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Mathematical Geology Vol. 28, No. 5, 1996 

1-, 2-, and 3-Dimensional Effective Conductivity of 
Aquifers I 

H u g o  A.  L o a i c i g a ,  z R o y  B.  L e i p n i k ,  3 Pau l  F.  H u d a k ,  4 a n d  
M i g u e l  A.  M a r i n o  s 

Starting with a stochastic differential equation with rundom coefficients deserihing steady-state flow, 
the effective hydraulic conductivity of I-, 2-, and 3-dimensional aquifers is derived. The natural 
logarithm of hydraulic eonductivit 3' (inK) is assunwd to he heterogeneous, with a ~ff~atial trend, and 
isotropic. 771e effective condttctivi O' relates the mean spec~[~c discharge in an aquifer to the mean 
hydraulic gradient, thus its mtportance in predicting Darcian discharge when held ~h~ta r~Tresent 
mean or average values of comhtctivity or hydraulic head. Effective conductivity results are pre- 
sented in exact form in terms of elementary fimctions after the introduction ~!/" special sets ~![ 
coordinate tran.~formations in two atul three dimensions. It it,a.~ determined that in one, two, and 
three dimensions, fi,r the o'pe of aquifi'r heterogeneity considered, the etlk'etive hydraulic comh.'- 
tivity depends on: (i) tire angle bet~wen the gmuhent of the trend of InK and the mean hy~h'aulic 
gmtdient (which is :~ero in the one-dimensional situation); (21 (inversely) ~m the pr¢nhtct of the 
magnitude of the trend gradient of InK, b, and the correlation scale of InK, 3,; and (31 (propor- 
tionally) on the variance qf InK, o~. The product bX plays a central role in the stahdity of the 
results Jbr effective hydraulic conductivity. 

KEY WORDS: hydraulic conductivity, aquifer flow. spatial covanance, stochastic groundwater 
analysis, spectral analysis. 

INTRODUCTION 

The Theoretical Background 

Consider the stochastic differential equation describing steady-state groundwater 
flow in an aquifer with random hydraulic conductivity K(x) (x represents a three- 
dimensional coordinate vector and tensorial index notation is used with i = 1, 
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2, or 3 depending on aquifer dimensionality): 

[ I Oc3xi K ( x ) 0 - ~ ,  1 = 0 (1) 

where 4~(x) is the hydraulic head. FolLowing Loaiciga and others (1993), K(x) 
is a stochastic parameter whose distribution is expressed conveniently in terms 
of the natural logarithm of hydraulic conductivity, Y = lnK. Y is composed of 
a deterministic and spatially variable trend T plus a zero-mean random noise f 
with specified spatial statistical structure. Specifically, Y(x) = T(x) + f(x). The 
hydraulic head O(x), is modeled as the sum of a deterministic mean H(x) and 
a zero-mean random noise 17, that is, ~b(x) = H(x) + h(x). Loaiciga and others 
(1993) showed that based on these (mean plus perturbation) decompositions of 
hydraulic head and lnK, as well as on Equation (1), one arrives at a couple of  
partial differential equations of which the first [Eq. (2)] governs the distribution 
of mean hydraulic head (H) and the second [Eq. (3)] governs the perturbations 
of hydraulic head, [h (b, = OT/Ox, and E denotes expectation in Eqs. (2) and 
(3))1 

- -  + b, + E = 0 (2) 
OxiOx, ~ 

and 

- - + b ,  + + - - - - - E  = 0  a,,a,, 0T,,  a,-,ax, (3) 

Equations (2) and (3) are a system of coupled partial differential equations. 
Methods for the solution of these equations have been examined by Christakos, 
Miller, and Oliver (1993). One approach (the "small perturbation" approach, 
see for example, Gelhar, 1993, for a thorough discussion of this approach) 
decouples the two equations by neglecting the products of perturbations in the 
right-hand side of  Equation (3). Spectral methods (Gelhar and Axness, 1983; 
Gelhar, 1993) then are useful to tvansfoml the simplified form of Equation (3) 
to the frequency domain from which it can be integrated readily to yield, for 
example, the variance of  hydraulic head (Bakr and others, 1978). 

Averag ing  of  the Equat ion  of  Mot ion  and Spectral  Analys i s  

Loaiciga and others (1993, 1994) adapted the small-perturbations approach 
to determine the relationship between the complex-valued processes dZh(k) and 
dZf(k) defined by the spectral representations h = I~¢~ eJk"dZh(k) and f = 
~ eJk"dZf(k) where j-" = - 1 ,  k is the wave-number vector (of components 
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ki), and " ' . "  denotes inner vectorial product. Specifically, Loaiciga and others 
(1993, 1994) have shown that the relationship between the complex-valued 
processes dZh(k) and dZf(k) is given by the following expression (where J is 
the mean hydraulic gradient vector whose components are Ji = OH/ax,; b is the 
InK trend gradient vector with components b, = 3T/ax,; and k ~ = k " k): 

[jk 2 - k " b l tk  • J] 
dZh(k) = [(k2) 2 + (k • b) 2] dZf(k) (4) 

The relevance of Equation (4) to the effective hydraulic conductivity becomes 
clear if one considers Darcy's law for the specific discharge qi: 

q, = - K  0-~0 (5) 
Ox i 

Replacing the hydraulic head ~ by H + h and the hydraulic conductivity K by 
e r+f in Equation (5), expanding the exponential e f by a Taylor series up to first- 
order terms, and taking expectations of the resulting Equation (5), one obtains 
the following equation relating the mean specific discharge 77, to the mean hy- 
draulic gradient Ji and the covariance of  the lnK perturbation f and the partial 
derivative of  the head perturbation h: 

7:1, -~ - e r  Ji + E \  (6) 

The covariance of perturbations in Equation (6) can be obtained by a Fourier 
transform of its corresponding spectrum Ofh,: 

(f  Oh 
E \ 0~,/ = IR ~fh;(k)d3k (7) 

in which R is the complete 3-dimensional space and 

(I,fh;(k) = E[dZf(k)dZ,*.(k)l (8) 

in which 

dZ~(k) = - j k ,  dZ,*(k) (9) 

In Equation (9), dZ~(k) is the complex conjugate of dZh(k), and the latter was 
given in Equation (4) in function of the complex-valued process dZf(k).  From 
Equation (4). the cross-spectrum of Equation (8) becomes (using the fact the 
spectrum of lnK is given by ~ff(k) = E[dZf(k)dZT(k)]):  

jk ,[jk 2 + k " b][k • J] 
~fh"(k) = [(/(2) 2 + (k"  b) 21 cI, ff(k) (lO) 
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Equations (6), (7), and (10) will be used to relate the mean specific discharge 
to the corresponding mean hydraulic gradient along the ith coordinate direction. 
The constant of proportionality relating mean specific discharge and mean hy- 
draulic gradient is the effective hydraulic conductivity. 

On the Relevance of Effective Conductivity in Aquifer Analysis 

The effective hydraulic conductivity is an impor*ant parameter because it 
represents an average or ensemble mean of aquifer properties (Sposito, Jury, 
and Gupta, 19861. The effective hydraulic conductivity in the absence of trends 
has been examined by Gelhar and Axness (1983), Kitanidis (1990), and re- 
viewed extensively by Gelhar (1993). The situation of effective hydraulic con- 
ductivity in the presence of structural trends has been treated previously by 
Loaiciga and others (1993, 1994), and by Indelman and Rubin (1995). Theo- 
retically, the effective hydraulic conductivity relates an ensemble specific dis- 
charge to an ensemble hydraulic gradient. Practically, it relates measurable, 
field-scale, variables (specific discharge, hydraulic gradient) to field-scale aqui- 
fer parameters (tor a discussion of flow-domain scales, field measurements, and 
stochastics, see Cushman. 1984; Dagan, 1986.) If the effective hydraulic con- 
ductivity is identifiable from measurable parameters and characteristics of the 
groundwater flow regime, then it can be useful in the calibration of groundwater 
flow models and in implementing stochastic models of flow and transport that 
rely on "'effective" (that is, ensemble means) parameters. The remainder of this 
paper is devoted to develop exact expressions for the effective hydraulic con- 
ductivity for 1-, 2-, and 3-dimensional aquifers in terms of a number of key 
aquifer parameters and groundwater flow characteristics. In addition to the het- 
erogeneous model for InK already presented, it is assumed that the the covariance 
of InK is exponential, that is, on.(r) = o~ e x p ( -  It!IX), where r is the separation 
vector, and X is the correlation scale of InK. 

THE MEAN SPECIFIC DISCHARGE IN 1-, 2-, AND 
3-DIMENSIONAL DOMAINS 

A General Expression for the Mean Specific Discharge 

Starting with Equations (6), (7), and (10) it is possible to derive the mean 
specific discharge in terms of the spectrum of InK. For the assumed exponential 
covariance model a#.(r), the spectrum of InK can be derived by the Fourier 
transform relating spectra to covariances: Osr(k) = (2~r) " Is,, e x p ( - j k  • 
r)a#-(r)d"r, where n is the flow dimensionality (n = 1, 2, or 3) and R,, is the 
complete n-dimensional space. The following spectrum for lnK results: 

4)bdk) = °~ xq ' ~q - I (1 + keXZ)ut2 (11) 
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where q = 2, 3, and 4 for 1-, 2-, and 3-dimensional domains, respectively, and 
Kq_ 1 = ~r, 2~r, and ~r e for 1-, 2-, and 3-dimensional domains,  respectively. 
Based on Equations (6) and ( I l L  a generic expression for the mean specific 
discharge is given by the following equation: 

q, = - e r  J, + ........ 
Kq-I R,, , [(k2) 2 + (k • b)-'l(1 + kzX:) 'v2 

(12) 

where q takes the values 2, 3, and 4 tot  1-, 2-, and 3-dimensional flow domains, 
respectively, as before, Kq_ ~ takes the values 7r, 2 r .  and rr -~ for q = 2. 3. and 
4, respectively, and Rq_ i denotes the complete q - 1-dimensional space, for 
q = 2 , 3 , 4 .  

The One-DimensionaL Situation 

Integrating Equation (12) for a l -dimensional  space [i.e., q = 2 in Eq. 
12)] leads to the following mean specific discharge: 

o) j (13) ~ - e  r 1 - b--X + 1 

m which J is the mean hydraulic gradient, and b = d T / d r  is the gradient of the 
trend in InK. It is clear from Equation (13) that the 1-dimensional hydraulic 
conductivity is given by: 

°.7 K,, = e r 1 - b~, + (14) 

It is seen from Equation (14) that the condition for nonnegative effective hy- 
draulic conductivity is a~ < bX + 1, and that a singular point exists at bX = 
- 1. (Gutjahr and others, 1978, presented an alternate expression for 1-dimen- 
sional effective hydraulic conductivity leading to different stability conditions.) 
Notice then how in the presence of a trend in InK, the restriction on the variance 
of InK perturbation involves the critical product of parameters b)x. It also is 
possible to show by the spectral method that the variance of hydraulic head 
becomes arbitrarily large when bX --, - 1 .  Because the correlation scale is a 
positive parameter, this condition can arise only when the trend gradient in InK 
is negative and equal to I/X. A plausible explanation for the instability of the 
stochastic results at bX = - 1 is that as the gradient of the trend of lnK ap- 
proaches the critical value - I/X, the hydraulic conductivity declines over spatial 
scales equivalent to the correlation scale to a value small enough to prevent flow 
for finite hydraulic gradients. (See Loaiciga and others, 1993, tot a further 
discussion of this matter.) The parameter bX plays an important role in 2- and 
3-dimensional analysis also, as will be shown. The expression in Equation (14) 



568 Loaiciga, Leipnik, Hudak, and Marino 

also shows that, because the trend T is in general spatially variable, so is the 
effective hydraulic conductivity. If the trend of  lnK can be identified adequately 
from data, it is possible to construct a spatially dependent effective hydraulic 
conductivity field directly from Equation (14). In 2- and 3-dimensional domains 
this potentially is useful in calibrating numerical models of groundwater flow 
and mass transport. Most of the hydraulic head and aquifer properties data 
collected in the field represent averages or "effective" values for extended 
spatial domains. Numerical simulation models also are coarse and discrete spa- 
tial approximations to continuous processes. It seems reasonable, therefore, that 
in seeking calibrating parameters for such numerical simulation models, to focus 
on the theoretical effective conductivity relating the mean or average ground- 
water flow discharge to the mean hydraulic gradients. Average effective hy- 
draulic conductivities over finite-difFerence cells and finite elements can be cal- 
culated (e.g., by integration) from the continuous-space function K,,. 

An Integral Approach to Effective Conductivity in Two and Three 
Dimensions 

Loaiciga and others (1994) developed an integration method to evaluate 
integrals of the type in Equation (12) for three-dimensional groundwater flow 
domains [q = 4 in Eq. (12)]. Results for 2-dimensional domains are derived in 
this article and one example of 2-D effective conductivity calculations is pre- 
sented herein. Recently, Indelman and Rubin (1995) derived effective hydraulic 
conductivities when the trend is linear for domains of arbitrary dimensionality 
using linearization techniques. 

The integrals in Equation (12) contain numerous parameters (b, J, X) and 
a variety of rather discordant, although individually simple, functional expres- 
sions~ In this respect, they resemble quantum mechanics problems (Kallen, 
1950), a prolific source of physically important but exceptionally puzzling in- 
tegration problems. The integrals of Equation (12) are taken for large or infinite 
regions (in wave-vector number) and either are slowly convergent or contain 
divergent portions that approximately cancel and are renormalizable by subtrac- 
tion and domain truncation. All this makes normal numerical integration costly 
or impractical, or both, so that preliminary reductions to known (though seldom 
encountered) functions by exact methods is highly desirable, if not unavoidable, 
in this type of  stochastic groundwater problem. Define the generic integral: 

f ~ ~ j),, 
kt, F ( U ,  k • b)(k " 

ll.,,.p.q(b , J, ~k, S) = s [(k~) 2 + (k • b)2](1 + ~.2L~)q/2 dU-  Ik (15) 

where F is a suitably defined function; S is a spherical region in k-space with 
center at the origin and of  radius p; l, n, p ,  q are index integers suitably selected 
for any given function F. The functions F in the integral of Equation (15) are 
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typically simple.  For  example ,  if F(k 2, k • b) = k • b + j k  2, l = 1, n = 1, 
p = i (i = 1, 2, 3), and q = 3, or 4, then lt.,,.p.q so defined would represent 
the integral in Equation (12) for 2- and 3-dimensional domains,  respectively• 
The integration method presented herein does not depend strongly on the nature 
of  F, given that F depends only on k 2 and k " b. The integration method to be 
developed does apply to more general integrals than those represented by Equa- 
tion ( t5) ,  such as those that might arise in anisotropic porous media.  

The basic strategy to integrate Equation (15) in two and three dimensions 
follows the approach of  Loaiciga and others (1994), where an integration method 
was proposed in three dimensions for finite and infinite domains.  The approach 
consists of  determining geometric transformations of  the vectors b,  k,  and J to 
reduce the triple integrals of  interest to single integrals with elementary functions 
as integrands. Radial,  conical ,  and spherical t r igonometry will play a central 
role in carrying out these geometric transformations.  It also is convenient to 
carry out the integrations in a finite, symmetric ,  domain (the spherical region S 
of radius 0) defined by Equation (15) and then take the limit in the finite-domain 
results to obtain answers for the infinite-domain situation. This procedure allows 
mutual cancellation of  individually divergent functions that arise through the 
integration procedure.  

If the function F(t~ 2, b • k) in the integral of  Equation (15) is an even 
function of b • k ,  assign F the parity v = 0, and if it is an odd function of  b 
• k,  assign it the parity v = 1. Consider  the effect of the transformation k --* 
- k  on the integral of  Equation (15). If the integration region S is invariant 
under this transformation, it is seen from Equation (15) that if l + n + v is 
odd,  then l l ,  n•p. q ~-- 0, and if / + n + v is even,  then l t , , , , p . q  is likely to be 
nonzero. The dependence of  Equation (15) on l and p can be clarified by dif- 
ferentiation of  a two-index family of  integrals, G,,•q, 1 t imes with respect to Jp. 
the pth component  of  the mean vector gradient J .  Let 

G,,q = f F(I,. 2 ,k • b ) ( k  • J)" 
• s [(k2) z + (k • b)21(l + ),,2k2)q/2 dq-  tk (16) 

Clearly,  G,,.q = lo.,,.t,.q (which is independent of  p) .  Differentiation of  G,,.q in 
Equation (16) t t imes with respect to Jp establishes that 

0/G,,. q _ n ! 
aJ~ (n - 1)~ ll.,,-i.p.q 

(17) 

so, that by letting n '  = n - I, then: 

(n')! 3;G,,,+ ;.q 
It.,,,,p.q = (n' + 1)! aJ~ (18) 
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Thus, if G,,,q is known as a function o f  J for some specific F, formal differen- 

tiation as indicated yields IL, ,_ ~.t,.q" 
Further progress is difficult unless the integral It.,,.m,t is particularized. Let 

us focus on the example 

I kr(k • b + jk2)(k - J )  
l l . l .p., i  : -, '., i~ d q -  Ik (19) s [(k2) 2 + (k • b)2](1 + •-k ')  q -  

which enters the integral in Equation (12). Obviously,  /~. J.r.q is a sum of  two 
integrals of  the lt.,,.v.q type for different selections of  F. The first integral has t 
= 1, n = 1, q = 3 or 4 (depending on whether the domain is 2- or  3-dimen- 

sional, respectively), F l = k • b, ~, = 1 (i .e. ,  F I is an odd function o f  k • b, 
thus the parity 1 assigned to it), and, therefore, 1 + n + v = 3; so, if the region 
of  integration S is a sphere with center at the origin, then the first integral is 

zero. The second integral has / = 1, n = 1, q = 3 or  4, F_, = jL  2.  with parity 
v = 0 (e.g.,  the function is F~ is even), and, therefore, / + n + ~, = 2; so, the 
second integral probably does not vanish. With the selection of  F as in Equation 

(19), the following relation exists between the two-index integral G2.v and 
11. t./,.q, according to the result of  Equation (18): 

1 aG2.1, 
Ii. l.t,.,t 2 3Jr, 

1 a ~' jke(k - J)-~ 
- J " ~ ~ f~ d ' l - j k  (20) 2 aJp s [(k2) 2 + (k • b)2](l + ~,-k-) ' t -  

Note that l~.~.t,., ~ is the integral in Equation (12). Therefore,  if G2.,~ is known, 
for q = 3 or  4, its derivative with respect to Jr, gives the integral o f  Equation 
(12). In the next sections the multiple integral of  Equation (20) is reduced to 

single integrals that are then evaluated exactly in terms of  elliptic functions in 
the 2-dimensional situation (q = 3) and in terms of  logarithmic functions for 
3-dimensional aquifers (q = 4). 

T W O - D I M E N S I O N A L  E F F E C T I V E  H Y D R A U L I C  C O N D U C T I V I T Y  

Geometric Transformations and Analysis of  Stability 

Consider Equation (20) with q = 3 that defines the integral 

G~ ~ = f j k 2 ( k  . j)2 ~ ~ - ,d2k (21) 
-'- s [(k2) 2 + (k " b)2](1 + k=X-) 3/" 

in which the region of  integration is S = [k: 0 < lkt -< p]. Define the radial 
coordinates r = ~ (where k ~ = k , k); tk is the angle between the vectors b 
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and k; and let 0 be the angle between b and J.  Integration of Equation (21) in 
the radial coordinates (0 _< r _< p; 0 _< ~ _< 2 r )  leads to the following 
expression for G~. 3 (where j2  __ j . j and b 2 = b • b): 

G2. 3 = jJ"(L I cos20 + L 2 sin20) (22) 

where: 

i:~ 1 "° r3cos2J/drd~ 
L I = b2 , ~ ~ ~ (23) o o (r 2 + cos 2 ~)(1 + X-r-) -i- 

and 

f2~ f ° r3sin2~bd,'d~ 
L~ = b 2 ~ , ~ v~ (24) o o (r 2 + cos- ~)(1 + h - r - )  - 

The integrals of  Equations (23) and (24) are integrated with respect to ~b first 
and then with respect to p using standard integration methods. Integration results 
for an infinite domain are obtained from the finite-domain situation by letting p 
--, oo  after cancellation of individually divergent terms that cancel out pairwise 
in passing to the limit (p --+ oo). Reduction of LI and L ,  in Equations (23) and 
(24), respectively, to single integrals in an infinite domain leads to (where t = 
Xr): 

27r[  1 L t = ~ ~-q [(1 + (~kp )2 )  TM - (1 + (XO) 2) J/412 

27r l  1 t "~'p t4dt ] 
b 2 ~ o (t 2 + (bX)2)j/2( 1 + t2)3/2 (25) 

, S" ] L,  = 2rr - -  - k 2 o (t 2 + (bk)L'~)~-~(l + /2)3t2 L~ (26) 

The integrals in Equations (25) and (26) are of the elliptic type (introduced by 
Abel and Jacobi about 1826 in the context of the theory of rigid bodies and 
pendulums; see Greenhill ,  1959) for (bX) 2 ~ I. 

Clearly, the first term within brackets in the right-hand side of Equation 
(25) tends to O(X-30) for large p. This term then is divergent for p ~ oo. It 
also shows up in the right-hand side of Equation (26) because L~ occurs there. 
ConsequentLy, the second expression within brackets in the right-hand side of 
Equation (25) also must contain a term of order O(k-3p) to ensure cancellation 
of individually divergent terms for 0 ---' oo Mathematical analysis of  the expres- 
sions of Equations (25) and (26) was used to establish the following: (i) there 
is mutual cancellation of terms of order O(X-3p) as p ---' oo in Equations (25) 
and (26); (ii) the elliptic integrals that occur in Equations (25) and (26) are 
continuous at b~, = + 1 ; and (iii) a discontinuity in the results occurs only at b 
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= 0, a situation which is not considered here because the trend in InK is by 
definition nonzero. These findings (i)-(iii) are of significance, because they 
prove the stability of results for an infinite-domain in two and three dimensions. 
Note, in particular, that the discontinuity caused by the product of  parameters 
b~, in t-dimensional domains [see Eq. (14)1 disappears in passing from one 
dimension to two and three dimensions. Also, in 2- and 3-dimensional domains 
the magnitude of the vector gradient of the trend of InK, b, is positive and so 
is the correlation scale h; therefore, we are interested in the comer point b~ = 
1 in the analysis to follow since the point b~, = - 1 is not physically realizable. 

In spite of the continuity of  L~ and L~ at b~. = 1, their integration for the 
situations bh < 1, b)x > 1, and bX = 1 is considered separately, because they 
lead to different analytical results (which coincide, as required by continuity, at 
the point b~ = 1 as shown later). 

Two-Dimensional E f f e c t i v e  H y d r a u l i c  Conduct ivi ty  When bk > 1 

The elliptic integrals of Equations (25) and (26) are presented for the sit- 
uation of an infinite domain (p ~ ~ . )  In the finite-domain situation, these 
integrals have been widely tabulated (see Gradshteyn and Ryzhik, 1993). In the 
infinite domain situation there are a number of algebraic relationships and series 
expansions of elliptical functions that simplify calculations while maintaining 
excellent accuracy (e,g., twelfth-decimal precision). Let: 

71" .]2 K[u] = ~ [l + 211(1t) + 2t14(1l) + 2h~(u) + • • (27) 

be a series expansion of the complete elliptic integral of  the first type (Greenhilt, 
1959), K[u], related to the complete elliptic integral of the second type (Green- 
hill, 1959), E[u], by the following differential equation: 

( dK[u] ) 
E[ul = (1 - u 2) u d ~  + K[ul (28) 

where in Equation (27) h(u) is expressed by the series: 

h(u) = ~ l(u) + IS(u) + 15 l'~(u) + 150 ~ ll~(u) + - - -  

The function l(u) in Equation (29) is given by: 

1 - (1 - u 2 )  TM 
l(u) = 

1 + (1 - u2) TM 

(29) 

(30) 
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The argument u in Equations (27)-(30) depends on the parameter b~, as shown 
next. In Equation (28), the derivative term can be obtained by differentiation of 
the series in Equation (27). With these definitions, the elliptic integrals of Equa- 
tions (25) and (26) take the following values when p ~ oo and b?~ > 1: 

( ) 1 2r 1 E[u] + - -  K[u] (31) 
L~ = ~ 5  1 (bh) 2 -  1 (bX) 2 - 1 

L 2 = ~ 3  bX+ I bX+---~ 

with the argument u in Equations (31) and (32) being equal to (for b)x > 1): 

I ]"-" 
u =  l - ~ /  (33) 

Substitution of Equations (31) and (32) into Equation (22) results in the integral 
G2.3; taking the derivative of the resulting expression with respect to Jr, as 
indicated by Equation (20) to yield the integral I~.~.r,.3, and substituting this 
integral into Equation (12) leads to the 2-dimensional expression for effective 
conductivity for the situation b~. > 1: 

' ~ cos: sin e ] gc(.t', y) = e r~'''~ 1 - 2 7 r  (Lj 0 + L e 0)/  (34) 

Results for 2-dimensional effective conductivity when bk < 1 and b?x = 1 are 
presented next. These are followed by the 3-dimensional example and a dis- 
cussion of the significance of these theoretical findings. 

by: 

in which: 

and 

Two-Dimensional Effective Hydraulic  Conductivity When bk < 1 

The expression for effective hydraulic conductivity in this instance is given 

K"(x'Y) = eT~""~l 1 -  ° ~ ( L I c ° s 2 0  + L ~ s i n e O ) 1 2 7 r  (35) 

_ 1 ~ ( b X ) - '  2re (1 + "(b~.)_)E[u] K[u]] 
LI beX 4 [ 1 1 -~" (-'b-~)2 (36) 

2re [(bX)eK[u] _ 2E[ul] (37) L~ - b2~4 
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where the elliptic functions K[u] and E[u] are given by Equations (27) and 
(28), respectively, with the only difference being that the argument u = [1 - 
(b~k)2] I/2 for bk < 1. 

Two-Dimensional  Effective Hydraulic  Conductivity for b~. = 1 

If b3, = 1, the 2-dimensional effective hydraulic conductivity simplifies to 
(in this situation L~ = - L  2 = rc21X2): 

K,.(x, y) = e ~'~'''' 1 - o_~  (2 cos 2 0 - 1) (38) 
2 

It can be verified easily that the effective conductivity of Equation (38) represents 
the limit as bX ---, 1 of the effective conductivity expressions (34) and (35) for 
bX < 1 and b~, > 1, respectively, as required by continuity. For the situation 
bX = 1, Equation (38) indicates that for values of the angle 0 _< 0 < 7r/4 the 
variance o.~ is restricted. For example, the most restrictive situation occurs if 0 
= 0, that is, if the trend b and mean hydraulic gradient J vectors are parallel, 
then o~ _ 2hr. Otherwise, o.~ is unrestricted. Restrictions on o)- when bX = 1 
and 0 --* 0 simply indicate that, under the mathematical premises of our theory, 
it is not possible to maintain flow under such special conditions when the vari- 
ance of InK exceeds values consistent with the small perturbation approach. 

T H R E E - D I M E N S I O N A L  E F F E C T I V E  H Y D R A U L I C  
C O N D U C T I V I T Y  

It should be clear from the developments leading to Equation (20) that the 
3-dimensional situation requires setting q = 4 in that equation, and upon inte- 

gration, the effective conductivity can be obtained directly from Equation (12). 
This was in essence the approach followed in the 1- and 2-dimensional situa- 
tions. The 3-dimensional domain,  however, requires a more involved set of 
geometric transformation to reduce the triple integral in Equation (201 to single 
integrals that then are evaluated exactly. The procedure consists of introducing 
a set of coordinate transformations that permit the simplification of the triple 
integral in Equation (20) to single integrals for a finite integration domain S, a 
sphere of radius O. Individually divergent terms that arise in the finite-domain 
situation cancel out mutually when one takes the limit p ~ oo in passing to the 
infinite domain. 

Biplanar Radial,  Biconical Radial,  and Biconical Mixed Coordinates 

Let us introduce the biplanar radial coordinates r = ,,/~, u = k • b, p = 
k - J,  suggested by the structure of the integrand in Equation (20) for the three- 
dimensional situation (q = 4.) Integration of G2. 4 in the r, u, t, coordinates 
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requires the Jacobian, J ...... ,, of  the transformation from k space to r, u ,  t, space. 
It is assumed that the vectors b and J are neither parallel nor antiparallel for 
calculations to be nondegenerate in biplanar radial coordinates. After careful 
analysis of the geometry of the r, u, v space, it follows that the absolute value 
of the Jacobian of the transformation is (with c = b × J the vector product of  
b and J; and w 2 = Ilw[I 2 = w • w for any vector w, w = b, c, J): 

r 
= ( 3 9 )  

I J ....... [ x / rec  2 + 2 u v b  • J - t ,2b 2 - u2 j  2 

The integral G2.u of Equation (20) with q = 4 in r, u,  t' coordinates becomes: 

l re t  ,2 r d r  du  d v  
G2. 4 = j ~2r2)2 . . . . .  ( 40 )  f/ (r 4 + u2)(l + x/rZc 2 + 2 u t , b  • J - b2t '2 -- J2tt2 

where ~ is the set of triples (r, u, t,) such that r2c 2 > b2t ,2 + J2u2 - 2b • 

Jut ,  and r _< P, where p has been defined as the radius of the region of integra- 
tion S. 

For fixed r, b ~-t ,'- - 2b - Jut ,  + J~-u 2 < rec  " is the interior of an elliptical 
region in (u, v) space. As r differs from 0 to p, the regions are geometrically 
similar, with the same principal axes. Thus the integration region f~ in Equation 
(40) is a solid elliptical cone. This geometry suggests replacement of the biplanar 
radial coordinate system with a biconical radial system, wherein (u,  v) is re- 
placed by angular variables A, B, leading to a 3-dimensional system (r, A, B). 
Specifically, u = k • b = br  cos B,  t, = k • J = J r  cos A, supplemented by 
a third angular quantity 0 defined by b ' J = b J  cos 0, which remains fixed in 
later calculations. 

Clearly, A, B, 0 are the angles between the edges b,  k, J of a trihedron, 
where k is variable and b,  J are fixed. (The angles A,  B,  0 can be selected to 
range in the interval [0, 7r].) Because r = v ~  "-~, it is evident that the coordinates 
r, A, B constitute a type of spherical coordinate system. Further simplifications 
arise in passing from (r, u, t,) space to (r, A, B) in Equation (40). The absolute 
value of  the Jacobian of the transformation (r, u, v7 --* (r ,  A .  B) is given by 
I Jr. A,B[ = bJr~-lsin A] lsin B I. Substitution of the biconical radial coordinates 
and their absolute Jacobian in Equation (407 transforms the integral to: 

62. .  * = j 2  I r 4 c o s  h [sin A[ [sin B I 
~J A(A, B, 0)(r  2 + b 2 d r  dA d B  (41) cos 2 B)(1 + ~.2r2)2 

where A(A, B, 0) = ,,/sin: 0 + 2 cos 0 cos A cos B - cos-" A - cos 2 B. 
The formula tbr A(A, B, 0) can be simplified by the use of  the coangle 

to A, which goes back to Ptolemy. The coang]es (c</3, 3'7 to (A, B, O) are the 
angles between the three planes determined by the pairs of vectors (k, J), (k, 
b), and (b, J). Ptolemy's formula (second century AD) cos A = cos B cos 0 
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+ cos ~ sin B sin 0 and its analogs are useful in determining (~, /3, 3') from 
(A, B, 0). One key result is that A(A, B, 0) = [sin 01 Isin B[ Isin c~l, showing 
that A(A, B, 0) is separable in (r, ~,  B) coordinates.  

The last in the series of  geometric transformations aimed at s implifying the 
original triple integrals in Cartesian space, is to derive the Jacobian J . . . .  8 of  the 
transformation from biconical radial coordinates (r, A, B) to the mixed biconical 
coordinates (r, c~, B). The absolute value of  this Jacobian can be shown to be 
t J . . . .  , t  = Isin c~[ Isin BI Isin 0l/]sin AI, which upon substitution in Equation 
(41) along with the results for A(A, B, O) and P to lemy ' s  formula for cos A, 
yields: 

[' r 4 Isin nl cos z A 
G2.4 j~ 

a j ( r  2 + b ~- cos z B)(1 + )x2r2) 2 d r d e e d B  (42) 3 
where f~ = (0 _< c~ <_ 27r; 0 _< B _< 7r; 0 _< r _< p) is the integration region; 
and cos 2 A = cos 2 B cos-" 0 + Ik cos c~ sin 2B sin 20 + cos 2 a sin-" B sin 2 0. 

Equation (42) is integrated with respect to ~ from 0 to 27r and with respect 
to B from 0 to r to yield a single integral in a finite domain 0 _< r _< p: 

G~_.4 = 2J 7rJz cose O o(1  + X,re)2b 2 1 - ~ t a n - J  dr 

+ jTrJ 2 sin e 0 2r4 
o b(I + X2r2) -~ 

[1 I ( ! )  1 ( r -I ( ! ) ) ]  
• - tan - I -- tan dr (43) 

Loaiciga and others (1994) developed a method tor the integration of Equation 
(43) in the finite-domain and infinite-domain situations (p ~ oo). Their  analysis 
showed that: (i) the integral is continuous at bX = _+ I and convergent for p ---, 
¢~, and (ii) the only singularity of  the integral occurs at bX = 0, a situation 
which is ruled out because the trend in InK is nonzero by definition. Similarly 
to findings related to 2-dimensional domains,  the singularities related to critical 
values of b~. in one dimension disappear  in three dimensions.  

R e s u l t s  f o r  K~ in  3 - D i m e n s i o n a l  D o m a i n s  

Integration of Equation (43) and substitution of the resulting expression in 
Equation (20) after taking the limit p -~ oo  indicates, according to Equation 
(12), that the effective hydraulic conductivity in three dimensions is (where m 
= bk):  

K,, = eT I 1 -  °/~'3b3 [(4 c°se O 2 s i n 2 0 ) F ' -  2sin-~0F2] 1 (44) 
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in which 

and 

r [ Iml (m 2 - 21ml-4)] 
F, = ~ . ln(l + Iml) + T 1- -+/-m-[ / (45) 

71" 71" 
F 2 = 2m 4 In(l + Iml) 41m[3(1 + Iml) (46) 

Evidently, the effective hydraulic conductivity involves elementary polynomial 
and logarithmic functions and key parameters of stochastic groundwater flow 
analysis. 

DISCUSSION OF T H E O R E T I C A L  RESULTS 

All the expressions for effective hydraulic conductivity, be it in one [see 
Eq. (14)]. two [see Eqs. (34). (35L and (38)]. or three [see Eq. (44)] dimen- 
sions, have the generic form: 

K,.(x, y) = er"~'"'[l - o.~ ~ (b?~, 0)] (47) 

where 0 is the angle between the gradient of the trend in InK, b, and the mean 
hydraulic gradient, J; T(x, y) is the trend in InK: and ~ is a function of aquifer 
parameters (b = Ibl, the correlation scale ~,, and 0), and depends on the flow- 
domain dimensionality. For example, for 1-dimensional domains, E = l/(b~, 
+ 1). Equation (47) shows that the effective conductivity in the presence of 
trends of InK is equal to the geometric mean e r times a factor introduced by the 
stochastic analysis (=  1 - af E) that depends on aquifer parameters. When 
is positive, nonnegativity of K,, requires that 

1 

of < E(b~., 0~' (if E > 0) (48) 

In that situation, that is when E(b~,, O) > O, Equation (48) represents a gen- 
eralization of the condition of < 1 widely used in stochastic groundwater anal- 
yses relying on the small-perturbations assumption. 

Because the trend of InK generally is space-dependent, the effective con- 
ductivity generally also is, heterogeneous. According to Equation (47), K~ is 
isotropic, although it depends on the angle between the vector gradient of the 
trend Tand the mean hydraulic gradient, both of which in general, are spatially 
variable. For each location x, K,,(x) represents a spatial average centered at that 
point. If areal or volumetric averages of hydraulic conductivity are needed, say, 
for the purpose of calibrating numerical models that rely on spatial discretiza- 
tions, the effective conductivities given here can be averaged for a domain 
by carrying out the integral (1/f~) Ja K~ df~ (see Desbarats, 1992). 
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Numerical implementation of Equation (47) requires the trend T(x, y), 
which must be identified from lnK(x, y) data. Trend identification consists es- 
sentially of fitting suitable functions to spatially indexed data. Having the trend 
T(x, y), its vector gradient b follows directly by differentiation with respect to 
spatial coordinates. The variance of  InK, of, can be obtained from the second 
moment of the residualsf = l n K  - T, or jointly with the correlation scale ~. by 
estimation methods such as maximum likelihood (Hoeksema and Kitanidis, 1985; 
Loaiciga and Marino, 1987). The correlation scale can be estimated by vario- 
gram analysis if a geostatistical estimation method is considered adequate for 
that purpose (Task Committee on Geostatistics in Geohydrology, 1989a, t989b). 
In regards to the angle O, its value depends on the trend of lnK as well as on 
the orientation of the mean hydraulic gradient vector at any point, J. Contours 
maps of hydraulic head and piezometric head data are key to calculating the 
angle 0 through the flow domain. 

AN EXAMPLE OF EFFECTIVE HYDRAULIC CONDUCTIVITY 
CALCULATION IN T W O  DIMENSIONS 

Sudicky (1986) presented hydraulic conductivity data acquired during the 
Borden aquifer tracer experiment; these data were analyzed further by Woodbury 
and Sudicky (1991). Figure IA shows a plot of the hydraulic conductivity data 
along cross-section A-A' of the Borden experiment. This plot was composed 
from 720 conductivity values collected along a vertical cross section 20-m long 
and 1.80-m deep; along the horizontal coordinate K was determined at 1.0 m 
intervals; the vertical sampling spatial frequency was I sample every 0.05 m. 

K ~n Section A 

/i , 

Figure IA. Plot ot" hydraulic conductivity data 
(cm/s) [br section A-A" of" Borden aquifer 
(Sudicky, 1986). 
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Figure lB. Plot of InK data fi~r cross-scction 
A-A' of Borden aquifer (Sudicky, 19861. 
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In K ~n Section A 

-q 

% 

Figure 1B shows the plot of InK for cross-section A-A' .  Although masked by 
the irregular distribution of K and InK in Figures 1A and IB, a decreasing trend 
in both K and InK can be observed with highest gradient approximately oriented 
from north (near the surface, where K and InK appear to be highest) to south 
(along the deepest side of  the cross section) in the plots of Figures 1A and lB. 
In order to "filter out"  the effective conductivity from the InK field, a third- 
order polynomial trend was fitted to the InK data, T(x, y) = - 4 . 1 2  + 0.15Zr 
- 1.06y - 0.0170x 2 + 0.5153 '2 - 0.0946xy + 0.000408x ~ + 0.00524x2y, 
where x = (x, y, z), with all spatial dimensions in meters: modeling the InK 
data as isotropic led to a correlation scale estimate of approximately l m; Or 
was estimated to be about 0.30. Based on the approximate orientation of ground- 
water velocity at the Borden site reported in the series of papers that described 
the Borden experiment (see Freyberg, 1986), the angle 0 between the InK trend 
gradient b and the mean hydraulic gradient J could be calculated at every lo- 
cation. Figure 2 shows that the effective hydraulic conductivity (in cm/s) for 
section A-A" estimated by the equations developed for 2-dimensional domains 
[Eqs. (34), (35), and (38)]. In Figure 2 the decline in effective hydraulic con- 
ductivity with depth from the surface is apparent. Pronounced variations in K,. 
occur along the longitudinal direction at shallow depths. The longitudinal vari- 
ability in K 2 decreases considerably with depth. The effective hydraulic con- 
ductivity is a deterministic and continuous function, hence its rather smooth 
shape in Figure 2, in contrast to the irregular distribution of  K and InK in Figures 
1A and lB. 

Figures 3A and 3B show the plots of K and InK, respectively, for cross- 
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• f . . ~ j .  
Figure 2. Effective hydraulic conductivity for 

section A-A' of Borden aquifer {in cmlst, 

section B-B' of the Borden aquifer experiment as reported by Sudicky (1986). 
The sampling intervals along the longitudinal and vertical sides were t m and 
0,05 m, respectively, with the longitudinal dimension having a total length of 
13 m and the vertical one being 1.80 m. The trend of InK for section B-B' was 
estimated to be a fourth-order polynomial, T(x, y) = - 3 . 9 3  + 0.0215x - 

K in Section B 

^ 

Figure 3A. Plot of hydraulic conductivity data (cm/s) 
for section B-B" of Borden aquifer {Sudicky, 1986), 
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Figure 3B. Plot o1" inK data for sec6on B-B" of Borden 
aquifer (Sudlcky. 1986). 

1.49v 2 - 0.364xv + 0.663xv 2 + 0.432v 4 - 0.218xy3: the correlation scale and 
variance of  InK were estimated to be, respectively, 1.0 m and 0.28, similar to 
the cross-section A-A'  data, which is not surprising given that both cross sections 
were located within the same type of geologic material and in close proximity. 
Figure 4 shows the effective hydraulic conductivity (in cm/s) for cross-section 
B-B'. There is an overall declining trend in K,. with depth, and its variability 
along the longitudinal direction is more pronounced than that calculated tbr 
cross-section A-A" in Figure 2. 

The results for K,. in Figures 2 and 4 demonstrate the methods for deriving 
the effective hydraulic conductivity in 2-dimensional domains. Our results are 
approximate, because, for example, Sudicky (1986), identified different hori- 
zontal and vertical anisotropies for sections A-A'  and B-B'. In fact, the analysis 
of the hydraulic conductivity data from the Borden site as being 2-dimensional 
is somewhat arbitrary because the two cross sections evidently, are part of a 
three-dimensional aquifer, Nevertheless, the experimental design leading to the 
collection of K data along planar sections lends itself well tbr the 2-dimensional 
analysis proposed in this work. 

Calculations of 3-D nonstationary effective conductivities based on Equa- 
tion (44) have been presented in Loaiciga and others (1994). The reader is 
referred to that work for further details. 
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Figure 4. Effccuve hydraulic conductivity Icm/~,) liar 
section B-B' o1 Borden aquil~zr. 

SUMMARY AND CONCLUSIONS 

This paper has developed a method to calculate the effective hydraulic 
conductivity of in t-, 2-, and 3-dimensional groundwater flow domains. Starting 
with the assumption of an isotropic and trend-heterogeneous InK, equations for 
effective hydraulic conductivity were developed and an example was given for 
a 2-D log-conductivity field based on the Borden aquifer conductivity data. 
Examples of 3-D effective conductivity calculations are available from Loaiciga 
and others (1994), 

It was detemlined that the effective hydraulic conductivity is spatially vari- 
able and isotropic. Assuming an exponential covariance for InK, it was deter- 
mined that the effective hydraulic conductivity is continuous in two- and three- 
dimensional aquifers for all values of the parameter product bX. Singularities 
that arise at bX = 0 are of no practical or theoretical interest because by definition 
our analysis is concerned with log-conductivities that exhibit structural trends. 
In 2-D flow domains, restrictions on the variance of lnK occur if the angle 
between the log-conductivity trend gradient and the mean hydraulic gradient 
vectors approaches zero if the comer condition bX = 1 holds. These restrictions, 
however, are consistent with the small perturbation approach. In 3-D domains, 
parallelism or antiparallelism between the InK trend gradient vector and the mean 
hydraulic gradient vector are not permissible. In one dimension, a singularity 
in K,, exists at bX = - 1. 
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The results of  effective hydraulic  conduct iv i ty  in two and three d imens ions  

show that this ' ~ensemble"  parameter  depends  on the flow regime and on aquifer  

parameters .  The flow regime determines  K,., somewha t  indirectly,  through the 

angle formed by the InK trend gradient  and the mean  hydraulic  gradient .  The  

magni tude of  the InK trend gradient ,  b, the variance of  InK, of, and the cor- 

relation scale of  InK, X, are aquifer  parameters  that directly effect K,,. In the 

one d imens ion ,  the effective hydraulic  conduct ivi ty  depends  on a f ,  ?~, and b 

exclusively.  

A general  condi t ion to t  the feasibil i ty of  K,: according to our  results in 

1-, 2-, and 3-dimensional  domains  is that the variance of  InK satisfies the ine- 

quality a~ < 1/E(bX, 0) when  ~ > 0, where the function E(b3,, O) depends  on 

f low-domain d imensional i ty ,  and it was g iven  for one.  two. and three d imen-  

sions. It was de termined  that the effective hydraul ic  conduct iv i ty  is proport ional  

to the geometr ic  mean  e r, where T is the trend in InK; the proport ional i ty  factor 

is 1 - o . ~ E .  
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