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Abstract

Building Practical Statistical Relational Learning Systems

by

Eriq Augustine

In our increasingly connected world, data comes from many different sources, in many different

forms, and is noisy, complex, and structured. To confront modern data, we need to embrace the

structure inherent in the data and in the predictions. Statistical relational learning (SRL) is a subfield

of machine learning that provides an effective means of approaching this problem of structured

prediction. SRL frameworks use weighted logical and arithmetic expressions to easily create

probabilistic graphical models (PGMs) to jointly reason over interdependent data. However, despite

being well suited for modern, interconnected data, SRL faces several challenges that keep it from

becoming practical and widely used in the machine learning community. In this dissertation, I

address four pillars of practicality for SRL systems: scalability, expressivity, model adaptability,

and usability. My work in this dissertation uses and extends Probabilistic Soft Logic (PSL), a

state-of-the-art open-source SRL framework.

Scalability in SRL systems is essential for using large datasets and complex models.

Because of the complex nature of interconnected data, models can easily outgrow available memory

spaces. To address scalability for SRL, I developed methods that more efficiently and intelligently

instantiate PGMs from templates and data. I also developed fixed-memory inference methods that

can perform inference on very large models without requiring a proportional amount of memory.

xii



Expressivity allows SRL systems to represent many different problems and data patterns.

Because SRL uses logical and arithmetic expressions to represent structured dependencies, SRL

frameworks need to be able to express more than just what is represented by feature vectors. To

address expressivity for SRL, I created a system to incorporate neural models with structured SRL

inference, and expanded the interpretation of PSL weight hyperparameters to include additional

types of distributions.

Model adaptability is the ability of SRL frameworks to handle models that change. A

changing model can be as simple as a model that has its hyperparameters updated, or as complex as

a model that changes its structure over time. To address model adaptability for SRL, I developed

new weight learning approaches for PSL, and created a system for generalized online inference in

PSL.

Usability make SRL frameworks easy for people to use. Because of the need to model

structural dependencies, SRL frameworks are often harder to use when compared to more common

machine learning libraries. To address usability for SRL, I have created a new SRL framework that

removes the tight coupling between the different components of the SRL pipeline that is seen in

other SRL frameworks and allows the the recreation of exiting SRL frameworks along with the

creation of new SRL frameworks using the same common runtime. Additionally, I developed a

visual model inspector for analyzing and debugging PSL models.

xiii
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Chapter 1

Introduction

In our increasingly connected world, data comes from many different sources, in many

different forms, and is noisy, complex, and structured. To confront modern data, we need to reject

past tendencies to flatten data into a simple homogeneous data table and embrace the structure

inherent in the data, e.g. graphs, and in the predictions, e.g. constraints. The task of performing

predictions in the presence of structured inputs and outputs is referred to as structured prediction

Baki et al. [2007]. Considering the structure of the problem often leads to dramatic increases in

predictive performance, but also creates a substantially more complex inference problem. Over

the years, many approaches, such as relational models, structured support vector machines, and

conditional random fields, have been proposed to perform structured prediction Friedman et al.

[1999], Taskar et al. [2004], Baki et al. [2007], Joachims et al. [2009].

One of these structured predictions methods is statistical relational learning (SRL) Getoor

1



Figure 1.1: Modern data comes from many different sources and takes on varying degrees of
complexity. Data may be simple and come from flat files, but can also come from intricate networks,
databases, wired and wireless devices, and social networks.

and Taskar [2007]. SRL Richardson and Domingos [2006], Getoor and Taskar [2007], Raedt and

Kersting [2011] is an effective method of combining weighted first-order logic with probabilistic

inference to make high-quality, structured predictions. Prior to SRL, there have long been attempts at

performing inference over logical expression Robinson [1965] as well as probabilistic inference over

structured data Cavallo and Pittarelli [1987]. A characteristic trait of SRL is the ability to generate

large probabilistic graphical models (PGMs) from a small set of logical templates (rules). Several

different SRL frameworks have been proposed, each making use of different types of graphical

models, inference algorithms, or hyperparameter learning methods Richardson and Domingos

[2006], Bach et al. [2017], Poole and Mackworth [2017], Raedt et al. [2007], Riedel [2008], Kok

et al. [2009], Niu et al. [2011], Noessner et al. [2013], Magliacane et al. [2015], Alberti et al.

[2017]. SRL methods have achieved state-of-the-art results in a varied set of domains such as

image classification Gridach et al. [2017], Aditya et al. [2018a], scene understanding Aditya et al.
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[2018b], activity recognition London et al. [2013b], natural language processing Ebrahimi et al.

[2016], Johnson et al. [2017], Beltagy et al. [2014], Deng and Wiebe [2015], Khot et al. [2015a],

Ebrahimi et al. [2016], Wang and Ku [2016b], Johnson and Goldwasser [2016a], Johnson et al.

[2017], bioinformatics Sridhar et al. [2016], recommender systems Kouki et al. [2015], Lalithsena

et al. [2017a], diagnosis of physical systems Chen et al. [2014], and knowledge bases Pujara et al.

[2013], Pujara and Getoor [2016], Embar et al. [2018], and information retrieval Alshukaili et al.

[2016], Platanios et al. [2017a], Srinivasan et al. [2019b].

The deep learning community has created several very large datasets which are able to

achieve impressive results, such as the LAION-5b Schuhmann et al. [2022] consisting of billions of

images and text captions scraped from the public internet. These datasets, however, make limited

use of the structure found in the source data. For example, image-text datasets like LAION-5b

includes images with a text caption. However an image with caption may be published as part of a

larger article (that contains relevant text) on a blog (that specializes on specific topics) by an author

(that is an expert in specific fields) on a specific date. All of this contextual information is useful and

adds structure to the data. While there are some neural architectures that attempt to encode limited

forms of structure, many of the deep neural approaches ignore structure and instead rely on large

amounts of data to make up for the lack of context. As a result, these neural models struggle when

presented that data that is less plentiful, noisy, and interconnected. Later in this dissertation I will

show how relevant methods from deep learning can be integrated into larger SRL systems to gain

the benefits of both learning paradigms.

However, despite being well suited for modern, interconnected data, SRL has several
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challenges that keep it from becoming practical and widely used in the machine learning commu-

nity. These challenges include the steep complexity that accompanies processing and predicting

interconnected data, the difficulty of capturing the complexity of realworld structure in a model, the

need for models to update with new and changing data, and building frameworks that are accessible

to users of all skill levels. In this dissertation, I categorize the challenges of building SRL systems

into four pillars of practicality: scalability, expressivity, model adaptability, and usability. My work

in this dissertation demonstrates how all four of these pillars can be addressed to make practical

SRL frameworks.

1.1 The Four Pillars of Practical SRL Systems

Scalability in SRL systems allows for the use of large datasets and complex models.

Because of the complex nature of interconnected data, models can easily outgrow available memory

spaces. Much of the scalability issues in SRL stems from the rejection of the independent and

identically distributed (i.i.d.) assumption, which states that each data point is independently drawn

from a fixed distribution Bishop [2006]. Using the i.i.d. assumption allows models to ignore the

structure in the data, and collect sufficient statistics to estimate parameters by just summing over the

data. Setting aside this assumption and embracing the structure in the data allows SRL methods to

use relational information that would otherwise not be used in i.i.d. models. However, ignoring the

i.i.d. assumption also imposes a large computational burden on SRL methods. SRL methods must

create a collective model over all connected variables and make predictions jointly.
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Expressivity allows SRL systems to represent many different problems and data patterns.

Traditionally, SRL uses logical and arithmetic expressions to represent structured dependencies.

This representation has proven to be effective at representing symbolic information. However, SRL

frameworks need to be able to express more than just what can be represented at the symbolic level

Raedt et al. [2020]. One specific class of models that SRL has historically struggled to support are

models that deal with high-dimensional, low-level feature spaces.

Model adaptability is the ability of SRL frameworks to handle models that change. A

model may change because new or updated data is encountered, or core assumptions about the

model have changed and need to be reworked. In the simple case, working with an evolving model

can mean tuning the hyperparameters of a model. In a more complex setting, working with an

evolving model may mean using a model whose distribution may change mid-inference, as in the

online setting.

Usability focuses on making SRL frameworks easy for people to use, and focuses on

three different types of users: beginners new to machine learning, experts well-versed with other

machine learning frameworks, and domain experts that specialize in domain modeling over machine

learning. Building usable systems is particularly difficult for SRL because there are many different

ways structure can be incorporated into a model, and there is no consensus or common language for

“structure”.
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Figure 1.2: The four pillars of practical SRL along with my primary contributions to each pillar.

1.2 Contributions

The key contributions of this dissertation all contribute to the common goal all building

practical SRL systems. More specific contributions are listed in later chapters, and here I discuss the

high-level contributions to each pillar of practical SRL, as shown in Figure 1.2.

Scalability To create scalable SRL systems, I tackle the two largest computational bottlenecks in

SRL: inference and grounding. To address scalable inference, I introduce a novel approach of out-of-

core optimization technique for SRL called tandem inference (TI) Srinivasan et al. [2020a]. I show

how TI can infer over the largest published SRL models to-date using a fixed amount of memory.

To address the challenge of scalable grounding, I create a new paradigm for jointly grounding SRL

models called collective grounding. Collective grounding uses the relational information of an SRL
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model along with techniques from database research to ground programs up to five times faster than

previous state-of-the-art methods. Based on my research contributions, SRL systems have evolved

from processing 2.5 thousand terms per minute in 2009 Kok et al. [2009] to 13 million terms per

minute Augustine and Getoor [2018] prior to my work in this dissertation to 65 million terms per

minute now.

Expressivity I build more expressive SRL systems by integrating new types of models into SRL

frameworks and expanding the representation of weight hyperparameters in SRL models. First, I

developed a system called Neural Probabilistic Soft Logic (NeuPSL) Pryor et al. [2022], which

integrates neural networks with symbolic reasoning. Using NeuPSL, I show how problems using

neural perception, previously outside the scope of SRL systems, can be integrated into relational

models. Then, I show how the weights for the rules of an SRL framework can be expanded to

allow for negative values, allowing for a wider range of models that describe negative associations

between variables.

Model Adaptability To make SRL models that are adaptable, I introduce new methods of

learning weights for SRL models as well as a method of extending SRL models to handle new

and updating information. My work creating new weight learning methods allow models to better

tune themselves to specific domains and datasets Srinivasan et al. [2021]. I demonstrate how these

methods outperform existing weight learning methods over several realworld datasets. Additionally,

I formulate a way to extend SRL existing models through a method called online collective inference
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Dickens et al. [2021]. I show how online collective inference can not only adapt to new and updated

information, but can also change the model itself without fully rebuilding the underlying graphical

model.

Usability In my effort towards making usable and accessible SRL systems, I designed and

implemented a new general SRL framework as well as a tool to debug SRL systems. My new SRL

framework, called the Standard Relational Language Interface (SRLi), removes the tight coupling

between the different components of the SRL pipeline that is seen in other SRL frameworks. By

doing this, SRLi is able to reproduce existing SRL systems, implement custom SRL systems, and

construct reusable components that can be shared amongst multiple SRL systems. Additionally,

I create a tool called the Visual Model Inspector (VMI) Rodden et al. [2020] that allows users to

debug and inspect SRL models.
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Chapter 2

Background

To lay the foundations for the work discussed in this dissertation, in this chapter I provide

an overview of statistical relational learning (SRL), templated graphical models, and two popular

SRL frameworks used throughout my experiments (Probabilistic Soft Logic (PSL) and Markov

Logic Networks (MLNs)).

2.1 Statistical Relational Learning and Template Graphical Models

Statistical Relational Learning (SRL) combines the power of statistical inference with

relational data to produce rich models with intricate constraints and dependencies Getoor and Taskar

[2007]. Modeling relational data is inherently complicated by the large number of interconnected

and overlapping structural dependencies. To make modeling relational data easier, many SRL

frameworks use familiar first-order logic as a compact representation of the model Raedt et al.
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Figure 2.1: Example rules that encode the intuition that user may purchase items that taste or look
similar to items they have already purchased.

[2007], Riedel [2008], Kok et al. [2009], Niu et al. [2011], Noessner et al. [2013], Magliacane

et al. [2015], Poole and Mackworth [2017], Bach et al. [2017], Alberti et al. [2017]. The logical

rules acts as weighted templates that can be instantiated with data to form the factors of a graphical

model. Figure 2.1 shows two sample rules, t1 and t2 with respective weights w1 and w2. These

rules encode the intuition that user may purchase items that taste or look similar to items they have

already purchased.

I refer to models that use templates to specify the complex structure of a graphical model as

templated graphical models (TGMs) Koller and Friedman [2009]. Instead of individually specifying

each dependency in the graphical model, template factors are used to model the patterns of the

structure seen in the model. TGMs are then instantiated with data to produce a full graphical model.

TGMs allow users to specify and reason about graphical models that would otherwise be too large

to specify. The key unit of a TGM is the template (represented with a t). Templates can take

many forms, but the most common form in SRL is a first-order logical rule. Additionally, each

SRL framework enforces its own limitations on the for of the logical rules (e.g., universal and

existential quantification, horn clauses, etc.). For example, Prolog is based around horn clauses

Lloyd [1987]; Markov Logic Networks (MLNs) Richardson and Domingos [2006] allow both

universal and existential quantification and is not restricted to horn clauses; and Probabilistic Soft
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Logic (PSL) Bach et al. [2017] only uses universal quantification and requires logical rules to reduce

to a 1-DNF Kononenko and Kukar [2007], but also allows for non-logical templates in the form

of inequalities of linear combinations. For simplicity, the remainder of this dissertation generally

assumes that all templates are logical rules, but the introduced theory applies to any form of template

or constraint that can be evaluated for truth (e.g., logical rules, arithmetic inequalities, etc). Thus,

any reference to a “rule” will refer to a logical rule template, while references to “template” will

refer to general templates.

Data in SRL is generally organized by logical predicate, and each instantiation of a logical

predicate is referred to as an atom. These atoms will eventually become random variables in a

graphical model, while the template establishes a dependency between the random variables it

references. Figure 2.2 shows how data used by SRL is typically organized. Each table represents a

predicate, while the rows in each table each represent an atom.

Figure 2.2: Example data used in SRL organized by logical predicate.

A rule that is grounded (contains only constants and no variables) is referred to as a ground

template or ground rule, and a logical predicate with only constant arguments is referred to as a

ground atom. The first conceptual component of grounding is to establish a mapping of variables

seen in the rules to real data. Figure 2.3 shows what this mapping may look like for the rules and
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data seen in the examples above.

Figure 2.3: An example mapping of variables to constants that results from grounding.

Once a mapping of variables to constants is created for each rule, that mapping can be

used to instantiate one ground rule for each pairing. Example ground rules that use the above

mapping are shows in Figure 2.4.

Figure 2.4: Example ground rules created when variable-constant mappings are applied to template
rules.

As seen Figure 2.5, the collection of ground templates from all rules jointly create a

graphical model that is then used for inference or parameter (weight) learning in SRL. Note that at

the graphical model level random variables are represented by ground atoms, and not by the variables

used in the logical expressions (e.g., User, Item1, and Item2). Shaded nodes in Figure 2.5

represent observed random variables, collectively referred to as X , while unshaded nodes represent

unobserved random variables, collectively referred to as Y . I use the following notation to denote a

template, t, being instantiated with observed, X , and unobserved, Y , random variables to create a
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set of h ground templates, ϕ:

t(X,Y ) = {ϕ1, ...ϕh} (2.1)

I intentionally keep the notation for instantiating templates vague, as the exact definition differs

between different SRL implementations. For example, some languages like MLN Richardson and

Domingos [2006] and FoxPSL Magliacane et al. [2015] use typed variables and infer domains

for each type. These types are then used to instantiate ground atoms which are in-turn used to

instantiate ground templates. Whereas, other languages like PSL Bach et al. [2017] explicitly define

all unobserved ground atoms and can directly instantiate ground templates.

Figure 2.5: An example probabilistic graphical model that is derived from representing ground rules
as cliques.

Once all ground templates are created, they produce a graphical model of the form:

Definition 1. Let X = (x1, ..., xm) be a vector of known variables, Y = (y1, ..., yn) be a vector of

unknown random variables, T = (t1, ..., tl) be a set of rules, W (t) be a set real-valued function

that emits a weight corresponding to a template, and t(X,Y ) = {ϕ1, ..., ϕh} be a set of ground

templates created by instantiated the template t with X and Y . Additionally, let ϕ emit a score
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representing the ground template’s satisfaction. Then, a templated graphical model is a probability

distribution of the form:

P (Y |X) =
1

Z
exp

(
−
∑
t∈T

∑
ϕ∈t(X,Y )

W (t) · ϕ
)

where

Z =
∑
X

exp
(
−

∑
t∈T

∑
ϕ∈t(X,Y )

W (t) · ϕ
)

Figure 2.6 shows how all of the above components fit together in the standard SRL pipeline

that starts with rules and data and creates a complex graphical model.

2.2 Structure in SRL

Throughout this dissertation, I continually reference “structure” in data, in models, and in

problems. But what exactly is structure? In a general sense, structure is anything that relates two or

more variables in a model. More specifically, structure occurs in two forms: in a model’s inputs and

in a model’s outputs.

Structure in a problem’s inputs relate the input variables of the problem, and is often

derived from the connected nature of the input data. Data in the form of graphs naturally provide

input with structure. For example, a social network may provide structure in the form of a user’s

friendship connections, liked posts, and group memberships. Thus respectively relating two users, a
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Figure 2.6: An overview of the grounding process for logical rules. Weighted logical rules ((t1, w1)
and (t2, w2)) are provided by the user and combined with the provided ground data to produce all
possible mappings of the variables used in each template to constants from the provided data. The
mappings are used to instantiate the templates to produce the ground rules: {ϕ1, ϕ2, ϕ3, ϕ4}. The
ground rules are then used to construct a graphical model (represented in this example as a factor
graph).

15



user to a post, and a user to a group.

Structure in a problem’s outputs relate the output variables of the problem, and are often

derived from domain knowledge. This type of structure is sometimes also referred to as “constraints”.

For example, when predicting friendship links in a social network, a constraint can be applied that

expresses users’ tendency to form friendships with users in the same groups. This constraint

conditions a prediction of friendship on the users’ group memberships. Thus constraining an output

variable (the prediction of friendship) using domain knowledge.

2.3 Grounding in SRL

The task of grounding in the context of SRL is to use the provided data to produce

the complete set of instantiated templates, i.e., for each template grounding finds all possible

substitutions of variables in the template to constants in the data. Grounding is heavily featured in

Section 3.1, Section 3.2, and Section 5.2.

Specifically, grounding in SRL aims to create all ground rules in the set:

{ϕ|V (ϕ) = TRUE ∧ ϕ ∈
⋃
t∈T

ti(X,Y )} (2.2)

where V is a validation function used to filter out ground rules that do not belong in the final

graphical model. This validation function serves two critical roles in SRL grounding: V ensures

that each ground rule conforms to the structure defined by the ground rule’s parent template, and V

enforces the semantics of the specific SRL framework being used.

In preparation for grounding, data in SRL systems are generally organized into tables
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that each represent a single logical predicate. The desired structure is shown in Figure 2.6. SRL

frameworks differ on how they handle variable types, type domains, data loading, data parsing, and

initial data representations, but to ground efficiently similar per-predicate tables structures are used.

Once that data is loaded into the relevant tables, the logical predicates are categorized into two

different sets: 1) closed predicates, which only contain observed data, X , and 2) open predicates,

which contain unobserved data, Y , and may also contain observed data, X . Closed predicates are

particularly important because the closed world assumption will be applied to them, i.e., any ground

atom from a closed predicate that is not explicitly specified in the data will be assumed to have a

value of FALSE (or the equivalent of FALSE in the respective SRL framework).

SRL frameworks utilize a ground rule validation function, V , to enforce common se-

mantics that utilize the closed world assumption to remove useless ground rules Kok et al. [2009],

Domingos and Lowd [2009], Glass and Barker [2012], Beltagy et al. [2014], Beltagy and Mooney

[2014]. Ground rules may be determined to be useless, or trivial, if they are logically satisfied or

unsatisfied in all possible worlds. Together, the closed-world semantics and trivial ground rules

provide a substantial opportunity in the grounding of SRL programs that may not be present when

grounding general logical programs. By applying these two concepts, SRL frameworks can remove

large portions of ground programs that are not relevant to the distribution in Definition 1. For

example, consider the ground rule ϕ1 from Figure 2.6. SIMILARTASTE(orange,grapefruit)

has a fixed value of FALSE, thereby causing the implication to always take on the value of TRUE

regardless of the value inferred for RECOMMEND(alice,grapefruit). This ground rule would

be considered trivial and rejected by most SRL framework’s ground rule validation function.
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The procedure for creating ground rules from rules generally falls into two categories: top-

down and bottom-up. Top-down grounding starts with the rules and seeks to find all the replacements

for each variable with constants from the data source. Top-down grounding is simple to implement,

as it reduces to nested loops, but generally regarded as inefficient, since it iterates through the

cross product of variables in each rule. Bottom-up grounding starts at the data level and finds

tuples that satisfy each rule. This is generally achieved with a database query1. Because bottom-up

grounding leverages an existing database system, it is generally significantly faster than top-down

grounding Niu et al. [2011]. Additionally, linking SRL grounding with database systems allows

more opportunities for improving grounding through established database optimization techniques.

For the remainder of this dissertation, all discussion of grounding techniques assume bottom-up

grounding is used.

Grounding is SRL is done in two steps: creating a grounding plan and executing the

grounding plan. A grounding plan G is a set of triples, where each tuple contains a query Qi,

referred to as a grounding query, a vector of k rules, ti that Qi can ground, and a corresponding

vector of k mappings, mi, from the columns in Qi to the variables in each rule of ti.

G = {(Qi, ti,mi), ...} (2.3)

Once a grounding plan, G, is created, it can be executed in various ways. The most

common method is to run each query sequentially on a local machine, but work has been done on

executing grounding plans in a distributed Magliacane et al. [2015] or out-of-core Srinivasan et al.
1When discussing queries, both relational algebra and SQL will be used. For reference material on relational algebra,

database systems, and SQL I recommend Garcia-Molina et al. (2008).
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[2020a] fashion.

For example, the grounding program used in Figure 2.6, may be:

G = (Q1, (t1), (mI)), (Q2, (t2), (mI))

where mI is an identity function and

Q1 = ρB(User,Item1)(Bought) ▷◁ ρS(Item1,Item2)(SimilarTaste)

▷◁ ρR(User,Item2)(Recommend)

Q2 = ρB(User,Item1)(Bought) ▷◁ ρS(Item1,Item2)(SimilarLook)

▷◁ ρR(User,Item2)(Recommend)

2.3.1 Independent Grounding

The most commonly used strategy in the SRL community for generating a grounding

plan is independent grounding. Independent grounding creates one grounding query for each rule

by taking a natural join of each predicate instance used in the rule. This simple scheme makes

independent grounding easy to implement and the variable mapping function trivial to create.

For example, independent grounding may produce the following grounding program for
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Figure 2.6:

IndependentGronding(T,X, Y ) = Gind

= (Q1, (t1), (mI)), (Q2, (t2), (mI))

where mI is an identity function and Q1 (fully defined below) and Q2
2 are the queries used to

create the variable constant mappings for t1 and t2 respectively.

Q1 =

SELECT

B . Arg1 AS User , B . Arg2 AS I tem1 , S . Arg2 AS I tem2

FROM

Bought B

JOIN S i m i l a r T a s t e S ON B . Arg2 = S . Arg1

JOIN Recommended R ON

B . Arg1 = R . Arg1 AND S . Arg2 = R . Arg2

2.4 Probabilistic Soft Logic

Probabilistic Soft Logic (PSL) is the primary SRL framework used throughout this

dissertation. As its underlying graphical model, PSL uses hinge-loss Markov random fields (HL-

MRFs), a special class of the undirected graphical model following Definition 1, with the additional

specifications:

• All variables in X and Y are real-valued in the domain [0, 1].
2Q2 uses the same query as Q1, but replaces SIMILARTASTE with SIMILARLOOK.
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• All ϕ are convex functions that emit a real-valued score in [0, 1].

Given this definition, MAP inference is achieved by maximizing the sum of weighted

potentials in the model:

argmax
y

∑
R∈R

∑
r∈R

wR · ϕR(xr,yr) (2.4)

The convex nature of the potentials makes MAP inference on an HL-MRF a convex

optimization problem. Framing inference as a convex optimization problem allows PSL to provide

an exact solution to continuous problems and an approximate answer to discrete (MAX SAT)

problems with rounding guarantees Bach et al. [2015].

The continuous nature of the HL-MRF allows PSL to scale beyond what was previously

feasible for SRL frameworks. Solving MAP inference as a convex optimization problem makes

inference in PSL linear time with respect to the number of ground rules. This fast inference has

allowed PSL to solve problems with tens of millions of ground rules in minutes Kouki et al. [2018].

PSL has also been shown to outperform industrial interior point methods Bach et al. [2017] as well

as existing MLN implementations Pujara et al. [2013], Augustine and Getoor [2018].

2.4.1 Weight Learning in PSL

There are three primary approaches used to perform weight learning in PSL as discussed

in Bach et al. (2013): Maximum Likelihood Estimation (MLE), Maximum Pseudolikelihood

Estimation (MPLE), and Large-Margin Estimation (LME).
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Maximum Likelihood Estimation (MLE)

This approach maximizes the log-likelihood function with respect to the weights of the

rules based on the training data. Since all the potentials generated by a rule share the same weight,

the density function in Definition 1 can be written as
∑r

i=1[wiΦi(x,y)] where r is the number of

template rules, wi represents the weight of the ith rule, Φi =
∑

j∈gi ϕj(x,y), and gi is a set of

ground rules generated by the ith rule. The partial derivative of the log of the likelihood function

given in Definition 1 for PSL with respect to wq, for q ∈ {1, . . . , r} is:

∂logP (y|x)
∂wq

= Ew

[
Φq(x,y)

]
− Φq(x,y) (2.5)

where w = {w1, ..., wr} and Ew is expectation w.r.t. the weights. It is infeasible to compute the

expectation, hence to make the learning tractable, a MAP approximation is used that replaces the

expectation in the gradient with the corresponding values in the MAP state. This approach is a

structured variant of the voted perceptron algorithm [Collins, 2002].

Maximum Pseudolikelihood Estimation (MPLE)

An alternative approach that maximizes the pseudolikelihood function, which is given by:

P ∗(y|x) =
n∏

i=1

P ∗(yi|MB(yi),x) (2.6)

where n is the number of random variables and MB(yi) is the Markov blanket of yi. Equation 2.6

is maximized using a gradient ascent based approach and the derivative of the log-pseudolikelihood
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function with respect to wq is given by:

∂logP ∗(y|x)
∂wq

=
n∑

i=1

Eyi|MB

[ ∑
j∈gq :i∈ϕj

ϕj(x,y)
]
− Φq(x,y) (2.7)

where i ∈ ϕj implies that variable yi participates in the potential ϕj . Using a Monte Carlo approach

this derivative can be computed in linear time in the size of y.

Large-Margin Estimation (LME)

This approach focuses on maximizing the MAP state rather than producing accurate

probabilistic models. This approach uses the intuition that the ground-truth state y should have

energy lower than any alternate state ỹ by a large margin defined by a loss function L. The objective

function to find the optimal set of weights is given by:

w∗ = argmin
w

1

2
||w||2 + Cξ (2.8)

s.t :wT (Φ(ỹ,x)− Φ(y,x)) ≤ −L(y, ỹ) + ξ

where L is a loss function such as the L1 distance between y and ỹ, and ξ is a slack variable.

Equation 2.8 is then solved by performing a large-margin estimation based on a cutting-plane

approach for structural support vector machines [Joachims et al., 2009].

2.5 Markov Logic Networks

Markov Logic Networks (MLNs) is one of the most popular family of SRL frameworks.

MLNs [Richardson and Domingos, 2006] use boolean logic and use discrete random variables.
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Comparisons against MLNs are made in Section 5.1 and Section 6.1. Potential functions ϕ are

indicator functions that are one if a ground rule is satisfied and zero otherwise. A potential in MLN

is of the form:

ϕi(x,y) = ni(x,y) (2.9)

where ni(·, ·) is the satisfaction of the ith ground rule. Since the potentials measure the satisfaction

of the ground rules, the ŝ is set to one and the MAP inference in MLN is written as:

argmax
y

P (y|x) = argmax
y

E(y|x) (2.10)

Many different efficient implementations of MLNs exist [Shavlik and Natarajan, 2009a, Niu et al.,

2011, Venugopal et al., 2016, Islam et al., 2018], but throughout this dissertation I choose to use

Tuffy [Niu et al., 2011] as my representative MLN framework. MAP inference in Tuffy is performed

using the MaxWalkSAT algorithm [Kautz et al., 1996, Niu et al., 2011]. MaxWalkSAT proceeds by

iteratively flipping atom values that would result in a more satisfied world.

Many weight learning approaches have been proposed for MLNs [Richardson and Domin-

gos, 2006, Singla and Domingos, 2005, Lowd and Domingos, 2007]. It has been observed that

second-order methods for weight learning tend to perform better than other approaches [Lowd and

Domingos, 2007]. Tuffy uses a second-order method, the diagonal Newton approach introduced in

[Lowd and Domingos, 2007], to perform weight learning.
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2.5.1 Diagonal Newton Method for Weight Learning (DN)

This approach minimizes the negative conditional log-likelihood (CLL) using a Newton-

based approach. A Newton-based approach reaches global minimum by multiplying the gradient

with the inverse of the Hessian at every iteration:

wt+1 = wt −H−1g

where H is the Hessian, g is the gradient w.r.t. w, and t is the iteration number. Since computing

the Hessian can be expensive and infeasible, a diagonal Newton method is used as an approximation

for the Hessian. The Hessian of the negative CLL is the covariance matrix of the CLL, this is

approximated through samples generated using MC-SAT [Poon and Domingos, 2006]. The final

update for the weight of a logical rule at each iteration is given by:

wi = wi − α
Ew(Ni)−Ni

Ew(N2
i )− (Ew(Ni))2

(2.11)

where Ni =
∑

j∈gi nj(x,y), gi is a set of ground rules generated by the ith rule, Ew is expectation

w.r.t. the weights and α is the step size.
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Chapter 3

Scalability

Scalability is a key pillar for practical machine learning systems. If a system is slow or

has no potential to scale to larger problems, then it will see limited adoption by the machine learning

community. Scalability in SRL is particularly difficult because of two challenges: dealing with the

interconnected nature of data in SRL and the joint reasoning over large graphical models. In this

chapter, I will address both of these challenges in the form of grounding and inference1.

3.1 Tandem Inference

SRL methods have seen a great deal of success, but they face a major challenge when

scaling to large datasets. To address this issue, several approaches have been proposed. Lifted

inference de Salvo Braz et al. [2005], Singla and Domingos [2008], Kersting [2012], Sarkhel et al.
1The work presented in this chapter was presented at the 2023 International Conference on Very Large Data Bases

(VLDB) Augustine and Getoor [2023] and at the 2019 AAAI Conference on Artificial Intelligence (AAAI) Srinivasan
et al. [2020a].
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[2014], Kimmig et al. [2015], Das et al. [2016], Srinivasan et al. [2019a] is a commonly employed

and effective approach that exploits symmetry in the data to generate a more compact model on

which to perform inference. A key drawback of these approaches is that evidence or noisy data can

break symmetries, making lifting less effective. To address this issue, approximate lifting approaches

have also been proposed Sen et al. [2009], den Broeck et al. [2012], Venugopal and Gogate [2014],

Das et al. [2019] which exploit approximate symmetries, allowing for greater and more robust

compression. However, if the ground model lacks significant symmetry, even approximate lifting

may not improve the tractability of inference on large models.

Several approaches orthogonal to lifted inference have also been proposed that attempt to

perform efficient grounding by utilizing hybrid database approaches Niu et al. [2011], exploiting the

structure of rules Augustine and Getoor [2018], or distributing models across multiple machines

Magliacane et al. [2015]. However these methods only provide partial solutions to grounding at scale.

The hybrid database approach increases runtime substantially, exploiting rule structure requires

large amounts of memory to store the ground model, and distributing across several machines does

not reduce the overall memory required to run a large program.

In this section, I propose an alternate approach to scaling which performs inference in

tandem with grounding. This enables us to scale SRL systems to large, previously intractable,

models. My approach, which I refer to as tandem inference (TI), uses a novel streaming grounding

architecture and an out-of-core inference algorithm that utilizes a disk cache in order to consume

a fixed amount of memory. This allows TI to scale unbounded by a machine’s main memory.

Furthermore, even with increased I/O overhead, my approach runs the entire process of grounding
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and inference in a fraction of the runtime required by traditional approaches. Since TI is orthogonal

to lifting and some of the other strategies, it can be combined with them for further improvements.

The TI concept is general and can potentially be applied to several different SRL frame-

works. In this section, I show how it can be implemented in PSL. PSL is a SRL framework that

generates a special kind of undirected graphical model called a hinge-loss Markov random field

(HL-MRF). A key distinguishing factor of a HL-MRF is that it makes a continuous relaxation on

RVs which transforms the inference problem into a convex optimization problem. This allows PSL

to use optimizers such as alternating direction method of multipliers (ADMM) Boyd et al. [2010] to

perform efficient inference.

My key contributions to this component of the scalability pillar include: 1) I propose a

general framework, TI, which uses streaming grounding and out-of-core streaming inference to

perform memory efficient, large-scale inference in SRL frameworks; 2) I derive a stochastic gradient

descent-based inference method (SGD) and show that the SGD-based method can outperform the

traditionally used ADMM-based method; 3) I develop an efficient streaming grounding architecture

and SGD-based out-of-core inference system that runs faster than previous state-of-the-art systems;

4) through experiments on two large models, FRIENDSHIP-500M and FRIENDSHIP-1B, which

require over 400GB and 800GB of memory respectively, I show that, using just 10GB of memory, I

can perform inference on FRIENDSHIP-500M in under four hours and FRIENDSHIP-1B in under

nine hours; and 5) I perform an empirical evaluation on eight realworld datasets to validate the speed

and accuracy of TI. In addition to enabling inference on models too large to fit into memory, on my

largest realworld dataset which does fit in memory, TI is 8 times faster than traditional approaches.
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The work covered in this section was presented at the 2019 AAAI Conference on Artificial

Intelligence (AAAI) Srinivasan et al. [2020a].

3.1.1 Tandem Inference Methodology

In order to define my proposed tandem inference (TI) algorithm I introduce two compo-

nents: the grounding generator (GG) and the inference engine (IE). The GG supports streaming

grounding, which is the process of generating ground rules in small batches without materializing

all grounding results into memory. The IE supports streaming inference, which is the process of

performing inference using a single potential at a time. Figure 3.1 shows the system architecture

of TI. The GG takes as input the data D and the modelM, which GG uses to generate the ground

model. With respect to storage, the GG can leverage the hard disk, the database, and RAM, while

the IE can only utilize RAM.

Grounding

Generator

Inference

Engine

DataModel

Disk

Database

RAM

Cache
Ground Terms

Cached Term
s Random Vari

ables

Figure 3.1: Block diagram showing the TI system architecture.

The process flow of TI is shown in the network sequence diagrams given in Figure 3.2

(for the first round of inference) and 3.3 (for subsequent rounds of inference). The IE begins by
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requesting a potential function (also called a ground term) from the GG. During the first round of

inference, the GG utilizes the database to generate ground rules. Once a ground rule is created, it is

converted into a ground term, written to a disk cache, and then passed onto the IE. On subsequent

rounds of inference, the GG uses the disk cache alone to provide ground terms to the IE. As each

term is returned from the GG, the IE will optimize the term and update any relevant RVs held in

RAM. After all terms have been seen, IE will then begin a new round of inference until convergence

criteria are met. Since the GG uses a fixed-size in-memory cache and the IE discards terms after use,

there is a maximum amount of memory in use by TI at any given time.

Figure 3.2: Network sequence diagram for iteration 1 of TI.
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Figure 3.3: Network sequence diagram for iterations 2 through T of TI.
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Streaming Grounding

Streaming grounding is the TI component that is responsible for providing ground terms

one at a time to the IE. To support streaming grounding, the underlying SRL framework must be

able to construct a single ground rule without instantiating large portions of the model, a process I

will refer to as partial grounding. Constructing the full ground network is the SRL phase that is

most prone to running out of memory, so it is imperative that this process can be broken up into

small chunks. PSL is one of several SRL frameworks that supports bottom-up groundingAugustine

and Getoor [2018], which frames the problem of grounding a rule as constructing and executing a

SQL query. Relational database management systems (RDBMSs) have a built-in way to fetch only

a portion of the query results through cursorsGarcia-Molina et al. [2008]. A cursor works as an

iterator for a query’s results. If the RDBMS and content of the SQL query allows for it, cursors can

return results as they are generated by the query instead of waiting for the full query to complete.

Cases that force a database to materialize all results before returning any records include sorting or

deduplicating the results, both of which are avoided in PSL grounding queries.

During the initial iteration of streaming grounding, the database must be queried to fetch

the ground terms. The process described here is also shown as a network sequence diagram in

Figure 3.2. The rules in the model,M, will be iterated over until all have been grounded. When

asked for a term, the GG will first check if it has an open database cursor. If there is no cursor or

the current cursor has been exhausted, then the database will be queried for the next rule and a new

cursor will be constructed. If all rules have been grounded, then the GG will inform the IE that there
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are no more ground terms for this iteration. With an open cursor, the next result tuple will be fetched.

The tuple will then be instantiated into a ground rule and checked for triviality. A ground rule is

trivial if it will not affect the result of inference; for example, a ground rule with a logical expression

that is already satisfied by observed variables is considered trivial. If the newly instantiated ground

rule is invalid, the process is repeated with the next result from the cursor until a valid ground rule is

instantiated. After a ground rule is validated, it is converted into a ground term. This term is then

put into a cache buffer and eventually passed on to the IE. Once the cache buffer is full, or there are

no more ground rules, it is written to disk.

After the initial iteration of TI, ground terms are fetched from the disk cache in the order

they were written during the initial iteration of streaming grounding. The process described here

is shown as a network sequence diagram in Figure 3.3. The disk cache is written as several pages,

one page to a file. The number of terms written to a page can be configured and the effect of this

configuration is explored in Section 3.1.2. When asked for a term, the GG will first ensure that a

cache page is loaded. If the current page has been exhausted and there are no more pages, then the

IE will be informed that there are no more ground terms for this iteration. Each page is written in

binary to minimize I/O. The first 16 bytes of a page contains the number of terms written to the page

and the size in bytes of all the terms in the page. Because each term may contain a different number

of RVs, the exact size of each term is not known until it is generated. Each term is then read into a

preallocated term structure. A free list of available terms large enough to fill a page is maintained to

minimize memory allocations. After all terms have been read into the memory cache, the next term

from the cache will be returned to the IE until the page is exhausted.
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The GG also provides the ability to return ground terms in a semi-random order. The

effectiveness of randomizing term order is dependent upon the optimization algorithm employed

by the IE. During the initial iteration of streaming grounding, the order of the terms is dependent

upon the order that results are returned from the database. However, during subsequent iterations,

there are more opportunities to induce randomness. First, the order that pages are accessed can be

randomized. Second, the terms in each page can be shuffled in-place after they have been read from

disk. Although not fully random since every term is guaranteed to be no more than a page length

away from other terms in the same page, these steps provide a good amount of randomness without

increasing the number of I/O operations or memory required.

Streaming Inference

The second core component of TI is streaming inference. The open-source PSL imple-

mentation uses ADMM to minimize the convex objective produced by a HL-MRF. While ADMM is

an efficient algorithm, it places a high memory requirement on the system. However, the primary

goal of using TI is to alleviate any memory constraints for performing inference. ADMM in PSL

works by creating Lagrange variables (LVs) and a local copy of the RVs (LRVs) for every potential.

Every potential is optimized w.r.t. the LRVs and an average over all LRVs is taken to obtain a global

assignment for the RVs. All ground rules, LRVs, and LVs are kept in memory to make this process

efficient. However, the need to keep all this information in memory makes ADMM less than ideal for

streaming inference. To replace ADMM, I propose a gradient-based optimization to solve Equation

2.4.
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Stochastic Gradient Descent for PSL

Consider the following energy function:

Definition 2 (Hinge-loss Markov Random Field Energy Function). Let y = {y1, y2, ..., yn} be

n RVs, x = {x1, x2, ..., xm} be m observed variables or evidence, and ϕ = {ϕ1, ϕ2, ..., ϕK} be

K potential functions such that ϕi(x,y) = max(ℓi(x,y), 0)
di or ℓi(x,y)di . Where ℓi is a linear

function and di ∈ {1, 2} provides a choice of two different loss functions, di = 1 (i.e., linear) and

di = 2 (i.e, quadratic). For weights w ∈ {w1, w2, ..., wK} a hinge-loss energy function can be

defined as:

E(y|x) =
K∑
i=1

wiϕi(x,y) ; s.t.,y ∈ [0, 1] ; x ∈ [0, 1] (3.1)

and the HL-MRF is defined as:

P (y|x,w) =
1

Z(y)
exp(−E(y|x)) (3.2)

where Z(y) =
∫
y exp(−E(y|x)).

To facilitate easy gradient computation, this can be re-written as:

E(y|c) =
K∑
i=1

wiϕi(y, ci) (3.3)

ϕi(y, ci) =


(yTqi − ci)di if linear loss

max((yTqi − ci), 0)di otherwise

ci = xT q̇i
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where qi ∈ {0, 1,−1}n and q̇i ∈ {0, 1,−1}m are respective n-dimensional and m-dimensional

ternary vectors which indicates if a variable participates positively, negatively, or not at all in

potential function ϕi. The scalar ci incorporates the information of all the observed variables

participating in ϕi and I use c to represent the vector of scalars ci. As a reminder, in full gradient

descent (GD), I iteratively optimize by taking weighted steps in the direction of the energy function’s

(Equation 3.3) gradient until convergence or for T steps. The weight of the steps is determined by

the learning rate, η. Additionally for PSL, Equation 3.1 has a restriction that y ∈ [0, 1]n, therefore

after each step I need to project y back in to the box [0, 1] through truncation. The gradient step

update at every step t can be represented as:

yt = yt−1 − η∇yE(y|c) (3.4)

yt = min(max(yt, 0), 1) (3.5)

where∇yE(y|c) = 1

K

K∑
i=1

wi∇yϕi(y, ci)

The gradient computation for the energy function involves computing projected gradients for the

potential functions. The projected gradients can be written as:

∇yϕi(y, ci) =



0 if hinge & yTxi ≤ ci

wiqi if di = 1

2wiqi(y
Tqi − ci) otherwise

(3.6)

Using the above equations, I can compute the gradient update and run the process to convergence.

Since the objective is convex, the right choice of η will guarantee convergence. However, an issue
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with GD is that at every step it needs to compute the full gradient, requiring all terms. This is

expensive and does not support my streaming approach. To make it more compatible with my

streaming approach, I use stochastic gradient descent (SGD). In SGD, the gradient is computed w.r.t.

a single potential ϕi and an update to the variables can be made without examining all terms.

yt = yt−1 − ηwi∇yϕi(y, ci) (3.7)

The variables are then projected as in Equation 3.5. This update is aligned with my streaming

approach, and allows the IE to request a single potential, perform an update on the participating RVs,

and continue on to the next potential.

An important factor to make SGD work in practice is the correct choice of η, and many

approaches have been proposed to compute adaptive learning rates Ruder [2016]. One of the more

popular and successful methods for adaptive learning rates is SGD-ADAM Kingma and Lei Ba [2015].

Here, I investigate three approaches: 1) using SGD-ADAM, 2) using a time-decaying learning rate

(i.e., η = η
t ), and 3) using a constant learning rate η. In my experiments, a time-decaying learning

rate is more effective than more complicated mechanisms such as SGD-ADAM. Finally, the overall

process of performing non-streaming inference using SGD in PSL is shown in Algorithm 1.

Now that I have a streaming grounding infrastructure and the SGD-based PSL IE, I can

perform TI. The algorithm for TI is the same as Algorithm 1, except that the potentials are read from

the GG instead of directly from memory.
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Algorithm 1: SGD for PSL
Data: list of ground terms ϕ = {ϕ1, ϕ2, ..., ϕK}

Result: RVs y

1 η = learning rate;

2 y ∼ Unif(0, 1)n;

3 t = 1;

4 while not converged and t <= T do

5 for i ∈ {1 . . .K} do

6 Update y using ϕi with Equation 3.7;

7 y = min(max(y, 0), 1);

8 end

9 t = t+ 1;

10 Update η;

11 end
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Figure 3.4: Comparison of the runtimes of TI, ADMM, and SGD on 10 datasets.

3.1.2 Empirical Evaluation

In this section, I evaluate the performance of my proposed method on variety of realworld

and two large synthetic datasets. I answer the following questions: Q1) Can I perform inference on

large ground models that were previously intractable? Q2) Is streaming faster than and as accurate

as traditional inference? Q3) How much memory does TI use? Q4) Can a gradient-based optimizer

converge faster than ADMM? Q5) What is the best strategy for selecting the learning rate? I answer

Q1 and Q2 in Section 3.1.2, Q3 in Section 3.1.2, and Q4 and Q5 in Section 3.1.2. For all my

experiments, I set the max number of iterations, T , to 500, a convergence tolerance of 10−6, and a

machine with 400GB of memory.

I perform my experiments on eight realworld datasets and two synthetic datasets from a

39



data generator previously used to test scaling in PSL Augustine and Getoor [2018]2. The details of

the datasets are as follows:

CITESEER: a collective classification dataset with 2,708 scientific documents, seven document

categories, and 5,429 directed citation links.

CORA: a collective classification dataset with 3,312 documents, six categories, and 4,591 directed

citation links.

EPINIONS: a trust prediction dataset with 2,000 users and 8,675 directed links which represent

positive and negative trust between users.

NELL: a knowledge graph construction dataset originally derived from the NELL project with

27,843 entity labels and 12,438 relations.

ER: an entity resolution dataset with a citation network of 1136 authors references and 864 paper

references.

LASTFM: an artist recommendation dataset with 1,892 users, 17,632 artists, 92,834 user-artist

ratings, and 12,717 friendship links.

JESTER: a joke recommendation dataset with 2,000 users, 100 jokes, and 200,000 user-joke ratings,

sampled from the larger JESTER-FULL dataset.

JESTER-FULL: the full Jester dataset. Contains 73,421 users, 100 jokes, and 7.3M user-joke ratings.

To the best of my knowledge, this is the first time the full Jester dataset has been used in with an

SRL framework.

FRIENDSHIP-500M: a synthetic link prediction dataset with 2,000 users and 4M unobserved edges.
2Models, data, and code will be made public upon acceptance.
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Dataset Rules
Ground Random Memory

Source
Rules Variables (GB)

CITESEER 10 36K 10K 0.10 Bach et al. (2017)

CORA 10 41K 10K 0.11 Bach et al. (2017)

EPINIONS 20 14K 1K 0.12 Bach et al. (2017)

NELL 26 91K 24K 0.13 Pujara et al. (2013)

ER 9 541K 485K 0.24 Bhattacharya and Getoor (2007)

LASTFM 22 1.4M 18K 0.45 Kouki et al. (2015)

JESTER 7 1M 50K 0.49 Bach et al. (2017)

JESTER-FULL 8 110M 3.6M 110 Goldberg et al. (2001)

FRIENDSHIP-500M 4 500M 4M 400+ Augustine and Getoor (2018)

FRIENDSHIP-1B 4 1B 7.6M 800+ Augustine and Getoor (2018)

Table 3.1: Details of models used and their memory consumption for non-streaming inference.
Memory usage for FRIENDSHIP-500M and FRIENDSHIP-1B are estimates. The machine has only
400GB of memory and was unable to fully run FRIENDSHIP-500M and FRIENDSHIP-1B, so I had
to estimate the memory usage.

FRIENDSHIP-1B: similar to FRIENDSHIP-500M containing 2,750 users and 7.5M unobserved

edges.

Table 3.1 provides details on number of rules in each model, the number of ground rules

generated, and the amount of memory required to hold each model in memory.
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Scale, Speed, and Convergence

I begin by examining the inference time and convergence of TI, SGD, and ADMM on all

ten datasets (Q1 & Q2). Weights for the rules in each model are learned and re-scaled to be in the

range [0, 1]. Both SGD and TI use a time-decayed learning rate and the initial learning rate η needs

to be tuned. For the LASTFM, FRIENDSHIP-500M, and FRIENDSHIP-1B datasets I use η = 0.1,

for ER I use η = 10, and for all the other datasets I use η = 1.0. The rational for choosing these

learning rates is explained in Section 3.1.2. TI also has a page size which can be tuned based on the

amount of memory available. Since the machine has 400GB RAM, I choose a page size of 10M for

all datasets, which uses about 10GB of memory. I discuss further details about trade-offs in page

size, memory, and computation in Section 3.1.2.

Scaling to Large Datasets: Figure 3.4i and 3.4j show the inference convergence w.r.t. time (in

milliseconds) for FRIENDSHIP-500M and FRIENDSHIP-1B. TI was able to run the FRIENDSHIP-

500M dataset in under four hours using only 10GB of memory. Both SGD and ADMM exhausted

the 400GB of memory available on the machine and failed to run. Similarly, the FRIENDSHIP-

1B dataset, which I estimate to require more than 800GB to hold in memory, was able to run on

the same machine in under nine hours using only 10GB of memory. These results answer Q1

affirmatively, TI can successfully perform inference on large ground models that were previously

intractable.
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Speed and Convergence: In order to address Q2, Figure 3.4 shows the inference convergence for

all datasets using all three approaches. The time shown includes both the grounding and inference

phases (which happen together in TI). In all datasets except CITESEER and CORA, TI converges

before the other methods even fully finish grounding! In CITESEER and CORA, possibly due to

some rules with high weights, tuning the learning rate is difficult, and, after the first steep drop,

SGD and TI take many more iterations to converge compared to ADMM. As the ground model size

increases, more significant timing differences. In EPINIONS, ER, and LASTFM, TI finishes the

entire process of grounding and inference in just half the time taken by ADMM and SGD. For JESTER,

TI is over 5 times faster than both ADMM and SGD. For my largest realworld dataset, JESTER-FULL,

TI is about 8 times faster than both ADMM and SGD. This shows that TI is faster than traditional

approaches especially on larger datasets and converges to the same function value.

Memory Efficiency

To answer Q3, how much memory TI uses, and test the effect of page size, I run TI on

the JESTER-FULL dataset with page sizes between 10 and 1M potentials. I run SGD to establish

baseline behavior. Since SGD holds all components in memory, I consider it to have an infinite

page size. I measure the maximum memory usage during the entire run, the mean number of I/O

operations performed in a single iteration of optimization, and the mean time to complete a single

iteration of optimization. Because PSL is written in Java, the memory usage I report is the size of

the JVM’s heap. I/O operations are measured by the number of calls made to Java’s low-level I/O

methods FileInputStream.read and FileOutputStream.write. All reported values
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are averaged over 10 runs.
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Figure 3.5: Maximum memory usage for TI over multiple page sizes on the JESTER-FULL dataset
w.r.t. page size. The page size listed as∞ is run with SGD, which does not use pages.

Figure 3.5 shows the peak memory usage over several runs using different page sizes for

TI. Naively, I expect the amount of memory used to decrease with the page size: the fewer ground

terms held in memory, the less overall memory is used. However, instead very small pages sizes

(10 and 100) lead to more memory being used. To understand why, I must remember that Java

is a garbage collected language and that memory marked for garbage collection will still count

as being in use. The small page sizes cause many I/O operations to happen in quick succession.

Every I/O operation requires Java to allocate memory buffers used in that operation. Therefore, the

discarded buffers are eventually cleaned up but not before being counted in the memory total. A

native language like C that can directly make system calls and that does not have to go through a

virtual machine can avoid these extra allocations and inflated memory cost. Forcing the JVM to
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garbage collect more frequently3 shows a more consistent memory usage over all page sizes. This

is because all the page sizes still fit into memory and Java will continue to accumulate memory

until a point where garbage collection is triggered. This point depends on the maximum size of the

heap and is common among all the runs. From this experiment I can conclude that although using

a smaller page size will use less persistent memory, the JVM’s garbage collector will keep most

reasonable page sizes at the same memory usage levels.
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Figure 3.6: Number of I/O operations per optimization iteration of TI over multiple page sizes on
the JESTER-FULL dataset w.r.t. page size. The page size listed as∞ is run with SGD, which does
not use pages.

Figure 3.6 shows the number of I/O operations per optimization iteration. SGD does not

perform any I/O operations. As the page size increases, the number of I/O operations decreases.

The impact of these additional I/O operations for a small page sizes can be seen in Figure 3.7
3A smaller value for the JVM parameter XX:NewRatio is used to force more frequent garbage collection.
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(per-iteration runtime). The different page sizes result in approximately the same number of bytes

read from disk and since the number of potentials is the same, the time spent in optimization will

also be the approximately the same. However, the overhead of the additional I/O operations causes

substantially slower iterations for page sizes of 10 and 100. For larger page sizes (1000+), the

difference in I/O overhead becomes negligible and all have similar per iteration runtime.

10 100
1000

10000
100000

1000000

∞0

0.5

1

1.5

2
·105

Page size

Ti
m

e
Pe

rI
te

ra
tio

n
(m

s)

Figure 3.7: Runtime per optimization iteration of TI over multiple page sizes on the JESTER-
FULL dataset w.r.t. page size. The page size listed as∞ is run with SGD, which does not use pages.

Optimizer Efficiency and Learning Rate

To answer Q4, can SGD converge as fast as ADMM, and Q5, how to choose learning rate, I

run experiments on the LASTFM and JESTER datasets. The results here extend to other datasets.

Here, I compare four different approaches: SGD with a decaying learning rate (SGD), SGD with

a constant learning rate (SGD-CONST-LR), SGD with an adaptive learning rate (SGD-ADAM), and
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ADMM.

SGD vs. ADMM: Figure 3.8 shows the convergence of different approaches w.r.t. number of

iterations for the LASTFM and JESTER datasets. SGD and ADMM converge to the same function

value in different number of iterations. Typically, SGD takes fewer iterations to converge than ADMM.

However, this is heavily dependent on the learning rate chosen for SGD. If one cannot find the right

learning rate, then it is possible for SGD to take significantly more iterations than ADMM.

Choice of Learning Rate: From Figure 3.8 SGD-CONST-LR is the slowest to converge, and

there seems to be little difference between SGD which uses time-decayed learning rate and SGD-

ADAM which uses an adaptive learning rate. SGD and SGD-CONST-LR have an initial learning rate to

be chosen. This can be chosen in range η ∈ [ 1
10max(w) ,

10
max(w) ] for SGD, and for SGD-CONST-LR,

η ∈ [ 1
100max(w) ,

100
max(w) ]. Thus, I choose an η of 1.0 and 0.1 for JESTER and LASTFM respectively

for SGD, and η of 0.01 for SGD-CONST-LR. SGD-ADAM has four hyperparameter α, β1, β2, and ϵ

to tune. This makes it harder to get ideal performance with SGD-ADAM. Further, SGD-ADAM uses

additional parameters equal to three times the number of RVs to perform adaptive tuning. For my

experiments, I choose α = 0.01, and use β1 = 0.9, β2 = 0.999, and ϵ = 10−8 as suggested by

Kingma and Lei Ba [2015]. From my evaluation I conclude that the simpler strategy, SGD with

decaying learning rate performs just as well as SGD-ADAM, the more complicated adaptive strategy.
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(a) LASTFM dataset.
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(b) JESTER dataset.

Figure 3.8: The effect of different optimizers on convergence.
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3.2 Collective Grounding

Combining logic and uncertainty has been a long-standing effort throughout computer

science. In the database community this effort is typified by probabilistic databases, which extend

traditional database management systems with uncertain data. While in the machine learning

community, this effort is embodied by SRL. While the types of queries commonly made over

probabilistic databases and SRL differ, they are similar in that they involve the same core task

of inference over a probability space of possible worlds Dalvi et al. [2009]. Additionally, tuple-

independent probabilistic databases have been shown to be a special case of SRL models Gribkoff

and Suciu [2016]. Therefore, SRL models can be seen as probabilistic databases without tuple-

independence assumptions and more complex hard and soft constraints.

However, abandoning these independence assumptions makes SRL models significantly

more computationally intensive than tuple-independent probabilistic databases, specifically, with

respect to grounding Schoenfisch and Stuckenschmidt [2017], Bremen et al. [2019], Tsamoura

et al. [2020]. Similar to the chase in data integration/exchange Alhazmi et al. [2022] or the

immediate consequence operator in Datalog, grounding starts with the provided data and iteratively

instantiates more data using the provided logical formulae. However, unlike the chase and the

immediate consequence operator, the result that grounding produces are complex dependencies

between random variables. These complex dependencies makes the grounding done in SRL uniquely

challenging, however, these complex dependencies also provide structure that can be exploited to

improve groundings efficiency. In this section, I show how the structure provided by the problem can
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be used to improve upon state-of-the-art SRL grounding by focusing on using database techniques

to reduce the grounding overhead in a way that is accessible to a wide range of systems.

Most effective SRL grounding techniques rely on an underlying relational database. A

query is constructed for each logical rule and each result tuple is a ground rule that corresponds

to a factor in the graphical model. This approach is referred to as bottom-up grounding Niu et al.

[2011] because it starts instantiating the model at the data level, such as in Datalog, as opposed

to top-down grounding where logical formulae are iterated over using nested loops, such as in

Alchemy and Prolog. Bottom-up grounding greatly improves upon top-down grounding, but still

presents several challenges: logical formulae may be complex and map to similarly complex and

slow database queries, queries may generate redundant or logically trivial results, and processing the

logical formulae independently creates duplicate work for rules that share similar logical structures.

Several approaches have been proposed to deal with grounding complexity. Lifting Van

den Broeck et al. [2021] and forward reasoning Tsamoura et al. [2020] techniques attempt to mitigate

the effect of grounding by preforming calculations before grounding to eliminate less relevant factors

and reduce the size of the ground program. These techniques are effective on models with a high

degree of symmetry, but are less effective in more heterogeneous settings and may require multiple

passes over the data. Another approach to reducing the grounding bottleneck is to distribute the

burden of grounding over multiple machines Magliacane et al. [2015]. This approach shows promise,

but shares the same challenges as any horizontal scaling effort, namely data availability, machine

availability, setup time, and complexity for the average user. Additionally, the joint nature of these

models makes them difficult to distribute.
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In this section, I introduce a novel approach to tacking the bottleneck of grounding by

treating grounding not as multiple independent workloads, but as a single workload to be jointly

optimized. I refer to my approach as collective grounding (CG). Collective grounding leverages the

structure provided by logical rules in addition to borrowing from established database research in

query rewriting, query containment, and multi-query optimization to address three key challenges in

collective grounding: 1) generating candidate grounding queries, 2) verifying logical rule satisfaction,

and 3) computing a minimal grounding workload.

My key contributions to this component of the scalability pillar include:

1. I formalize the concept of grounding through the introduction of grounding plans.

2. I introduce the concept of collective grounding for templated graphical models.

3. I develop a method for generating and searching through alternate execution paths for ground-

ing templates.

4. I develop an efficient method for computing a minimal shared grounding workload.

5. I perform an extensive empirical evaluation of collective grounding over multiple datasets

and show that collective grounding can provide a 5x speedup over traditional grounding

approaches.

The work covered in this section was presented at the 2023 International Conference on

Very Large Data Bases (VLDB) Augustine and Getoor [2023].
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3.2.1 Collective Grounding Methodology

Collective Grounding aims to speed up grounding by creating grounding plans that share

database queries between multiple templates. More specifically, the goal of collective grounding is

to compute an optimal grounding plan that minimizes the total time spent grounding a collection of

rule templates T with data D = (X,Y ):

G∗ = argmin
G

∑
Q∈G∗

Runtime(Q(D)) (3.8)

Unlike independent grounding, collective grounding looks at grounding not as a series

of independent steps, but as a unified process. The procedure of collective grounding is composed

of three main steps: candidate generation, containment map construction, and coverage selection.

Candidate generation creates alternate grounding queries, referred to as candidates, that can be used

in lieu of the original grounding queries executed in independent grounding. Containment map

construction identifies the rules each of the newly generated candidates can ground and constructs

variable mappings for each viable rule/candidate pair. Finally, coverage selection chooses the set

of candidates that will cover the grounding needs for all templates in the final grounding plan. An

overview of the collective grounding process is illustrated in Figure 3.9. The remainder of this

section discusses the details for each of these three main steps. Pseudocode for collective grounding

in included in Appendix A.1.1.
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Figure 3.9: An example of how the collective grounding process converts relational templates
(t1, t2, t3) into a grounding plan. Colors are used to represent the rule that queries and candidates
satisfy, color gradients indicate that multiple templates are satisfied.

Candidate Generation

The first step in collective grounding is to generate multiple possible queries that can

be used to ground each rule. I refer to these possible replacement queries as candidate queries,

or simply candidates, and the grounding queries from independent grounding as base queries.

The goal of candidate generation is to generate multiple candidate queries that can produce the

same ground rules as the base query while executing more efficiently when run collectively. Each

candidate provides a different possible workload that can satisfy the same rule. For example,

consider the candidate presented in Figure 3.10. The base query for t1 produces two results, which

both pass validation. A possible candidate for t1, C1, is a query that contains one less join and

produces one additional result. The additional result tuple, however, is trivial and does not pass

validation. Therefore, both the base query and candidate produce the same ground rules using
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different workloads.

Strong similarities can be drawn between candidate generation and the very well studied

problem of database query optimization. More specifically, generating candidate queries given a

rule can be seen as a form of query rewriting. Like query rewriting, candidate generation starts

with a base query (the independent grounding base query), and constructs a new query that can be

executed more efficiently. In a classic RDBMS setting, the query optimizer can take advantage of

indexes, table statistics, and knowledge of the system the query is being performed on (CPU, RAM,

disk speed, etc). However, there is a very important difference between RDBMS query rewriting and

collective grounding candidate generation: RDBMS query rewriting is limited by the constraint that

a rewritten query must be equivalent to the base query. Collective grounding candidate generation,

however, can take advantage of the structure inherent in the problem, specifically the validation

function V , to simplify the process of candidate generation.

Because “invalid” query results can be discarded using the framework specific validation

function, V , candidate generation is less constrained than classical query rewriting (shown in Figure

3.10). Instead of needing to return the same results as a base query, candidate queries return results

that are a superset of the base query’s results and the difference in these two result sets are considered

invalid and discarded by V . This flexibility allows for the quick creation of candidates from a base

query. Candidates can be generated by iterating through the power set of all relations present in the

base query, while ensuring that each variable is still present in at least one relation. Figure 3.11

shows an example candidate search tree generated from rule t1 from the running example. In this

way, all possible candidates (that can be validated without examining the data in each relation)
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Figure 3.10: A base query, Q2, and candidate query, C, both being used to ground the same rule
template, t2. The candidate query is simpler, but produces more results. The extraneous results
(in red) from the candidate query can be filtered out by invoking the SRL framework’s validation
function, V .

55



are generated using just the base query. Candidates with fewer relations may produce more query

results, but will be simpler to execute and more general, and therefore more likely to be shareable

with other rules. This procedure can be efficiently done using a bit set as long as the number of

relations fits into an unsigned integer type, as seen in Algorithm 2. Note that this algorithm ensures

that the base query (a bit set of all 1s) is always added as a candidate, thereby guaranteeing that at

least one valid candidate is always generated.

Figure 3.11: A fully materialized candidate search tree for rule t1 from Figure 2.6. Duplicate nodes
are excluded and nodes that do not contain the required variables (and are therefore invalid) are
shaded.

However, in a rule with k atoms, there are 2k − 1 possible candidates. The number

of candidates can quickly become intractable, so it is necessary to limit the number of overall

candidates. Obtaining a query estimate for each candidate would allow for a dependable ranking of

candidate performance where the top few may be selected. However, the cost of obtaining a query

plan is non-trivial. Therefore, I create an approximate ranking of candidates while balancing the

accuracy of the rankings with the cost of computing query estimates.
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Algorithm 2: Generation of valid candidates from a rule. Note that the result

set will always contain at least 1 item, the base query.

1 Function GenerateCandidates:
Input: Rule

Result: Candidates = {}

2 BaseAtoms← {atom | atom ∈ Rule}

3 AtomMasks← (fn(atom)→ bitmask)

4 BaseV ariables← {}

5 foreach atom in BaseAtoms do

6 BaseV ariables← BaseV ariables ∪ {variable | variable ∈ atom}

7 for i← 1 to 2|BaseAtoms| do

8 Candidate← {atom | atom ∈ BaseAtoms∧AtomMasks(atom)|i ̸= 0}

V ariables← {}

9 foreach atom in Candidate do

10 V ariables← V ariables ∪ {variable | variable ∈ atom}

11 if V ariables ≡ BaseV ariables then

Candidates = Candidates ∪ {Candidate}
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Candidate Cost Estimation

A straightforward method of ranking each candidate is to assign them each a score based

on the query execution time and number of query results the candidate will produce. A natural

method of scoring each candidate is to obtain a query plan from the RDBMS, which may include

expected runtime and expected number of results. In addition to runtime and number of results,

the time to ground a rule also depends on the complexity of the rule itself. To incorporate all these

factors, I can assign a single score for each candidate according to the following scoring function:

CandidateScore(C1) = PredicateInstanceCount(C1)∗

(α{o,p} ∗ EstimatedCost(C1) + β{o,p} ∗ EstimatedCount(C1))

(3.9)

where PredicateInstanceCount(C1) is the number of predicate instances present in candidate c1

and acts as a proxy for the complexity of a candidate, EstimatedCost(C1) is the estimated cost by

the RDBMS to execute the candidate C1, and EstimatedCount(C1)) is the RDBMS’ estimated

number of records returned by the execution of the candidate C1. α{o,p} and β{o,p} represent

constants that relate the overhead of instantiating ground rules overall (α{o,p}) and per-instance

(β{o,p}). Each constant has two variants: optimistic (o) and pessimistic (p). These constants were

computed using the results of running independent grounding on the validation splits of the datasets

discussed in Section 3.2.2. The optimistic variants are one standard deviation less than the mean,

while the pessimistic variants are one standard deviation greater than the mean. Section 11 will

discuss how these constants are used to bound the search space for candidates.
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Figure 3.12: A fully expanded candidate search tree created from a single base query (the root).
Each child represents a candidate that can be formed by dropping one relation from each parent.
Each candidate has two colors: the top color represents the pessimistic cost, while the bottom color
represents the optimistic cost. Colors closer to blue represent a lower cost while colors closer to red
represent a higher cost. Duplicate nodes are omitted.

Candidate Search

To score each candidate while filtering out candidates that are likely to have a poor cost,

I implement an approximate search. Because candidates can be generated starting from the base

query and removing one relation at a time, the search space can be viewed as a tree rooted at the

base query. Each level corresponds to candidates with the same number of relations. The maximum

size of the search space is 2n − 1, where n is the number of relations in the base query. Figure 3.12

shows an example of a fully expanded search tree with optimistic and pessimistic costs represented

using a heatmap. The base rule is the root and each child represents a candidate that can be formed

by dropping one relation from each parent (duplicates nodes are omitted). Each node is colored with

its pessimistic cost on top and optimistic cost on the bottom.

Because the search space grows exponentially with the number of relations in the rule,

models with long rules may find exact search methods to be prohibitively costly. To counteract this,
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I implemented budgeted versions of several classical search algorithms: breadth-first search (BFS),

depth-first search (DFS), and uniform cost search (UCS). Additionally, I implemented approximate

bounded versions of these searches using the optimistic and pessimistic costs to prune the search

space. When these bounded methods encounter a node with an optimistic cost greater than its

parent’s pessimistic cost, the node is pruned. Using these search methods, a list of candidates

can generated and scored by approximate runtime. Section 3.2.2 discusses experimental results

exploring the effectiveness of each search method.

Candidate-Template Mapping Construction

Given the list of scored candidate queries from the candidate generation step, a mapping

of candidates to rules each candidate can ground must be generated. For a candidate query to be used

to ground a rule, the candidate’s query results must be a superset of the results produced by the rule’s

base query. Checking if one query’s results contains another query’s results is the query containment

problem Chandra and Merlin [1977], a well-studied problem in the database community. Formally,

a query Q contains another query Q′ if for any database D, Q(D) ⊆ Q(D′).

For conjunctive queries under set semantics, query containment is NP-complete Chandra

and Merlin [1977]. However, the query containment problem can be even harder under bag

semantics Khamis et al. [2021], and even undecidable with inequalities Jayram et al. [2006a]. There

are also attributes of conjunctive queries that can make containment computation easier Kolaitis

and Vardi [1998]. For example, query containment can be computed in linear time if each relation

is guaranteed to appear no more than twice in a query Saraiya [1991]. I assume that all rules can
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be represented with general conjunctive queries under set semantics with no additional restrictions.

This requirement is straightforward to meet for many existing SRL frameworks. PSL ensures that

all templates can be represented with conjunctive queries, and MLNs produce disjunctive queries

that can be easily converted into conjunctive queries Augustine and Getoor [2018]. Therefore, I

assume that query containment is NP-complete, even though specific SRL frameworks may be able

to reduce the complexity.

For each candidate selected in the candidate generation process, query containment must

be computed for each rule. However, as with candidate generation, the structure inherent in SRL

models can be utilized to simplify the problem. Recall that candidates are generated in a structured

manner by removing one relation at a time starting from the base query. Because of this, once it is

verified that a candidate contains a template, it is known that all descendants of that candidate in the

query generation tree also contain the template.

The general process is to keep the candidates in the tree form that I used when searching

them, skipping over any candidates that were not chosen by the search. Each rule will produce

one tree. I perform a breadth-first traversal of the candidate tree and check each candidate for

containment against each rule that the candidates were not derived from. If a containment is found,

then all descendants of that node are also marked for containment and they are not checked for that

rule. The process continues until all candidates have been checked for containment of each rule.
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Grounding Plan Creation

Given a scored list of candidates and a mapping of candidates to the rules each candidate

can ground, the next task is to choose the set of candidates for a grounding plan that minimizes

the total runtime of the entire grounding workload. Similar to multi-query optimization (MQO) in

database literature Sellis [1988], the goal when choosing a grounding plan is to minimize a total

workload over several queries with the knowledge that these queries may share common components

or sub-workloads. However, unlike classic MQO, having multiple candidate queries for each rule

allows for more flexibility when selecting a set of workloads to run. The problem of selecting

candidates for the query plan is similar to the multiple-choice knapsack problem Kellerer et al.

[2004], where the objective is to minimize the runtime of the collection of candidate queries while

ensuring that each rule is represented. However, the differences with the classic multiple-choice

knapsack problem are that each item for the knapsack (candidate query) can have multiple class

labels (rules that the candidate satisfies), and a class label (rule) is allowed to be represented multiple

times (as the rule will only be instantiated once). The classic multiple-choice knapsack problem is

NP-hard problem, but the above two differences simplify this variant.

More formally, the goal is to select a subset of candidates, C∗, from all candidates

generated from candidate generation C according to the following minimization:

C∗ = argmin
C′∈PowerSet(C)

∑
c∈C′

CandidateScore(c)

s.t.
∑
c∈C′

S(c, t) ≥ 1, for t ∈ T
(3.10)

where S(C, t) is an indicator function that outputs 1 if candidate C can ground for rule t, and zero
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otherwise.

Since an exact solution is costly to compute, I use a greedy approach to find an approximate

solution. I start by creating a sorted list of candidates for each template, including only candidates

that can ground for the template and sorting ascending by CandidateScore so that more favorable

scores appear first. The first candidate in each of these lists represents the absolute best candidate that

each rule can use individually. At this point, using the first candidate from each list can be no worse

than independent grounding (assuming the query estimations are accurate). Now, each candidate

receives a new score that is its original CandidateScore minus the sum of CandidateScore

for the best candidate associated with each remaining rule this candidate can satisfy. Intuitively,

this rewards each candidate for each rule it satisfies using the best (lowest) score for each rule.

After all candidates are re-scored, the best (lowest scoring) candidate is selected to be in the final

grounding plan, and the rules that the candidate can ground for are marked as complete and no

longer considered in future score computations. This process repeats until all template are marked

as complete.

3.2.2 Empirical Evaluation

To evaluate the impact of collective grounding, I performed an experimental evaluation of

independent and collective grounding over a series of ten diverse problems/datasets4. As the state-

of-the-art, PSL’s implementation of independent grounding is used for all experiments Augustine

and Getoor [2018], Augustine et al. [2019], Srinivasan et al. [2020a], and to produce the most
4Full code for replication of experiments is available at: https://github.com/eriq-augustine/

collective-grounding-experiments/tree/vldb23
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informative comparison, my implementation of collective grounding was built using the same PSL

infrastructure.

Datasets

All datasets and models are from previously published papers and available at https:

//github.com/linqs/psl-examples. Each dataset includes between five and ten splits of

the data. No changes were made to the rules or data for these experiments. The predictive tasks

covered include collective classification (CC), link prediction (LP), and recommendation (REC).

The details of each dataset are summarized in Table 3.2. Additionally, the “Minimum Queries”

column shows the minimum possible queries that the model can be grounded with (determined by

manual inspection). The gap between a dataset’s number of template rules and their number of

minimum queries represents possible common workloads in the rules that collective grounding may

be able to exploit.

Hyperparameter Selection

The hyperparameters for collective grounding all pertain to the candidate generation

step and include the maximum number of candidates chosen per rule, the maximum number of

nodes explored during the candidate search (i.e., the search’s budget), and the type of search used.

To choose the best hyperparameters, the last (by lexicographical order) split for each dataset is

held out for a hyperparameter search. Each configuration of hyperparameters is run in the same

fashion as the rest of the experiments described in Section 3.2.2. Two sets of hyperparameters are
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Dataset
Template Ground

Task
Minimum

Source
Rules Rules Queries

CITESEER 10 36K CC 3 Bach et al. [2017]

CORA 10 41K CC 3 Bach et al. [2017]

DDI 9 1M LP 3 Sridhar et al. [2016]

EPINIONS 21 14K LP 2 Huang et al. [2013]

ER 9 3M CC 7 Bhattacharya and Getoor [2007]

IMDB-ER 6 129M LP 4 Berry et al. [2018]

JESTER 8 1M REC 2 Bach et al. [2017]

LASTFM 21 1.4M REC 3 Kouki et al. [2015]

STANCE 11 2K CC 3 Sridhar et al. [2015]

YELP 21 500K REC 3 Kouki et al. [2015]

Table 3.2: Details of datasets and models used for evaluation. The generic task performed on each
dataset include collective classification (CC), link prediction (LP), and recommendation (REC).
“Minimum Queries” shows the minimum possible queries that the model can be grounded with
(determined by manual inspection).
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Dataset Candidate Count Search Budget Search Type

CITESEER 10 5 UCS

CORA 5 3 DFS

DDI 5 3 BoundedDFS

EPINIONS 10 5 BoundedUCS

ER 3 3 DFS

IMDB-ER 3 5 BoundedUCS

JESTER 5 5 UCS

LASTFM 3 10 BFS

STANCE 5 5 BoundedDFS

YELP 10 3 BoundedDFS

OVERALL 10 10 BFS

Table 3.3: The best performing hyperparameters on the validation split for each dataset. The row
labeled OVERALL contains the hyperparameters that on average performed the best over all datasets.

saved to be used in the rest of the experiments: the best set of hyperparameters for each dataset,

referred to as the PER-DATASET hyperparameters, and the best set of hyperparameters averaged

over all datasets, referred to as the OVERALL hyperparameters. The PER-DATASET hyperparameters

represent situations where the user has enough data and time to tune collective grounding, whereas

the OVERALL hyperparameters represent a set of hyperparameters that should generally perform

well over a wide range of tasks and datasets.
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Experiment Procedure

In all experiments, both independent and collective grounding are run ten times for each

split not held out for hyperparameter search in each dataset. For each dataset, collective grounding

was run using both the PER-DATASET and OVERALL sets of hyperparameters. Between each run

system and disk caches were cleared and the database daemon was restarted. All experiments were

performed on the same machine using 128GB of RAM, 20 threads clocked at 3.1 GHz, Ubuntu

20.10, and PostgreSQL 12.7.

Overall Results

Table 3.4 provides a detailed look of the runtime (time to run grounding), standard

deviation, and statistically significantly best methods over all ten datasets. Significance is determined

using a Student’s T-test with a p = 0.01. The runtime provided is the time taken for the entire

grounding process starting from templates and data and ending with the full set of ground rules.

Figure 3.13 provides a graphical interpretation of the results. On all datasets collective grounding

outperforms independent grounding.

Even in datasets where the rules do not exhibit structures that can be exploited, collective

grounding still outperformed independent grounding by providing simpler queries (see Section 3.2.2).

On datasets where there is potential to share workloads between the rules, collective grounding

reduces the runtime by as much as two thirds. On the smallest dataset, STANCE, I can see that the

overhead of collective grounding does not slow down the overall grounding process.
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Dataset IG CG (PER-DATASET) CG (OVERALL)

CITESEER 2387 ± 73 2283 ± 40 2251 ± 103

CORA 2434 ± 101 2246 ± 66 2229 ± 43

DDI 59852 ± 1584 16764 ± 450 17645 ± 712

EPINIONS 6418 ± 138 2693 ± 78 2747 ± 62

ER 59738 ± 286 49585 ± 557 49916 ± 233

IMDB-ER 606848 ± 15271 129319 ± 1132 130907 ± 1376

JESTER 9469 ± 196 4722 ± 82 4733 ± 81

LASTFM 112661 ± 2028 45421 ± 481 45419 ± 391

STANCE 2062 ± 65 1933 ± 33 1957 ± 47

YELP 104885 ± 609 66478 ± 571 66980 ± 524

Table 3.4: The runtime (in milliseconds) and standard deviation for independent grounding (IG) and
collective grounding (CG) using both the PER-DATASET and OVERALL hyperparameters averaged
over 10 splits. The best results (determined using a Student’s T-test with a p = 0.01) are in bold.

With one exception, using the general hyperparameters for collective grounding achieved

the same result as using the hyperparameters tuned for each dataset. Overall the general hyperpa-

rameters I provide are sufficient for many different types and sizes of models, but tuning on specific

datasets may provide a small advantage.

Candidate Search

Next I take a closer look at how the different parameters for the search phase in candidate

generation effects the overall performance of collective grounding. Table 3.3 shows the highest
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(a) Absolute Runtime (in log milliseconds).

(b) Runtime Relative to IG.

Figure 3.13: Runtime results for independent grounding (IG) and collective grounding (CG) using
both the PER-DATASET and OVERALL hyperparameters. All results are aggregated over ten iterations,
run on the same machine, and had database and disk caches cleared between runs.
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performing hyperparameters for the validation split of each dataset. No single set of search

parameters dominated.

A possible explanation for these results is that models with longer rules (more relations),

such as ER, LASTFM, and YELP, tend to favor DFS search variants where candidates with fewer

joins can be prioritized in the search, whereas models with shorter rules (fewer relations) tend to

favor BFS and UCS search variants where simpler candidates are easier to access in the search space.

This also explains why the best overall search setting is a combination of both extremes: BFS with a

large search budget.

To better understand the search budget’s effect on the overall results, I ran a set of experi-

ments using a minimum budget of 1, the largest budget used in my hyperparameter search (the same

budget as the OVERALL hyperparameters, 10), and an infinite budget. All other hyperparameters

were set to the OVERALL values. I recorded the time it took to perform the candidate search and the

overall runtime. The results are shown is Table 3.5. For most datasets, increasing the search budget

from the OVERALL hyperparameter value made little difference. In most cases, a larger budget

resulted in a slightly lower runtime. However, there are cases (e.g., ER and EPINIONS) where an

unlimited budget caused CG to spend so much time searching for candidates that the overall runtime

suffered.

Query Count Reduction

As shown by Table 3.6, collective grounding is able to reduce the number of queries

performed in all datasets. Furthermore, Figure 3.13 shows that in all cases, collective grounding is
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Dataset Search Budget Search Time Runtime

1 0 2387 ± 73
CITESEER 10 20 ± 1 2251 ± 103

∞ 19 ± 1 2229 ± 38

1 0 2434 ± 101
CORA 10 20 ± 1 2229 ± 43

∞ 20 ± 1 2221 ± 30

1 0 59852 ± 1584
DDI 10 63 ± 2 17645 ± 712

∞ 105 ± 3 17134 ± 264

1 0 6418 ± 138
EPINIONS 10 127 ± 5 2747 ± 62

∞ 519 ± 5 3886 ± 133

1 0 59738 ± 286
ER 10 225 ± 6 49916 ± 233

∞ 3294 ± 34 52616 ± 295

1 0 606848 ± 15271
IMDB-ER 10 78 ± 5 130907 ± 1376

∞ 158 ± 7 130515 ± 1267

1 0 9469 ± 196
JESTER 10 24 ± 2 4733 ± 81

∞ 22 ± 2 4733 ± 63

1 0 112661 ± 2028
LASTFM 10 152 ± 11 45419 ± 391

∞ 359 ± 12 45074 ± 493

1 0 2062 ± 65
STANCE 10 74 ± 4 1957 ± 47

∞ 128 ± 9 2044 ± 34

1 0 104885 ± 609
YELP 10 154 ± 14 66980 ± 524

∞ 362 ± 15 66838 ± 431

Table 3.5: The effect of search budget on the search time and overall runtime. All times are shown
in milliseconds, aggregated over ten runs, and include their standard deviation.
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Dataset # rules # CG Queries

CITESEER 10 3

CORA 10 3

DDI 9 8

EPINIONS 21 2

ER 9 9

IMDB-ER 6 4

JESTER 8 2

LASTFM 21 3

STANCE 11 3

YELP 21 3

Table 3.6: The number of queries run in collective grounding (using the OVERALL hyperparameters)
compared to the number of rules in each dataset.

able to overcome the additional overhead of computing more effective grounding plans.

The LASTFM dataset provides a clear illustration of how collective grounding can produce

new query workloads that not only satisfy the given model, but also make sense when looked at in

the context of the problem domain. The LASTFM dataset is a recommender system dataset where

songs are recommended to users. The full LASTFM model contains 21 rules and can be seen in

Appendix A.1.2. Kouki et al. (2015) divides these rules into eight different categories based on

their use and data source 5. Collective grounding is able to identify and build queries for three key
5The author’s categorization of the rules does not affect the performance of the model, and only stands as a juxtaposition

to collective grounding’s grouping of the rules.
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workloads in this model/dataset: two users and an item, two items and a user, and a user-item pair.

Q1 =RATING(U1,I),RATED(U2,I),RATED(U1,I)

Q2 =RATED(U,I2),RATING(U,I1),RATED(U,I1)

Q3 =RATING(U,I)

From a recommender systems perspective these three patterns are instantly recognizable and seen in

many different approaches, with the first two patterns being the foundations of user and item-based

collaborative filtering Ricci et al. [2011].

Increased Query Efficiency

As shown in Section 3.2.2, collective grounding can substantially speedup the grounding

process by sharing queries between multiple rules. However, some datasets, such as DDI, that

show a considerable reduction in runtime while still using almost the same number of queries as

independent grounding. This raises two questions: 1) How does collective grounding manage to

reduce DDI’s runtime while using almost the same number of queries? 2) Why does collective

grounding refuse the opportunity to use a single query for 7 rules?

To answer the first question, I start by looking at the full DDI model listed in Appendix

A.1.3. The key modeling pattern of this model is the collective integration of several different
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similarity measures. Collective grounding chose the following queries:

Q1 =ATCSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q2 =SIDEEFFECTSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q3 =GOSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q4 =LIGANDSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q5 =CHEMICALSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q6 =SEQSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q7 =DISTSIMILARITY(D1,D2), INTERACTS(D1,D3), VALIDINTERACTION(D1,D3)

Q8 =INTERACTS(D1,D2)

(3.11)

The final two rules share the same query, but more importantly the number of joins for each of

the similarity-based rules has reduced. Table 3.7 shows the runtime and number of results for the

base query and query chosen by collective grounding for each similarity measure. Even though the

collective grounding queries typically return more results, the queries can be executed much more

quickly. Here collective grounding finding success not though reducing the number of queries, but

by using more efficient queries discovered during candidate generation.

Given the results observed in Table 3.7, where a simplification of the query (reduction in

the number of joins) results in a faster query, collective grounding’s refusal to ground all of DDI’s

similarity rules with the same general query seems even more surprising. For example, the below

queries can be used to ground all of DDI:

Q1 =VALIDINTERACTION(D1,D3), VALIDINTERACTION(D2,D3)

Q2 =INTERACTS(D1,D2)

(3.12)
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Similarity Base Query Base Query CG Query CG Query

Measure Runtime # Results Runtime # Results

ATC 7295 ± 152 1257947 1647 ± 57 1360876

Chemical 8105 ± 220 1380330 1933 ± 40 1483650

Dist 7786 ± 266 1358420 1732 ± 31 1461670

GO 7987 ± 232 1358420 1776 ± 47 1461670

Ligand 7298 ± 232 1242297 1628 ± 47 1345176

Seq 7991 ± 239 1358420 1797 ± 53 1461670

Side Effect 7864 ± 245 1380330 1812 ± 90 1483650

Table 3.7: The performance of base queries compared against simpler queries chosen by collective
grounding for the DDI dataset. Note that the simpler queries used by CG results in significantly
faster runtimes while only returning a few additional query results (which are subsequently filtered
out by the SRL framework). The OVERALL hyperparameters are used for CG.
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However as shown in Table 3.8, the grounding plan selected by collective grounding

containing 8 queries easily outperforms the “Forced Sharing” grounding plan from Equation 3.12.

Part of the reduced performance of the forced sharing grounding plan may come from the many

extraneous results returned by the very general query. It seems that the tables containing the

similarity measures are selective enough to warrant seven different queries instead of one more

general query.

Method # Queries Runtime Query Results

IG 9 59852 9435074

CG 8 17645 9583439

Forced Sharing 2 44031 31156650

Table 3.8: The performance of independent grounding and collective grounding against forcing a
grounding plan that uses only two queries (see Equation 3.12). CG runs used OVERALL hyperpa-
rameters.

3.3 Conclusions and Future Work

In this chapter, I have shown my methods of addressing the two primary computational

bottlenecks in SRL: inference and grounding. To improve the scalability of SRL inference, I

introduce a new out-of-core inference method that allows SRL systems to (for the first time) scale up

to ground network with more than 1 billion ground rules. To improve the scalability of grounding, I

introduce a new grounding paradigm for SRL that uses techniques from database optimization to
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collectively ground rules in a manner that finds more efficient and reusable query workloads. The

result of my efforts in the context of the larger SRL community can be seen in Table 3.9. The last

four milestones in this table are all direct results of my research.

Year System
Size Runtime Ground Rules % Time

(Millions) (Minutes) Per Minute Grounding

2007 Kok et al. [2009] Alchemy (MLN) 1 398 2.5K 96%

2011 Niu et al. [2011] Tuffy (MLN) 2.5 120 20K 50%

2015 Magliacane et al. [2015] FoxPSL 14 30 0.5M 33%

2018 Augustine and Getoor [2018] PSL 2.1 129 25 5M 99%

2020 Srinivasan et al. [2020a] TI 1000 500 2M N/A

2021 Berry et al. [2018] PSL 2.2 129 10 13M 40%

Collective Grounding PSL 2.2 + CG 129 2 65M 8%

Table 3.9: A timeline of the grounding milestones in the SRL community. The size column refers to
the number of ground rules in the model. All systems except FoxPSL were run on the same machine.
All PSL rows are run on the IMDB-ER dataset (discussed in Section 3.2.2). Time spent grounding
does not apply directly to TI, since grounding and inference occur at the same time.

While Section 3.1 introduces the fundamentals of TI, there remain several open areas for

research. Incorporating lifted inference is a promising extension to TI. Because TI is orthogonal

to lifting, these two can be combined to speed up inference further. Next, despite impressive

performance on large datasets, the overall process of TI is largely sequential; parallelizing TI can be

another way to speeding up inference further. Another interesting avenue for research is to create

a hybrid IE using ADMM and SGD. SGD often minimizes quickly during the first few iterations,

however may take many more iterations to fully converge (especially if the learning rate is poorly
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selected). Conversely, ADMM converges more slowly than SGD, but more steadily. A hybrid IE could

start with SGD and then switch to ADMM after the first few iterations. Finally, TI can be extended to

any other SRL framework that can support streaming grounding and streaming inference.

A future avenue of research for collective grounding is to integrate it with orthogonal

methods for improving the efficiency of grounding in templated graphical models. Specifically, TI

(as discussed in Section 3.1 and lifted inference Srinivasan et al. [2019a] both aid in grounding

extremely large models (with the billions of ground rules), and both work orthogonally to collective

grounding, i.e., they both work with ground rules after grounding and do not affect the grounding

plan. Integrating these techniques would create a synergy where collective grounding can produce

highly efficient grounding plans that tandem or lifted inference can efficiently store and infer over.
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Chapter 4

Expressivity

In this chapter, I discuss my work in producing expressive SRL systems that can represent

a wide range of models1. Using first-order logic, PSL can already represent a wide range of models.

However, there are limitations to the models that PSL can support. First, PSL lacks the ability to

easily incorporate models that require high-dimensional feature spaces. Additionally, PSL restricts

rule weights to be non-negative. In this chapter, I will address these two limitations.

4.1 NeuPSL

The integration of deep learning and symbolic reasoning is one of the earliest, yet open,

challenges in the machine learning community [d’Avila Garcez et al., 2002]. A promising area of

research that incorporates neural perception into logic-based reasoning is neuro-symbolic computing
1The work presented in this chapter is currently in submission Pryor et al. [2022] and was presented at the 2021

Workshop on Tractable Probabilistic Modeling (TPM) Dickens* et al. [2021].
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(NeSy) [Besold et al., 2017, d’Avila Garcez et al., 2019, Raedt et al., 2020]. This integration has

the benefit of allowing for expressive models that are able to perform joint inference (structured

prediction), i.e., jointly predicting multiple labels or tasks, and joint learning, i.e., parameter learning

over a joint loss function. Joint inference and learning have been used in strictly deep neural

architectures to great success; graph neural networks [Wu et al., 2021], conditional random fields

[Zheng et al., 2015], hidden Markov models [Li et al., 2013], etc. Furthermore, models designed for

tasks such as translation [Bahdanau et al., 2015] or image segmentation [Nowozin and Lampert,

2011] without joint inference are unable to accurately distinguish predictions. For example, in

translation, understanding the difference between homonyms such as fair (equitable vs. beautiful) or

in image segmentation, making locally consistent decisions about the foreground and background.

In this section, I introduce a principled NeSy method that integrates deep learning with

hard and soft logical constraints prioritizing joint learning and inference. My approach, Neural

Probabilistic Soft Logic (NeuPSL), extends PSL. I choose PSL because it encodes an underlying

graphical model that supports scalable and convex joint inference. Additionally, as mentioned earlier,

PSL has been shown to support a wide variety of joint inference and learning tasks including natural

language processing [Beltagy et al., 2014, Deng and Wiebe, 2015, Liu et al., 2016, Rospocher,

2018], data mining [Alshukaili et al., 2016, Kimmig et al., 2019], recommender systems [Kouki

et al., 2015], knowledge graph discovery [Pujara et al., 2013], fairness modeling [Farnadi et al.,

2019, Dickens et al., 2020], and causal reasoning [Sridhar et al., 2018].

My key contributions to this component of the expressivity pillar include: 1) I define a

family of energy-based models called Neuro-Symbolic Energy-Based Models (NeSy-EBMs), 2) I
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introduce NeuPSL and highlight how it fits into the NeSy ecosystem, paying particular attention to

how it supports joint inference and learning, and 3) I perform an extensive evaluation, showing that

NeuPSL consistently outperforms existing approaches on joint inference in low data settings while

maintaining a significantly lower variance in most settings.

The work covered in this section is currently in submission Pryor et al. [2022].

4.1.1 Related Work

Neuro-symbolic computing (NeSy) is a very active area of research that aims to incorporate

logic-based reasoning with neural computation d’Avila Garcez et al. [2002], Bader and Hitzler

[2005], d’Avila Garcez et al. [2009], Serafini and d’Avila Garcez [2016], Besold et al. [2017],

Donadello et al. [2017], Yang et al. [2017], Evans and Grefenstette [2018], Manhaeve et al. [2021a],

d’Avila Garcez et al. [2019], Raedt et al. [2020], Lamb et al. [2020], Badreddine et al. [2022]. This

integration allows for interpretability and reasoning through symbolic knowledge, while providing

robust learning and efficient inference with neural networks. For an in-depth introduction, I refer

the reader to these excellent surveys Besold et al. (2017) and Raedt et al. (2020). In this section, I

identify key NeSy research categories and provide a brief description of each:

Differentiable frameworks of logical reasoning: Methods in this category use the

universal function approximation properties of neural networks to emulate logical reasoning inside

networks. Examples include: Rocktäschel and Riedel (2017), Bošnjak et al. (2017), Evans and

Grefenstette (2018), and Cohen et al. (2020).

Constrained Output: These approaches enforce constraints or regularizations on the
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output of neural networks. Examples include: Hu et al. (2016), Diligenti et al. (2017), Donadello

et al. (2017), Mehta et al. (2018), Xu et al. (2018), and Nandwani et al. (2019).

Executable logic programs: These approaches use neural models to build executable

logical programs. Examples include Liang et al. (2017) and Mao et al. (2019). I highlight Logic

Tensor Networks (LTNs) [Badreddine et al., 2022], as I compare with them in the empirical

evaluation. LTNs connect neural predictions into functions representing symbolic relations with

real-valued or fuzzy logic semantics.

Neural networks as predicates: This line of work integrates neural networks and prob-

abilistic reasoning by introducing neural networks as predicates in the logical formulae. This

technique provides a very general and flexible framework for neuro-symbolic reasoning, and allows

for the use of multiple networks as well as the full incorporation of constraints and relational infor-

mation. Examples include DASL Sikka et al. [2020], NeurASP Yang et al. [2020], DeepProbLog

(DPL) Manhaeve et al. [2021a], and my proposed method (Neural Probabilistic Soft Logic). DPL

combines general-purpose neural networks with the probabilistic modeling of ProbLog Raedt et al.

[2007] in a way that allows for learning and inference over complex tasks, such as program induction.

I include DPL in the empirical evaluation.

4.1.2 Neuro-Symbolic Energy-Based Models

Energy-Based Models (EBMs) [LeCun et al., 2006] measure the compatibility of a

collection of observed or input variables x ∈ X and target or output variables y ∈ Y with a scalar

valued energy function: E : Y × X → R. Low energy states of the variables represent high
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compatibility. Prediction or inference in EBMs is performed by finding the lowest energy state of

the variables y given x. Energy functions are parameterized by variables w ∈ W , and learning is

the task of finding a parameter setting that associates low energy to correct solutions.

Building on this well-known formulation, I introduce Neuro-Symbolic Energy-Based

Models (NeSy-EBMs). NeSy-EBMs are a family of EBMs that integrate neural architectures with

explicit encodings of symbolic relations. The input variables are organized into neural, xnn ∈ Xnn,

and symbolic, xsy ∈ Xsy, vectors. Furthermore, the parameters of the energy function, w, are

partitioned into neural parameters, wnn ∈ Wnn, and symbolic parameters, wsy ∈ Wsy. NeSy

energy functions are written as E : Y × X × Xnn ×Wnn ×Wsy → R. Formally,

Definition 3 (Neuro-Symbolic Energy-Based Models). Let y = [yi]
ny

i=1 and x = [xi]
nx
i=1 be

vectors of real valued variables with symbolic interpretations. Let gnn = [gnn,i]
ng

i=1 be neu-

ral networks with corresponding parameters wnn = [wnn,i]
ng

i=1 and, without loss of generality,

inputs xnn. A symbolic potential is a function: ψ(y,x,gnn(xnn,wnn)) ∈ R. A NeSy-EBM

energy function, parameterized by symbolic parameters wsy = [wsy,i]
nsy

i=1, is a mapping of a

vector of symbolic potential outputs, Ψ(y,x,xnn,wnn) = [ψi(y,x,gnn(xnn,wnn))]
m
i=1, to a real

value: E(Ψ(y,x,xnn,wnn),wsy) ∈ R. For simplicity I also express a NeSy energy function as

E(y,x,xnn,wnn,wsy) ∈ R.

NeSy-EBM models are differentiated from one another by the instantiation process, the

form of the symbolic potentials, and the method for combining the symbolic potentials to define the

energy function. One example of a NeSy-EBM is DeepProbLog (DPL) [Manhaeve et al., 2018].
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Figure 4.1: NeuPSL inference and learning pipeline.

DPL uses the output of a neural network to specify probabilities of events. The events are then used

in logical formulae defining probabilistic dependencies and act as symbolic potentials. The DPL

energy function is a joint distribution and inference is finding the highest-probability, i.e., lowest

energy, state of the variables. Logic Tensor Networks (LTNs) [Badreddine et al., 2022] are another

NeSy method that belongs to the NeSy-EBM family, and instantiates a model which forwards neural

network predictions into functions representing symbolic relations with real-valued or fuzzy logic

semantics. From the NeSy-EBM point of view, the fuzzy logic functions are the symbolic potentials

and their composition defines the energy function.

4.1.3 Neural Probabilistic Soft Logic

Having laid the NeSy-EBM groundwork, I now introduce Neural Probabilistic Soft Logic

(NeuPSL), a novel NeSy-EBM framework that extends the PSL framework. As illustrated in Figure

4.1, NeuPSL leverages the low-level perception of neural networks by integrating their outputs into

a set of symbolic potentials created by a PSL program. The symbolic potentials and neural networks

together define a deep hinge-loss Markov random field (Deep-HL-MRF), a tractable probabilistic
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graphical model that supports scalable convex joint inference. This section provides a comprehensive

description of how NeuPSL instantiates its symbolic potentials and how the symbolic potentials are

combined to define an energy function, while the following section details NeuPSL’s end-to-end

neural-symbolic inference, learning, and joint reasoning processes.

NeuPSL instantiates the symbolic potentials of its energy function using the PSL language

where dependencies between relations and attributes of entities in a domain, defined as atoms, are

encoded with weighted first-order logical clauses and linear arithmetic inequalities referred to as

rules. To illustrate, consider a setting in which a neural network is used to classify the species of

an animal in an image. Further, suppose there exists external information suggesting when two

images may contain the same entity. The information linking the images may come from a variety

of sources, such as the images’ caption or metadata indicating the images were captured by the same

device within a short period of time. NeuPSL represents the neural network’s animal classification

of an image (Image1) as a species (Species) with the atom NEURAL(Image1,Species) and

the probability that two images (Image1 and Image2) contain the same entity with the atom

SAMEENTITY(Image1,Image2). Additionally, I represent NeuPSL’s classification of Image2

with CLASS(Image2,Species). The following weighted logical rule in NeuPSL represents the

notion that two images identified as the same entity may also be of the same species:

w : NEURAL(Image1,Species) ∧ SAMEENTITY(Image1,Image2)→ CLASS(Image2,Species) (4.1)

The parameter w is the weight of the rule and it quantifies its relative importance in the model.

Note, these rules can either be hard or soft constraints. Atoms and weighted rules are templates for

creating the symbolic potentials, or soft constraints. To create these symbolic potentials, atoms and

rules are instantiated with observed data and neural predictions. Atoms instantiated with elements

from the data are referred to as ground atoms. Then, valid combinations of ground atoms substituted

in the rules create ground rules. To illustrate, suppose that there are two images {Id1, Id2} and

85



three species classes {Cat,Dog, Frog}. Using the above data for cats would result in the following

ground rules (analogous ground rules would be created for dogs and frogs):

w :NEURAL(Id1, Cat) ∧ SAMEENTITY(Id1, Id2)→ CLASS(Id2, Cat)

w :NEURAL(Id2, Cat) ∧ SAMEENTITY(Id2, Id1)→ CLASS(Id1, Cat)

Ground atoms are mapped to either an observed variable, xi, target variable, yi, or a neural

function with inputs xnn and parameters wnn,i: gnn,i(xnn,wnn,i). Then, variables are aggregated

into the vectors x = [xi]
nx
i=1 and y = [yi]

ny

i=1 and neural outputs are aggregated into the vector

gnn = [gnn,i]
ng

i=1. Each ground rule creates one or more potentials defined over x, y, and gnn.

Logical rules, such as the one given in example (4.1), are relaxed using Łukasiewicz continuous

valued logical semantics Klir and Yuan [1995]. NeuPSL also supports arithmetic rules for defining

penalty functions. Each potential ϕi is associated with a parameter wpsl,i that is inherited from its

instantiating rule. The potentials and weights from the instantiation process are used to define a

member of a tractable class of graphical models, deep hinge-loss Markov random fields (Deep-HL-

MRF):

Definition 4 (Deep Hinge-Loss Markov Random Field). Let y = [yi]
ny

i=1 and x = [xi]
nx
i=1 be

vectors of real valued variables. Let gnn = [gnn,i]
ng

i=1 be functions with corresponding parameters

wnn = [wnn,i]
ng

i=1 and inputs xnn. A deep hinge-loss potential is a function of the form

ϕ(y,x,xnn,wnn) = max(l(y,x,gnn(xnn,wnn)), 0)
α (4.2)

where α ∈ {1, 2}. Let T = [ti]
r
i=1 denote an ordered partition of a set of m deep hinge-loss poten-

tials {ϕ1, · · · , ϕm}. Next, for each partition ti define Φi(y,x,xnn,wnn) :=
∑

j∈ti ϕi(y,x,xnn,wnn)
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and let Φ(y,x,xnn,wnn) := [Φi(y,x,xnn,wnn)]
r
i=1. Further, let wpsl = [wi]

r
i=1 be a vector of

non-negative weights corresponding to the partition T . Then, a deep hinge-loss energy function is

E(y,x,xnn,wnn,wpsl) =

R∑
i=1

wpsl[i]Φi(y,x,xnn,wnn) = wT
pslΦ(y,x,xnn,wnn) (4.3)

Further, let c = [ci]
q
i=1 be a vector of q linear constraints in standard form, defining the feasible

set Ω = {y,x | ci(y,x) ≤ 0, ∀i}. Then a deep hinge-loss Markov random field, P , with random

variables y conditioned on x and xnn is a probability density of the form

P (y|x,xnn) =


1

Z(x,xnn,wnn,wpsl)
exp(−E(y,x,xnn,wnn,wpsl)) (y,x) ∈ Ω

0 o.w.

(4.4)

Z(x,xnn,wnn,wpsl) =

∫
y|y,x∈Ω

exp(−E(y,x,xnn,wnn,wpsl))dy (4.5)

4.1.4 NeuPSL Inference and Learning

There is a clear connection between neural and symbolic inference in NeuPSL that allows

any neural architecture to interact with symbolic reasoning in a simple and expressive manner. The

NeuPSL neural-symbolic interface and inference pipeline is shown in Figure 4.1. Neural inference is

computing the output of the neural networks given the input xnn, i.e., computing gnn,i(xnn,wnn,i)

for all i. NeuPSL symbolic inference minimizes the energy function over y:

y∗ = argmin
y|(y,x)∈Ω

E(y,x,xnn,wnn,wpsl) (4.6)

Note that the energy function and constraints are convex in y. Any scalable convex optimizer can

be applied to solve (4.6). NeuPSL uses the alternating direction method of multipliers [Boyd et al.,
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2010].

NeuPSL learning is the task of finding both neural parameters and symbolic parameters,

i.e., rule weights, that assign low energy to correct values of the output variables, and higher energies

to incorrect values. Learning objectives are functionals mapping an energy function and a set

of training examples S = {(yi,xi,xi,nn) : i = 1, · · · , P} to a real-valued loss. As the energy

function for NeuPSL is parameterized by the neural parameters wnn and symbolic parameters wpsl,

I express the learning objective as a function of wnn, wpsl, and S: L(S,wnn,wpsl). Learning

objectives follow the standard empirical risk minimization framework and are therefore separable

over the training examples in S as a sum of per-sample loss functions Li(yi,xi,xi,nn,wnn,wpsl).

Concisely, NeuPSL learning is the following minimization:

argmin
wnn,wpsl

L(wnn,wpsl,S) = argmin
wnn,wpsl

P∑
i=1

Li(yi,xi,xi,nn,wnn,wpsl)

In the learning setting, variables yi from the training set S are partitioned into vectors yi,t and

zi. The variables yi,t represent variables for which there is a corresponding truth value, while zi

represent latent variables. Without loss of generality, I write yi = (yi,t, zi).

There are multiple losses that one could motivate for optimizing the parameters of an

EBM. The most common losses, including the loss I present in this section, use the following terms:

z∗i = argmin
z|((yi,t,z),x)∈Ω

E((yi,t, z),xi,xi,nn,wnn,wpsl)

and

y∗
i = argmin

y|(y,xi)∈Ω
E(y,xi,xi,nn,wnn,wpsl)
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In words, z∗i and y∗
i are the lowest energy states given (yi,t,xi,xi,nn) and (x,xi,nn), respectively.

A special case of learning is when the per-sample losses are not functions of z∗i and y∗
i , and

more specifically, the losses do not require any subproblem optimization. I refer to this situation

as constraint learning. Constraint learning reduces the time required per iteration at the cost of

expressivity.

All interesting learning losses for NeuPSL are a composition of the energy function. Thus,

a gradient-based learning algorithm will necessarily require the following partials derivatives: 2

∂E(·)
∂wpsl[i]

= Φi(y,x,xnn,wnn)

and

∂E(·)
∂wnn[i]

= wT
psl∇wnn[i]Φ(y,x,xnn,wnn)

Continuing with the derivative chain rule and noting the potential can be squared (α = 2) or linear

(α = 1), the potential partial derivative with respect to wnn[i] is the piece-wise defined function:2

∂ϕ(·)
∂wnn[i]

=


∂

∂gnn[i]
ϕ(·) · ∂

∂wnn[i]
gnn[i](xnn,wnn) α = 1

2 · ϕ(·) · ∂
∂gnn[i]

ϕ(·) · ∂
∂wnn[i]

gnn[i](xnn,wnn) α = 2

∂ϕ(·)
∂gnn[i]

=


0 ϕ(·) = 0

∂
∂gnn[i]

l(y,x,gnn(xnn,wnn)) ϕ(·) > 0

Since l(y,x,gnn(xnn,wnn)) is a linear function, the partial gradient with respect to gnn[i] is

trivial. With the partial derivatives presented here, standard backpropagation-based algorithms for
2Note arguments of the energy function and symbolic potentials are dropped for simplicity, i.e., E(·) =

E(y,xi,xi,nn,wnn,wpsl), ϕ(·) = ϕ(y,x,xnn,wnn).
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computing gradients can be applied for both neural and symbolic parameter learning.

Energy Loss: A variety of differentiable loss functions can be chosen forL. For simplicity,

I will discuss the energy loss. The energy loss parameter learning scheme directly minimizes the

energy of the training samples, i.e., the per-sample losses are:

Li(yi,xi,xi,nn,wnn,wpsl) = E((yi,t, z
∗
i ),xi,xi,nn,wnn,wpsl)

Notice that inference over the latent variables is necessary for gradient and objective value computa-

tions. However, a complete prediction from NeuPSL, i.e., inference over all components of y, is not

necessary. Therefore the parameter learning problem is as follows:

argmin
wnn,wpsl

L(wnn,wpsl,S) =

argmin
wnn,wpsl

P∑
i=1

min
z|((yi,t,z),x)∈Ω

wT
pslΦ((yi,t, z),xi,xi,nn,wnn)

With L2 regularization, the NeuPSL energy function is strongly convex in all components of yi. Thus,

by Danskin (1966), the gradient of the energy loss, Li(·), with respect to wpsl at yi,xi,xi,nnwnn

is:

∇wpsl
Li(yi,xi,wnn,wpsl) = Φ((yi,t, z

∗
i ),xi,xi,nn,wnn)

Then the per-sample energy loss partial derivative with respect to wnn[j] at yi,xi,xi,nn,wpsl is:

∂Li(yi,xi,xi,nn,wnn,wpsl)

∂wnn[j]
=

R∑
r=1

wpsl[r]
∑
q∈τr

∂ϕq((yi,t, z
∗
i ),xi,xi,nn,wnn)

∂wnn[j]
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Details on the learning algorithms and accounting for degenerate solutions of the energy loss are

included in the appendix.

4.1.5 Joint Reasoning in NeSy-EBMs

The EBM energy function encodes dependencies between potentially high dimensional

input variables, x, and output variables, y. I highlight two important categories of energy functions:

joint and independent energy functions. Formally, I refer to an energy function that is additively

separable over the output variables y as an independent energy function, i.e., there exists functions

E1(y[1],x), · · · , Eny(y[ny],x) such that E(y,x) =
∑ny

i=1Ei(y[i],x). While a function that is

not separable over output variables y is a joint energy function. This categorization allows for an

important distinction during inference and learning. In independent inference, the predicted value

for a variable y[i] has no influence over that of y[j] where j ̸= i and can therefore be predicted

separately, i.e., independently. Independent energy functions speed up inference and learning,

however, they cannot leverage joint information that may be used to improve predictions.

To illustrate, recall the example described in Section 4.1.3 where a neural network is

used to classify the species of an animal in an image with external information. Figure 4.2 outlines

the distinction between independent and joint prediction for this scenario. In Figure 4.2(a), the

independent setting, the input is a single image, and the energy function is defined over the three

possible classes: dog, cat, and frog. While in Figure 4.2(b), the joint setting, the input is a pair

of images, and the energy function is defined for every possible combination of labels (e.g., (dog,

dog), (dog, cat), etc.). The joint energy function of (b) leverages external information suggesting
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(a) Independent Energy

(b) Joint-Energy

Figure 4.2: Example of non-joint and joint energy functions.
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the images are of the same entity. Joint reasoning enables a model to make structured predictions

that resolve contradictions an independent model could not detect.

For NeSy-EBMs, a joint energy function encodes dependencies between its output vari-

ables through its symbolic potentials. NeuPSL additionally benefits from scalable convex inference

to speed up learning over a dependent set of output variables. As I will see in the experiments section,

utilizing joint inference and learning in NeSy-EBMs not only provides a boost in performance but

produces results that non-joint methods cannot (even with five times the amount of data).

4.1.6 Empirical Evaluation

I perform a series of experiments highlighting 1) the runtime of NeuPSL symbolic

inference, 2) NeuPSL’s ability to integrate neural and symbolic inference and learning, 3) the

effectiveness of NeuPSL’s joint inference and learning, and 4) NeuPSL’s performance on Visual-

Sudoku-Classification, a new NeSy task. NeuPSL is implemented using the open-source PSL

software package and can be used with any neural network library (in this instance, I use Ten-

sorFlow). 3 In addition to NeuPSL, I include results for DeepProbLog (DPL) Manhaeve et al.

[2021a], Logic Tensor Networks (LTNs) [Badreddine et al., 2022], and convolutional neural network

baselines (CNNs).

The first three experiments are performed over two canonical NeSy tasks: MNIST-

Add1 and MNIST-Add2 [Manhaeve et al., 2018]. These tasks extend the classic MNIST image

classification problem [LeCun et al., 1998] by constructing addition equations using MNIST images
3Implementation details including hyperparameters, network architectures, hardware, and NeuPSL symbolic models

are described in the appendix materials.
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and requiring classification to be performed using only their sum as a label. For example, a MNIST-

Add1 addition is (
[ ]

+
[ ]

= 8), and a MNIST-Add2 addition is (
[

,
]
+

[
,

]
= 41).

Given n randomly selected MNIST images, I create n/2 MNIST-Add1 or n/4 MNIST-Add2

additions. I emphasize that individual MNIST images do not have labels, only the resulting sum.

All results are averaged over ten splits constructed from a set of 10, 000 randomly sampled MNIST

images.

Symbolic Inference and Runtime

I compare runtimes of a latent variable NeuPSL model, a constraint-based NeuPSL

model, and a DPL model for both MNIST-Add tasks. Models are trained on additions constructed

from 6, 000 MNIST images. Table 4.1 4 shows the average inference times per addition and

standard deviation across ten splits with the fastest approach bolded. The benefit of NeuPSL’s

convex symbolic inference as I consistently see a 2-3 times speedup for the fastest NeuPSL models.

NeuPSL-Constraint requires significantly less runtime than NeuPSL-Latent for MNIST-Add1. This

is because the instantiated latent model contains roughly twice the number of symbolic potentials and

decision variables; hence, inference requires more time to converge. However, for MNIST-Add2,

introducing additional latent variables results in a more concise set of symbolic potentials, and

despite the latent model having more decision variables, the reduction in model size is enough

to achieve significantly faster inference. For the remaining experiments, I report the results on

NeuPSL-Constraint for MNIST-Add1 and NeuPSL-Latent for MNIST-Add2. Note that inference
4Timing results includes both model instantiation and inference. In the interest of time, NeuPSL-Constraint was only

run once for MNIST-Add2.
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in neural baselines and LTNs for MNIST-Add are equivalent to making a feed forward pass in a

neural network, and therefore not comparable to the complex symbolic inference done in DPL and

NeuPSL. This trivial inference is very fast, but comes with a decrease in predictive performance that

I will examine next.

DPL NeuPSL-Constraint NeuPSL-Latent

MNIST-Add1 1.34e-2 ± 1.67e-4 4.00e-3 ± 1.00e-4 2.98e-2 ± 2.33e-4

MNIST-Add2 1.65e+3 ± 4.80e+2 8.76e+3 ± —.—4 7.38e+2 ± 3.36e+1

Table 4.1: Inference times (milliseconds) on test sets constructed from 10, 000 MNIST images.

Deep Learning and Symbolic Reasoning

I evaluate the predictive performance of NeuPSL, DPL, LTNs, and neural baselines on

MNIST-Add with varying amounts of training data. Table 4.25 shows the average accuracy and

standard deviation across ten splits. The best average accuracy and results within a standard deviation

of the best are in bold. In all but two settings, NeuPSL is either the highest performing model or

within a standard deviation of the highest performing model. Moreover, NeuPSL has markedly

lower variance for nearly all amounts of training examples in both MNIST-Add tasks.
5Exact inference results are reported for DPL in most settings as in Manhaeve et al. (2021a). However, exact inference

in both 50, 000 MNIST-Add experiments produce random predictions (likely due to a NaN in DPL’s loss). For these
settings I report the results of DPL’s approximate inference as described in Manhaeve et al. [2021b], which generally
produces slightly lower accuracy with higher variance compared to exact inference.
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Method

MNIST-Add1 MNIST-Add2

Number of Additions

300 3,000 25,000 150 1,500 12,500

CNN 17.16 ± 00.62 78.99 ± 01.14 96.30 ± 00.30 01.31 ± 00.23 01.69 ± 00.27 23.88 ± 04.32

LTNs 69.23 ± 15.68 93.90 ± 00.51 80.54 ± 23.33 02.02 ± 00.97 71.79 ± 27.76 77.54 ± 35.55

DPL 85.61 ± 01.28 92.59 ± 01.40 74.08 ± 15.335 71.37 ± 03.90 87.44 ± 02.15 92.23 ± 01.015

NeuPSL 82.58 ± 02.56 93.66 ± 00.32 97.34 ± 00.26 56.94 ± 06.33 87.05 ± 01.48 93.91 ± 00.37

Table 4.2: Test set accuracy and standard deviation on MNIST-Add.

Joint Inference and Learning

To quantify the benefit of joint learning and inference, I propose variants for MNIST-Add

in which digits are re-used across multiple additions. Figure 4.3 illustrates the new information that

joint models can leverage to narrow the space of possible labels when MNIST images are re-used.

Since the same MNIST image of a zero appears in two addition samples, the value it takes must

satisfy both, i.e., the possible label space can no longer include a two or three as it would violate the

second addition.

Figure 4.3: Example of overlapping MNIST images in MNIST-Add1. On the left, distinct images
are used for each zero. On the right, the same image is used for both zeros.

To create overlap (reused MNIST images), I begin with a set of n unique MNIST images
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from which I re-sample to create a collection of (n+m)/2 MNIST-Add1 and (n+m)/4 MNIST-

Add2 additions. I vary the amount of overlap with m ∈ {0, n/2, n, 2n} and compare model

performance in low data settings, n ∈ {40, 75, 150}. In low data settings there is not enough

structure from the original additions for symbolic inference to discern the correct digit labels for

training the neural models. Results are reported over test sets of 10, 000 MNIST images with overlap

proportional to the respective train set.

Figure 4.4: Average test set accuracy and standard deviation on MNIST-Add datasets with varying
amounts of overlap.

Figure 4.4 shows the accuracy and standard deviation of all methods with varying amounts

of overlap. Even though the number of unique MNIST images remains the same, as the number of

additions increases, both DPL and NeuPSL are able to take advantage of the added joint information

to improve their predictions. In almost all cases, NeuPSL has the best performance. Furthermore,

NeuPSL has a lower standard deviation compared to DPL. LTNs and the CNN baseline benefit

the least from joint information, likely this is a consequence of both learning and inference being

performed independently across batches of additions.
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Visual Sudoku Classification

Finally, I introduce Visual-Sudoku-Classification, a new NeSy task where 4x4 Sudoku

puzzles are constructed using unlabeled MNIST images, and the task is to identify whether a puzzle

is correct, i.e., has no duplicate digits in any row, column, or square. Unlike Wang et al. [2019], this

task does not require learning the underlying label for images but rather whether an entire puzzle

is valid. For instance,
[ ]

does not need to belong to a "3" class, instead
[ ]

and
[ ]

need to be

labeled as different. In this setting, n MNIST images creates n/16 Visual-Sudoku-Classification

puzzles.

Method
Number of Puzzles

10 20 100 200

CNN-Visual 51.09 ± 15.78 51.36 ± 03.93 50.09 ± 02.17 51.23 ± 02.20

CNN-Digit 55.45 ± 05.22 54.55 ± 07.57 71.09 ± 04.99 82.22 ± 01.77

NeuPSL 64.54 ± 12.93 72.27 ± 06.84 84.72 ± 03.61 85.05 ± 02.65

Table 4.3: Test set accuracy and standard deviation on Visual-Sudoku-Classification.

I compare NeuPSL with two CNN baselines, CNN-Visual and CNN-Digit. CNN-Visual

takes as input the pixels for a Sudoku puzzle and outputs the probability of the puzzle being valid.

To verify whether the neural model is able to learn the Sudoku rules, I additionally introduce

the CNN-Digit baseline that also outputs a probability of the puzzle being valid, but is provided

all sixteen digit labels. Table 4.3 shows the test set accuracy and standard deviation of results
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with the best performing method in bold. NeuPSL consistently outperforms both neural baselines.

Furthermore, even when CNN-Digit is provided as input the sixteen digit labels, NeuPSL is able to

outperform this baseline using half the amount of puzzles.

Figure 4.5: Average test set accuracy and standard deviation on Visual-Sudoku-Classification
dataset with varying amounts of overlap.

Furthermore, I evaluate performance after adding relational structure in a similar fashion

to the MNIST-Add variations. Figure 4.5 shows the accuracy and standard deviation of NeuPSL

and CNN models on Visual-Sudoku-Classification with varying amounts of overlap. NeuPSL

is efficient at leveraging the joint information across training examples, and is able to create a

~65% puzzle classifier using only about 64 MNIST images across 20 puzzles. This is a particularly

impressive result as this performance implies the neural network in the NeuPSL model was trained

to be a ~89% 4-digit distinguisher without any digit labels. Additionally, CNN-Visual is unable to

generalize even in the highest settings (3200 MNIST images across 200 puzzles).

4.2 Negative Weights

To ensure scalable inference, PSL enforces constraints on the HL-MRF density function,

and hence the structure of the rules. These constraints limit the expressivity of the framework. In
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this section I address the PSL constraint restricting the sign of weights of rules to be non-negative.

This constraint is designed to preserve the convexity properties of MAP inference. Other SRL

frameworks, such as Markov logic networks (MLN) Richardson and Domingos [2006], are not

concerned with the convexity properties of the MAP inference problem and can support negative

weights Niu et al. [2011], Noessner et al. [2013]. In MLNs, a negative weight indicates that the

negation of the associated rule should be satisfied. Since MLN’s work with discrete valued variables,

the negation of a rule is defined using Boolean logical semantics. PSL, on the other hand, translates

rules to potentials by measuring the distance to satisfaction with Łukasiewicz real-valued logic

Klir and Yuan [1995]. Instantiating a potential of a negated PSL rule using Łukasiewicz semantics

results in concave potentials being added to the MAP objective function, breaking the convexity of

inference.

Prior to the work discussed in this section, there have been two approaches proposed for

supporting negative weights in PSL [Bach et al., 2017]. The first is to bias all user provided weights

by a large enough constant to ensure non-negativity. This approach admits a convex MAP inference

problem, however the semantics may not align with user expectations. The instantiated potentials

do not measure the distance to satisfaction of the rules as one might expect. Another approach is to

replace the non-convex potentials with multiple convex ones that have the same combined loss for

critical variable assignments. This approach also results in a convex MAP inference problem, but

may have unexpected properties for some variable values. Furthermore, this approach has scalability

issues as the resulting PGM can grow exponentially with respect to the size of the rules. A larger

HL-MRF model implies both slower MAP inference, as there are a larger number of potentials to
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optimize over, and more memory consumption.

In this section, I propose three new approaches for supporting negative weights in PSL.

The first instantiates potentials using an un-modified form of the rule and allows the weights to be

negative in the objective. This method results in a MAP inference problem that is non-convex but

admits an objective that can be easily separated into a difference of convex functions. The second

method negates the negatively weighted rule and instantiates a potential using Łukasiewicz logic.

This method again breaks the convexity of inference, but I show in special-cases that this method

can be equivalent to the first. Lastly, I propose a method which similarly negates the negatively

weighted rule, but instead instantiates a potential using Gödel logic Klement et al. [2000]. The

conjunction semantics of Gödel logic is defined by the concave function: Tmin(x, y) = min{x, y}.

Using this property I show that potentials instantiated from rules negated with Gödel logic preserve

convexity and faithfully measure distance to satisfaction. I analyze and compare the convexity and

scalability properties of the two previously proposed and the three novel methods. In addition, I

develop a taxonomy of the negative weight methods and show when the methods are equivalent and

when they differ. I introduce synthetic dataset generator designed to evaluate the impact of negative

weights and measure the effectiveness of each approach.

The work covered in this section was presented at the 2021 Workshop on Tractable

Probabilistic Modeling (TPM) Dickens* et al. [2021].
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4.2.1 Related Work

Increasing the expressivity of SRL formalisms is an active direction of research. Proba-

bilistic logic programs (PLP) define a distribution over a set of logical clauses [Raedt et al., 2007,

Vennekens et al., 2009, Sato and Kameya, 1997]. Meert and Vennekens (2014) extend CP-Logic, a

causal PLP, by defining semantics for negations in the head of rules. The negations capture inhibition

effects in the model, i.e., the inclusion of rules which can decrease the probability of an event.

Based on similar motivations, an interpretation of negative probability weighted rules in PLPs was

introduced by Buchman and Poole (2017a). The authors show that the semantics they introduce for

negative probabilities capture the same relations as PLPs with negations and more. Moreover, they

show that PLPs, even with negative weight semantics, are incapable of representing some relational

distributions. Buchman and Poole (2017b) develop this line of research by showing show that PLPs

with complex valued parameters are fully expressable.

Markov logic networks (MLN) use weighted logical rules to define probability distribu-

tions over binary {0, 1} valued variables Richardson and Domingos [2006]. In MLNs, Boolean

logic is used to define potentials and a negative weight is interpreted as a negation of the rule.

Kuželka (2020) shows that the expressivity of the MLN framework is limited, i.e., only certain

families of distributions can be represented by MLNs. The authors show that by allowing weights to

take complex values, MLNs are fully expressive for binary valued random variables.
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4.2.2 Methodology

In this section I remove the non-negativity constraint on the weights, w, that PSL uses

to define a HL-MRF. A negative weight has a direct impact on the structure of the HL-MRF

conditional distribution and hence the MAP inference problem. I introduce five different approaches

for interpreting negative weights in PSL. At a high level, the approaches are classifiable as either

methods that consider weights independently from grounding or ones that modify the potential

instantiation process by using the sign of the weight as an indicator to negate the rule. I refer to the

former class of approaches as weight based and the latter as negation based.

To illustrate each interpretation, I use the following simple PSL model designed to predict

unobserved instances of the atom Q(A):

w1 : !Q(A)^2

w2 : P(A)→ Q(A)^2

The first rule is a squared negative prior on Q(A) that encourages predictions near 0. Then the

second rule is a squared implication that implies values for P(A) can be used as predictive signal

for Q(A). A dataset with just a single entity A = {a} is used to instantiate the PSL model. The

grounding process will therefore create the following ground rules:

w1 : !Q(a)^2 (4.7)

w2 : ¬P(a) ∨ Q(a)^2 (4.8)

Throughout this discussion, let P(a) be observed with the truth value x = 0.75 and let y be the
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random variable corresponding to the atom Q(a). Finally, I assume that w2 < 0 and w1 >= 0.

Weight-Based Approaches

For weight-based approaches, the grounding process described in Section 2.3 is unchanged

in the presence of a negative weight. Thus the potential functions for the two rules are:

ϕ1(y, x) = [1− (1− y)]2 = y2

ϕ2(y, x) = (max {1− y − (1− x), 0})2

= (max {0.25− y, 0})2

Therefore, the objective function, f(y,x), for this model is:

f(y,x) = w1ϕ1(y, x) + w2ϕ2(y, x)

= w1y
2 + w2(max {0.25− y, 0})2 (4.9)

Weight-Based Approach: Remove Non-Negativity Constraint on Weights

The first approach is to simply remove the non-negativity constraint on the weights in

Definition 4. When weights are not constrained to be non-negative the HL-MRF MAP inference

objective is no longer necessarily a positive sum of convex functions and is therefore not guaranteed

to be convex. This behavior is demonstrated in the plot of the objective function for the example

PSL model in Figure 4.6.
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Figure 4.6: Example non-convex MAP inference objective function for a negative weight PSL model.
The negative weight is interpreted using the approach described in Section 4.2.2. The weights for
the model in Equation 4.8 are set to w1 = 1 and w2 = −10.

Though the objective is non-convex, it is expressable as a difference of convex (DC)

functions Hartman [1959]. It is generally challenging to find a decomposition of an objective as a

DC function. However, in this case the decomposition of the objective into a sum of a convex and

concave functions comes naturally. Let Φ+ and Φ− index the positive and negative weighted hinge

loss potentials, respectively. Then the HL-MRF MAP inference objective can be expressed as:

argmin
y|(y,x)∈Ω

∑
i∈Φ+

wiϕi(y,x)−
∑
i∈Φ−

(−wi)ϕi(y,x) (4.10)

The terms
∑

i∈Φ+ wiϕi(y,x) and
∑

i∈Φ−(−wi)ϕi(y,x) are both convex. MAP inference can thus

be solved using the convex-concave procedure (CCCP) introduced by Yuille and Rangarajan (2003)

and extended by Lipp and Boyd (2016). This approach would result in efficient optimization with

convergence guarantees for finding local optimal solutions.
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Weight-Based Approach: Biased Weights

Another weight-based approach, initially suggested by Bach et al. (2017), is to add a

sufficiently large constant to make all weights positive. More formally, a non-negative parameter ϵ

is introduced and all weights are biased by δ = min(w1, · · · , wm, 0)− ϵ. For instance, the resulting

objective of the running example using this method is

f(y,x) = (w1 − δ)y2 + (w2 − δ)(max {0.25− y, 0})2 (4.11)

Biasing all weights in this way guarantees MAP inference is convex but results in an objective

function with potentially different optimal solutions than that of the approach described in Section

4.2.2. To illustrate this behavior, consider the weight-based objective of the running example

Equation 4.9. The derivative is:

df(y,x)

dy
=


2w1y y >= 0.25

2w1y + 2w2(0.25− y) y < 0.25

Choosing weights w1 = −5 and w2 = −10, by evaluating the critical points of this objective

I find that it is minimized at y = 1/6. However, after adding a sufficiently large constant δ =

min(−5,−10, 0) − ϵ = −(10 + ϵ) to the weights, the objective is minimized at y = 0.0. This

result demonstrates that the solution set of the MAP inference problem is generally not invariant to

translations of the rule weights.
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Negation-Based Approaches

Negation-based approaches modify the potential instantiation process, i.e., grounding.

These approaches interpret negative weights as an indication to negate the corresponding rule. For

instance, in the running example, the approaches described in this section first negate the rule with

the negative weight w2:

P(a) ∧ ¬Q(a) (4.12)

Then, a potential is instantiated from the negated rule with an associated weight |w2|. The differences

between theses approaches comes from how the instantiated potentials measure the distance to

satisfaction of this negated rule.

Negation-Based Approach: Łukasiewicz Negation

The first negation-based approach to negative weights directly applies Łukasiewicz logical

semantics to define potentials. The degree of truth of the example negated rule, (4.12), using

Łukaseiwicz logic is:

max{(x+ (1− y)− 1, 0} (4.13)

The distance to satisfaction of this rule, i.e., the potential that would be instantiated, is thus

ϕ2(y, x) = (1−max{x+ (1− y)− 1, 0})2 (4.14)

= min{1 + y − x, 1}2 (4.15)
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The surface plot of this potential as a function of x and y is shown in Figure 4.7. Notice

that this potential is neither a convex nor a concave function of x and y. Adding this potential to

the MAP objective breaks the convexity of inference. If, on the other hand, the potential was not

squared, then it would be concave and the objective could be decomposed into a sum of concave

and convex functions, i.e., a DC function. In this case the CCCP could be applied in the same

way as described in Section 4.2.2. In fact, the relation between this approach and the approach

discussed in Section 4.2.2 goes deeper. MAP inference for PSL models with Łukasiewicz negated

implications and MAP inference with negative weighted potentials is equivalent when the rules are

non-squared. That is to say, for non-squared rules, MAP inference, when one allows weights to

be negative, is equivalent to allowing logical rules of the form: w : A ∧ ¬B, where A and B are

arbitrary conjunctive and disjunctive clauses.

Theorem 1. Let A = (A1 ∧A2 ∧ · · · ∧AnA) be a conjunction of nA (possibly negated) atoms and

B = (B1 ∨B2 ∨ · · · ∨BnB ) be a disjunction of nB (possibly negated) atoms. Let w > 0. The MAP

inference problem for a PSL model with the non-squared rule w : A∧¬B is equivalent to the MAP

inference problem for a PSL model with the non-squared rule −w : A =⇒ B.

Proof. I need to show both directions for equivalence.

( =⇒ ) Suppose I have a PSL model with the rule w : A ∧ ¬B such that w > 0. This
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Figure 4.7: Surface plots and heat maps of the potential values instantiated by the example negated
rule (4.12) using the three negation-based approaches.
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rule is translated into a weighted potential of the form:

wϕ(y) = wϕA∧¬B(y) (4.16)

=w(1−max

{
nA∑
i=1

yAi +

nB∑
i=1

(1− yBi)− (nA + nB − 1), 0

}
) (4.17)

=∗w − wmax

{
nA∑
i=1

yAi −
nB∑
i=1

yBi − (nA − 1), 0

}
(4.18)

=∗∗w − wmax

{
1−

nA∑
i=1

(1− yAi)−
nB∑
i=1

yBi , 0

}
(4.19)

∗ The constant term in the summation corresponding to B cancels with the nb term.

∗∗ Move nA into summation corresponding to A.

Denote the potential instantiated by A→ B by ϕA→B(y). Note that (4.19) is equivalent

to w − wϕA→B(y). Let t− and t+ be the index sets for the potentials instantiated by the rules

w : A ∧ ¬B and w : A→ B, respectively. Then MAP inference becomes:

min
y∈[0,1]

∑
i∈t+

wiϕi(y) +
∑
i∈t−

wiϕA∧¬B,i(y) (4.20)

= min
y∈[0,1]

∑
i∈t+

wiϕi(y) +
∑
i∈t−

wi − wiϕA→B,i(y) (4.21)

= min
y∈[0,1]

∑
i∈t+

wiϕi(y)−
∑
i∈t−

wiϕA→B,i(y) (4.22)

(⇐= ) The other direction follows similarly.

Negation-Based Approach: Conjunction to Sum of Disjunctions

Bach et al. (2017) propose a second method for supporting conjunctive rules of the form
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w : A ∧B^2 while preserving convexity. As the negative form of an implication has this structure,

shown by the example in (4.12), this technique can be applied to support negative weights. They

first express the rule as a CNF with the following structure:

A ∧B = (A ∨B) ∧ (¬A ∨B) ∧ (A ∨ ¬B) (4.23)

Each disjunction is then used to define a unique potential using Łukasiewicz semantics. For instance

the potentials that are instantiated for the example negatively weighted rule, (4.12), are:

ϕ2,1(y, x) = (1−min{x+ (1− y), 1})2

ϕ2,2(y, x) = (1−min{(1− x) + (1− y), 1})2

ϕ2,3(y, x) = (1−min{x+ y, 1})2 (4.24)

Each instantiated potential is assigned a weight equal to the positive value of the original rule and

added to the HL-MRF energy function. The additive loss of the potentials instantiated from each of

the disjunctive terms is the same as the single conjunction for discrete variable value assignments.

This property can be seen in Table 4.4. However, Figure 4.7 shows that the potential values

corresponding to Łukasiewicz conjunction and the three disjunctions are different for non-discrete

variable value assignments. The number of additional potentials instantiated by this procedure grows

exponentially with the number of atoms involved in the rule. Thus, for complex rules involving

many atoms, this method can run into scalability issues.
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A B ϕ(A ∧B) ϕ(A ∨B) ϕ(¬A ∨B) ϕ(A ∨ ¬B)

1 1 0 0 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 1 1 0 0

Table 4.4: A truth table showing the value of the potential function of a conjunction and the three
disjunctions that can represent it.

Negation-Based Approach: Gödel Negation

Another way to preserve convexity but still support conjunctive rules is to leverage the

weak conjunction semantics of Łukasiewicz logic, also known as the Gödel logic Klement et al.

[2000]. The degree of truth of the conjunctive rule A ∧B using Gödel semantics is:

min {A,B} (4.25)

This is a concave function of A and B, and hence the distance to satisfaction of the clause is

guaranteed to be convex. For instance, the potential that would be instantiated for the example

negative weighted rule in Equation 4.8 is:

ϕ2(y, x) = max {1− x, y}2 (4.26)

The plot of the potential in Equation 4.26 for the example negative weighted rule relative to

the potential instantiated using Łukasiewicz strong conjunction semantics and the sum of disjunctions

method is shown in Figure 4.7. Notice that for x fixed as 0 or 1, Lukasiewicz and Gödel potentials
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are the same. Then as the value for x gets closer to 0.5 the potential functions deviate significantly.

In general, values of potentials instantiated using Łukasiewicz semantics are equivalent to those

instantiated using Gödel semantics for discrete variable value assignments. Moreover, no additional

potentials need to be instantiated to achieve this behavior, as was the case in Section 4.2.2.

4.2.3 Empirical Evaluation

In this section, I evaluate the predictive performance and structural properties of PSL

models instantiated using the different approaches to supporting negative weights discussed in

Section 4.2.2. I answer the following questions for each method of interpreting the negative

weighted rule: Q1) How does the method effect the predictive performance of the PSL model? and

Q2) How does the method scale in terms of both the size of the instantiated model and the rate of

convergence of PSL inference?

I evaluate all negative weight approaches on a collective prediction task. The follow-

ing PSL model is used for all experiments and is designed to predict the unobserved ground

TARGET(X,Y) atoms.

−1.0 :PREDICTOR1(X,Y)→ TARGET(X,Y)^2 (4.27)

0.1 :TARGET(X1,Y) ∧ SIMILAR(X1,X2)

→ TARGET(X2,Y)^2 (4.28)

1.0 :PREDICTOR2(X,Y) = TARGET(X,Y)^2 (4.29)

0.01 :¬TARGET(X,Y)^2 (4.30)

The first rule in the model, 4.27, is the only negative weight rule. The atom PREDICTOR1(X,Y)
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represents an abstract atom for predicting the target atom. Different approaches to interpreting

this rule result in a different ground HL-MRF and hence a different MAP inference objective.

The remaining rules are common modelling patterns. Each method I have described grounds the

same potentials for these rules. The second rule in the model, 4.28, is a rule for propagating

predictions or observed values of the TARGET(X,Y) atoms for similar entities X1 and X2. This

rule can be read as "if X1 and X2 are similar then the value of TARGET(X1,Y) should be close to

that of TARGET(X2,Y)". The third rule, 4.29, is referred to as a local predictor rule. This rule

uses an external model, the local predictor, as a signal for predicting the TARGET(X,Y) atoms.

Specifically, this rules says that the local predictor value for X,Y should be close to PSL’s prediction

for TARGET(X,Y). The final rule in the model, 4.30, acts as a negative prior. That is to say, this rule

will result in a small loss for any non-zero prediction made for TARGET(X,Y). This rule can also

be thought of regularizer and is commonly used to get more stable predictions from PSL since it

ensures a strongly convex MAP inference objective.

Synthetic Dataset Generation

I generated three synthetic datasets to compare the properties and performance of HL-

MRF models instantiated using the approaches discussed in Section 4.2.2. The three datasets are

designed to represent a different distribution of the target atoms TARGET(X,Y). The first dataset is

generated such that the target atoms have discrete, {0, 1}, truth values. The second and third datasets

are generated such that the target atoms have real, [0, 1], truth values with different distributions.

The generation process for all the datasets follows the same general pattern. There are a
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total of 100 possible unique values that the X argument can be assigned and 1000 for the Y argument.

First, the values for X are randomly clustered into 10 groups. Then, an ideal value for TARGET(·,Y)

is generated for every possible value of Y for every group of X arguments. Values for TARGET(X,Y)

are generated by adding noise to the ideal group values corresponding to the group assignment of

X. The TARGET(X,Y) data is then split into an observed and test set. The cosine similarity of the

observed TARGET(X,Y) values across the Y arguments for each X is used to define the observed

SIMILAR(X1,X2) atoms. The observed local predictor atoms PREDICTOR2(X,Y) are generated by

adding Gaussian,N (0, 0.3), noise to the test TARGET(X,Y) values. Finally, the PREDICTOR1(X,Y)

atom that is involved in the negative weighted rule is generated for all (X,Y) arguments by first

drawing a uniform (0, 1) random value. Then, if the random value is less than (1− TARGET(X,Y)),

the corresponding PREDICTOR1(X,Y) atom is set to a uniform (0, (1− TARGET(X,Y))) random

variable. Otherwise PREDICTOR1(X,Y) is set to PREDICTOR1(X,Y)+α where α is an exponential,

Exp(β = 0.05), random variable. In this way, PREDICTOR1(X,Y) can be used as a possibly noisy

lower bound on PREDICTOR1(X,Y).

The difference between the three datasets occurs when the true TARGET(X,Y) atoms are

generated. For the Discrete targets dataset, the ideal TARGET(·,Y) values for each X group are

generated as independent Bernoulli, Bern(p = 0.4), random variables. Then noise is added to

the ideal values to generate TARGET(X,Y) values for each (X,Y). The ideal target value of the

group X belongs to is flipped with probability p = 0.3. For the Uniform Real Targets dataset,

TARGET(·,Y) values for each X group are generated as independent uniform, U(0, 1), random

variables. Similarly, for the Centered Real Targets dataset TARGET(·,Y) values for each X group
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are generated as independent Gaussian, N (µ = 0.4, σ = 0.1), random variables. Then for both the

Uniform Real Targets and Centered Real Targets datasets, TARGET(X,Y) values are generated by

perturbing the ideal value of the group X belongs to with N (µ = 0, σ = 0.1) noise.

Results

I first answer question Q1 by running each proposed negative weight approach on the

three synthetic datasets and compare the RMSE of their predictions. Ten independent folds of each

variation of the synthetic dataset is generated. Then, using the model introduced in this section, an

HL-MRF is instantiated using one of the five methods discussed in Section 4.2.2 and MAP inference

is performed. MAP inference optimization is solved via ADAM stochastic gradient descent (SGD)

Kingma and Lei Ba [2015]. The stepsize hyperparameter is set to α = 0.1 and the exponential

decay rate parameters are set to the suggested defaults of β1 = 0.9 and β2 = 0.999. ADAM SGD is

determined to converge when the difference in the objective value over a single epoch drops below a

tolerance of 10−8. The results of this experiment are shown in Figure 4.8.

Figure 4.8: Bar plot of the mean RMSE of all five methods for supporting the negative weights in
the experiment model for ten folds of each of the three variations of the synthetic datatset. One
standard deviation is shown with error bars.

Across all variations of the dataset the Gödel negation method is always among the top
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three performing approaches. This consistency is not seen for any of the other methods. This

result is particularly encouraging as Gödel negation does not sacrifice the convexity properties

of PSL MAP inference as does the methods of Łukasiewicz negation and negative weights. On

the other end of spectrum, biased weights is consistently the worst performing method. This

behavior can be explained by the fact that this method does not capture the relation between the

instantiated PREDICTOR1(X, Y) and TARGET(X, Y) atoms. The synthetic dataset is designed so

that PREDICTOR1(X, Y) is a reliable lower bound for 1− TARGET(X, Y). However the instantiated

potentials for the rule 4.27 using the biased weights method encourages solutions where the values

for TARGET(X, Y) are greater than or equal to PREDICTOR1(X, Y) atoms.

I address question Q2 by examining the size of the ground models and the convergence

properties of ADAM SGD on the MAP inference problem. Table 4.5 shows the mean and standard

deviation of the number of epochs over the set of instantiated potentials that is required to converge

to a local optimal solution of the MAP inference problem for each of the five negative weight

methods. This table shows that the method of biased weights consistently requires a larger number

of epochs to converge to a MAP state. This behavior can be explained by the fact that the method

can create an ill-conditioned problem where there is a larger variation in the magnitude of the

weights associated with each potential. Another interesting observation from the table is that the

Łukasiewicz negation method can have a high variation in the number of epochs required to reach

a MAP state. The Łukasiewicz negation method instantiates an objective that is neither convex

nor concave and a local optimal solution can be difficult to find. The table also shows that the

Gödel negation method, which preserves convexity of the MAP inference problem, is consistently
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converging in a relatively low number of iterations.

Method Discrete Epochs Uniform Real Epochs Centered Real Epochs

Negative Weights 33.7 (5.48) 22.3 (3.83) 16.4 (3.38)

Biased Weights 37.6 (6.13) 44.1 (5.20) 32.6 (5.06)

Łukasiewicz Negation 44.4 (5.08) 21.4 (4.14) 22.8 (8.88)

Sum of Disjunctions 24.9 (6.28) 26.0 (5.68) 19.5 (3.41)

Gödel Negation 24.6 (3.86) 28.0 (4.99) 20.6 (4.70)

Table 4.5: The mean and standard deviation of the number of epochs required to reach convergence
of ADAM SGD optimization for each method and dataset.

Regarding the scale of the ground models, i.e., the number of instantiated potentials, the

sum of disjunctions method is the only method that instantiates extra potentials. For reference,

for the first fold of the synthetic dataset the sum of disjunctions method instantiated 79, 744 more

potentials than the other four methods. This is a roughly 2% increase in model size, and this

difference can increase exponentially with the number of atoms involved in the negative weighted

rule. This has implications on both the time it takes to ground the model and the time to run

inference. This is because each epoch of ADAM SGD optimization for the sum of disjunctions

method has to optimize over more potentials.
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4.3 Conclusions and Future Work

The work covered in this section allows SRL models to greatly expand the number and

types of models that can be represented. Negative weights allows for more expressive models that

indicate anti-relations, while the incorporation of neural models allows for the representation of a

wide range of models that cannot be purely represented at the symbolic (logic) level.

For NeuPSL, there are many avenues for future work including exploration of different

learning objectives, such as ones that balance traditional neural and energy-based losses, and new

application domains. Each of these is likely to provide new challenges and insights. Additionally,

the concepts in NeuPSL can be generalized and integrated with different SRL frameworks.

For negative weights, directions for future work include further exploration of alternate

real-valued logical semantics that can be used for instantiating HL-MRF potentials. Another future

direction is the integration of negative weight semantics into the weight learning process. Similarly,

as negative weights increases the expressivity of PSL, there are certainly implications on the task of

rule discovery in PSL, i.e., structure learning.
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Chapter 5

Model Adaptability

In this chapter, I discuss my work in producing a SRL system that can support models

that evolve over time1. In the simple case, working with an evolving model can mean tuning the

hyperparameters of a model. In a more complex case, working with an evolving model may mean

using a model whose distribution may change mid-inference, as in the online setting.

5.1 Weight Learning

Learning the weights of the rules is one of the key challenges for templated rule languages

such as PSL and MLNs, since the weighted rules interact in complex ways and cannot be optimized

independently. Because of their templated nature, the weights, i.e., the parameters of the model, are

used in multiple places in the instantiated graphical model, and the context varies depending on the
1The work presented in this chapter was published in the Machine Learning Journal Srinivasan et al. [2021] and

presented at the 2021 International Conference on Machine Learning (ICML) Dickens et al. [2021].

120



other rules that have been instantiated. In addition, the corresponding probability distribution is not

easy to compute; specifically, computing the normalization constant is often intractable.

Typically, the weights of the rules are learned through maximizing some form of likelihood

function [Bach et al., 2013, Lowd and Domingos, 2007, Singla and Domingos, 2005, Kok and

Domingos, 2005, Chou et al., 2016, Sarkhel et al., 2016, Das et al., 2016, Farabi et al., 2018]. This is

a well-motivated approach if the downstream objective makes use of the probability density function

directly. However, the objective is to often improve an external domain metric such as accuracy, F1

for classification, or AUROC for ranking. Several approaches address this issue by augmenting the

metric into a loss function and solving a max-margin problem [Huynh and Mooney, 2009, 2010a,

Bach et al., 2013]. However, this does not directly optimize the desired metric but instead optimizes

a surrogate loss. Further, such approaches do not easily extend to new metrics as they require

deriving new losses, which may be non-convex and hard to optimize.

In this section, I introduce four search-based approaches for finding the best set of weights

for a model (weight configuration) in weighted logic-based SRL frameworks. The key advantage of

these approaches are that they directly optimize the chosen domain performance metric and, unlike

other approaches, do not require re-derivation of the loss function for each metric. My proposed

approaches are based on black-box optimization methods used in learning hyperparameters in

other machine learning approaches [Claesen and Moor, 2015, Bergstra et al., 2011]. My first two

approaches random grid search for weight learning (RGS) and continuous random search for

weight learning (CRS) are based on simple yet powerful search approaches popularly used in tuning

hyperparameters of deep learning models [Bergstra and Bengio, 2012]. While RGS is simple and its
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effectiveness is determined by the human-specified grid, the effectiveness of CRS is determined by

the new sampling space I introduce in this section. My next approach, Hyperband for weight learning

(HBWL), is based on the Hyperband algorithm [Li et al., 2018b] that effectively distributes resources

to perform efficient random search. Hyperband has been shown to efficiently allocate resources

and maximize the search for the best solution. Finally, my fourth approach, Bayesian optimization

for weight learning (BOWL), is based on Gaussian process regression (GPR) [Rasmussen and

Williams, 2005] in a Bayesian optimization (BO) [Mockus, 1977] framework. BO is an effective

approach for optimization of black-box functions [Lizotte et al., 2007, Martinez-Cantin et al., 2009,

Srinivas et al., 2012, Brochu et al., 2010] and GPR is a non-parametric Bayesian approach that

is often used to approximate arbitrary functions. GPRs have been used extensively with a lot of

success for hyperparameter tuning in machine learning [Snoek et al., 2012].

In order to perform efficient and effective search of weights using these approaches,

I introduce a new parameter search space, which I refer to as scaled space (SS), which is an

accurate representation of the true weight space. I show that SS is both accurate and complete

in representing the weights. Further, I also show that SS also takes into account the impact of

model instantiation (also referred to as grounding). As sampling from SS is challenging, I introduce

an approximation of SS which enables us to efficiently sample weight configurations to perform

search-based weight learning. I develop all my search-based approaches for two powerful SRL

frameworks, PSL and MLNs. I perform my empirical study on both PSL and MLNs to show the

effectiveness of search-based approaches.

My key contributions to this component of the model adaptability pillar include: 1) I
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generalize and introduce a new taxonomy of weight learning approaches in SRL frameworks by

reformulating the problem of weight learning as a black-box optimization problem and introducing

four search-based approaches, referred to as RGS, CRS, HBWL, and BOWL, to perform this

optimization; 2) I introduce a new search space called the scaled space (SS) which I show is

an accurate representation of the true weight space; 3) I introduce an approximation of SS which

generalizes the search-based approaches and simplifies the process of sampling weight configurations

in these methods; 4) I show that the search-based approaches are effective at learning weights

in both PSL and MLNs and that these approaches outperform likelihood-based approaches on

multiple datasets by up to 10%; and 5) finally I show scalability of search-based approaches and

perform elaborate set of experiments to show that, of the four approaches, BOWL is robust to

initializations, acquisition function (process of choosing next best point, explained in Section 10),

and the hyperparameter used in the sampling of weight configurations.

The work covered in this section was published in the Machine Learning Journal Srinivasan

et al. [2021].

5.1.1 Black-box Optimization

Here, I provide a brief overview of black-box optimization and Gaussian processes, which

are essential in understanding my weight learning approaches introduced in this section. Black-box

optimization is a well studied technique, which has been found to be especially useful in the context

of hyperparameter tuning [Bergstra and Bengio, 2012, Shahriari et al., 2016].

Definition 5 (Black-box optimization). Given a black-box function γ(x̃) : Rd → R, where d is
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the input dimension, the task of finding an x̃ that yields the optimal value for γ(x̃) in a predefined

amount of time is called black-box optimization.

The goal of black-box optimization is to find the best possible value for x̃ that optimizes

the function γ(x̃) in a predefined amount of resources (generally, number of epochs or time). While

this process can be embarrassingly parallel for some approaches, the general strategy can be defined

through a sequential setup. The general approach for black-box optimization is to define a search

space, choose a point x̃, evaluate γ(x̃) to update a model, and repeat this process until the resources

have been exhausted. Finally, the x̃ with the best γ(x̃) is returned. The procedure is summarized

in Algorithm 3. While the process of selection of x̃ and evaluation of γ(x̃) on different points can

be simple and made to run in parallel for algorithms like RGS, CRS, and HBWL (introduced in

Section 5.1.2), other algorithms like BOWL (also introduced in Section 5.1.2) use BO framework

with Gaussian process to approximate γ and assume a serial setup to ensure optimal selection of the

next point on which to evaluate.

In the context of BO, various strategies have been proposed to choose the next point

to evaluate given the previous evaluations [Srinivas et al., 2010, Kushner, 1964, Mockus, 1977,

Thompson, 1933]. Each strategy is encoded through an acquisition function α. The objective of

these strategies is to minimize the number of epochs required to find the best solution. A simple

black-box Bayesian approach iteratively obtains a point to explore from the acquisition function α

using the prior distribution; then the function γ is evaluated to obtain a new outcome at that point

which is then used to update the posterior. Gaussian process regression (GPR) is a non-parametric
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Bayesian approach which is effective in performing black-box optimization in a BO framework.

Algorithm 3: Black-box optimization via search.
Result: x̃∗ : point with the best value for γ(·)

1 X̃ = search space;

2 while stopping criteria not met do

3 choose a x̃ ∈ X̃;

4 update the model of choice with (x̃, γ(x̃));

5 update x̃∗ if current γ(x̃) is better than previous value or based on the model

6 end

Gaussian Process Regression

A Gaussian process (GP) is fully characterized by its mean function µ0 and either a

positive definite covariance matrix K or a kernel function k. Consider a finite set of s inputs

X̃ = x̃1:s and a random variable gi = γ(x̃i) representing the function γ evaluated at x̃i and let

ỹi be the noisy output of the function. In GP, I assume that g = g1:s is jointly Gaussian and ỹi

given g is Gaussian. The generative model is of the form: g|X̃ ∼ N (m,K), and ỹ|g ∼ N (g, σ2I),

where mi = µ0(x̃i), K is an (s× s) positive definite matrix such that Ki,j = k(x̃i, x̃j). Since the

distributions are Gaussian and using the kernalization trick [Rasmussen and Williams, 2005], the
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posterior mean and variance given a set of observed data can be written as:

µs(x̃s+1) = µ0(x̃s+1) + k(x̃s+1)
T (K+ σ2I)−1(y −m)

σs(x̃s+1) = k(x̃s+1, x̃s+1)− k(x̃s+1)
T (K+ σ2I)−1k(x̃s+1)

where k(x̃s+1) is a kernel function applied to the inputs with observed function evaluations and

the new input; i.e., it represents the covariance between observed inputs and any unobserved input.

Using the above expressions, the mean and variance for any point can be computed. There is a suite

of kernel functions available in the literature [Rasmussen and Williams, 2005]. Note that the kernel

function should be chosen based on the problem domain and it is often the key to finding the best

approximation of the true function.

5.1.2 Search-Based Approaches for Weight Learning

As mentioned earlier, commonly used approaches for rule weight learning in SRL are

generally based on maximizing a likelihood function. In this section, I first give a motivating example

that highlights the issues with likelihood-based approaches and then I propose four search-based

approaches to learn weights in SRL frameworks.

Motivating Example

Consider a simple classification model with two rules parameterized by their respective

weights w1 and w2, applied to a toy dataset. Figure 5.1 shows the performance of the model in PSL

as I vary the rule weights logarithmically from 10−6 to 1.0. Figure 5.1a shows AUROC and Figure
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(a) AUROC (b) log-likelihood

Figure 5.1: Heat map for AUROC and log-likelihood for a model with two rules parameterized by
their respective weights w1 and w2. The lighter color indicates higher values and higher values are
desired for both metrics.

5.1b shows the log-likelihood of the model. Lighter shades (yellow) represent a high value and

darker shades (dark blue) represent a low value. The AUROC is maximized when the first rule’s

weight is 0.1 and the second rule’s weight is 10−6. However, the likelihood is not maximized at

these weights. For this simple model and dataset, the likelihood is not well correlated with the

AUROC. While this behavior is shown using PSL, similar outcome can be seen when using MLN

models as well.

Problem definition

Consider a SRL model with r template rules where each rule i ∈ {1 . . . r} is associated

with a weight wi ∈ R+. Grounding all the rules with data D yields a set of m observed random

variables x = {x1, . . . , xm}, n unobserved random variables y = {y1, . . . , yn}, and ι potentials

ϕ = {ϕ1, ϕ2, . . . , ϕι}. The unobserved random variables y are inferred by optimizing Equation

2.4. Further, all unknown random variables are associated with corresponding ground truth y∗ =
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{y∗1, . . . , y∗n} used to compute evaluation metrics. Let w = {w1, . . . , wr} be the vector representing

the set of rule weights, i.e., the weight configuration. Next, let ω(y,y∗) : (y,y∗)→ R be a problem-

specific evaluation metric (e.g., accuracy, AUROC, or F-measure) and let γ(w) : w → ω(y,y∗)

be the same function ω parameterized by w that maps weights to the metric. Then the objective

of weight learning can be expressed as finding the set of weights that maximize the function γ

which represents the true metric function ω, i.e., argmaxw γ(w). The objective of the search-based

approaches is to find an approximate function g ≈ γ by sampling t weight configurations from a

set of possible weight configurations W (the weight space). In order to perform this optimization,

I introduce four approaches based on hyperparameter search methods in other areas of machine

learning. The first two approaches are based on random grid search and continuous search used in

deep learning [Bergstra and Bengio, 2012], the next approach is based on Hyperband algorithm

used in statistical machine learning [Li et al., 2018b], and the last one is based on BO with GPR

used for hyperparameter tuning in deep learning [Snoek et al., 2012].

Random Grid Search for Weight Learning

A straightforward search-based approach to weight learning is an exhaustive exploration

over the set of weight configurations W generated through a user-specified grid of weights. The

user-specified grid to generate weight configurations W is typically constructed by specifying a

finite collection of v values V = {V0, · · · , Vv} that can be assigned as weights for each of the rules,

e.g., V = {0.01, 0.1, 1.0}. If a model contains r rules, then I can define W to be the r-ary Cartesian

product of V , W = V ×· · ·×V , defining a grid with the intersections representing different weight
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configurations. Then, for each configuration w ∈ W̃, γ(w) is evaluated after performing MAP

inference in the SRL model. Finally, the weight configuration with the highest γ(w) is selected.

However, a comprehensive grid search is usually infeasible due to the combinatorial

explosion in the size of the grid; if a model contains r rules where each rule can take on one of v

possible values, then |W| = vr. Thus, to make the approach tractable (as mentioned in Algorithm

4), I uniformly draw t unique samples from W to stay within an established budget of resources;

this approach is referred to as random grid search for weight learning (RGS). It is important to

ensure that the resources are used to evaluate distinct weight configurations, therefore at the time

of sampling I ensure that every weight configuration chosen has a possibility of yielding a distinct

solution. In Section 5.1.3, I show how two weight configurations that look distinct can yield the same

solution at the time of MAP inference (and hence for the value of γ as well) and how I can identify

and avoid wasting resources on such inherently identical weight configurations. Therefore, to ensure

uniqueness of weight configurations explored, I keep track of a set Wexplored which contains all

the weight configurations explored so far and the configurations that are inherently the same as an

explored weight configuration and sample new weight configuration from {W −Wexplored}.

Continuous Random Search for Weight Learning

A primary drawback of RGS is the need to define a grid over the space which captures

weights that will lead to a good model. While specifying a grid might seem straightforward, several

unique properties of the weight space makes the process of specifying the right grid non-trivial

(details in Section 5.1.3). Further, specifying grids can easily result in unexpected biases. For
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Algorithm 4: Random grid search for weight learning.
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = set of weight configurations from the user-defined weight grid;

2 t = maximum number of weight configurations to explore;

3 Wexplored = weight configurations explored so far;

4 for iter ∈ {1, . . . , t} do

5 wnext = Random(W −Wexplored);

6 perform MAP inference to compute γ(wnext);

7 ∀ẇ ∈W such that γ(ẇ) = γ(wnext), add to Wexplored ;

8 if γ(wnext) > γ(w∗) then

9 w∗ = wnext;

10 end

11 end

instance, one may be tempted to simply define a grid of evenly spaced points in a unit hypercube.

However, this leads to a sampling bias towards configurations with moderate ratios which might not

be ideal (more details in Section 5.1.3).

Continuous random search for weight learning (CRS) is similar to RGS in that, rather

than exploring the entire space, t weight configurations are chosen for evaluation and the highest

performing configuration is returned. The difference is that CRS does not define a discrete grid

of weights but samples continuously from the search space. Therefore, it is crucial for the search
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space to be an accurate representation of the true weight space. In this approach (as mentioned in

Algorithm 5), I sample t weight configurations to explore Wexplore from a Dirichlet distribution

as an approximation of the weight space and finally return the weight configuration with the best

value obtained for the γ function. Here, the Dirichlet distribution represents the weight space W.

In Section 5.1.3, I discuss in detail on why this is an appropriate choice. For CRS the Dirichlet

distribution is parametrized by a r-dimensional hyperparameter A ∈ R+r, which can be tuned to

obtain the best approximation of the space based on the application and prior knowledge. Note

that a Dirichlet distribution can generate positive weights only. This can be restrictive for MLNs

which support negative weights. In Section 5.1.4, I show how the sampling approach is extended to

support negative weights for MLNs.

Algorithm 5: Continuous random search for weight learning.
Result: w∗ : weight configuration with best evaluation metric among samples

1 t = maximum number of weight configurations to explore;

2 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;

3 for wnext ∈Wexplore do

4 perform MAP inference to compute γ(wnext);

5 if γ(wnext) > γ(w∗) then

6 w∗ = wnext;

7 end

8 end
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Hyperband for Weight Learning

So far, the search-based methods I have discussed iteratively select a set of t weight

configurations to explore, Wexplore, from a set of weight configurations, W and then run inference

until completion for each wi ∈Wexplore in order to calculate γ(wi). Then the weight configuration

w∗ = argmaxwi∈Wexplore
γ(wi) is chosen as the model weights. Ideally, in these methods, I

want t to be as large as possible, as increasing the number of weight configurations explored (t)

can potentially improve γ(w∗) obtained. However, it is generally infeasible to have a large t due

to limited resources. In order to maximize my gain with the limited resources, I make use of a

practical observation that the weight configurations which initially show a slow rate of improvement

during inference will tend to converge to a poor γ(·) evaluation. For instance, let us assume two

potential weight configurations w1 and w2 for a SRL model, if MAP inference for both the weight

configurations takes t̂ iterations to converge to the final solution and results in γ(w1) > γ(w2),

then it is highly likely that the γ(·) computed by interrupting the MAP inference at t̂
ŝ number of

iterations, where ŝ > 1, will still result in γ(w1) > γ(w2). Therefore, running MAP inference to

convergence for all weight configurations could be wasteful. By early termination of unpromising

weight configurations a larger number of configurations can be explored resulting in a better overall

solution. This idea has been exploited in other areas of machine learning to tune hyperparameters

and is referred to as Hyperband [Li et al., 2018b]. Here, I adapt this approach in the context of

weight learning and refer to it as Hyperband for weight learning (HBWL).

HBWL allows for more exploration while still operating within a budget (generally
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time or iterations) through adaptive resource allocation and early-stopping. To understand how

the algorithm operates, I will first describe SuccessiveHalving, a critical subroutine of HBWL,

and then describe how SuccessiveHalving is used in HBWL. SuccessiveHalving (as mentioned in

Algorithm 6) requires two input parameters, namely t the total number of weight configurations I

wish to explore and B the total number of iterations for MAP inference 2. Initially t configurations

Wexplore = {w1, · · · ,wt} are sampled from the search space W. Then, SuccessiveHalving

proceeds in rounds. At the start of each round, a fraction of the budget (b = B
t ) is allocated to the t

weight configurations to perform MAP inference and compute γ′(·, b) where γ′(·, b) is the evaluation

metric computed after b iterations of MAP inference. Finally, the weight configurations are ranked

based on γ′(·, b), the bottom half of the weight configurations are removed, and |Wexplore| is reduced

to t
η where η > 1 is the proportion of configurations to be removed (for classic SuccessiveHalving

η = 2). This process is repeated for multiple rounds until only one weight configuration remains

which is chosen as the w∗.

The hyperparameters B and t of SuccessiveHalving can trade-off between having a large

number of weight configurations with a small amount of resource allocated to each configuration

(a.k.a. exploration), or a small number of weight configurations with a large amount of resource

allocated to each weight configuration (a.k.a. exploitation). The best trade-off between exploration

and exploitation is typically unknown. HBWL (as mentioned in Algorithm 7) extends Successive-

Halving by trying several possible values for the t
B ratio to choose the best explore exploit trade-off.

2Note that, for simplicity, in the algorithm I overload B to be number of iterations in MAP inference in the first round
instead of maximum number of iterations. The maximum number of iterations in Algorithm 6 is Bηlogη(t), where η is a
parameter defined in HBWL which represents the proportion of weights removed every round in SuccessiveHalving.

133



The possible values for t
B are constructed strategically from the two user provided parameters for

HBWL, R̂ the maximum amount of resource that can be allocated to a single weight configuration

and η ∈ (1,∞) the proportion of weight configurations to be removed in each round of Successive-

Halving. Each complete execution of SuccesiveHalving in HBWL is referred to as a bracket. Every

bracket is parameterized by the values (t, B, s) that are constructed uniquely for each bracket using

R̂ and η, where s is the number of initial configurations being tested in that bracket. HBWL chooses

a bracket size of s = ⌊logη(R̂)⌋+ 1] and decrements it every round until one. Finally, the weight

configuration with the best value for function γ is returned.

Bayesian Optimization for Weight Learning

Next, I introduce BOWL (Bayesian Optimization for Weight Learning), which uses GPR

to perform weight learning in the BO framework3. Previously discussed approaches make no

assumptions about the search space and the evaluation function (γ). They randomly sample weight

configurations from the search space and evaluate the function γ. This process can be made more

efficient by assuming that the metric obtained by two weight configurations w1 and w2 are likely to

be similar (γ(w1) ≈ γ(w2)) if the distance between them is small. This implies that when searching

the space I can make use of this information and either explore more diverse weight configurations

or exploit and choose weight configurations closer to previously best performing configurations.

This can be obtained by using BOWL. Next I explain BOWL and my choices for both the kernel

function in GPR and the acquisition function in BO which are key in determining the performance
3Note that, in my method I loosely refer to this specific way of using GPR in BO framework as Bayesian optimization.
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Algorithm 6: SuccessiveHalving
Result: w∗, γ∗ : weight configuration with the best evaluation metric and the metric value

γ(·)

1 B = number of iterations in MAP inference for first round;

2 η = the proportion of weight configurations to be removed in each round;

3 Wexplore = weight configurations to be evaluated;

4 t = |Wexplore|;

5 b = B ;

6 iter = 0;

7 while t > 1 do

8 iter++;

9 ∀w ∈Wexplore perform MAP inference with max iterations set to b;

10 if argmaxw∈Wexplore
γ′(w, b) > γ∗ then

11 γ∗ = maxw∈Wexplore
γ′(w, b);

12 w∗ = argmaxw∈Wexplore
γ′(w, b);

13 end

14 t = ⌊ tη ⌋;

15 b = Bηiter;

16 Wexplore = topt(Wexplore), ;

17 // topt ranks Wexplore based on γ′ and returns top t weights;

18 end
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Algorithm 7: Hyperband for weight learning.
Result: w∗ : weight configuration with best evaluation metric

1 R̂ = maximum number of resources to be allocated;

2 η = the proportion of weight configurations to be removed in each round;

3 smax = ⌊logη(R̂)⌋, maximum bracket size;

4 γ∗ = −∞, the best γ value obtained so far;

5 for s ∈ {smax, smax − 1, · · · , 1} do

6 t = ⌊ (smax+1)ηs

(s+1) ⌋;

7 B = R̂η−s;

8 Wexplore ∼ Dirichlet(A)t, t distinct samples from a Dirichlet distribution;

9 ws, γs = SuccessiveHalving(B,Wexplore);

10 if γs > γ∗ then

11 γ∗ = γs;

12 w∗ = ws;

13 end

14 end
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of BOWL.

A high-level sketch for BOWL (as mentioned in Algorithm 8) is as follows: first, a weight

configuration w ∈W is chosen using an acquisition function α (discussed in Section 10). Next,

inference is performed using the current weight configuration w, and γ(w) is computed. Then

GPR is updated with w and γ(w). Finally, after t iterations, the weight configuration that resulted

in highest value for γ is returned. As mentioned earlier, there are two primary components of

BOWL that need to be defined: the kernel function used in GPR and the acquisition function α.

In order to use GPR and choose a kernel function, I must make an assumption about the

function γ. Here, I assume that the function γ is smooth. This assumption is true if the problem

is well-conditioned and the metric function ω being optimized is a smooth function, such as mean

square error (MSE). For now, I make this assumption (justified further in Section 10), and choose

the squared exponential kernel as the kernel for the GP:

k(wi,wj) = σ̃ · exp{
∆i,j

2ρ2
} (5.1)

where σ̃ is the amplitude, ρ is the characteristic length-scale, and ∆i,j is the distance between the

two weight configurations wi and wj . ρ and σ are the kernel hyperparameters. The scaling factor ρ

affects the smoothness of the approximation (a large value implies more smooth) and the number of

iterations required to explore the space. I choose ρ such that a reasonable exploration of the space is

possible in t iterations. The value of σ̃ is chosen based on the range of the metric being learned.

The distance function ∆ is crucial in determining the co-variance between two weight

configurations. Ideally, if the distance between two weight configurations is zero then the output
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of the function γ should be the same. And, as the distance between the two weight configurations

increases, the correlation between the output of the γ function should go to zero. In Section 5.1.3 I

introduce a new projection for the weights and show that distances measured in the projected space

exhibit these properties.

Algorithm 8: Bayesian optimization for weight learning.
Result: w∗ : weight configuration with best evaluation metric among samples

1 W = Dirichlet(A);

2 t = maximum number of weight configurations to explore;

3 for iter ∈ {1, . . . , t} do

4 wnext = argmaxw∈W α(w); α//an acquisition function chosen from Section 10;

5 perform MAP inference to compute γ(wnext);

6 update GPR with γ(wnext);

7 if γ(wnext) > γ(w∗) then

8 w∗ = wnext;

9 end

10 end

Justification for Squared Exponential Kernel As mentioned earlier, the squared exponential

kernel makes a strong smoothness assumption on the γ function. While this might seem restrictive,

I argue that this is a reasonable assumption in the context of weight learning in SRL. To do this,

I constrain ourselves to only those metrics (ω(y,y∗)) that are smooth with respect to the random
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variables (such as MSE). Note, my assumption is that the function γ is smooth and γ is parametrized

with w and not the random variables y. Hence, it is non-trivial to prove smoothness in γ. With the

above constraint on the possible metrics, I know that if a small change in w leads to a small change

in y, then the function γ is also smooth. I formally define smoothness of the function γ as follows:

Definition 6. Given two sets of weight configurations w1 and w2 for a SRL model with r rules that

generates n unobserved random variables y, the function γ is considered to be smooth if ∆1,2 < ϵ

where ϵ → 0, then ||y1 − y2||2 < ν where ν → 0, y1 and y2 are the random variables inferred

using weights w1 and w2 respectively.

This directly leads to the conditioning of the problem. If a problem is well-conditioned

then my assumption about the smoothness of γ is precise. If the problem is ill-conditioned then this

assumption fails to hold and the function learned in BOWL could be a poor approximation of γ.

Further, in practice small changes in weights generally do not affect the γ function significantly

which indicates smoothness. Even though I assume ω(y,y∗) is a smooth function such as the MSE

to justify squared exponential kernel, in my empirical evaluation this is effective even on other

non-smooth evaluation functions such as accuracy.

Acquisition Function Another crucial component of my algorithm to be defined is the acquisition

function α. The function α determines the next weight configuration on which to evaluate the

function γ, i.e., wnext = argmaxw∈W α(w). Since my approach approximates the function γ with

g, I would like to choose points that allow us to learn the approximation g while also maximizing the

metric γ. To achieve this, I consider four well studied acquisition functions in the context of BO.
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Upper confidence bound (UCB) [Srinivas et al., 2010]: is an optimistic policy with provable

cumulative regret bounds. The acquisition function can be written as:

α(W) = µ(w) + ψ · σ(w)

where µ and σ are the mean and variance predicted by the GP and ψ ≥ 0 is a hyperparameter set to

achieve optimal regret bounds.

Thompson sampling (TS) [Thompson, 1933]: is an information-based policy that considers the

posterior distribution over the weights W. The acquisition function can be written as:

α(W) = p̃(w)

p̃(w) ∼ N (µ(w), σ(w))

where p̃ are samples obtained from the distribution computed at the point w.

Probability of improvement (PI) [Kushner, 1964]: is an improvement-based policy that favors

points that are likely to improve an incumbent target τ . The acquisition function can be written as:

α(W) = P(γ(w) > τ) = F
(µ(w)− τ

σ(w)

)
where F is the standard normal cumulative distribution function and τ is set adaptively to the current

best observed value for γ.

Expected improvement (EI) [Mockus et al., 1978]: is an improvement-based policy similar to

PI. But, instead of probability, it measures the expected amount of improvement. The acquisition
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function can be written as:

α(W) =
{
(µ(w)− τ)F

(µ(w)− τ
σ(w)

)
+ (σ(w))F

(µ(w)− τ
σ(w)

)}
where F is the probability density function of a standard normal distribution function.

Efficiency of Search-Based Approaches

In practice, it is inefficient to use search-based approaches for high-dimensional problems.

For instance, GPR has been shown to work best when the number of dimensions is less than 50

[Wang et al., 2016]. This makes weight learning an ideal use case for search-based approaches,

because typically SRL models have just tens of rules and most often the number of rules does not

exceed 50.

The success of all the weight learning approaches discussed so far relies on two important

factors: 1) the weight configurations chosen are accurate representation of the true search space;

and 2) the distances measured between weight configurations correlate to the solution obtained

by using them. In the next section, I first show that the weight space in both PSL and MLN are

redundant making the representation imprecise and weight configuration distances do not correlate

to the solution obtained. Next, assuming positive weights for rules, I introduce a novel projection

that address these challenges. Finally, I also provide an efficient strategy to approximately sample

from the projected space ensuring the effectiveness of the search-based approaches introduced.

141



5.1.3 Efficient Space to Search for Weights

The weights of a SRL model consisting of r rules is represented via a vector in an r-

dimensional space and is referred to as original space (OS). However this is an inefficient space to

preform weight learning using a search-based approach. This is because there exists many weight

configurations which yield the same solution when performing MAP inference in SRL models. The

main reason for this is because weights in SRL models are relative and scale invariant at the time of

MAP inference. I can show that any SRL model with weights in R can be re-scaled with a positive

constant c̃ without any change to the solution obtained through the objective in Equation 2.4. This

shows that weights in SRL models are scale invariant when performing MAP inference.

Theorem 2. Consider any SRL model with r rules and weights w = {wi, . . . , wr}, wi ∈ R+

(wi ∈ R for MLN). For all weight configurations c̃ ·w where c̃ > 0, the solution obtained for y by

performing MAP inference using weights w and c̃ ·w are the same, i.e., argmaxy ŝ ·E(y|x,w) =

argmaxy ŝ ·E(y|x, c̃ ·w).

Proof. The objective generated by using weights c̃ ·w can be written as:

argmax
y

ŝ ·E(y|x, c̃ ·w) = argmax
y

ŝ ·
ι∑
i

c̃ · wiϕi(x,y)

= argmax
y

c̃ · ŝ ·
ι∑
i

wiϕi(x,y)

= argmax
y

c̃ · ŝ ·E(y|x,w)

Since the MAP inference objective using both Epsl and Emln are scale invariant, the re-scaling of

the weight configuration w to c̃ ·w leaves the solution of the inference unchanged.
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Since in my search-based approaches I optimize w.r.t. a user-defined evaluation metric,

and this function depends only on the random variables obtained by MAP inference, I have that the

user-defined evaluation metric function is also scale invariant.

Challenges in the Original Space

OS for weights has two fundamental challenges for search-based approaches: 1) OS is

redundant and 2) the distance between weights in OS does not translate to true correlation of the

solution obtained by using these weights. The redundancy of space is clear from Theorem 2 as the

weights on any line intersecting origin in OS will have the same solution. This also means that the

Euclidean distance δi,j between two weight configurations wi and wj can be extremely large and

still result in the exact same solution and vice versa. The example below clearly illustrates this

phenomenon:

Example 1. Consider a model with two rules w = {w1, w2}. Let us assume three possible weight

configurations for this problem: w1 = {0.1, 0.1}, w2 = {1.0, 1.0}, and w3 = {0.1, 0.0001}.

Assuming that the number of groundings for both rules are the same, the weights of the rules in w1

and w2 indicate that both rules are equally important and lie on a line intersecting origin, while

in w3 the first rule is 1000 times more important than the second rule and is not on the same line.

This results in the function γ producing the same output for w1 and w2, and potentially a different

value for w3. Based on this, the weight configuration w3 should be significantly different from the

weight configurations w1 and w2, while w1 and w2 should be similar. Unfortunately, the Euclidean

distances measured between the weight configurations, δ1,2 = 1.27, δ1,3 = 0.09, and δ2,3 = 1.34,
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do not behave in this manner. The distance δ1,2 is much larger than distance δ1,3. Therefore, some

of the search-based approaches such as BOWL would incorrectly infer that the function value of

γ(w1) is more correlated with γ(w3) than γ(w2). However, as argued above, I want the opposite

behavior.

In order to address these challenges, I introduce a new projection for the weights. For the

remainder of this section I assume weights of the rules to be positive. While this does not restrict

PSL which supports only positive weights, it does constrain MLNs which support negative weights.

However, it has been shown that a negative weighted rule in MLNs can be replaced with a negated

rule and positive weight with the same magnitude. Further in Section 5.1.4, I show how I extend and

accommodate for positive and negative weights in MLNs when using the search-based approaches.

Scaled Space

In order to perform efficient and effective search, I define a new space for the weight

configurations called scaled space (SS). SS is a projection of weights onto a relative space. I

use the ratio of weights between the rules to define the relative importance of weights in the

configuration. This projection eliminates redundancies and results in distances that correspond to

the actual correlation between the weight configurations. Formally, I define SS as:

Definition 7. Given a set of weights w = {w1, . . . , wr} ∈ (0,∞]r, SS E is a projection defined on

w such that E(w) ∈ R(r−1) is given by:

E(w) = {∀ri=2(ln(wi)− ln(w1))} (5.2)
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Given the definition of SS, I next define the distance between two weight configurations

in SS as:

Definition 8. The distance ∆ between two weight configurations wi and wj in SS is defined as:

∆i,j = ||E(wi)− E(wj)||22 (5.3)

Given the definition of SS, I can now show that SS does not have the two challenges

mentioned for OS. I first show that any weight configuration on a line intersecting the origin in OS

will be represented by the same point in SS eliminating the redundancy that exist in OS. Next I show

that in SS (E), a distance of zero (∆i,j = 0) between two weight configurations wi and wj , implies

that the two weight configurations yield the same solution for the random variables y at the time of

MAP inference hence proving accurate representation of distances between weight configurations.

Theorem 3. Given two weight configurations w1 and w2, if w1 = c ·w2, i.e., w1 and w2 lie on a

line intersecting the origin in OS then the resultant value in SS will be the same, i.e., E(w1) = E(w2)

Proof. Given, w1 = c ·w2 implies:

w1,i = c · w2,i; i ∈ 1, . . . , r

E(w1) by definition is given by {∀ri=2(ln(w1,i)− ln(w1,1))}. By replacing w1,i with cw2,i I get:

E(w1) = {∀ri=2(ln(w2,i)− ln(w2,1))} = E(w2)

Therefore, if w1 = c ·w2 then E(w1) = E(w2).
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Theorem 4. Given two weight configurations w1 and w2, if E(w1) = E(w2) (i.e., ∆1,2 = 0) then

the solution obtained for y by optimizing Equation 2.4 with both the weight configurations are the

same.

Proof. Let w1 = {w1,1, . . . , w1,r}, w2 = {w2,1, . . . , w2,r} and E(w1) = E(w2). As the two

weight configurations are the same in SS, the equality can be written as:

ln(w1)− ln(w1,1) = ln(w2)− ln(w2,1)

w1 =
w1,1

w2,1
w2

Since w1,1 ∈ (0, 1] and w2,1 ∈ (0, 1] are constants, the resulting optimization problems are

equivalent:

argmax
y

ŝ ·E(y|x,w1) = argmax
y

w1,1

w2,1
ŝ ·E(y|x,w2)

= argmax
y

ŝ ·E(y|x,w2)

Therefore, if the distance between two weight configurations is 0 in SS, then the solutions of their

corresponding SRL model by optimizing Equation 2.4 are the same.

Theorem 3 shows that SS is not redundant and Theorem 4 proves the distances in SS

are accurate. These theorems show the correctness of SS for weight learning using search-based

approaches. Note that in the definition of SS I use the weight of the first rule to compute the

projection. This choice is arbitrary and can be switched to any rule without affecting the space.

Example 1. (Continued) Consider the earlier example. The weights and the distances of my running
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example in SS E using Equation 5.2 and 5.3 are: E(w1) = {0}, E(w2) = {0}, E(w3) = {6.907},

∆1,2 = 0, ∆1,3 = 47.7, and ∆2,3 = 47.7.

A drawback of SS is that it does not support a weight of zero for any rule in the model.

This means that all rules in the configuration must participate in the model. However, in practice,

I mitigate this by using SS only to measure distances between weight configurations which is

performed by adding a small positive value (e.g., 10−ϱ, where ϱ ∈ Z+, ϱ≫ 0) to all weights. In

order to generate weight configurations for the search, I sample from a hypersphere in OS which

has similar properties as SS. I discuss this in detail in the Section 5.1.3.

The Effect of Varied Number of Groundings in the Scaled Space

My discussion on SS so far has made a very important simplifying assumption, that the

number of groundings for each rule in the model is the same. However, the number of groundings

produced by different rules are seldom the same and the number of groundings produced by a rule

has an impact on the inference of the random variables. The weight associated with each rule is

repeated for each ground instance of that rule. This leads to the weight of each rule having varied

influence on the minimization of the energy function. For instance, if a model has two equally

weighted rules, but one rule produces 10 times more groundings than the other, then that rule

implicitly becomes 10 times more important in the model.

Next I show that while the number of groundings has an impact on the solution obtained

by SRL models, it does not impact the correctness of SS. I can modify the weights to accommodate

the number of groundings of the rules in the model. Consider a model with r rules and let
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β = {β1, . . . , βr} be the number of groundings for each of the r rules. I define a grounding factor κ

for each rule. For rule z, the grounding factor κz = βz

max(β) , where κ = {κ1, . . . , κr} is the vector

of grounding factors. Therefore, the true weight associated with the zth rule is κz · wz and the

grounding adjusted weight configuration can be represented as an element-wise dot product between

κ and w, i.e., w̃ = κ ·w. The distance between two weight configurations i and j in OS can be

re-written as ||w̃i − w̃j ||22. Similarly the distance in SS can be re-written as ||E(w̃i) − E(w̃j)||22.

However, the scaling factor κ does not affect the distance in SS as κ is constant for both weight

configurations and cancels when computing the distance leaving the distance in SS unchanged.

Theorem 5. Given two weight configurations wi and wj , a set of grounding factors of κ, and

grounding adjusted weight configurations w̃i = κ ·wi and w̃j = κ ·wj , the distance measured

between both (wi,wj) and (w̃i, w̃j) in SS are equal, i.e. ||E(wi)−E(wj)||22 = ||E(w̃i)−E(w̃j)||22.

Proof. To prove the above theorem I consider the difference between the weight configurations

E(w̃i)− E(w̃j):

E(w̃i)− E(w̃j) = (ln(κ ·wi)− ln(κ1 · wi,1))−

(ln(κ ·wj)− ln(κ1 · wj,1))

= (ln(wi)− ln(wi,1))−

(ln(wj)− ln(wj,1))

= E(wi)− E(wj)

Since E(w̃i)− E(w̃j) = E(wi)− E(wj), the distances are also equal.
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Theorem 5 shows that the distance measured between two weight configurations in SS is

robust while considering the size of their groundings.

Sampling Weight Configurations for Search

Most search-based approaches work by choosing different possible weight configurations

to explore and search for the weight configuration with the best evaluation score. In order to do

this effectively, I must ensure that the samples generated for exploration are representative of the

space. While it might be ideal to directly sample uniformly from SS, this is challenging due to the

one-to-many mapping between SS and OS and, as mentioned earlier, points in SS cannot represent

rules with zero weights. One straightforward approach to handle this is to uniformly sample weight

configurations from the positive quadrant of a unit hypercube in OS and and project the points on to

SS to measure distances. The approach can be summarized as:

w ∼ Unif([0, 1])r

where Unif generates uniform random numbers between [0, 1]r. Since, the influence of weights in

SRL models are scale invariant for MAP inference, I can ensure all possible weight configurations

that can be represented in the R+r can be represented in [0, 1]r. However the main problem

with this approach is that the resulting configurations will have a low spread in SS as OS has a

lot of redundancies and the projection will place several weight configurations around the same

region. This is not desirable as I would prefer to have a uniform/large spread of possible weight

configurations in SS.
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As mentioned earlier, MAP inference in SRL models are scale invariant and hence weights

along a line passing through 0 in OS are equivalent, i.e., the direction of a vector starting at the origin

in OS is sufficient to represent all weight configurations in SRL models. This implies that the weight

configurations obtained by sampling from the surface of an r-dimensional unit hypersphere in the

positive quadrant represents all possible weight configurations in OS. Therefore, uniformly sampling

from the surface of this hypersphere (I only refer to the positive quadrant of the unit hypersphere) is

a close approximation of SS. It is trivial to show that Theorem 3 and 4 apply to this space (full proofs

are in Appendix A.2.1). However, Theorem 5 does not hold true for this space. This is because the

grounding factor generally does not preserve the orientation of the vector, and as a result will modify

the distances in this space (full proof shown in Appendix A.2.1). Therefore, I treat the hypersphere

as an approximation of SS and sample weight configurations from the hypersphere but compute

distances in SS. Uniform samples of weight configurations from the surface of the hypersphere can

be obtained by first sampling points from a standard multivariate-normal distribution and projecting

the values to the hypersphere [Muller, 1959, Marsaglia, 1972] (since I want samples only from the

positive quadrant I project all samples on to this quadrant by taking the absolute value):

s ∼ N (0, I)

w = | s

||s||
|

0 is a r-dimensional zero vector and I is an r-dimensional identity matrix.

While uniform sampling from the surface of a hypersphere ensures that every orientation

of the weight vector is equiprobable, in practice this might not always be desirable. The primary
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reason for this is that for any weight configuration sampled from the hypersphere, if I choose two

weights wi < wj the P (wi
wj

< 0.1) ≈ 0.11 (assuming r = 2). This implies that the ratio between

weights will typically be close to one which is not ideal as I would expect the evaluation metric

to show large variance with larger ratios. In order to circumvent this, I propose another sampling

strategy which gives us full control over the distribution of the weight configurations. I sample from

an r-dimensional Dirichlet distribution which generates samples from the probability simplex. It is

easy to see a one-to-one correspondence of the probability simplex and the surface of a sphere. The

hyperparameter of the Dirichlet distribution can be modified to generate samples skewed towards

the center (all equal weights) or the poles (extreme ratios) or anywhere in between. The sample

generation process is as follows:

w ∼ Dirichlet(A) (5.4)

where A ∈ R+r is the hyperparameter that defines the Dirichlet distribution. The visualization of

different densities obtained using different A in three dimension is shown in Appendix A.2.1 along

with its impact on the empirical evaluation in Section 5.1.5.

5.1.4 Accommodating Negative Weights in Markov Logic Networks

In this section I discuss how the sampling strategy discussed in Section 5.1.3 is modified

for MLNs to accommodate negative weights when using CRS, HBWL, and BOWL. Since the

Dirichlet distribution samples from the probability simplex, the weights sampled are strictly non-

negative. To introduce the possibility of negative weights, I first sample weight configurations
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from the Dirichlet distribution and then randomly select an orthant in the r-dimensional Euclidian

space. This random selection of an orthant has the same effect as independently flipping the sign

of each weight in the sampled configuration so every orthant is equiprobable. I further apply the

positive scale invariance property for weight configurations to ensure the uniqueness of samples.

While no sampling is needed for RGS in MLNs, I ensure uniqueness of explored configurations

by projecting the values on to a unit hypersphere instead of SS. In order to use BOWL in MLNs,

instead of computing distance in SS, I compute the Euclidean distances of the weight configurations

by projecting the weights onto the hypersphere 4.

5.1.5 Empirical Evaluation

In this section, I evaluate the search-based approaches for weight learning on various

realworld datasets. I investigate four research questions through my experiments:

[Q1] How do search-based approaches perform on realworld datasets compared to the

existing methods?

[Q2] Which search-based approach performs better weight learning in SRL?

[Q3] Are search-based approaches scalable?

[Q4] Are search-based approaches robust?

In order to answer these questions I selected five realworld datasets from different domains
4Note this may lead to over generalization of the function as two points might be very close to each other but have

significantly different outcome on the γ function (as mentioned in Example 1).
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for which SRL models have promising results [Bach et al., 2017, Kouki et al., 2015]5. Details of

these datasets are as follows:

Jester: contains 2,000 users and 100 jokes [Goldberg et al., 2001]. The task is to predict user’s

preference to jokes.

LastFM: contains 1,892 users and 17,632 artists. The task is to recommend artists to users by

predicting the ratings for user-artist pairs.

Citeseer: contains 2,708 scientific documents, seven categories, and 5,429 directed citations. The

task is to assign a category to each document.

Cora: is similar to Citeseer dataset, but contains 3,312 documents, six categories and 4,591 directed

citations.

Epinions: contains 2,000 users and 8,675 directed links which are positive and negative trust links

between users. The task is to predict the trust relation.

I evaluate the three search-based methods (RGS, CRS, and BOWL) for both MLNs and

PSL, and HBWL for PSL only. While the implementation of RGS, CRS, and BOWL are efficient

to run for both MLNs and PSL (more details in Section 5.1.5), HBWL with MLNs on my datasets

is not as efficient and each experiment was estimated to take about a month. While the search-based

approaches have been fully integrated into PSL codebase, for MLNs, I implement search-based

methods as wrappers, i.e., I use an external script to generate weights and use Tuffy as a black-box

evaluator. Because of this, in HBWL, the SuccessiveHalving step requires us to reground the same

model multiple times which substantially increases time required to run. I use MLE, MPLE, and
5Models, code, and data: https://github.com/linqs/srinivasan-mlj20
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LME as baseline methods for PSL and use DN implemented in Tuffy as my baseline for MLN. As

MLNs are discrete, I perform evaluations only on the three discrete datasets, Citeseer, Cora, and

Epinions. For each dataset, depending on the problem, I leverage the metric that has been used

for the problem to measure its performance. Hence, I report MSE and AUROC for the Jester and

LastFM datasets, categorical accuracy (CA) and F1 for the Cora and the Citeseer datasets, and

AUROC and F1 for the Epinions dataset. Further, all my experiments were run on a machine with

16 cores and 64GB of memory.

Performance analysis

To address [Q1] and [Q2], I compare the performance of all search-based approaches

RGS, CRS, HBWL, and BOWL with MLE, MPLE, and LME in PSL and DN in MLN on

several metrics. For the datasets, I use the 8 folds generated by Bach et al. (2017) for Citeseer,

Cora, Epinions and Jester and 5 folds generated by Kouki et al. (2015) for LastFM and perform

cross validation. I perform a paired t-test (p-value ≤ 0.05) across methods to measure statistical

significance. In RGS for PSL, I specify the set V = {0.001, 0.01, 0.1, 1, 10}, while for MLNs I use

V ∪ −V . For CRS, HBWL, and BOWL, I specify each dimension of A to be 0.05 for PSL (more

experiments with different values can be found in Section 5.1.5) and 0.1 for MLNs. In HBWL for

PSL, R̂ represents the number of iterations of ADMM inference and is set to 25000 and η is set to 4.

For RGS, CRS, HBWL, and BOWL, the maximum number of weight configurations to explore

in order to approximate the user-defined evaluation metric function is set to t = 50. Although

in my experiments the best metric value is usually obtained at t < 25 (especially for BOWL,
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this is likely because the function I intend to learn has several flat regions). I also use a stopping

criterion for BOWL which terminates the exploration if the standard deviation at all sampled weight

configurations is less than 0.5. MLE, MPLE, LME, and DN are allowed to run for 100 iterations

or until convergence whichever is smaller. For BOWL, I use UCB as the acquisition function with

ψ = 1 to favor modest exploration. However in Section 5.1.5 I show that similar performance

can be obtained with PSL by using the other acquisition functions discussed in Section 10. Other

hyperparameters that I use for BOWL are: σ̃ = 0.5, ρ = 1, and the mean function is a constant 0.5.

I set the value of ρ to one after exploring different values in [105, 10−5], and I set σ̃ to 0.5 as my

metrics are mostly in the range [0, 1].

Table 5.1 and 5.2 show the comparison between search-based approaches and other

methods across the different datasets for both PSL and MLN respectively. In each row of the table,

the best performing method and those that are not significantly different from the best performing

method are shown in bold. I first analyze the performance results of PSL in Table 5.1. Here,

the search-based approaches are the best performing method across all the datasets and metrics.

Specifically, BOWL is the best or not significantly different from the best performing method on

all datasets and metrics (except LastFM MSE). For the Epinions and Cora datasets, there is no

statistically significant difference among all approaches on both metrics. However, on the Citeseer

dataset for CA all search-based approaches perform better than other approaches. An interesting

observation here is that on Citeseer dataset the weights found by MLE and LME perform as well as

search-based approaches on F1 but not on CA. This further strengthens my motivation to directly

optimize for the evaluation metric rather than the likelihood. In LastFM, BOWL is significantly
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Method (Metric) MLE MPLE LME RGS CRS HBWL BOWL

Jester (MSE) 0.053 0.068 0.063 0.053 0.053 0.052 0.053

Jester (AUROC) 0.730 0.700 0.702 0.762 0.744 0.756 0.761

LastFM (MSE) 0.061 0.060 0.061 0.061 0.062 0.064 0.063

LastFM (AUROC) 0.548 0.552 0.549 0.574 0.572 0.556 0.587

Citeeseer (CA) 0.835 0.837 0.839 0.844 0.844 0.845 0.844

Citeeseer (F1) 0.283 0.293 0.303 0.321 0.322 0.321 0.319

Cora (CA) 0.881 0.888 0.889 0.888 0.887 0.888 0.889

Cora (F1) 0.404 0.439 0.442 0.438 0.438 0.438 0.443

Epinions (AUROC) 0.811 0.792 0.807 0.814 0.797 0.810 0.780

Epinions (F1) 0.712 0.711 0.712 0.711 0.712 0.711 0.713

Table 5.1: Performance of PSL weight learning methods across datasets; the best scoring methods
(with p < 0.05) are shown in bold. Note: the metric values are rounded to three point precision
making some numbers the same, but the significance test was performed on values with six point
precision.
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better than all other approaches on AUROC, however, RGS outperforms BOWL in the MSE metric

on LastFM. One reason for likelihood-based approaches to perform better in LastFM MSE could

be because the rating values mentioned in LastFM was constructed by fitting a negative binomial

distribution [Kouki et al., 2015]. This could potentially imply that maximizing the likelihood in

PSL could lead to minimizing the MSE. Finally on the Jester dataset, HBWL and BOWL perform

the best on both metrics. Overall, as mentioned earlier, search-based approaches perform better

than other approaches and in general even the worst performing search-based method is better

than likelihood-based approaches (like in Jester and LastFM AUROC). These experiments clearly

show that search-based approaches are better suited for weight learning in PSL. Further, of the

search-based weight learning approaches BOWL performs the best followed by HBWL. This is

because BOWL performs smart exploration of space to approximate the evaluation function and

HBWL evaluates more points by smart resource allocation to get better approximation compared to

CRS and RGS.

Next, in Table 5.2 I analyze the performance of the MLN weight learning methods on

all datasets and metrics. Here, search-based methods achieved the best performance for every

dataset and metric. Except for F1 score in the Cora dataset, where DN performs as well as search-

based approaches, DN performs worse than search-based approaches on all datasets and metrics.

This observation further supports the use of search-based weight learning methods across SRL

frameworks. Similar to the PSL experiments, overall BOWL performs the best followed by HBWL.

BOWL is either the best method and or not significantly different from the best method on all

but the Epinions dataset when evaluating the AUROC metric. The reason for poor performance of
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Method (Metric) DN RGS CRS BOWL

Citeeseer (CA) 0.829 0.828 0.829 0.833

Citeeseer (F1) 0.267 0.251 0.253 0.281

Cora (CA) 0.867 0.865 0.866 0.871

Cora (F1) 0.339 0.333 0.342 0.355

Epinions (AUROC) 0.614 0.689 0.699 0.659

Epinions (F1) 0.705 0.708 0.711 0.710

Table 5.2: Performance of MLN weight learning methods across datasets; the best scoring methods
(with p < 0.05) are shown in bold.

BOWL in Epinions with AUROC could be because Epinions has the maximum number of rules (20

rules) compared to all other datasets. Further, since distances for BOWL in MLN are computed

in OS, the function approximated for AUROC might need more fine tuning which might not be

possible in OS leading to poor exploration. On the same dataset for F1 BOWL performs as well as

CRS which is the best. This indicates that the approximation of the evaluation function through

BOWL is dependent on the function being approximated as well.

Scalability

In this section, I compare the runtimes of MLE, MPLE, LME, RGS, CRS, HBWL,

and BOWL in PSL to measure the scalability of search-based approaches and address [Q3]. I do

not compare runtimes of my experiments with Tuffy. While DN is fully integrated in Tuffy, my

search-based approaches were implemented as a wrapper to Tuffy. Hence, the runtime numbers
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of different approaches will not be a fair comparison6. The number of parameters to learn in PSL

and MLN is equal to the number of rules in the model and the data size translates to the number of

groundings generated by the model. In Figure 5.2a, I show the number of groundings generated by

each of the datasets.I also show the number of rules in each model. The Jester dataset produces the

largest number of groundings (∼1M ) using seven rules and the Epinions dataset produces the least

number of groundings (∼14K) using the largest model (20 rules).

In Figure 5.2b, I show the average runtimes measured accross all folds for all approaches

on all datasets. Runtimes for some approaches depend on number of groundings while some others

depend on number of rules. The runtime for MPLE primarily depends on number of groundings and

as the number of groundings increases the runtime also increases by a factor of ∼45 from Epinions

to Jester dataset. The time taken to run LME depends not only on the number of groundings, but

also the complexity of finding the margin. Therefore, the runtime of LME on the LastFM dataset

is higher than the Jester dataset. MLE, RGS, CRS, HBWL, and BOWL depend on number of

groundings through the time taken to perform inference on larger models. Since inference in PSL is

efficient due to its convex objective, these approaches can scale better with the number of groundings

compared to the other approaches. Further, inference time in PSL depends on both the number

of groundings (which affects per iteration cost in solving) and ease of solving the optimization

(which affects the number of iterations required to converge). This can be observed when I compare

runtimes of the above mentioned five methods on the Epinions dataset and Cora dataset. The
6Even though I reground the model every iteration for search-based methods in Tuffy, the search-based approaches

were at least two times faster than DN in Citeseer and Cora datasets and due to early-stopping, BOWL in MLN was at
least 5 times than DN.
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time taken to run Epinions is two times greater for MLE even though the number of groundings

of Epinions is three times smaller. Overall MLE has the largest increase in runtime (∼150 fold

increase) from Cora to Jester dataset. The runtimes of search-based approaches also depend on

the number of evaluations (or resources allocated) they are allowed. For a good approximation

of the evaluation function the number of evaluation points required increases exponentially with

number of rules in the model. Since I fix the maximum number of iterations to 50 for all models,

it does not affect my approaches. Specifically, the runtimes of BOWL across datasets does not

vary as much as other approaches. BOWL has the smallest increase in runtime (∼3 fold) between

the Cora and Jester datasets across all methods. This is because BOWL has a constant overhead

for performing updates in the GP and retrieving the best next set of weight configurations. This

also ensures bad weights that converge poorly are chosen less often (as they are likely to yield poor

evaluation metric value), hence making it efficient and scalable with number of groundings. Overall

search-based approaches can scale with a large number of groundings and produce the best results

on the evaluation metric function.

Robustness

To address [Q4], I ran three sets of experiments: the first experiment is to check how

robust search-based methods are w.r.t. different initialization, the second is to evaluate the robustness

of CRS, HBWL, and BOWL to the hyperparameter A from the Dirichlet distribution, and the third

experiment is to test the effects of choosing an acquisition function on the performance of BOWL.
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Figure 5.2: Analyzing the scalability of different approaches on the number of rules and groundings.
With number of iterations fixed, search-based approaches scale better with both the number of rules
and groundings.
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Varied Initialization For the first experiment, I perform weight learning with all four search-based

approaches using 30 random initializations and report the mean and standard deviation (std) of a

metric per dataset in Table 5.3. Note that for this experiment I use UCB as the acquisition function

in BOWL. Further, I use only one fold (of the eight folds) per dataset as I intend to measure

the variance introduced by different initialization. In Table 5.3, the standard deviation is very

small for Jester dataset and on other datasets except LastFM the standard deviation introduced by

different folds is much higher than initializations indicating robustness to initialization. Finally,

on the LastFM dataset, on all approaches except HBWL, a standard deviation larger than the

standard deviation across folds obtained in Table 5.1. This is likely because HBWL explores more

weight configurations using smart resource allocation. I can conclude that while the search-based

approaches are reasonably robust to initialization, this can depend on the dataset and the number of

weight configurations they are allowed to try.

Datasets
Varied initializations

RGS CRS HBWL BOWL

Jester (MSE) 0.053 (0.001) 0.053 (0.001) 0.052 (0.001) 0.053 (0.001)

LastFM (MSE) 0.067 (0.008) 0.067 (0.006) 0.065 (0.002) 0.067 (0.006)

Citeseer (F1) 0.319 (0.007) 0.321 (0.007) 0.322 (0.008) 0.320 (0.007)

Cora (F1) 0.412 (0.006) 0.409 (0.005) 0.411 (0.005) 0.411 (0.005)

Epinions (F1) 0.714 (0.002) 0.713 (0.002) 0.714 (0.002) 0.716 (0.001)

Table 5.3: The table shows the mean (std) of the metrics obtained by running search-based ap-
proaches with varied initialization. The performance of BOWL is least affected by both initialization.
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Impact of Hyperparameter A Here I evaluate the robustness of CRS, HBWL, and BOWL to

the hyperparameter A in the Dirichlet distribution when sampling for the weight configurations.

I chose four different values for A = {10, 1, 0.1, 0.01} and evaluated on one discrete (Citeseer)

dataset and one continuous (Jester) dataset. For Citeseer, I use CA as the evalaution metric and I

use MSE for the Jester dataset. I evaluate the three approaches, CRS, HBWL, and BOWL, that

are impacted by A in PSL. Table 5.4 shows the metrics obtained for different values of A on both

datasets and all methods. Here, the effect of A on the Citeseer datasest is minimal in all methods.

This is likely because the CA function w.r.t. weights is reasonably flat and small changes in weights

have minimal impact. Therefore as long as there is at least one sampled point in a region, it is

sufficient to get an optimal value and thus all approaches seem robust. Next, when I consider the

Jester dataset, the parameter A has a large impact on CRS followed by HBWL. For a value of

A = 0.1 CRS and HBWL perform the best and as it is increased to 10, both approaches produce

the worst MSE value. This is because the space generated by the Dirichlet distribution using these

parameter values is not representative of the true weight space for these two approaches. The impact

of A is smaller on HBWL than CRS as HBWL explores more weight configurations via smart

exploration. Finally, BOWL is robust to the parameter A as it uses GP to choose the next point.

Impact of Acquisition function in BOWL My third experiment measures the robustness of

BOWL to different acquisition functions. In Table 5.5 I compare the performance of BOWL using

four different acquisition functions (UCB, TS, PI, and EI) for all five datasets in PSL (one metric

per dataset). On all datasets and metrics, BOWL is relatively robust to acquisition function and
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Datasets Methods A = 10 A = 1 A = 0.1 A = 0.01

Citeseer (CA)

CRS 0.844 0.844 0.843 0.844

HBWL 0.843 0.844 0.843 0.843

BOWL 0.844 0.844 0.845 0.843

Jester (MSE)

CRS 0.064 0.054 0.053 0.056

HBWL 0.061 0.053 0.052 0.054

BOWL 0.053 0.053 0.053 0.053

Table 5.4: Performance of different search-based approaches by varying the A parameter in the
Dirichlet distribution. The best metric value in every row is shown in bold.

performs similarly for all.

Finally, based on these experiments it can be observed that BOWL is the most robust to

initialization, hyperparameter, and acquisition function and produces the best evaluation metric.

5.2 Online Inference

In many practical machine learning settings it is common for both the data and structure

of the model to change incrementally over time. Incoming data may provide additional evidence or

add to a set of predictive targets a system has to infer, and new information or a shifting context may

alter a model’s defining parameters or underlying structure. For instance, a new product review may

change recommendations made for the reviewer and users who bought related products, or a recent

event could impose constraints on a product’s availability which were previously not considered
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Datasets
Different acquisition functions

UCB TS PI EI

Jester (MSE) 0.053 0.055 0.053 0.053

LastFM (MSE) 0.065 0.065 0.066 0.067

Citeseer (F1) 0.324 0.323 0.323 0.323

Cora (F1) 0.440 0.437 0.442 0.439

Epinions (F1) 0.711 0.712 0.713 0.713

Table 5.5: The table shows the effect of metrics obtained by using different acquisition function
with BOWL. The performance of BOWL is unaffected by both acquisition function.

by a predictor. These are two of many examples of problems that are both online and require joint

predictions.

Online inference is especially challenging for structured prediction settings Baki et al.

[2007]. Structured prediction algorithms utilize the underlying relational properties of the data

and problem domain to improve predictive performance and typically require collective (i.e., joint)

inference over a probabilistic model. However, updates to the evidence and dependency structure of

these methods can have cascading effects on the predictions that are expensive to perform. Updating

inference is a long-standing problem in the machine learning community, and there is a vast body of

literature on the topic for graphical models subject to structural updates Buntine [1991], Friedman

and Goldszmidt [1997], Li et al. [2006], Acar et al. [2009], Sümer et al. [2011] and for dynamic

models Murphy [2002], Nodelman et al. [2002].
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In this section, I develop theory and methodologies for updating inference in an undirected

graphical model with continuous valued random variables. My work in this section is most closely

related to Pujara et al. (2015a), however my definition of online collective inference is much more

general, supporting the introduction of new random variables and changes in the graphical model

structure. Further, I analyze a different aspect of online collective inference by developing theory

for performing exact inference on evolving models.

I define the problem of online collective inference using the framework of templated

graphical models (TGMs) Koller and Friedman [2009]. In this framework, graphical models are

specified by functions of relations and attributes of entities in a dataset, typically expressed as

weighted logical rules. Then, online collective inference is the task of performing inference on a

series of TGMs related by sequences of updates to the dataset and dependency structure.

My key contributions to this component of the model adaptability pillar include: 1) I

define the problem of online collective inference using the framework of templated graphical models,

2) I propose principled approximations to updating an existing model, 3) I analyze the stability

of MAP states of models subject to sequences of model updates, 4) I bound the loss incurred

by performing approximate model updates, 5) I implement an online collective inference system

using PSL, and 6) through experiments over three tasks, online recommendation, online demand

forecasting, and online model selection, I show that my approximate online approach consistently

provides a up to a 5 time speedup over an offline variant while, surprisingly, maintaining the quality

of the predictions.

The work covered in this section was presented at the 2021 International Conference on
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Machine Learning (ICML) Dickens et al. [2021].

5.2.1 Related Work

Online learning describes a class of machine learning methods where data arrives sequen-

tially and the goal is to obtain the best predictor for future data using the most up-to-date information

Shalev-Shwartz [2012]. Online machine learning in the independent and identically distributed

(IID) setting has been studied extensively Mairal et al. [2010], Kushner and Yin [2003], Williams

and Zipser [1989] and major advances have been made in creating efficient and scalable algorithms.

Many online IID models can make updates to their predictor using the loss incurred from a single

prediction Bottou [2010] or by updating a set of summary statistics Cesa-Bianchi and Lugosi [2006].

Updating graphical models is a long-standing problem in the machine learning community.

There is substantial research in the area of updating Bayesian networks Buntine [1991], Friedman

and Goldszmidt [1997], Li et al. [2006], both with evolving structure and updating parameters.

Likewise, there has been much work in the area of dynamic and sequential modeling, such as

dynamic and continuous time Bayesian Networks Murphy [2002], Nodelman et al. [2002] and

hierarchical hidden Markov models Fine et al. [1998]. Adaptive inference is another related area

that aims to make efficient updates to the inference result of a general graphical model defined over

discrete valued variables Sümer et al. [2011].

The task of updating the MAP state of a TGM conditioned on evolving evidence was

first considered in Pujara et al. (2015a). In this setting the graphical model has a fixed dependency

structure, i.e., no variables or potentials are added or deleted, and the MAP state is found using a
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technique which constrains the number of variables that may be updated to a predefined budget.

The authors bound the inference regret induced by performing this type of approximate inference

on an updated model. The definition of inference regret is defined as the normalized L1 distance

between a setting of the unobserved variables and the MAP state of a fixed model. My work differs

significantly in that the templated graphical model is not fixed and inference is not constrained by a

budget. My work also introduces a much more general notion of stability. The notion of collective

stability London et al. [2013a, 2014] is related to the stability discussion in Section 5.2.4. Collective

stability measures the change in the output of a structured predictor subject to updates to a set of

evidence. However, again, it does not consider updates which add or delete variables or potentials

defining the graphical model.

5.2.2 Online Collective Inference

A key challenge of online collective inference is expressing how two models are related

and modified. To address this I leverage a general framework for defining probability distributions,

referred to as templated graphical models (TGM) Koller and Friedman [2009]. Then, I formally

define online collective inference.

Templated Graphical Models

A TGM encodes dependencies between relations and attributes of entities in a domain

using functions called template factors with arguments referred to as template variables. Template
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factors are commonly expressed as weighted logical rules, for example:

w : LIKES(P1, P2)→ KNOWS(P1, P2) (5.5)

This template factor represents the idea that entities who like each other will often know each other.

Every template variable is associated with a range, for instance, the range of LIKES is

{LIKES(Alice, Bob), LIKES(Bob, Charlie)} and the range of KNOWS is {KNOWS(Alice, Bob),

KNOWS(Bob, Charlie)}. These ranges are subsets of a provided dataset and define the random

variables in the domain. Template factors are instantiated by realizing combinations of template

variable instantiations. With the above templates and data, the resulting set of instantiated template

factors is:

w :LIKES(Alice,Bob)→ KNOWS(Alice,Bob)

w :LIKES(Bob,Charlie)→ KNOWS(Bob,Charlie)

Given the instantiated set of template factors, a TGM defines a joint probability distribution over the

instantiated template variables. More formally,

Definition 9 (Template Variables). A template variable V is a function of entity variables V (e1, · · · , ek),

with a range denoted by V al(V ).

Template variables are related by template factors, which, when instantiated, are referred

to as potentials.

Definition 10 (Template Factors, Potentials). A template factor τ defines a mapping from a subset

of a cartesian product of template variable ranges, Γ ⊆ V al(V1)× · · · × V al(Vn), to R. Given a
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tuple of random variables R ∈ Γ, I use ϕ(R) to denote an instantiated template factor, referred to

as a potential.

An example potential is denoted as:

ϕ(LIKES(Alice,Bob),KNOWS(Alice,Bob))

and is an arbitrary function that maps to R. For the template factor defined earlier, the potential

for the weighted rule can be logical (mapping to 0 or 1) or represent the distance to satisfaction.

Generating a set of potentials by realizing every tuple of random variables in the union of the

domains of the template factors is referred to as grounding (Section 5.2.3). A TGM is defined as

a collection of one or more template factors, a set of potentials, and the set of random variables

present in the dataset.

Definition 11 (Templated Graphical Model). Given a set of template factors T with a corresponding

set of random variables Z and potentials Φ = {ϕ1, · · · , ϕm} a templated graphical model (TGM)

defines the joint probability distribution 7

P (Z) =
1

Z

m∏
i=1

ϕi(Z) (5.6)

whereZ =
∫
z

∏m
i=1 ϕi(Z = z) normalizesP (Z). A TGM is denoted by the tuple T = (T,Φ, P (Z), Z).

8

7Abuse of notation: ϕi(·) is written as a function of Z when it actually is defined as a function of a tuple of random
variables from Z.

8This definition assumes continuous valued potential functions. Mass functions are defined by replacing the integral in
the definition by summation.
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Any distribution can be expressed in the form (5.6) for some set of potentials Φ. Through-

out this section I assume the random variables of a TGM, Z, are partitioned into observed random

variables X and unobserved random variables Y . This partition defines a conditional distribution:

P (Y |X) =
1

Z(X)

m∏
i=1

ϕi(Y,X) (5.7)

where Z(X) =
∫
y

∏m
i=1 ϕi(Y = y,X). An equivalent way to express a TGM with a random

variable partition and conditional distribution is T = (T,Φ, P (Y |X), Y,X).

Online Collective Inference

TGMs provide a convenient means for systematically defining modifications to a graphical

model, which are broken into fundamental steps called model updates.

Definition 12 (Model Update). Given the TGM T = (T,Φ, P (Y |X), Y,X). I define a model

update as one of the following:

1. Update the value of an observed variable xi ∈ X

2. Add or delete a random variable xi ∈ X or yi ∈ Y

3. Add or delete a template factor τi ∈ T

With TGMs, and model updates I define the task of online collective inference.

Definition 13 (Online Collective Inference). Let T1 = (T1,Φ1, P1(Y1|X1), Y1, X1) be a TGM.

Then apply a series of updates that converts T1, X1, and Y1, to T2, X2, and Y2. Online col-

lective inference is the task of instantiating the potentials Φ2 using every τi ∈ T2 to get T2 =
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(T2,Φ2, P (Y2|X2), Y2, X2) and performing inference over the newly defined probability distribu-

tion P2(Y2|X2).

A common inference task is obtaining a maximum-a-posteriori (MAP) estimator of the

random variables. For a distribution P (Y |X = x), a MAP estimator, y∗, achieves the mode, i.e.,

y∗ = argmaxy P (Y = y|X = x).

5.2.3 Model Instantiation

As mentioned in Section 5.2.2, a vital subproblem of online collective inference is

generating potentials, i.e., grounding.

Definition 14 (Grounding). Let T = {τ1, · · · , τs} and Γ1, · · · ,Γs be a set of template factors

and corresponding domains. Grounding is the process of, for every τi ∈ T , realizing all tuples of

random variables (Z1, · · · , Zni) ∈ Γi, and instantiating every potential ϕî(Z1, · · · , Zni).

Realizing every tuple of random variables in a domain, Γ, of a template factor, τ , is

difficult as Γ can be large and a non-trivial subset of the full n-ary Cartesian product of the range

of template variables associated with τ . Reductions to this set are generally performed, such as

removing potentials that will not modify the optimal setting of the random variables, i.e., trivial

potentials. There has been a considerable amount of research on identifying trivial potentials and

designing scalable algorithms for grounding Richardson and Domingos [2006], Bach et al. [2017].

I expand upon these efforts to scale the grounding process in an orthogonal direction through

online-specific improvements.
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Context-Aware Grounding

Rather than re-perform the entire grounding process to instantiate an updated model, I

introduce context-aware grounding. This class of methods leverage the practical observation that

model updates will typically preserve much of the initial TGM’s existing structure. Context-aware

grounding makes a minimal edit, adding and deleting potentials from the initial potential set.

Definition 15 (Context-Aware Grounding). Let T1 = (T1,Φ1, P (Z1), Z1) and T2 = (T2,Φ2, P (Z2), Z2),

be two TGMs. A context-aware grounding instantiates Φ2 by grounding the set Φ+ = Φ2 \ Φ1 and

removing Φ− = Φ1 \ Φ2, i.e., Φ2 = Φ+ ∪ (Φ1 \ Φ−).

I derive a tight upper bound on the number of new potentials generated by a context-aware

grounding.

Theorem 6. Let T = (T,Φ, P (Z), Z) be a TGM, and T+, Z+ be the sets of template factors

and random variables added after a series of model updates, respectively. Define a set of context

template factors Tc ⊆ T+ ∪ T such that each τi ∈ Tc is a function of at least one tuple of random

variables containing some Zj ∈ Z+. Build the set of context variables for each τi, denoted as Zτi ,

to be the complete set of variables Z ∪ Z+ if τi ∈ T+, or Z+, otherwise. Then

|Φ+| ≤
∑
τi∈Tc

|τi|∑
j=1

(
|τi|
j

)
(|Zτi |j · |Z||τi|−j) (5.8)

where |τi| is the number of template variables defining τi.
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Approximate Context-Aware Groundings

Theorem 6 shows that the number of potentials instantiated by a context-aware grounding

will grow exponentially with respect to the number of context variables and context template factors.

Thus, generating all of the new potentials can be a costly operation that may not be viable in all

settings. I therefore propose approximate context-aware grounding:

Definition 16 (Approximate Context-Aware Grounding). Let Φ+ be a set of potentials generated

from a context-aware grounding. An approximate context-aware grounding is any process which

generates a set of potentials Φ̃+ that is a proper subset of Φ+, i.e., Φ̃+ ⊂ Φ+.

An example of an approximate context-aware grounding is one that generates potentials

which contain less than some threshold number of context variables, say κ. This is motivated by

observing that this restricts the upper limit of the inner summation in the bound of Theorem 6. This

results in a degree κ polynomial growth rate with respect to the number of context variables, context

template factors, and random variables.

5.2.4 Stability and Regret of Online Inference

In this section I analyze the stability and regret of the MAP states of TGMs belonging

to a log-concave and continuous exponential family Wainwright and Jordan [2008]. This implies

potentials in (5.7) are constrained to the form: ϕ(y,x) = exp(−θψ(y,x)) for some continuous

convex function ψ(·) and a non-negative real valued parameter vector θ. The MAP inference
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problem of a TGM in such a class of distributions with m potential functions is:

max
y

P (Y = y|X = x) ≡ min
y

m∑
i=1

θiψi(y,x) (5.9)

Further, I let H(y,x) =
∑m

i=1 θiψi(y,x) denote the MAP objective. Formally, for all TGMs in this

section, I make the following assumption.

Assumption 1 P (Y |X) is a member of a log-concave exponential family.

Stability

Broadly speaking, stability ensures that small changes to the input result in bounded

variation in the output. A result of Assumption 1 is that the MAP objectives are convex, which

follows from the definition of log-concavity. Specifically for stability analysis, an additional useful

assumption is strong convexity. Strong convexity of a function ensures a unique minimizer and thus

stability of MAP states simplifies to analyzing the distance between points rather than sets.

Definition 17 (Strong Convexity). f : Rn → R is α-strong convex iff for all x1,x2 ∈ Rn and

g ∈ ∂f(x1)
9

f(x2)− f(x1) ≥ gT (x2 − x1) +
α

2
∥x2 − x1∥22 (5.10)

Strong convexity of the MAP objective can be ensured by squared L2 regularization. This

is a consequence of the fact that an α > 0 parameterized squared L2 regularizer is α-strong convex,

and strong convexity is preserved when summed with convex functions.

Lemma 1 Let l = f + h where f is convex and h is α-strong convex. Then l is α-strong convex. 10

9∂f(x) here denotes the set of subgradients of f at x.
10Proof available in Shalev-Shwartz [2012].
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The strong convexity condition yields an upper bound on the distance a point is from a

minimizer.

Lemma 2 Let f : Rn → R be α-strong convex. Suppose x∗ is a minimizer of f , for all x ∈ Rn and

g ∈ ∂f(x) †

∥x∗ − x∥2 ≤
2

α
∥g∥2

This lemma yields a bound on the distance of any setting of the unobserved random

variables to the unique minimizer of an L2 regularized MAP objective. I thus have a direction for

analyzing the stability of MAP states by bounding the magnitude of gradients of MAP states after a

sequence of model updates. My approach leverages an additional assumption bounding the rate of

change of gradients in the MAP objective of the updated TGM, H2, i.e, β-smoothness.

Definition 18 (β-Smoothness). f : Rn → R is β-smooth over Ω ⊆ Rn iff for all x1,x2 ∈ Ω

∥∇f(x1)−∇f(x2)∥2 ≤ β∥x1 − x1∥2 (5.11)

Assumption 2 The MAP objective H(y,x) of the distribution P (Y |X), is β-smooth as a function

of both arguments y and x.

To account for the complexity of a sequence of updates relating the models T1 and T2, I

define the delta model as the set of potentials which are added and removed by a sequence of model

updates.

Definition 19 (Delta Model). Given the TGMs T1 = (T1,Φ1, P (Z1), Z1) and T2 = (T2,Φ2, P (Z1), Z2).

Define Φ− = {exp(θψi)|ϕi = exp(−θψi) ∈ Φ1 \Φ2} and Φ+ = Φ2 \Φ1. The potential set Φ∆ =

Φ− ∪ Φ+ is a delta model with a corresponding MAP objective H∆ =
∑

ϕ∈Φ∆
− log(ϕi(y,x)).
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Applying the lemmas and assumptions introduced in this section, I derive the following

bound on the distance between MAP states for two TGMs.

Theorem 7. Let T1 = (T1,Φ1, P1(Y1|X1), Y1, X1) and T2 = (T2,Φ2, P (Y2|X2), Y2, X2) be

two TGMs defining the MAP objectives H1 and H2. Suppose P1(Y1|X1) and P2(Y2|X2) satisfy

Assumption 1 and P2(Y |X) satisfies Assumption 2. Let Φ∆ be the delta model relating T1 to T2 with

MAP objective H∆. Denote the vectors of observed random variable values of T1 and T2 as x1 ∈

R|X1| and x2 ∈ R|X2|, and MAP states y∗
1 = argminyH1(y,x1) and y∗

2 = argminyH2(y,x2).

Let ỹ∗
1 and x̃1 be the vectors y∗

1 and x1, such that values corresponding to deleted variables are

removed, and values corresponding to new variables and changing partitions are added. Note,

values for variables moving from the unobserved to the observed partition are the values from y∗
1.

Let δ to be the change in the observed variable values, i.e., δ = ∥x̃1 − x2∥2. Then

∥ỹ∗
1 − y∗

2∥2 ≤ 2
β

α
δ +

2

α
∥∇yH∆(ỹ

∗
1, x̃1)∥2 (5.12)

Proof. First note that

δ = ∥x̃1 − x2∥2 =

∥∥∥∥∥∥∥∥
ỹ∗

1

x̃1

−
ỹ∗

1

x2


∥∥∥∥∥∥∥∥
2
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Thus β-Smoothness of H2 implies

β2δ2 ≥ ∥∇H2(ỹ
∗
1, x̃1)−∇H2(ỹ

∗
1,x2)∥22

= ∥∇yH∆(ỹ
∗
1, x̃1)−∇yH2(ỹ

∗
1,x2)∥22

+ ∥∇xH2(ỹ
∗
1, x̃1)−∇xH2(ỹ

∗
1,x2)∥22

≥ (∥∇yH2(ỹ
∗
1,x2)∥2 − ∥∇yH∆(ỹ

∗
1, x̃1)∥2)2

=⇒ βδ ≥ ∥∇yH2(ỹ
∗
1,x2)∥2 − ∥∇yH∆(ỹ

∗
1, x̃1)∥2

Rearranging terms I have

βδ + ∥∇yH∆(ỹ
∗
1, x̃1)∥2 ≥ ∥∇yH2(ỹ

∗
1,x2)∥2

Lastly, applying the α-strong convexity bound, Lemma 2, on ∥ỹ∗
1 − y∗

2∥2 I have

∥ỹ∗
1 − y∗

2∥2 ≤ 2
β

α
δ +

2

α
∥∇yH∆(ỹ

∗
1, x̃1)∥2

Warm-Starts A direct application of the above theorem motivates the notion that a related TGM’s

MAP estimator can be used to seed inference in a state closer than random initialization. I define

a warm-start, ỹ∗
1, for a TGM T2 as the augmented MAP state of a related TGM T1. A cold-start,

ycold, is drawn uniformly at random over the domain of the random variable values. If the MAP

objectives of the distributions defined by T1 and T2 satisfy the necessary assumptions for Theorem

7, then the bound in the theorem can be applied to prove that a warm-start is closer to T2’s MAP

state than a cold-start in expectation. More formally, if it can be shown that a sequence of model
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updates results in a change in observed variable values δ = ∥x̃1 − x2∥2 and a delta model gradient

∥∇yH∆(ỹ
∗
1, x̃1)∥2 such that 2β

αδ +
2
α∥∇yH∆(ỹ

∗
1, x̃1)∥2 ≤ E [∥ycold − y∗∥2] , then Theorem 7

yields E [∥ỹ∗
1 − y∗

2∥2] ≤ E [∥ycold − y∗∥2].

Regret Bounds

Regret in online optimization is typically defined as the difference between the total loss

incurred by two competing settings of the random variable values, called hypotheses Shalev-Shwartz

[2012]. Typically in collective inference, the total loss of a hypothesis is defined as a function of the

set of potentials. However, in this setting, it is possible for the set of potentials to be modified. For

this reason it is important to explicitly specify the set of potentials functions over which the regret is

being computed.

Definition 20 (Regret). Let Φ be a set of potential functions, L(x; Φ) : Rn → R be a loss function

parameterized by Φ, and x1,x2 ∈ Rn. The regret with respect to the two competing hypothesis, x1,

and x2, and Φ is defined as

Regret(x1,x2;Φ) = L(x1;Φ)− L(x2;Φ) (5.13)

For MAP inference, the loss function is the MAP objective, i.e., RegretH(y1,y2) =

H(y1,x)−H(y2,x).

I are specifically interested in bounding the MAP regret relative to MAP estimators for

two distinct TGMs defined over the same set of random variables. To do this I reformulate the

problem into that of analyzing the stability of MAP states of TGMs subject to model updates. I
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then apply Theorem 7 together with an added assumption bounding the rate of change of the MAP

objective, namely L-Lipschitz continuity.

Definition 21 (L-Lipschitz Continuity). f : Rn → R is L-Lipschitz continuous over Ω ⊆ Rn iff for

all x1,x1 ∈ Ω

|f(x1)− f(x2)| ≤ L∥x1 − x2∥2 (5.14)

Assumption 3 The MAP objectiveH(y,x), of the distribution P (Y |X), is L-Lipschitz as a function

of y for any x.

Theorem 8. Let T1 and T2 be two TGMs defined over the same random variables. Further, suppose

the distributions defined by T1 and T2, P1(Y |X) and P2(Y |X), satisfy Assumption 1, and P2(Y |X)

satisfies Assumption 2 and Assumption 3. Let Φ∆ be the delta model relating T1 to T2 with MAP

objective H∆. Then, let y∗
1 and y∗

2 be the MAP states of T1 and T2, respectively.

RegretH2
(y∗

1,y
∗
2) ≤ 2

L

α
∥∇yH∆(y

∗
1,x)∥2 (5.15)

Proof. As H2(y,x) is L-Lipschitz continuous,

∥H2(y
∗
1,x)−H2(y

∗
2,x)∥ ≤ L∥y∗

1 − y∗
1∥2 (5.16)

Then, since y∗
2 = argminyH2(y,x)

H2(y
∗
1,x)−H2(y

∗
2,x) ≤ L∥y∗

1 − y∗
1∥2 (5.17)

Next, noting that δ = 0 and applying Theorem 7 yields

H2(y
∗
1,x)−H2(y

∗
2,x) ≤ 2

L

α
∥∇yH∆(y

∗
1,x)∥2 (5.18)
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5.2.5 Empirical Evaluation

In this section, I evaluate the performance of an online collective inference system

implemented in PSL (online PSL), and empirically validate the theory introduced in this section. I

answer the following questions: Q1) Are model updates performed via context-aware groundings

faster than grounding a new model? Q2) How does approximate context-aware grounding affect

the runtime and performance of online collective inference? Q3) How well do the theoretical

bounds introduced in Section 5.2.4 predict the movement of the MAP states? Q4) In practice, are

warm-starts typically closer to the updated model’s MAP state than cold-starts?

Datasets and Models

I explore these questions on three online collective inference tasks: online recommenda-

tion, online demand forecasting, and online model selection 11. These tasks showcase how online

collective inference can be applied in practical settings, while demonstrating common model update

patterns. The datasets for the tasks are as follows:

MovieLens – MovieLens is a movie recommendation dataset containing approximately 1M times-

tamped ratings made by 6K users on 4K movies Harper and Konstan [2015]. Although often

used as an offline recommendation dataset, timestamps in the data allow us to turn this dataset

into an online recommendation problem using the following procedure. 10 splits are uniformly

sampled, each using 70% of the original data. Each split is then partitioned into 20 time steps,

where the first time step contains one third of the split’s data and the rest are evenly partitioned.
11Data and code will be made available upon final submission.
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Two variants of the dataset are created for the online recommendation task: MovieLens-Fixed and

MovieLens-TimeSeries. In MovieLens-Fixed, all ratings are always present as either observations or

unknowns. At each time step, previously unknown ratings are observed. In MovieLens-TimeSeries,

ratings are added incrementally. At each time step, 20% of the unknowns from the previous time

step are observed and all ratings in the new time step are unknown.

BikeShare – BikeShare is a dataset that contains information for 650k trips between 70 stations by

customers of the bicycle sharing service, Bay Area Bike Share Bay Area Bike Share [2016]. The

task for this dataset is to predict the demand for bikes at each station. The data is divided into 10

overlapping splits, where each split contains one third of the original data. Splits are partitioned into

20 time steps, where the first time step contains one third of the split’s data and the rest are evenly

partitioned. At each time step, the demand for the previous time step becomes fully observed and

the demand for the next time is added as unknown.

Epinions – Epinions is a trust prediction dataset with 2k users with 8.5k directed links representing

whether one user trusts the other. The data is divided into 8 splits with the trust links partitioned into

observed and unknown sets following the same procedure as Bach et al. (2017). Each split is then

partitioned into 10 time steps, where the first time step contains the full model and each subsequent

time step adds and removes templates from the model.

Methods

Across all tasks and data variants, I evaluate the performance of three methods for execut-

ing model updates and performing MAP inference. First, Offline is a standard PSL implementation

182



that executes model updates by grounding the full model at each time step. Then, Regret-Free and

Regretful are online PSL implementations executing model updates via context-aware grounding

and approximate context-aware grounding, respectively. The regretful models are grounded using

the example described in Section 5.2.3 with κ = 1.

Performance and Regret Analysis

Figure 5.3: Comparison of normalized MAP inference objective (top), domain-specific evaluation
metrics (middle), and runtime (bottom) of the three systems.

To address questions Q1 and Q2, I compare the performance of my online and offline

methods across each dataset. Figure 5.3 shows at each time step the cumulative time in seconds to

obtain a MAP prediction, a problem-specific evaluation metric, and the normalized MAP inference

objective. Because the MAP inference problem is strongly convex, the Online PSL implementation

employing exact context-aware grounding yields the same predictions as the offline method.

In the MovieLens-Fixed and Epinions setting no variables are added or deleted, thus there

is no significant difference between the time, evaluation, and MAP objective performance of the

exact and approximate online models. In Epinions, potentials are all initially grounded and then at

each timestep a subset is removed to obtain the desired model. Removed potentials are cached and
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added back to the model after inference is completed. Because the grounding cost after the initial

timestep in the MovieLens-Fixed and Epinions setting is virtually eliminated, the online methods

are able to complete over 4 times faster than the offline method in MovieLens-Fixed, and over 20

times faster in Epinions without incurring any regret.

Next I examine the results of the MovieLens-TimeSeries and BikeShare datasets in Figure

5.3. Both of these datasets operate similarly, where unknowns in the previous time step become

observed as well as unknowns being introduced in the new time step. In both problems, the regretful

online method performs 2− 5 times faster than the regret-free online method, but this comes at the

cost of an inferior MAP inference objective and evaluation score.

Stability Analysis

Figure 5.4: Comparison of warm-start and cold-start variable movements plotted with various
theoretical and empirically estimated bounds.

To address question Q3 and Q4, I estimate model complexity parameters of the TGMs

instantiated by PSL and measure the movement of variables with warm-start and cold-start initial-

izations. Figure 5.4 shows the measured variable movement on all problems. Also shown in the

figure are two empirical estimates of the warm-start bound derived in Section 5.2.4, one pessimistic

and one optimistic. As optimization is performed, β and α estimates are created by sampling the

184



rate of change in the gradients. Both the optimistic and pessimistic warm-start bounds take β to be

the maximum observed rate of change of gradient. Then, the α estimate is the average of the rates in

the optimistic bound and the average between 0.1, the regularization parameter of the model, and

the minimum observed rate for the pessimistic bound. I also plot the expectation of the cold-start

variable movement which I assume to be the expected distance between two randomly sampled

points in a hypercube Anderssen et al. [1976]. Moreover, a trivial upper bound on the possible

movement considering only the [0, 1] variable box constraints enforced by PSL is plotted.

The expected and actual cold-start movements are aligned in all experiments except Bike-

Share. This behavior suggests that the assumption that the distance between a random initialization

and the MAP state of a TGM instantiated by PSL is reasonable. The BikeShare exception can be

explained by the fact that truth values in this setting are mostly near zero.

Next, in the MovieLens-Fixed, MovieLens-TimeSeries, and Epinions experiments, the

cold-start movement of the variables is significantly larger than that of the warm-start. This matches

the intuition of the settings, as there are many unobserved variables shared between time steps that

are already optimized for a subset of the potentials in the updated model. Then, as expected, the

exception of this behavior is in the BikeShare experiments. Cold-start and warm-start initializations

are in fact equivalent in BikeShare because all unobserved variables for a time step are introduced

by the model update.

In all experiments, the optimistic warm-start bound closely follows the actual warm-start

movement, verifying theoretical predictions of Theorem 7 and hence Theorem 8. Furthermore,

the optimistic warm-start bound consistently falls below the expected cold-start movement. The
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pessimistic bound on the other hand typically overestimates the warm-start variable movement

by a large-margin, even predicting more movement than the trivial bound in some cases. The

optimistic and pessimistic warm-start bounds do drop below the actual warm-start movement in

both the BikeShare and Epinions experiments. This can be explained by the empirical nature of this

experiment, the true α and β and parameters of this model are only estimated via a sampling.

5.3 Conclusions and Future Work

In this chapter, I show how SRL systems can be enhanced to handle models that adapt to

different datasets and changes within a dataset. Weight learning allows SRL models to specialize to

specific domains and datasets through learning weights for template rules, I specifically show how

search-based approaches are effective on a wide range of models. Additionally, I show how existing

models can be updated with new data through online collective inference.

Some future directions for weight learning revolve around learning weights without fully

grounding the model. There are a variety of approaches for avoiding full grounding [Sarkhel et al.,

2015, 2016] that would be interesting to integrate into my approach. Further, performance of

Gaussian processes are highly dependent on the kernel function used. Therefore, in one of my

search-based approaches (Bayesian optimization for weight learning (BOWL)) that use Gaussian

process, an exploration of different kernels for BOWL could further improve the performance of

my method.

Future directions for online collective inference are to introduce methods for reducing
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the size of the instantiated graphical model by summarizing or forgetting some of the model. This

could further improve the speed up over offline methods and reduce the memory requirements of

the system. An orthogonal approach to forgetting that could also result in runtime improvements is

implementing approximate inference techniques.
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Chapter 6

Usability

Usability refers to the ease with which a user can interact with an SRL system. Non-SRL

machine learning frameworks (e.g., scikit-learn, Tensorflow, and PyTorch) have a straightforward

and simple pipeline: flatten the data into a single homogeneous feature table, fit on labeled training

features, and then predict on test features. Unfortunately, SRL is more complicated because of

its collective and transductive nature. Structure in rules and data must be specified, observed data

must be provided for both training and testing, and debugging predictions requires looking at other

related predictions. Creating SRL tools that allows users familiar with machine learning, but not

necessarily SRL, is a substantial roadblock to making SRL practical. In this chapter, I discuss my

work in making SRL frameworks that are accessible to all machine learners1.
1The work presented in this chapter was presented at the 2020 ACM Conference on Recommender Systems (RecSys)

Rodden et al. [2020].
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6.1 Standard Relational Language Interface

When choosing to implement a SRL model, there are several widely-used languages

available including but not limited to: Markov Logic Networks (MLNs) Richardson and Domingos

[2006], ProbLog Raedt et al. [2007], PSL Bach et al. [2017], and Probabilistic Circuits Choi et al.

[2020]. Each of these languages has several implementation available where the implementations

include different levels of support and features, vary in scalability, and are written in different pro-

gramming languages. The large set of options may seem enticing, but from a developer’s perspective

the abundance is overwhelming. Additionally, each of these languages and implementations use

different terminology, concepts, and semantics for handling data and handling logical rules. A

developer wishing to implement the same SRL model in two different frameworks may find the task

to be trivial or impossible depending on the model and frameworks. This large degree of variability

between frameworks hinders SRL research and can make SRL hostile to new comers.

However at its core SRL is about adding structure to predictions, and SRL frameworks

can be described in four components: data, model, grounding, and computation. To start, an SRL

framework needs a description of its data and the structure associated with it; for example the

framework will need to know about what logical predicates to expect and their arguments. Then, the

framework needs to know about the structure of the problem itself; most SRL frameworks represent

this structure using logical rules. Finally, the SRL framework needs to know what computation

needs to be done over the data and model, e.g., MAP or marginal inference.

In this section, I introduce the Standard Relational Language Interface (SRLi). SRLi
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is a generic SRL framework written in Python that decomposes the SRL pipeline into the above

components and allows users to build SRL models that are general and agnostic to the underlying

engine. A general representation of the SRL pipelines allows users to easily invoke different

computational engines which may use algorithms that perform better on specific datasets or have

different scaling properties. I demonstrate the power of SRLi by creating a varied collection of

SRL models that run (unmodified) over several different existing SRL frameworks. Additionally,

SRLi allows modelers to create new SRL engines by reusing components of existing SRL engines.

I demonstrate this ability be creating multiple new SRL engines in SRLi by utilizing shared

components.

My key contributions to this component of the usability pillar include: 1) decomposing of

SRL into four independent components, 2) creating of a general SRL framework based on the above

four components, 3) implementing existing SRL frameworks in SRLi, 4) implementing new SRL

frameworks in SRLi that utilize shared components.

6.1.1 The Components of SRL

At its core, SRL is about adding structure to predictions. Different SRL frameworks

implement the integration of structure and prediction in very different ways. SRLi is an attempt

to define the main steps of an SRL pipeline and decouple them as much as possible. Decoupling

these steps allows SRLi to make them independent, generalizable, and exchangeable. SRLi refers to

module that implements all the steps of the SRL pipeline as an engine. Throughout this section, I

will compare SRLi to three of the most popular SRL frameworks: ProbLog (based on Prolog) Raedt
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et al. [2007] Tuffy (an MLN implementation) Niu et al. [2011], and Probabilistic Soft Logic Bach

et al. [2017].

Data

In classical machine learning, data is typically represented as a single table of numeric

features. Features that do not fit into this paradigm (like categorical features) are flattened, converted

to numeric values, and treated the same as the other features. However, SRL treats its data very

differently. Much like a relational database, data in SRL is represented as multiple dependent tables.

SRLi abstracts data into structures it refers to as relations. Like “predicates” from first-

order logic or “relations” from relational algebra and relational database theory, SRLi relations have

a unique name and arguments. For example, the relation HASLABEL(User,Label) may be used

to represent categorical predictions of a user. This relation has the name HASLABEL and argument

User and Label. Each argument is associated with a named domain that denotes what values may

substitute for each argument. These domains may be specified by the user, and when they are not

specified SRLi will infer them from the data and model.

In addition to managing data, SRLi relations need to capture two features widely used in

SRL languages: data constraints and priors.

Data constraints Constraints that are applied directly to a single relation, as opposed to general

constraints that apply across multiple instances of relations, are referred to as data constraints. For

example, consider a relation, HASLABEL(User,Label), that predicts a label for a user from the
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possible labels: {1, 2, 3}. I may want to enforce a constraint on the model that only one label can be

predicted for each user. Different SRL frameworks represent and implement this constraint in very

different ways. ProbLog uses a logical rule with a special operator called an annotated disjunction:

1 / 3 : : h a s L a b e l ( User , 1 ) ; 1 / 3 : : h a s L a b e l ( User , 2 ) ; 1 / 3 : : h a s L a b e l ( User , 3 ) .

PSL represents this constraint using an arithmetic rule with a special “summation” syntax:

HasLabel ( User , + Labe l ) = 1 . 0 .

Tuffy uses a special syntax when defining logical predicates:

HasLabel ( use r , l a b e l ! )

SRLi takes an approach similar to Tuffy and represents data constraints as an attribute of

a predicate. This allows SRLi (unlike PSL and ProbLog) to make a distinction between constraints

that operate over the data and constraints that operate over the entire model. This method of defining

properties of SRLi data can be seen as similar to data description language (DDL) used in SQL.

s r l i . r e l a t i o n . R e l a t i o n ( ’ HasLabel ’ ,

a r i t y = 2 , v a r i a b l e _ t y p e s = [ ’ User ’ , ’ Labe l ’ ] ,

s u m _ c o n s t r a i n t = s r l i . r e l a t i o n . S u m C o n s t r a i n t ( ’= ’ ) )

Priors Priors, most often implemented as “negative priors”, allow models to add in a bias or

regularizer to each relation. In the most simple form, a negative prior enforces a belief that in

the absence of evidence, predictions should favor false / 0. For example, consider a relation,

HASLINK(NodeA,NodeB), that predicts if a link exists between two nodes in a graph. Given no

evidence we typically want predict that no link exists between the two nodes, but still allow a small
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chance that links can exist without additional evidence (for example, we may want to set the link

probability without evidence to be a small value such as 0.01). ProbLog can use a set of rules with

an intermediate predicate that allows false values a small chance to swap to true:

hasL ink ( NodeA , NodeB ) : − h a s L i n k _ i n t e r m e d i a t e ( NodeA , NodeB ) .

0 .001 : : hasL ink ( NodeA , NodeB ) : − \+ h a s L i n k _ i n t e r m e d i a t e ( NodeA , NodeB ) .

Tuffy uses a simple logical rule:

0 .001 ! HasLink ( nodeA , nodeB )

Similar to Tuffy, PSL also uses a simple logical rule:

0 . 0 0 1 : ! HasLink ( NodeA , NodeB )

As in the case of the data constraint, SRLi represents a negative prior as an attribute of the

relation itself, which allows SRLi to separate details of the data from details of the model.

s r l i . r e l a t i o n . R e l a t i o n ( ’ HasLink ’ ,

a r i t y = 2 , v a r i a b l e _ t y p e s = [ ’ Node ’ , ’ Node ’ ] ,

n e g a t i v e _ p r i o r _ w e i g h t = 0 . 0 1 )

Model

As discussed in Section 2.1, SRL frameworks typically use weighted logical rules to

represent the core of their models. However, different SRL frameworks use different conventions,

syntax, semantics, and representations of probability. For example, ProbLog is based on horn

clauses Lloyd [1987]; Markov Logic Networks (MLNs) Richardson and Domingos [2006] allow

both universal and existential quantification and is not restricted to horn clauses; and PSL only
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uses universal quantification and requires logical rules to reduce to a 1-DNF Kononenko and Kukar

[2007], but also allows for non-logical templates in the form of inequalities of linear combinations.

SRLi uses first-order logic with the same restrictions as PSL, but limits rules to purely

logical rules. Choosing this subset of logic allows SRLi to represent a wide range of models, while

still being able to translate models into languages like MLN which use a wider subset of first-order

logic.

Grounding

Grounding is a key component in any SRL system and is discussed in detail in Section

2.3. Despite being critical to SRL performance, the grounding component of SRL systems is often

overlooked and under optimized. At its simplest (and slowest), grounding can be implemented with

just nested loops. But as Section 3.2 proves, grounding systems can be very complex and have a

very large impact on performance.

To provide the best grounding possible, SRLi utilizes the grounding interface provided by

PSL. Because of SRLi’s general representation for data, rules, and ground rules, any SRL framework

implemented in SRLi gets trivial access to state-of-the-art grounding.

Computation

There are several different types of computation done in SRL frameworks. The two most

common are inference (discussed in Section 2.4) and weight learning (discussed in Section 2.4.1).

SRLi’s primary contribution here is developing a clean interface and tools for future methods to
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implement their own inference and weight learning methods. However, SRLi also provides several

inference and weight learning implementations (discussed in Section 6.1.2 and Section 6.1.3).

6.1.2 Recreating Existing SRL Frameworks

SRLi can be used to recreate the most popular SRL frameworks. Here, I will show how

SRLi can be used to recreate ProbLog, Tuffy, and PSL. These three different frameworks have vastly

different syntaxes, semantics, and implementations. The ability to recreate them all speaks to the

flexibility of SRLi.

ProbLog

The latest version of ProbLog (ProbLog 2 2) is implemented in Python. This allows for

easier integration into SRLi, which is also written in Python.

Tuffy (MLN)

Implementing a Tuffy engine in SRLi is complicated by the fact that Tuffy does not have

a Python interface. Additionally, Tuffy has a required dependency on a PostgreSQL database that

require specific settings and modules. To meet all these requirements while still providing a safe

and flexible framework for users, I implement the Tuffy SRLi engine as a Docker container. Docker

is an open-source tool that allows for software to be run in reproducible and sand boxed lightweight

containers.
2https://github.com/ML-KULeuven/problog
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PSL

PSL is written in Java, but provides a Python interface (pslpython3) which makes

implementing a SRLi PSL engine straightforward. Additionally, PSL is used as the default grounding

component in SRLi. PSL’s grounding API is also accessed through the same Python interface.

6.1.3 Implementing Custom SRL Engines

A key part of SRLi is the independence of the different components. Making the different

parts of the SRL pipeline independent from their implementation allows these components to be

shared. Here, I create several custom SRLi engines that utilize a mix of components from different

engines and custom components.

MLN Native

MLNs were one of the first popular SRL representations, with the most used implemen-

tations being Alchemy Kok et al. [2009] and Tuffy Niu et al. [2011]. Implementing MLNs in

SRLi can be done simply by using the common grounding component provided by SRLi and a

custom implementation of the base MaxWalkSat algorithm (the default inference method used

in Tuffy). The inference algorithm implemented in this engine is simple when compared to the

mature implementation used by Tuffy. However, this engine benefits from advanced grounding

techniques that Tuffy cannot use (since Tuffy tightly couples its implementation of the different

SRL components).
3https://pypi.org/project/pslpython/
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MLN PySat

Building off of the native MLN engine, this engine swaps out the MaxWalkSat inference

component for PySat Ignatiev et al. [2018], a popular SAT solver for Python.

Non-Collective ProbLog

The non-collective ProbLog engine (ProbLog NC) builds off of the previous ProbLog

engine, but attempts to address scaling issues often seen in ProbLog. Because ProbLog is built on

top of Prolog, it shares some of the same scalability issues. For example, both Prolog and ProbLog

has difficulty working with logical rules that contain cycles (which are quite common in many SRL

problems). To help address this issue, ProbLog implements memoization Fierens et al. [2015].

However, larger models can still create issues for ProbLog.

To address scaling issues in ProbLog, a common technique is to reduce to scope of a

ProbLog program to as little as one random variable at a time Tsamoura et al. [2020]. Typically, this

is done in an ad-hoc manner for each dataset. However because SRLi has full information about

the data and model, it can automatically reduce the scope of ProbLog programs. First, SRLi can

pre-ground the entire ProbLog program using SRLi’s common grounding component. Then, this

engine can iterate through each random variable and compute its Markov blanket (the set of all

variables the target variables is linked to through ground rules). Now this engine can create ProbLog

programs that are scoped to deal with only one Markov blanket at a time. One iteration is complete

after all variables/blankets have been checked. The engine continues until it reaches the maximum
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number of iterations or until convergence.

6.1.4 A Complete SRLi Model

Below is the full SRLi implementation of the CITESEER model used in Section 6.1.5.

l i n k = s r l i . r e l a t i o n . R e l a t i o n ( ’ Link ’ ,

a r i t y = 2 , v a r i a b l e _ t y p e s = [ ’ Pape r ’ , ’ Pape r ’ ] )

h a s c a t = s r l i . r e l a t i o n . R e l a t i o n ( ’ HasCat ’ ,

a r i t y = 2 , v a r i a b l e _ t y p e s = [ ’ Pape r ’ , ’ Labe l ’ ] ,

n e g a t i v e _ p r i o r _ w e i g h t = 0 . 0 0 1 ,

s u m _ c o n s t r a i n t = s r l i . r e l a t i o n . R e l a t i o n . S u m C o n s t r a i n t ( ) )

r u l e s = [

# Neighbor has c a t => has c a t .

" HasCat (A, C) & Link (A, B) & (A != B) −> HasCat (B , C) " ,

" HasCat (A, C) & Link (B , A) & (A != B) −> HasCat (B , C) " ,

# Per c a t e g o r y r u l e s .

" HasCat (A, ’ 1 ’ ) & Link (A, B) −> HasCat (B , ’ 1 ’ ) " ,

" HasCat (A, ’ 2 ’ ) & Link (A, B) −> HasCat (B , ’ 2 ’ ) " ,

" HasCat (A, ’ 3 ’ ) & Link (A, B) −> HasCat (B , ’ 3 ’ ) " ,

" HasCat (A, ’ 4 ’ ) & Link (A, B) −> HasCat (B , ’ 4 ’ ) " ,

" HasCat (A, ’ 5 ’ ) & Link (A, B) −> HasCat (B , ’ 5 ’ ) " ,

" HasCat (A, ’ 6 ’ ) & Link (A, B) −> HasCat (B , ’ 6 ’ ) " ,

" HasCat (A, ’ 7 ’ ) & Link (A, B) −> HasCat (B , ’ 7 ’ ) " ,

]

l i n k . a d d _ o b s e r v e d _ d a t a ( p a t h = os . p a t h . j o i n (DATA_DIR , ’ e v a l ’ , ’ l i n k _ o b s . t x t ’ ) )

h a s c a t . a d d _ o b s e r v e d _ d a t a ( p a t h = os . p a t h . j o i n (DATA_DIR , ’ e v a l ’ , ’ h a s C a t _ o b s . t x t ’ ) )

h a s c a t . a d d _ u n o b s e r v e d _ d a t a ( p a t h = os . p a t h . j o i n (DATA_DIR , ’ e v a l ’ , ’ h a s C a t _ t a r g e t s . t x t ’ ) )

h a s c a t . a d d _ t r u t h _ d a t a ( p a t h = os . p a t h . j o i n (DATA_DIR , ’ e v a l ’ , ’ h a s C a t _ t r u t h . t x t ’ ) )

e n g i n e = s r l i . e n g i n e . p s l . e n g i n e . PSL ( r e l a t i o n s = [ l i n k , h a s c a t ] , r u l e s = r u l e s )

r e s u l t s = e n g i n e . s o l v e ( )

e v a l u a t i o n = s r l i . e v a l u a t i o n . C a t e g o r i c a l A c c u r a c y ( h a s c a t )

p r i n t ( " Accuracy : " , e v a l u a t i o n . e v a l u a t e ( r e s u l t s ) )

198



Engine Parent SRL Framework Class

ProbLog ProbLog srli.engine.problog.engine.ProbLog

Tuffy Tuffy srli.engine.tuffy.docker.Tuffy

PSL PSL srli.engine.psl.engine.PSL

MLN Native Custom srli.engine.mln.native.NativeMLN

MLN PySat Custom srli.engine.mln.pysat.PySATMLN

Non-Collective ProbLog ProbLog srli.engine.problog.noncollective.NonCollectiveProbLog

Table 6.1: SRL engines provided by SRLi.

Note how this example uses SRLi’s PSL engine. However, because the model and data

are independent of the computational engine, using a different engine only requires a change to one

line. Table 6.1 shows the details of all the engines discussed in this section.

6.1.5 Empirical Evaluation

To evaluate the effectiveness of SRLi, I run the different SRLi engines over several known

relational problems4. The datasets (detailed in Table 6.2) are from the official PSL examples

repository5, and were used without modifications to the model or dataset. To ingest the examples, a

SRLi connector was written that can process PSL configuration file. All experiments were run on

the same machine with 128 GB of RAM and 20 threads clocked at 3.1 GHz.

First, I examine SRLi’s ability to run the engines described in this section over the
4All code for these SRLi experiments is available at https://github.com/eriq-augustine/

srli-experiments.
5Models and data are available at https://github.com/linqs/psl-examples.
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Dataset
Ground

Task Source
Rules

CITESEER 36K CC Bach et al. [2017]

CORA 41K CC Bach et al. [2017]

DDI 1M LP Sridhar et al. [2016]

EPINIONS 14K LP Huang et al. [2013]

ER 3M CC Bhattacharya and Getoor [2007]

JESTER 1M REC Bach et al. [2017]

KGI 90K LP Pujara et al. [2013]

LASTFM 1.4M REC Kouki et al. [2015]

SMOKERS 21 CC Niu et al. [2011]

STANCE 2K CC Sridhar et al. [2015]

YELP 500K REC Kouki et al. [2015]

Table 6.2: Details of datasets and models used for evaluation. The generic task performed on each
dataset include collective classification (CC), link prediction (LP), and recommendation (REC).
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Dataset MLN Native MLN PySAT PSL ProbLog ProbLog NC Tuffy

CITESEER ✓ ✓ ✓ TIMEOUT ✓ ✓

CORA ✓ ✓ ✓ TIMEOUT ✓ ✓

DDI ✓ ✓ ✓ TIMEOUT TIMEOUT ✓

EPINIONS ✓ ✓ ✓ TIMEOUT ✓ ✓

ER ✓ ✓ ✓ TIMEOUT ✓ TIMEOUT

JESTER ✓ ✓ ✓ TIMEOUT TIMEOUT TIMEOUT

KGI TIMEOUT ✓ ✓ TIMEOUT ✓ MEMORY

LASTFM TIMEOUT ✓ ✓ TIMEOUT ✓ TIMEOUT

SMOKERS ✓ ✓ ✓ ✓ ✓ ✓

STANCE ✓ ✓ ✓ TIMEOUT ✓ ✓

YELP TIMEOUT ✓ ✓ TIMEOUT ✓ TIMEOUT

Table 6.3: The result of running multiple SRLi engines. A check mark (✓) means that the engine
ran without issue, TIMEOUT indicates that the engine was killed after two hours, and MEMORY

indicates that the engine ran out of memory.

provided datasets. Table 6.3 shows the result of running each engine. A check mark (✓) indicates

that the engine ran without issue, TIMEOUT indicates that the engine was killed after two hours, and

MEMORY indicates that the engine ran out of memory.

Most engines are able to run on most unmodified datasets without issue. As all these

datasets and models are provided by PSL, it is not surprising that the PSL engine runs all datasets

without issue. The ProbLog engine sees the most issues, and can only run the SMOKERS dataset.
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This result is expected as the provided datasets are not partitioned into smaller subgraphs. However,

the non-collective ProbLog engine (ProbLog NC) is able to run on all but two of the larger datasets

(DDI and JESTER). Tuffy times out on many of the large datasets. MLN Native, however, is able to

demonstrate the power of SRLi’s common grounding component by successfully running two more

datasets than Tuffy. The MLN PySat engine is able to go even further and run all datasets.

To assess the quality of results that the different SRLi engines output, I can look at the

output from engines on datasets that did not time out (CITESEER, CORA, EPINIONS, and STANCE-

CREATEDEBATE). Table 6.4 shows results for all the engines (except ProbLog) averaged over

five different splits. The mean of the evaluation metric used in the original publication for each

respective dataset along with the standard deviation is provided. The runtimes for these experiments

are listed in Table 6.5. The best performing engines for each dataset (determined using a Student’s

T-test with a p = 0.01) are in bold. These results do not include weight learning, and therefore

represent a worst-case scenario of how each engine can perform without any dataset-specific tuning.

The PSL engine tends to perform the best, and is often tied with one of the available MLN engines.

6.2 VMI-PSL: Visual Model Inspector for Probabilistic Soft Logic

One of the appeals of PSL models is that they are intuitive to create and make it easy to

include background knowledge and complex data interactions. However, these complex interactions

can sometimes make PSL models difficult to inspect, debug, and understand. While there has been

significant work in explaining SRL models Symeonidis et al. [2009], Friedrich and Zanker [2011],
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Dataset Metric MLN Native MLN PySAT PSL ProbLog NC Tuffy

CITESEER Accuracy 0.23 ± 0.01 0.16 ± 0.01 0.24 ± 0.01 0.16 ± 0.01 0.22 ± 0.01

CORA Accuracy 0.30 ± 0.02 0.13 ± 0.01 0.33 ± 0.02 0.17 ± 0.02 0.28 ± 0.02

EPINIONS AuPRC 0.92 ± 0.01 0.92 ± 0.01 0.98 ± 0.01 0.92 ± 0.01 0.95 ± 0.01

STANCE-CREATEDEBATE RMSE 0.72 ± 0.04 0.73 ± 0.03 0.60 ± 0.02 0.68 ± 0.03 0.59 ± 0.11

Table 6.4: The mean quality metric and standard deviation of different SRLi methods run over
several established relational datasets averaged over 5 splits. The presented metric is the metric used
in the original publication. The best results (determined using a Student’s T-test with a p = 0.01)
are in bold.

Dataset MLN Native MLN PySAT PSL ProbLog NC Tuffy

CITESEER 1042 ± 40 110 ± 23 7 ± 1 5444 ± 3341 35 ± 2

CORA 1550 ± 61 325 ± 32 8 ± 1 1992 ± 116 50 ± 4

EPINIONS 151 ± 16 13 ± 1 11 ± 1 256 ± 23 892 ± 137

STANCE-CREATEDEBATE 5 ± 2 2 ± 1 4 ± 4 199 ± 132 7 ± 2

Table 6.5: The mean runtime and standard deviation of different SRLi methods run over several
established relational datasets averaged over 5 splits. The best results (determined using a Student’s
T-test with a p = 0.01) are in bold.
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Bostandjiev et al. [2012], Nguyen et al. [2013], Verbert et al. [2013], Parra et al. [2014], Berkovsky

et al. [2017], Kouki et al. [2017b], Nunes and Jannach [2017], Sato et al. [2018], Andjelkovic et al.

[2019], there has been far less work in debugging them.

In this section, I present my inspection tool for PSL: Visual Model Inspector for Proba-

bilistic Soft Logic (VMI-PSL), and demonstrate its use on hybrid recommender systems Kouki et al.

[2015]. VMI-PSL provides an easy-to-use web-based inspector for PSL models that requires no

additional setup, uses data tables and aggregate statistics to display information about a model in a

scalable way, and uses contextual information to display only relevant portions of the model.

To understand how a PSL model can be inspected, I must first discuss the basic structure

of a PSL model. A PSL model is constructed by instantiating weighted logical rules with data, these

instantiations are referred to as ground rules. The components in a ground rule are referred to as

ground atoms. Ground atoms assume a continuous truth value in the range [0, 1], and ground rules

take on a degree of satisfaction in the range [0, 1].

My key contributions to this component of the usability pillar include: 1) I augment the

PSL framework to output the necessary information for model inspection, 2) I create a new visual

inspection tool for PSL models, VMI-PSL, 6 3) I provide sample workflows to show how VMI-

PSL can be used with a recommender system model. To the best of my knowledge, VMI-PSL is the

first generic visual model inspector for any SRL framework.

The work covered in this section was presented at the 2020 ACM Conference on Recom-

mender Systems (RecSys) Rodden et al. [2020].
6Code available at https://github.com/linqs/psl-vmi.
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Figure 6.1: The three different context layers in VMI-PSL, along with a module from each layer.
Here, the ground atom RATING(’8’, ’1769’) is the context for the ground atom layer and
the ground rule BPMF_RATING(’8’, ’1769’) → RATING(’8’, ’1769’) is the context for the
ground rule layer.

6.2.1 System Overview

VMI-PSL is designed to mimic the workflow of an experienced PSL user as they manually

inspect a PSL model. Information is organized into into three different context layers, each

containing modules that automatically activate when a user selects an item. These layers are the

model layer, the ground atom layer, and the ground rule layer. The information displayed

starts general at the model layer, but then becomes more detailed as the user drills down into

more specific context layers. Figure 6.1 shows a module from each of the three layers on a hybrid

recommender system modelKouki et al. [2015].

The model layer contains information about the model as a whole, and contains five

modules: 1. Rule Overview – a table of all the rules used in the model along with each rule’s

weight, count, total dissatisfaction, and mean dissatisfaction. 2. Violated Constraints – a

table of all violated hard constraints. 3. Rule Compatibility – a bar graph containing all the

rules, the display can be toggled between total satisfaction, mean satisfaction, total dissatisfaction,

and mean dissatisfaction. 4. Ground Rule Count – a bar graph showing the number of ground
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rules instantiated from each rule. 5. Truth Table – a table that shows every ground truth value

and its corresponding prediction.

When a ground atom is selected, the ground atom layer is activated with two modules:

1. Associated Rule Compatibility – a bar graph similar to the model layer’s Rule

Compatibility module, however only ground rules containing the selected ground atom are

aggregated. 2. Associated Ground Rules – a table that shows every ground rule that

contains the selected ground atom along with the dissatisfaction of the ground rule.

Lastly, the ground rule layer contains a single module: 1. Rule Satisfaction

– a table that shows the total satisfaction of the ground rule along with the truth value of each ground

atom involved in that ground rule.

6.2.2 Example Workflows

VMI-PSL is supported in all PSL interfaces, and no additional setup is required. To use

VMI-PSL, a user must first run their existing PSL model with the additional −−visualization

option. PSL generates a JSON file that contains all the necessary information for model inspection.

The user must then go to https://linqs.github.io/psl-vmi and select the generated

JSON file when prompted. Finally, VMI-PSL rebuilds the model from the JSON file and displays

all the relevant information.

Figure 6.2 shows three different workflows of VMI-PSL on the HyPER hybrid recom-

mender modelKouki et al. [2015]. In the Debug workflow, VMI-PSL is being used to answer the

question: Why is my model giving incorrect results? A common cause of erroneous models is a
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Figure 6.2: Three different workflows showcasing different use cases of VMI-PSL: debugging an
erroneous model, analyzing the performance of components of a working model, and explaining
specific predictions.

rule unintentionally generating zero ground rules. This can be caused by corrupted data files or

incorrectly written rules. The workflow for this use case is simple, the Rule Overview, Rule

Compatibility, and Ground Rule Count modules will all show zeroes in their respective

metrics for that rule. The Analysis workflow answers the question: What components of my model

can be improved? To answer this question, the first step is to select an atom with an incorrect

prediction from the Truth Table module. Then, the Ground Atom layer is activated and the

Associated Rule Compatibility can be used to find the rules that most contribute to the

incorrect prediction. Finally, the Explainability workflow answers the question: What causes a

specific prediction? The first step is looking up the specific prediction in the Truth Table mod-

ule. Once the prediction is selected, the Associated Ground Rules module can be sorted

in ascending order by dissatisfaction to find the specific ground rules that contribute most to this

prediction. Selecting each ground rule will open the Rule Satisfaction module where the

individual contribution of each ground atom in the selected rule can be observed. These explanations

are found in the same way as Kouki et al. [2019].
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6.3 Conclusions and Future Work

In this chapter, I discuss two tools I created to make SRL more usable to those in the SRL

community and more accessible to machine learners outside of the SRL community. The first tool

I discuss, SRLi, is a framework that serves as a standard interface for relational languages, with

the ability to convert relational models into various existing frameworks as well as the ability to

create new SRL engines using shared and custom components. This common interface will allow

the SRL community to coalesce behind a common language, and lowers the bar for others wishing

to implement SRL models. The second tool, VMI-PSL, is a tool for inspecting and debugging PSL

models.

Future directions in SRLi falls into two categories. First, SRLi’s support for existing

frameworks can be extended to other relational models, Probabilistic Circuits Choi et al. [2020]

being one of the most obvious choices. Next, SRLi’s functionality can be extended by allowing

models from common machine learning frameworks, such as scikit-learn, Tensorflow, and PyTorch,

to be integrated directly into SRLi models. This integration would be an easy way for newcomers to

augment an existing model with relational information.

A promising future direction for VMI-PSL is to attach VMI-PSL to an online inference

engine for PSL, making it possible to see the effects of changing rules or atoms without needing

to re-run PSL. Additionally, making VMI-PSL compatible with SRLi allows for VMI-PSL to

automatically support a wider range of SRL engines.
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Chapter 7

Conclusions and Future Work

In this dissertation, I have discussed the four pillars that are central in making practical

SRL systems that can be used by both SRL experts and those new to the SRL community: scalability,

which gives SRL systems the ability be used with large, complex, and realworld models; expressivity,

which lets SRL systems represent many different problems and data patterns; model adaptability,

which allows SRL systems to handle models that change; and usability, which makes SRL systems

accessible for users with varying degrees of expertise with machine learning and SRL.

My key contributions are: 1) identifying the roadblocks that prevent SRL from becoming

a more widely-used paradigm of machine learning, 2) advancing the bounds of SRL scalability for

both grounding and inference, 3) integrating neural models with symbolic reasoning, 4) extending

existing SRL models to incorporate new and changing data, and 5) creating a standardized framework

for working with existing and custom SRL engines.
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Each chapter covering a pillar of practical SRL systems contains directions for future work

specific to that pillar, however here I would like to highlight a broader vision of the future. Machine

learning is powerful, and we see it become a larger and larger part of everyday life. We have reached

a point of diminishing returns when it comes to the size and amount of training data that can be

encoded in a simple, “flat” machine learning model. Instead, it it time for us to make models that are

smarter and work directly with curated knowledge. Looking to the future, we need systems that can

integrate the powerful models we see around us everyday with human intention. We need models

that can make use of common sense from a knowledge base, that can learn from tiny amounts of

data, that can integrate guardrails and safety constraints, that can explain its predictions in an easily

interpretable fashion, and that can codify societal desires in every prediction. SRL provides a mean

of creating these model by incorporating curated knowledge (whether that be constraints, domain

knowledge, social graphs, or large knowledge bases) into machine learning. The groundwork I have

laid in this dissertation serves as a starting point for building these integrated systems that can be

used effectively by everyone in the machine learning community.
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Appendix A

Appendix

A.1 Collective Grounding

A.1.1 Grounding Pseudocode

Where CreateBaseQuery is a function that takes in a single rule, and creates the rule’s

base query (as discussed in Section 3.2.1) as well as a mapping between the variables used in the

rule and columns of the query; and ExecuteQuery is a function that executes a query on a database

and returns the results; and InstantiateGroundRules takes in results from a database query, a set

of rules, and a mapping that maps variables used in the rules to columns of the database query; and

returns ground rules created by instantiating each rule using the query results.

Where GenerateCandidates is fully defined in Algorithm 2;

SearchCandidates is a function that explores that candidate search space as described in Sec-
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Algorithm 9: The independent grounding process. This process takes as input a

collection of template, T and a database containing both observed data X and

unobserved data Y , and outputs a set of ground rules generated by instantiating

the rules using the database. Each rule is processed individually using the base

grounding query for each rule.

1 Function IndependentGrounding:
Input: rules = T, database = (X,Y )

Result: groundRules = {}

2

3 foreach rule in rules do

4 (query, variableMap)← CreateBaseQuery(rule)

5 results← ExecuteQuery(database, query)

6 groundRules← groundRules ∪

7 InstantiateGroundRules(results, {rule}, variableMap)
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Algorithm 10: The collective grounding process. This process takes as input a

collection of template, T and a database containing both observed data X and

unobserved data Y , and outputs a set of ground rules generated by instantiating

the rules using the database. Candidates are generated from each rule. Then,

these candidates are examined together to fine the best grounding program that

collectively minimizes the joint workload of grounding.

1 Function CollectiveGrounding:
Hyperparameters: searchBudget, searchType

Input: rules = T, database = (X,Y )

Result: groundRules = {}

2

3 candidates← {}

4

5 foreach rule in rules do

6 ruleCandidates← GenerateCandidates(rule)

7 bestRuleCandidates←

SearchCandidates(ruleCandidates, searchBudget, searchType)

8 candidates← candidates ∪ bestRuleCandidates

9

10 candidateRuleMapping ← CreateCandidateRuleMapping(candidates, rules)

11 groundingProgram← ConstructGroundingProgram(candidateRuleMapping)

12

13 foreach (query, rules, variableMap) in groundingProgram do

14 results← ExecuteQuery(database, query)

15 groundRules← groundRules ∪

16 InstantiateGroundRules(results, rules, variableMap)
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tion 11; CreateCandidateRuleMapping is a function that maps candidates to the rules they

satisfy as described in Section 11; and ConstructGroundingProgram is a function that com-

putes grounding plans (as defined by Equation 2.3) using the procedure described in Section 11.

Note that the CollectiveGrounding function has the same parameter and return signature as the

IndependentGrounding function.

The pseudocode in this section for CollectiveGrounding provides a synchronous im-

plementation that favors clarity over performance. The implementation used in the experiments in

Section 3.2.2 (and included in the accompanying code1) is an asynchronous version that interweaves

candidate generation with the budgeted search to avoid expanding large search spaces.

A.1.2 Full LASTFM Model

Figure A.1 shows the full LASTFM model used in Kouki et al. [2015]. The weight was

omitted for all rules as weights are learned on a per-split basis.

A.1.3 Full DDI Model

Figure A.2 shows the full DDI model used in Sridhar et al. [2016]. The weight was

omitted for all rules as weights are learned on a per-split basis. Rules ending with a period are

unweighted (hard constraints).
1Available at https://github.com/eriq-augustine/srli.
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#Similarities like Pearson, Cosine, and Adjusted Cosine Similarity between items.

RATED(U, I1) ∧ RATED(U, I2) ∧ RATING(U, I1) ∧ SIMPEARSONITEMS(I1, I2) → RATING(U, I2)

RATED(U, I1) ∧ RATED(U, I2) ∧ RATING(U, I1) ∧ SIMCOSINEITEMS(I1, I2) → RATING(U, I2)

RATED(U, I1) ∧ RATED(U, I2) ∧ RATING(U, I1) ∧ SIMADJCOSITEMS(I1, I2) → RATING(U, I2)

# Similarities like Pearson and Cosine Similarity between users.

RATED(U1, I) ∧ RATED(U2, I) ∧ RATING(U1, I) ∧ SIMPEARSONUSERS(U1, U2) → RATING(U2, I)

RATED(U1, I) ∧ RATED(U2, I) ∧ RATING(U1, I) ∧ SIMCOSINEUSERS(U1, U2) → RATING(U2, I)

#Other low dimension space similarities like Matrix Factorization Cosine and Euclidean Similarity between users.

USER(U1) ∧ USER(U2) ∧ ITEM(I) ∧ RATING(U1, I) ∧ RATED(U1, I) ∧ RATED(U2, I) ∧ SIMMFCOSINEUSERS(U1, U2) → RATING(U2, I)

USER(U1) ∧ USER(U2) ∧ ITEM(I) ∧ RATING(U1, I) ∧ RATED(U1, I) ∧ RATED(U2, I) ∧ SIMMFEUCLIDEANUSERS(U1, U2) → RATING(U2, I)

#Other low dimension space similarities like Matrix Factorization Cosine and Euclidean Similarity between items.

USER(U) ∧ ITEM(I1) ∧ ITEM(I2) ∧ RATING(U, I1) ∧ RATED(U, I1) ∧ RATED(U, I2) ∧ SIMMFCOSINEITEMS(I1, I2) → RATING(U, I2)

USER(U) ∧ ITEM(I1) ∧ ITEM(I2) ∧ RATING(U, I1) ∧ RATED(U, I1) ∧ RATED(U, I2) ∧ SIMMFEUCLIDEANITEMS(I1, I2) → RATING(U, I2)

# Predictions by different other methods like SGD, Item based Pearson methods, and BPMFmethods.

SGDRATING(U, I) → RATING(U, I)

RATING(U, I) → SGDRATING(U, I)

ITEMPEARSONRATING(U, I) → RATING(U, I)

RATING(U, I) → ITEMPEARSONRATING(U, I)

BPMFRATING(U, I) → RATING(U, I)

RATING(U, I) → BPMFRATING(U, I)

# Average prior of User Rating and Item ratings.

USER(U) ∧ ITEM(I) ∧ RATED(U, I) ∧ AVGUSERRATING(U) → RATING(U, I)

USER(U) ∧ ITEM(I) ∧ RATED(U, I) ∧ RATING(U, I) → AVGUSERRATING(U)

USER(U) ∧ ITEM(I) ∧ RATED(U, I) ∧ AVGITEMRATING(I) → RATING(U, I)

USER(U) ∧ ITEM(I) ∧ RATED(U, I) ∧ RATING(U, I) → AVGITEMRATING(I)

# Social rule of friendship influencing ratings.

RATED(U1, I) ∧ RATED(U2, I) ∧ FRIENDS(U1, U2) ∧ RATING(U1, I) → RATING(U2, I)

# Content rule by Jaccard similarity.

RATED(U, I1) ∧ RATED(U, I2) ∧ RATING(U, I1) ∧ SIMCONTENTITEMSJACCARD(I1, I2) → RATING(U, I2)

Figure A.1: The full LASTFM model used in Kouki et al. [2015].
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#Similarity based rules.

ATCSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

SIDEEFFECTSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

GOSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

LIGANDSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

CHEMICALSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

SEQSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

DISTSIMILARITY(D1, D2) ∧ INTERACTS(D1, D3) ∧ VALIDINTERACTION(D1, D3) ∧ VALIDINTERACTION(D2, D3) → INTERACTS(D2, D3)^2

# Symmetry.

INTERACTS(D1, D2) = INTERACTS(D2, D1).

#Negative prior.

VALIDINTERACTION(D1, D2) → ¬INTERACTS(D1, D2)^2

Figure A.2: The full DDI model used in Sridhar et al. [2016].

A.2 Weight Learning Sampling

A.2.1 Surface of a Unit Hypersphere as Search Space

Here, I discuss the effectiveness of the surface of a unit hypersphere as the search space

in weight learning. To show that this is a reasonable space to sample weights from I need to show:

first, the surface of the hypersphere is complete and non-redundant and second, if two weight

configurations in OS are represented by the same weight configurations on the hypersphere then the

solution obtained for y by both the weight configurations are the same. Every weight configuration

given in OS can be easily projected on to the hypersphere in the following way:

H(w) =
w

||w||2
(A.1)
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A = 10, 10, 10

(a) In OS (b) In SS

A = 1, 1, 1

(c) In OS (d) In SS

A = 0.1, 0.1, 0.1

(e) In OS (f) In SS

A = 0.01, 0.01, 0.01

(g) In OS (h) In SS

Figure A.3: Visualization of Dirichlet distribution with different A of a model with three rules.
Visualization shown both in OS and SS.
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where ||w||2 is the L-2 norm of the vector.

Theorem 9. Every weight configuration w in OS has an equivalent weight configuration w̃ on the

hypersphere such that argmaxy ŝ ·E(y|x,w) = argmaxy ŝ ·E(y|x, w̃).

Proof. From Theorem 2 I know that weights are scale invariant when performing MAP inference

and this implies that the magnitude of the vector generated by a weight configuration does not

affect the solution obtained when performing inference in PSL and MLNs. This implies that all

r-dimensional unit vectors in the positive quadrant is sufficient to represent all possible weight

configuration for MAP inference in PSL and MLNs. All unit vectors can be represented using the

surface of a hypersphere. Therefore, surface of an r-dimensional hypersphere removes redundancies

of OS and is complete.

Theorem 10. Given two weight configurations w1 and w2 such that the projectionH of the weight

configurations are equal, i.e.,H(w1) = H(w2), then the optimization solution obtained for y by

performing inference is the same.

Proof. This is easy to show as the definition of the projection defined in Equation A.1 is very similar

to the projection defined in Theorem 2. The weights are simply rescaled and therefore, by definition

and from Theorem 2, it is clear to see that if H(w1) = H(w2) then argmaxy ŝ · E(y|x,w1) =

argmaxy ŝ ·E(y|x,w2).

This shows that the projection on to the surface of a unit hypersphere has properties

similar to SS. However, these two are not entirely equivalent as the grounding factor κ plays an
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important role in the actual impact of weights at the time of inference. While SS is ideal and

distances between weights are preserved even after adjusting for grounding, the distances are not

preserved after adjusting for grounding.

Theorem 11. Given two weight configurations w1 and w2 and their grounding adjusted weights

κ · w1 and κ · w2 (an element-wise dot), the distance between the two weights before and after

grounding adjustment are not the same, i.e., ||w1 −w2|| ≠ κ ·w1 − κ ·w2.

Therefore, I can conclude that while the surface of a hypersphere does not have all the

properties of SS it is a reasonable approximation of SS and weights can be samples from the

hypersphere.

Density of Samples Generated by Projecting Points from Probability Simplex

While sampling from a hypersphere with different densities can be tricky one easy way

to do this is to sample from a Dirichlet distribution which samples from the probability simplex

and project the values on to the sphere. The Dirichlet distribution accepts the hyperparameter

A ∈ R+r which controls the spread of the distribution. It is easy to see that every point on a

probability simplex can be uniquely projected on to a hypershpere. Here in Figure A.3 I visualize

the distribution generated by using different values of A for a model with three rules. I vary the

value of alpha form all 10s to all 0.001 and plot the projection on to a sphere which is in OS on

the left and SS (which is 2-dimensional space) on the right. I can observe that as the value of A is

reduced the samples in OS are getting concentrated to the poles and in SS the samples spread wider
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and choosing larger ratios. I can choose this value based on my application. For instance when

the task is to perform rule pruning, it is more desirable for the ratio of weights to be more extreme

and hence choose a small value for A and if the task is to fine tuning weights without making large

changes, then a higher value of A might be more suitable.
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