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Abstract

Double blind T -private information retrieval (DB-TPIR) enables two users, each of whom specifies

an index (θ1, θ2, resp.), to efficiently retrieve a message W (θ1, θ2) labeled by the two indices, from

a set of N servers that store all messages W (k1, k2), k1 ∈ {1, 2, · · · ,K1}, k2 ∈ {1, 2, · · · ,K2}, such

that the two users’ indices are kept private from any set of up to T1, T2 colluding servers, respectively,

as well as from each other. A DB-TPIR scheme based on cross-subspace alignment is proposed in

this paper, and shown to be capacity-achieving in the asymptotic setting of large number of messages

and bounded latency. The scheme is then extended to M -way blind X-secure T -private information

retrieval (MB-XS-TPIR) with multiple (M ) indices, each belonging to a different user, arbitrary privacy

levels for each index (T1, T2, · · · , TM ), and arbitrary level of security (X) of data storage, so that the

message W (θ1, θ2, · · · , θM ) can be efficiently retrieved while the stored data is held secure against

collusion among up to X colluding servers, the mth user’s index is private against collusion among up

to Tm servers, and each user’s index θm is private from all other users. The general scheme relies on a

tensor-product based extension of cross-subspace alignment and retrieves 1− (X + T1 + · · ·+ TM )/N

bits of desired message per bit of download.

I. INTRODUCTION

Data privacy and security are among the biggest challenges of the modern information age.

Driven by these challenges there is much interest in the building blocks (primitives) of pri-

vacy/security preserving schemes, such as secret sharing [1], oblivious transfer [2], private

information retrieval (PIR) [3], [4], secure multiparty computation (MPC) [5]–[7], and private

simultaneous messages (PSM) [8]. Understanding the fundamental limits of each of these build-

ing blocks is the key to understanding the scope of their potential applications. The focus of

this work is on private information retrieval (PIR).

Introduced by Chor et al. in [3], [4], the goal of PIR in its simplest form is to allow a

user to efficiently retrieve a desired message from a set of K messages that are replicated

http://arxiv.org/abs/2008.03828v2
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across N distributed servers, while revealing no information to any individual server about

which message is desired. Until recently, PIR was investigated primarily by computer scientists

and cryptographers [3], [4] under the assumption of short messages (e.g., each message is just

one bit), with the goal of minimizing the total communication (upload and download) cost.

However, following the capacity characterization of PIR in [9], [10] under the assumption of

long messages (where downloads dominate the communication cost), the fundamental limits

(capacity) of various forms of download-efficient PIR have become an active topic in information

theory. Recent advances include the capacity characterizations of PIR with T -privacy [11],

symmetric-privacy [12], weak privacy [13], [14], eavesdroppers and/or Byzantine servers [15]–

[19], coded storage [20]–[27], secure storage [28]–[30], limited storage [31]–[35], cached data

or side information [36]–[39], multiple rounds [40], [41], multiple desired messages [42]–[45],

upload constraints [46], arbitrary collusion patterns [21], [47], single server PIR with user side

information [48]–[54], latent-variable single server PIR [55], as well as applications of PIR to

private computation [56]–[59], private search [60], private set intersection [45], coded computing

[61], locally decodable codes [62], etc.

Our goal in this work is to further expand the understanding of download-efficient PIR in a

new direction — M-way blind X-secure T -PIR or MB-XS-TPIR, where the data, labeled by M

indices, is stored in an X-secure1 fashion by N servers, and M users jointly retrieve a desired

message by specifying one index each (user m specifies θm, ∀m ∈ {1, 2, · · · ,M}), while keeping

their index private from each other and also T -private from the servers where the data is stored. It

is conceivable that such a functionality may be directly useful. For example, consider private data,

e.g., health records, that are stored anonymously and X-securely among a cloud of distributed

servers. For enhanced security it is not uncommon to require multi-factor authentication, e.g.,

2-factor authentication from a pair of devices (say, smartphone and computer) that belong to the

owner of the data (patient) in order to allow access to the data. This can be implemented as the

double blind setting of MB-XS-TPIR by creating 2 passwords (indices θ1, θ2), so that the two

devices must each provide θ1, θ2 respectively, in order for the patient to retrieve W(θ1, θ2) on

either device. It is important that each device learns nothing about the other device’s password

(treating devices as users, this is called inter-user privacy), so that the loss or hacking of either

device does not reveal more than its own password. Furthermore, the passwords/indices are also

1X-security (T -privacy) means that security (privacy) is guaranteed against any set of up to X (T ) colluding servers.
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kept T -private from the servers, so that even the servers learn nothing about which record is

being retrieved. M-way authentication similarly motivates MB-XS-TPIR. In general, MB-XS-

TPIR may be a good solution for secret sharing among multiple parties when the size of the secret

is too large so that it needs to be securely stored among distributed servers (cloud) while access

to the secret is allowed by distributing smaller keys or passwords (indices in MB-XS-TPIR) to

the parties. The multiway blind functionality is also useful for secure multiparty computation2

where the inputs θ1, · · · , θM of a function f(x1, · · · , xM ) are held by M parties and W, whose

(θ1, · · · , θM)th entry is the evaluation of the function at (θ1, · · · , θM), is stored by distributed

servers [63]. Fundamentally, however, our motivation is simply to expand the scope of a basic

primitive.

The main contribution of this work is a cross-subspace alignment (CSA) based scheme for

MB-XS-TPIR. To place this in perspective, we note that the evolution of CSA codes has followed

a remarkable trajectory with crossovers between PIR and coded distributed computing (CDC). In

a nutshell, CSA codes originated in PIR, then crossed over to CDC where the constructions were

generalized, and now in this work, return back to PIR in their generalized form which allows

MB-XS-TPIR. To see this in a bit more detail, recall that the idea of cross-subspace alignment

originated in the context of XS-TPIR [29], [30] as a way to align interference from undesired

product terms that result when a secret-shared (private) query vector is multiplied with a secret-

shared (secure) data vector. It was then observed in [29], [44], [61], [64], [65] that the idea of

aligning undesired product terms is similarly useful in distributed computing applications, which

led to a crossover of CSA codes to coded distributed computing [66]. Generalized CSA codes

were constructed in [61] to unify and improve upon several state-of-art CDC approaches like

Lagrange Coded Computing [67] and Entangled Polynomial codes [68]. The generalized forms

of CSA codes allow not only pairwise matrix multiplications, but also multilinear computations.

This work represents the next step forward, as the generalizations of CSA codes that emerged

in the context of coded distributed computing are used to enable new forms of PIR. Indeed, the

2A notable limitation is that M -way blind PIR allows communication only between users and servers, but Secure MPC

protocols may in general also allow direct communication between users.
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main idea behind this work is the framing of a particular solution3 to MB-XS-TPIR as a problem

of distributed secure tensor product computation. With this mapping we find that the key to the

solution is to compute the tensor products of suitably structured secret-shared query vectors that

originate at the users, and correspondingly structured secret-shared data matrices that are stored

at the servers. Note that CSA codes allow a range of structures corresponding to various choices

of feasible code parameters, which may be further optimized for download cost depending on

the application. See Section V-B for additional details. The desired tensor-products turn out to

be multilinear operations, so that the multilinear computation capability of CSA codes can be

applied to MB-XS-TPIR.

In order to introduce our solution in a more transparent setting, our initial focus is on DB-

TPIR, i.e., the double-blind setting (M = 2) with T -private user indices (T1, T2, resp.) and

replicated data storage, initially with no data-security, i.e., X = 0. This basic setting allows us

to convey the main ideas behind the construction of the scheme and also to explore its optimality.

Specifically, for the DB-TPIR problem we propose a scheme based on cross-subspace alignment

[61] which allows the retrieval of 1− (T1+ T2)/N bits of desired message per bit of download,

regardless of the number of messages. By noting connections between this problem and X-

secure T -private information retrieval (XS-TPIR) [29] we show that 1 − (T1 + T2)/N is also

the asymptotic capacity of DB-TPIR as the number of messages approaches infinity, provided

that the number of bits of each message that are jointly encoded is bounded (say, due to latency

constraints).

With the insights obtained from DB-TPIR, we are then able to fully generalize our achievable

scheme to MB-XS-TPIR, i.e., M-way blind X-secure T -private information retrieval with mul-

tiple (M) indices, each specified privately by a different user, arbitrary privacy levels for each

index (T1, T2, · · · , TM ), and arbitrary level of security (X) of data storage, so that the message

W (θ1, θ2, · · · , θM) can be efficiently retrieved by the users while the stored data is held secure

against collusion among up to X colluding servers, the mth user’s index is private against

collusion among up to Tm servers, and each user’s index θm is private from all other users.

3The problem of MB-XS-TPIR, or PIR in general, is not equivalent to distributed matrix (tensor) multiplication. For example,

there is no constraint in PIR that forces the answers returned by the servers to be linear in either the query vectors or the

stored information, or more specifically, products of query vectors and the stored information. However, many solutions to PIR

indeed take this form, thus creating a connection between PIR and CDC. That such solutions tend to be optimal in many cases

strengthens this connection.
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Fig. 1. The double blind T -private information retrieval (DB-TPIR) problem.

The general setting is based on an M-way tensor-product extension of cross-subspace alignment

codes, and retrieves 1−(X+T1+ · · ·+TM)/N bits of desired message per bit of download. This

generalizes the known asymptotically (large number of messages) optimal schemes for various

special cases of MB-XS-TPIR including DB-TPIR (M = 2, X = 0) and XS-TPIR (M = 1) [29]

(which automatically recovers asymptotically optimal schemes for TPIR (X = 0,M = 1) [11]

and PIR (X = 0,M = 1, T1 = 1) [10] as well). In fact, the achievable scheme for MB-XS-TPIR

also satisfies symmetric-privacy, i.e., the users learn nothing about the database or each others’

indices, beyond the desired message. Therefore, it also yields symmetrically private schemes

as special cases. For example, the general MB-XS-TPIR scheme yields a capacity achieving

scheme for Symmetric XS-TPIR (M = 1) [65], STPIR (M = 1, X = 0, Symmetric Privacy)

[22] and SPIR (M = 1, X = 0, T1 = 1) as well. Based on all these observations, we conjecture

that the general MB-XS-TPIR scheme is also asymptotically optimal.

In order to compare the new scheme with state of art, a natural baseline is obtained from

[63] where a secure multiparty computation (MPC) scheme is constructed based on symmetric-

PIR (SPIR) as a building block. This construction can be naturally generalized to a DBPIR

scheme. Intuitively, this construction is based on a partitioning of N servers into
√
N groups

of
√
N servers each, such that within each sub-group the SPIR scheme is executed for one

user, while across sub-groups the SPIR scheme is executed for the other user. However, even

with the most efficient SPIR scheme as the building block, the rate of this construction for

DBPIR is
(
1− 1/

√
N
)2

, which is strictly smaller than the rate 1 − 2/N achieved by our

asymptotically optimal scheme. This is because cross-subspace alignment allows us to avoid the
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2-way partitioning of servers and is able to gain significant efficiency by jointly exploiting all

servers. For example, with N = 4 servers, the partitioning based approach achieves a rate of(
1− 1/

√
N
)2

= 1/4, while the new scheme achieves a 100% higher rate of 1 − 2/N = 1/2

due to cross-subspace alignment.

This paper is organized as follows. Section II formalizes the general MB-XS-TPIR problem.

Section III states the main results of this paper in the form of two theorems. Their proofs are

presented in Section IV and Section V. Section VI concludes the paper.

Notation: For any two integers a, b such that a ≤ b, let [a : b] denote the set {a, a+1, · · · , b}.

Let X[a:b] denote the set {Xa, Xa+1, · · · , Xb}. For any index set I = {i1, i2, · · · , in}, XI denotes

the set {Xi1 , Xi2, · · · , Xin}. For two vectors A and B, A ⊥⊥ B denotes that they are linearly

independent. The notation A
′ denotes the transpose of A, and A(i) denotes the ith entry of

A. For an n-dimensional tensor C, the notation C(i1, i2, · · · , in) represents the entry at the

corresponding position of C. If C is a two-dimensional tensor, then it is a matrix and C(i1, i2)

denotes the (i1, i2)
th entry of matrix C. The notation (x)+ denotes max(x, 0). If A is a set of

random variables, then by H(A) we denote the joint entropy of those random variables. Mutual

information between sets of random variables are similarly defined with the notation I(A;B).

The notation eK(θ) denotes the θth column of the K ×K identity matrix.

II. PROBLEM STATEMENT: MB-XS-TPIR

Consider a database W comprised of K = K1K2 · · ·KM messages, indexed as

W =

(
W(k1, k2, · · · , kM)

)

k1∈[1:K1],··· ,kM∈[1:KM ]

. (1)

Each message consists of a stream of i.i.d. uniform bits. The stream of symbols implies that

the message lengths are unbounded (a standard assumption in information theory). However, we

are interested primarily in bounded-latency MB-XS-TPIR schemes, i.e., schemes that code over

a bounded number of bits. For example, consider an encoder that accepts as input L symbols

from Fq for each message, i.e., L log2(q) bits of each message, and jointly encodes them. In order

to jointly encode its inputs, the encoder must first wait to collect L log2(q) bits of data for each

message, thus introducing a coding delay, or latency. By bounded latency, we mean that L, q

are O(1) in the parameters K1, K2, · · · , KM . In other words, the number of bits that are jointly

encoded by the MB-XS-TPIR scheme is bounded even as the number of messages approaches

infinity. This assumption is important in practice, especially for streaming or dynamic data. To
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our knowledge, for all PIR settings where the asymptotic (large number of messages) capacity

is known, it is achieved by bounded-latency schemes [26]. So we do not expect the bounded

latency assumption to affect the asymptotic capacity of MB-XS-TPIR. But it will be a useful

assumption for converse arguments for the special case of DB-TPIR (Double Blind T -PIR).

Another issue worth clarifying is that even though L is bounded while the number of messages

is allowed to be much larger, the downloads still dominate the communication cost because the

same queries can be re-used repeatedly to download the unbounded desired message stream, L

symbols at a time.

Under the bounded latency assumption, without loss of generality we will assume that each

message has length L symbols. In q-ary units,

H(W(k1, k2, · · ·kM)) = L, ∀k1 ∈ [1 : K1], · · · , kM ∈ [1 : KM ], (2)

H(W) =
∑

k1∈[1:K1],··· ,kM∈[1:KM ]

H

(
W(k1, k2, · · · kM)

)
= K1K2 · · ·KML. (3)

The database W is stored at N distributed servers according to an X-secure storage scheme.

Let the storage at the nth server be denoted by Sn, n ∈ [1 : N ]. An X-secure storage scheme

ensures that any set of up to X colluding servers cannot learn anything about the database W.

[X-Security] I(W;SX ) = 0, ∀X ⊂ [1 : N ], |X | ≤ X. (4)

The setting X = 0 corresponds to replicated storage, where we set Sn = W, ∀n ∈ [1 : N ].

There are M users. The user m,m ∈ [1 : M ] specifies the index θm which is uniform over

[1 : Km]. The M users jointly want to retrieve the message W(θ1, θ2, · · · , θM). The mth user

must keep its4 index private against collusion among any set of up to Tm servers. Each user

must also keep its index private against other users.

To this end, we assume for each m ∈ [1 : M ], user m has its own private randomness Zm.

Note that Zm is used to guarantee user m’s Tm-privacy against any Tm colluding servers. The

4The use of ‘it’ instead of ‘he/she’ for users reflects the motivating example of M -factor authentication, where different users

may in fact be different inanimate devices owned by the same person.
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N servers share5 common randomness Z̃ that is not available to the users. The independence

among these entities is formalized as follows.

H(S[1:N ], Z̃, (θm)m∈[1:M ], (Zm)m∈[1:M ])

=H(S[1:N ]) +H(Z̃) +
∑

m∈[1:M ]

H(θm) +
∑

m∈[1:M ]

H(Zm).
(5)

In order to retrieve the desired message, user m generates N queries Q
(m,θm)
1 , Q

(m,θm)
2 , · · · , Q(m,θm)

N

based on its index θm and its private randomness Zm. Specifically,

H(Q
(m,θm)
[1:N ] |θm,Zm) = 0, ∀m ∈ [1 : M ]. (6)

The corresponding queries from all M users, (Q
(m,θm)
n )m∈[1:M ] are sent to the nth server, for all

n ∈ [1 : N ]. Upon receiving the queries, the nth server generates its answer A
(θ1,··· ,θM )
n as a

function of the queries, the stored information and the server-side common randomness.

H(A(θ1,··· ,θM )
n |Sn, (Q

(m,θm)
n )m∈[1:M ], Z̃) = 0. (7)

The privacy constraints consist of two parts.

1) (Tm)-Privacy. This means that any Tm or fewer servers have no knowledge about θm,

I(θm; (Q
(i,θi)
T )i∈[1:M ]|ST , Z̃) = 0, ∀m ∈ [1 : M ], T ⊂ [1 : N ], |T | ≤ Tm. (8)

2) Inter-user Privacy. This means that any user must learn nothing about other users’ indices.

I

(
θ[1:M ]\{m};A

(θ1,··· ,θM )
[1:N ] |θm,Zm,W(θ1, · · · , θM)

)
= 0, ∀m ∈ [1 : M ]. (9)

With the answers from the N servers, each user must be able to recover the desired message.

[Correctness] H(W(θ1, · · · , θM)|A(θ1,··· ,θM )
[1:N ] , θm,Zm) = 0, ∀m ∈ [1 : M ]. (10)

Recall that the rate of a PIR scheme is the number of bits of desired message that can be retrieved

per bit of total download. Therefore, if D is the maximum (over all realizations of messages)

number of q-ary symbols downloaded from all servers by a user, under an MB-XS-TPIR scheme

that allows the user to retrieve L q-ary symbols of the desired message, then the rate of such a

scheme is denoted as,

R =
L

D
. (11)

5We need common randomness at the servers only to ensure perfect inter-user privacy, as in (9). Remarkably, almost-perfect

inter-user privacy can be guaranteed (for large messages) even without common randomness at servers (see Corollary 1).
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The main contribution of this work is an achievable scheme for MB-XS-TPIR that is based on

cross-subspace alignment, and achieves the rate 1−(X+T1+ · · ·+TM )/N , for arbitrary number

of messages K1, K2, · · · , KM . Note that the scheme itself is not limited to asymptotic settings.

Asymptotic settings will be of interest primarily for the purpose of testing the optimality of the

scheme for significant special cases.

In order to introduce the scheme in a transparent setting, and to gain deeper insights into

its optimality, we focus in particular on Double Blind T -PIR (DB-TPIR), which is obtained

as a special case of MB-XS-TPIR by setting M = 2, X = 0. Given q, L,N,K1, K2, T1, T2 let

us denote the supremum of rates achievable by any DB-TPIR scheme with these parameters

as R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2). Let us then define the capacity of DB-TPIR with parameters

N,K1, K2, T1, T2 as

CDB-TPIR(N,K1, K2, T1, T2) = sup
q,L

R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2). (12)

Specifically, from the optimality perspective, we are interested in the asymptotic capacity of

DB-TPIR as K1, K2 → ∞. Under the bounded latency (b.l.) constraint, this asymptotic capacity

is defined as

C∞,b.l.
DB-TPIR

(N, T1, T2)
△
= sup

q,L

lim
K1,K2→∞

R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2). (13)

In plain words, C∞,b.l.
DB-TPIR(N, T1, T2) is the highest rate possible for any DB-TPIR scheme when

the number of messages is much larger than the number of bits of each message that are jointly

encoded by the scheme.

Remark 1. For a double sequence s(K1, K2), the notation limK1,K2→∞ s(K1, K2) = a means

that ∀ǫ > 0, ∃κ = κ(ǫ) such that |s(K1, K2)−a| < ǫ, ∀K1, K2 ≥ κ. (see Definition 2.1 in [69]). It

follows from Theorem 4.2 in [69] that the double limit limK1,K2→∞R∗
DB-TPIR

exists. This is because

R∗
DB-TPIR

is a decreasing sequence in each of K1 and K2 parameters individually (because any

scheme that works with more messages also works with fewer messages), and is bounded below

by zero. It also follows from Theorem 4.2 in [69] that

lim
K1,K2→∞

R∗
DB-TPIR

= lim
K1→∞

lim
K2→∞

R∗
DB-TPIR

. (14)

Remark 2. Note that the bounded-latency constraint affects the order in which the supremum is

taken over message size parameters (q, L) versus the limit on the number of messages (K1, K2).
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Without the bounded latency constraint, the asymptotic capacity as the number of messages

approaches infinity, would be defined as

C∞
DB-TPIR

(N, T1, T2) = lim
K1,K2→∞

sup
q,L

R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2)

= lim
K1,K2→∞

CDB-TPIR(N,K1, K2, T1, T2). (15)

Comparing (15) with (13), we note the key difference is that in (15), the supremum over

message size (q, L) allows message sizes to approach infinty for a fixed number of messages,

and only then the number of messages approaches infinity, whereas in (13) it is the number of

messages (K1, K2) that approaches infinity first for a given message size (q, L are bounded, i.e.,

O(1) in K1, K2), and only then the size of the message is allowed to grow. In a nutshell, (15)

corresponds to asymptotic settings with qL ≫ K1, K2, while (13) corresponds to asymptotic

settings with qL ≪ K1, K2, thus prioritizing coding latency.

III. RESULTS

We begin with the asymptotic capacity characterization of DB-TPIR under the bounded-latency

constraint.

Theorem 1. The asymptotic capacity of DB-TPIR subject to bounded-latency constraint is

C∞,b.l.
DB-TPIR

(N, T1, T2) =

(
1−

(
T1 + T2

N

))+

. (16)

The proof of Theorem 1 is presented in Section IV. Notably, the achievability of the rate

expression that appears on the RHS of (16) needs neither the bounded-latency assumption, nor

the asymptotic setting. Both of those are needed primarily for the converse argument.

Next we examine the need for common randomness across servers. Common randomness is

needed across servers primarily to preserve inter-user privacy, i.e., to keep each user’s index

private from other users. While in the absence of common randomness, our achievable scheme

does not preserve inter-user privacy perfectly, it is remarkable that the scheme manages to

preserve inter-user privacy almost-perfectly for large alphabet. In other words, the amount of

information leaked to a user about the other user’s index, is vanishingly small as q → ∞.

Corollary 1 highlights this observation by studying explicitly the case T1 = T2 = 1, K1 = K2 =

K.
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Corollary 1. For the DB-TPIR scheme proposed in Section IV-B, let B
(θ1,θ2)
[1:N ] denote the answers

generated by the N servers after eliminating common randomness between servers (setting all

symbols associated with Z̃ to zero in our achievable scheme for DB-TPIR). For T1 = T2 =

1, K1 = K2 = K where K is a fixed positive integer, and for any ǫ > 0, there exists q0 > 0 s.t.

when q ≥ q0 (q is the size of the finite field Fq),

I(θ2;B
(θ1,θ2)
[1:N ] |θ1,Z1,W(θ1, θ2)) ≤ ǫ, (17)

I(θ1;B
(θ1,θ2)
[1:N ] |θ2,Z2,W(θ1, θ2)) ≤ ǫ. (18)

The proof of Corollary 1 appears in Appendix A.

Our final result generalizes the achievable scheme from DB-TPIR to MB-XS-TPIR based on a

tensor-product extension of cross-subspace alignment. The achievable rate of the general scheme

is presented in the following theorem.

Theorem 2. For the MB-XS-TPIR problem defined in Section II, the following rate is achievable

regardless of the number of messages K1, K2, · · · , KM .

RMB-XS-TPIR = 1− X + T1 + T2 + · · ·+ TM

N
. (19)

Intuitively, this rate expression indicates that with this scheme one symbol is downloaded from

each server, and from those N symbols each user is able to recover L = N − (X + T1 + T2 +

· · ·+ TM ) symbols of the desired message W(θ1, θ2, · · · , θM ), while the interference is aligned

within X + T1 + T2 + · · ·+ TM dimensions. Theorem 2 is proved in Section V.

Corollary 2. Let us denote the supremum of achievable rates of MB-XS-TPIR (over all valid

MB-XS-TPIR schemes) for fixed parameters q, L,N,X,K1, · · · , KM , T1, · · · , TM as R∗
MB-XS-TPIR

.

Further, let us define the capacity of MB-XS-TPIR as CMB-XS-TPIR = supq,LR
∗
MB-XS-TPIR

. Then we have

the following bounds,

1− X + T1 + T2 + · · ·+ TM

N
≤ CMB-XS-TPIR ≤ min

(
1− T1+X

N

1− ( T1

N−X
)K1

, · · · , 1− TM+X

N

1− ( TM

N−X
)KM

)
. (20)

The proof of Corollary 2 appears in Appendix B. The lower bound in (20) follows directly

from the proof of achievability of Theorem 2. The upper bound in (20) is obtained by noting that

MB-XS-TPIR schemes automatically yield XS-TPIR schemes. By setting M = 2 and X = 0,
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the capacity of DB-TPIR is bounded as

1− T1 + T2

N
≤ CDB-TPIR ≤ min

(
1− T1/N

1− (T1/N)K1
,

1− T2/N

1− (T2/N)K2

)
. (21)

IV. ASYMPTOTIC CAPACITY OF DB-TPIR

This section is devoted to the proof of Theorem 1.

A. Theorem 1: Converse

Let us find an upper bound on the capacity of DB-TPIR by noting a relationship between

DB-TPIR and X-secure T -private information retrieval (XS-TPIR) [29]. Recall that XS-TPIR

is a special case of MB-XS-TPIR obtained by setting M = 1. The capacity of XS-TPIR with

N distributed servers, K messages, X-secure data storage, and T -private queries is denoted as

CXS-TPIR(N,K,X, T ). Recall that the asymptotic capacity of XS-TPIR (as K → ∞) is shown in

[29] to be C∞
XS-TPIR

(N,X, T ) =
(
1− X+T

N

)+
.

We will need the following lemma.

Lemma 1. Let R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2) denote the supremum of rates achievable by any

DB-TPIR scheme for the parameters q, L,N,K1, K2, T1, T2 as defined in Section II. Then for

K2 = qLK1 , we have,

R∗
DB-TPIR

(q, L,N,K1, K2 = qLK1, T1, T2) ≤ CXS-TPIR(N,K = K1, X = T2, T = T1). (22)

Proof. Consider a K1×K2 matrix Ẇ whose elements are from F
L
q . The K2 column vectors are

all distinct and, say, arranged in lexicographic order. Since K2 = qLK1 , the column vectors of

the matrix include all qLK1 possible realizations of K1 × 1 vectors over FL
q , and Ẇ is uniquely

specified. We claim that any construction of a DB-TPIR scheme for the parameter values specified

on the LHS of (22), when applied with the particular realization of the database W = Ẇ, yields

an XS-TPIR scheme with the parameters specified on the RHS of (22).

Let us describe this XS-TPIR scheme. In this XS-TPIR scheme the user corresponds to User

1 of the DB-TPIR scheme. Each Server n stores only Q
(2,θ2)
n . Note that Ẇ is a constant matrix

known to everyone, whose θth2 column specifies the realizations of the K1 i.i.d. messages (one

of which is desired by the user), each comprised of L uniformly random i.i.d. symbols from Fq.

Since θ2 is T2-private according to the DB-TPIR construction, this constitutes X = T2-secure

storage of the K1 messages. Furthermore, based on the T1-private queries, Q
(1,θ1)
n , provided by the
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user, each server is able to respond as in the DB-TPIR scheme (because Q
(2,θ2)
n is already known

to Server n), and the DB-TPIR construction guarantees that the desired message Ẇ(θ1, θ2) is

correctly retrieved. Finally, since the rate of an XS-TPIR scheme cannot be higher than the

capacity of XS-TPIR, the proof of Lemma 1 is complete. �

Remark 3. The XS-TPIR scheme that we obtain from the DB-TPIR scheme described above,

allows common randomness between servers. While the original formulation of XS-TPIR in [29]

does not explicitly allow common randomness, it is readily verified that server-side common

randomness can be included in the storage of each server in the model of [29], and the asymptotic

capacity result still holds.

Proof of Converse of Theorem 1

Note that although the proof of Lemma 1 requires the condition that K1 = qLK2 , Theorem

1 must hold as long as both K1 and K2 grow unbounded, regardless of their growth rates. For

this we will utilize (14) as follows.

C∞,b.l.
DB-TPIR

(N, T1, T2) = sup
q,L

lim
K1,K2→∞

R∗
DB-TPIR

(q, L,N,K1, K2, T1, T2) (23)

= sup
q,L

lim
K1→∞

(
lim

K2→∞
R∗

DB-TPIR
(q, L,N,K1, K2, T1, T2)

)
(24)

≤ sup
q,L

lim
K1→∞

(
lim

K2→∞
R∗

DB-TPIR
(q, L,N, logqL(K1), K2, T1, T2)

)
(25)

≤ sup
q,L

lim
K1→∞

R∗
DB-TPIR

(q, L,N, logqL(K1), K1, T1, T2) (26)

≤ sup
q,L

lim
K1→∞

CXS-TPIR(N,K = logqL(K1), X = T2, T = T1) (27)

= sup
q,L

lim
K→∞

CXS-TPIR(N,K,X = T2, T = T1) (28)

= lim
K→∞

CXS-TPIR(N,K,X = T2, T = T1) (29)

=





1−
(
T1+T2

N

)
, N > T1 + T2

0, N ≤ T1 + T2.
(30)

The first step, (24), follows directly from (14). In (25) we used the fact that reducing the

number of messages cannot hurt the rate (because the original scheme can still be used with

fewer messages). The next step, (26) follows because when K2 → ∞, K1 is viewed as a

constant which is less than K2 and reducing the number of messages cannot hurt the rate. For
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(27) we used Lemma 1. The next step, (28) follows because for fixed q, L, and K = logqL(K1),

the condition that K1 → ∞ is equivalent to the condition that K → ∞. Next, (29) follows

because the capacity expression is not a function of q or L. Finally, the asymptotic capacity

characterization for XS-TPIR from [29] is used for (30). Thus, the proof of the converse part of

Theorem 1 is complete. �

B. Theorem 1: Achievability

In this section, we prove the achievability of Theorem 1 by constructing a scheme based on

Cross Subspace Alignment (CSA) Codes [61], that can achieve the rate

(1− (T1 + T2)/N)+ for arbitrary N,K1, K2, T1, T2. We will focus only on the non-trivial case,

N > T1 + T2. Throughout this scheme we set,

L = N − (T1 + T2). (31)

Each message W(i, j), i ∈ [1 : K1], j ∈ [1 : K2] consists of L symbols from finite field Fq,

denoted as W(i, j) = (W(i, j)(1),W(i, j)(2), · · · ,W(i, j)(L)). For the scheme we will need the

following L+N distinct constants from Fq,

f1, f2, · · · , fL, α1, α2, · · · , αN (32)

that are known to all N servers and the 2 users. Note that this implies that q ≥ L+N .

Let us split the messages W into L matrices (W(1),W(2), · · · ,W(L)) so that W(l), l ∈ [1 : L]

contains the lth symbol of each message. Specifically,

W
(l) =




W(1, 1)(l) W(1, 2)(l) · · · W(1, K2)
(l)

W(2, 1)(l) W(2, 2)(l) · · · W(2, K2)
(l)

...
...

...
...

W(K1, 1)
(l)

W(K1, 2)
(l) · · · W(K1, K2)

(l)



. (33)

Note that we write equivalently W
(l)(θ1, θ2) = W(θ1, θ2)

(l).

Recall that eK(θ) is the θth column of the K×K identity matrix. The lth symbol of W(θ1, θ2)

can be expressed as

W(θ1, θ2)
(l) = eK1(θ1)

′
W

(l)
eK2(θ2). (34)

Note here eK1(θ1)
′
W

(l) is the θth1 row of matrix W
(l). The inner product of θth1 row with eK2(θ2)

is the entry at the θth2 column of this row, i.e., W(θ1, θ2)
(l). The proposed scheme will enable

the 2 users to retrieve W(θ1, θ2)
(l), ∀l ∈ [1 : L], thus, retrieving W(θ1, θ2).



15

The private randomness available to each user is specified as,

Z1 = {Z(l)
1,t | t ∈ [1 : T1], l ∈ [1 : L]}, (35)

Z2 = {Z(l)
2,t | t ∈ [1 : T2], l ∈ [1 : L]}. (36)

The random vectors Z
(l)
1,t ∈ F

K1×1
q ,Z

(l)
2,t ∈ F

K2×1
q have their elements drawn i.i.d. uniform from

Fq.

The query sent by user m,m ∈ {1, 2} to the nth server, Q
(m,θm)
n is constructed as Q

(m,θm)
n =

(Q
(m,θm)
n,1 , Q

(m,θm)
n,2 , · · · , Q(m,θm)

n,L ) where ∀l ∈ [1 : L]

Q
(m,θm)
n,l = eKm

(θm) +
∑

t∈[1:Tm]

(fl − αn)
t
Z

(l)
m,t. (37)

Specifically, Q
(m,θm)
n,l ∈ F

Km×1
q can be viewed as the query from user m to request the lth symbol

of the wanted message. The Tm-privacy constraint is satisfied since Q
(m,θm)
n,l is the Shamir’s

secret sharing [1] of eKm
(θm). Up to Tm colluding servers can learn nothing about eKm

(θm),

thus, learning nothing about θm.

Upon receiving queries from both users, the nth server computes an intermediate result

B(θ1,θ2)
n =

∑

l∈[1:L]

1

fl − αn

Q
(1,θ1)
n,l

′
W

(l)Q
(2,θ2)
n,l (38)

=
1

f1 − αn

eK1(θ1)
′
W

(1)
eK2(θ2)︸ ︷︷ ︸

W(θ1,θ2)(1)

+ · · ·+ 1

fL − αn

eK1(θ1)
′
W

(L)
eK2(θ2)︸ ︷︷ ︸

W(θ1,θ2)(L)

+ I0 + αnI1 + · · ·+ αT1+T2−1
n IT1+T2−1.

(39)

From (38) to (39), distributive law is used. Note that (39) can be viewed as a polynomial of

αn. The coefficients of the first L terms are the L symbols of the desired message. Ii, i ∈ [0 :

T1 + T2 − 1] stands for the remaining (interference) terms that are generated by the product of

the matrices in (38). The highest power of αn is T1 + T2 − 1 and can be found from

∑

l∈[1:L]

(fl − αn)
T1+T2−1

Z
(l)
1,T1

′
W

(l)
Z

(l)
2,T2

.

Note that the interference terms of (39), except the one of the highest order, may contain

some information of the index specified by a user. For example, I0 contains

1

fl − αn

eK1(θ1)
′
W

(l)(fl − αn)Z
(l)
2,1 = eK1(θ1)

′
W

(l)
Z

(l)
2,1,

which means that User 2 may get some information about the index θ1 specified by User 1 from

the interference terms. To protect against this leakage of information, server n will add noise
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drawn from the common randomness that is shared by all servers. The common randomness

shared among N servers is specified as,

Z̃ = {Z̃i | i ∈ [0 : T1 + T2 − 1]}, (40)

where (Z̃i)i∈[0:T1+T2−1] are T1 + T2 random variables that are i.i.d. uniform over Fq. Server n

will add the polynomial

Z̃(αn) = Z̃0 + αnZ̃1 + · · ·+ αT1+T2−1
n Z̃T1+T2−1 (41)

to the intermediate result B
(θ1,θ2)
n to generate its answer A

(θ1,θ2)
n . This is the answer sent to both

users.

A(θ1,θ2)
n = B(θ1,θ2)

n + Z̃(α) (42)

=
1

f1 − αn

W(θ1, θ2)
(1) + · · ·+ 1

fL − αn

W(θ1, θ2)
(L)

+ (I0 + Z̃0)︸ ︷︷ ︸
J0

+ · · ·+ αT1+T2−1
n (IT1+T2−1 + Z̃T1+T2−1)︸ ︷︷ ︸

JT1+T2−1

.
(43)

Rewriting (43) in matrix multiplication form, we have




A
(θ1,θ2)
1

A
(θ1,θ2)
2

...

A
(θ1,θ2)
N



=




1
f1−α1

1
f2−α1

· · · 1
fL−α1

1 α1 · · · αT1+T2−1
1

1
f1−α2

1
f2−α2

· · · 1
fL−α2

1 α2 · · · αT1+T2−1
2

...
...

...
...

...
...

...
...

1
f1−αN

1
f2−αN

· · · 1
fL−αN

1 αN · · · αT1+T2−1
N




︸ ︷︷ ︸
C




W(θ1, θ2)
(1)

W(θ1, θ2)
(2)

...

W(θ1, θ2)
(L)

J0

...

JT1+T2−1




. (44)

The matrix C is a Cauchy-Vandermonde matrix of size N × N since N = L + T1 + T2.

Since fl, l ∈ [1 : L], αn, n ∈ [1 : N ] are L + N distinct elements of Fq, according to [70],

C is invertible in Fq. Thus, the answers from all the N servers form an invertible function of

W(θ1, θ2), J0, · · ·JT1+T2−1. In other words, the correctness constraint is satisfied.

Let us consider the inter-user privacy. Without loss of generality, let us consider User 1. We

have

I(θ2;A
(θ1,θ2)
[1:N ] |θ1,Z1,W(θ1, θ2)) (45)

= I(θ2;W(θ1, θ2), J[0:T1+T2−1]|θ1,Z1,W(θ1, θ2)) (46)

= I(θ2; J[0:T1+T2−1]|θ1,Z1,W(θ1, θ2)) = 0. (47)
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(47) comes from the fact that J[0:T1+T2−1] are protected by T1+T2 random symbols shared among

servers, which are uniformly i.i.d. over Fq and are independent of all other terms in (47).

Finally, note that since L = N − (T1 + T2) symbols of the desired message are retrieved

from a total of N downloaded symbols from all N servers, the rate of this scheme is L/N =

1− (T1 + T2)/N .

C. Examples for Illustration

1) L = 1, T1 = T2 = 1 with N = 3 Servers: Since L = 1, T = 1, we neglect the l, t on

superscripts or subscripts of all symbols. The queries from the 2 users are listed as follows.

Server ‘n’

Q
(1,θ1)
n eK1(θ1) + (f1 − αn)Z1

Q
(2,θ2)
n eK2(θ2) + (f1 − αn)Z2

The intermediate result is computed as

B(θ1,θ2)
n =

1

f1 − αn

Q(1,θ1)
n

′
WQ(2,θ2)

n

=
1

f1 − αn

·
(
eK1(θ1)

′ + (f1 − αn)Z
′
1

)
·W ·

(
eK2(θ2) + (f1 − αn)Z2

)

=
1

f1 − αn

eK1(θ1)
′
WeK2(θ2) +

(
Z

′
1WeK2(θ2) + eK1(θ1)

′
WZ2

)
+ (f1 − αn)Z

′
1WZ2

=
1

f1 − αn

W(θ1, θ2) +
(
Z

′
1WeK2(θ2) + eK1(θ1)

′
WZ2 + fZ′

1WZ2

)

︸ ︷︷ ︸
I0

+αn (−Z
′
1WZ2)︸ ︷︷ ︸
I1

.

The answer from the server is

A(θ1,θ2)
n = B(θ1,θ2)

n + Z̃0 + αnZ̃1

=
1

f1 − αn

W(θ1, θ2) + J0 + αnJ1.

Writing in matrix form, the answers from N = 3 servers are



A
(θ1,θ2)
1

A
(θ1,θ2)
2

A
(θ1,θ2)
3


 =




1
f1−α1

1 α1

1
f1−α2

1 α2

1
f1−α3

1 α3




︸ ︷︷ ︸
C




W(θ1, θ2)

J0

J1


 .

The desired message is retrieved by inverting the matrix C. Since L = N − (T1 + T2) = 1

symbol of the desired message is retrieved from a total of N = 3 downloaded symbols from all

3 servers, the rate of the scheme is L/N = 1/3.
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2) L = 2, T1 = 1, T2 = 2 with N = 5 Servers: The queries from the 2 users are listed as

follows.

Server ‘n’

Q
(1,θ1)
n,1 eK1(θ1) + (f1 − αn)Z

(1)
1,1

Q
(1,θ1)
n,2 eK1(θ1) + (f2 − αn)Z

(2)
1,1

Q
(2,θ2)
n,1 eK2(θ2) + (f1 − αn)Z

(1)
2,1 + (f1 − αn)

2
Z

(1)
2,2

Q
(2,θ2)
n,2 eK2(θ2) + (f2 − αn)Z

(2)
2,1 + (f2 − αn)

2
Z

(2)
2,2

The intermediate result is

B(θ1,θ2)
n =

1

f1 − αn

Q
(1,θ1)
n,1

′
W

(1)Q
(2,θ2)
n,1 +

1

f2 − αn

Q
(1,θ1)
n,2

′
W

(2)Q
(2,θ2)
n,2

=
1

f1 − αn

W(θ1, θ2)
(1) +

1

f2 − αn

W(θ1, θ2)
(2) + I0 + · · ·+ α2

nI2.

The answer is

A(θ1,θ2)
n =

1

f1 − αn

W(θ1, θ2)
(1) +

1

f2 − αn

W(θ1, θ2)
(2) + (I0 + Z̃0)︸ ︷︷ ︸

J0

+ · · ·+ α2
n (I2 + Z̃2)︸ ︷︷ ︸

J2

.

Writing in matrix form, the answers from N = 5 servers are



A
(θ1,θ2)
1

A
(θ1,θ2)
2

A
(θ1,θ2)
3

A
(θ1,θ2)
4

A
(θ1,θ2)
5




=




1
f1−α1

1
f2−α1

1 α1 α2
1

1
f1−α2

1
f2−α2

1 α2 α2
2

1
f1−α3

1
f2−α3

1 α3 α2
3

1
f1−α4

1
f2−α4

1 α4 α2
4

1
f1−α5

1
f2−α5

1 α5 α2
5




︸ ︷︷ ︸
C




W(θ1, θ2)
(1)

W(θ1, θ2)
(2)

J0

J1

J2




.

Evidently, the rate achieved is L/N = 2/5 in this case.

V. M -WAY BLIND X -SECURE T -PRIVATE INFORMATION RETRIEVAL

In this section, we propose a scheme that solves the generalized problem: M-way blind

X-secure T -private information retrieval (MB-XS-TPIR). The rate achieved by this scheme is

R = 1− (X + T1 + · · ·+ TM)/N .

MB-XS-TPIR has been formalized in Section II. In brief, MB-XS-TPIR enables M users who

independently specify M indices θ1, · · · , θM (θm is specified by user m) to retrieve a message

W(θ1, · · · , θM) from a database W which is X-securely stored at N distributed servers, with

(Tm)-Privacy and User-User Privacy constraints satisfied.
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The MB-XS-TPIR scheme proposed in this section is still based on Cross Subspace Alignment

(CSA) and is a natural extension of the DB-TPIR scheme. The main difference is that in this

case, the database W is an M-dimensional tensor instead of a 2-dimensional matrix in DB-TPIR.

A. Brief Review of Tensors

Let us briefly review the key properties of tensors that we will need. Specifically, an M-

dimensional tensor is an M-dimensional array. For instance a 2-dimensional tensor is a matrix,

and a 3-dimensional tensor is a cuboid made up of several matrices. Each dimension of a tensor

is called a mode. The mth dimension is called mode-m. The tensor operation we mainly need

is the operation called mode-m tensor vector multiplication. Readers can refer to Chapter 3,

Section 3.1.2 of [71] for more details.

Definition 1. Mode-m Tensor Vector Multiplication. The mode-m multiplication of a tensor

A ∈ F
K1×K2×···×KM
q with a column vector b ∈ F

Km×1
q results in the tensor,

C = A×m b, (48)

where C ∈ F
K1×···×Km−1×1×Km+1×···×KM
q , and each element of C is specified as

C(k1, · · · , km−1, 1, km+1, · · · , kM) =
∑

km∈[1:Km]

A(k1, . . . , kM) · b(km). (49)

Note that this operation is a multilinear operation, so distributive law applies to this operation.

B. General MB-XS-TPIR Scheme

Before formally presenting our MB-XS-TPIR solution, let us briefly explain at a high level

how our solution translates into the problem of secure distributed tensor product computation.

For our solution, we first arrange the data into L tensors W
(1), · · · ,W(L), where W

(l) ∈
F
K1×K2···×KM
q , l ∈ [1 : L] is comprised of the lth symbol of each of the K1K2 · · ·KM mes-

sages. The tensorized data is secret shared among the N servers as (S
(1)
n , · · · ,S(L)

n )n∈[1:N ] to

guarantee X-security. Next, the M vectors eK1(θ1), · · · , eKM
(θM), corresponding to the indices

specified by the M users, are secret-shared among the N servers in the form of the queries

(Q
(1,θ1)
n , · · · , Q(M,θM )

n )n∈[1:N ] to retrieve the desired message. (Q
(m,θm)
n )n∈[1:N ] is the secret-sharing

of the query from the mth user that ensures Tm privacy. Most importantly, with this construction

of queries and tensorized data, retrieving the desired message corresponds to retrieving tensor

products of the privatized queries and secured data. From this point on, the achievability scheme
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for MB-XS-TPIR can indeed be viewed as a secure coded tensor product computation, which

is an multilinear operation with M + 1 inputs, for which CSA codes [61] can be used. To

optimize the download cost for MB-XS-TPIR, the parameters of the CSA codes are chosen as:

Kc = 1, ℓ = N − (X +
∑

m∈[1:M ] Tm). Note that the proposed scheme automatically recovers

asymptotically optimal schemes for various special cases of MB-XS-TPIR, such as PIR, TPIR,

XS-TPIR, etc. This further underscores the connection between various forms of PIR and coded

distributed computing.

Now let us proceed to formally present our MB-XS-TPIR scheme. Throughout this scheme

we set L = N − (T1 + T2 + · · · + TM) − X . Let Fq be a finite field with q ≥ L + N and let

f1, · · · , fL, α1, · · · , αN be L+N distinct elements in Fq. These L+N elements are known to

the N servers and M users.

The private randomness available at user m to keep its index θm Tm-private is

Zm = {Z(l)
m,t | t ∈ [1 : Tm], l ∈ [1 : L]}, ∀m ∈ [1 : M ], (50)

where the column vectors Z
(l)
m,t ∈ F

Km×1
q have entries drawn i.i.d. uniform from Fq.

For compact notation, we write
∑

Tm instead of
∑

m∈[1:M ] Tm. The common randomness Z̃
shared among N servers for protecting inter-user privacy is specified as

Z̃ =
{
Z̃i | i ∈

[
0 :
∑

Tm +X − 1
]}

, (51)

where Z̃i, i ∈ [0 :
∑

Tm + X − 1] are
∑

Tm + X random noise variables that are i.i.d. and

uniform over Fq.

To form X-secure storage of the data, let us introduce

Ẑ = {Ẑl,x | x ∈ [1 : X ], l ∈ [1 : L]}, (52)

which are independent uniform random noise tensors from F
K1×···×KM
q .

The database W can be split into L parts, each of which is an M-dimensional tensor. This

partitioning is specified as

W = (W(1),W(2), · · · ,W(L)), W
(l) ∈ F

K1×K2×···×KM
q , ∀l ∈ [1 : L], (53)

so that W(l) contains the lth symbol of every message.
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The independence between the messages, indices, and noises is specified as

H(W, (θm)m∈[1:M ], (Zm)m∈[1:M ], Z̃, Ẑ)

=
∑

l∈[1:L]

H(W(l)) +
∑

m∈[1:M ]

H(θm) +
∑

m∈[1:M ]

H(Zm) +H(Z̃) +H(Ẑ)

=LK1 · · ·KM +
∑

m∈[1:M ]

H(θm) +
∑

m∈[1:M ]

LKmTm +
∑

m∈[1:M ]

Tm +X + LK1 · · ·KMX.

(54)

To keep the database W X-secure, W is secret-shared among N servers. The nth server holds

the share Sn = (S
(1)
n , · · · ,S(L)

n ) where

S
(l)
n = W

(l) +
∑

x∈[1:X]

(fl − αn)
x
Ẑl,x. (55)

Note that eK(θ) is the θth column of the K × K identity matrix. With the tensor vector

multiplication defined above, the desired message can be written as

W(θ1, · · · , θM) = (W(l)(θ1, · · · , θM))l∈[1:L]

= (W(l) ×1 eK1(θ1)×2 eK2(θ2)×3 · · · ×M eKM
(θM))l∈[1:L].

(56)

To guarantee Tm-privacy, the index specified by the mth user is protected by Tm random

noise vectors. The queries sent from the mth user to the nth server are constructed as Q
(m,θm)
n =

(Q
(m,θm)
n,1 , Q

(m,θm)
n,2 , · · · , Q(m,θm)

n,L ) where

Q
(m,θm)
n,l = eKm

(θm) +
∑

t∈[1:Tm]

(fl − αn)
t
Z

(l)
m,t, ∀l ∈ [1 : L], m ∈ [1 : M ]. (57)

With the queries from the M users and stored Sn, the nth server first computes an intermediate

result

B(θ1,θ2,··· ,θM )
n =

∑

l∈[1:L]

1

fl − αn

S
(l)
n ×1 Q

(1,θ1)
n,l ×2 Q

(2θ2)
n,l ×3 · · · ×M Q

(M,θM )
n,l

=
∑

l∈[1:L]

1

fl − αn

W
(l) ×1 eK1(θ1)×2 · · · ×M eKM

(θM) + I0 + αnI1 + · · ·

+ α
∑

Tm+X−1
n I∑Tm+X−1

=
∑

l∈[1:L]

1

fl − αn

W
(l)(θ1, · · · , θM) + I0 + αnI1 + · · ·+ α

∑
Tm+X−1

n I∑Tm+X−1.

(58)
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As before, I0, · · · , I∑Tm+X−1 are
∑

Tm +X interference terms which are useless. Note that

the distributive law applies here because mode-m multiplication is a multilinear operation. The

highest order of αn is
∑

Tm +X − 1, which results from

∑

l∈[1:L]

1

fl − αn

(fl − αn)
X
Ẑl,X ×1 (fl − αn)

T1Z
(l)
1,T1

×2 · · · ×M (fl − αn)
TMZ

(l)
M,TM

. (59)

Similar to DB-TPIR, the interference terms may contain some information of the indices

specified by all users. To guarantee privacy between users, servers will add common random-

ness shared among them to the intermediate results to generate their answers for each user.

Specifically, the answer from server n is

A(θ1,··· ,θM )
n = B(θ1,··· ,θM )

n + Z̃0 + αnZ̃1 + · · ·+ α
∑

Tm+X−1
n Z̃∑

Tm+X−1

=
∑

l∈[1:L]

1

fl − αn

W
(l)(θ1, · · · , θM) + (I0 + Z̃0)︸ ︷︷ ︸

J0

+ · · ·

+ α
∑

Tm+X−1
n (I∑Tm+X−1 + Z̃∑

Tm+X−1)︸ ︷︷ ︸
J∑Tm+X−1

.

(60)

The matrix form of (60) is similar to (44), we omit it here. Since L = N −
∑

Tm − X

dimensions are occupied by desired message symbols and
∑

Tm +X dimensions are occupied

by the noisy versions of interference terms (J), the rate achieved here is

R =
L

N
= 1−

∑
Tm +X

N
. (61)

C. Example

Let us provide a simple example for illustration.

N = 8 Servers, M = 3 users with T1 = T2 = 1, T3 = 2, X = 2, L = 2.

The storage at Server n and the queries from the 3 users are listed as follows.

Server ‘n’

S
(1)
n W

(1) + (f1 − αn)Ẑ1,1 + (f1 − αn)
2
Ẑ1,2

S
(2)
n W

(2) + (f2 − αn)Ẑ2,1 + (f2 − αn)
2
Ẑ2,2

Q
(1,θ1)
n,1 eK1(θ1) + (f1 − αn)Z

(1)
1,1

Q
(1,θ1)
n,2 eK1(θ1) + (f2 − αn)Z

(2)
1,1

Q
(2,θ2)
n,1 eK2(θ2) + (f1 − αn)Z

(1)
2,1

Q
(2,θ2)
n,2 eK2(θ2) + (f2 − αn)Z

(2)
2,1

Q
(3,θ3)
n,1 eK3(θ3) + (f1 − αn)Z

(1)
3,1 + (f1 − αn)

2
Z

(1)
3,2

Q
(3,θ3)
n,2 eK3(θ3) + (f2 − αn)Z

(2)
3,1 + (f2 − αn)

2
Z

(2)
3,2
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The intermediate result is

B(θ1,θ2,θ3)
n =

1

f1 − αn

W
(1)(θ1, θ2, θ3) +

1

f2 − αn

W
(1)(θ1, θ2, θ3) + I0 + · · ·+ α5

nI5.

The highest order of α is 5 since T1 + T2 + T3 +X − 1 = 5 in this case. The answer from the

server is

A(θ1,θ2,θ3)
n =

1

f1 − αn

W
(1)(θ1, θ2, θ3) +

1

f2 − αn

W
(2)(θ1, θ2, θ3) + (I0 + Z̃0)︸ ︷︷ ︸

J0

+ · · ·+ α5
n (I5 + Z̃5)︸ ︷︷ ︸

J5

.

Evidently, the desired symbols occupy 2 dimensions, the aligned interference occupies 6 dimen-

sions, and the rate achieved is 2/8 = 1/4.

To further explain the example intuitively, (S
(l)
n )l∈[1:2] can be viewed as the secret shares of

W
(1),W(2) for the N servers, and Q

(1,θ1)
n,1 , Q

(1,θ1)
n,2 can be viewed as two independent shares

of eK1(θ1) at the nth server, n ∈ [1 : N ]. Similarly, Q
(2,θ2)
n,1 , Q

(2,θ2)
n,2 and Q

(3,θ3)
n,1 , Q

(3,θ3)
n,2 are

independent shares of eK2(θ2) and eK3(θ3), respectively. B
(θ1,θ2,θ3)
n is constructed following the

idea of CSA codes [61] such that the interference symbols align within the 6 dimensions of the

subspace spanned by the Vandermonde terms, while the two desired symbols, represented as

W
(1)(θ1, θ2, θ3) = W

(1)×1Q
(1,θ1)
n,l ×2 Q

(2θ2)
n,l ×3 Q

(3,θ3)
n,l and W

(2)(θ1, θ2, θ3) = W
(2)×1Q

(1,θ1)
n,l ×2

Q
(2θ2)
n,l ×3 Q

(3,θ3)
n,l , remain resolvable along the Cauchy terms.

VI. CONCLUSION

We explored the problem of M-way blind X-secure T -private information retrieval (MB-

XS-TPIR). We found the asymptotic capacity of double blind T -private information retrieval

(DB-TPIR), which is a special case of MB-XS-TPIR, under a bounded-latency constraint. The

achievable scheme was constructed based on Cross-Subspace Alignment. We then generalized

the scheme using tensor-products into an MB-XS-TPIR scheme where the number of users

(M), storage security-level (X) and privacy level of each user’s index (T1, T2, · · · , TM ) can be

arbitrarily chosen.

This work leads to a number of open problems. Foremost is the question of optimality of

the proposed solutions. For example, the asymptotic capacity for MB-XS-TPIR remains open.

For non-asymptotic settings, the capacity remains open even for DB-TPIR. As discussed in

the introduction, we expect that our solution to MB-XS-TPIR may be asymptotically optimal.

In fact, we expect that our solution may be optimal even in non-asymptotic settings. This is

because of the constraint that the user must learn nothing about the other users’ indices, which
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is reminiscent of ‘symmetric’ privacy constraints in PIR. Prior works, e.g., [12], [18], [72],

[73], suggest that the capacity of PIR under symmetric privacy constraints tends to be the same

as the asymptotic capacity without symmetric privacy constraints. Another open problem is to

characterize the minimal amount of common randomness needed to be shared among servers for

MB-XS-TPIR. Finally, yet another promising direction for future work is the setting of secure

multiparty computation where the messages W(θ1, θ2, · · · , θM) are deterministic functions of

(θ1, θ2, · · · , θM). What makes these settings challenging is that their upload costs may not be

negligible relative to download costs, so instead of a capacity figure the optimal solution may

be a tradeoff between the upload and download costs.

APPENDIX

A. Proof of Corollary 1

Let us focus on (17), i.e., inter-user privacy from the 1st user’s perspective. Similar reasoning

will apply to (18).

When T1 = T2 = 1, N = L+2, we neglect the t on superscripts or subscripts of all symbols.

With this simplified notation, the private randomness of each of the two users can be expressed

as

Z1 = {Z(l)
1 | l ∈ [1 : L]}, Z2 = {Z(l)

2 | l ∈ [1 : L]}.

The intermediate result computed by the nth server can be written as

B(θ1,θ2)
n =

1

f1 − αn

Q
(1,θ1)
n,1

′
W

(1)Q
(2,θ2)
n,1 + · · ·+ 1

fL − αn

Q
(1,θ1)
n,L

′
W

(L)Q
(2,θ2)
n,L (62)

=
1

f1 − αn

eK1(θ1)
′
W

(1)
eK2(θ2) + · · ·+ 1

fL − αn

eK1(θ1)
′
W

(L)
eK2(θ2) (63)

+
∑

l∈[1:L]

(
Z

(l)
1

′
W

(l)
eK2(θ2) + eK1(θ1)

′
W

(l)
Z

(l)
2 + flZ

(l)
1

′
W

(l)
Z

(l)
2

)

︸ ︷︷ ︸
I0

(64)

+ αn

(
−
∑

l∈[1:L]

Z
(l)
1

′
W

(l)
Z

(l)
2

)

︸ ︷︷ ︸
I1

. (65)

Note here that even though the expressions for I0, I1 are fairly involved, they are just 2 random

variables in Fq. Meanwhile, B
(θ1,θ2)
[1:N ] is an invertible function of W(θ1, θ2), I0, I1.
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Let us define three sets that contain all the components of I0, I1 except eK1(θ1)
′
W

(1)
Z

(1)
2 and

Z
(1)
1

′
W

(1)
Z

(1)
2 . Specifically,

I1 = {Z(l)
1

′
W

(l)
eK2(θ2) | l ∈ [1 : L]}, (66)

I2 = {eK1(θ1)
′
W

(l)
Z

(l)
2 | l ∈ [2 : L]}, (67)

I3 = {Z(l)
1

′
W

(l)
Z

(l)
2 | l ∈ [2 : L]}. (68)

So in q-ary units, we have

I(θ2;B
(θ1,θ2)
[1:N ] | θ1,Z1,W(θ1, θ2)) (69)

= I(θ2;W(θ1, θ2), I0, I1 | θ1,Z1,W(θ1, θ2)) (70)

= I(θ2; I0, I1 | θ1,Z1,W(θ1, θ2)) (71)

= H(I0, I1 | θ1,Z1,W(θ1, θ2))−H(I0, I1 | θ1,Z1,W(θ1, θ2), θ2) (72)

≤ 2−H(I0, I1 | θ1,Z1,W(θ1, θ2), θ2, I[1:3]) (73)

= 2−H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3]). (74)

(73) results from the fact that I0, I1 are in Fq and conditioning reduces entropy. (74) holds

because elements in I[1:3] can be subtracted from I0, I1.

To proceed further we need to define the following new random variables.

E1 =





1, if W(1) has full-rank,

0, otherwise.
(75)

E2 =





1, if Z
(1)
1 6= 0 and Z

(1)
1 ⊥⊥ eK1(θ1),

0, otherwise.
(76)

Recall that Z
(1)
1 ⊥⊥ eK1(θ1) denotes that the two vectors are linearly independent. We have

Pr(E1 = 1) =

∏
i∈[1:K](q

K − qi−1)

qK2 , (77)

Pr(E2 = 1) = 1− 1

qK−1
, (78)

Pr(E1 = 1, E2 = 1) = Pr(E1 = 1) · Pr(E2 = 1). (79)

Note that the numerator of (77) is the order of the general linear group of degree K over Fq.

(79) follows because E1 and E2 are independent.
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Consider the second term of (74), we have

H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3]) (80)

≥H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1, E2) (81)

≥Pr(E1 = 1, E2 = 1)

H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1). (82)

Let R1,R2 be two row vectors and

R1 = eK1(θ1)
′
W

(1),R2 = Z
(1)
1

′
W

(1). (83)

E1 = 1 implies that W
(1) has full-rank. E2 = 1 means that Z

(1)
1 and eK1(θ1) are linearly

independent. So R1,R2 are linearly independent. Let (i, j) ∈ [1 : K] × [1 : K], i 6= j be the

smallest pair such that

M =


 R1(i) R1(j)

R2(i) R2(j)


 , det(M) 6= 0. (84)

Such (i, j) must exist due to the linear independence of R1 and R2.

Let Z2 = {Z(1)
2 (k) | k ∈ [1 : K] \ {i, j}} contain all the entries of Z

(1)
2 except Z

(1)
2 (i),Z

(1)
2 (j),

for (82), we have

2 ≥H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1) (85)

=H(R1Z
(1)
2 ,R2Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1) (86)

≥H(R1Z
(1)
2 ,R2Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1,R1,R2, i, j,Z2) (87)

=H


M


 Z

(1)
2 (i)

Z
(1)
2 (j)



∣∣∣∣∣∣
θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1,R1,R2, i, j,Z2


 (88)

=H(Z
(1)
2 (i),Z

(1)
2 (j) | θ1,Z1,W(θ1, θ2), θ2, I[1:3], E1 = 1, E2 = 1,R1,R2, i, j,Z2) = 2 (89)

in q-ary units. (88) holds because we can subtract other components of R1Z
(1)
2 ,R2Z

(1)
2 given

the conditioned terms. (89) results from the fact that M is invertible and Z
(1)
2 (i), Z

(1)
2 (j) are

independent of all conditioned terms.

So for the second term of (74) we have

H(eK1(θ1)
′
W

(1)
Z

(1)
2 ,Z

(1)
1

′
W

(1)
Z

(1)
2 | θ1,Z1,W(θ1, θ2), θ2, I[1:3]) ≥ 2 Pr(E1 = 1, E2 = 1).

(90)
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Combining (90) with (74), we have

I(θ2;B
(θ1,θ2)
[1:N ] | θ1,Z1,W(θ1, θ2)) (91)

≤ 2
(
1− Pr(E1 = 1, E2 = 1)

)
(92)

= 2

(
1−

(
1− 1

qK−1

) ∏
k∈[1:K](q

K − qk−1)

qK2

)
(93)

≤ 2

(
1−

(
1− 1

qK−1

)
(qK − qK−1)K

qK2

)
(94)

= 2

(
1−

(
1− 1

qK−1

)(
1− 1

q

)K
)
. (95)

To ensure that the LHS of (91) is bounded above by ǫ for q > q0, we can choose q0 to be any

value of q that bounds the RHS of (95) above by ǫ. �

B. Proof of Corollary 2

The lower-bound follows already from the proof of achievability of Theorem 2. Here we

prove the upper bound. Any MB-XS-TPIR scheme with parameters K1, · · · , KM , T1, · · · , TM

yields a total of M XS-TPIR schemes. For the mth XS-TPIR scheme where m ∈ [1 : M ], the

user corresponds to the mth user of MB-XS-TPIR. All other users in MB-XS-TPIR generate

fixed indices so that the user is retrieving a message in a database with Km messages, i.e.,

W(i1, · · · , im−1, θm, im+1, · · · , iM) where θm ∈ [1 : Km] while i1, · · · , im−1, im+1, · · · , iM are

fixed, subject to Tm-privacy constraint from N servers. The rate of MB-XS-TPIR cannot exceed

1−Tm+X

N

1−( Tm
N−X

)Km
because this value is the upper bound of the achievable rates of XS-TPIR with N

servers, Km messages and Tm-privacy constraint according to [29]. Since this upper bound holds

for all m ∈ [1 : M ], the upper bound of (20) follows.
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