example D.1. We consider the following 3-player Markov game that takes place for a time

horizon H = 3. There exist three states, s1, s2, and s3 and the game starts at state s1.

Player 3 has a single action in every state, while players 1 and 2 have two available actions

{a1, a2} and {b1, b2} respectively in every state. The initial state distribution ρ is the uniform

probability distribution over S.

Reward functions. If player 1 (respectively, player 2) takes action a1 (resp., b1), in either

of the states s1 or s2, they get a reward equal to 1
20
. In state s3, both players get a reward

equal to −1
2
regardless of the action they select. Player 3 always gets a reward that is equal to

the negative sum of the reward of the other two players. This way, the zero-sum polymatrix

property of the game is ensured (Assumption 4.1).

Transition probabilities. If players 1 and 2 select the joint action (a1, b1) in state s1,

the game will transition to state s2. In any other case, it will transition to state s3. The
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converse happens if in state s2 they take joint action (a1, b1); the game will transition to

state s3. For any other joint action, it will transition to state s1. From state s3, the game

transition to state s1 or s2 uniformally at random.

At this point, it is important to notice that two players control the transition probability from

one state to another. In other words, Assumption 4.2 does not hold.

s1 s2

s3

1/2 1/2

1− π1(a1|s1)π2(b1|s1)

π1(a1|s1)π2(b1|s1) π1(a1|s2)π2(b1|s2)

1− π1(a1|s2)π2(b1|s2)

Figure D.1: A graph of the state space with transition probabilities parametrized with respect
to the policy of each player.

Next, we consider the joint policy σ,

σ(s1) = σ(s2) =

b1 b2 a1 0 1/2

a2 1/2 0

.

Claim D.3. The joint policy σ that assigns probability 1
2
to the joint actions (a1, b2) and

(a2, b1) in both states s1, s2 is a CCE and V σ
1 (ρ) = V σ

2 (ρ) = − 1
10
.
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Proof.

V σ
1 (ρ) = ρ⊤ (I− γ P(σ))−1 r1(σ)

=

(
1
3

1
3

1
3

)
9
5

6
5

0

6
5

9
5

0

1 1 1




1
40

1
40

−1
2


= − 1

10
.

We check every deviation,

• π1(s1) = π1(s2) =

(
1 0

)
, V π1×σ−1(ρ) = −2

5
,

• π1(s1) = π1(s2) =

(
0 1

)
, V π1×σ−1(ρ) = −1

6
,

• π1(s1) =

(
1 0

)
, π1(s2) =

(
0 1

)
, V π1×σ−1(ρ) = − 5

16
,

• π1(s1) =

(
0 1

)
, π1(s2) =

(
1 0

)
, V π1×σ−1(ρ) = − 5

16
.

For every such deviation the value of player 1 is smaller than − 1
10
. For player 2, the same

follows by symmetry. Hence, σ is indeed a CCE.

Yet, the marginalized product policy of σ which we note as πσ
1 × πσ

2 does not constitute a
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NE. The components of this policy are,



πσ
1 (s1) = πσ

1 (s2) =

a1 a2( )
1/2 1/2

,

πσ
2 (s1) = πσ

2 (s2) =

b1 b2( )
1/2 1/2

.

I.e., the product policy πσ
1 ×πσ

2 selects any of the two actions of each player in states s1, s2

independently and uniformally at random. With the following claim, it can be concluded

that in general when more than one player control the transition the set of equilibria do not

collapse.

Claim D.4. The product policy πσ
1 × πσ

2 is not a NE.

Proof. For πσ = πσ
1 × πσ

2 we get,

V πσ

1 = ρ⊤ (I− γ P(πσ))−1 r1(π
σ)

=

(
1
3

1
3

1
3

)
34
21

20
21

3
7

20
21

34
21

3
7

6
7

6
7

9
7




1
40

1
40

−1
2


= − 3

10
.

But, for the deviation π1(a1|s1) = π1(a1|s2) = 0, the value funciton of player 1, is equal to

−1
6
. Hence, πσ is not a NE.

In conclusion, Assumption 4.1 does not suffice to ensure equilibrium collapse.
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Theorem D.6 (No collapse—infinite-horizon). There exists a zero-sum polymatrix Markov

game (Assumption 4.2 is not satisfied) that has a CCE which does not collapse to a NE.

Proof. The proof follows from the game of Example D.1, and Claims D.3 and D.4.

D.4 Proof of Extendibility to Nash Equilibria

In this section, we demonstrate how a nearly stationary point x̂ of ϕ(·) := maxy∈Y Vρ(·,y),

returned by IPGmax, can be extended to an approximate Nash equilibrium.

Our extension argument uses a nonlinear program that is in spirit similar to the one found

in (Filar and Vrieze, 2012, Chapter 3.9). But, unlike the program in (Filar and Vrieze, 2012,

Chapter 3.9), ours is designed to capture adversarial team Markov games. In this context,

there are two main challenges in the proof. First, even if we had an exact stationary point

of ϕ, establishing the existence of nonnegative Lagrange multipliers that satisfy the KKT

conditions is particularly challenging. This is unfortunate since it turns out that establishing

the KKT conditions is crucial, and is at the heart of our extendibility argument. Indeed,

the upshot is that an admissible policy for the adversary can be derived from a subset of the

Lagrange multipliers. Further, our algorithm only has access to an approximate stationary

point. As a result, our argument needs to be robust in terms of approximation errors.

To address the first issue, we consider a modified nonlinear program—namely, (PNE) —that

incorporates an additional quadratic term to the objective function. This allows us to show

that the proximal point x̃ := proxϕ/(2ℓ)(x̂) is part of a global optimum for our new program.

In turn, this is crucial to establish the existence of nonnegative Lagrange multipliers at

that point. Moreover, we bypass the second issue we discussed above by studying a relaxed

linear program, which serves as a proxy for the ideal linear program that uses knowledge

of the global optimum of (PNE). Our main argument establishes that any solution to the
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proxy linear program is basically as good as solving the ideal one—modulo factors that

depend polynomially on the natural parameters of the game. In turn, that solution—which

incidentally can be computed efficiently—induces a strategy profile ŷ ∈ Y so that (x̂, ŷ) is

an O(ϵ)-approximate Nash equilibrium.

Outline of the proof. Below we sketch the main steps in our proof.

(i) In Appendix D.4.1 we consider (PNE), a nonlinear program that incorporates an

additional quadratic term to the objective function of the natural MDP formula-

tion (NLPG).

(ii) In Appendix D.4.2 we show that (PNE) attains a global optimum at (x̃, ṽ) (Lemma D.8),

where x̃ := proxϕ/(2ℓ)(x̂) and ṽ is the unique value vector associated with x̃ (Proposi-

tion D.2).

(iii) In ?? D.4.3.1 we show that any feasible point of (PNE) satisfies the Arrow-Hurwicz-

Uzawa constraint qualification (Lemma D.9). In turn, this implies the existence of non-

negative Lagrange multipliers at (x̃, ṽ) satisfying the KKT conditions (Corollary D.2).

(iv) In Appendix D.4.4 we introduce a linear program, namely (LPadv), to formulate the op-

timization problem faced by the adversary; (LPadv) will be eventually used to compute

an admissible policy for the adversary.

(v) In Lemma D.10 we show that (LPadv) is always feasible. This is shown by first con-

structing an “ideal” linear program (LP′
adv), and arguing that the ideal program is

feasible (Lemma D.11) using the KKT conditions. The transition to (LPadv) leverages

the fact that ∥x̃ − x̂∥ ≤ ϵ and the Lipschitz continuity of the underlying constraint

functions to show that the introduced error is only O(ϵ).

(vi) Finally, this section is culminated in Lemma D.12 and Theorem D.7, which establish

99



that any solution of (LPadv) induces a policy for the advesrary ŷ ∈ Y so that (x̂, ŷ) is

an O(ϵ)-approximate Nash equilibrium.

D.4.1 The Quadratic NLP

In this subsection, we describe in more detail the nonlinear program (PNE) we introduced

earlier in Section 4.4.4. For completeness, let us first describe the perhaps most natural

nonlinear formulation used to solve the min-max problem minx∈X maxy∈Y Vρ
(
x,y

)
(see (Filar

and Vrieze, 2012, Chapter 3)), introduced below.

(NLPG)

min
∑
s∈S

ρ(s)v(s)

s.t. r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′) ≤ v(s), ∀(s, b) ∈ S × B;

x⊤
k,s1 = 1, ∀(k, s) ∈ [n]× S; and

xk,s,a ≥ 0, ∀k ∈ [n], (s, a) ∈ S ×Ak.

The variables of this program correspond to a strategy profile for the team players (x1, . . . ,xn) ∈

X , while the value vector v captures the value at each state when the adversary is best re-

sponding. Before we proceed further, it will be useful to note that, for any (s, b) ∈ S × B

and s′ ∈ S, the functions r(s,x, b) and P(s′|s,x, b) are multinear in x, so that

 r
(
s, (xk;x−k), b

)
=

∑
a∈Ak

xk,s,ar
(
s, (ek,s,a;x−k), b

)
; and

P
(
s′|s, (xk;x−k), b

)
=

∑
a∈Ak

xk,s,a P
(
s′|s, (ek,s,a;x−k), b

)
,

where ek,s,a ∈ ∆(Ak) is such that its unique nonzero element corresponds to the action

a ∈ Ak of agent k ∈ [n]. An additional immediate consequence that will be useful in the
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sequel is the following property.


∂

∂xk,s,a
r(s,x, b) = r

(
s, (ek,s,a;x−k, b)

)
; and

∂
∂xk,s,a

P(s′|s,x, b) = P
(
s′|s, (ek,s,a;x−k), b

)
.

Those multilinear (nonconvex-nonconcave) functions are part of the source of the complexity

in our problem. We clarify that when all team players select a fixed strategy, (NLPG)

retrieves the linear-programming formulation of the Bellman equation for the single-agent

MDP (Puterman, 2014)—as seen from the perspective of the adversary.

Nevertheless, for our analysis it will be convenient to use a formulation that perturbs the

objective function of (NLPG) with a quadratic term. In particular, let ϕ(·) = maxy∈Y Vρ(·,y)

and x̂ ∈ X be a point such that ∥x̂− x̃∥ ≤ ϵ, where x̃ := proxϕ/2ℓ(x̂) is its proximal point;

such a point x̂ will be available after the termination of the first phase of IPGmax, as implied

by Proposition 4.2. Now the program we consider still has variables (x,v), but its objective

function incorporates an additional quadratic term. This program was first introduced in

Section 4.4.4, but we include it below for the convenience of the reader.

(Q-NLP)

min
∑
s∈S

ρ(s)v(s) + ℓ∥x− x̂∥2

s.t. r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′) ≤ v(s), ∀(s, b) ∈ S × B;

x⊤
k,s1 = 1, ∀(k, s) ∈ [n]× S; and

xk,s,a ≥ 0, ∀k ∈ [n], (s, a) ∈ S ×Ak.

As we show in the following subsection, (PNE) attains a global minimum in the proximal

point x̃ := proxϕ/(2ℓ)(x̂). First, let us point out that (PNE)—and subsequently (NLPG)—has

nonempty feasibility set.
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Lemma D.7. The program (PNE) is feasible.

Proof. Let x ∈ X be any directly parameterized policy for the team and v := 1
1−γ

1, where

recall that 1 is the all-ones vector (with dimension S). Clearly, x⊤
k,s1 = 1, for all (k, s) ∈

[n]×S, and xk,s,a ≥ 0 for all k ∈ [n], (s, b) ∈ S ×B. Further, for any (s, b) ∈ S ×B, we have

r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b) 1

1− γ
= r(s,x, b) + γ

1

1− γ
≤ 1 + γ

1

1− γ
≤ 1

1− γ
.

D.4.2 The Global Minimum of (PNE)

Here we demonstrate that (PNE) attains a global minimum under x = x̃ := proxϕ/(2ℓ)(x̂).

To do so, we first show that fixing x yields a unique optimal value vector v such that

ρ⊤v = ϕ(x), where recall that ϕ is defined as ϕ(·) = maxy∈Y Vρ(·,y). Next, we prove

that the objective function of (PNE) is lower bounded by the minimum of the function

Ψ(w) = ϕ(w) + ℓ∥w − x̂∥2; the latter function is ℓ-strongly convex, which means that it

has a unique minimizer, namely x̃ := proxϕ/(2ℓ)(x̂). In turn, this implies that the objective

function of (PNE) is at least Ψ(x) for any fixed x ∈ X . Finally, we conclude the proof by

showing that x̃ is part of a feasible solution of (PNE).

First, we relate the optimal vector v that arises by fixing x in (PNE) and the function ϕ(x):

Proposition D.2. Suppose that ρ ∈ ∆(S) is full support. For any x ∈ X there exists a

unique optimal vector v⋆ in (PNE). Further,

ρ⊤v⋆ = ϕ(x).
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Proof. First, we observe that by fixing a feasible point x ∈ X in (PNE) we recover a linear

program with variable v ∈ RS, which incidentally corresponds to the formulation of a single-

agent MDP (Puterman, 2014, Chapter 6). The reward function of this MDP is the expected

reward of the adversary given that team plays x, and the transition function is the expected

transition function conditioned on the team playing x ∈ X . Formally, we introduce this

linear program below.

min ρ⊤v

s.t. r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′) ≤ v(s), ∀(s, b) ∈ S × B.

We claim that the optimal solution v⋆ is unique for any given x ∈ X . Indeed, this is a con-

sequence of the fact that—when ρ is full-support—it is equivalent to the Bellman optimality

equation, whose solutions can be in turn expressed as the fixed point of a contraction oper-

ator (Puterman, 2014, Chapter 6.2 & 6.4). Further, let us consider its dual linear program

with variables λ ∈ RS×B:

max
∑

(s,b)∈S×B

r(s,x, b)λ(s, b)

s.t. ρ(s) +
∑
s∈S

∑
b∈B

λ(s, b)γP(s|s,x, b)−
∑
b∈B

λ(s, b) = 0, ∀s ∈ S; and

λ(s, b) ≥ 0, ∀(s, b) ∈ S × B.

The dual linear program is both feasible and bounded (Puterman, 2014, Chapter 6.9). As

such, it admits at least one optimal vector λ⋆, with the additional property that
∑

b∈B λ
⋆(s, b) >
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0; the latter follows since ρ is full-support. Moreover, by (Puterman, 2014, Theorem 6.9.1),

we know that

(i) Any y ∈ Y defines a feasible vector λ for the dual linear program; namely,

λ(s, b) = dx,yρ (s, b) :=
∑
s∈S

ρ(s) · Ey

[
γt P(s(t) = s, b(t) = b | x, s(0) = s)

]
.

(ii) Any feasible vector of the dual linear program λ defines a feasible y ∈ Y ; namely,

ys,b :=
λ(s, b)∑

b′∈B λ(s, b′)
, ∀(s, b) ∈ S × B.

Further, for any such y ∈ Y it holds that dx,yρ (s, b) = λ(s, b), ∀(s, b) ∈ S × B, where

dx,yρ (s, b) is the induced discounted state-action measure.

An implication of this theorem is a “1–1” correspondence between y ∈ Y and feasible

solutions λ of the dual program. Further, for a pair (λ,y), the associated discounted state

visitation measure is such that dx,yρ (s) =
∑

b∈B λ(s, b), ∀s ∈ S. Moreover, strong duality of

linear programming implies that

ρ⊤v⋆ =
∑

(s,b)∈S×B

λ⋆(s, b)r(s,x, b) =
∑
s∈S

dx,y
⋆

ρ (s)r(s,x,y⋆).

But, by Claim D.10 we know that

Vρ(x,y) =
∑
s∈S

dx,yρ (s)r(s,x,y).

Thus, for an optimal pair (λ⋆,y⋆), it holds that

Vρ(x,y⋆) =
∑

(s,b)∈S×B

λ⋆(s, b)r(s,x, b) = ρ⊤v⋆.
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Finally, the optimality of λ⋆ in the dual program implies that for any correspondence pair

(λ,y),

ρ⊤v⋆ =
∑

(s,b)∈S×B

λ⋆(s, b)r(s,x, b)

≥
∑

(s,b)∈S×B

λ(s, b)r(s,x, b)

= Vρ(x,y).

Lemma D.8. Let x̃ := proxϕ/(2ℓ)(x̂), and ṽ be the unique minimizer for (PNE) under a fixed

x = x̃. Then, (x̃, ṽ) is a global minimum of (PNE).

Proof. Consider a fixed x ∈ X . By Proposition D.2, we know that there is a unique optimal

vector v⋆ in (PNE), which also satisfies the equality

ρ⊤v⋆ = max
y∈Y

Vρ(x,y) = ϕ(x). (D.13)

Now let us consider the function Ψ(w) := ϕ(w) + ℓ∥w − x̂∥2. Ψ is ℓ-strongly convex and

its unique minimum value is attained at x̃ := proxϕ/(2ℓ)(x̂) (Corollary B.1). By (D.13), it

follows that for any feasible (x,v),

ρ⊤v + ℓ∥x− x̂∥2 ≥ min
x∈X

Ψ(x).

Finally, the value minx∈X Ψ(x) is indeed attained by (PNE) when we set x = x̃, which is

feasible for (PNE) (see Lemma D.7 and Proposition D.2).
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D.4.3 KKT Conditions for a Minimizer of Equation (PNE)

As we have shown in the previous subsection, (x̃, ṽ) is a minimum of the program (PNE).

In this subsection, we leverage this fact to establish the existence of nonnegative Lagrange

multipliers at (x̃, ṽ) that satisfy the KKT conditions; this will be crucial for our extendibil-

ity argument. First, let us write the Lagrangian of the constrained minimization problem

associated with (PNE):

L
(

(x,v), (λ,ω,ψ, ζ)
)

= ρ⊤v + ℓ∥x− x̂∥2

+
∑

(s,b)∈S×B

λ(s, b)

(
r(s,x, b) + γ

∑
s′∈S

P(s′|s,x, b)v(s′)− v(s)

)

+
∑
(k,s)

ω(k, s)
(
x⊤
k,s1− 1

)
+
∑
(k,s)

ψ(k, s)
(
1− x⊤

k,s1
)

+
∑
(k,s,a)

ζ(k, s, a) (−xk,s,a) , (D.14)

where

{λ(s, b)}(s,b) ∪ {ω(k, s)}(k,s) ∪ {ψ(k, s)}(k,s) ∪ {ζ(k, s, a)}(k,s,a)

are the associated Lagrange multipliers. Let us denote by I set indexing the constraints of

(PNE). Before we proceed, we partition the set of constraints I into I = I1 ∪ I2 ∪ I ′2 ∪ I3,

such that:

• The constraints of (Q1), corresponding to the subset of Lagrange multipliers {λ(s, b)}(s,b),

are assumed to lie in set I1, so that every index i ∈ I1 is uniquely associated with a

pair (s, b) ∈ S × B. In particular, for all i ∈ I1, and the uniquely associated pair

(s, b) ∈ S × B, we let

gi(x,v) := r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′)− v(s).

For any index i ∈ I1, and the associated pair (s, b) ∈ S × B, we have that
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– For any s ∈ S,

∂

∂v(s)
gi(x,v) =


γ P(s|s,x, b), if s ̸= s; and

−1 + γ P(s|s,x, b), if s = s.

– For any k ∈ [n], (s, a) ∈ S ×Ak,

∂

∂xk,s,a
gi(x,v) =


0, if s ̸= s; and

r
(
s, (ek,s,a;x−k,s), b

)
+γ
∑

s′∈S P
(
s′|s, (ek,s,a;x−k,s), b

)
v(s′), if s = s.

• The constraints described by (Q2), corresponding to the subset of Lagrange multipliers

{ω(k, s)}(k,s) ∪ {ψ(k, s)}(k,s), are assumed to lie in the set I2 ∪ I ′2 as follows. Every

equality constraint (Q2) is converted to a pair of inequality constraints corresponding

to the sets I2 and I ′2, respectively, so that every index i ∈ I2 or i ∈ I ′2 is uniquely

associated with a pair (k, s) ∈ [n]× S. In particular, for all i ∈ I2, and the associated

pair (k, s) ∈ [n]× S, we let

gi(x,v) := x⊤
k,s1− 1,

and for all i ∈ I ′2

g′i(x,v) := 1− x⊤
k,s1.

For any index i ∈ I2 and the associated pair (k, s) ∈ [n]× S, we have that

– For any s ∈ S,

∂

∂v(s)
gi(x,v) = 0.
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– For any k ∈ [n], (s, a) ∈ S ×A,

∂

∂xk,s,a
gi(x,v) =


1, if (k, s) = (k, s); and

0, otherwise.

For any index i ∈ I ′2 and the associated pair (k, s) ∈ [n]× S, we have that

– For any s ∈ S,

∂

∂v(s)
g′i(x,v) = 0.

– For any k ∈ [n], (s, a) ∈ S ×A,

∂

∂xk,s,a
g′i(x,v) =


−1, if (k, s) = (k, s);

0, otherwise.

• Finally, the constraints described by (Q3), corresponding to the subset of Lagrangian

multipliers {ζ(k, s, a)}(k,s,a), are assumed to lie in the set I3, so that every index i ∈ I3

is uniquely associated with a triple (k, s, a). In particular, for each i ∈ I3, and the

associated triple (k, s, a), we let

gi(x,v) := −xk,s,a.

For any index i ∈ I3 and the associated triple (k, s, a), we have that

– For any s ∈ S,

∂

∂v(s)
gi(x,v) = 0.
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– For any k ∈ [n], (s, a) ∈ S ×A,

∂

∂xk,s,a
gi(x,v) =


−1, if (k, s, a) = (k, s, a);

0, otherwise.

We are now ready to determine the partial derivatives of the Lagrangian, as formalized

below.

Claim D.5. Consider the Lagrangian function L of (PNE), as introduced in (D.14). Then,

for any s ∈ S, the partial derivative of L with respect to v(s) reads

∂

∂v(s)
L = ρ(s) +

∑
s∈S

∑
b∈B

[
λ(s, b)γ P (s|s,x, b)

]
−
∑
b∈B

λ(s, b). (D.15)

Further, for any k ∈ [n], (s, a) ∈ S ×Ak,

∂

∂xk,s,a
L = 2ℓ(xk,s,a − x̂k,s,a)

+
∑
b∈B

λ(s, b)

[
r
(
s, (ek,s,a;x−k), b

)
+ γ

∑
s∈S

P
(
s|s, (ek,s,a;x−k), b

)
v(s)

]

+ ω(k, s)− ψ(k, s)− ζ(k, s, a). (D.16)

Proof. Let us first establish (D.15). Fix any s ∈ S. The partial derivative of the objective

function of (PNE) with respect to v(s) reads

∂

∂v(s)

(
ρ⊤v + ℓ∥x− x̂∥22

)
= ρ(s).

Further, (Q1) is the only constraint that involves the variable v(s), and we previously showed
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that for any i ∈ I1,

∂

∂v(s)
gi(x,v) =


γ P(s|s,x, b), if s ̸= s;

−1 + γ P(s|s,x, b), if s = s,

where (s, b) ∈ S × B is the pair associated with index i ∈ I1. Thus,

∑
(s,b)∈S×B

∂

∂v(s)
gi(x,v) =

∑
b∈B

∑
s ̸=s

[λ(s, b)γ P(s|s,x, b)] +
∑
b∈B

λ(s, b) (−1 + P(s|s,x, b))

=
∑
b∈B

∑
s∈S

[λ(s, b)γ P(s|s,x, b)]−
∑
b∈B

λ(s, b).

As a result, we conclude that

∂

∂v(s)
L = ρ(s) +

∑
s∈S

∑
b∈B

λ(s, b)γ P(s|s,x, b)−
∑
b∈B

λ(s, b),

establishing (D.15). Next, we show (D.16). We first calculate the partial derivative of the

objective function:

∂

∂xk,s,a

(
ρ⊤v + ℓ∥x− x̂∥22

)
= 2ℓ(xk,s,a − x̂k,s,a). (D.17)

Moreover, the summation of all the partial derivatives with respect to xk,s,a, for a fixed triple

(k, s, a), of the constraints (Q1), (Q2), and (Q3), multiplied by their respective Lagrange

multipliers reads

∑
b∈B

λ(s, b)
(
r
(
s, (ek,s,a;x−k,s), b

)
+γ
∑
s∈S

P
(
s|s, (ek,s,a;x−k,s), b

)
v(s)

)
+ω(k, s)−ψ(k, s)−ζ(k, s, a).

(D.18)

Combining (D.17) and (D.18) implies (D.16), concluding the proof.
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D.4.3.1 Local Optima Satisfy the KKT Conditions

Here we will show that for (x̃, ṽ) ∈ X × RS, a global minimum of (PNE), there exist (non-

negative) Lagrange multipliers that jointly satisfy the KKT conditions. We will first argue

in Lemma D.9 below that any feasible point of (PNE) satisfies the Arrow-Hurwicz-Uzawa

constraint qualification. Then, we will leverage Corollary A.1 to show that any local mini-

mizer of (PNE)—and in particular (x̃, ṽ)—attains Lagrange multipliers that satisfy the KKT

conditions. The following proof is analogous to (Vrieze, 1987, Ch. 4.4).

Lemma D.9. Let (x,v) ∈ X×RS be any feasible point of (PNE). Then, the Arrow-Hurwicz-

Uzawa constraint qualification is satisfied at (x,v).

Proof. Suppose that A(x,v) ⊆ I is the set of active constraints at a feasible point (x,v).

Let us further denote by d the dimension of (x,v). To apply Theorem A.1, we have to

establish the existence of a vector w ∈ Rd, such that for any i ∈ A(x,v),

 w⊤∇(x,v)gi(x,v) > 0, if gi is nonconcave; and

w⊤∇(x,v)gi(x,v) ≥ 0, if gi concave.

For convenience, we will index the entries of w so that w = (wx,wv). For reasons that will

shortly become clear, we set wx = 0. Now consider any active constraint i (if any exists)

from the set I2∪ I ′2∪ I3. The corresponding constraint function gi is affine, and in particular

concave. Further, it holds that for any s ∈ S,

∂

∂v(s)
gi(x,v) = 0.

As a result, for our choice of vector w = (0,wv), it immediately follows that

w⊤∇(x,v)gi(x,v) = 0,
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for any i ∈ I2 ∪ I ′2 ∪ I3. Let us now treat (if any) active constraints i ∈ I1. In particular, let

(s, b) ∈ S × B be the pair associated with i, so that

gi(x,v) = r(s,x, b) + γ
∑
s′∈S

P(s′|s,x, b)v(s′)− v(s).

Then,

w⊤∇gi(x,v) = w⊤
v ∇v

[
r(s,x, b) + γ

∑
s′∈S

P(s′|s,x, b)v(s′)− v(s)
]∣∣∣∣∣

(x,v)

=
∑
s ̸=s

wv(s)γ P(s|s,x, b) + wv(s)

(
− 1 + γ P(s|s,x, b)

)
=
∑
s∈S

wv(s)γ P(s|s,x, b)− wv(s).

By virtue of Theorem A.1, it suffices to show that there exists wv so that for any (s, b) ∈

S × B,

γ
∑
s′∈S

wv(s′) P(s′|s, x̃, b)− wv(s) > 0.

We will show that this property holds for wv := −v. Indeed, since (x,v) is feasible, we get

that

γ
∑
s′∈S

wv(s′) P(s′|s, x̃, b)− wv(s) = −γ
∑
s′∈S

v(s′)P(s′|s, x̃, b) + v(s) ≥ r(s,x, b) > 0,

since we have assumed that r(s,a, b) > 0 for any (a, b) ∈ A × B. This concludes the

proof.

Next, leveraging this lemma and Corollary A.1, we conclude that (x̃, ṽ)—in fact, any local

minimum of (PNE)—attains nonnegative Lagrange multipliers that satisfy the KKT condi-

tions.
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Corollary D.2. For any local minimum (x̃, ṽ) ∈ X×RS of (PNE), there exists (nonnegative)

Lagrange multipliers satisfying the KKT conditions.

In particular, by the first-order stationarity condition and the complementary slackness

condition (recall Definition A.2) with respect to (x̃, ṽ), we have

∇(x,v)L
(

(x̃, ṽ), (λ̃, ω̃, ψ̃, ζ̃)
)

= 0; (D.19a)

λ̃(s, b)
(
r(s, x̃, b) + γ

∑
s′∈S P(s′|s, x̃, b)ṽ(s′)− ṽ(s)

)
= 0, ∀(s, b) ∈ S × B;

ω̃(k, s)
(
x̃⊤
k,s1− 1

)
= 0, ∀(k, s) ∈ [n]× S;

ψ̃(k, s)
(

1− x̃⊤
k,s1
)

= 0, ∀(k, s) ∈ [n]× S;

ζ̃(k, s, a)
(
− x̃k,s,a

)
= 0, ∀k ∈ [n],∀(s, a) ∈ S ×Ak; and

(D.19b)

ω̃(k, s), ψ̃(k, s), ζ̃(k, s, a) ≥ 0, ∀(k, s) ∈ [n]× S, and ∀k ∈ [n], (s, a) ∈ S ×Ak.

(D.19c)

D.4.3.2 Connecting the Lagrange Multipliers with the Visitation Measure

Here we establish an important connection between a subset of the Lagrange multipliers and

the visitation measure under a specific policy of the adversary. This fact will be crucial later

in the proof of Lemma D.12 for controlling the approximation error.

Proposition D.3. Suppose that the initial distribution ρ is full support. Let also λ̃ ∈ RS×B
≥0

be the associated vector of Lagrange multipliers at (x̃, ṽ) ∈ X ×RS that satisfy (D.19). Then,

it holds that
∑

b∈B λ̃(s, b) > 0, for any s ∈ S. Further, if

ỹs,b :=
λ̃(s, b)∑

b′∈B λ̃(s, b′)
,
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for any (s, b) ∈ S × B, then it holds that

∑
b∈B

λ̃(s, b) = dx̃,ỹρ (s), ∀s ∈ S,

where dx̃,ỹρ (s) defines the visitation measure at state s ∈ S induced by (x̃, ỹ).

Proof. First of all, it follows directly from (D.15) and the fact that the Langrange multipliers

are nonnegative that
∑

b∈B λ̃(s, b) > 0. Next, for convenience, let us define a vector d ∈ RS
>0

such that

d(s) =
∑
b∈B

λ̃(s, b), (D.20)

for all s ∈ S. Then, starting from (D.15), we have that for any s ∈ S,

ρ(s) +
∑
s∈S

∑
b∈B

[
d(s)

d(s)
λ̃(s, b)γ P (s|s, x̃, b)

]
− d(s) = 0 (D.21)

ρ(s) +
∑
s∈S

∑
b∈B

[
d(s)∑

b′∈B λ̃(s, b′)
λ̃(s, b)γ P (s|s, x̃, b)

]
− d(s) = 0

ρ(s) +
∑
s∈S

∑
b∈B

[
d(s)

λ̃(s, b)∑
b′∈B λ̃(s, b′)

γ P (s|s, x̃, b)

]
− d(s) = 0

ρ(s) + γ
∑
s∈S

∑
b∈B

[
d(s)ỹs,b P (s|s, x̃, b)

]
− d(s) = 0 (D.22)

ρ(s) + γ
∑
s∈S

[
d(s)P (s|s, x̃, ỹ)

]
− d(s) = 0, (D.23)

where (D.21) uses the definition of d given in (D.20); (D.22) follows from the definition of

strategy y in the statement of the proposition; and (D.23) is derived since P(s|s, x̃, ỹ) =∑
b∈B ỹs,bP(s|s, x̃, b) (law of total probability). Next, we observe that (D.23) can be com-

pactly expressed as ρ⊤ = d⊤ (I− γ P(x̃, ỹ)) (recall the definition of matrix P), in turn
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implying that

d⊤ = ρ⊤ (I− γ P(x̃, ỹ))−1 .

We note that (I− γ P(x̃, ỹ)) is invertible (Claim D.7). As a result, by virtue of Claim D.9

we conclude that
∑

b∈B λ̃(s, b) = dx̃,ỹρ (s), for all s ∈ S. This concludes the proof.

We also provide an additional auxiliary claim that will be useful in the sequel. The proof

follows by carefully leveraging the KKT conditions, as we formalize below.

Claim D.6. Let (x̃, ṽ) ∈ X×RS be a local optimum of the (PNE), and {λ̃(s, b)}, {ψ̃(k, s)}, {ω̃(k, s)}

be the associated Lagrange multipliers defined in (D.19). Then, for any player k ∈ [n],

ṽ(s)− 2ℓ(x̃k,s − x̂k,s)
⊤x̃k,s∑

b∈B λ̃(s, b)
=
ψ̃(k, s)− ω̃(k, s)∑

b∈B λ̃(s, b)
, ∀s ∈ S.

Proof. First, multiplying Equation (D.16) by x̃k,s,a we get that

−2ℓ(x̃k,s,a − x̂k,s,a)x̃k,s,a

+ x̃k,s,a
∑
b∈B

λ̃(s, b)
[
r
(
s, (ek,s,a; x̃−k), b

)
+ γ

∑
s′∈S

P
(
s′|s, (ek,s,a; x̃−k), b

)
v(s′)

]
+ x̃k,s,a

(
ω̃(k, s)− ψ̃(k, s)

)
− x̃k,s,aζ̃(k, s, a) = 0, ∀k ∈ [n], (s, a) ∈ S ×A.

By complementary slackness, it follows that −x̃k,s,aζ̃(k, s, a) = 0, for all k ∈ [n], (s, a) ∈

115



S ×Ak. Thus, the previously displayed equation can be simplified as

−2ℓ(x̃k,s,a − x̂k,s,a)x̃k,s,a

+ x̃k,s,a
∑
b∈B

λ̃(s, b)
[
r
(
s, (ek,s,a; x̃−k), b

)
+ γ

∑
s′∈S

P
(
s′|s, (ek,s,a; x̃−k), b

)
v(s′)

]
+ x̃k,s,a

(
ω̃(k, s)− ψ̃(k, s)

)
= 0, ∀k ∈ [n], (s, a) ∈ S ×Ak.

Next, summing the previous equation over all a ∈ Ak it follows that for any (k, s) ∈ [n]×S,

∑
a∈Ak

x̃k,s,a
∑
b∈B

λ̃(s, b)
[
r
(
s, (ek,s,a; x̃−k), b

)
+ γ

∑
s′∈S

P
(
s′|s, (ek,s,a; x̃−k), b

)
ṽ(s′)

]
−2ℓ

∑
a∈Ak

(x̃k,s,a − x̂k,s,a)x̃k,s,a +
∑
a∈Ak

x̃k,s,a

(
ω̃(k, s)− ψ̃(k, s)

)
= 0

∑
b∈B

λ̃(s, b)
∑
a∈Ak

x̃k,s,a

[
r
(
s, (ek,s,a; x̃−k), b

)
+ γ

∑
s′∈S

P
(
s′|s, (ek,s,a; x̃−k), b

)
ṽ(s′)

]
−2ℓ(x̃k,s − x̂k,s)

⊤x̃k,s +
(
ω̃(k, s)− ψ̃(k, s)

)
= 0,

where the last derivation uses that
∑

a∈Ak
x̃k,s,a = 1 since xk,s ∈ ∆(Ak). Further, using that

(i)
∑

a∈Ak
x̃k,s,ar

(
s, (ek,s,a; x̃−k), b

)
= r
(
s, x̃, b

)
, and

(ii)
∑

a∈Ak
x̃k,s,a P

(
s′|s, (ek,s,a; x̃−k), b

)
= P

(
s′|s, x̃, b

)
,

it follows that for any (k, s) ∈ [n]× S,

∑
b∈B

λ̃(s, b)
[
r
(
s, x̃, b

)
+γ
∑
s′∈S

P
(
s′|s, x̃, b

)
ṽ(s′)

]
−2ℓ(x̃k,s−x̂k,s)

⊤x̃k,s+
(
ω̃(k, s)−ψ̃(k, s)

)
= 0.

(D.24)

Further, we know from the complementary slackness condition (D.19) that for any (s, b) ∈
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S × B,

λ̃(s, b)

(
r
(
s, x̃s, b

)
+ γ

∑
s′∈S

P
(
s′|s, x̃s, b

)
ṽ(s′)− ṽ(s)

)
= 0.

In turn, summing over all actions b ∈ B we get that for any s ∈ S,

ṽ(s)
∑
b∈B

λ̃(s, b) =
∑
b∈B

λ̃(s, b)
[
r
(
s, x̃, b

)
+ γ

∑
s′∈S

P
(
s′|s, x̃, b

)
ṽ(s′)

]
.

Combining this equation with (D.24), and recalling that
∑

b∈B λ̃(s, b) > 0 for any s ∈ S (by

Proposition D.3), leads to the desired conclusion.

D.4.4 Efficient Extension to Nash Equilibria

This subsection completes the proof that an ϵ-near stationary point x̂ of ϕ can be extended

to a strategy profile (x̂, ŷ) that is an O(ϵ)-approximate Nash equilibrium. Further, we

provide a computationally efficient way for computing ŷ based on an appropriate linear

program, (LPadv) introduced below. The upshot is that feasible solutions of (LPadv) induce

the appropriate strategy for the adversary ŷ ∈ Y . In this context, we are ready to introduce

(LPadv), a linear program with free variables λ ∈ RS×B:
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(LPadv)

max
∑

(s,b)∈S×B

λ(s, b)r (s, x̂, b)

s.t.

∑
b λ(s, b) [r (s, (ek,s,a; x̂−k), b) + γ

∑
s′ P (s′|s, (ek,s,a; x̂−k), b) v̂(s′)− v̂(s)]≥ −c1 · ϵ,

∀s ∈ S ;

(LPadv.1)

λ(s, b)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≤ c2 · ϵ, ∀(s, b) ∈ S × B;(LPadv.2)

λ(s, b)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≥ −c2 · ϵ, ∀(s, b) ∈ S × B;(LPadv.3)

∑
b∈B

λ(s, b) ≥ ρ(s), ∀s ∈ S; and(LPadv.4)

∑
b∈B

λ(s, b) ≤ 1

1− γ
, ∀s ∈ S.

(LPadv.5)

Here,

c2 :=
1

1− γ

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1

1− γ
+ γSL+ L

)
,

c1 := 4ℓ+ c2.

Before we proceed, a few remarks are in order. First, let us relate (LPadv) with (PNE). As

alluded to by our notation, the free variables of (LPadv) are related to a subset of the Lagrange

multipliers introduced in (D.14). In light of this, (LPadv.2) and (LPadv.3) are related to the

complementary slackness condition given in (D.19b), while (LPadv.1) is related to the first-

order stationary condition (D.19a). An important point is that we previously established the

KKT conditions only with respect to the pair (x̃, ṽ), instead of (x̂, v̂). This partially explains

the “slackness” we introduced in (LPadv.1), (LPadv.2) and (LPadv.3). Correspondingly, the

slackness parameters c1 and c2 were introduced to “transfer” the constraints from (x̃, ṽ) to
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(x̂, v̂), in a sense that will become clear in the sequel. We stress that expressing (LPadv)

in terms of (x̂, v̂) is crucial since (x̃, ṽ) is not actually available to the algorithm. We

also remark that the objective function of (LPadv) is not relevant for out argument; even a

constant objective would suffice for our purposes.

But first, we need to show that (LPadv) is feasible. To do so, we construct an auxiliary linear

program that, unlike (LPadv), depends on (x̃, ṽ), an exact minimum of (PNE). As such, the

feasibility of this program, (LP′
adv), is established using the Lagrange multipliers λ̃ ∈ RS×B

associated with (x̃, ṽ).

Lemma D.10. The linear program (LPadv) with variables λ ∈ RS×B is feasible.

Proof. We introduce the following auxiliary linear program with variables λ ∈ RS×B:

(LP′
adv)

max
∑

(s,b)∈S×B

λ(s, b)r (s, x̃, b)

s.t.
ρ(s) +

∑
s∈S
∑

b∈B

[
λ(s, b)γ P (s|s, x̃, b)

]
−
∑

b∈B λ(s, b) = 0,

∀(s, b) ∈ S × B ;

(LP′
adv.1)

∑
b λ(s, b) [r (s, (ek,s,a; x̃−k), b) + γ

∑
s′ P (s′|s, (ek,s,a; x̃−k), b) ṽ(s′)− ṽ(s)] ≥ −4ϵℓ,

∀k ∈ [n],∀(s, a) ∈ S ×Ak;

(LP′
adv.2)

λ(s, b)

([
r (s, x̃, b) + γ

∑
s′∈S

P (s′|s, x̃, b) ṽ(s′)

]
− ṽ(s)

)
= 0, ∀(s, b) ∈ S × B;(LP′

adv.3)

λ(s, b)≥ 0, ∀(s, b) ∈ S × B.

(LP′
adv.4)

Again, the objective function of (LP′
adv) is not relevant for our argument. For our purposes,

it suffices to show that (LP′
adv) is feasible.
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Lemma D.11. Let λ̃ ∈ RS×B be a subset of Lagrange multipliers associated with (x̃, ṽ) ∈

X × RS of (PNE). Then, λ̃ satisfies all the constraints of (LP′
adv).

Proof. First, (LP′
adv.1) is satisfied by the first-order stationarity condition (D.19a); (LP′

adv.3)

is satisfied by the complementary slackness condition (D.19b); and (LP′
adv.4) by the nonneg-

ative of the Lagrange multipliers (D.19c). The rest of the proof is devoted to showing that

λ̃ also satisfies (LP′
adv.2). To this end, we first recall that, by Claim D.6, we have that

ω̃(k, s)− ψ̃(k, s) = −ṽ(s)
∑
b∈B

λ̃(s, b) + 2ℓ(x̃k,s − x̂k,s)
⊤x̃k,s,

for any s ∈ S. Combing this relation with (D.16) we get that for any k ∈ [n], (s, a) ∈ S×Ak,

∑
b∈B

λ̃(s, b)
[
r (s, (ek,s,a; x̃−k,s), b) +

∑
s′∈S

P (s′|s, (ek,s,a; x̃−k,s), b) v(s′)
]

+ 2ℓ(x̃k,s,a − x̂k,s,a)

− ṽ(s)
∑
b∈B

λ̃(s, b) + 2ℓx̃⊤
k,s(x̃k,s − x̂k,s)− ζ̃(k, s, a) = 0

∑
b∈B

λ̃(s, b)
[
r (s, (ek,s,a; x̃−k,s), b) +

∑
s′∈S

P (s′|s, (ek,s,a; x̃−k,s), b) v(s′)
]
−
∑
b∈B

λ̃(s, b)ṽ(s)

+ 2ℓ(x̃k,s,a − x̂k,s,a)− 2ℓx̃⊤
k,s(x̃k,s − x̂k,s) = ζ̃(k, s, a).

As a result, we conclude that

∑
b∈B

λ̃(s, b)
[
r (s, (ek,s,a; x̃−k,s), b) +

∑
s′∈S

P (s′|s, (ek,s,a; x̃−k,s), b) v(s′)− ṽ(s)
]
≥ −4ϵℓ,

since

(i) ζ̃(k, s, a) ≥ 0 by Equation (D.19c);

(ii) 2ℓ(x̂k,s,a − x̃k,s,a) ≥ −2ℓ|x̂k,s,a − x̃k,s,a| ≥ −2ℓϵ given that ∥x̃ − x̂∥∞ ≤ ∥x̃ − x̂∥2 ≤ ϵ;

and

120



(iii) 2ℓx̃⊤
k,s(x̃k,s − x̂k,s) ≥ −2ℓ∥x̃k,s∥2∥x̃k,s − x̂k,s∥2 ≥ −2ℓϵ, by Cauchy-Schwarz inequality

and the fact that ∥x̃k,s∥2 ≤ 1 since x̃k,s ∈ ∆(Ak).

This concludes the proof of the lemma.

We next leverage this lemma to establish that the original linear program is also feasible.

To do so, we will leverage the Lipschitz continuity of the constraint functions. In particular,

consider any (s, b) ∈ S × B. We observe that

r (s, x̃, b) + γ
∑
s′∈S

P (s′|s, x̃, b) ṽ(s′)− ṽ(s) =

r (s, x̃, b) + r (s, x̂, b)− r (s, x̂, b)

+ γ
∑
s′∈S

(
P (s′|s, x̃, b) + P (s′|s, x̂, b)− P (s′|s, x̂, b)

)(
ṽ(s′) + v̂(s′)− v̂(s′)

)
− ṽ(s) + v̂(s)− v̂(s).

Thus,

r (s, x̃, b) + γ
∑
s′∈S

P (s′|s, x̃, b) v̂(s′)− ṽ(s) =

r (s, x̂, b) + γ
∑
s′∈S

P (s′|s, x̂, b) v̂(s′)− v̂(s)

+ r (s, x̃, b)− r (s, x̂, b)

+ γ
∑
s′∈S

(
P (s′|s, x̃, b)− P (s′|s, x̂, b)

)
ṽ(s′)

+ γ
∑
s′∈S

P (s′|s, x̂, b)
(
ṽ(s′)− v̂(s′)

)
− ṽ(s) + v̂(s). (D.27)
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As a result, given that

λ̃(s, b)

([
r (s, x̃, b) + γ

∑
s′∈S

P (s′|s, x̃, b) ṽ(s′)

]
− ṽ(s)

)
= 0,

it follows that from (D.27) and the triangle inequality that

∣∣∣∣∣λ̃(s, b)

([
r (s, x̂, b) + γ

∑
s′

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)∣∣∣∣∣ ≤ 1

1− γ

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1

1− γ
+ γSL+ L

)
ϵ.

This inequality uses that ∥x̃−x̂∥ ≤ ϵ; the fact that λ̃(s, b) ≤ 1
1−γ

(LPadv.5); and the Lipschitz

continuity bounds provided in Claim D.15:



|r (s, x̃, b)− r (s, x̂, b)| ≤
√∑n

k=1Akϵ;∣∣∣∑s′∈S

(
P (s′|s, x̃, b)− P (s′|s, x̂, b)

)
ṽ(s′)

∣∣∣ ≤ S
√∑n

k=1Ak
1

1−γ
ϵ;∣∣∑

s′∈S P (s′|s, x̂, b)
(
ṽ(s′)− v̂(s′)

)∣∣ ≤ SLϵ; and

|ṽ(s)− v̂(s)| ≤ Lϵ.

We proceed in a similar manner for (LPadv.1), yielding that

∑
b∈B

λ̃(s, b)

[
r (s, (ek,s,a; x̂−k), b) + γ

∑
s′∈S

P (s′|s, (ek,s,a; x̂−k), b) v̂(s′)− v̂(s)

]
≥

≥ −4ϵℓ− 1

1− γ

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1

1− γ
+ γSL+ L

)
ϵ.

Thus, λ̃ satisfies (LPadv.1). Finally, λ̃ also satisfies (LPadv.4) and (LPadv.5), implied directly

by Proposition D.3 and Claim D.13.

Lemma D.12. Let x̂ be an ϵ-nearly stationary point of ϕ(·) = maxy∈Y Vρ(·,y). Any fea-

sible solution λ ∈ RS×B of (LPadv) induces an O(ϵ)-approximate Nash equilibrium for the

adversarial team Markov game.
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Proof. Consider any feasible solution λ ∈ RS×B of (LPadv), and the induced strategy for the

adversary defined as

ŷs,b :=
λ(s, b)∑
b∈B λ(s, b)

,

for any (s, b) ∈ S × B; this is indeed well-defined since
∑

b∈B λ(s, b) ≥ ρ(s) > 0, which in

turn follows since ρ has full support. We will show that (x̂, ŷ) is an O(ϵ)-approximate Nash

equilibrium. Our proof proceeds in two parts. First, we show that, if the team is responding

according to x̂, then ŷ is an O(ϵ)-approximate best response for the adversary. Analogously,

in the second part of the proof we argue about deviations from team players.

Controlling deviations of the adversary. Fix any y ∈ Y . Given that (x̂, v̂) is a feasible

solution of (PNE), it follows that for any (s, b) ∈ S × B,

ys,b

(
r(s, x̂, b) + γ

∑
s′∈S

P(s′|s, x̂, b)v̂(s′)

)
≤ v̂(s)ys,b,

Summing over all b ∈ B yields that

∑
b∈B

ys,b

(
r(s, x̂, b) + γ

∑
s′∈S

P(s′|s, x̂, b)v̂(s′)

)
≤ v̂(s),

in turn implying that

r (s, x̂,y) + γ
∑
s′∈S

P (s′|s, x̂,y) v̂(s′) ≤ v̂(s),

for any s ∈ S. The last inequality can be succinctly expressed in the following vector

(element-wise) inequality:

r (x̂,y) + γ P (x̂,y) v̂ ≤ v̂.
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From this inequality it follows that

v̂ ≥
∞∑
t=0

γt Pt(x̂, ŷ)r(x̂,y) = (I− γ P(x̂,y))−1r(x̂,y) = V (x̂,y), (D.28)

where we used Claims D.7, D.8 and D.11, and the notation V (x̂,y) to represent the value

vector under (x̂,y)—recall (4.3). Moreover, given that λ is a feasible solution of (LPadv),

manipulating (LPadv.3) yields that for any (s, b) ∈ S × B,

λ(s, b)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≥ −c2ϵ

1∑
b′∈B λ(s, b′)

λ(s, b)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≥ − c2ϵ∑

b′∈B λ(s, b′)
(D.29)

ŷs,b

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≥ − c2ϵ∑

b′∈B λ(s, b′)
,

(D.30)

where (D.29) follows since
∑

b′∈B λ(s, b′) > 0, while (D.30) follows from the definition of ŷs,b.

Summing over all b ∈ B,

∑
b∈B

ŷs,b

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≥ −

∑
b∈B

c2ϵ∑
b′∈B λ(s, b′)∑

b∈B

ŷs,b

(
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

)
− v̂(s) ≥ −B c2ϵ∑

b∈B λ(s, b)

r (s, x̂, ŷ) + γ
∑
s′∈S

P (s′|s, x̂, , ŷ) v̂(s′) ≥ v̂(s)−B c2ϵ∑
b∈B λ(s, b)

. (D.31)

Let us set ξs := c2·ϵ∑
b λ(s,b)

for each s ∈ S. Continuing from (D.31), we have that

r (x̂, ŷ) + γ P (x̂, ŷ) v̂ ≥ v̂ −Bξ,
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which in turn implies that

V (x̂, ŷ) ≥ v −B (I− γ P(x̂, ŷ))−1 ξ,

by Claims D.8 and D.11. Thus,

Vρ(x̂, ŷ) ≥ ρ⊤v̂ −Bρ⊤ (I− γ P(x̂, ŷ))−1 ξ

≥ ρ⊤v̂ −Bξ⊤dx̂,ŷ
ρ (D.32)

≥ ρ⊤v̂ − c2B
∑
s∈S

dx̂,ŷρ (s)∑
b∈B λ(s, b)

ϵ

≥ ρ⊤v̂ − c2B
∑
s∈S

dx̂,ŷρ (s)

ρ(s)
ϵ (D.33)

≥ ρ⊤v̂ − c2BSDϵ, (D.34)

where (D.32) follows from Claim D.9; (D.33) follows from the feasibility constraint
∑

b∈B λ(s, b) ≥

ρ(s); and (D.34) uses the definition of mismatch coefficient (Definition 2.6). As a result, com-

bining (D.28) and (D.34), we conclude that for any y ∈ Y ,

Vρ(x̂, ŷ) ≥ ρ⊤v̂ − c2BSDϵ ≥ Vρ(x̂,y)− c2BSDϵ. (D.35)

Controlling deviations of a team player. Next, we show that any deviation from a

single player can only yield a small improvement for the player. Fix any player k ∈ [n] and

strategy xk ∈ Xk. The proof proceeds analogously to our previous argument. In particular,

for any state s ∈ S, multiplying (LPadv.1) by xk,s,a, and summing over all actions a ∈ Ak

yields that

∑
b∈B

λ(s, b)

[
r (s, (xk; x̂−k), b) + γ

∑
s′∈S

P (s′|s, (xk; x̂−k), b) v̂(s′)

]
≥ v̂(s)

∑
b∈B

λ(s, b)− c1ϵ;
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here, we leveraged the feasibility of λ. Further, given that
∑

b∈B λ(s, b) > 0,

r(s, (xk; x̂−k), ŷ) +γ
∑
s′∈S

P(s′|s, (xk; x̂−k), ŷ) ≥ v̂(s)− c1 · ϵ
1∑

b∈B λ(s, b)
≥ v̂(s)− c1ϵ

1

ρ(s)
,

for any s ∈ S, since
∑

b∈B λ(s, b) ≥ ρ(s). Hence,

r ((xk; x̂−k), ŷ) + γ P ((xk; x̂−k), ŷ) v̂ ≥ v̂ − c1ϵ
1

ρ
.

In turn, by Claim D.11, this implies that

V ((xk, x̂−k), ŷ) ≥ v̂ − c1 · ϵ(I− γ P((xk; x̂−k), ŷ))−1 1

ρ
.

Thus, we conclude that

Vρ(xk, x̂−k), ŷ) ≥ ρ⊤v̂ − c1DSϵ, (D.36)

where we used Claim D.9 and Definition 2.6. Next, using (LPadv.2) we obtain that for all

(s, b) ∈ S × B,

λ(s, b)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≤ c2ϵ

λ(s, b)∑
b′∈B λ(s, b′)

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≤ c2ϵ∑

b′∈B λ(s, b′)
.
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For convenience, let us set ξs := c2ϵ∑
b′∈B λ(s,b′)

. By definition of ŷ, we have

ŷs,b

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≤ ξs

∑
b∈B

ŷs,b

([
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

]
− v̂(s)

)
≤ Bξs

∑
b∈B

ŷs,b

(
r (s, x̂, b) + γ

∑
s′∈S

P (s′|s, x̂, b) v̂(s′)

)
≤ v̂(s) +Bξs

r (s, x̂, ŷ) + γ
∑
s′∈S

P (s′|s, x̂, ŷ) v̂(s′) ≤ v̂(s) +Bξs,

for any s ∈ S. Thus,

r (x̂, ŷ) + γ P (x̂, ŷ) v̂ ≤ v̂ +Bξ

V (x̂, ŷ) ≤ v̂ +B (I− γ P(x̂, ŷ))−1 ξ (D.37)

Vρ(x̂, ŷ) ≤ ρ⊤v̂ +Bc2
∑
s∈S

dx̂,ŷρ (s)∑
b∈B λ(s, b)

ϵ (D.38)

Vρ(x̂, ŷ) ≤ ρ⊤v̂ + c2BSDϵ, (D.39)

where (D.37) follows from Claim D.11; (D.38) follows from Claim D.9; and (D.39) follows

from the fact that
∑

b∈B λ(s, b) ≥ ρ(s) and Definition 2.6. As a result, combining (D.36) and

(D.39) we conclude that

Vρ(x̂, ŷ) ≤ Vρ ((xk; x̂−k), ŷ) + c2BSDϵ+ c1DSϵ. (D.40)

We state the precise version of Lemma D.12 in Theorem D.7 below. First, let us summarize

AdvNashPolicy, the algorithm for computing the policy for the adversary. AdvNashPolicy,

described in Algorithm 2, takes as input x̂ ∈ X , an ϵ-nearly stationary point of ϕ(x) :=
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maxy∈Y Vρ(x,y). The algorithm then computes the best-response value vector v̂. This is

computed by fixing the strategy of the team x̂ ∈ X , and then solving the single-agent MDP

problem so as to maximize the value at every state. Then, the pair (x̂, v̂) is used in order

to determine the—polynomial number of—coefficients of LPadv, as introduced in (LPadv).

Then, any feasible solution λ ∈ RS×B of (LPadv) is used to determine the strategy of the

adversary as follows.

ŷs,b :=
λ(s, b)∑
b∈B λ(s, b)

, ∀(s, b) ∈ S × B.

Theorem D.7 (Near stationary points extend to approximate NE). Consider an adversarial

team Markov game G, and suppose that x̂ ∈ X is an ϵ-nearly stationary point of ϕ(x) :=

maxy Vρ(·,y), where Vρ is the value function of G (4.3). Then, any feasible solution of

(LPadv) λ̂ ∈ RS×B
≥0 induces a strategy ŷ, defined as

ŷs,b :=
λ̂(s, b)∑
b∈B λ̂(s, b)

, ∀(s, b) ∈ S × B,

so that for any player k ∈ [n] and any deviations xk ∈ Xk and y ∈ Y,


Vρ(x̂, ŷ) ≤ Vρ ((xk; x̂−k), ŷ) + (BSD + 1) 1

1−γ

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1
1−γ

+ γSL+ L
)
ϵ

+ 1
1−γ

4ϵℓ

Vρ(x̂, ŷ) ≥ Vρ(x̂,y)−BSD 1
1−γ

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1
1−γ

+ γSL+ L
)
ϵ,

Here, we recall that D = maxπ∈Π

∥∥∥dπ
ρ

ρ

∥∥∥
∞

is the mismatch coefficient, L =

√∑
k Ak+B

(1−γ)2
is a

Lipschitz constant of the value function, and ℓ =
2(

∑
k Ak+B)

(1−γ)3
is a smoothness constant of the

value function (Lemma 2.1).

Proof. By Lemma D.10, we know that (LPadv) is feasible. Further, ŷ is a well-formed

strategy since for any feasible λ ∈ RS×B
≥0 of (LPadv) it holds that

∑
b∈B λ(s, b) ≥ ρ(s) > 0,
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for any state s ∈ S, where the first bound follows by feasibility of λ and the second since ρ

is assumed to have full support. Thus, the proof of the theorem follows from Lemma D.12,

and in particular (D.35) and (D.40).

D.5 Convergence to a Nearly Stationary Point

In this section, we establish that IPGmax reaches to an ϵ-nearly stationary point—in the

sense of Definition B.2—after a number of iterations that is polynomial in all the natural

parameters of the game, as well as 1/ϵ. The main result here is Proposition 4.2, which was

first introduced in Section 4.4.3. First, we need to establish that the value function Vρ(x,y)

is Lipschitz continuous and smooth, as formalized below. We note that this property is by

now fairly standard (e.g., see (Agarwal et al., 2020)), and we therefore omit the proof.

Lemma D.13. For any initial distribution ρ, the value function Vρ(x,y) is

√∑
k Ak+B

(1−γ)2
-

Lipschitz continuous and
2(

∑
k Ak+B)

(1−γ)3
-smooth:

|Vρ(x,y)− Vρ(x′,y′)| ≤
√∑n

k=1Ak +B

(1− γ)2
∥(x,y)− (x′,y′)∥ ; and

∥∇Vρ(x,y)−∇Vρ(x′,y′)∥ ≤ 2 (
∑n

k=1Ak +B)

(1− γ)3
∥(x,y)− (x′,y′)∥ ,

for all (x,y), (x′,y′) ∈ X × Y.

We convenience, we will let L :=

√∑n
k=1 Ak+B

(1−γ)2
and ℓ :=

2(
∑n

k=1 Ak+B)
(1−γ)3

. The next key result

characterizes the iteration complexity required to reach an ϵ-nearly stationary point of ϕ(·).

The following analysis follows (Jin et al., 2020).

Proposition 4.2. Consider any ϵ > 0. If η = 2ϵ2(1 − γ) and T = (1−γ)4

8ϵ4(
∑n

k=1 Ak+B)2
, there

exists an iterate t⋆, with 0 ≤ t⋆ ≤ T − 1, such that
∥∥x(t⋆) − x̃(t⋆)

∥∥
2
≤ ϵ, where x̃(t⋆) :=

proxϕ/(2ℓ)(x
(t⋆)).
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Proof. By virtue of the ℓ-smoothness of Vρ(x,y) (Lemma D.13), it follows that for any

x ∈ X and 0 ≤ t ≤ T − 1,

ϕ(x) ≥ Vρ(x,y(t+1)) ≥ Vρ(x(t),y(t+1))+⟨∇xVρ(x(t),y(t+1)),x−x(t)⟩− ℓ
2

∥∥x− x(t)
∥∥2 , (D.41)

since ϕ(x) = maxy∈Y Vρ(x,y) ≥ Vρ(x,y(t+1)). Now recall that

x̃(t) := arg min
x′∈X

{
ϕ(x′) +

1

2λ

∥∥x(t) − x′∥∥2} , (D.42)

for any 0 ≤ t ≤ T−1, where λ := 1
2ℓ

. Using the definition of Moreau envelope (Definition 4.4),

ϕλ(x(t+1)) ≤ ϕ(x̃(t)) + ℓ
∥∥x(t+1) − x̃(t)

∥∥2
≤ ϕ(x̃(t)) + ℓ

∥∥ProjX
{
x(t) − η∇xVρ(x(t),y(t+1))

}
− ProjX

{
x̃(t)
}∥∥2 (D.43)

≤ ϕ(x̃(t)) + ℓ
∥∥x(t) − η∇xVρ(x(t),y(t+1))− x̃(t)

∥∥2
2

(D.44)

≤ ϕ(x̃(t)) + ℓ
∥∥x(t) − x̃(t)

∥∥2 + η2ℓ
∥∥∇xVρ(x(t),y(t+1))

∥∥2 + 2ηℓ⟨∇xVρ(x(t),y(t+1)), x̃(t) − x(t)⟩(D.45)

≤ ϕλ(x(t)) + 2ηℓ

(
ϕ(x̃(t))− ϕ(x(t)) +

ℓ

2

∥∥x(t) − x̃(t)
∥∥2)+ η2ℓL2, (D.46)

where

• (D.43) uses the fact that x
(t+1)
k := ProjXk

{
x
(t)
k − η∇xk

Vρ(x(t),y(t+1))
}

for all k ∈ [n],

as defined in IPGmax, in turn implying that x(t+1) = ProjX
{
x(t) − η∇xVρ(x(t),y(t+1))

}
,

as well as the fact that ProjX
{
x̃(t)
}

= x̃(t) since x̃(t) ∈ X ;

• (D.44) follows from the fact that the projection operator is nonexpansive (Fact D.2);

• (D.45) uses the identity ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨a, b⟩ for any a, b ∈ Rd; and

• (D.46) follows since

(i) ϕ(x̃(t)) + ℓ
∥∥x(t) − x̃(t)

∥∥2 = minx′∈X

{
ϕ(x′) + ℓ

∥∥x(t) − x′
∥∥2} = ϕλ(x(t)) by defini-
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tion of x̃(t) in (D.42) and the definition of Moreau envelope with λ = 1
2ℓ

(Defini-

tion 4.4);

(ii) Vρ(x(t),y(t+1)) + ⟨∇xVρ(x(t),y(t+1)), x̃(t) − x(t)⟩ − ℓ
2

∥∥x̃− x(t)
∥∥2 ≤ ϕ(x̃(t)), which

is an application of (D.41) for x := x̃(t); and

(iii)
∥∥∇xVρ(x(t),y(t+1))

∥∥2 ≤ L2 by L-Lipschitz continuity of Vρ(x(t),y(t+1)) (Lemma D.13)

combined with Fact D.1.

As a result, taking a telescopic sum of (D.46) for all 0 ≤ t ≤ T − 1 and rearranging the

terms yields

1

T

T−1∑
t=0

(
ϕ(x(t))− ϕ(x̃(t))− ℓ

2

∥∥x(t) − x̃(t)
∥∥2) ≤ ϕλ(x(0))− ϕλ(x(T ))

2ηℓT
+
ηL2

2
≤ 1

2(1− γ)ηℓT
+
ηL2

2
,

(D.47)

since ϕλ(x(T )) ≥ 0, directly by Definition 4.4, and ϕλ(x(0)) ≤ ϕ(x(0)) ≤ 1
1−γ

, where the last

inequality follows from Claim D.14. Therefore we conclude that there exists an iterate t⋆,

with 0 ≤ t⋆ ≤ T − 1, so that

ϕ(x(t⋆))− ϕ(x̃(t⋆))− ℓ

2

∥∥x(t⋆) − x̃(t⋆)
∥∥2 ≤ 1

2(1− γ)ηℓT
+
ηL2

2
. (D.48)

Further, since ϕ(x) + ℓ
∥∥x− x(t⋆)

∥∥2 is ℓ-strongly convex with respect to x (by Lemma B.1

and Corollary B.1), we get that

ϕ(x(t⋆))− ϕ(x̃(t⋆))− ℓ
∥∥x(t⋆) − x̃(t⋆)

∥∥2 ≥ ℓ

2

∥∥x(t⋆) − x̃(t⋆)
∥∥2 ,

by definition of x̃(t⋆) in (D.42), in turn implying that

ϕ(x(t⋆))− ϕ(x̃(t⋆))− ℓ

2

∥∥x(t⋆) − x̃(t⋆)
∥∥2 ≥ ℓ

∥∥x(t⋆) − x̃(t⋆)
∥∥2 .

131



Combing this bound with (D.48) yields that

∥∥x(t⋆) − x̃(t⋆)
∥∥2 ≤ 1

2(1− γ)ηℓ2T
+
ηL2

2ℓ
.

In particular, letting

η = ϵ2 · ℓ
L2

= 2ϵ2 · (1− γ)

and

T =
1

ϵ2(1− γ)ηℓ2
=

(1− γ)4

8ϵ4(
∑n

i=1Ai +B)2

implies that
∥∥x(t⋆) − x̃(t⋆)

∥∥ ≤ ϵ.

A limitation of this proposition is that it only establishes a “best-iterate” guarantee. How-

ever, as we explained in Section 4.4.3, determining such an iterate could introduce a sub-

stantial computational overhead in the algorithm. For this reason, we provide a stronger

guarantee below, showing that even a random iterate will also be nearly stationary with

constant probability, leading to a practical implementation of IPGmax.

Corollary D.3. Consider any ϵ > 0, and suppose that η = ϵ2(1− γ) and T = (1−γ)4

2ϵ4(
∑

k Ak+B)2
.

For any δ > 0, if we select uniformly at random (with repetitions) a set T of ⌈log(1/δ)⌉

indexes from the set {0, 1, . . . , T −1}, then with probability at least 1−δ there exists a t′ ∈ T

such that
∥∥x(t′) − x̃(t′)

∥∥ ≤ ϵ, where x̃(t′) := proxϕ/(2ℓ)(x
(t′)).

Proof. First, we claim that selecting uniformly at random an index t′ from the set {0, 1, . . . , T−
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1} will satisfy

∥x(t′) − x̃(t′)∥2 ≤ 2ϵ2

with probability at least 1
2
. To show this, let us define

g(t) := ϕ(x(t))− ϕ(x̃(t))− ℓ

2

∥∥x(t) − x̃(t)
∥∥2 ,

for t = 0, 1, . . . , T − 1. By definition of x̃(t) in (D.42), we have

g(t) = ϕ(x(t))− ϕ(x̃(t))− ℓ

2

∥∥x(t) − x̃(t)
∥∥2 ≥ ℓ

∥∥x(t) − x̃(t)
∥∥ ≥ 0, (D.49)

for 0 ≤ t ≤ T − 1. Further, by (D.47) we have

1

T

T−1∑
t=0

g(t) ≤ ϵ2ℓ, (D.50)

where we used that η = 2ϵ2(1 − γ) and T = (1−γ)4

8ϵ4(
∑n

k=1 Ak+B)2
. As a result, we conclude that

at least half of the indexes t are such that g(t) ≤ 2ϵ2ℓ. Indeed, the contrary case contradicts

(D.50) given that g(t) ≥ 0 for all t. In turn, this implies our claim in light of (D.49). Finally,

the proof of the corollary follows from a standard boosting argument, as well as rescaling ϵ

by 1√
2
.

Theorem D.8 (Computing ϵ-approximate NE). Consider an adversarial team Markov game

G. Running IPGmax for T =
512S8D4(

∑n
k=1 Ak+B)

4

ϵ4(1−γ)12
number of iterations and learning rate

η = ϵ2(1−γ)9

32S4D2(
∑n

k=1 Ak+B)
3 yields a team strategy x̂ ∈ X that can be extended to an ϵ-approximate

Nash equilibrium in polynomial time through the routine AdvNashPolicy(x̂), assuming a

succinctly represented environment for the adversary.
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Proof. In place of ϵ of Proposition 4.2 we set

ϵ← ϵ

1
1−γ

[
4ℓ+ (BSD + 1)

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1
1−γ

+ γSL+ L
)] ,

which allows us to compute an ϵ-approximate Nash equilibrium by virtue of Theorem D.7.

Then, the number of iterations reads

T =
(1− γ)4

8(1− γ)4ϵ4(
∑n

k=1Ak +B)2

[
4ℓ+ (BSD + 1)

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1

1− γ
+ γSL+ L

)]4
≤ 83S8D4 (

∑n
k=1Ak +B)

4

ϵ4(1− γ)12
,

with a learning rate

η = 2ϵ2(1− γ)(1− γ)2
(

1

1− γ

[
4ℓ+ (BSD + 1)

(√∑n
k=1Ak + γS

√∑n
k=1Ak

1

1− γ
+ γSL+ L

)])−2

≥ ϵ2(1− γ)9

32S4D2 (
∑n

k=1Ak +B)
3 .

Further, assuming a polynomially accessible environment for the adversary, AdvNashPolicy

can be implemented in polynomial time via linear programming (Ye, 2011).
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D.5.1 Additional Auxiliary Claims

For the sake of readability, this section contains some simple and standard claims we used

earlier in our proofs, but are only stated here.

Fact D.1. Let f : X ∋ x 7→ R be an L-Lipschitz continuous and differentiable function.

Then,

max
x∈X
∥∇xf(x)∥ ≤ L.

Fact D.2 (Projection operator is nonexpansive). Let X ⊆ Rd be a nonempty, convex and

compact set. Further, let ProjX {:}Rd → X be the Euclidean projection operator defined as

ProjX {:}Rd ∋ y 7→ 1
2

arg minx∈X ∥x− y∥2. Then, for any x,y ∈ Rd,

∥ProjX {x} − ProjX {y} ∥ ≤ ∥x− y∥.

.

In the rest of the claims, we are implicitly—for the sake of readability—fixing an adversarial

team Markov game (S,A,B, r,P, γ,ρ).

Claim D.7. Consider any joint stationary policy π ∈ Π. For any γ ∈ [0, 1), the matrix

I− γ P(π) is invertible.

Claim D.8. Let π ∈ Π be a joint stationary policy. The value vector V ∈ RS can be

expressed as

V =
(
I− γP(π)

)−1
r(π),

where r(π) denotes the per-state reward under policy π.
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Proof. For any state s ∈ S,

Vs(π) = r(π) + γ P(π) + γ2 P2(π) + · · · =
∞∑
t=0

γt Pt(π)r(π).

But, given that the matrix I− γ P(π) is invertible (Claim D.7), we have

∞∑
t=0

γt Pt(π) =
(
I− γ P(π)

)−1
,

and the claim follows.

Claim D.9. Consider a stationary joint policy π ∈ Π. The discounted visitation measure

dπρ (s) can be expressed as

(
dπ
ρ

)⊤
= ρ⊤(I− γ P(π)

)−1
.

Claim D.10. Consider a stationary joint strategy (x,y) ∈ X×Y, and the visitation measure

dx,y
ρ , under some initial distribution ρ ∈ ∆(S). Then, the value function can be expressed

as

Vρ =
∑
s∈S

dx,yρ (s)r(s,x,y).

Proof. By definition of dx,y
ρ , we have that for any s ∈ S,

dx,yρ (s) =
∑
s∈S

ρ(s)
∞∑
t=0

γt P
(
s(t) = s

∣∣ x,y, s(0) = s
)
.

Similarly, the value function can be written as

Vρ(x,y) =
∑
s∈S

∑
s∈S

ρ(s)
∞∑
t=0

γt P
(
s(t) = s

∣∣ x,y, s(0) = s
)
r(s,x,y) =

∑
s∈S

dx,yρ (s)r(s,x,y).
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Claim D.11. Let π ∈ Π be a joint stationary policy, r(π) be the reward vector under π,

and v, c ∈ RS. If r(π) + γ P(π)v ≤ v + c, then it holds that

V (π) ≤ v +
(
I− γ P(π)

)−1
c.

Similarly, if r(π) + γ P(π)v ≥ v + c, then it holds that

V (π) ≥ v +
(
I− γ P(π)

)−1
c.

Proof. Suppose that r(π) +γ P(π)v ≤ v+c. Applying recursively this inequality, it follows

that

∞∑
t=0

γt Pt(π)r(π)−
∞∑
t=0

γt Pt(π)c ≤ v.

Combining this bound with Claims D.7 and D.8 implies that

V (π)−
(
I− γ P(π)

)−1

c ≤ v.

The case where r(π) + γ P(π)v ≥ v + c admits an analogous proof.

Claim D.12. Consider an adversarial team Markov game G. Altering all the rewards

by adding an additive constant c ∈ R yields a strategically-equivalent game G ′: any ϵ-

approximate Nash equilibrium in G ′ is also an ϵ-approximate Nash equilibrium in G, and

vice versa.

Proof. By assumption, r′(s,a, b) = r(s,a, b) + c for any (s,a, b) ∈ S ×A×B. Let V ′
ρ be the

137



value function in G ′. Then, for all (x,y) ∈ X × Y ,

V ′
ρ(x,y) = ρ⊤ (I− γ P(x,y))−1 r′(x,y)

= ρ⊤ (I− γ P(x,y))−1 (r(x,y) + c · 1)

= Vρ(x,y) +
c

1− γ
.

Thus, our claim follows immediately from the definition of Nash equilibria ((4.4)).

Claim D.13. Let π ∈ Π be a joint stationary policy, and dπ
ρ be the induced visitation

measure. Then, for every s ∈ S,

ρ(s) ≤ dπρ (s) ≤ 1

1− γ
.

Proof. This is an immediate consequence of the definition of dπρ ; in particular,

dπρ (s) =
∑
s∈S

ρ(s)
∞∑
t=0

γtP(s(t) = s|π, s(0) = s) ≤
∑
s∈S

ρ(s)
∞∑
t=0

γt =
1

1− γ
,

and

dπρ (s) =
∑
s∈S

ρ(s)
∞∑
t=0

γtP(s(t) = s|π, s(0) = s) ≥ ρ(s)
∞∑
t=0

γtP(s(t) = s|π, s(0) = s) ≥ ρ(s).

Claim D.14. Suppose that the reward function takes values in [mr,Mr], for some mr,Mr >

0. Then, for any stationary joint policy π ∈ Π and every state s ∈ S,

mr

1− γ
≤ Vs(π) ≤ Mr

1− γ
.
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Proof. By the definition of the value function in (4.3), we have

Vs(π) ≤Mr + γMr + γ2Mr + · · · = 1

1− γ
Mr,

for any s ∈ S. Similarly, we conclude that

Vs(π) ≥ 1

1− γ
mr.

Claim D.15. Let an adversarial team Markov game G, two team policies x̃, x̃ and quantities

Rb(·, ·), Pb(·|s, ·), v(s) quantities defined in (PNE). The following inequalities hold:

1. |r (s, x̃, b)− r (s, x̂, b)| ≤
√∑n

k=1Ak∥x̃− x̂∥, for any (s, b) ∈ S × B;

2.
∣∣∣∑s′∈S

(
P (s′|s, x̃, b)− P (s′|s, x̂, b)

)
ṽ(s′)

∣∣∣ ≤ S
1−γ

√∑n
k=1Ak∥x̃ − x̂∥, for any (s, b) ∈

S × B;

3. |ṽ(s)− v̂(s)| ≤ L∥x̃− x̂∥, for any s ∈ S; and

4.
∣∣∑

s′∈S P (s′|s, x̂, b)
(
ṽ(s′)− v̂(s′)

)∣∣ ≤ SL∥x̃− x̂∥, for any (s, b) ∈ S × B.

Proof. We briefly note how the bounds are derived:

• We first establish Item 1. Fix any pair (s, b) ∈ S × B. By definition, we have

r(s, x̃, b) = Ea∼x̃[r(s,a, b)] =
∑

(a1,...,an)∈A

r(s,a, b)
n∏

k=1

x̃k,s,ak .
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As a result,

|r(s, x̃, b)− r(s, x̂, b)| =

∣∣∣∣∣∣
∑

(a1,...,an)∈A

r(s,a, b)
n∏

k=1

x̃k,s,ak −
∑

(a1,...,an)∈A

r(s,a, b)
n∏

k=1

x̂k,s,ak

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(a1,...,an)∈A

r(s,a, b)

(
n∏

k=1

x̃k,s,ak −
n∏

k=1

x̂k,s,ak

)∣∣∣∣∣∣
≤

∑
(a1,...,an)∈A

∣∣∣∣∣
n∏

k=1

x̃k,s,ak −
n∏

k=1

x̂k,s,ak

∣∣∣∣∣ (D.51)

≤
n∑

k=1

∥x̃k,s − x̂k,s∥1 = ∥x̃s − x̂s∥1 ≤

√√√√ n∑
k=1

Ak

 ∥x̃s − x̂s∥2,

(D.52)

where (D.51) follows from the triangle inequality and the fact that |r(s,a, b)| ≤ 1,

and (D.52) follows from the fact that the total variation distance between two product

distributions is bounded by the sum of the total variations of each marginal distribu-

tion (Hoeffding and Wolfowitz, 1958), as well as the fact that ∥x∥1 ≤
√
d∥x∥2 for a

vector x ∈ Rd.

• Item 2 follows analogously to Item 1, using the fact that ṽ(s′) ≤ 1
1−γ

(by Claim D.14

and Proposition D.2).

• For Item 3, we begin by noting that v̂ and ṽ are the unique optimal vectors of (PNE)

for x̂ and x̃ respectively (recall Proposition D.2). Further, by Proposition D.2, we

know that ρ⊤v̂ = maxy∈Y Vρ(x̂,y) = ϕ(x̂) and ρ⊤ṽ = maxy∈Y Vρ(x̃,y) = ϕ(x̃), for

any ρ ∈ ∆(S) of full support. As a result, Item 3 is a consequence of the fact that ϕ(·)

is L-Lipschitz continuous, which in turn follows since Vρ is L-Lipschitz continuous (see

Lemma 2.1 and Lemma B.1).
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• Finally, Item 4 follows from Item 3 and the fact that

∣∣∣∣∣∑
s′∈S

P(s′|s, x̂, b)

∣∣∣∣∣ =

∣∣∣∣∣∣
∑
s′∈S

∑
(a1,...,an)∈A

P(s′|s,a, b)
n∏

k=1

x̂k,s,ak

∣∣∣∣∣∣
≤
∑
s′∈S

∑
(a1,...,an)∈A

n∏
k=1

x̂k,s,ak = S,

for any fixed (s, b) ∈ S×B, where the last bound follows from the triangle inequality and

the normalization constraint of the product distribution:
∑

(a1,...,an)∈A
∏n

k=1 x̂k,s,ak = 1.
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