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Abstract. We compare the predictions of the dissipative quantum model of brain with
neurophysiological data collected from electroencephalograms resulting from high-density arrays
fixed on the surfaces of primary sensory and limbic areas of trained rabbits and cats. Functional
brain imaging in relation to behavior reveals the formation of coherent domains of synchronized
neuronal oscillatory activity and phase transitions predicted by the dissipative model.

1. Introduction
In his pioneering work in the first half of the 20th century Lashley was led to the hypothesis
of “mass action” in the storage and retrieval of memories in the brain and observed: “...Here
is the dilemma. Nerve impulses are transmitted ...from cell to cell through definite intercellular
connections. Yet, all behavior seems to be determined by masses of excitation...within general
fields of activity, without regard to particular nerve cells... What sort of nervous organization
might be capable of responding to a pattern of excitation without limited specialized path of
conduction? The problem is almost universal in the activity of the nervous system” (pp. 302-
306 of [4]). Lashley’s finding was confirmed in many subsequent laboratory observations and
Pribram then proposed the analogy between the fields of distributed neural activity in the brain
and the wave patterns in holograms [5].

Mass action has been confirmed by EEG, by magnetoencephalogram (MEG), functional
magnetic resonance imaging (fMRI), positron electron tomography (PET), and single photon
emission computed tomography (SPECT). These techniques gave observational access to real
time imaging of “patterns of excitation” and dynamical formation of spatially extended
domains of neuronal fields of activity. The neocortex is observed to be characterized by the
exchangeability of its ports of sensory input; its ability to adapt rapidly and flexibly to short-
and long-term changes; its reliance on large-scale organization of patterns of neural activity
that mediate its perceptual functions; the incredibly small amounts of information entering each
port in brief behavioral time frames that support effective and efficient intentional action and
perception [6, 7].

None of the following four material agencies which have been proposed to account for the



processes involving large populations of neurons, appear to be able to explain the observed
cortical activity [8]:

1 - Nonsynaptic transmission is essential for neuromodulation and diffusion of chemical fields
of metabolites providing manifestations of widespread coordinated firing. It has been proposed
[6] as the mechanism for implementation of volume transmission to answer the question of how
broad and diffuse chemical gradients might induce phase locking of neural pulse trains at ms
intervals. However, it is too slow to explain the highly textured patterns and their rapid changes
[8]. Observations [9] show that cortex indeed jumps abruptly from a receiving state to an active
transmitting state. Spatial amplitude modulated (AM) patterns with carrier frequencies in the
beta and gamma ranges (12 − 80 Hz) form during the active state and dissolve as the cortex
returns to its receiving state after transmission. These state transitions in cortex form frames
of AM patterns in few ms, hold them for 80 − 120 ms, and repeat them at rates in alpha and
theta ranges (3 − 12 Hz) of EEG [3], [9] - [15]. These patterns appear often to extend over
spatial domains covering much of the hemisphere in rabbits and cats [14, 9], and over the length
of a 64 × 1 linear 19 cm array [10] in human cortex with near zero phase dispersion [15, 16].
Synchronized oscillation of large-scale neuronal assemblies in beta and gamma ranges have been
detected in the resting state and in motor task-related states of the human brain by MEG [17].
The observed high rates of field modulation are not compatible with mediation of chemical
diffusion such as those estimated in studies of spike timing among multiple pulse trains (e.g.
[18, 19, 20]), of cerebral blood flow using fMRI (e.g. [21, 22]), and of spatial patterns of the
distributions of radio-labeled neurotransmitters and neuromodulators as measured with PET,
SPECT and optical techniques.

2 - Electric fields are revealed by the extracellular flow of dendritic current across the
resistance of brain tissue[23]. Weak extracellular electric currents have been shown to modulate
the firing of neurons in vitro and have been postulated as the agency by which neurons are linked
together [24]. However, the current densities required in vivo to modulate cortical firing exceed
by nearly two orders of magnitude those currents that are sustained by extracellular dendritic
currents [23, 25].

3 - Magnetic fields of such intensity that they can be measured 4 − 5 cm above the scalp
with MEG are generated by the intracellular current in palisades of dendritic shafts in cortical
columns. The earth’s far stronger magnetic field can be detected by specialized receptors for
navigation in birds and bees [26], leading to the search for magnetic receptors among cortical
neurons (e.g. [27, 28]), so far without positive results.

4 - The combined agency of electric and magnetic fields propagating as radio waves has also
been postulated [29]. However, neuronal radio communication is unlikely, owing to the 80 : 1
disparity between electric permittivity and magnetic permeability of the brain tissue and to
the low frequency (< 100 Hz) and kilometer wavelengths of electromagnetic radiation at EEG
frequencies.

Thus, neither the chemical diffusion, which is much too slow, nor the electric field of the
extracellular dendritic current nor the magnetic fields inside the dendritic shafts, which are
much too weak, are the agency of the collective neuronal activity. Lashley’s dilemma remains,
thus, still to be explained.

The dissipative quantum model of brain, which we compare with laboratory observations
in this paper, has been proposed [1, 2] as an alternative approach to account for the observed
dynamical formation of spatially extended domains of neuronal synchronized oscillations and of
their rapid sequencing. The dissipative model explains indeed two main features of the EEG
data [3]: the textured patterns of AM in distinct frequency bands correlated with categories of
conditioned stimuli, i.e. coexistence of physically distinct AM patterns, and the remarkably rapid
onset of AM patterns into (irreversible) sequences that resemble cinematographic frames. Each
spatial AM pattern is described to be consequent to spontaneous breakdown of symmetry (SBS)



triggered by external stimulus and is associated with one of the emerging unitarily inequivalent
ground states. Their sequencing is associated to the non-unitary time evolution implied by
dissipation, as discussed below. It has to be remarked that the neuron and the glia cells and
other physiological units are not quantum objects in the many-body model of brain. This
distinguishes the dissipative quantum model from all other quantum approaches to brain, mind
and behavior. Moreover, the dissipative model describes the brain, not mental states. Also in
this respect this model differs from those approaches where brain and mind are treated as if
they were a priori identical.

In Section 2 and 3 we briefly summarize the main features of the original many-body model
and its extension to dissipative dynamics, respectively. In Section 4 we comment on the
laboratory observations and their agreement with the dissipative model. We closely follow Ref.
[3] in our presentation. Free energy, the arrow of time and classicality are discussed in Section
5 and 6, respectively. Conclusions are presented in Section 7. For the reader’s convenience
and for completeness, details of the SBS mechanism in quantum field theory (QFT) and of the
observational techniques are presented in Appendices A and B, respectively.

2. The original many-body model
The dissipative quantum model [1], on which we focus our attention in this paper, extends the
original quantum model of brain to the dissipative dynamics intrinsic to the brain functional
activity. The quantum model of brain, here briefly summarized, was proposed in 1967 by
Ricciardi and Umezawa [30] and further developed by Stuart, Takahashi and Umezawa [31],
see also [32]. It was formulated in order to provide a solution to Lashley’s dilemma. The
model is primarily aimed to the description of memory storing and recalling. Umezawa explains
the motivation for using the QFT formalism of many-body physics [33]: ”In any material in
condensed matter physics any particular information is carried by certain ordered patterns
maintained by certain long range correlations mediated by massless quanta. It looked to me
that this is the only way to memorize some information; memory is a printed pattern of order
supported by long range correlations...”

The main ingredient of the model is thus the mechanism of SBS by which long range
correlations (the Nambu-Goldstone, briefly NG, boson modes) are dynamically generated (see
the Appendix A). Water constitutes more than 80% to brain mass, and in the many-body model
it is therefore expected to be a major facilitator or constraint on brain dynamics. The symmetry
which gets broken is the rotational symmetry of the electric dipole vibrational field of the water
molecules and of other biomolecules present in the brain structures [1, 34, 35]. The quantum
variables are identified with those of the electric dipole vibrational field and with the associated
NG modes, named the dipole wave quanta (DWQ). These are dynamically created and do not
derive from Coulomb interaction.

If the cortex is at or near a singularity (see Section 3), the external input or stimulus acts on
the brain as a trigger for the breakdown of the dipole rotational symmetry. As a consequence long
range correlation is established by the coherent condensation of DWQ bosons. SBS guarantees
the change of scale, from the microscopic dynamics to the macroscopic order parameter field.
The density value of the condensation of DWQ in the ground state (also called vacuum state)
acts as a label classifying the state and thus the memory thereby created. The stored memory is
not a representation of the stimulus, nor is it a collection of stimulus features. Indeed, a specific
feature of the SBS mechanism in QFT is that the ordered pattern generated is controlled by
the inner dynamics of the system, not by the external field (stimulus) whose only effect is
the breakdown of the symmetry. This aspect of the model perfectly agrees with laboratory
observations (see Sections 3 and 4).

The recall of the recorded information occurs under the input of a stimulus capable of exciting
DWQ out of the corresponding ground state. In the model, such a stimulus is called “similar”



to the one responsible for the memory recording [31]. Similarity is not an intrinsic property of
the stimuli. Rather, it refers to their effects on the brain, namely inducing the formation or
excitation of “similar” ordered pattern(s).

One shortcoming of the many-body model in its original form is that any subsequent stimulus
would cancel the previously recorded memory by renewing the SBS process and the consequent
DWQ condensation, thus printing the new memory over the previous one (“memory capacity
problem”). Moreover, the model fails in explaining the observed coexistence of AM patterns
and their irreversible time evolution. These problems are solved by endorsing the original many-
body model with dissipative dynamics [1, 2], accounting for the fact that the brain is an open
system in permanent interaction with its environment.

3. The dissipative many-body model
3.1. Coherent states
The details of the coupling of the brain with environment are very intricate and variable, and
thus they are difficult to be characterized and measured. The external stimulus on the brain
selects one vacuum state among infinitely many of them, unitarily inequivalent with each other
(see Appendix A). The selection of the vacuum is what happens in the process of SBS. The
selected vacuum carries the signature (memory) of the reciprocal brain–environment influence
at a given time under given boundary conditions. A change in the brain–environment interaction
changes the choice of the vacuum: the brain evolution through the vacuum states thus reflects
the evolution of the coupling of the brain with the surrounding world. The condensate of DWQ in
the vacuum is assumed to be the quantum substrate of the AM pattern observed. In agreement
with observations, the dissipative dynamics allows (quasi-)non-interfering degenerate vacua with
different condensates. This corresponds to different AM patterns and (phase) transitions among
them (AM pattern sequencing). These features could not be described in the framework of the
original many-body model. By exploiting the existence of infinitely many inequivalent modes in
QFT, the dissipative model allows a huge memory capacity. This can be seen as follows.

In QFT the canonical quantization of a dissipative system requires that the environment in
which the system is embedded must also be included in the formalism. This is achieved by
describing the environment as the time-reversed image of the system, and this is realized by
doubling the system’s degrees of freedom [36]. In the dissipative quantum model, the brain
dynamics is indeed described in terms of an infinite collection of damped harmonic oscillators
aκ (a simple prototype of a dissipative system) representing the boson DWQ modes [1] and by
the ãκ modes which are the time-reversed mirror image of the aκ modes. The doubled modes
ãκ represent the environment. The role of the ãκ system is to restore energy conservation by
balancing the (in-/out-)energy fluxes. The label κ generically denotes degrees of freedom such
as, e.g., spatial momentum, etc. [1, 36, 37].

The aκ and ãκ modes are massless NG modes. The system Hamiltonian is invariant under the
dipole rotations (described by the SU(2) group). The breakdown of this rotational symmetry is
induced by the external stimulus and this leads to the dynamical generation of DWQ aκ. Their
condensation in the ground state is then constrained by inclusion of the mirror modes ãκ in
order to account for the system dissipation. The system ground state is indeed not invariant
under (discrete) time-reversal symmetry. However, it is also not invariant under (continuous)
time translation symmetry. As a result we have irreversible time evolution and energy non-
conservation for the aκ system due to dissipation. One can show [36, 37] that the external
stimulus formally represents the coupling strength between the aκ and the ãκ modes.

Although the living brain operates far from equilibrium, it evolves in time through a sequence
of states where the energy fluxes and heat exchanges at the system-environment interface are
balanced: Esyst − Eenv ≡ E0 = 0. This energy balance is manifested in the regulation of
mammalian brain temperature. The balanced nonequilibrium system state, denoted by |0〉N , is



thus the system vacuum or ground state. At some arbitrary initial time t0 = 0, the system
Hamiltonian prescribes [1] that E0 =

∑
κ h̄Ωκ(Naκ − Nãκ) = 0, where Ωκ is the common

frequency of aκ and ãκ modes. This implies that the ”memory state” |0〉N is a condensate
of an equal number of modes aκ and mirror modes ãκ for any κ: Naκ − Nãκ = 0 1. We have
N 〈0|0〉N = 1 ∀ N , where N denotes the set of integers defining the ”initial value” of the
condensate, N ≡ {Naκ = Nãκ , ∀ κ, at t0 = 0}, as the order parameter associated with the
information recorded at time t0 = 0.

Clearly, balancing E0 to be zero does not fix the value of either Eaκ or Eãκ for any κ. It
only fixes, for any κ, their difference. Therefore, at t0 we may have infinitely many perceptual
states, each of which is in one-to-one correspondence to a given set N . The dynamics ensures
that the number (Naκ −Nãκ) is a constant of motion for any κ (see [1]). The average number
Naκ is given by

Naκ = N 〈0|a†κaκ|0〉N = sinh2 θκ , (1)

where θκ is a transformation parameter. The θ-set, θ ≡ {θκ, ∀ κ, at t0 = 0}, is related to the
N -set, N ≡ {Naκ = Nãκ , ∀ κ, at t0 = 0}, by Eq. (1). We also use the notation Naκ(θ) ≡ Naκ

and |0(θ)〉 ≡ |0〉N . The θ-set is conditioned by the requirement that aκ and ãκ modes satisfy
the Bose-Einstein distribution:

Naκ(θ) = sinh2 θκ =
1

eβEκ − 1
, (2)

where β≡ 1
kBT is the inverse temperature at time t0 = 0 (kB is Boltzmann’s constant). |0〉N is

thus recognized to be a finite temperature state and it can be shown to be a squeezed coherent
state [1, 38, 39, 40].

The spaces {|0〉N } and {|0〉N ′} are unitarily inequivalent with each other for different labels
N 6= N ′ in the infinite volume limit. This is expressed by the relation:

N 〈0|0〉N ′ −→
V→∞

0 ∀ N , N ′ , N 6= N ′ . (3)

We have therefore infinitely many unitarily inequivalent spaces of states {|0〉N }. The set of
all these spaces constitutes the whole space of states. A huge number of sequentially recorded
memories may thus coexist without destructive interference since infinitely many vacua |0〉N
are independently accessible. In contrast to the non-dissipative model, recording the memory
N ′ does not necessarily produce destruction of a previously printed memory N 6= N ′; this is
the meaning of the non-overlapping modes in the infinite volume limit expressed by Eq. (3).
Through the doubled degrees of freedom ãκ, dissipation allows the possibility of a huge memory
capacity by introducing the N -labeled “replicas” of the ground state. The dissipative model
thus predicts the existence of textures of AM patterns (cf. Sec. 4),

These patterns are represented by order parameters that are stable against quantum
fluctuations. This is a manifestation of the coherence of the DWQ boson condensation. In
this sense, the order parameter is a macroscopic observable and the state |0〉N provides an
example of macroscopic quantum state. The change of scale (from microscopic to macroscopic)
is dynamically achieved through the SBS leading to boson condensation.

3.2. Phase transitions
The brain (ground) state may be represented as the collection (or the superposition) of the full
set of states |0〉N , for all N . In the memory space or the brain state space, each representation

1 Let {|Naκ ,Nãκ〉} be the set of simultaneous eigenvectors of N̂aκ ≡ a†κaκ and N̂ãκ ≡ ã†κãκ, with Naκ and
Nãκ non-negative integers. Then |0〉0 ≡ |Naκ = 0,Nãκ = 0〉 denotes the state annihilated by aκ and by ãκ:
aκ|0〉0 = 0 = ãκ|0〉0 for any κ.



{|0〉N } denotes a physical phase of the system and may be conceived as a “point” identified
by a specific N -set (or θ-set). In the infinite volume limit, points corresponding to different
N (or θ) sets are distinct points (do not overlap, cf. Eq. (3)). The brain in relation to the
environment may occupy any of the ground states, depending on how the E0 = 0 balance is
approached. Or, it may be in any state that is a collection or superposition of these brain-
environment equilibrium ground states. Under the influence of one or more stimuli (acting as
control parameters), the system may shift from ground state to ground state in this collection
(from phase to phase), namely it may undergo an extremely rich sequence of phase transitions,
leading to the actualization of a sequence of dissipative structures formed by AM patterns (see
Sec. 4).

Let |0(t)〉N denote the state |0〉N at time t specified by the initial value N , at t0 = 0. We
have N 〈0(t)|0(t)〉N = 1, ∀ t. We can show that

lim
t→∞N 〈0(t)|0〉N ∝ lim

t→∞ exp

(
−t

∑
κ

Γκ

)
= 0 , (4)

provided
∑

κ Γκ > 0. In the infinite volume limit we have (for
∫
d3κΓκ finite and positive)

N〈0(t)|0(t′)〉N −→
V→∞

0 ∀ t , t′ , t 6= t′ . (5)

The time evolution of the state |0(t)〉N is thus represented as the trajectory starting with
“initial condition” specified by the N -set in the space {|0(t)〉N }. In a pictorial way we could
say that the state |0(t)〉N provides the “instantaneous picture” of the system at each instant of
time t, or the “photograph” at t in a cinematographic sequence.

Time–dependence of the DWQ frequency implies that higher momentum κ-components of the
N -set possess longer life–times. Momentum is proportional to the inverse distance over which
the mode propagates, thus modes with a shorter range of propagation (more “localized” modes)
survive longer. On the contrary, modes with a longer range of propagation decay sooner.

As a result, condensation domains of different finite sizes with different degrees of stability are
predicted by the model [37]. They are described by the condensation function f(x) which acts as
a “form factor” specific for the considered domain [38, 41, 42]. f(x) has to carry some topological
singularity in order for the condensation process to be physically detectable. A regular function
f(x) would produce a condensation which could be easily “washed” out (“gauged” away by
a convenient gauge transformation). In a similar way, the phase transition from one space to
another (inequivalent) space can only be induced by a singular condensation function f(x).
This explains why topologically non trivial extended objects, such as vortices, appear in phase
transitions [38, 41, 42]. Phase transitions driven by boson condensation are always associated
with some singularity (indeterminacy) in the field phase at the phase transition point. This
model feature accounts for a crucial mechanism observed in laboratory experiments: the event
that initiates a perceptual phase transition is an abrupt decrease in the analytic power of the
background activity to near zero.

4. Observation in cortical dynamics
The high spatial resolution required to measure AM pattern textures in brain activity is achieved
by using high-density electrode arrays, fixed on the scalp or the epidural surface of cortical areas,
and fast Fourier transform (FFT) [10, 44]. The set of n amplitudes squared from an array of n
electrodes (typically 64) defines a feature vector, A2(t), of the spatial pattern of power at time
t. The vector specifies a point on a dynamic trajectory in brain state space, conceived as the
collection of all possible (essentially infinitely many) brain states. The measurement of n EEG
signals defines a finite n-dimensional subspace, so the point specified by A2(t) is unique for a



Figure 1. Spikes: The sharp spikes (De(t)) show the rate of change in spatial AM pattern. The
lower curve (the inverse of Re(t), a measure of synchrony) shows that re-synchronization precedes the
emergence of spatial order and also the increase in power in each frame (see also Fig. B1).

spatial AM pattern of an aperiodic carrier wave. Similar AM patterns form a cluster in n-space,
and multiple patterns form either multiple clusters or trajectories with large Euclidean distances
between the digitizing steps in n-space. A cluster with a verified behavioral correlate denotes
an ordered AM pattern: when the trajectory of a sequence of points enters into a cluster, that
location in state space signifies increased order from the perspective of an intentional state of
the brain, owing to the correlation with a conditioned stimulus (for further details see Appendix
B).

The inverse of the absolute value of the step size between successive values of De(t) =
|A2(t) − A2(t − 1)| provides a scalar index of the order parameter. Indeed, small steps in
Euclidean distances, De(t) (higher spikes in Fig. 1) indicate pattern amplitude stability. Pattern
phase stability can be characterized by calculating the ratio, Re(t), of the temporal standard
deviation of the mean filtered EEG to the mean temporal standard deviation of the n EEGs
[12, 13] (lower curve in Fig. 1). Re(t) = 1 when the oscillations are complitely synchronized.
When n EEGs are totally desynchronized, Re(t) approaches one over the square root of the
number of digitizing steps in the moving time window. When experimentally found that Re(t)
rises rapidly within a few ms after a phase discontinuity and several ms before the onset of a
marked increase in mean analytic amplitude, A(t).

The succession of the high and low values of Re(t) reveals the episodic emergence and
dissolution of synchrony; since cortical transmission of spatial patterns is most energy-efficient
when the dendritic currents are most synchronized, Re(t) can be adopted as an index of cortical
efficiency [45]. Re-synchronized oscillations in the beta range near zero lag commonly recur at
rates in the theta range. They cover substantial portions of the left cerebral hemisphere [11] in
some instances appearing to exceed the length of the recording array (19 cm) on the scalp above
the human brain.

Assuming that the phenomenological order parameter A2(t) corresponds to the order
parameter N introduced in the dissipative model, the trajectories described by the time
dependent vector A2(t) in the brain state space have their quantum image in the time evolution
in the spaces {|0 >N }.

Considering the common frequency Ωκ(t) for the aκ and ãκ modes (cf. Eq. (8) in [37]) in the



dissipative model, the duration, size and power of AM patterns are predicted to be decreasing
functions of the carrier wave number κ. This is confirmed by the observations. Carrier waves
in the gamma range (30− 80 Hz) show durations seldom exceeding 100 ms, diameters seldom
exceeding 15 mm; and low power in a 1/fa power law as a function of frequency. Carrier
frequencies in the beta range (12 − 30 Hz) show durations often exceeding 100 ms; estimated
diameters large enough to include multiple primary sensory areas and the limbic system; and
they have greater power.

The reduction in the amplitude of the spontaneous background activity induces a brief state
of instability, depicted as a null spike [43], in which the significant pass band of the ECoG is near
to zero and its phase is undefined, as indeed predicted by the dissipative model. The cortex can
be driven across the phase transition process to a new AM pattern by the stimulus arriving at
or just before this state. When considering the normalized amplitude defined as the AM pattern
divided by the mean amplitude, which is input dependent, one observes that, again in agreement
with prediction of the dissipative model, such a normalized response amplitude depends not on
the input amplitude, but on the intrinsic state of the cortex, specifically the degree of reduction
in the power and order of the background brown noise. The null spike in the band pass filtered
brown noise activity is conceived as a shutter that blanks the intrinsic background. At very
low analytic amplitude when the analytic phase is undefined, the system, under the incoming
weak sensory input, may re-set the background activity in a new AM frame, if any, formed by
reorganizing the existing activity, not by the driving of the cortical activity by input (except for
the small energy provided by the stimulus that is required to force the phase transition (and
select an attractor, see below)). The decrease (shutter) repeats aperiodically in the theta or
alpha range, independently of the repetitive sampling of the environment by limbic input and
allows opportunities for phase transitions.

In conclusion, the reduction in activity constitutes a singularity in the dynamics at which
the phase is undefined, in agreement with the dissipative model requiring the singularity of the
boson condensation function. The power is not provided by the input, exactly as the dissipative
model predicts, but by the pyramidal cells, which explains the lack of invariance of AM patterns
with invariant stimuli [43].

Finally, we note that another possible way to break the symmetry in QFT is to modify the
dynamical equations by adding one or more terms that are explicitly not consistent with the
symmetry transformations (i.e., are not symmetric terms). This is called explicit breakdown
of symmetry. The system is forced by the external action into a specific non-symmetric state
that is determined by the imposed breaking term. The explicit breakdown fits well with event-
related potentials (ERP) observed as the response of the cortex to perturbations, such as an
electric shock, sensory click, flash, or touch. By resorting to stimulus-locked averaging across
multiple presentations in order to remove or attenuate the background activity, the location,
intensity and detailed configuration of the ERP are predominantly determined by the stimulus;
so ERP signals can be used as evidence for processing by the cortex of exogenous information.
In contrast, in SBS pattern configurations are determined from information that is endogenous
from the memory store.

5. The thermal connection: free energy and the arrow of time
In Section 3 we have seen that the brain states |0〉N are finite temperature states. This shows the
intrinsically thermal nature of brain dynamics which we analyze further in the present Section.

In the dissipative model the free energy functional for the aκ modes is given by [1]

Fa ≡ N 〈0(t)|
(
Ha − 1

β
Sa

)
|0(t)〉N , (6)



with time-dependent inverse temperature β(t) = 1
kBT (t) . Sa is the entropy operator given by

Sa ≡ −
∑
κ

{
a†κaκ ln sinh2 Θκ − aκa†κ ln cosh2 Θκ

}
, (7)

where Θκ ≡ Γkt− θk. Here Γκ is the damping constant and θκ is the transformation parameter
introduced in Eq. (1). Sã is obtained by replacing aκ and a†κ with ãκ and ã†κ, respectively, in
(7). Ha denotes the Hamiltonian at t = t0 relative to the aκ-modes only, Ha =

∑
k Eka

†
kak, with

Ek ≡ h̄Ωk(t0). For the complete system a − ã, the difference (Sa − Sã) is constant in time:
[Sa − Sã,H′] = 0. The stationarity condition to be satisfied at each time t by the state |0(t)〉N
is ∂Fa

∂Θk
= 0, ∀ k, which, for β(t) slowly varying in time, i.e. ∂β

∂t = − 1
kãT 2

∂T
∂t ≈ 0, gives the

Bose-Einstein distribution
Nak

(θ, t) =
1

eβ(t)Ek − 1
. (8)

The changes in the energy Ea ≡
∑

k EkNak
and in the entropy Sa(t) = 〈0(t)|Sa|0(t)〉N are

given by

dEa =
∑

k

EkṄak
dt =

1
β

dSa . (9)

Provided that changes in inverse temperature are slow, the minimization of the free energy thus
holds at any t:

dFa = dEa − 1
β

dSa = 0 . (10)

The time-evolution of the state |0(t)〉N at finite volume V can be shown [1, 36] to be controlled
by the entropy variations, which reflects the irreversibility of time-evolution (breakdown of
time-reversal symmetry) characteristic of dissipative systems, and the corresponding choice of a
privileged direction in time-evolution called arrow of time.

From Eq. (9) we see that the change in time of the condensate, i.e. of the order parameter,
turns into heat dissipation dQ = 1

β dSa. Therefore the ratio of the rate of free energy dissipation
to the rate of change of the order parameter is a good measure of the ordering stability. In terms
of laboratory observations the rate of change of the order parameter is specified by the Euclidean
distance De(t) between successive points in the n-space. De(t) takes large steps between clusters,
decreases to a low value when the trajectory enters a cluster, and remains low for tens of ms
within a frame (cf. Fig. 1). Therefore De(t) serves as a measure of the spatial AM pattern
stability.

It was found [14, 9] that the best predictor for the onset of ordered AM patterns is the
pragmatic information index He(t), so named after Atmanspacher and Scheingraber [46], given
by the ratio of the rate of free energy dissipation A2(t) to the rate of change of the order
parameter represented by De(t) (because De(t) falls and A2(t) rises with wave packet evolution):

He(t) =
A2(t)
De(t)

.

Measurements showed that typically the rate of change in the instantaneous frequency ω(t) was
low in frames that coincided with low De(t) indicating stabilization of frequency as well as AM
pattern. Between frames ω(t) often increased several times or decreased even below zero in
interframe breaks that repeat at rates in the theta or alpha range of the EEG [11] (phase slip
[47]).

We observe that the mirror ãκ modes account [49, 48] for Brownian quantum noise due to
the fluctuating random force in the system-environment coupling. Such a noise is responsible
for the fact that the state |0〉N is an entangled state [3], the entropy operator providing a



measure of the entanglement (aκ and ãκ modes are entangled modes). In other words, the brain
processes are inextricably dependent on the quantum noise in the fluctuating random force in
the brain-environment coupling. There is a permanent brain-environment entanglement. This
feature seems to model the observed continual perturbations involving all areas of neocortex by
other parts of the brain, including inputs from the sensory receptors that are relayed mainly
through the thalamus, and the catastrophic disruptions of brain function that result from
prolonged sensory deprivation. These continuous perturbations give rise to myriads of local
phase transitions, which are quenched as rapidly as they are formed, thereby maintaining the
entire cortex in a robust state of conditional stability (metastability [50, 51, 52]). An interesting
question is whether such a regime might conform to self-organized criticality [10, 9, 53, 54, 55]
(the mean firing rate of neurons, homeostatically maintained by mutual excitation everywhere
by thresholds and refractory periods, would play the rôle of the critical variable corresponding
to angle in self-organized criticality [13]). It is indeed interesting that, in a model [56] based
on self-organized criticality combined with synaptic plasticity in a neural network, the average
power spectrum computed as a function of frequency exhibits a power law behavior with the
same exponent as found in medical EEG power spectra [44, 57].

6. Classicality and attractor landscapes: the classical blanket
One of the merits of the dissipative many-body model is the possibility [1, 2, 37, 48] of deriving
from the microscopic dynamics the classicality of the trajectories representing the time-evolution
of the state |0(t)〉N in the brain state space. These trajectories are found to be deterministic
chaotic trajectories [48, 58]. This is a particularly welcome feature of the model since observed
changes in the order parameter become susceptible to be described in terms of trajectories on
attractor landscapes. One can show these trajectories are classical and that

i) they are bounded and do not intersect themselves (trajectories are not periodic).
ii) there are no intersections between trajectories specified by different initial conditions.
iii) trajectories of different initial conditions diverge.
Although property ii) implies that no confusion or interference arises among different

memories, even as time evolves, states with different N labels may have non–zero overlap
(non-vanishing inner products) in realistic situations of finite volume. This means that some
association of memories becomes possible: at a “crossing” point between two, or more than two,
trajectories, one can “switch” from one of them to another one. This reminds us of the “mental
switch” occurring during particular perceptual and motor tasks [50, 59] as well as during free
associations in memory tasks [60].

One can derive [48] from property iii) that the difference between κ–components of the sets
N and N ′ may become zero at a given time tκ. However, the difference between the sets N and
N ′ does not necessarily become zero. The N -sets are made up of a large number (infinite in
the continuum limit) of Naκ(θ, t) components, and they are different even if a finite number (of
zero measure) of their components are equal. On the contrary, for very small δθκ, suppose that
∆t ≡ τmax − τmin, with τmin and τmax the minimum and the maximum, respectively, of tκ, for
all κ’s, be “very small”. Then the N -sets are “recognized” to be “almost” equal in such a ∆t.
Thus we see how in the “recognition” (or recall) process it is possible that “slightly different”
Naκ–patterns are “identified” (recognized to be the “same pattern” even if corresponding to
slightly different inputs). Roughly, ∆t provides a measure of the “recognition time”.

The deterministic chaotic motion described by i)–iii) takes place in the space of the
parameters labeling the system ground state. It is low dimensional and noise-free. In a more
realistic framework, the motion must be concieced as high-dimensional, noisy, engaged and time-
varying. Nevertheless, it is remarkable that, at the present stage of our research, the dissipative
model predicts that the system trajectories through its physical phases may be chaotic [48] and
itinerant through a chain of “attractor ruins” [61], embedded in a set of attractor landscapes



[62] accessed serially or merely approached in the coordinated dynamics of a metastable state
[49, 51, 64, 52, 63]. The manifold on which the attractor landscapes sit covers as a classical
blanket the quantum dynamics going on in each of the representations of the CCR’s (the AM
patterns recurring at rates in the theta range (3− 8 Hz)).

We propose that conditioned stimuli select a basin of attraction in the primary sensory cortex
to which it converges (abstraction by deletion of nonessential information), often with very little
information as in weak scents, faint clicks, weak flashes. The astonishingly low requirements for
information in high-level perception have been amply demonstrated by recent accomplishments
in sensory substitution [65, 66, 7]. There is an indefinite number of such basins forming a pliable
and adaptive attractor landscape in each sensory cortical area. Each attractor can be selected
by a stimulus that is an instance of the category (generalization) that the attractor implements
by its AM pattern. The waking state consists of a collection of potential states, any one of which
(but only one at a time) can be realized through a phase transition. The variety of these highly
textured, latent AM patterns, their exceedingly large diameters in comparison to the small sizes
of the component neurons and the extraordinarily rapid temporal sequence in the neocortical
phase transitions by which they are selected, provide the principal justification for exploring the
interpretation of nonlinear brain dynamics in terms of many-body theory and multiple ground
states.

7. Concluding remarks
Our discussion in this paper leads us to conclude that the dissipative quantum model of brain
predicts two main features observed in neurophysiological data: the coexistence of physically
distinct AM patterns correlated with categories of conditioned stimuli and the remarkably rapid
onset of AM patterns into irreversible sequences that resemble cinematographic frames. Each
spatial AM pattern is described to be consequent to the spontaneous breakdown of symmetry
triggered by an external stimulus and is associated with one of the unitarily inequivalent ground
states. Their sequencing is associated to the non-unitary time evolution implied by dissipation.
There are many open questions which remain to be answered. For example, the analysis of
the interaction between the boson condensate and the details of electrochemical neural activity,
or the problems of extending the dissipative many-body model to account for higher cognitive
functions of the brain need much further work.

One peculiar property of quantum field dynamics, which makes it so successful in the
description of many-body systems with different phases, and which motivates us to apply it
to brain dynamics, is that there are many stability ranges, each one characterizing a specific
phase of the system with specific physical properties that differ from phase to phase (in the
brain: from each observed AM pattern to the next). If the dynamical regime is characterized
by a range of parameter values which does not allow SBS, the system does not perceptibly or
meaningfully react (as in sleep to weak stimuli). When one or more control parameters, such
as the strength of action at one class of synapses in the cortical pool under the influence of the
weak external stimulus, or even by indeterminate drift, exceeds the range of stability where the
system originally sits, a transition is induced to another stability parameter range. It differs
from the previous one in that it now allows SBS and the appearance of order (as in arousal from
deep sleep). Contrarywise, the loss of order as in shutting down under anesthesia or in deep
sleep corresponds to symmetry recovery or restoration, the formlessness of background activity
or in the extreme the loss of activity in the case of brain death.

The concept of the DWQ boson carrier discussed above enables an orderly and inclusive
description of the phase transition that includes all levels of the microscopic, mesoscopic, and
macroscopic organization of cerebral patterns. The hierarchical structure extending from atoms
to the whole brain and outwardly into engagement of the subject with its environment in the
action-perception cycle is the essential basis for the emergence and maintenance of meaning



through successful interaction and its knowledge base within the brain. By repeated trial-and-
error each brain constructs within itself an understanding of its surrounding, which constitutes
its knowledge of its own world that we describe as its Double [2]. It is an active mirror, because the
environment impacts onto the self independently as well as reactively. The notion of an order
parameter denotes a categorial descriptor that exists only in the brain, so that its matching
”double” is a finite projection from the brain into the environment, as the basis for organizing
the action of the body governed by the brain. An example is the grasping of an object by the
hand, described by the phenomenologist Merleau-Ponty [67] as the achievement of ”maximum
grip”. Thus we conceive the ”double” as the descriptor of the perception or experience of the
object, as contrasted with the brain activity pattern that is matched by the ”double”. Such
a matching is formally described by the continual balancing of the energy fluxes at the brain–
environment interface. It amounts to the continual updating of the meanings of the flow of
information exchanged in the brain behavioral relation with the environment.

Perhaps, at the present status of our research, we might conclude that the dissipative
quantum dynamics underlying textured AM patterns and sequential phase transitions observed
in brain functioning could open the way to understand John von Neumann’s remark: “...the
mathematical or logical language truly used by the central nervous system is characterized by
less logical and arithmetical depth than what we are normally used to. ...We require exquisite
numerical precision over many logical steps to achieve what brains accomplish in very few short
steps” (pp.80-81 of [68]).
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Appendix A. Spontaneous breakdown of symmetry in quantum field theory
Symmetry is said to be spontaneously broken when the Lagrangian of a system is invariant
under a certain group of continuous symmetry, say G, and the vacuum or ground state of the
system is not invariant under G, but under one of its subgroups, say G′ [38, 69, 70]. The ground
state then exhibits observable ordered patterns corresponding to the breakdown of G into G′
[38, 70, 71]. The possibility of having different vacua with different symmetry properties is
provided by the mathematical structure of QFT, where infinitely many representations of the
canonical commutation relations (CCR) exist, which are unitarily inequivalent with respect to
each other, i.e there is no unitary operator transforming one representation into another one
[72], and thus they are physically inequivalent as well: they describe different physical phases of
the system. By contrast, in Quantum Mechanics all representations are unitarily (and therefore
physically) equivalent [38, 73, 74].

In SBS theories, the Goldstone theorem predicts the existence of massless bosons, called
Nambu-Goldstone (NG) particles [75]. The spin-wave quanta, called magnons in ferromagnets,
the elastic wave quanta, called phonons in crystals, the Cooper pair quanta in superconductors,
etc. [38, 70], are examples of NG particles. NG bosons condensed in the ground state of the
system according to the Bose-Einstein condensation are the carriers of ordering information out
of which ordered patterns (space ordering or time ordering as, e.g., “in phase” oscillations) are
generated. The condensation density of the NG boson quanta determines the macroscopic field
which is called order parameter, e.g. the magnetization in ferromagnets. The order parameter
is a classical macroscopic field in the sense that it is not affected by quantum fluctuations. Its
value may be considered to be the code or label specifying the physical phase of the system.



In the absence of gauge fields, the NG quanta are observed as realistic physical quanta, and
excitations of the system ground state extend over the whole system (collective modes or long
range correlations). They may scatter with other particles of the system or with observational
probes. If a gauge field is present, the NG bosons still control the ground state condensation in
the ordered domain, and the gauge field propagation is confined into regions where the order is
absent (e.g. in the core of the vortex in superconductors, Anderson-Higgs-Kibble mechanism)
[38, 70, 76, 77].

Through the generation of NG collective modes, SBS is responsible for the change from
microscopic to macroscopic scale [38, 70]: crystals, ferromagnets, superconductors, etc. are
macroscopic quantum systems. They are quantum systems not in the sense that they are
constitued by quantum components (like any physical system), but in the sense that their
macroscopic properties, accounted for by the order parameter field, cannot be explained without
recourse to the underlying quantum dynamics.

We finally comment on the Hermitian conjugation of the Hamiltonian in the real time finite
temperature formalism (thermo field dynamics (TFD)), where there are three free parameters,
f, α, s, in the notation of [38], corresponding to the three parameters of the SU(1, 1) group.
The parameter s does not contribute to the propagator [38] and is usually set equal to zero since
no physical meaning is attached to it. α is related to the cyclic property of the trace operation
Tr[ρA] = Tr[ρ1−αAρα]. Physical observables are independent of α. The choice α = 1 (or α = 0)
turns out to be convenient in Feynman graph computations in non-equilibrium TFD [40, 38].
The choice α = 1

2 preserves the usual definition of Hermitian conjugation. Other choices give
so-called non-Hermitian representations of TFD. Since the physical content of the model is not
affected, we use α = 1

2 , as far as we are not involved in computations of Feynman graphs.
The parameter f is the only physically relevant parameter. It is related to the canonical Bose
distribution (2), in which case it is f = e−βE , and thus it determines the NAκs.

Appendix B. Neurophysiological observations
The tight sequencing of AM patterns requires high temporal resolution. Hilbert transform is
then applied to EEG signals after band pass filtering [10, 12, 13]. Unlike the Fourier transform
that decomposes an extended time series into fixed frequency components, the Hilbert transform
decomposes an EEG signal into the analytic amplitude A(t), the analytic phase P (t) and the
instantaneous frequency, ω(t), at each digitizing time step on each channel.

The analytic phase difference ∆Pj(t) = Pj(t) − Pj(t − 1) at each electrode and at each
digitizing step divided by the digitizing time increment specifies the instantaneous frequency:
ωj(t) = ∆Pj(t)

∆t . It has been shown in [12] that the rate of increase in phase (the mean
instantaneous frequency = 0.4 rad/2ms = 31 Hz) is relatively constant in epochs that last
∼ 60 − 100 ms and that recur at intervals in the theta and alpha ranges. These plateaus in
nearly constant phase increase are bracketed by phase discontinuities synchronized across the
array [12]. This spatially correlated ’phase slip’ demarcates phase transitions in the cortical
dynamics. The brackets are detected and displayed as spikes (see Fig. B1) by calculating the
spatial standard deviation of the phase differences, SDX(t), across the array as a time series
for the 64 signals. SDX(t) is thus a useful index of the temporal stability. The spikes bracket
the stabilized epochs and define the beginning and end of wave packets; the plateaus demarcate
epochs of near stationarity.

Calculation of SDX(t), and the mean analytic amplitude A(t) across n channels at each time
point confirmed [12, 13, 78] that peaks in A(t) accompany plateaus in SDX(t) (Fig. B1). Peak
amplitudes enable optimal measurement of spatial patterns of AM of beta or gamma carrier
frequency. Each pattern is expressed by an n × 1 feature vector in the square of amplitude,
A2

j (t). The mean power, A2(t), serves as a scalar label for each AM pattern.
These broad AM patterns are the neural correlates to display the rapid re-organization



Figure B1. The analytic amplitude, A(t), of the ECoG in the beta band fluctuates with time.
The maxima are textured with AM spatial patterns. The minima are accompanied by spikes in the
spatial standard deviation of the phase differences as a function of time, SDx(t). Each spike reflects the
indeterminacy of phase at the null spike in amplitude, where a phase transition is enabled.

of brain activity that we believe underlies both cognitive function and sequences of complex
intentional behaviors. Owing to the potential differences that dendritic currents maintain as
they flow across the relatively fixed extracellular impedance of the neuropil, the values of A2

j (t)
provide a measure of the rates of free energy dissipation required by the neurons generating the
ECoG. Our index of those energy levels may be optimally correlated with patterns of increased
blood flow that indirectly manifest the metabolic energy utilization by parts of the brains, which
are detected with fMRI, PET, and SPECT [79].

At first view the AM patterns appear to be “cortical representations” of conditioned stimuli
(CS). However, the patterns that are elicited by an invariant CS hold only within each training
session and then only if there are no changes in the schedule of reinforcement or addition of
a new CS in serial conditioning. Measurements of AM patterns within sessions show pattern
variation within each category despite CS invariance. Between sessions with no new CS added
the averages of the patterns tend to drift. When the subjects are trained to respond to a new CS,
all of the patterns change, including the pattern for the background. The amount of change with
new learning is 2 to 4 times the average change with drift across multiple sessions [80, 81, 82]. A
collection of AM patterns that we established by training persisted with drift through multiple
sessions until we introduced the next contextual change.

Every AM pattern is accompanied by a conic phase pattern that retains the history of its site
of nucleation and spread. Phase cones were also found between ordered frames and overlapping
with them at near and far frequencies. In a distributed medium such as the neuropil, the
generation of the cortical standing wave resulting from a phase transition forming a wave packet
begins at a site of nucleation and spreads radially at a velocity determined by the propagation
velocities of axons extending parallel to the surface. This gives a conic phase gradient and the
illusion of a traveling wave by the delay in initialization embodied in the phase cone. This is
measured by fitting a cone to a phase surface given by the analytic phase, Pj(t), j = 1, ..., 64.
The phase transitions appear to be induced by input to the cortex serving as a control parameter;
however, the latency varies randomly with respect to known times of input onset.

On successive trials with the same CS the location of the apex varies randomly within the
primary receiving area for the CS modality, and its sign (maximal lead as in an explosion or
maximal lag as in an implosion) likewise varies randomly from each phase transition to the next.



These random variations give further evidence for SBS.

References
[1] Vitiello G 1995 Int. J. Mod. Phys. B 9 973
[2] Vitiello G 2001 My Double Unveiled (Amsterdam: John Benjamins)
[3] Freeman W J and Vitiello G 2006 Phys. of Life Reviews 3 93

q-bio.OT/0511037
[4] Lashley K 1948 The Mechanism of Vision, XVIII, Effects of Destroying the Visual ”Associative Areas” of

the Monkey (Provincetown MA:Journal Press)
[5] Pribram K H 1971 Languages of the Brain (Engelwood Cliffs NJ: Prentice-Hall)

1991Brain and Perception (Hillsdale, New Jersey: Lawrence Erlbaum Associates Publ.)
[6] Bach-y-Rita P 1995 Nonsynaptic Diffusion Neurotransmission and Late Brain Reorganization (New York:

Demos-Vermande)
[7] Bach-y-Rita P 2004 Ann. N.Y. Acad. Sci. 1013 83

2005 J Integr. Neurosci. 4 183
[8] Freeman W J 2005 J. Integrative Neuroscience 4 (4) 407
[9] Freeman W J 2006 Clin. Neurophysiol. 117 (3) 572

[10] Freeman W J, Burke B C, Holmes M D and Vanhatalo S 2003 Clin. Neurophysiol. 114 1055
[11] Freeman W J, Burke B C and Holmes M D 2003 Human Brain Mapping 19 (4) 248
[12] Freeman W J 2004 Clin. Neurophysiol. 115 2077
[13] Freeman W J 2004 Clin. Neurophysiol. 115 2089
[14] Freeman W J 2005 Clin. Neurophysiol. 116 (5), 1118
[15] Freeman W J, Gaál G and Jornten R 2003 Intern. J. Bifurc. Chaos 13 2845
[16] Freeman W J and Rogers L J 2003 Intern. J. Bifurc. Chaos 13 2867
[17] Bassett D S, Meyer-Lindenberg A, Achard S, Duke T and Bullmore E 2006 PNAS 103 19518
[18] Amit D J 1989 Modeling Brain Function: The World of Attractor Neural Networks (Cambridge: Cambridge

University Press)
[19] Morrow A L, Suzdak P D and Paul S M 1988 Adv. Biochem. Psychopharmacol. 45 247
[20] Schillen T B and König P 1994 Biol. Cybern. 70 397
[21] Roland P E 1993 Brain Activation (New York: Wiley-Liss)
[22] Varela F, Lachaux J-P, Rodriguez E and Marinerie J 2002 Nat. Rev. Neurosci. 2 229
[23] Freeman W J 1975 Mass Action in the Nervous System. Academic Press, New York. Reprinted 2004
[24] Terzuolo C A and Bullock T H 1961 Proc. Nat. Acad. Sci. USA 42 687
[25] van Harreveld A and Khattab F I 1968 Anat. Rec. 162 (4) 467
[26] Walker M M and Bitterman M E 1989 J. Exp. Biol. 145 489
[27] Azanza M J and del Moral A 1994 Prog. Neurobiol. 44 517
[28] Dunn J R, Fuller M, Zoeger J, Dobson J, Heller F, Hammann J, Caine E and Moskowitz B M 1995 Brain

Re.s Bull. 36 149
[29] Adey W R 1981 Physiol. Rev. 61 435
[30] Ricciardi L M and Umezawa H 1967 Kibernetik 4 44
[31] Stuart C I J, Takahashi Y and Umezawa H 1978 J.Theor. Biol. 71 605

1979 Found. Phys. 9 301
[32] Sivakami S and Srinivasan V 1983 J. Theor. Biol. 102 287
[33] Umezawa H 1995 Math. Japonica 41 109
[34] Del Giudice E, Doglia S, Milani M and Vitiello G 1985 Nucl. Phys. B 251 (FS 13), 375

1986 Nucl. Phys. B 275 (FS 17), 185
Del Giudice E, Preparata G and Vitiello G 1988 Phys. Rev. Lett. 61 1085

[35] Jibu M and Yasue K 1995 Quantum brain dynamics and consciousness (Amsterdam: John Benjamins)
Jibu M , Pribram K H and Yasue K 1996 Int. J. Mod. Phys. B 10 1735

[36] Celeghini E, Rasetti M and Vitiello G 1992 Annals Phys. 215 156
[37] Alfinito E and Vitiello G 2000 Int. J. Mod. Phys. B 14 853 [2000 Erratum ibid B 14 1613]
[38] Umezawa H 1993 Advanced field theory: micro, macro and thermal concepts (New York: AIP)
[39] Perelomov A 1986 Generalized Coherent States and Their Applications (Berlin: Springer)
[40] Takahashi Y and Umezawa H 1975 Collective Phenomena 2 55

reprinted 1996 in Int. J. Mod. Phys. B 10 1755
[41] Alfinito E, Romei O and Vitiello G 2002 Mod. Phys. Lett. B 16 93
[42] Alfinito E and Vitiello G 2002 Phys. Rev. B 65 054105
[43] Freeman W J 2007 in Neurodynamics of Cognition and Consciousness eds R Kozma and L Perlovsky (N.Y.:

Springer)



[44] Freeman W J, Rogers L J, Holmes M D and Silbergeld D L 2000 J. Neurosci. Meth. 95 111
[45] Haken H 1996 Principles of Brain Functioning: A Synergetic Approach to Brain Activity, Behavior, and

Cognition (New York: Springer)
1999 in: Analysis of Neurophysiological Brain Functioning ed C Uhl (Berlin: Springer-Verlag) p 7
2004 Synergetics: Introduction and Advanced Topics (New York: Springer)

[46] Atmanspacher H. and Scheingraber H 1990 Can. J. Phys. 68 728
[47] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization - A Universal Concept in Non-linear Sciences

(Cambridge UK: Cambridge Univ. Press)
[48] Pessa E and Vitiello G 2003 Mind and Matter 1 59

Pessa E and Vitiello G 2004 Intern. J. Modern Physics B 18 841,
[49] Srivastava Y N, Vitiello G and Widom A 1995 Annals Phys. 238 200

Blasone M, Srivastava Y N, Vitiello G and Widom A 1998 Annals Phys. 267 61
[50] Kelso J A S 1995 Dynamic Patterns: The Self Organization of Brain and Behavior (Cambridge: MIT Press)
[51] Bressler S L 2002 Current Directions in Psychological Sci. 11 58
[52] Fingelkurts A A and Fingelkurts A A 2004 Int J Neurosci 114 843
[53] Linkenkaer-Hansen K, Nikouline V M, Palva J M and Iimoniemi R J 2001 J. Neurosci. 15 1370-1377
[54] Bak P 1996 How Nature Works: The Science of Self-organized Criticality (New York: Copernicus)
[55] Jensen H J 1998 Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems

(New York: Cambridge University Press)
[56] de Arcangelis L, Perrone-Capano C, Hermann H J 2006 Phys. Rev. Lett. 96 028107
[57] Novikov E, Novikov A, Shannahoff-Khalsa D, Schwartz B and Wright J 1997 Phys. Rev. E 56 R2387
[58] Vitiello G 2004 Int. J. Mod. Phys. B 18 785
[59] Kelso J A S, Case P, Holroyd T, Horvath E, Raczaszek J, Tuller B and Ding M 1995 in Ambiguity in Mind

and Nature eds P Kruse and M Stadler (Berlin: Springer)
[60] Eysenck M W 1994 Principles of Cognitive Psychology (Hillsdale, NJ: Lawrence Erlbaum)
[61] Tsuda I 2001 Behav. Brain Sci. 24 793
[62] Skarda C A and Freeman W J 1987 Brain Behav. Sci. 10 161
[63] Fingelkurts A A and Fingelkurts A A 2001 Brain and Mind 2: 261
[64] Bressler S L and Kelso J A S 2001 Trends Cog. Sci. 5 26
[65] Cohen L G, Celnik P, Pascal-Leone A, Corwell B, Faiz L, Dambrosia J, Honda M, Sadato N, Gerloff C,

Catala MD and Hallett M 1997 Nature 389 180
[66] Von Melchner L, Pallas S L and Sur M 2000 Nature 404 871
[67] Merleau-Ponti M 1945/1962 Phenomenology of Perception (C. Smith, Trans.) (New York: Humanities Press)
[68] von Neumann J 1958 The Computer and the Brain (New Haven: Yale University Press)
[69] Itzykson C and Zuber J 1980 Quantum field theory (New York: McGraw-Hill)
[70] Anderson P W 1984 Basic Notions of Condensed Matter Physics (Menlo Park: Benjamin)
[71] Marshak R E 1993 Conceptual Foundations of Modern Particle Physics (Singapore: World Scientific)
[72] Bratteli O and Robinson D W 1979 Operator Algebra and Quantum Statistical Mechanics (Berlin: Springer)
[73] von Neumann J 1955 Mathematical foundations of Quantum Mechanics (Princeton: Princeton Univ. Press)
[74] The dissipative quantum model is therefore different in a substantial way from brain models formulated in

the Quantum Mechanics frame. For quantum mechanical brain models see Stapp H P 1993/2003 Mind,
matter an quantum mechanics (New York: Springer-Verlag)

Penrose R 1994 Shadows of the mind (Oxford: Oxford University Press)
Hameroff S and Penrose R 1996 J. Conscious. Stud. 3 36

[75] Goldstone J 1961 Nuovo Cimento 19 154
Goldstone J, Salam A and Weinberg S 1962 Phys. Rev. 127 965

[76] Higgs P 1966 Phys. Rev. 145 1156
Kibble T W B 1967 Phys. Rev. 155 1554

[77] For a study on the crossover from SBS condensation to the Bose-Einstein condensate (BEC) of pairs of
fermionic atoms obtained in the laboratory, see for example Leggett A J 1980 in Modern Trends in the
theory of condensed Matter eds A Pekalski and R Przystawa (Berlin: Springer-Verlag)

[78] Wang X F and Chen G R 2003 IEEE Trans. Circuits Syst. 31 6
[79] Buxton R B 2001 Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques

(Cambridge UK: Cambridge University Press)
[80] Freeman W J and Grajski K A 1987 Behav. Neurosci. 101 766
[81] Ohl F W, Scheich H and Freeman W J 2001 Nature 412 733
[82] Ohl F W, Scheich H and Freeman W J 2005 The Auditory cortex - A Synthesis of Human and Animal

Research eds X Knig, P Heil, E Budinger and H Scheich (Mahwah, NJ: Lawrence Erlbaum) p 429




