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Abstract

     Earthquakes damage freeway bridges and structures, resulting in significant impacts on

transportation system performance and regional economy.  The California Department of

Transportation (Caltrans) has developed bridge seismic retrofit programs that include seismic risk

analysis (SRA) procedures for structural re-enforcement projects.  CaltransÕ SRA procedure

establishes retrofit priorities for vulnerable highway bridges.

     Existing SRA procedures use average daily traffic (ADT) volumes to determine the

importance of a bridge.  This is not adequate.  The importance of network links should be

evaluated in terms of the system cost of failure.  Incorporation of an efficient transportation

modeling technology in the SRA procedures is essential.

     The objectives of this research are: (1) to develop an efficient transportation network analysis

(TNA) procedure for many different traffic flow analyses under numerous scenario earthquakes,

and (2) to evaluate the applicability of the procedure to a large-scale transportation network.  An

important feature of the TNA procedure is the use of an associative memory (AM) approach as

a cost-effective means in network flow modeling.  The AM approach is a heuristic method

derived from the artificial intelligence field.

     A simple synthetic transportation network with seven zones and twenty-four links is

developed to evaluate the applicability of the TNA procedure to simulated traffic flows.  An

aggregated representation of the Los Angeles highway network is defined as an empirical

example.  Five empirical link-failure system states are identified based on the opening of the Glen

Anderson Freeway (I-105), the discrete, simultaneous closure of several links caused by the 1994



iii

Northridge earthquake, and the gradual repair of network links.  Empirical transportation system

data sets including link capacities, free-flow link travel times, link volumes, and an origin-

destination trip matrix are developed to simulate network flows with respect to additional

synthetic link-failure system states.

     The TNA procedure is applied to transportation network analyses (TNA) for the aggregated

Los Angeles highway network.  We combine synthetic, user equilibrium transportation flows

with empirical data associated with the five empirical link-failure system states.

     Results from traffic flow analyses demonstrate the applicability of the TNA procedure to the

network flow modeling problem.  Associative memory models provide better estimates of

network flows compared to the conventional network equilibrium model in the case of five

empirical link-failure system states.  The performance of associative memory models improves if

empirical and synthetic system states are combined.  Results from travel demand studies indicate

that a large number of peak-hour weekday trips change trip origins and/or destinations with

respect to the opening or closure of network links.

Associative memory, decision-making, earthquakes, freeways, origin-destination trip matrix,
retrofit programs, seismic risk analysis, simulation, system state, traffic flows, travel time
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Executive Summary

     This report summarizes progress on research funded under PATH MOU 120/212.  Parts of

this report were based on the doctoral dissertation of Geunyoung Kim.  The work as originally

proposed focused on using associative memory techniques for rapid estimation of network flows

under conditions defined by the implementation of various ATMIS strategies.  The period

between approval of the research and allocation of the award included the Northridge Earthquake.

Following the earthquake, the Principal Investigator, PATH, and the Office of New Technologies

of Caltrans agreed to reorient the work toward modeling to support freeway structure retrofit

decisions and the evaluation and improvement of retrofit strategies and decision rules.

     This extension is consistent with the original thrust of the research, in that the core question

remains how can flows in large scale transportation networks be subjected to rapid estimation.

However, instead of attaching these estimates to a hypothetical set of ATMIS strategies, the

estimates can be attached to empirical change in the capacity of the Los Angeles freeway

network.

     Current Caltrans retrofit criteria account for the characteristics of the structure, the average

daily traffic (ADT) count the structure accommodates, and the geotechnical characteristics of the

site.  No attempt is made to account for the systemic effects associated with the loss of the

facility, or for the combinatorial effects associated with the loss of other facilities in the network.

This is a daunting prospect, because it implies prediction of network flows on a large scale.
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     These changes in the research project are easily accommodated by the associative memory

approach:  In either case, rapid estimation of network flows is a primary objective.  However the

current research requires more empiricism than would otherwise be possible.  One output will be

a summary data set of observed and seasonally adjusted freeways flows for Los Angeles'

Caltrans District 7 that spans a range of unique events, including

(1)  the opening of the Glen Anderson Freeway (I-105),

(2)  the discontinuous, simultaneous removal of several links in the network
      following the Northridge event, and

(3)  incremental, staggered return of these facilities to service.

In addition, a system of compact freeway traffic analysis zones have been built up out of 1990

census tracts based on the arrangement of Caltrans District 7 freeway links and traffic count

stations.
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1.  Introduction

     Rapid estimation and prediction of traffic flows is one of the most important problems

faced by transportation planners.  Efficient and effective network flow models are of use

in the short term as transportation agencies make incremental adjustments in guide way

controls.  Efficient and effective models are important in the intermediate term as

agencies work to optimize their scare resources.  Lastly, in the long term, the value of

models lies in the means of defining and evaluating public and private transportation

investment options.

     Our research focuses on the relevance of rapid flow prediction models to the bridge

retrofit criteria used by the California Department of Transportation (Caltrans).  Caltrans

has developed seismic risk analysis (SRA) procedures for prioritizing and retrofitting

vulnerable bridges of California highway systems.  CaltransÕ SRA procedures apply

average daily traffic (ADT) volumes to determine the importance of a bridge.

     However, ADT volumes would be effective only when transportation networks are not

significantly changed.  Traffic flows of all transportation links would alter if there is a

change in the transportation network.  Thus, an appropriate SRA procedure not only

should predict potential earthquake damage of system components such as buildings or

bridges, but also should predict system-wide traffic impacts of earthquakes on overall

transportation systems.  The importance of system-wide traffic flow analyses with respect

to bridge failures is addressed by Gilbert (1993):
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     "A highway system is a complex network of vulnerable links.  Bridge
structures are by far the most critical links because of their vulnerability to
damage when subjected to earthquake loads ....  It is increasingly
important to evaluate seismic reliability of the lifeline from a network
systems point of view.  Each critical element, or bridge, must be
considered as part of a global system."

     This research has three primary objectives.  The first objective is to provide reliable

estimates of network flows with respect to changes in transportation networks, and to

incorporate these changes to the decision-making procedures used by Caltrans in making

bridge retrofit decisions.  This requires the development of an efficient transportation

network analysis (TNA) procedure applicable to traffic flow analyses due to link failures

of transportation systems.

     The second objective is to evaluate the applicability of the TNA procedure to a large-

scale transportation network.  The evaluation of the TNA procedure requires numerical

traffic flow simulations.  A simple synthetic transportation network is developed and

used to evaluate the TNA procedure.  Network flows are simulated using a static user

equilibrium model and synthetic transportation system data sets.  Simple associative

memory, recurrent associative memory, and multicriteria associative memory models are

applied to estimate simulated network flows.

     The TNA procedure is also applied to a large-scale representation of the Los Angeles

highway network.  Five empirical link-failure system states are identified based on the

opening of the Glen Anderson Freeway (I-105) and the closure of freeway links caused
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by the 1994 Northridge earthquake.  Additional synthetic network flows are simulated

based on synthetic coupled-link failure earthquake scenarios.  Associative memory

models are applied to estimate empirical traffic volumes.  The effectiveness of the TNA

procedure is evaluated in terms of the difference between empirical traffic volumes and

estimated traffic flows.

     The third objective is to identify travel demand changes due to the opening or closure

of network links in the aggregated Los Angeles highway network.  Travel demand of a

transportation network may vary significantly after the occurrence of earthquakes.

Earthquakes damage freeway/roadway bridges, resulting in the closure of network links.

Drivers alter their routes or trip starting times after experiencing delays in commuting in

the short run.  In the long run, drivers change their travel behaviors by reducing their trips

for excessive activities, or by altering their trip origins and/or destinations.  Our

procedure provides a way of predicting origin-destination trip changes with respect to the

opening or closure of network links.

     This research describes an efficient transportation network analysis (TNA) procedure

that provides the system-wide changes of network flows under numerous scenario

earthquakes.  An important feature of the TNA procedure is the use of an associative

memory (AM) approach as a cost-effective means in network flow modeling.  The AM

approach is a heuristic method derived from the artificial intelligence field.  It provides
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good approximate solutions to constrained optimization problems such as the

transportation network flow problem.

     The transportation network analysis procedure also includes methodologies for

initializing or improving network input data.  Conventional network flow models, link

volume adjustment methods, and/or origin-destination trip estimation models are used as

components of the TNA procedure.  This research demonstrates two versions of the TNA

procedure according to the quality of transportation system data: the general TNA

procedure and the simplified TNA procedure.  Overall features of the two TNA

procedures will be described in section 4-1.
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2.  Research Design

     Establishing or refining a priority rating for structural reinforcement of existing

bridges requires analysis of the likelihood of a bridge's collapse or damage from

earthquakes, and the consequences of these outcomes.  Developing an appropriate

procedure requires identification and study of various factors such as each bridge's design

criteria, ground conditions, structural conditions, locations of faults, and impacts on

traffic flows.  CaltransÕ multi-attribute decision procedure uses such data to provide an

event likelihood calculation.  The details of the procedure are described in Section 3-1-4.

     Our revised procedure replaces the average daily traffic volumes attributes with

changes in the system's total travel times due to various changes to the transportation

network.  Consider retrofitting one link of the Santa Monica Freeway.  The change in the
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total system travel times resulting from the link failure is computed by the following

steps:

(1) identify equilibrium flows and travel times of each link under perfect 
     transportation system;

(2) compute the total system travel times by multiplying equilibrium flows 
     with travel times in each link, and by summing up each linkÕs total travel
     times;

(3) remove each link from the transportation system, and compute the total 
     system travel times;

(4) identify the total system travel time change due to the failure of each link in
     transportation network;

(5) remove several links from the transportation system, and compute the total 
     system travel times;

(6) identify each linkÕs portion from the total system travel time change caused by
     the failure of several links; and

(7) sum up the system travel time changes of one link due to the failure of one or 
     more links under different link failures including the selected link.

     Our research presents a transportation network analysis (TNA) procedure that

provides quick and reliable estimates of traffic flows with respect to different link failure

system states given numerous scenario earthquakes.  This transportation network analysis

procedure involves associative memory (AM) models as heuristic means suitable for use

in predicting system-wide changes of network flows.  If a set of observed link volumes

for different post-earthquake system states is available from metropolitan planning
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organizations (MPOs), AM models are applied to estimate network flows based on the

association between network configurations and link volumes of post-earthquake system

states.

     Observed traffic volumes for post-earthquake system states may not be available from

MPOs.  A transportation network is developed in this case.  Transportation system data

sets including free-flow link travel times, link capacity data, and an origin-destination trip

matrix are developed using data sources available from MPOs.  Synthetic link-failure

system states are selected based on different scenario earthquakes.  A static user

equilibrium model is employed to simulate synthetic traffic flows.  Network

configurations and simulated traffic flows are used as input data sets to train associative

memory models.  The best associative memory matrix is applied to estimate simulated

traffic flows for additional link-failure system states.

     The major advantage of the AM approach over the current standard ones is its

simplicity both conceptually and computationally.  Rapid flow estimates provided by the

AM approach are used to predict changes of total system travel times due to link failures

caused by earthquakes.  This research evaluates the applicability of the TNA procedure to

network flow prediction.  Two example transportation networks are developed to

evaluate the performance of the TNA procedure: a simple synthetic network and an

aggregated Los Angeles highway network.
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     The simple synthetic network is used to evaluate the feasibility of the TNA procedure

before applying the procedure to a large-scale transportation network.  The synthetic

network has seven traffic analysis zones and twenty-four directed links connecting each

zone with its adjacent zones.  The aggregated representation of the Los Angeles highway

network includes 105 traffic analysis zones and 292 links.  It is used to evaluate the

applicability of the TNA procedure to empirical traffic flow analyses with respect to link

failures due to the 1994 Northridge earthquake.
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3.  Literature Review

3-1.  California Department of Transportation Current Bridge Retrofit Criteria

     CaltransÕ bridge seismic retrofitting program has been in existence for nearly 25 years,

dating back to 1971.  The programs' current decision-making criteria regarding risk

identification and prioritization of bridges in California is the result of considerable

research and several major improvements.

3-1-1.  Historical Background

     The 1933 magnitude 6.2 Long Beach earthquake induced substantial improvements in

seismic design practices and enforcement of the seismic building code provisions.  The

California State Legislature passed the Riley Act and the Field Act to develop seismic

building practices in California.  During the 1940s, Caltrans began developing its own

seismic design criteria and programs to cope with the risk of earthquake damages to

California's transportation facilities.  The first bridge seismic code requirements were

introduced in 1940.  The first seismic design criteria for new bridges were brought up in

1943, and revised in 1965.

     The 1971 San Fernando earthquake produced clear evidence that existing bridges were

vulnerable to damages from the earthquakes.  Caltrans revised its seismic criteria after the
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San Fernando earthquake.  Caltrans also launched a retrofit program to correct the

seismic deficiencies of existing bridges.

3-1-2.  The Level One Risk Analysis Procedure

     CaltransÕ first risk analysis procedure for bridge retrofit is the Level One Risk

Analysis procedure developed in 1971.  This procedure is distinguished from

conventional risk analysis procedures by use of expert judgments in addition to large

scale statistical data.  The procedure consists of five steps.

(1)  Identify major faults with high event probabilities.

(2)  Develop attenuation pattern models for all the faults identified in Step (1).

(3)  Define a critical (minimum) ground acceleration level at which severe 
       damage to the bridge would occur.

(4)  Identify all the bridges within high risk zones, which are defined according to 
       the attenuation models developed in Step (2) and the critical acceleration 
       boundary specified in Step (3).

(5)  Prioritize the threatened bridges according to their "risk values."  These 
       values are calculated as follows.  First, assign priority weighs (0.0 to 1.0) 
       to each of the following characteristics:

¥  ground acceleration,
¥  average daily traffic (ADT),
¥  column design, i.e., single or multiple column beams,
¥  confinement details of column,
¥  route type, i.e., major or minor,
¥  length of bridge,
¥  skew of bridge, and
¥  availability of detour.
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The procedure scores each bridge for each of the above characteristics.  The risk value for

each bridge equals the sum of its weighted scores across all these characteristics.

     Caltrans raised the priority of its retrofit program in 1987 due to the magnitude 5.9

Whittier Narrows earthquake.  This earthquake occurred during the morning peak hour.

The earthquake produced significant damage to the transportation system, including the

near collapse of a 5-column bent supporting the crossing of the I-605 freeway over the I-

5 freeway.

     In 1989, the magnitude 7.1 Loma Prieta earthquake caused the collapse of numerous

buildings and transportation structures, amounting to almost $6 billion in damages.  The

earthquake damage increased concerns about bridge safety and intensified interest in

State-wide retrofit programs.  Caltrans proposed an accelerated schedule for retrofitting

its 392 single column bent bridges.  Caltrans put the remaining State-owned bridges on

the retrofit agenda.  Caltrans also modified the Level One Risk Analysis procedure by

incorporating technical improvements in earthquake engineering.  The priority weights

assigned to each of the original characteristics were adjusted.  New characteristics were

added to the list.  The additional characteristics are

¥  soil type,
¥  hinges, including type and number,
¥  exposure, i.e., the combination of length and ADT,
¥  height,
¥  abutment type, and
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¥  type of facility crossed.

3-1-3.  The Vulnerability Assessment and Prioritization Procedure

     Caltrans' Vulnerability Assessment and Prioritization Procedure responded to an

executive order by Governor Dekmejian in 1990.  The order called for a priority listing of

transportation structures to be scheduled for seismic retrofit.  In the Report to the

Governor on Seismic Safety (Caltrans, 1990), Caltrans describes its basic steps for the

Vulnerability Assessment and Prioritization Procedure as follows.

(1)  Identify all structure requiring retrofitting to ensure they are safe from
       collapse or major damages during earthquakes.

(2)  Identify "complex" or "vital transportation link" structures using special 
       criteria, and analyze and retrofit them to reduce the risk of major damages
       and to ensure their function can be maintained after an earthquake.

(3)  Prioritize all structures requiring retrofitting.

     Caltrans reviewed all available general structure plans for about 24,000 state and local

bridges.  Types of bridges initially removed from consideration are:

¥  timber bridges,
¥  culverts,
¥  single span bridges,
¥  short monolithic structures,
¥  structures designed after 1980, and
¥  recently designed single-column retrofit structures.
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Other general factors considered by Caltrans in assessing transportation structures are:

¥  fault crossings,
¥  airspace,
¥  pedestrian bridges, and
¥  special knowledge acquired by Caltrans engineers regarding structural
   problems.

     After the initial screening, Caltrans assessed the seismic vulnerability of each bridge

using the 12 weighting factors shown in Table 1.  Caltrans established a seismic priority

factor between zero (low) and one (high).  The bridges were ordered with the highest

priority.

     The bridge prioritization procedure employs a simplified scheme for seismic risk

assessment.  This procedure is computationally simple.  However, the overall rank may

produce inconsistent evaluations of relative risk.  The procedure adds the weighted

factors affecting the probability of failure to those affecting the consequences of failure

(Gilbert, 1993).

Table 1:  Seismic Vulnerability Weighting Factors

Weight, % Factor

13 Year Designed
12 Peak Rock Acceleration
12 Soil at Site
11 Number of Hinges
10 Columns Per Bent
8 Traffic Exposure
7 Height
7 Skew
6 Facility Crossed
5 Route Type
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5 Length of Detour
4

----
Abutment Type

100 Total

3-1-4.  Caltrans Multi-Attribute Decision Procedure

      Caltrans experienced from its vulnerability assessment and prioritization procedure

that risk is properly evaluated by multiplying the probability of failure with the

consequences of failure.  Thus, Caltrans revised the previous prioritization scheme in

1992, and developed a multi-attribute decision procedure.  Like the previous

prioritization procedure, this procedure assigns a priority rating to each bridge to

determine which bridge is more vulnerable to seismic activity based on current

conditions.  The major improvement of the new procedure is the framework of two-level

approach that separates the seismic hazard from the impact and structural vulnerability

criteria.  This allows a bridge with low seismic hazard to receive a lower overall risk

rating than a similar structure with higher seismic hazards.  This outcome has not been

achieved with previous prioritization schemes because the early methods rely on a point-

score summation.  The formula for the prioritization rating R  is
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ci   =  four criteria used in rating,

aij   =  a set of attributes associated with the i th criteria,

ni   =  the number of attributes associated with the i th criteria,

w ci i( )   =  weights assigned to each criteria,

x aij ij( )   =  weights assigned to each attribute, and

g aij ij( )   =  global utility functions created for each attributes.

The details of the criteria, attributes, and global utility functions are shown in Table 2.
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Table 2:  Criteria, Attribute, and Utility Function Details

Criterion Criterion
Weights

Attribute Attribute
Weights

Global Utility
Function

c1 = seismic
        activity

w(c1) = 1.0 a11 = seismic activity x11 (a11) = 100% 0.25 = low;  0,50 = moderate;
0.75 = active;  1.0 = high

c2 = hazard w(c2) = 1.0 a21 = soil conditions x21 (a21) = 33% 1 = high risk zone;  0 = else
a22 = peak rock
         acceleration

x22 (a22) = 38% linear, normalized to 0.7g

a23 = seismic duration x23 (a23) = 29% 0.5 = short;  0.75 = intermediate;
1 = long

c3 = impact w(c3) = 0.6 a31 = average daily
        traffic on structure

x31 (a31) = 28% parabola for a max. ADT of 20000

a32 = average daily
        traffic under/over
        structure

x32 (a32) = 12% See ADT above

a33 = Detour Length x33 (a33) = 14% linear, normalized to 100 miles
a34 = Leased Air
       Space (Residential,
       Office)

x34 (a34) = 15% 1 - present;  0 = else.

a35 = Leased Air
        Space (Parking,
        Storage)

x35 (a35) = 7% 1 - present;  0 = else.

a36 = Route Type on
         Bridge

x36 (a36) = 7% 1.0 = interstate;  0.8 = US, ST rte, or
stream;  0.7 = RR;  0.5 = fed funded
Co rte or city str;  0.2 = nonfed
funded Co rte of city str;  0.0 = fed
land, ST land, other

a37 = Critical Utility x37 (a37) = 10% 1 - present;  0 = else.
a38 = Facility Crossed x38 (a38) = 7% See Rte Type on Bridge

c4 = vulnerability w(c4) = 0.4 a41 = year designed
        (constructed)

x41 (a41) = 25% 0.5 = yr<1946;  1.0 = 1946≤yr≤1971;
0.25 = 1972≤yr≤1979;
0.0 =yr>1979.

a42 = hinges (drop
         type failure)

x42 (a42) = 16.5% 0.0 = no hinge;  0.5 = 1 hinge;
1.0 = 2 or more hinges

a43 = outriggers,
         shared column

x43 (a43) = 22% 1 - present;  0 = else.

a44 = bent redundancy x44 (a44) = 16.5% 0.0 = no col.;  0.25 = pier walls;
0.5 = multi col bents;
1.0 = single col bent

a45 = skew x45 (a45) = 12% linear, normalized to 90
a46 = abutment type x46 (a46) = 8% 0 = monolithic;  1 = non monolithic
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3-1-5.  Comments

     Caltrans' existing retrofit criteria have proven useful.  All of the 122 Southern

California bridges were retrofitted before the occurrence of the 1994 Northridge

earthquake.  All survived from the magnitude 6.8 earthquake.  The Northridge earthquake

damaged eleven freeway bridges.  Out of eleven bridges, ten were scheduled for

retrofitting.  The reason for the exception was an undetected active fault, not the

prioritization procedure.

     However, there is still room for improvement on the procedure.  Caltrans' current

retrofit criteria depend primarily on the Average Daily Traffic (ADT) volume to

determine the importance of a bridge.  This is not adequate.  For example, one of the

public policy questions arising after the Northridge earthquake is the appropriate retrofit

priority rating for the Santa Monica Freeway.  Given the heavy traffic the freeway

carries, structural engineering experts suggest that the rating should be high.  But

numerous alternative surface streets are available, which reduces the relative importance

of retrofitting the Santa Monica freeway.

     Average Daily Traffic (ADT) volume is an important indicator only when there is no

significant change in the transportation network.  If network configurations such as link

capacities are changed, it is better to use system-wide changes of network flows as the

prioritization indicator rather than the current ADT volumes.  In other words, a much

more meaningful approach for determining the importance of a bridge (or any freeway
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link) is a system-wide traffic flow analysis.  A way of evaluating the system-wide

changes of network flows in a transportation network is to compute total system travel

times based on simulated or observed network flows.  The change of total system travel

times between the presence and absence of a bridge can be used in representing the

importance of bridges in a transportation network.

3-2.  Models and Algorithms for Predicting Network Flows

3-2-1.  Background

     Network flow problems are essentially route choice or traffic assignment problems.

The question is how to determine the way in which people, vehicle, and goods use the

transportation network.  The notion of equilibrium plays a central role (Florian, 1984) in

all the attempts to construct mathematical models to network flow.

     The idea of traffic equilibrium appears as early as 1920 in the work of Pigou, who

considers a two-node, two-link (two path) transportation network.  The principle is

further developed by Knight (1924).  From the economic perspective, traffic equilibrium

is a special case of market equilibrium.  The demand side of the market corresponds to

the users of the network.  The supply side of the market is represented by the network

itself, with market prices corresponding to travel costs (Nagurney, 1993).



18

     The economic concept of traffic equilibrium is essentially the same as that of short run

market equilibrium for any good or services.  However, the presence of certain special

characteristics associated with network configuration and congestion processes makes the

traffic equilibrium problem very special and particularly complex.  The importance of the

problem with considering those difficulties has stimulated intensive research in the area.

     Wardrop (1952) developed two principles that formulate the notion of traffic

equilibrium.  He introduced user behavior postulates associated with these two principles.

His first principle states that "At equilibrium no user can reduce his journey time by

unilaterally changing routes."  Another standard way of stating this principle is "The

journey times on all routes actually used are equal and less than those which would be

experienced by a single vehicle on any unused route."  An underlying assumption for this

principle is that each user chooses the route that he perceives to be the best.  For this

reason, traffic flows satisfying Wardrop's first principle are usually referred to as the user

equilibrium flows.

     By contrast, Wardrop's second principle states that, "At equilibrium the average

journey time is minimum."  This implies that each user behaves cooperatively in

choosing his own route to ensure the most efficient use of the whole system.  Traffic

flows satisfying Wardrop's second principle are generally known as the system

equilibrium.
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     As Wardrop himself reports, his first principle is a practical one that is most likely to

happen in reality.  His second principle describes an ideal equilibrium situation in which

the total travel cost of the whole network is minimized, such as would occur under a set

of optimal congestion tolls.

     In large, uncongested networks in which the link travel costs are constant, there is no

difference between the user and system equilibrium flows.  The difference becomes

significant when the network is congested on all or part of its links.  In general, user

equilibrium flows differ from system equilibrium flows in a congested network.

     Beckman et al. (1956) are the first to rigorously formulate and analyze the equilibrium

conditions mathematically.  They establish the equivalence between these conditions and

the Kuhn-Tucker conditions of an appropriately constructed optimization problem.  Their

seminal work shows that the traffic equilibrium flows can be obtained as solutions to

mathematical programming problems.

3-2-2.  Formulations of Network Equilibrium Models

     Standard network flow models are steady state models.  Although the details of the

models vary widely from one problem setting to another, the basic form remains

essentially the same.

     Consider a transportation network with N  nodes and A  links.  The flow on each

directed link a ∈ A is va .  Each link is associated with a transportation cost function
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Ca (v) , where v  is the vector of link flows over the entire network.  This cost function is

usually assumed to be monotone, continuous, and differentiable.  It measures the delay

for travel on each link.  It is also referred to as the link performance function or volume

delay function.

     For certain origin-destination (O-D) pairs i ∈ I ⊆ N × N , there is a given positive flow

demand di (u) , where u is the vector of travel costs for all the O-D pairs in the network.

Define Ki  to be the set of paths connecting each O-D pair i , and hk  to be the flows on

paths k ∈Ki .  Then Ck (v) , the total travel cost for each path k , is the sum of the link

travel costs on that path, i.e.,

C Ck ak a
a

( ) ( )v v= ⋅∑δ , k ∈Ki , i ∈ I ,        (2)

where

δ ak

a k
= 




1

0

, ,

, .

if link belongs to path

otherwise
       (3)

Let ui (v) be the cost of the least cost path for any O-D pair i , namely,
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subject to the path flow conservation and nonnegativity conditions

h d
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≥
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

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or the link flow conservation and nonnegativity conditions

v h

v

a ak k
k Ki I

a

i

= ⋅

≥






∈∈
∑∑ δ ,

,0
a ∈ A.        (7)

It is easily seen that condition (5) may also be stated in the complementary form
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Ck ≥ ui   and    (Ck - ui) hk = 0, k ∈Ki ,      i ∈ I .        (8)

The user equilibrium condition may be formulated in several mathematical forms.  The

most general and useful one is the variational inequality form, which is

( )( )*C u h hk i k k− − ≥ 0 , k ∈Ki ,      i ∈ I ,        (9)

where hk
* is any feasible set of path flows.  The variation inequality formulation provides

a way to address multi-nodal models with elastic demands, for which no equivalent

optimization formulation of the equilibrium conditions are available.

     If cycle flows do not occur and the demand functions have an upper bound, the

existence of a solution to the network equilibrium model is ensured by the continuity of

the user cost and demand functions and by the fact that the feasible set (5) or (6) is

compact (Florian, 1985).  When the link performance functions are strictly monotone and

the demand functions and their inverses are strictly antitone, link flows and O-D costs of

network are unique (though, in general, path flows are not).  Dafermos and Nagurney

(1983) demonstrate that small changes in the travel demands and in the link performance

functions result in only small changes in the traffic flows, demonstrating that the network

equilibria are stable.
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     Most applied network equilibrium models assume that each link performance function

depends only on the flow on that link.  Each demand function depends only on the travel

cost between the corresponding O-D pair.  That is, Ca (v) = Ca (va ) and di (u) = di (ui ) .

Due to such conditions it is possible to construct convex optimization problems for which

first-order optimality condition is the equilibrium condition.  A user optimization

problem of this sort has the form of

min
va

Ca (x) dx
0

va

∫
a∈A
∑ ,      (10)

subject to (6) and (7).  The corresponding system optimization problem is

min
va

va ⋅ Ca (va )
a∈A
∑ ,      (11)

subject to (6) and (7).

     Formulations described above are static equilibrium models.  Considerable research

has also been done on formulating stochastic and dynamic network problems.  The

derivation of a stochastic equilibrium model requires probability distribution assumptions

concerning the travel demand process and/or route selection process.  Stochastic user

equilibrium (SUE) models are more realistic than the static UE models.  They assume
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that travelers are not perfectly informed when they choose routes (Ran and Boyce, 1994).

Most SUE models are based on the logit models in which route choice is modeled as a

discrete choice problem.  SUE models appear in Dial (1971), Daganzo and Sheffi (1977),

Davis and Nihan (1993), Davis (1994), and Soumis and Nagurney (1993).  The entropy-

maximizing models introduced by Wilson (1970a, 1970b) and Wilson and Senior (1974)

provide an alternative interpretation for SUE models.

     The crucial consideration in forming dynamic network models is how to formulate the

time-dependent link performance functions and the temporal O-D demand relationships.

Merchant and Nemhauser (1978) constructed the first dynamic system optimal (DSO)

traffic assignment models.  Carey (1986) showed that a dynamic traffic assignment

model formulated as a nonlinear and non convex optimization model.  CareyÕs dynamic

traffic assignment model satisfies a "constraint qualification."  This further ensures the

validity of Kuhn-Tucker based analysis of the model.  Dynamic user optimal (DUO)

problems for a simple transportation network were studied by Matsu (1987) using

optimal control theory.  A generalized DUO model over a multiple O-D network was

presented by Wie et al. (1990).  Friesz et al. (1989) analyzed some of the fundamental

properties of DUO and DSO models.

3-2-3.  Algorithms
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     The variational inequality formulation opened the way for understanding and solving

complicated network equilibrium problems.  However, most of the practical models are

still based on the initial work of Beckman et al. (Florian, 1985).  These models are

frequently solved through a number of efficient algorithms designed for optimization

problems.

     The most commonly used algorithm for solving convex cost minimization problems

with linear constraints are the feasible direction method of Frank and Wolfe (1956) and

some of its variants.  Take the fixed demand problem given by (10), (6), and (7) as an

example.  Starting from an initial feasible link flow solution va
(0) , the Frank-Wolfe

algorithm obtains a feasible direction by linearizing the objective function, solving a

linear programming subproblem, and then finding an improved solution on the line

segment between the current solution and the solution of the subproblem.  The linearized

subproblem at iteration j  is

min
f k

C
a
(v

a

( j ) )?δ
ak

?f
k

a Ak  Kii  I

,      (12)

subject to

f k
k∈Ki

∑ = di , i ∈ I ,      (13)
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and

f k ≥ 0 , k ∈ Ki , i ∈ I .      (14)

The objective (11) is also equivalent to

min
f k

Ck
( j ) ⋅ f k

k∈Ki

∑
i∈I
∑ .      (15)

The solution to this linearized problem, f k
( j ) , is obtained trivially by computing shortest

paths for each O-D pair i  and allocating the demand di  to that path.  The solution to the

problem (11)-(13) is then give by

f a
( j ) = δak ⋅ f k

( j )

k∈Ki

∑
i∈I
∑ ,      (16)

and the direction of decent is simply f a
( j ) − va

( j ) .  The algorithm then proceeds by solving

the problem
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min
0≤λ ≤1

Ca (x)
0

va
( j) +λ f a

( j) −va
( j)( )

∫
a∈A
∑ dx ,      (17)

for the optimal step length λ( j ) .  Alternatively, λ( j )  can be found as a solution to the

equation

Ca va
( j ) + λ f a

( j ) − va
( j )( )( )

a∈A
∑ ⋅ f a

( j ) − va
( j )( ) = 0 ,        (18)

The process stops either when the direction of descent is zero or when the decrement of

the objective function is less than a predetermined termination criteria.

     The Frank-Wolfe algorithm has several advantages.  It is easy to understand and

simple to implement.  The core storage requirements are small.  However, the algorithm

is only efficient in the first few iterations.  Its overall performance is not fully

satisfactory.  It has notoriously slow convergence and exhibits oscillation near

equilibrium.  The main reason for this behavior is that the search generated by the linear

subproblem solution tends to become perpendicular to the steepest descent direction as

the number of iterations increases (Larsson and Patriksson, 1992).

     Algorithms proposed to solve variational inequalities formulations of the network

equilibrium models can be divided into three main categories (Fresz, 1985): (a)

linearization methods, (b) diagonalization methods, and (c) simplicial decomposition

methods.  Pang and Chen (1982) give a detailed discussion and general treatment of
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convergence properties of linearization algorithms.  Diagonalization methods are

analyzed by Dafermos (1982), Florian and Los (1982), and Pang and Chen (1982).

Simplicial decomposition methods are discussed in Larsson and Patriksson (1992).

Patriksson (1993) shows that a number of algorithms frequently applied to network

equilibrium problems may be described in a unified manner as instance of a partial

linearization algorithm.  These frequently used algorithms include the standard Frank-

Wolfe algorithm, Newton type methods, projection methods, and Jacobi/Gauss-Seidal

methods.

3-2-4.  Comparing the Standard Approach with Stochastic and Dynamic Extensions

     Modeling traffic flows in transportation networks remains an area of intense

investigation.  The deterministic, static formulation of network flows subject to

endogenous link travel costs remains the standard formulation in the field.  Extensions

intended to treat randomness in user decisions, represent queues at bottlenecks, and

account for transient demand are of considerable theoretical importance.  Progress has

been made in all of these dimensions.  However, real time estimation of urban network

flows by any means analytically, numerically, or simulation remains unachieved.  The

standard formulation is being improved incrementally to make user flow models more

realistic, but there are neither standard representations of stochastic user equilibrium nor
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of dynamic user equilibrium.  Real time modeling of flows on urban transportation

networks will most likely be achieved via improvements in traffic flow simulation

models.  The literature describing simulation as a stochastic process and numerical

models of network flows has only recently begun to converge.

3-3.  Estimating Origin-Destination (O-D) Trip Matrices from Traffic Volumes

     This section explains the methods of obtaining an updated O-D trip matrix that will be

used as the input data for the static user equilibrium model described in section 3-2.

3-3-1.  Background

      The demand for travel within a given area is estimated by dividing the area into a set

of Origin-Destination (O-D) zones.  The travel demand between each O-D pair in the

network is assumed to be known in the formulation of network equilibrium models.

These demands form a two-dimensional O-D matrix that accounts for the total number Vji

of trips between all designated origin and destination zones served by the highway/

roadway system being considered.
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     The traditional method for estimating the O-D matrix is Origin-Destination surveys.

However, such surveys are generally very expensive in terms of manpower, time, and

expense.  By comparison, traffic counts are relatively inexpensive to obtain, and are

routinely collected automatically for multiple purposes.  Consequently, there is

considerable interest in developing procedures for estimating O-D matrices from traffic

counts.  The literature includes several O-D trip estimation methods.

     Approaches to estimating or updating O-D trip tables from traffic counts are primarily

divided into two groups: parameter calibration methods and matrix estimation methods.

Parameter calibration methods are based on gravity type models.  Prior to the 1970s,

traffic volume data was used primarily for the study of traffic control and road

construction.  Robillard (1973) suggests a method for determining origin-destination trip

tables based on observed link volumes.  Under RobillardÕs approach, the cost of travel

between every origin-destination-pair is used to estimate the O-D matrix based on a

gravity model.  A regression problem is solved to determine total trips originating from

and terminating in each zone, and then a generalized gravity model is used to determine

the trip table.  Robillard (1975), Low (1972), Smith and McFarlane (1978), and Symons

et al. (1976) estimate O-D matrices from by a gravity model in which parameters can be

calibrated based on traffic counts.  This approach reduces to a linear or nonlinear least

squares problem in which the sum of squared deviations between the link flows predicted

form the gravity model and the traffic counts obtained for each link is minimized.
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     Matrix estimation methods fall into three categories:

(3) statistical estimation approaches.

In the case of matrix estimation methods, the equilibrium assignment methods developed

in North America are based on optimization approaches intended to satisfy WardropÕs

user equilibrium principle.  Under this equilibrium assignment approach, the link

performance function is assumed to be known, and an initial (target) O-D matrix must be

provided (frequently by exercising trip distribution models).  The objective is to

determine the minimum correction in the target O-D matrix that will satisfy equilibrium

assignment conditions and replicate the observed traffic counts.  Willumsen (1981),

Nguyen (1977, 1978), and Turnquist and Gur (1979) demonstrate such an approach.

     In contrast, the entropy maximizing/ information minimizing approaches may not

employ a prior trip table if it is not available.  These methods use the objective of either

maximizing the entropy of the trip matrix or minimizing the information contained in the

link flows to estimate the most likely trip matrix consistent with the observed traffic

counts.  Examples of various applications of this approach can be found in Hall et al.

(1980), Beagan and Bromage (1987), and Lam and Lo (1991).

(1) equilibrium assignment (EA) approaches,

(2) entropy maximizing (EM)/information minimizing (IM) approaches, and
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     In general, link volumes alone do not provide enough information to construct a

unique trip table.  This underspecification problem follows from the use of a small

number of observed links relative to a large number of unknown origin-destination

interchanges.  The problem can only be overcome by using additional information.  In

equilibrium approaches, an initial trip table is used.  In EM or IM approaches, the path

(or link) choice proportions and the maximum entropy principle define the required

increment in information.  The statistical estimation approaches estimate future trips

based on prior information by using Bayesian inference or least squares estimation

techniques.  These approaches have not been as widely applied as the equilibrium

assignment or entropy maximizing/information minimizing approaches.  Consequently,

the statistical estimation approaches are not investigated here.

3-3-2.  Equilibrium Assignment (EA) Approaches

     The equilibrium assignment approach estimates an O-D matrix that both satisfies

equilibrium assignment conditions and is consistent with the observed link flows.  The

approach requires knowledge of the actual travel costs for all links and an initial (target)

O-D trip table.  The suggested solution algorithm is initialized by the target trip table,

then corrects the table so that it approximates as closely as possible with the observed
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flows.  Because this model accounts for congestion in the network and uses traffic counts,

it is well suited to estimating an O-D trip matrix in a congested urban area.

     This approach was first developed by S. Nguyen (Turnquist and Gur, 1979).  Based on

the initial trip table that satisfies WardropÕs first principle, Nguyen specifies a nonlinear

optimization problem to which the trip table replicates observed flows when the trip table

is assigned under user equilibrium.  Thus this approach identifies an O-D trip matrix.

NguyenÕs optimization problem is similar to equilibrium assignment under elastic

demand.

     Turnquist and Gur (1979) state the problem of finding an O-D matrix that, when

assigned, replicates observed link volumes as follows,

                              min ( )F t x dx u Ta
a

j j
j

fa

=












−∫∑ ∑
0

(19)

subject to

                     T hj j
k

k

− =∑ 0          for each O-D pair j (20)

                     d h fja
k

kj
j
k

a∑∑ =       for each link a,  and (21)

                     f T ha j j
k, , ≥ 0 (22)

where
          

F = objective function of the optimization problem
fa = observed flows on link a,



34

ta(x) = impedance function for link a,
uj = observed O-D impedance for trip interchange j,
Tj = trips for interchange j,

hj
k = number of trips from interchange j using path k, and

dja
k = 1, if link a is in path k for interchange j

                      0, otherwise.

An interchange is a flow between a specific O-D pair.  This model begins with an initial

O-D trip matrix.  The initial O-D trip matrix is assigned to the given transportation

network, and generates the simulated traffic flows.  The model updates the initial O-D

trip matrix until the difference between the simulated total travel times and the total travel

times from the observed link volumes is minimized.

     This optimization model applies the Frank-Wolfe algorithm.  The solution is obtained

by an iterative procedure, and requires the following basic steps (algorithm):

Step 1.  Let i = 1.

Step 2.  Specify an initial trip table Ti=1 and a volume-delay function for each link.

Step 3.  Based on the observed link impedance, find uj, the observed O-D 
 impedance for trip interchange j.

Step 4.  Assign Ti=1 to the unloaded network by using free flow impedance vj
  to

                         obtain a set of link volumes f i=1.

Step 5.  Determine link impedance at the current volume f i and again build
 minimum impedance trees.

Step 6.  Given Tj
i, uj, vj, and wj

i, find a correction trip table Vj
i based on the

 differences of the path impedance:
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V T u w w vj

i
j
i

j j
i

j
i

j= × + × −( ) −( ){ }[ ] >1 2 /         if  u w    j j
i

      (23)

            =  if   uj  > wi
j             (24)

Step 7.  Assign Vj
i to the tree built in step 5 to obtain correction link volumes si.

Step 8.  Find a weight ri such that 0 ≤ ri ≤ 1 and the solution

             [(f i+1, T i+1) = ri(si,Vi) + (1-ri) * (f i, T i)]  minimizes the objective
 function F.

Step 9.  Check the convergence criterion.  If it is met, stop; otherwise, set Tj
i =Vj

i

                         and i=i+1, and go to step 5.

where,

i = iteration counter,
vj = free flow O-D impedance for trip interchange j,

wj
i = O-D impedance for trip interchange j at iteration i,

f i = a set of link volumes at iteration i,
si

 = a set of correction link volumes at iteration i,
Vj

i = correction trips trip interchange j at iteration i.

This equilibrium assignment approach requires the following data,

¥  observed link volumes (for all links),
¥  link impedance,
¥  link performance function, and
¥  initial trip table.

The approach is summarized in Figure 1.
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Figure 1:  Equilibrium Assignment Approach Flow Chart.

3-3-3.  Entropy Maximizing (EM) or Information Minimizing (IM) Approaches

     This type of model estimates the most probable O-D matrix based on traffic counts

under proportional assignment conditions.  The estimate is consistent with the constraints

with an entropy maximization problem.  This model requires neither the traffic counts on
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all links in the network nor an initial O-D matrix.  But there are modified EM or IM

models in which an available initial trip table can be used to increase accuracy.  This

approach is inaccurate if travel behavior is not well represented by the gravity model or

similar formulations.

     Willumsen (1981) provides the mathematical formulation and algorithm for the

original EM model.  The formulations and solution algorithms of modified EM and IM

models are similar to those of the original, except for the addition of prior (initial) trip

interchange terms.  According to the WillumsenÕs entropy model, StirlingÕs

approximation can be used to express the entropy of a network as

                   S Tij
ij

= −∑ ln ! = − −∑( ln )T T Tij ij ij
ij

. (25)

The Entropy Maximization formulation is

                  max    S T T T Tij ij ij ij
ij

( ) ( ln )= − −∑ (26)

subject to

                                   T P Vij ij
a

a
ij

=∑ (27)

                                    Tij ≥ 0 (28)
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where

Pij
a = proportion of trips from origin i to destination j which use link a,

Tij = trips from origin i to destination j, and
Va = observed volume of link a.

     The Lagrangian L may be maximized to obtain the set of TijÕs that maximizes S(Tij)

subject to constraints (27).

L = S T V T Pij a a ij
ij

ij
a

a

( ) ( )+ − ∑∑λ (29)

and where terms λa are Lagrangian multipliers.  The terms Tijs, which constitute the most

probable distribution of trips, are solutions to the following set of first order conditions.

∂
∂

L

Tij

 = − + − =∑ln ( )T Pij a ij
a

a

λ 0 . (30)

∴ = − =∑ ∏T P Xij a ij
a

a
a

P

a

ij
a

exp{ ( )}λ (31)

where

                      Xa  = exp(- λ a ). (32)

The entropy maximization approaches require following data,
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¥  observed link volumes (at least in part),
¥  path or link use proportions (Pij

a), and
¥  an initial trip table ( for modified EM model and IM model).

3-3-4.  Comparing EA Models with EM/IM Models

     The strengths and weaknesses of each approach are summarized as follows.

EA models are applicable to congested network (strength), but need an initial trip table

(are sensitive to the initial trip table), and require volume counts for all links

(weaknesses).  EM/IM models have flexible data requirements (partial link counts will

do, and initial trip table is not necessarily required), seek the most probable O-D pattern

based on the information available (strengths), but do not provide an adequate treatment

of congestion (do not use link performance characteristics), and assume proportional

assignment i.e., require terms Pij
a (weaknesses).

3-4.  Artificial Intelligence (AI) Approaches to Modeling

     Associative memories are part of artificial intelligence approaches that make

computers learn and remember in ways similar to human memory processes.  The



40

associative memory approach is a newly-developed, heuristic approach.  Associative

memories address the pair association problem between stimulus and response matrices.

     The associative memory approach requires a procedure computing associative

memory matrices (training step) and evaluating the performance of the computed

memory matrices (test step).  Associative memories are computed by using a pair set of

training input data so that the application of a set of stimulus inputs produces the desired

(or at least consistent) set of response inputs.  The computed memory matrices are later

used to estimate response outputs for a set of new stimulus inputs that have not been used

to create the associative memory matrices.  The performance of different associative

memory matrices is evaluated in the test step by comparing the estimated outputs with

test response outputs.

     Researchers at the University of Southern California have experimented with the

associative memory approach to various regional modeling problems.  The group has had

success applying various versions of associative memory matrices to difficult parameter

identification problems (Kalaba, Lichtenstein, Simchony, and Tesfatsion 1990; Kalaba

and Tesfatsion 1991; Kalaba and Udwadia 1991; Moore II, Kalaba, Kim, and Park 1993;

Moore II, Kim, Seo, and Kalaba 1994; Kalaba, Moore, Xu, and Chen 1994; and Moore II,

Kalaba, Kim, Seo, and Kim 1994), including constrained optimization problems (Kalaba,

Kim, and Moore II 1991, 1992; Moore II, Kim, Seo, Wu, and Kalaba 1991).
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     This research employs the associative memory approach to estimate changes in

network flows (response vectors) with respect to given network configurations (stimulus

vectors) of post-earthquake system states due to different scenario earthquakes.  This

research employs three associative memory models.  They are: (1) Simple Associative

Memories (SAM), (2) Recurrent Associative Memories (RAM), and (3) Multicriteria

Associative Memories (MAM).  Details of the three associative memory models are

described in the following sections.

3-4-1.  Simple Associative Memories (SAM)

     As Figure 2 indicates, associative memories address the pair association problem.

Does there exist an associative memory M  (Kohonen 1989) that will map a finite set of

arbitrarily selected stimulus vectors to the corresponding set of system response vectors?

The stimulus- response notion is crucial:  For each of K  training cases, let the stimulus

vector sk  of dimension p ×1, and the system response vector rk  of dimension q ×1, be

specified.
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    Figure 2:  An Ideal Associative Memory

     The objective is to determine an associative memory matrix M * of dimension q × p ,

so that M * sk  will equal rk  as nearly as possible for k = 1, 2, . . . , K.  Following

Kohonen (1989), we take this to mean that if we form the stimulus matrix S  of

dimension p × K , whose kth  column is sk , and the response matrix R of dimension

q × K , whose kth  column is rk , then the matrix M * is to be determined by minimizing

the L 2  norm of the difference matrix R − MS ,

M *= argmin
M

R − MS 2
.      (33)

The hope is, then, that even if s  is not in the training set, M *s will provide a good

approximation to the system's response to stimulus s .  Clearly, minimizing the L 2  norm

minimizes mean square error.  Noting that
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M = Trace(MT M)( )1 2
,      (34)

it follows that

R MS R MS) (R MST− = − −( )2
Trace ( )

       =Trace RT R− RT MS− ST M T R+ ST M T MR( ),      (35)

Minimizing Equation (33) over M ,

∂ R − MS 2 ∂ M = Trace 2M * SST − 2RST( ) = 0 ,      (36)

and, assuming SST  to be nonsingular, it follows that

M *= RST (SST )−1.      (37)

More generally, the solution to this problem is

M *= RS+ ,      (38)
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where S+ , dimension K × p , is the Moore-Penrose generalized inverse of the rectangular

matrix S .  S+  can be calculated even if S  is not of full rank.  Codes for calculating this

generalized inverse are available in standard software packages such as Mathematica,

Matlab, and SAS.

3-4-2.  Recurrent Associative Memories (RAM)

     For constrained optimization (Kalaba, Kim and Moore II 1991; Kalaba, Kim, Moore

II, Seo and Wu 1991; Kalaba, Kim, and Moore II, 1992) and certain types of

deterministic parameter identification problems (Moore II, Kim, Seo, and Kalaba 1992),

a recurrent extension of the associative memory approach has been shown to provide

much improved estimates of response vectors.  A recurrent associative memory matrix

M **  is estimated by extending each original training stimulus vector sk  with f (rk *), a

nonlinear damping transformation of the simple associative memory estimate

corresponding to training response vector rk .  Given M *, a simple associative memory

matrix of dimension q × p , and R * , an estimated training response matrix of dimension

q × K , the recurrent extension updates the training stimulus matrix to be

Sr = S
f (R*)

     (39)
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dimension ( p + q) × K .  The recurrent associative memory matrix is computed thus

M ** = RSr
+ = R

S
f (R*)

+

.      (40)

The procedure is summarized in Figure 3.  Note that the procedure subsumes the

calculation of a simple associative memory.

3-4-3.  Multicriteria Associative Memories (MAM)

     Unfortunately, associative memories are known to be particularly sensitive to noise

(Kalaba, Lichtenstein, Simchnoy, and Tesfatsion 1990, Kalaba and Tesfatsion 1991).

Noise can produce scaling problems in the matrices M * and M ** .  The numerical

problems posed by relatively large matrix elements can be addressed in a number of

ways.  For example, expression (33) can be modified by attaching a penalty to the size of

the elements in the associative memory matrix (Kalaba and Tesfatsion 1992, Kalaba and

Udwadia 1991).  Computing such a multicriteria associative memory matrix M̂  involves

a trade-off.  The objective is to find a matrix that replicates the training data as closely as

possible, but minimizes the magnitudes of the elements necessary to achieve the best

approximation.  If α  is defined to be a coefficient describing the relative importance of

the first criteria, i.e., the importance of fitting the training data, expression (33) becomes
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Figure 3:   Computing a Recurrent Associative Memory:  A nonlinear transformation of
     R *  is appended to the stimulus matrix S .  The associative memory is
      recomputed.



47

M̂ = argmin
M

α R − MS 2 + (1 − α ) M 2( ).      (41)

Expanding,

a R MS (1 a) M
2 2− + −

= − − + −( )Trace a(R MS) (R MS) (1 a) M MT T .      (42)

Minimizing Equation (40) over M ,

∂ ∂a (1 a)
2 2R MS M M− + −( )

= − + −( ) =Trace 2a 2a 2(1 a)T Tˆ ˆMSS RS M 0.      (43)

It follows that

M̂ = α RST [α S ST + (1 − α ) I]−1.      (44)

In the special case of a simple associative memory
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α = 1,      (45)

and equation (45) reduces to equation (37).

     In general, the optimal value of α  is unknown.  However, Kalaba and Tesfatsion

report low sensitivity to values on the interval [0.1, 0.9].  Our previous research shows

that the estimation performance of the multicriteria associative memory matrices are not

sensitive to the value of α  in predicting network flows.  The general procedure of finding

the best α  value is to incrementally increase the value of α from 0.1 to 0.9.  The MAM

approach often provides better estimates of test data sets compared to the SAM and RAM

approaches.

3-4-4.  General Issues in Application of Associative Memories

     The associative memory approach is applied to the cases in which there seems to be a

strong association between stimulus and response vectors.  Whether the association is

described by a linear or complex nonlinear function, the association between vector pairs

constituting stimulus and response vectors is essential to the associative memory

approach.

     How to select an appropriate number of training cases is often unclear.  Past

computation experience indicates associative memories capture the information in
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training cases quickly, but generalize less well then more complex connectionist

techniques such as  neural networks.  If empirical data is used for training, it will include

outcomes related to both structural relationships and system noise.  The objective is to

identify and predict structure, not noise.  Noise, by definition, cannot be predicted.

Neural networks, like other statistical techniques, can be accidentally trained to replicate

noise.  This degrades the use of a trained network as a predictive tool.  One way to avoid

this outcomes is to train connectionist heuristics against a set of validation response

vectors defined by the same pair association rules as the training vectors but kept separate

from the training vectors.  Training stops when the outputs of the connectionist model

offer no improvement against the validation set.  The rationale is that the noise in the

validation set is different from the noise in the training set.  Thus overfitting to training

noise can be avoided.

     Multicriteria associative memories appear to be less subject to overtraining than neural

networks.  They are intended to be, but the same validation concept can be used to decide

how much empirical information should be used to define the training set.  The question

of how large the training set should be is a question of what information the associative

memory needs to identify the structural relationships driving the outcomes in the system.

The equation is more difficult to answer if the training set entirely synthetic.  The

synthetic data used for training is almost free.  There is no risk of overfitting to noise.

We have been deliberately conservative.  The training sets used in this case are relatively
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small, and have been incrementally enlarged to see how quickly the estimation

performance of the associative memories is improved.

     Over the past few years, research at the University of Southern California (USC) has

focused on the application of associative memory models to various constrained

optimization problems.  Our past research experience has revealed that associative

memory models cost-effectively provide approximate solutions to constrained

optimization problems.  The estimation performance of the three associative memory

models described here (SAM, RAM, and MAM) varies according to the nature of the

constrained optimization problems to which they are applied.  This research applies all

three associative memory models to find the most accurate associative memory matrix to

predict network flows.
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4.  Using Associative Memories to Model a Synthetic Network

     This chapter describes the overall features of a transportation network analysis (TNA)

procedure and its application to a simple synthetic network.  Metropolitan Planning

Organizations (MPOs) possess different levels in terms of quantity and quality of

transportation system data that can be used for system-wide traffic flow analyses.

Section 4-1 briefly describes how the models introduced in chapter 3 are used as the

various components of the TNA procedure.  Two versions of the TNA procedure are

developed based on the quality of transportation system data available from MPOs: the

general TNA procedure and the simplified TNA procedure.

     Section 4-2 develops a simple synthetic network as an application example for

simulating network flows using the static user equilibrium model.  Network assumptions

are described for numerical traffic flow analyses given synthetic link-failure system

states.  Transportation system data sets including link capacities, free-flow link travel

times, and an origin-destination trip matrix are generated.

     Section 4-3 simulates traffic flows with respect to synthetic link-failure system states

given two scenario earthquakes: single-link failures and double-link failures.  Simulated

link-failure system states are randomly selected.  The static user equilibrium model is

applied to simulate network flows with respect to the link-failure system states given the

three synthetic transportation system data sets.
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     Section 4-4 applies associative memory models to estimate simulated network flows.

Different pairs of link failure configurations and simulated network flows are used to

evaluate the performance of associative memory models.  The remaining link failure

configurations and their simulated network flows are used as training input data for

computing different associative memory matrices.  A comparison is made between

simulated network flows provided by the static user equilibrium model and flow

estimates provided by the associative memory models.  Results from the application of

the TNA procedure are discussed.

4-1.  The Transportation Network Analysis Procedure

     The development of efficient transportation network analysis (TNA) procedure is

essential in traffic flow analyses for a large number of system states due to different

scenario earthquakes.  This section describes two versions of the TNA procedure: the

general TNA procedure and the simplified TNA procedure.  The difference between the

two TNA procedures is based on the availability and quality of transportation system data

from MPOs.

4-1-1.  The General Transportation Network Analysis Procedure

     The general TNA procedure is developed based on the assumption that both observed

post-earthquake link volumes and an accurate O-D trip matrix are not available.  This
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procedure consists of five modules: (1) initialization of the procedure including data

acquisition and modification, (2) identification of total and sample system states based on

scenario earthquakes, (3) simulation of network equilibrium flows based on the sample

link-failure system states, (4) application of artificial intelligence techniques for

estimating network flows of the remaining link-failure system states, and (5) aggregation

and interpretation of results.  The overall framework of the general TNA procedure is

shown in Figure 4.

     The initialization module is a pre-processor to the general TNA procedure.  This

module develops reliable transportation system data sets containing free-flow link travel

times, link capacities, and an origin-destination (O-D) trip matrix.  A transportation

network is defined based on the study area, the study purpose, the actual transportation

network, and the availability of transportation system data.  Free-flow link travel times

and link capacities are either obtained from MPOs, or computed using network-related

source data and simple formula.1  Baseline link volumes are determined by extracting

seasonal and/or trend variations from observed link volumes using a link volume

adjustment method.  An O-D trip estimation method is applied to estimate an O-D trip

matrix from the baseline link volumes.

     The identification module is another pre-processor to the general TNA procedure.

This module determines an adequate number of link-failure system states.  This module

begins with the selection of scenario earthquakes.  The total number of link-failure
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system states are computed for each scenario.  Sample link-failure system states are

randomly selected from the total system states.  Network configurations for the sample

system states are identified.  They are used as input data in the simulation module.

Network configurations of the remaining system states are also identified.  They are used

as input data in the artificial intelligence module.

                                                                                                                                                
1   These formula will be described in Chapter 6.
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START

1.  INITIALIZATION
     MODULE:
      Initialize Analysis.

2.  IDENTIFICATION
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3.  SIMULATION
     MODULE:
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     Flows for Each
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4.  ARTIFICIAL
    INTELLIGENCE
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    Estimate Traffic
    Flows Using
    Associative Memory
    Techniques.

5.  RESULT
     INTERPRETATION
     MODULE:
    Aggregate and
     Interpret Results.

STOP

FIGURE 4:  THE OVERALL FRAMEWORK OF
GENERAL TRANSPORTATION NETWORK

ANALYSIS PROCEDURE

     The simulation module generates equilibrium traffic flows given both the three

transportation system data determined in the initialization module and the network

configurations of the sample system states selected in the identification module.  A
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conventional user equilibrium model is employed to simulate post-earthquake

equilibrium traffic flows as well as equilibrium link travel times for all the sample system

states.

     The artificial intelligence module involves the application of associative memory

models to efficiently estimate post-earthquake network flows for the remaining system

states.  The network configurations (stimulus vectors) and their associated equilibrium

network flows (response vectors) of the sample system states are divided into two groups:

training system states and test system states.  Most of the stimulus and response vectors

are used as training system states to compute different associative memory matrices.  The

remaining pairs of the vectors are used to evaluate the performance of the generated

associative memory matrices.  The associative memory matrix providing the closest

estimates of test case network flows given the sample system states is applied to estimate

network flows for the network configurations of the remaining system states.

     The result interpretation module summarizes results of the associative memory

approach.  The results of associative memory models are gathered and interpreted.  The

performance of the associative memory models is evaluated by Root Mean Square Errors

(RMSEs), scatter plots, and correlation coefficients between the link flows simulated by

the conventional transportation network model and the flow estimates provided by the

associative memory approach.
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4-1-2.  The Simplified Transportation Network Analysis Procedure

     The simplified TNA procedure is developed based on the assumption that a set of

post-earthquake link volumes is available.  This procedure consists of four modules: (1)

initialization of the procedure, (2) identification of link-failure system states, (3)

application of artificial intelligence techniques for estimating network flows of additional

link-failure system states, and (4) aggregation and interpretation of results.  The key

element of this procedure is the associative memory approach in the artificial intelligence

module.  The O-D trip estimation method, the conventional transportation network

model, and the three transportation system data are not employed in this procedure

because of the set of post-earthquake link volumes available from MPOs.  The overall

framework of the simplified TNA procedure is shown in Figure 5.

     The initialization module is a pre-processor to the simplified TNA procedure.  This

module considers the extraction of variations from a set of post-earthquake link volumes.

A study transportation network is defined from the actual transportation network.  A link

volume adjustment method is applied to identify seasonal and trend variations from a

series of link volumes collected at all of the network links during a specific time period.

Seasonal and trend parameters are determined by the method.

     The identification module is another pre-processor to the simplified TNA procedure.

This module defines link-failure system states based on different network configurations

due to earthquakes.  Observed link volumes are obtained from MPOs.  Seasonal and trend
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variations of the observed link volumes are extracted by using the seasonal and trend

parameters identified in the initialization module.  The network configurations (stimulus

vectors) and their associated adjusted link volumes (response vectors) are structured as

the pair of vectors.

          

START

1.  INITIALIZATION MODULE:
      Initialize Analysis.

2.  IDENTIFICATION MODULE:
     Define Empirical System States.

3.  ARTIFICIAL INTELLIGENCE
      MODULE:
      Estimate Traffic Flows Using
     Associative Memory Techniques.

4.  RESULT INTERPRETATION
     MODULE:
      Aggregate and Interpret Results.

STOP

FIGURE 5:  THE OVERALL FRAMEWORK OF
SIMPLIFIED TRANSPORTATION NETWORK

ANALYSIS PROCEDURE
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     The artificial intelligence module involves the application of associative memory

models, mapping from the network configurations to the adjusted link volumes.  The

network configurations (stimulus vectors) and their associated link volumes (response

vectors) are divided into two groups: training system states and test system states.  Most

of the stimulus and response vectors are used as training system states to compute

different associative memory matrices.  The remaining pairs of vectors are used to

evaluate the performance of the generated memory matrices.  The best performing

associative memory matrix is applied to estimate network flows for additional system

states.

     The result interpretation module discusses and interprets results of associative

memory models.  The performance of the associative memory models is evaluated by

Root Mean Square Errors (RMSEs), scatter plots, and correlation coefficients between

the link volumes adjusted by the link volume adjustment method and the flow estimates

provided by the associative memory approach.

     The procedure modules and the relationships between the modules have been

described for each of the two TNA procedures.  Required data sets and model results are

also demonstrated for each module.  The application of the general TNA procedure to a

simple synthetic transportation network will be described in more detail in the following

sections.  The applications of both the general and the simplified TNA procedures to an

aggregated Los Angeles highway network will be presented in Chapters 6 and 7.
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4-2.  A Simple Synthetic Network

     This section defines a simple synthetic transportation network to examine the

applicability of the general TNA procedure.  The synthetic transportation network

includes seven zones and twenty-four directed links.  The synthetic network is shown in

Figure 6.

              

There are bi- directional links bewteen adjacent zones.

zone 1

zone 2

zone 3

zone 4

zone 5

zone 6

zone 7

Figure 6:  Synthetic Network and Zones
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     The general transportation network analysis procedure requires the following

assumptions:

(1)  the seven analysis zones are discrete;

(2)  traffic flows are static, i.e., they do not change with time of day or time of
      year;

(3)  drivers have perfect traffic information, i.e., their behaviors are predictable;

(4)  there is only one transportation mode (cars), i.e., there is no mass transit etc.;

(5)  each zone serves as both origin and destination of trips;

(6)  the transportation network consists of only freeway links, i.e., there are
      neither signalized intersections nor waiting to turn at intersections;

(7)  the freeway links are directed, i.e., adjacent nodes are connected by two links,
      one in each direction;

(8)  the links are congestable, i.e., the time cost of traffic increases with volume of
      flow; and

(9)  travel demand is inelastic, i.e., origin-destination requirements do not change
      even if the network changes, unless link failures make travel to some zones
      impossible in the case of seismic risk analysis.

     This research employs the static user equilibrium model to simulate traffic flows given

network configurations of different link-failure system states.  The formulation of the

static user equilibrium model is:

     Minimize ta w dw

v

a

a

( )

0
(46)

     Subject to
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=      for all links a (47)

             v v Demand
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a
s

 in Out(r)
a
s

 in In( r )

− = −− >
  for all origin-destination pairs (r,s) (48)

                      va
s ? 0    for all links a, and destinations s (49)

     where

               w         = the variable of integration,
               va         = the total flow on link a,

   ta(w)    = the link travel cost function for link a,
               va

s
        = the total flow on link a bound for destination s

               Out(r)  = the set of link flows outbound from node r, and
               In(r)     = the set of link flows inbound to node r.

     This is a nonlinear minimization problem with a convex objective function subject to

two sets of linear constraints and two sets of non-negativity conditions (Eash et al.,

1979).  Equation (46) is the objective function.  The objective function is to minimize the

area under the link travel cost function ta(w), satisfying the equilibrium conditions stated

by Wardrop.  Equation (47) represents the flow conservation rule that the flows on each

link is equal to the sum of the flows from all zones i to zone j passing the link.  Equation

(48) represents the trip conservation rule that the total number of trips from zone i to zone

j over all paths is equal to the specified number of trip demand.  Equation (49) ensures

that all flows are non-negative.

     The Bureau of Public Roads (BPR) link travel cost function is used to describe link

travel costs as a function of link flows in the static user equilibrium model.  The BPR link

travel cost function is

t = t0 × [ 1 + 0.15 (v/c)4 ], (50)

where
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t       =  the link travel cost,
t0     =  the link travel cost when the link is not congested, and
v/c   = the  link volume to design capacity ratio.

Free-flow link travel costs are used as parameters t0 .  The link volumes and link

capacities are v and c, respectively.

     The Frank-Wolfe algorithm is the standard method for solving the above convex

mathematical programming problem.  The application of the Frank-Wolfe algorithm

involves the following steps (Eash et al., 1979; Boyce et al., 1981; Van Vliet, 1987):

Step 1.  Compute the travel cost on each link corresponding to link flows in the
             current solution.

Step 2.  Trace minimum skim trees from each origin to all destinations using the
             link travel costs computed in step 1.

Step 3.  Assign all trips from each origin to each destination to the minimum cost
 paths computed in step 2 (all-or-nothing assignment).  Call this link flow
 as wa.

Step 4.  Linearly combine the current solution’s link flows (va) and the new all-
             or-nothing assignment’s link flows (wa) to obtain a new current solution
             (va’ ) so as to minimize the objective function.  The two flows are
             combined by the following equation:

va’  = (1 - λ) va + λ wa,  where λ is the value between 0 and 1.

Seep 5.  If the solution has converged sufficiently, stop.  Otherwise, return to step
              1.

The transportation network flow model is codified by the UNIX version of the

SPEAKEASY matrix manipulation program.  The Speakeasy code is shown in Appendix

1.

     Three synthetic input data sets of an O-D trip matrix, link capacities, and free-flow

link travel times are randomly generated.  They are regarded as noise-free input data sets.
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The three synthetic input data sets are shown in Table 3.  User equilibrium traffic flows

and link travel times given the base line transportation network are generated by applying

the static network equilibrium model.  They are shown in Table 4.  Baseline total system

travel times can be computed by multiplying equilibrium travel times with their

associated traffic flows.

Table 3:  Synthetic Network Input Data Sets

(a).  An Origin-Destination Trip Matrix (Trips Between Two Zones)
(UNIT: Passenger Car Unit)

TO

ZONE
1

ZONE 2 ZONE 3 ZONE
4

ZONE
5

ZONE
6

ZONE 7 SUM

ZONE 1 0 168 57 21 111 67 75 499
F ZONE 2 94 0 27 108 58 127 188 602
R ZONE 3 20 38 0 94 183 147 108 590
O ZONE 4 57 86 197 0 102 49 208 699
M ZONE 5 229 145 211 174 0 236 117 1112

ZONE 6 112 161 200 16 18 0 13 520
ZONE 7 146 182 287 321 236 102 0 1274
SUM 658 780 979 734 708 728 709 5296

(b).  Link Capacities
             (UNIT: Passenger Car Unit)

TO
ZONE 1 ZONE 2 ZONE 3 ZONE 4 ZONE 5 ZONE 6 ZONE 7

ZONE 1 0 254 215 262 0 0 0
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F ZONE 2 245 0 0 209 241 0 0
R ZONE 3 230 0 0 244 0 261 0
O ZONE 4 234 244 202 0 215 232 261
M ZONE 5 0 286 0 257 0 0 232

ZONE 6 0 0 214 233 0 0 218
ZONE 7 0 0 0 260 226 277 0

NOTE 1:  Link capacity is zero if there is no link between two zones.
NOTE 2:  The link capacity is directed.

(c).  Free-Flow Link Travel Times (Travel Times Under No Congestion).
        (UNIT: Minute)

TO
ZONE 1 ZONE 2 ZONE 3 ZONE 4 ZONE 5 ZONE 6 ZONE 7

ZONE 1 INF 2.6 2.7 3 INF INF INF
F ZONE 2 2.5 INF INF 3.6 2.1 INF INF
R ZONE 3 2.7 INF INF 3.3 INF 5.1 INF
O ZONE 4 2.6 2.5 3.7 INF 4.2 2.3 5.1
M ZONE 5 INF 3.2 INF 3.5 INF INF 2.2

ZONE 6 INF INF 6.1 2.9 INF INF 3.1
ZONE 7 INF INF INF 3.6 4.7 2.4 INF

NOTE:  ÒINFÓ stands for infinite link travel times.

Table 4:  Baseline User Equilibrium Traffic Flows and Link Travel Times

(a)  User Equilibrium Traffic Flows
(UNIT: Passenger Car Unit)

TO
ZONE 1 ZONE 2 ZONE 3 ZONE 4 ZONE 5 ZONE 6 ZONE 7

ZONE 1 0 324 236 167 0 0 0
F ZONE 2 410 0 0 241 363 0 0
R ZONE 3 71 0 0 269 0 253 0
O ZONE 4 405 338 359 0 279 365 286
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M ZONE 5 0 529 0 446 0 0 419
ZONE 6 0 0 386 405 0 0 139
ZONE 7 0 0 0 539 349 521 0

NOTE:  Traffic flow is zero if there is no link between two zones.

(b)  User Equilibrium Link Travel Times
         (UNIT: Minute)

TO
ZONE 1 ZONE 2 ZONE 3 ZONE 4 ZONE 5 ZONE 6 ZONE 7

ZONE 1 INF 3.64 3.29 3.07 INF INF INF
F ZONE 2 5.44 INF INF 4.55 3.72 INF INF
R ZONE 3 2.7 INF INF 4.03 INF 5.77 INF
O ZONE 4 6.09 3.88 9.27 INF 5.98 4.4 6.2
M ZONE 5 INF 8.83 INF 8.28 INF INF 5.72

ZONE 6 INF INF 15.83 6.85 INF INF 3.18
ZONE 7 INF INF INF 13.56 8.72 6.91 INF

NOTE:  ÒINFÓ stands for infinite link travel times.

     The user equilibrium model is also used to simulate post-earthquake traffic flows with

respect to link-failure system states due to different scenario earthquakes.  Post-

earthquake total system travel times can be computed by using post-earthquake traffic

flows and user equilibrium link travel times.  The difference between the baseline total

system travel time and post-earthquake total system travel times is computed.  The

system-wide travel time changes are used to determine the importance of network links in

CaltransÕ prioritization procedure.

4-3.  Flow Simulation

     This section generates traffic flows and link travel times for link-failure system states

due to post-earthquake scenarios.  The seven-zone synthetic network is used to
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demonstrate traffic flow simulations.  A subset of link-failure system states is randomly

selected to represent all possible link-failure system states.  The link-failure system states

are based on the assumption that any link can be severed without damaging the opposite

directional link.  Network configurations of the link failures are represented discretely.

Collapsed links are coded as Ò2,Ó and unaffected links are coded as Ò1.Ó  The static

network equilibrium model is applied to simulate post-earthquake link flows given the

three input data sets.  All link-failure system states are assumed to reflect the same

pattern of travel demand.

     The total number of possible link-failure system states can be calculated

combinatorically.  Combinations are defined by the number of subsets of size r that can

be constructed from the population of n objects with no concern for the arrangement or

order of the r objects (Kachigan, 1986).  For example, the synthetic network has 24 links.

The total number of ways to select one link (r) from the 24 links (n) is obviously 24.

More generally, the combinatorial formula is

nCr  =  
n

r n r
!

! ( ) !−      (51)

where n is the total objects and r is the number of subsets to be taken.

     The total number of possible link-failure system states in this synthetic network is 24C1

+ 24C2  + 24C3 + 24C4 + ... + 24C23 + 24C24 = 24 + 276 + 2,024 + 10,626 + ... + 24 + 1 =
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16,777,215.  This total number of system states includes cases corresponding to one-link,

two-link, three-link, ... 24-link closures.  This link failure problem includes a huge

number of system states.  It is impossible to simulate all of these system states with any

method.  In addition, some system states have infeasible solutions in which at least one

zone is completely disconnected from other zones.

     Severe earthquakes tend to damage more links than minor earthquakes.  The network

flow simulation can be based on any number of disconnected links.  The link failure

system states can be grouped by the number of severed links.  Our baseline simulations

for the seven-zone synthetic network are summarized in two system state classes: single

link failures and double link failures.  The simulation of single link failures represents

post-earthquake effects on traffic flows due to a minor earthquake.  The double link

failure system states represent more severe damage to the synthetic network due to more

significant earthquakes.

4-3-1.  Single Link Failures

     The simulation of this class involves the failure of one link in the network.  There are

a total of twenty-four possible system states.  User equilibrium traffic flows and their

associated link travel times are simulated for all twenty-four system states.  Network

configurations of the twenty-four system states are shown in Appendix 2-A.  Equilibrium
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link flows and associated link travel times are computed by applying the static user

equilibrium model, and are shown in Appendices 2-B and 2-C, respectively.

4-3-2.  Double Link Failures

     The total number of possible system states in this category is 276.  This number is

obtained from the combinatorial formula for selecting any two links out of 24 links:

84C2 = 
24

2 24 2
24

2 22
24 23 22

2 22
24 23

2
!

! ( )!
!

! !
!

!−
=

↔
= ↔ ↔

↔
= ↔

 = 276. (52)

Fifty system states are randomly selected.  Network configurations of the fifty system

states are shown in Appendix 3-A.  Equilibrium link flows and associated link travel

times are computed by applying the static user equilibrium model.  They are shown in

Appendices 3-B and 3-C, respectively.

4-4.  Application of Associative Memory Models

     Our objective is to generate good estimates of equilibrium link flows without using

conventional network flow models.  In section 4-3, post-earthquake traffic flows are

simulated by using the static user equilibrium model.  In this section, traffic flows are

estimated based on the association between the network configurations of link failure

system states (stimulus vectors) and simulated link flows (response vectors).  Three types
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of associative memory models described in section 3-4 are computed and used to map the

network configurations to the associated link flows.

     The network configurations (stimulus vectors) and their associated equilibrium link

flows (response vectors) are divided into two groups: training system states and test

system states.  Most of the stimulus and response vectors are used as training system

states.  The stimulus and response vectors of the training system states are used to

generate different associative memory matrices.  The remaining pairs of the vectors are

states used to test the system.  They are used to evaluate the performance of the

associative memory matrices.  If the associative memory matrix test results do not satisfy

our criteria, we have to increase the number of training system states by simulating more

system states using the static network equilibrium model.

     Three associative memory scenarios are considered based on the flow simulation

scenarios: single-link failures, double-link failures, and the mixture of single-link and

double-link failures.  The associative memory models generate estimated traffic flows.

Root Mean Square Error (RMSE) is used as the measure of performance.  The RMSE

results measure the difference between the estimated link traffic flows and the test

(simulated) link traffic flows.  They are used to compare the performances of the

associative memory models.  The difference between the estimated and target vectors of

traffic flows is also described by scatter plots and correlation coefficients.
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4-4-1.  Single-Link Failures

     The total number of possible system states is twenty-four.  The twenty-four system

states are randomly ordered.  Three associative memory evaluations are conducted to test

the performance of different associative memory models in the case of single-link

failures.  The multicriteria associative memories (MAM) have an additional parameter α.

The estimation performance of the MAM procedure is varied by changing the α

parameter.  Since the α parameter takes values on the interval [0.1,0.9], at least nine

different MAM procedures can be considered.

     The first evaluation of associative memory models to the single-link failure system

states uses each of the twenty-four system states as the test system state in rotation.  The

other twenty-three system states are used to create different memory matrices.  Table 5

presents the RMSE results of SAM, RAM, and MAM in estimates in the case of single-

link failures.

     The first column represents the test system state.  Twenty-four system states are used

as the test system state in rotation.  Numbers within the parentheses for each MAM

column give the value of α.  The first row represents RMSE results for ÒtrainingÓ system

states when the system state 1 is used as the test system state.  The second row represents

RMSE results for the system state 1 (the test system state) when different associative

memory models are computed by using the other twenty-three system states.
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     Different associative memory models are applied.  However, the RMSE results of

estimated traffic flows do not significantly vary across the associative memory models in

the case of test states.  The training results of SAM and RAM are usually very good

Table 5: RMSEs of SAM, RAM, and MAM in Seven-Zone Network
   (Single Link Failure)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

SS 1 Training 93.32 82.94 72.57 62.2 51.84 41.47 31.1 20.73 10.37 7.95E-13 4.95E-13

Test 98.09 98.1 98.1 98.11 98.11 98.11 98.11 98.11 98.11 98.112 98.227

SS 2 Training 92.86 82.54 72.22 61.9 51.58 41.27 30.95 20.63 10.32 7.23E-13 7.08E-13

Test 110 110 110 110.1 110.1 110.1 110.1 110.1 110.1 110.07 110.33

SS 3 Training 92.88 82.55 72.23 61.91 51.59 41.27 30.95 20.64 10.32 7.76E-13 7.94E-13

Test 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.8 109.79 109.91

SS 4 Training 93.19 82.82 72.47 62.12 51.76 41.41 31.06 20.71 10.35 7.46E-13 4.01E-13

Test 101.6 101.7 101.7 101.7 101.7 101.7 101.7 101.7 101.7 101.67 101.84

SS 5 Training 93.45 83.06 72.68 62.29 51.91 41.53 31.15 20.76 10.38 6.25E-13 3.27E-13

Test 94.23 94.21 94.21 94.21 94.2 94.2 94.2 94.2 94.2 94.201 94.212

SS 6 Training 90.84 80.74 70.64 60.55 50.46 40.37 30.28 20.18 10.09 7.50E-13 3.97E-13

Test 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.12 152.2

SS 7 Training 93.19 82.82 72.47 62.12 51.76 41.41 31.06 20.71 10.35 6.19E-13 3.85E-13

Test 101.6 101.6 101.6 101.6 101.7 101.7 101.7 101.7 101.7 101.66 101.89

SS 8 Training 94.56 84.04 73.54 63.03 52.53 42.02 31.52 21.01 10.51 7.52E-13 3.63E-13

Test 51.97 51.99 51.99 52 52 52 52.01 52.01 52.01 52.008 52.224

SS 9 Training 93.57 83.17 72.77 62.37 51.98 41.58 31.19 20.79 10.4 5.47E-13 4.29E-13

Test 90.7 90.67 90.66 90.65 90.65 90.65 90.65 90.65 90.65 90.646 90.618

SS 10 Training 91.98 81.75 71.53 61.31 51.09 40.87 30.66 20.44 10.22 4.82E-13 5.80E-13

Test 130.1 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.2 130.23 130.58

SS 11 Training 92.17 81.92 71.68 61.44 51.2 40.96 30.72 20.48 10.24 8.63E-13 7.51E-13

Test 126.1 126.1 126.1 126.1 126.1 126.1 126.1 126.1 126.1 126.09 126.17

SS 12 Training 92.91 82.58 72.25 61.93 51.61 41.29 30.97 20.64 10.32 7.66E-13 9.11E-13

Test 109 109 109 109 109 109 109 109 109 108.96 109

SS 13 Training 93.04 82.7 72.36 62.02 51.68 41.35 31.01 20.67 10.34 6.45E-13 5.58E-13

Test 105.4 105.4 105.5 105.5 105.5 105.5 105.5 105.5 105.5 105.49 105.77

SS 14 Training 92.27 82.01 71.76 61.51 51.25 41 30.75 20.5 10.25 6.50E-13 4.93E-13

Test 124.2 124.1 124.1 124 124 124 124 124 124 124.01 123.62

SS 15 Training 94.85 84.3 73.76 63.22 52.69 42.15 31.61 21.07 10.54 5.66E-13 5.21E-13

Test 32.9 32.99 33.02 33.04 33.05 33.05 33.06 33.06 33.06 33.067 33.603

SS 16 Training 94.56 84.04 73.53 63.03 52.52 42.02 31.51 21.01 10.51 6.64E-13 4.36E-13

Test 52.14 52.16 52.17 52.18 52.18 52.19 52.19 52.19 52.19 52.192 52.439

SS 17 Training 94.12 83.65 73.19 62.74 52.28 41.82 31.37 20.91 10.46 7.85E-13 6.67E-13
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Test 71.69 71.83 71.88 71.9 71.92 71.93 71.94 71.94 71.95 71.95 72.575

SS 18 Training 93.83 83.4 72.97 62.55 52.12 41.7 31.27 20.85 10.42 5.75E-13 5.92E-13

Test 82.41 82.36 82.35 82.34 82.34 82.34 82.33 82.33 82.33 82.33 82.266

SS 19 Training 93.69 83.27 72.86 62.45 52.04 41.64 31.23 20.82 10.41 6.18E-13 4.15E-13

Test 86.82 86.85 86.86 86.86 86.87 86.87 86.87 86.87 86.87 86.872 87.055

SS 20 Training 90.31 80.27 70.23 60.2 50.17 40.13 30.1 20.07 10.03 6.17E-13 3.75E-13

Test 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.2 161.2 161.15 161.27

Table 5 (continued)

SS 21 Training 93.99 83.53 73.09 62.65 52.21 41.77 31.32 20.88 10.44 8.64E-13 3.82E-13

Test 76.96 76.91 76.9 76.89 76.89 76.89 76.89 76.89 76.89 76.885 76.835

SS 22 Training 91.85 81.63 71.42 61.22 51.02 40.81 31.61 20.41 10.2 6.83E-13 5.89E-13

Test 133.2 133.1 133.1 133.1 133.1 133.1 133.1 133.1 133.1 133.08 132.96

SS 23 Training 92.73 82.42 72.12 61.81 51.51 41.21 30.91 20.6 10.3 1.00E-12 4.96E-13

Test 113.6 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.35 112.98

SS 24 Training 90.53 80.46 70.41 60.35 50.29 40.23 30.17 20.12 10.06 6.96E-13 8.83E-13

Test 157.5 157.5 157.5 157.5 157.5 157.5 157.5 157.5 157.5 157.45 157.41

because the associative memory matrices are created based on the information from

training system states.  However, we try to estimate traffic flows of the system states that

have not been used to create the associative memory matrices.  Therefore, the results in

the testing rows such as row 2 are much more important than the training figures.  The

RMSE results for test system states show that test system state 15 provides the lowest test

case RMSE.  Test system state 20 provides the highest test case RMSE, representing the

worst estimate of traffic flows.

     Figures 4-A to 4-F in Appendix 4 show the scatter plots and correlation coefficients

for test system state 15.  Each coordinate in the figures represents the comparison

between the simulated (target) link flows provided by the static network equilibrium
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model and the estimated link flows provided by an associative memory.  Coordinates

located close to the 45 degree line represent more accurate estimates.  Figure 4-A

presents the performance of SAM in estimating traffic flows of 23 training system states,

excluding system state 15 (the target state).  Figure 4-B presents the performance of SAM

in estimating traffic flows for system state 15.  Figure 4-C presents the performance of

RAM for the same 23 training states.  Figure 4-D presents the performance of RAM for

system state 15.  Figure 4-E presents the performance of MAM for the same 23 training

system states when α  is 0.9.  Figure 4-F presents the performance of MAM in estimating

traffic flows of system state 15 using the same α  value.

     The second evaluation of associative memories to the single-link failure system states

varies the number of the test system states as well as the training system states.  One of

the advantages of associative memory techniques is that associative memory models can

estimate a group of test system states simultaneously without significant cost.  However,

there is a trade-off between the number of simultaneously estimated test system states

and the performance of associative memory models.  For example, the simultaneous

estimates of ten test system states may be worse than the estimate of only one test system

state if the number of training system states are fixed.  There is no rule in determining the

optimal number of test system states that can be estimated simultaneously without

considerably losing the estimation power.
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     This second evaluation investigates the relationship between the number of

simultaneous test states and the performance of the associative memory models.  The

evaluation begins with the case that test system state 15 is the only test system state.

System state 15 is selected because this state provides the lowest test state RMSE among

the twenty-four test system states.  This is referred to as the lower bound of the

estimation performance.  CASE 2 uses two test system states including state 15.  The

remaining twenty-two system states are used to create associative memory matrices.

CASE 3 uses three test system states and twenty-one training system states.  Thus, the

number of test states increases as the number of training states decreases.  Table 6

presents the RMSE results of SAM, RAM, and MAM in estimates, when the number of

test system states increases with the decrease in training states.

Table 6:  RMSEs of SAM, RAM, and MAM in Seven-Zone Network (Single Link
   Failure:  the number of training and test system states varies, STUDY A)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

CASE 1 Training: 23 94.85 84.3 73.76 63.22 52.69 42.15 31.61 21.07 10.54 5.66E-13 5.21E-13

Test: 1 32.9 32.99 33.02 33.04 33.05 33.05 33.06 33.06 33.06 33.067 33.603

CASE 2 Training: 22 94.62 84.1 73.58 63.07 52.56 42.05 31.54 21.02 10.51 6.25E-13 1.01E-13

Test: 2 83.49 83.42 83.4 83.38 83.38 83.37 83.37 83.37 83.37 83.365 83.209

CASE 3 Training: 21 93.33 82.95 72.58 62.21 51.84 41.47 31.11 20.74 10.37 4.40E-13 5.70E-13

Test: 3 104.2 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 104.05 103.91

CASE 4 Training: 20 94.44 83.94 73.44 62.95 52.46 41.97 31.48 20.98 10.49 5.49E-13 4.11E-13

Test: 4 98.11 98.04 98.02 98.01 98 98 97.99 97.99 97.99 97.989 97.862

CASE 5 Training: 19 91.3 81.14 71 60.85 50.71 40.57 30.43 20.28 10.14 4.78E-13 4.36E-13

Test: 5 113.5 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.41 113.35

CASE 6 Training: 18 91.98 81.75 71.53 61.31 51.09 40.87 30.65 20.44 10.22 6.42E-13 5.62E-13

Test: 6 110.2 110.2 110.2 110.2 110.2 110.2 110.2 110.2 110.2 110.15 110.13

CASE 7 Training: 17 92.88 82.55 72.22 61.91 51.59 41.27 30.95 20.64 10.32 5.11E-13 6.05E-13

Test: 7 107.7 107.6 107.6 107.6 107.6 107.6 107.6 107.6 107.6 107.59 107.56
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CASE 8 Training: 16 94.24 83.75 73.28 62.81 52.34 41.87 31.4 20.94 10.47 4.80E-13 3.58E-13

Test: 8 105.1 105.1 105.1 105.1 105.1 105.1 105.1 105.1 105.1 105.09 105.14

CASE 9 Training: 15 96.37 85.65 74.94 64.23 53.53 42.82 32.12 21.41 10.71 4.34E-13 6.27E+13

Test: 9 102.1 102 102 102.1 102.1 102.1 102.1 102.1 102.1 102.05 102.13

CASE 10 Training: 14 92.72 82.39 72.09 61.79 51.49 41.19 30.89 20.6 10.3 3.13E-13 5.40E-13

Test: 10 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.06 109.12

CASE 11 Training: 13 91.66 81.45 71.26 61.08 50.9 40.72 30.54 20.36 10.18 5.76E-13 2.94E-13

Test: 11 110 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.87

CASE 12 Training: 12 91.63 81.41 71.23 61.06 50.88 40.7 30.53 20.35 10.18 3.62E-13 3.68E-13

Test: 12 109.9 109.9 109.9 109.9 109.8 109.8 109.8 109.8 109.8 109.84 109.84

     The third evaluation is the same as the second application except that the initial test

system state is system state 20.  System state 20 provides the highest test state RMSE in

Table 5.  This can be regarded as the upper limit.  The RMSE results of SAM, RAM, and

MAM in this evaluation are shown in Table 7.

Table 7:  RMSEs of SAM, RAM, and MAM in Seven-Zone Network (Single Link
   Failure: the number of training and test system states varies, STUDY B)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

CASE 1 Training: 23 90.31 80.27 70.23 60.2 50.17 40.13 30.1 20.07 10.03 6.17E-13 3.75E-13

Test: 1 161.1 161.1 161.1 161.1 161.1 161.1 161.1 161.2 161.2 161.15 161.27

CASE 2 Training: 22 89.78 79.79 69.82 59.84 49.87 39.89 29.92 19.95 9.974 6.97E-13 8.95E-13

Test: 2 140.9 140.9 140.9 140.9 140.9 140.9 140.9 140.9 140.9 140.87 140.8

CASE 3 Training: 21 88.35 78.52 68.7 58.89 49.07 39.26 29.44 19.63 9.815 5.94E-13 4.24E-13

Test: 3 137.5 137.5 137.5 137.5 137.5 137.5 137.4 137.4 137.4 137.44 137.33

CASE 4 Training: 20 89.26 79.33 69.42 59.5 49.58 39.67 29.74 19.83 9.916 5.02E-13 6.10E-13

Test: 4 125.3 125.2 125.2 125.2 125.2 125.2 125.2 129.2 125.2 125.16 125.05

CASE 5 Training: 19 86.06 76.49 66.92 57.36 47.8 38.24 28.68 19.12 9.56 4.86E-13 6.23E-13

Test: 5 131.4 131.3 131.3 131.3 131.3 131.3 131.3 131.3 131.3 131.25 131.15

CASE 6 Training: 18 86.44 76.82 67.22 57.61 48.01 38.41 28.81 19.2 9.602 6.17E-13 3.84E-13

Test: 6 125.9 125.9 125.9 125.9 125.9 125.9 125.9 125.9 125.9 125.85 125.78

CASE 7 Training: 17 87.07 77.38 67.7 58.03 48.36 38.69 29.02 19.34 9.672 6.05E-13 4.30E-13

Test: 7 121.6 121.5 121.5 121.5 121.5 121.5 121.5 121.5 121.5 121.46 121.38

CASE 8 Training: 16 88.12 78.31 68.52 58.73 48.94 39.15 29.37 19.58 9.788 5.46E-13 4.43E-13

Test: 8 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.7 117.67 117.67
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CASE 9 Training: 15 90 79.98 69.98 59.98 49.98 39.99 29.99 19.99 9.996 4.52E-13 6.27E-13

Test: 9 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.6 113.63

CASE 10 Training: 14 92.72 82.39 72.09 61.79 51.49 41.19 30.89 20.6 10.3 3.13E-13 5.40E-13

Test: 10 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.1 109.06 109.12

CASE 11 Training: 13 91.66 81.45 71.26 61.08 50.9 40.72 30.54 20.36 10.18 5.76E-13 2.94E-13

Test: 11 110 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.9 109.87

CASE 12 Training: 12 91.63 81.41 71.23 61.06 50.88 40.7 30.53 20.35 10.18 3.62E-13 3.68E-13

Test: 12 109.9 109.9 109.9 109.9 109.8 109.8 109.8 109.8 109.8 109.84 109.84

     The outcomes of single-link failure studies demonstrate the applicability of associative

memory models to the synthetic network.  The simple and recurrent associative memory

models are able to perfectly replicate the training flows, but this is expected.  The test

results of the associative memory models are somewhat disappointing.  The associative

memory models do not produce close estimates of test link flows in the case of most

single-link failure test states except test state 8, 15, and 16.  These results indicate that a

training sample consisting of twenty-three different system states is not sufficient to train

the associative memory models.

     Traffic flow estimates for various training and test system states show that the

performance of associative memory models seems to be more affected by the number of

training and test system states.  This is expected because the associative memory

approach requires only sufficient training information to understand the association

between network configurations and their simulated traffic flows.  Additional information

tends to make associative memory models produce more accurate estimates.
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4-4-2.  Double-Link Failures

     The estimation of link flows becomes more complex if more links are severed.  There

are a total number of 276 system states in the case of double-link failures.  Fifty system

states are randomly selected to represent all the 276 system states of double link failures.

Two associative memory evaluations are conducted to test the performance of different

associative memory models in this scenario.

     The first evaluation of associative memory models to the double-link failure system

states examines the performance of associative memory models in the case of varying

training and test system states.  The number of test states increases as the number of

training states decreases.   For example, the first case uses 49 training states to estimate

one test state, the second uses 48 training states to estimate two test states, the third uses

47 training states to estimate three test states, and so on.  The RMSE results of the three

associative memory models in this application are shown in Table 8.  The SAM, RAM,

and MAM scatter plots and correlation coefficients in the case of double-link failures are

shown in Appendices 4-G to 4-L.

     The second evaluation is the same as the first application except that the sequence of

the pair data sets is different.  The same sets of network configurations and their

associated link flows are differently ordered to examine whether or not the associative

memory models are independent from the order of training states.  The same associative
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memory models are applied to the differently ordered data sets.  The RMSE results of the

three associative memory models are shown in Table 9.

     The outcomes of two double-link failure studies demonstrate that the associative

memory models perform reliably with respect to the test states.  The MAM replicates

simulated traffic flows better than the SAM and RAM in most test cases.  The MAM

provides the reliable estimates of traffic flows up to a group of fifteen test states when the

remaining system states are used to compute associative memory matrices.  The RMSE

results between the two double-link failure applications are not significantly different.

This result indicates that the estimation performance of associative memory models is not

sensitive to the order of training or test system states.

     Fifty system states seem to be sufficient for the learning process of the associative

memory models.  The RMSE results from the two double-link failures are usually lower

than those of the single-link failures.  The reason may be that more system states are

trained in the case of the double-link failure scenario.  Further, each link has a higher

chance of being selected as link failures.  The RMSE results of test states tend to decrease

when the alpha of MAM increases.  Zero flow in severed links is predicted in the double

link-failure scenarios unlike in the single-link failure applications.

Table 8:  RMSEs of SAM, RAM, and MAM in Seven-Zone Network (Double Link
   Failure: the number of training and test system states varies, STUDY A)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

CASE 1 Training: 49 101.7 76.4 60.3 49.12 41.09 35.31 31.29 28.71 27.32 26.906 4.232
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Test: 1 81.99 61.99 50.59 43.47 38.89 35.98 34.21 33.26 32.88 32.912 20.317

CASE 2 Training: 48 102.1 76.89 60.76 49.53 41.43 35.56 31.45 28.77 27.31 26.867 4.00E-10

Test: 2 103.1 82.85 69.58 59.84 52.27 46.29 41.71 38.58 37.06 37.381 124.42

CASE 3 Training: 47 102.8 77.58 61.38 50.05 41.83 35.85 31.63 28.87 27.35 26.88 4.08E-12

Test: 3 101 81.26 67.86 57.87 50.16 44.25 39.99 37.42 36.6 37.599 92.954

CASE 4 Training: 46 103.5 78.16 61.86 50.45 42.15 36.09 31.8 28.97 27.4 26.918 7.32E-13

Test: 4 100.7 81.73 68.67 58.84 51.14 45.11 40.56 37.54 36.19 36.705 85.085

CASE 5 Training: 45 104.4 78.9 62.45 50.9 42.48 36.3 31.89 28.97 27.34 26.83 9.20E-13

Test: 5 93.74 76.5 64.58 55.65 48.76 43.53 39.84 37.71 37.24 38.515 87.247

CASE 6 Training: 44 105 79.47 62.97 51.36 42.84 36.54 31.98 28.9 27.15 26.585 6.90E-13

Test: 6 100.5 83.31 71.11 61.64 54.06 48.14 43.97 41.85 42.11 44.929 89.612

CASE 7 Training: 43 105.8 80.24 63.63 51.9 43.28 36.87 32.22 29.05 27.23 26.638 6.46E-13

Test: 7 100.3 83.4 71.22 61.7 54.06 48.05 43.79 41.62 41.94 45.061 83.476

CASE 8 Training: 42 106.6 80.99 64.3 52.48 43.74 37.22 32.44 29.15 27.21 26.577 1.61E-11

Test: 8 101.4 83.83 71.3 61.58 53.8 47.7 43.38 41.19 41.62 45.118 286.71

CASE 9 Training: 41 107.1 81.42 64.71 52.86 44.08 37.46 32.54 29.07 26.96 26.228 5.03E-11

Test: 9 105.8 90.63 79.43 70.28 62.49 55.89 50.8 47.97 48.61 54.054 1154.6

CASE 10 Training: 40 108 82.2 65.38 53.41 44.51 37.76 32.69 29.07 26.84 26.068 1.34E-09

Test: 10 105.2 90.44 79.48 70.48 62.84 56.47 51.74 49.39 50.5 56.123 18000

CASE 11 Training: 39 108.7 83.12 66.24 54.15 45.09 38.19 32.98 29.23 26.91 26.094 4.37E-11

Test: 11 106.4 90.55 78.95 69.61 61.81 55.41 50.69 48.39 49.6 55.531 1001.4

CASE 12 Training: 38 109.7 84.03 67.01 54.76 45.56 38.52 33.19 29.34 26.94 26.098 4.98E-13

Test: 12 105.2 89.37 77.78 68.49 60.76 54.42 49.73 47.37 48.39 53.928 79.422

CASE 13 Training: 37 110 84.53 67.62 55.42 46.2 39.09 33.64 29.64 27.1 26.185 6.40E-13

Test: 13 110.2 94.77 83.07 73.3 64.82 57.51 51.73 48.35 48.75 54.465 79.525

CASE14 Training: 36 111.2 85.53 68.46 56.11 46.75 39.5 33.9 29.74 27.06 26.075 9.13E-13

Test: 14 109 93.67 82.11 72.5 64.16 56.97 51.28 47.96 48.43 54.308 81.604

CASE 15 Training: 35 111.6 86.48 69.56 57.16 47.64 40.15 34.27 29.85 26.96 25.897 4.50E-13

Test: 15 112.6 96.28 83.82 73.46 64.54 56.92 50.95 47.5 47.93 53.751 79.293

CASE 16 Training: 34 112.1 87.32 70.48 58 48.31 40.59 34.42 29.68 26.46 25.219 3.76E-13

Test: 16 115.2 98.26 85.3 74.59 65.5 57.92 52.18 49.14 50.09 56.509 81.635

CASE 17 Training: 33 112.5 87.7 70.71 58.05 48.14 40.17 33.73 28.68 25.19 23.807 3.71E-13

Test: 17 116.6 100.2 87.54 77.04 68.11 60.62 54.9 51.7 52.29 58.326 87.411

CASE 18 Training: 32 113.5 88.45 71.26 58.42 48.37 40.29 33.75 28.6 24.96 23.444 4.17E-13

Test: 18 116.1 99.96 87.57 77.35 68.68 61.42 55.79 52.49 52.92 60.216 83.835

Table 8 (continued)

CASE 19 Training: 31 114.6 89.45 72.1 59.13 48.97 40.8 34.19 28.99 25.34 161.4 3346.8

Test: 19 116.2 100.5 88.53 78.77 70.47 63.38 57.61 53.67 52.81 2.83E+16 2.96E+17
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CASE 20 Training: 30 113.8 89.49 72.72 60.11 50.09 41.86 35.02 29.45 25.38 144.34 147.46

Test: 20 123 107.3 94.52 83.54 73.82 65.26 58.15 53.29 52.28 6.82E+16 3.94E+15

CASE 21 Training: 29 114.7 90.5 73.67 60.89 50.64 42.12 34.94 29 24.56 411.31 5.66E-13

Test: 21 122.8 107.1 94.42 83.51 73.88 65.49 58.63 54.1 53.49 1.69E+17 141.78

CASE 22 Training: 28 115.4 91.18 74.41 61.69 51.46 42.87 35.48 29.13 24.06 21.618 4.01E-13

Test: 22 123.8 109 96.86 86.17 76.51 67.85 60.61 55.89 55.98 65.848 90.163

CASE 23 Training: 27 113 88.72 71.95 59.4 49.49 41.35 34.49 28.72 24.19 22.014 3.53E-13

Test: 23 132 120.1 110.9 103.4 96.85 91.23 86.6 83.37 82.73 88.196 103.18

CASE 24 Training: 26 112.7 88.34 71.46 58.83 48.87 40.71 33.85 27.98 23.11 628.86 4.83E-13

Test: 24 133.2 121.5 112.6 105.2 98.84 93.17 88.15 84.03 82.02 9.02E+16 149.87

CASE 25 Training: 25 114.1 89.63 72.62 59.83 49.68 41.32 34.18 27.93 22.4 544.14 3.42E-13

Test: 25 133.5 122 113.1 105.6 98.98 93.06 87.81 83.67 82.64 4.21E+16 170.91

Table 9: RMSEs of SAM, RAM, and MAM in Seven-Zone Network (Double Link
  Failure: the number of training and test system states varies, STUDY B)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

CASE 1 Training: 49 101.7 76.4 60.3 49.12 41.09 35.31 31.29 28.71 27.32 26.906 4.232

Test: 1 81.99 61.99 50.59 43.47 38.89 35.98 34.21 33.26 32.88 32.912 20.317

CASE 2 Training: 48 102 76.81 60.7 49.47 41.32 35.38 31.18 28.43 26.92 26.46 7.85E-06

Test: 2 102.4 84.32 71.74 62.33 55.26 50.28 47.32 46.37 47.31 49.893 1.09E+09

CASE 3 Training: 47 102.5 77.31 61.17 49.87 41.64 35.61 31.32 28.47 26.88 26.388 2.78E-11

Test: 3 108.6 89.71 76.57 66.58 58.79 52.83 48.68 46.44 46.24 48.142 138.48

CASE 4 Training: 46 103 77.82 61.6 50.2 41.88 35.75 31.34 28.4 26.74 26.216 1.29E-12

Test: 4 108.2 90.09 77.38 67.66 60.03 54.13 49.92 47.48 46.98 48.549 94.599

CASE 5 Training: 45 102.5 77.38 61.2 49.85 41.55 35.42 30.97 27.94 26.19 25.618 3.49E-10

Test: 5 121.8 106.1 94.91 85.82 77.93 70.9 64.7 59.6 56.19 55.397 53303

CASE 6 Training: 44 103.2 78.01 61.76 50.32 41.93 35.7 31.15 28.02 26.18 25.555 7.93E-04

Test: 6 120.6 104.3 92.75 83.5 75.58 68.59 62.45 57.38 54.04 53.672 7.93E+10

CASE 7 Training: 43 104.2 78.79 62.38 50.8 42.27 35.9 31.22 27.99 26.07 25.427 5.39E-09

Test: 7 113.9 98.49 87.53 78.8 71.43 65.03 59.54 55.16 52.45 52.447 447925

CASE 8 Training: 42 104.6 79.39 62.99 51.35 42.72 36.21 31.37 27.97 25.91 25.214 2.15E-05

Test: 8 114.6 99.2 88.05 79.12 71.62 65.3 60.2 56.66 55.33 57.117 2.44E+09

Table 9 (continued)

CASE 9 Training: 41 104.2 78.97 62.51 50.78 41.99 35.29 30.22 26.59 24.35 23.574 5.47E-13

Test: 9 121.3 106.4 95.31 86.36 78.81 72.41 67.18 63.37 61.51 62.379 104.53
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CASE 10 Training: 40 104.6 79.29 62.74 50.83 41.82 34.83 29.45 25.49 23 22.12 6.01E-13

Test: 10 121.6 106.7 95.74 86.93 79.65 73.64 68.92 65.71 64.41 65.69 121.03

CASE 11 Training: 39 104 79.29 63.01 51.22 42.22 35.16 29.64 25.51 22.85 21.889 7.11E-07

Test: 11 128.3 112.5 100.5 90.68 82.46 75.59 70.09 66.18 64.35 65.386 39144396

CASE 12 Training: 38 104.8 79.99 63.58 51.68 42.57 35.41 29.79 25.57 22.84 21.836 1.10E-10

Test: 12 126.2 110.5 98.55 88.89 80.8 74.02 68.54 64.57 62.56 63.345 4336.7

CASE 13 Training: 37 105.1 80.5 64.14 52.22 43.05 35.8 30.08 25.74 22.9 21.848 2.54E-10

Test: 13 128.3 112.4 100.3 90.36 82 74.89 69 64.53 61.94 62.097 8944.9

CASE 14 Training: 36 106.1 81.29 64.77 52.72 43.44 36.1 30.27 25.82 22.87 21.766 4.04E-13

Test: 14 126 110.7 99.11 89.6 81.5 74.54 68.68 64.11 61.29 61.153 112.43

CASE 15 Training: 35 105.1 80.84 64.56 52.57 43.24 35.75 29.73 25.04 21.86 20.64 5.73E-13

Test: 15 133 117.3 105.1 95.03 86.37 78.85 72.45 67.33 63.97 63.379 109.51

CASE 16 Training: 34 105.9 81.64 65.27 53.18 43.75 36.19 30.08 25.3 21.99 20.669 9.05E-13

Test: 16 131.2 115.8 103.8 93.92 85.41 78.01 71.6 66.3 62.55 61.681 108.82

CASE 17 Training: 33 105.8 81.92 65.7 53.64 44.16 36.51 30.31 25.46 22.1 20.687 4.10E-13

Test: 17 134.1 119 107 96.96 88.32 80.78 74.22 68.59 64.04 62.184 105.33

CASE 18 Training: 32 106.6 82.57 66.2 54.01 44.45 36.71 30.4 25.39 21.81 20.137 4.43E-13

Test: 18 132.9 118.4 107.1 97.69 89.46 82.15 75.64 70.01 65.74 68.028 113.72

CASE 19 Training: 31 107.4 83.21 66.67 54.34 44.68 36.88 30.57 25.6 22.07 297.12 61.37

Test: 19 132.3 117.9 106.9 97.8 89.94 83.02 76.89 71.56 67.35 7.07E+16 5.78E+15

CASE 20 Training: 30 108.5 84.15 67.44 55 45.24 37.35 30.9 25.73 21.94 84.801 1.21E-12

Test: 20 130.9 117 106.3 97.47 89.76 82.85 76.64 71.23 67.31 3.00E+16 202.12

CASE 21 Training: 29 109.8 85.17 68.17 55.5 45.58 37.6 31.11 25.89 21.93 309.94 2210.6

Test: 21 129.5 115.8 105.5 97.07 89.83 83.37 77.47 72.12 67.91 9.83E+16 1.36E+17

CASE 22 Training: 28 111.2 86.4 69.08 56.06 45.81 37.52 30.73 25.23 20.97 18.402 4.58E-13

Test: 22 128.6 114.9 104.8 96.74 89.97 84.05 78.73 73.97 70.45 81.737 111.92

CASE 23 Training: 27 112.6 87.55 69.95 56.64 46.08 37.44 30.24 24.21 19.35 16.233 3.91E-13

Test: 23 127.2 113.7 103.8 96.02 89.54 83.99 79.2 75.22 72.85 85.699 111.41

CASE 24 Training: 26 113.6 88.64 70.97 57.55 46.86 38.07 30.7 24.5 19.46 355.51 6.98E-13

Test: 24 127 113.5 103.5 95.51 88.86 83.1 78.06 73.8 71.19 1.00E+17 121.62

CASE 25 Training: 25 113.4 88.24 70.53 57.13 46.51 37.81 30.53 24.43 19.54 16.594 5.50E-13

Test: 25 129.2 117.3 108.7 102.1 96.71 92.16 88.29 85.21 83.62 93.501 116.11

4-4-3.  The Mixture of Single-Link and Double-Link Failures
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     The applications of associative memory models to the same level of system states has

been performed in terms of the number of damaged links.  This scenario examines the

performance of associative memory models from mixed system states of single-link and

double-link failures.  The single-link failure scenario contains twenty-four system states.

The double-link failure scenario includes fifty system states.  Consequently, seventy-four

system states are used in this scenario.

     This evaluation of associative memory models to the combined link failure system

states investigates the performance of associative memory models in the case of varying

training and test system states.  The seventy-four data sets are combined and re-arranged.

Several associative memory models are applied to this combined link failure system

states.  The RMSE results of the three associative memory models in estimates in the case

of the combined link failures are shown in Table 10.  The scatter plots and correlation

coefficients between the simulated and the estimated traffic flows are shown in

Appendices 4-M to 4-R.

     This mixed link failure evaluation provides the lowest RMSE results among the three

link failure scenarios.  This may be due to the increased number of system states

available for training.  The estimation performance of SAM, RAM and MAM (α  = 0.9) is

very close.  The RMSE results do not vary significantly as the number of training system

states decreases.  The MAM procedure indicates that this approach is noise tolerant,
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when the number of training system states decreases and the number of test states

increases.

Table 10: RMSEs of SAM, RAM, and MAM in Seven-Zone Network
    (Single and Double Link Failure)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

CASE 1 Training: 73 87.94 64.56 50.56 41.45 35.38 31.38 28.84 27.37 26.65 26.445 15.031

Test: 1 118.5 90.52 70.48 55.43 43.92 35.21 28.92 24.89 22.95 22.761 23.842

CASE 2 Training: 72 88.34 65.03 50.98 41.78 35.61 31.5 28.89 27.36 26.61 26.403 13.994

Test: 2 108.2 81.49 62.68 49.08 39.43 33.1 29.68 28.65 29.33 31.043 27.59

CASE 3 Training: 71 88.5 65.34 51.28 42.03 35.77 31.6 28.92 27.35 26.57 26.358 12.147

Test: 3 114.8 87.77 69.06 55.6 45.93 39.26 35.07 32.91 32.31 32.804 38.922

CASE 4 Training: 70 88.92 65.71 51.59 42.28 35.98 31.75 29.04 27.44 26.65 26.426 12.021

Test: 4 106 81.58 64.64 52.43 43.62 37.49 33.56 31.45 30.74 31.043 36.668

CASE 5 Training: 69 89.38 66.12 51.95 42.56 36.19 31.9 29.14 27.5 26.69 26.464 11.829

Test: 5 101.5 78.92 62.92 51.28 42.83 36.95 33.22 31.27 30.72 31.156 36.024

CASE 6 Training: 68 89.56 66.43 52.27 42.82 36.35 31.94 29.07 27.35 26.49 26.246 12.825

Test: 6 105.2 82.91 67.01 55.31 46.81 40.98 37.45 35.86 35.77 36.748 35.936

CASE 7 Training: 67 89.98 66.89 52.68 43.16 36.6 32.11 29.16 27.39 26.49 26.242 13.029

Test: 7 104.2 81.81 65.96 54.31 45.85 40.06 36.59 35.09 35.11 36.214 34.299

CASE 8 Training: 66 90.57 67.4 53.06 43.42 36.75 32.16 29.14 27.32 26.39 26.131 12.763

Test: 8 100.9 78.76 63.38 52.27 44.38 39.17 36.24 35.2 35.56 36.892 35.83

CASE 9 Training: 65 91.07 67.8 53.4 43.7 36.97 32.33 29.26 27.39 26.45 26.174 12.457

Test: 9 97.59 76.6 61.97 51.34 43.73 38.62 35.67 34.53 34.81 36.085 34.518

CASE 10 Training: 64 91.64 68.28 53.76 43.95 37.12 32.4 29.26 27.35 26.37 26.096 12.027

Test: 10 96.03 75.23 60.96 50.74 43.54 38.79 36.13 35.18 35.53 36.784 36.576

CASE 11 Training: 63 92.19 68.8 54.19 44.28 37.37 32.57 29.37 27.41 26.41 26.128 11.882

Test: 11 95.33 74.46 60.17 49.95 42.75 38.01 35.38 34.46 34.85 36.148 35.311

CASE 12 Training: 62 92.31 69.14 54.59 44.65 37.64 32.72 29.4 27.34 26.28 25.969 12.318

Test: 12 98.39 77.08 62.33 51.65 44 38.87 35.94 34.87 35.25 36.677 35.83

CASE 13 Training: 61 92.58 69.49 54.89 44.85 37.71 32.65 29.2 27.05 25.93 25.601 12.691

Test: 13 100.3 78.83 64.04 53.33 45.65 40.5 37.54 36.44 36.8 38.216 179.57

CASE 14 Training: 60 93.14 69.95 55.23 45.07 37.83 32.69 29.17 26.96 25.8 25.469 12.378

Test: 14 98.99 77.96 63.53 53.15 45.74 40.81 37.99 36.96 37.32 38.679 45.558

CASE 15 Training: 59 93.71 70.46 55.67 45.42 38.04 32.72 29.02 26.66 25.4 25.028 10.683

Test: 15 97.59 77.25 63.12 52.84 45.54 40.83 38.47 38.14 39.41 41.793 50.486

CASE 16 Training: 58 94.05 70.84 56.05 45.75 38.31 32.92 29.13 26.68 25.36 24.966 152.42

Test: 16 98.54 78.52 64.46 54.1 46.59 41.6 38.97 38.46 39.71 42.269 169.02

CASE 17 Training: 57 94.49 71.29 56.46 46.11 38.61 33.15 29.3 26.8 25.45 25.045 306.02

Test: 17 98.53 78.8 64.84 54.48 46.88 41.74 38.91 38.2 39.26 41.665 319
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CASE 18 Training: 56 94.76 71.66 56.8 46.36 38.75 33.19 29.25 26.68 25.28 24.856 43.409

Test: 18 100.6 80.72 66.62 56.11 48.34 42.96 39.82 38.76 39.46 41.555 67.544

CASE 19 Training: 55 94.87 71.84 57.01 46.59 38.97 33.38 29.39 26.77 25.33 24.889 7.1233

Test: 19 102.5 83.39 69.75 59.37 51.43 45.58 41.69 39.74 39.61 41.144 2.85E+08

CASE 20 Training: 54 95.07 72.18 57.41 47 39.34 33.68 29.61 26.9 25.4 24.943 28.618

Test: 20 103.7 84.95 71.27 60.7 52.46 46.26 42.04 39.8 39.49 40.944 7.21E+15

4-5.  Conclusions

     The results of different link failure cases demonstrate the applicability of associative

memory models to seismic risk analysis in the synthetic network.  The SAM, RAM, and

MAM procedures provide good overall estimates of traffic flows, if the number of the

training system states is sufficient (greater than fifty).  There is not much difference in the

performance among the three associative memory models.  However, MAM

demonstrates an advantage with respect to the test flows, being less sensitive to error

terms than SAM and RAM.  Both SAM and RAM provide poor estimates of traffic flows

in the cases of CASE 19 and 20 in Table 8.  On the other hand, MAM produces reliable

estimates in the same cases due to MAMÕs built-in penalty function for overfitting.  The

results of the MAM procedure indicate the best value of α  is in the neighborhood of 0.9.

     The accurate estimates made by associative memory models from the combined data

sets demonstrate that the post-earthquake system states derived from the different link

failure scenarios can be combined and used to train the associative memory matrices.

The performance of the associative memory models mostly depends on the number of

training system states as well as the number of test system states.  The addition of more
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training states used in the learning process tend to increase the performance of associative

memory models.  The results of applying associative memory models with varying

training and testing system states indicate that the associative memory models are able to

estimate a group of test system states simultaneously without significant loss of the

estimation power, if the number of training system states is sufficiently large.  This will

result in significant time savings for computing estimates of link flows in the case of

large number of link-failure system states.

     The seven-zone synthetic network is simple, but captures several elements of a

freeway system.  This exercise measures the performance of different associative

memory models by comparing the flow estimates provided by the associative memory

approach with the noise-free numerical solutions to the corresponding network

equilibrium model.  Observed link volumes are not available in the synthetic network.

Thus, simulated user equilibrium flows are used as benchmarks for evaluating the quality

of alternative associative memories to the static network equilibrium model.

     The associative memory approach is a heuristic process.  Associative memory models

produce heuristic solutions to conventional transportation models.  The major point of

this exercise is not to predict link flows on an individual link, but for the entire system.

The objective is to generate an inexpensive, but reliable prediction of system-wide traffic

flow changes with respect to given alternative network configurations related to different

earthquake or congestion pricing scenarios.
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     The quality of the associative memory outputs is evaluated by RMSE measures,

scatter plots, and correlation coefficients.  In most cases, the procedure performs very

well in this dimension.  The outputs from the associative memory models provide good

estimates of individual link flows.  This result indicates the applicability of such

techniques to the network flow modeling problem.  The associative memory applications

demonstrate the possibility of computational time savings by estimating the link flows of

many system states simultaneously.

     Conventional transportation network models may require huge computational times to

generate exact solutions for a large-scale transportation network.  The cheap, heuristic

solutions of the associative memories can be used as good starting points for the

conventional models.  This is conducted in two steps.  Associative memory solutions are

adjusted for feasible solutions, satisfying all the network flow constraints.  After a

feasible solution is obtained, the conventional network flow models are applied to

improve the feasible solution to an exact solution.

     In an empirical context, this is second best.  Both sets of flows are predictions.  The

standard network equilibrium model is an incomplete representation of the process that

simulates link volumes.  Empirical studies indicate that there are significant differences

between simulated flows of conventional network flow models and observed link

volumes.  The comparison against observed link volumes will be presented for the case

of seismic risk analysis in Chapter 7.
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5.  Estimation of an O-D Trip Matrix from Observed Traffic Volumes for a

     Synthetic Network

5-1.  Motivation

     An origin-destination (O-D) trip matrix describes the intensity of travel demand for

service over space.  This travel demand varies over time due to a number of factors.

Transportation planners have developed various methods for estimating an O-D trip

matrix using observed traffic volumes to avoid expensive and time consuming O-D trip

generation methods such as home-interview surveys.

     The application of the associative memory approach to traffic flow estimation requires

a set of post-earthquake traffic flows as training input data.  The post-earthquake traffic

flows can be simulated using a static user equilibrium model if observed link volumes for

link-failure system states are neither available nor sufficient.  This traffic flow simulation

requires transportation system data sets including an O-D trip matrix.

     O-D trip matrices are often outdated.  They may not be consistent with observed

traffic volumes.  One of the standard approaches to estimating O-D trip matrices is to use

the LINKOD model (Gur, 1983).  The LINKOD model updates O-D trip elements to be

consistent with observed link volumes via an iterative sequence of nonlinear optimization

procedures.2

                                                
2  The LINKOD model was developed by Gur et al. (1980).  The validity and applicability of the LINKOD
model have been evaluated by Han et al. (1981), Han and Sullivan (1983), Gur (1983), Dowling and May
(1984), and Easa and McColl (1987).



82

     The LINKOD model consists of two components: a trip distribution model for small

areas (SMALD) developed by Kurth et al. (1979) and an adaptable O-D trip matrix

assignment model (ODLINK) based on the work of Nguyen (1977a, 1977b).  This

research employs the assignment model of the LINKOD model to adjust an O-D trip

matrix until it is consistent with observed link volumes.  Prior to applying the LINKOD

model to the aggregated Los Angeles highway network, the following sections evaluate

the performance of the LINKOD model in the case of the simple synthetic transportation

network.  The FORTRAN code of the LINKOD model is presented in Appendix 5.3

     The LINKOD model requires equilibrium traffic volumes, free-flow link travel times,

link capacities, and an initial O-D trip matrix as transportation system data sets.  Free-

flow link travel times and link capacities in Table 3 are used as the system input data sets.

User equilibrium traffic flows in Table 4 are also used as the system input data.  We

evaluate the LINKOD model by injecting noise into the true O-D trip table corresponding

to equilibrium traffic flows on the synthetic network

5-2.  Testing the LINKOD Model

     The equilibrium link flows can be obtained by assigning the target O-D trip matrix to

the synthetic network under user equilibrium conditions.  Tests on the validity of the

                                                
3  The FORTRAN code of the LINKOD program was presented by Gur et al. (1980b, 1980c).  A modified
FORTRAN code for the assignment model (ODLINK) of the LINKOD program was introduced by
Seongkil Cho.
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LINKOD model are conducted by comparing the O-D trip matrix provided by the

LINKOD model (the estimated O-D trip matrix) against the original O-D trip matrix (the

target O-D trip matrix).

5-2-1.  Testing Cases

     Two different initial trip matrices are used to compare relative differences between the

estimated O-D trip matrices as a function of data quality.  Test 1 uses a good initial trip

table identical to the target O-D trip matrix.  Even though the target O-D trip matrix is

used in the LINKOD model as an initial trip table, the LINKOD model does not

immediately terminate because the LINKOD model must iterate until equilibrium link

flows are obtained from the target matrix.  Test 2 uses a poor initial trip table in which

trip interchanges are uniformly distributed.  This uniformly distributed O-D trip matrix

means that almost no prior information about the true trip table is available.

5-2-2.  Measurement of the Model Validity

     Percent Mean Absolute Error (%MAE) is used to quantify the quality of LINKODÕs

outputs,
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where tij and Tij are the estimated and solution trip interchanges, respectively.

%MAE for volume estimations is calculated in the same manner.

5-2-3.  Test Results

     Results are summarized in Table 11.

Table 11:  Percent Mean Absolute Errors

  Link Volume Error (%)  Trip Interchange Error (%)
Case 1                   2.9                  15.8
Case 2                   4.3                  29.0

     Figure 7 depicts the correlation between target and estimated volumes for Case 1 and

Case 2.  Figure 8 presents the same information for the target and estimated trip

interchanges.

     The following results are apparent.

(1) The LINKOD model results in good quality volume assignments regardless of
      the accuracy of the initial trip table.
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(2) Lower volume errors are observed when the initial estimate of the trip table is
      of higher quality.

(3) Errors in trip interchange estimates are more sensitive to the accuracy of the
      initial trip table than volume errors.

(4) A better initial estimate of the trip table produces a better final estimate of the
      trip table, though differences between the final estimate and the target persist.

ESTIMATED VS. TARGET VOLUME  
(CASE 1)     r = 0.991369
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ESTIMATED VS. TARGET VOLUME  
(CASE 2)     r = 0.979918
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Figure 7:  Link Volume Correlation
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ESTIMATED VS. TARGET TRIP INTERCHANGE (CASE 1)   
r = 0.91399
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ESTIMATED VS. TARGET TRIP INTERCHANGE (CASE 2)  
r = 0.65288
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Figure 8:  Trip Interchange Correlation
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6.  Preparation of Empirical Data

6-1.  Background

     Results from the application of the general TNA procedure to the simple synthetic

network demonstrate that the associative memory approach offers considerable potential.

Applying this approach to the Los Angeles highway system in a way that combines user

equilibrium concepts with CaltransÕ multi-attribute decision procedure requires the

following fourteen steps:

(1) construct a representation of the Los Angeles highway network;

(2) collect or generate initial transportation system data sets including observed
      link volumes, free-flow link travel times, link capacities, and a Los Angeles
      highway O-D trip matrix;

(3) adjust observed link volumes to exclude seasonal and trend variations;

(4) reduce the lack of uniformity between the Los Angeles O-D trip matrix and
      adjusted link volumes using the LINKOD PLUS model;4

(5) adjust free-flow link travel times and link capacities to minimize the
difference

      between observed and simulated traffic flows under the perfect condition of
      the Los Angeles highway network;

(6) identify empirical link-failure system states;

(7) apply associative memory models to estimate link volumes for empirical link-
      failure system states;

(8) define additional synthetic link-failure system states;

                                                
4  This LINKOD PLUS model is a modified version of the FORTRAN code based on the assignment
model of the LINKOD program described in Chapter 5.  It was developed by Geunyoung Kim to estimate
an O-D trip matrix for the aggregated representation of the Los Angeles highway network.
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(9) simulate traffic flows for additional synthetic link-failure system states by
      using the static user equilibrium model and the adjusted system data sets;

(10) extend the number of link-failure system states by combining the empirical
        link-failure system states with the synthetic system states;

(11) apply associative memory models to the combined data sets to determine the
        best associative memory model;

(12) estimate traffic flows for additional link-failure system states using the best
        associative memory matrix;

(13) compute total system travel times by multiplying estimated traffic flows with
        their associated link travel times; and

(14) employ the total system travel time changes to CaltransÕ multi-attribute
        decision procedure for the priority rating of each freeway link.

     The following sections define the Los Angeles highway network and empirical

transportation system data that will be used for transportation network analysis

procedures.  A system of compact freeway traffic analysis zones is built up by

aggregating 1990 US census tracts.  An aggregated representation of the Los Angeles

highway network is developed based on the arrangement of the Caltrans District 7

freeway system and traffic count stations.  Five empirical link-failure system states are

identified due to the opening of the Glen Anderson Freeway (I-105) and the 1994

Northridge earthquake.

     Four empirical highway system data sets are constructed to perform the traffic flow

analyses for the aggregated Los Angeles highway network.  They are: (1) free-flow link
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travel times, (2) link capacity data, (3) traffic volumes, and (4) an origin-destination trip

matrix.  It is assumed that observed traffic volumes obtained from CaltransÕ traffic counts

include seasonal and trend variations.  It is also assumed that the origin-destination trip

matrix extracted from SCAGÕs 1991 Southern California Origin-Destination Survey data

is not consistent with CaltransÕ traffic volumes.  Thus, the initialization module of the

general transportation network analysis procedure is applied to adjust the O-D trip matrix

as well as the observed traffic volumes.  The development of the aggregated Los Angeles

highway network and its empirical system data is described in the following sections.

6-2.  Aggregated Los Angeles Highway System

     Structuring the Los Angeles urban system and transportation network is one of the

essential tasks in this research.  It requires a thorough understanding for the Los Angeles

metropolitan area and its transportation system, an appropriate decision-making for

defining traffic analysis zones and transportation network links, and a data acquisition

process for the defined zones and network links.

     The Los Angeles metropolitan area consists of five counties; Los Angeles, Orange,

Riverside, San Bernardino, and Ventura Counties.  The Los Angeles region includes the

nationÕs second largest city, Los Angeles, and more than 180 other municipalities.  The

region has 10.6 million residents and 5.3 million jobs in 1980 (Guiliano and Small,

1994).
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     The Los Angeles metropolitan area contains a variety of transportation systems: the

highway/roadway system, the public transit system, the aviation system, the maritime

system, and the non-motorized transportation system.  The Los Angeles freeway/roadway

system is the backbone of regional mobility among the transportation systems, carrying

out a huge amount of trips on a daily basis.  The existing Los Angeles freeway/roadway

system consists of approximately 3,380 miles of federal and state highways, 3,450 miles

of major arterials, and massive secondary arterials and local streets (SCAG, 1994).

     The Los Angeles freeway system is the principal facility for both regional and local

automobile trips.  The freeway system comprises only 15 percent of the total

freeway/roadway system mileage.  However, the freeway system carries slightly more

than 50 percent of total vehicle miles traveled (VMT) within the Los Angeles region.

The freeway system includes approximately 1,100 centerline miles of a high-occupancy

vehicle (HOV) network for carpools, vanpools, and express buses.  The freeway system

also includes 14.5 miles of the Santa Monica Freeway Smart Corridor and 10 miles of

two toll lanes in each direction within the median of State Route 91.  Federal and state

highways in the five counties of the Los Angeles region are managed by three districts of

Caltrans: Los Angeles and Ventura Counties by District 7, Riverside and San Bernardino

Counties by District 8, and Orange County by District 12.  Arterials and local streets are

managed by city governments.
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     Modeling system-wide traffic flows for the Los Angeles region requires the

development of a large-scale transportation network.  However, solving a large-scale

network equilibrium problem such as the Los Angeles transportation network is

computationally elaborate.  Consequently, the idea of transportation network aggregation

has been applied to reduce the computational burden associated with the network

equilibrium problem by simplifying the actual Los Angeles transportation network.

     This research develops an aggregated representation of the Los Angeles highway

network for the area of Caltrans District 7, including Los Angeles and Ventura Counties.

It is partially because the Los Angeles County is the core of the Los Angeles

metropolitan area, and partially because the Caltrans District 7 is the major source of data

in this study.  The area of Caltrans District 7 includes over 8.4 million population, 26

freeways, 597 freeway miles, 790 traffic count stations, and over 6 million registered

vehicles (Caltrans, _).

     The highways of Caltrans District 7 serve 81 million vehicles daily, 1 million vehicle

trips during morning rush hours (6-9 am), and 1.5 million vehicle trips during evening

rush hours (3-6 PM).  An average of 3.5 trips are made daily by each person.  Around 62

percent of total trips and 60 percent of vehicle driver trips in the Los Angeles region

occurred in the Los Angeles and Ventura Counties (SCAG, 1993).  Average vehicle

occupancies in the Los Angeles and Ventura Counties were 1.45 and 1.47, respectively.
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     An aggregated representation of the Los Angeles highway network is constructed

based on CaltransÕ traffic count stations.  Arterials, local streets, and railway systems are

not considered in the aggregated Los Angeles highway network.5  Traffic analysis zones

are defined by aggregating 1990 US Census tracts after considering the area of Caltrans

District 7 and the Los Angeles highway network.  Each zone serves as both origin and

destination of trips.  Different link segments of a highway link between two adjacent

zones are combined to a representative link.6  An origin-destination trip matrix for the

aggregated Los Angeles highway network is estimated using SCAGÕs 1991 origin-

destination survey data and CaltransÕ 1993 traffic count data.

     The aggregated Los Angeles highway network consists of 105 zones and 292 network

links.  A GIS map for the actual Los Angeles freeway network with traffic count stations

is shown in Figure 9.  A GIS map for the Los Angeles traffic analysis zones is presented

in Figure 10.  The defined network is shown in Figure 11.

                                                
5   This research applies associative memory models that use observed link volumes as an input data set.
Observed traffic volumes before and after the Northridge earthquake were available in only a few links of
local streets near the Smart Corridor of the Santa Monica Freeway.  Thus, this research excludes arterials
and local streets from the study network.  For detailed information regarding the local street traffic
volumes, refer to Caltrans (1994). 5   The network aggregation method will be described in section 6-5.
6   The network aggregation method will be described in section 6-5.
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6-3.  Five Empirical System States

     This research identifies empirical link-failure system states based on changes of

network configurations in the Los Angeles highway system.  The Los Angeles region

experienced a range of unique events during the period of October 1993 to September

1994.  The Glen Anderson Freeway (I-105) opened on October 14, 1993.  The 6.8

magnitude Northridge earthquake struck Southern California on January 17, 1994.  The

earthquake simultaneously damaged several links of the Golden State Freeway (I-5), the

Santa Monica Freeway (I-10), the Antelope Valley Freeway (SR-14), and the Simi Valley

Freeway (SR-118).  The disconnected links due to the Northridge earthquake gradually

returned to service through several months.

     A variety of mechanisms can be used to codify network configurations of link failures.

The network configurations of link failures can be represented discretely.  Collapsed

links are coded as Ò2,Ó and undamaged links are coded as Ò1.Ó  Alternatively, continuous

numbers such as the weighed average number of lanes or link capacities can be used as

values of the network configurations.  This research employs the discrete network

configuration mechanism for representing link-failure system states.

     At least three sets of average monthly daily traffic volumes can be referred to

observed link volumes of the Los Angeles highway network under perfect condition: (1)
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average daily traffic volumes collected during the month of November 1993, (2) average

daily traffic volumes during the month of December 1993, and (3) average daily traffic

volumes during the month of October 1994 or later.

     Theoretically, deseasonalized and detrended traffic volumes derived from the above

three months should be identical because they are the outcomes of the perfect system

state.  The three sets of link volumes are associated with the same network configuration

whose all elements are coded to Ò1.Ó  This research selects the observed link volumes

collected in November 1993 as the representative traffic volumes for the perfect network

system.

     Five empirical link-failure system states including the perfect system state are

identified based on different network configurations of the aggregated Los Angeles

highway system.  They are:

(1)  empirical system state 1:  July 1993 system state representing the pre-opening
       of the Glen Anderson Freeway (I-105),

(2)  empirical system state 2:  November 1993 system state representing the post-
       opening of the Glen Anderson Freeway and the pre-1994 Northridge
       earthquake,

(3)  empirical system state 3:  February 1994 system state representing the post-
       Northridge earthquake, and the pre-recovery of the damaged links,

(4)  empirical system state 4:  May 1994 system state representing the post-
       recovery of the damaged links in the Santa Monica Freeway, and

(5)  empirical system state 5:  August 1994 system state representing the post-
       recovery of the damaged links in the Golden State Freeway and the Antelope
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       Valley Freeway, but the pre-recovery of the Simi Valley FreewayÕs links.

     Six links of the aggregated Los Angeles highway system were closed before the

opening of the Glen Anderson Freeway.  Thus, empirical system state 1 is referred to a

six-link-failure system state.  Empirical system state 2 represents the perfect system state

with links in perfect condition.  Seven links of the aggregated Los Angeles highway

system were closed due to the Northridge earthquake.  Empirical system state 3 is

regarded as a seven-link-failure system state.

     Three links in the Santa Monica Freeway returned to service on April 13, 1994.

Empirical system state 4 is considered as a four-link-failure system state.  Damaged links

in the Golden State Freeway were recovered on May 18, 1994.  The damaged junction of

the Antelope Valley Freeway to the Golden State Freeway was opened on July 9, 1994.

Thus, empirical system state 5 is referred to a double-link-failure system state.  The

damaged links of the Simi Valley Freeway were returned to service on September 7,

1994.  All the physical damage of the Los Angeles transportation network caused by the

Northridge earthquake was thus repaired.  Appendix 6 summarizes the network

configurations for the five empirical link-failure system states.

6-4.  Free-Flow Travel Times

     Speeds and travel times vary over time, space, and across modes.  Free-flow speed is

defined as speed when density approaches zero under free-flow conditions.  A free-flow
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link travel time is the time that a vehicle takes to traverse a link under free-flow

conditions.  The free-flow link travel time is obtained by dividing each linkÕs distance by

the linkÕs free-flow speed.  The equation for obtaining free-flow travel times is

FFTT = D / FFS (53)

where

FFTT  =  free-flow link travel time,
D        =  link distance, and
FFS    =  free-flow speed.

     Link distances for the aggregated Los Angeles highway network are obtained from

post-mile information of the California State highway system in the 1993 California State

Highway Log (Caltrans, 1993).  Free-flow speed data for SCAGÕs Southern California

Regional Transportation Model are used as the free-flow travel speed for each aggregated

highway link.  It is assumed that the free-flow link travel time of a directed link is

identical to that of the corresponding reverse link.  Tables 12, 13, and 14 show the facility

type of roadway systems, area types, and free-flow speed and link capacity per lane per

hour, respectively.  Area-type boundaries in the Los Angeles region are shown in Figure

12.  The free-flow link travel times by hour and by minute are summarized in the last two

columns of Appendix 7.

6-5.  Link Capacity Data
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6-5-1.  Methods for Obtaining Link Capacities

     The capacity of a freeway/roadway link is defined as the maximum hourly rate at

which persons or vehicles can be reasonably expected to traverse a point or uniform

section of a lane or roadway during a given time period under prevailing roadway, traffic,

and control conditions (TRB, 1985).  The transportation network analysis procedure in

this research uses hourly-based link capacities instead of daily-based values because the

travel behavior of drivers are more accurately represented by the hourly-based values.

     There are many ways of determining link capacities in the traffic engineering field.

Pignataro (1973) provided a widely used formula for obtaining freeway link capacities by

multiplying the Level of Service E service volume (2,000 passenger cars per hour per

lane) by appropriate adjustment factors.  PignataroÕs equation for obtaining freeway link

capacities is

Table 12:  Types of Roadways

Code No Facility Types

1 Freeways (mixed flow)
2 Major arterials and expressways (6-lane divided)
3 Primary arterials (4-lane divided)
4 Secondary arterials (4-lnae Undivided)
5 HOV facility for carpool/bus
6 Cordon and zone connectors
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         Source: 1990 Validation of the Southern California Regional
                Transportation Model.

  Table 13:  Types of Areas

Code No Areas

1 CBD
2 CBD fringe
3 Suburban
4 Mountain
5 Rural

 Source:  1990 Validation of the Southern California
   Regional Transportation Model.

Table 14:  Free-Flow Travel Speed and Link Capacity for Lane by Area
        and Roadway Types

Area Type Roadway Free-Flow Speed (MPH) Capacity/Lane/Hr

1 1 60 1900
2 20 625
3 20 575
4 20 500
5 65 1900
6 20 10000

2 1 60 1950
2 25 650
3 25 600
4 25 525
5 65 1950
6 25 10000
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3 1 60 1950
2 35 675
3 35 625
4 30 550
5 65 1950
6 30 10000

4 1 60 1950
2 40 800
3 40 800
4 35 800
5 65 1950
6 40 10000

5 1 65 1950
2 50 1250
3 50 900
4 50 900
5 70 1950
6 40 10000

Source:  1990 Validation of the Southern California Regional
  Transportation Model.
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C = 2000 NWTc (54)

where

C = capacity (mixed vehicle per hour, total for one direction),
N = number of lanes (in one direction)
W = adjustment for lane width and lateral clearance,
Tc = truck factor at capacity.

Pignataro also presented different values of W and Tc in terms of freeway conditions.

The values of W and Tc factors are set equal to value one because detailed information for

these factors in the case of the Los Angeles highway network is not available.  The

number of lanes is obtained from The 1993 California State Highway Log (Caltrans,

1993).

     Determining link capacities for aggregated network links is more than simply applying

equation (53).  First, the service is different according to area and roadway types of the

Los Angeles highway links.  Pignataro used 2,000 passenger cars per hour as the value of

freeway link capacity per lane in equation (53).  This research uses values of link

capacity per hour per lane for SCAGÕs Southern California Regional Transportation

Model.  They are shown in Table 14.

     Second, an aggregated network link may be comprised of several link segments with

different segment lengths and number of lanes.  Four capacity computing methods are

considered to compute representative link capacities for the aggregated Los Angeles
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network links; (1) a link length weighted average capacity (LLWAC) method, (2) a

minimum capacity (MC) method, (3) a link segment capacity (LSC) method, and (4) an

equivalent capacity (EC) method.

     The LLWAC method first computes a weighted average number of lanes for an

aggregated link by multiplying the number of lanes of each link segment with its

proportional length and by summing up the weighted values.  The LLWAC link capacity

of a link is obtained by multiplying the weighted average number of lanes with the value

of link capacity per lane per hour.  The MC method identifies the minimum number of

lanes among different link segments of a link.  The MC method multiplies the minimum

lane number with the value of link capacity per lane per hour.  The LSC method treats all

the link segments as network links.  The EC method uses the BPR link travel cost

function to compute a link capacity, representing the performance of all segments of a

link.

     An example network link with different link segments is shown in Figure 13.  The

representative link capacity for the link computed from the EC method is as follows.  The

total link travel time (T) of the link is

       T = t1 + t2 +  ...   + tn
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We assume the existence of a representative link travel cost function with a

representative link capacity for the link.  We can write

  T = T0 1 0 15
4
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       Figure 13:  A Directed Network Link with Several Link Segments

where

T0 = t01 + t02 +  ...   + t0n.

     We can write
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The representative capacity (C) for the link is
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6-5-2.  The Comparison between the Four Link Capacity Methods

     The performance of the four capacity computing methods can be evaluated by using

an example network link with four link segments.  The example link is shown in Figure

14.  The free-flow travel speed is assumed to be 75 mph (0.8 min/mile) through the entire

link.

     Two test cases are considered to evaluate the performance of the four capacity

computing methods in predicting the actual total link travel time.  The first test case

assumes 3,000 vph (vehicles per hour) as the link volume.  The second test case assumes
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5,500 vph as the link volume.  The actual link travel time is computed by using the link

segment capacity (LSC) method.  The actual travel time of the first test case is

T = 8.02 + 3.23 + 1.68 + 4.89 = 17.82 (min).      (60)

The link capacity using the LLWAC method becomes

C = (10*8000 + 4*6000 + 2*4000 + 6*5000) / 22

   = 6455 (vph).      (61)

Segment capacities

Free-flow travel times

Segment lengths

8,000 vph 6,000 vph 4,000 vph 5,000 vph

8 min 3.2 min 1.6 min 4.8 min

10 mile 4 mile 2 mile 6 mile

Figure 14:  A Directional Link with Four Link Segments
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     Applying the LLWAC link capacity to the BPR function, the total link travel time is

T = 17.6 * 1 0 15
3000

6455
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The minimum segment capacity among the four link segments is 4,000 vph.  Applying

the minimum capacity to the BPR function, we get
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     The equivalent capacity method first computes the link capacity as
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Applying this equivalent link capacity to the BPR function, the total link travel time is



113

T = 17 6 0 15 3000 0 018352261 10004 4. . ( ) .+ × × × −

   = 17.6 + 0.22

   = 17.82 (min).      (65)

     The results from the first test case are verified by the second test case.  The actual link

travel time is computed as 20.12 minutes by using the LSC method.  The LLWAC

method estimates the total travel time as 18.99 minutes.  The minimum capacity method

estimates the total travel time as 27.04 minutes.  The EC method provides 20.12 minutes

which is identical to the actual travel time.  The performance of three capacity computing

methods is shown in Table 15.

   TABLE 15:  The Comparison of Link Travel Times by Three Link Capacity Methods

Test Case Volume = 3000 Volume = 5500 Comments
Actual Travel Times* 17.82 20.12 NA

LLWAC Method 17.72 18.99 underestimate
MC Method 18.44 27.04 overestimate
EC Method 17.82 20.12 same as actual

 *  The actual link travel times are computed by using the LSC method.
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     The results from the application of the three capacity computing methods to a network

link with four link segments demonstrate that the EC method provides the actual link

travel time.  The LLWAC method underestimates the actual link travel time.  In contrast,

the MC method overestimates the actual link travel time.  Thus, this research applies the

EC method for computing representative link capacities for the aggregated Los Angeles

network links.  The representative link capacities for 292 links of the aggregated Los

Angeles highway network are shown in the last column of Appendix 8.

6-6.  Origin-Destination Trip Matrix

6-6-1.  Background

     This section intends to generate an origin-destination trip matrix for the aggregated

Los Angeles highway network.  There are two data sources in generating an origin-

destination trip matrix for the Los Angeles network: CaltransÕ O-D survey data and

SCAGÕs O-D survey data.  Caltrans sponsored a California State O-D survey in 1991.

CaltransÕ O-D survey data includes useful information such as the number of trucks and

the number of vehicles taking freeways.  However, the size of CaltransÕ survey data is

much smaller than that of SCAGÕs data.  Only 3,000 households were surveyed for the

Los Angeles region in the case of CaltransÕ O-D survey data.

     Southern California Association of Governments (SCAG) contracted with the Applied

Management and Planning Group in April, 1991 to conduct an origin-destination survey
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from 15,700 households in the Los Angeles region.  The survey area included five

counties of the Los Angeles region: Los Angeles, Orange, Riverside, San Bernardino, and

Ventura Counties.  Travel information was collected by a one-day, activity-focused diary

from all persons aged five or older of sampled households via a Computer-Assisted

Telephone Interviewing (CATI) system.  Only weekday travel information was surveyed.

All five weekdays were surveyed evenly to exclude daily bias.  The survey data was

collected from 16,086 households, slightly greater number of households than the

planned.

6-6-2.  Creating Origin-Destination Trip Matrices

     The aggregated Los Angeles highway network contains 105 traffic analysis zones.

Our origin-destination (O-D) trip matrices are of dimension 105*105.  Four different

types of hourly origin-destination trip matrices are created from SCAGÕs 1991 Southern

California Origin-Destination Survey data for the aggregated network: (1)

automobile/van/pick-up truck O-D trip matrices, (2) express bus O-D trip matrices, (3)

school bus O-D trip matrices, and (4) taxi/shuttle bus O-D trip matrices.

     The 5-6 PM O-D trip matrices are selected as peak-hour O-D trip matrices after

observing the hourly distribution of total trips of the four O-D trip matrices.  The hourly

distribution of automobile trips including trips with incomplete information is shown in

Figure 15.  The hourly distribution of automobile trips with complete information is
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shown in Figure 16.7  The peak-hour automobile O-D trip matrix, the express bus O-D

trip matrix, the school bus O-D trip matrix, and the taxi/shuttle bus O-D trip matrix are

shown in Appendices 9, 10, 11, and 12, respectively.  A listing of the SAS program used

to aggregate SCAGÕs data files, and to generate the peak-hour O-D trip matrices is

reported in Appendix 13.

     All trips in the peak-hour O-D trip matrices are converted to passenger cars unit

(PCU).  The peak-hour automobile O-D trip matrix represents the number of passenger

cars traveling between zones because only drivers are selected to create the automobile

O-D trip matrix.  Other peak-hour O-D trip matrices include passenger flows.  According

to Hu and Young (1993), the average vehicle occupancy of passenger van is 2.55.  Thus,

the peak-hour taxi/shuttle bus O-D trip matrix is converted to passenger cars by dividing

values of all elements by 1.55, the average number of passengers per vehicle.  The peak-

hour school bus O-D trip matrix is disregarded because it comprises only a small number

of passenger trips.

     The average number of passengers per vehicle is not available in the case of express

bus trips.  Thus, the express bus O-D trip matrix is generated by observing routes and

schedules of commuter express buses.  The route and schedule information was provided

                                                
7   Some trips have neither trip origin information nor trip destination information.  The hourly distribution
in Figure 15 includes these trips, whereas the hourly distribution in Figure 16 contains trips with both
origin and destination information.
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  Figure 15:  The Hourly Distribution of Total Automobile O-D Trips

        with Incomplete Origin and Destination Zone Information
        in 105 Zone Network

          

  Figure 16:  The Hourly Distribution of Total Automobile O-D Trips
        with Complete Origin and Destination Zone Information
        in 105 Zone Network
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by the Los Angeles Department of Transportation (LADOT).  The number of express

buses is converted to passenger cars by multiplying values of all elements by 1.5.  The

value of 1.5 is the passenger-car equivalent number for buses provided by the 1985

Highway Capacity Manual.  The three peak-hour O-D trip matrices are combined to an

O-D trip matrix for the aggregated Los Angeles highway network.  Values of diagonal

elements of the combined O-D trip matrix become zero because intrazonal flows are

assumed to be zero.  Appendices 14 and 15 show the converted express bus O-D trip

matrix and the combined O-D trip matrix, respectively.

6-7.  Observed Traffic Volume

6-7-1.  Traffic Counting Data

     Traffic counts are a major source for traffic volume data.  California Department of

Transportation (Caltrans) continuously collects traffic counts at designated traffic count

stations installed on freeways and state highways.  CaltransÕ STATEWIDE traffic count

program provides two types of traffic volumes computed from traffic count data:  hourly-

based traffic volumes and monthly average daily traffic volumes.  Our study is based on

the monthly average daily traffic volumes to exclude hourly and daily variations from

traffic counts.  Hourly-based traffic volumes are also considered to compute K-factors

(ratios between peak-hour traffic volumes and daily traffic volumes) used for expanding
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simulated peak-hour traffic flows to daily traffic flows as well as for computing peak-

hour traffic volumes from monthly average daily traffic volumes.

     Monthly average daily traffic volumes from October 1986 to December 1994 were

obtained from Caltrans District 7.  Variational features of a time series traffic volumes

such as trend or seasonality can be identified by plotting the traffic volumes against time.

Thus, monthly average daily traffic volumes from October 1986 to June 1993 are

standardized by setting the column of September 1992 to 100, and then by converting

other monthsÕ traffic volumes relative to the September 1992Õs column.8  Figure 17

summarizes the mean, standard deviation, minimum value, and maximum value of the

standardized values derived from the monthly average daily traffic volumes between

October 1986 and June 1993.  The figure shows a clear feature of seasonality and trend

embedded in the traffic volumes from October 1986 to June 1993.

     Five sets of traffic volumes are structured based on the five empirical link-failure

system states identified in section 6-3.  They are monthly average daily traffic volumes

collected in July of 1993, in November of 1993, in February of 1994, in May of 1994,

and in August of 1994.  We assumed that the five sets of traffic volumes are associated

                                                
8   The standardized values are good indicators in presenting seasonal and trend variations of traffic
volumes collected from different locations.  We may use the total number of traffic volumes instead of the
standardized values.  Suppose that traffic volumes collected from a few links dominate the total number of
traffic volumes of all links.  Variations of the traffic volumes from the small number of major links will
dominate the variations of the total traffic volumes.  The use of standardized values prevents this problem.
All links equally influence seasonal and trend variations of the mean standardized value.  This approach is
applicable, even though the number of observations (traffic volumes) varies from month to month.
     The number of observations varied throughout the study months from October 1986 to June 1993.  The
month of September 1992 had the highest number of observations.  Thus, the month of September 1992 is
selected as the standard month.
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with the five sets of network configurations due to the opening of the Glen Anderson

Freeway and the 1994 Northridge Earthquake.

     Missing data appeared in several links.  Traffic volumes for the links with missing

data are estimated from adjacent months of the same year or from the same month of

different years.9  They are used to complete the five sets of traffic volumes.  Of 292

network links, 16 links had no traffic volume information available except for the month

of November 1993.  Thus, traffic volumes collected in November 1993 are directly used

as four other sets of traffic volumes. 

                                                
9   Seasonal and trend indices estimated in the following sections are used to adjust traffic volumes
collected from different months or years.
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Figure 17:  Average, Upper-Limit, Lower-Limit, Maximum, and Minimum Values of
      Standardized (100) Monthly Average Daily Traffic Volume Data from
      October 1986 to June 1993

6-7-2.  Data Modification

     A time series data is a set of sequentially collected observations in time.  A time series

data contains trend, seasonality, outliers, irregular components, and discontinuities.
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Traffic counts continuously collected at automatic traffic recorder stations are the typical

time series data.  Traffic volumes are representative values of traffic counts.  Thus, the

traffic volumes possess the time series characteristic of the traffic counts.

     Traffic volumes contain trend, seasonal variation, monthly variation, daily variation,

hourly variation, and sub-hourly variation.  This research is based on peak-hour weekday

traffic flow analyses.  Thus, the sub-hourly variation is not considered.  This research

computes the average daily link volumes of a standard month,10 the average weekday

link volumes of the month, and the average hourly link volumes of the month.

     These three average link volumes are assumed to exclude the monthly variation, daily

variation, and hourly variation.  The ratios between the average daily link volumes and

the average weekday link volumes of the standard month are used to convert the average

daily link volumes of any month to the average weekday link volumes of the month.  The

ratios between the average weekday link volumes and the average hourly link volumes of

the standard month are used to convert the average weekday link volumes of any month

to the average hourly link volumes of the month.

6-7-3.  Seasonal Adjustment

                                                
10   This research selects November 1993 as the standard month.  Empirical studies for traffic volumes have
shown that November 1993 daily link volumes are close to average annual daily traffic (AADT) volumes.
The Los Angeles highway system was under the perfect condition in November, 1993 because the Glen
Anderson Freeway was opened on October 14, 1993, and the Northridge earthquake struck the LA highway
network on January 17, 1994.
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     Seasonality is a cyclical pattern that regularly recurs over a 12-month period.  The

seasonal index is a measure of how much the value of the variable in a particular period

deviates from the average of the variable over the 12-month period (Johnson et al., 1987).

Seasonality provides information about regularity in the series that can aid in making a

forecast (Pindyck and Rubinfeld, 1991).  Seasonal adjustment is an important process

when traffic volumes significantly fluctuate on a monthly.  Strong seasonal fluctuations

in link volumes may reflect the dynamic change of social and economic activities of the

region (TRB, 1985).

     Identifying seasonal variations from observed link volumes has been the subject of

interest to traffic engineers.  A variety of seasonal adjustment approaches has been

introduced and evaluated.  Two seasonal adjustment methods become dominant: a

regression analysis method introducing seasonal dummy variables and an ad hoc

structure of decomposition model.

     The regression analysis method uses dummy variables to estimate seasonal indices

from Ordinary Least Squares (OLS) coefficients.  The use of seasonal dummy variables

along with the other regressors eliminates seasonal influences on the intercept term

(Kennedy, 1992).  The basic seasonal model is

yt = b0 + b1 M1 + b2 M2 + . . . + b11 M11 + e       (66)
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where

yt =  a time-series traffic volume collected at a traffic count station,
b0 =  the constant term for December observations,
bi =  the amount that traffic volume deviates from the December

     observations,
Mi =  the ith month.  1 if the season is the ith     month.  Otherwise, 0,    

e =  the error term.

The dummy variable for December observations is omitted to avoid the dummy variable

trap.  This method has been studies by Fuller (1976), Wonnacott and Wonnacott (1979),

Johnston (1984), Johnson et al. (1987), and Ramanathan (1992).

     Alternatively, the decomposition method may be used to compute seasonal indices.

The decomposition method is the ad hoc method derived from moving average

techniques (Pindyck and Rubinfeld, 1991).  The ad hoc method is based on the idea that

the variations of a time series link volume can be represented as the product of the

following four components:

y
t
   =  L  ×  S  ×  C  ×  I               (67)

where

y
t
  =  directed time series traffic volume,

L =  value of the long-term secular trend in series,
S =  value of seasonal component,
C =  (long-term) cyclical component, and
I =  irregular component.
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The decomposition method isolates each of the components, and attempts to measure

both the seasonal and the trend variations in the series.  The decomposition method is

described by Pindyck and Rubinfeld (1991)

     An ad hoc smoothing model is used to remove the combined seasonal and irregular

components S × I from the original series yt.  The smoothing model computes the 12-

month average y
t
~ as an estimate of L × C:

yt
~ =   (68)

The value yt
~ is relatively free of seasonal and irregular fluctuations.

     The original data is now divided by the 12-month average y
t
~ to generate an estimate

of the combined seasonal and irregular components S × I:

 = z
t 
        (69)

     The irregular component I is eliminated by computing the average values of S × I

corresponding to the same month.  Suppose that there are 48 months of traffic volume

data.  The average values of S × I for the same month are computed as follows:

average value z
1

~ =   (70)

average value z
2

~ =   (71)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

average value z
12

~ =   (72)
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The irregular fluctuations are smoothed out by averaging the seasonal-irregular

percentages zt for each month.

     The twelve average values z
1

~, . . . , z12
~ are the estimates of the seasonal indices.  The

sum (T) of the twelve average values z
1

~, . . . , z12
~ is usually close to 12.  If the sum of the

twelve averages is not close to 12, the average values should be adjusted as follows:

adjusted average z
1

^  =                   (73)

adjusted average z
2

^  =                   (74)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

adjusted average z
12

^  =                    (75)

These twelve adjusted average values z
1

^  ... z12
^ are the seasonal indices.  The original

series y
t
 can be deseasonalized by dividing each value in the series by its corresponding

seasonal index.  The ad hoc smoothing model has been developed by Fuller (1976),

Wonnacott and Wonnacott (1979), Chatfield (1989), Granger (1989), Pindyck and

Rubinfeld (1991), and Ramanathan (1992).

     We apply the ad hoc smoothing model to compute the seasonal indices from monthly

average daily traffic volumes of 138 traffic count stations from October 1986 to June

1993.  The seasonal indices are reported in Appendix 16.  The SAS code for the ad hoc

smoothing model is presented in Appendix 17.

6-7-4.  Trend Analysis
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     Identifying trends in time series traffic volumes is another important task.  Trends may

be linear, growing by a constant absolute amount over time, in exponential form growing

by at a constant rate over time, or in a more complicated nonlinear form.

     The regression analysis approach is the dominant method in trend analysis of link

volumes.  Johnson et al. (1987) and Lardaro (1993) introduced two types of linear trend

models using an OLS method: simple regression models, and multiple regression models.

Kennedy (1992) explained two more sophisticated methods: autoregressive integrated

model average (ARIMA) models and the structural econometric time series approach

(SEMTSA).

     Granger (1989) classified trend models into six groups in terms of functional forms:

the straight line, the exponential curve, the parabolic curve, the modified exponential

curve, the Gompertz curve, and the logistic curve.  Pindyck and Rubinfeld (1991) and

Ramanathan (1992) categorized them into six groups: linear trend models, exponential

growth models, autoregressive trend models, logarithmic autoregressive trend models,

quadratic trend models, and logistic growth models.  Faghri and Chakroborty (1994)

applied the simple linear regression model to examine the trend of link volumes.

Benjamin (1986) introduced logistic models in trend analysis.

     The link volume trend is investigated after the observed link volumes are

deseasonalized by the ad hoc smoothing model.  The time series deseasonalized link

volumes are assumed to have a linear form of trend, growing by a constant absolute

amount over time.  A simple linear regression model is applied to predict the long-term
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growth pattern of the deseasonalized link volumes in each link.  The first month in the

time series is assigned to value 1.  We assign value one to the month of October 1986.

The value is increased by 1 for each month until the month of June 1993.  This time

variable is used as an explanatory variable in the simple regression model for each link.

Regression coefficients are interpreted as the trends of the deseasonalized link volumes.

Appendix 18 shows parameters representing trend of deseasonalized link traffic volumes.

6-7-5.  K-factors and AWTV/ADTV Ratio Study

     Another important task for traffic demand analysis is to investigate the distribution

pattern of hourly-based traffic volumes.  Identifying peak-hours from traffic volumes is

important in traffic flow analyses regarding a facility design, traffic operation, or traffic

control.  Peak-hours represent the most critical period for traffic flow operations.  Rural

transportation networks often show no pronounced peak-hours.  In contrast, urban

transportation networks suffer from traffic demands exceeding capacity during morning

and evening peak hours.  Peak-hours are recurrent in most urban transportation networks

because the hourly distribution of a daily traffic demand in a network does not vary

significantly.  Urban peak-hour traffic volumes are often directional.

     Representative hourly distributions of daily traffic volumes for the aggregated Los

Angeles highway links are computed by using hourly-based traffic volumes of thirty days

in November 1993.  The representative hourly distributions of daily traffic volumes are

computed by averaging hourly-based traffic volumes collected for at least fourteen days.
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If the number of observations (hourly-based traffic volumes) in November 1993 is less

than fourteen, hourly-based traffic volumes collected in October 1993 or in December

1993 are added to the hourly-based traffic volumes of November 1993.  The sum of 282

representative hourly-based traffic volumes is computed for all days including weekdays

and weekends.11  The sum is also computed for weekdays only.  Figures 18 and 19 show

the average values of 282 representative hourly-based traffic volumes for all days and

weekdays, respectively.

Figure 18:  The Hourly Distribution of Total Daily Traffic Volumes in 282 Links
           (Weekdays & Weekends, Missing Data in 10 Links)

                                                
11   The aggregated Los Angeles highway network includes 292 directed links.  The hourly-based traffic
volumes were not available in ten links.  This research computes the representative hourly-based traffic
volumes for 282 links.
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Figure 19:  The Hourly Distribution of Total Daily Traffic Volumes in 282 Links
            (Weekdays Only, Missing Data in 10 Links)

     Our research is based on peak-hour weekday traffic flow analyses.  A peak-hour

origin-destination trip matrix derived from SCAGÕs 1991 origin-destination survey data

is based on weekday survey data.  CaltransÕ monthly average daily traffic volumes are

based on weekday and weekend traffic volumes.  Thus, ratios between average weekday

traffic volumes (AWTV) and average daily traffic volumes (ADTV) in November 1993

are computed to convert the average daily link volumes to the average weekday traffic

volumes for the five sets of empirical link-failure system states.  Average daily traffic

volumes, average weekday traffic volumes, and AWTV/ADTV ratios are shown in

Appendix 19.

     K-factor is defined as the proportion of average annual daily traffic (AADT) volume

occurring in the peak hour.  The distribution figures of hourly-based traffic volumes in

the aggregated Los Angeles highway network demonstrate that network links of the Los
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Angeles highway network experience heavy traffic congestion.  The peak period persists

for at least 12 hours.  Traffic volumes build rapidly in the early morning, remain near

capacity throughout the day, then decline after evening peak hours.  The hourly

distribution figure of weekday traffic volumes indicates the period of 5-6 P.M. as the

peak-hour.  Peak-hour (5-6 P.M.) traffic volumes and K-factors are also shown in

Appendix 19.
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7.  Empirical and Simulation Modeling the Los Angeles Urban System

7-1. Application of the LINKOD PLUS Model - Adjustments between SCAGÕs O-D

            Trip Matrix and CaltransÕ Traffic Volumes

     Travel demand is defined as activities of moving from one zone to another in a

transportation network during a given time period.  The travel demand is usually

structured in the form of a two dimensional matrix called an origin-destination trip

matrix.  A combined peak-hour origin-destination trip matrix of dimension 105*105 is

generated based on the SCAGÕs 1991 Southern California Origin-Destination Survey data

and LADOTÕs commuting express bus schedules in section 6-6-2.

     Our traffic flow analyses for empirical link-failure system states are based on the five

sets of traffic volumes collected from July 1993 to August 1994.  Our traffic flow

analyses for synthetic post-earthquake system states require traffic flow simulations using

three Los Angeles highway system data sets including the Los Angeles origin-destination

trip matrix.  We found that traffic volumes in November 1993 represent traffic volumes

under perfect condition of the aggregated Los Angeles highway network.  However, it is

not certain that the combined Los Angeles O-D trip matrix based on the 1991 O-D survey

data is consistent with the November 1993 traffic volumes.  Consequently, an O-D trip

estimation method is required to reconcile the combined Los Angeles O-D trip matrix

with the November 1993 traffic volumes.
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     The LINKOD PLUS model is one of the O-D trip estimation methods estimating an

origin-destination trip matrix from link volumes given network system data such as free-

flow link travel times and link capacities.  The LINKOD PLUS model requires an initial

O-D trip matrix as input data.  The model produces an estimated O-D trip matrix and

simulated link traffic flows consistent with the adjusted O-D trip matrix.

     The combined peak-hour Los Angeles O-D trip matrix is referred to the initial O-D

trip matrix for the LINKOD PLUS model.  Adjusted peak-hour weekday traffic volumes

in November 1993 are used as link volumes for the perfect Los Angeles highway

network.  The number of 1,000 iterations is selected to adjust the initial Los Angeles O-D

trip matrix.  The performance of the LINKOD PLUS model is evaluated by two

performance measures: (1) the sum of absolute link volume errors, and (2) the percent

volume errors between November 1993 link volumes and simulated link flows provided

by the LINKOD PLUS model.

     The results from the application of the LINKOD PLUS model to the aggregated Los

Angeles highway network indicate a reduction of total trips in the Los Angeles O-D trip

matrix.  Total trips decreased from 902,441 to 663,730 trips, resulting in around 26.5

percent trip reduction from the total trips of the initial O-D trip matrix.  The reduced trips

may be interpreted as trips taking arterials and local streets.

     The sum of absolute volume errors between link volumes and simulated link flows is

32,660 PCU/hr.  The percent volume error is 2.36 percent.  The absolute volume errors
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between link volumes and simulated link flows can be further reduced if transportation

system data such as link capacities and/or free-flow link travel times are modified.  This

modification for the transportation system data may result in the development of a peak-

hour O-D trip matrix that is consistent with peak-hour weekday link volumes.

Transportation system data for 31 links among 292 links are modified iteratively to

minimize the sum of absolute volume errors.

     The results from the application of the LINKOD PLUS model using modified

transportation system data reduced the sum of absolute volume errors to 2,070 PCU/hr.

The difference between link volumes and simulated link flows in all links becomes less

than 100 PCU/hr.  Total trips for the Los Angeles O-D trip matrix further decreased to

629,330 trips, resulting in 30.26 percent trip reduction from the total trips of the initial O-

D trip matrix.  The final Los Angeles O-D trip matrix is shown in Appendix 20.

Transportation system data sets after the modification are shown in Appendix 21.  Figure

20 shows the difference between adjusted November 1993 traffic volumes and simulated

traffic flows consistent with the final O-D trip matrix.  The final Los Angeles O-D trip

matrix will be used for simulating traffic flows in the case of synthetic post-earthquake

system states in section 7-3.
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Figure 20:  Simulated vs. Empirical Link Volumes in 105 Zone Network (Using
      the LINKOD PLUS Model, Iteration Number: 1000, 292 Links,
      r= 0.9999784, Target State: November 1993)

7-2.  Application of the Associative Memory Approach - Empirical Flows

7-2-1.  Application of Associative Memory Models

     Modeling the behavior of drivers in roadways is a highly complex process.

Transportation network equilibrium models are widely used approaches in modeling

travel behaviors of drivers in transportation networks.  Transportation planners and traffic

engineers have developed a variety of transportation network equilibrium models to

predict system wide changes of traffic flows with given changes in network

configurations or network environments.  As an alternative to the conventional network

equilibrium models, we apply the simplified transportation network analysis (TNA)

procedure to estimate empirical link volumes in the aggregated Los Angeles highway

network.
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     The aggregated Los Angeles transportation highway system contains 105 traffic

analysis zones and 292 network links.  As described in section 6-7-1, observed link

volumes are not available from Caltrans District 7 at sixteen links for four link-failure

system states except empirical system state 2.  Thus, link traffic volumes collected in

November 1993 are used as traffic volumes for the remaining four empirical system

states.  Network configurations for the five empirical system states in the case of 292

links were shown in Appendix 6.  Network configurations for the five empirical system

states in the case of 276 links are shown in Appendix 22.  They are used as stimulus

vectors.

     Response vectors of associative memory models are link volumes associated with the

network configurations.  The link volumes are peak-hour weekday traffic volumes

derived from CaltransÕ traffic count data.  They are adjusted by extracting seasonal and

trend variations from observed link volumes.

Scenario A:  Five Empirical Link-Failure System States with 292 Links

     This exercise uses each of the five empirical link-failure system states as the test

system state in rotation.  The other four empirical system states are used to create

associative memory matrices.  Associative memory models are applied to map network

configurations of the four training system states to associated link volumes.  The RMSE

results of SAM, RAM, and MAM in estimates are shown in Table 16.
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Table 16:  RMSEs of SAM, RAM, and MAM in 105 Zone Network with Five
     Empirical System States (292 Links)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

State 1 Training 501.7 410 340.7 283.2 232.4 185.1 139.6 94.32 48.15 2.18E-11 4.24E-11

Test 1022 979.8 955.6 940.3 930.1 923.3 919 916.9 916.8 918.94 910.89

State 2 Training 506.2 390.1 312 251.3 200.4 155.3 114 75.03 37.28 2.46E-11 4.56E-11

Test 683.4 660.1 651.3 649.2 651.2 655.9 662.7 671.1 681 692.38 698.28

State 3 Training 432.2 344 284.6 237.6 196.3 157.8 120 81.75 42.06 2.24E-11 4.46E-11

Test 1127 1111 1100 1093 1089 1086 1084 1083 1084 1085.8 1177.6

State 4 Training 523.3 400.2 318.4 256 204.3 158.2 116.9 77.12 38.41 2.43E-11 4.26E-11

Test 556.9 550.7 552.9 556.8 561.2 566 571.3 577.2 583.9 591.53 553.91

State 5 Training 501.7 383.2 303.7 241.9 190.1 144.9 104.2 66.95 32.4 2.76E-11 4.49E-11

Test 677.8 655.3 643 636.1 632.4 631.1 631.3 632.6 634.7 637.35 737.71

     Different associative memory models are applied.  However, the RMSE results from

empirical link volume estimation do not vary significantly across the associative memory

models in the case of test states.  The training results of SAM and RAM are very good.

But, this is expected because the associative memory matrices are created based on the

information from training system states.  The RMSE results for test system states

demonstrate that empirical link-failure system state 4 provides the lowest test case

RMSE.  Empirical system state 3 provides the highest test case RMSE, describing the

worst estimate of link volumes.

     Figures in Appendix 23 show the scatter plots and correlation coefficients for each

empirical link-failure system state used as the test case.  Each coordinate in the figures

represents the comparison between the link volumes derived from CaltransÕ traffic count
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data and the estimated link flows provided by an associative memory.  Coordinates

located close to the 45 degree line represent more accurate estimates.

Scenario B:  Five Empirical Link-Failure System States with 276 Links

     Good link volume estimation may result in using link volumes of empirical system

state 2 to other four system states in the sixteen links whose observed volumes were not

available from Caltrans.  This exercise uses network configurations and their associated

link volumes for only 276 links to evaluate the influence of identical link volumes to the

performance of associative memory models.

     Each of the five empirical link-failure system states is used as the test system state in

rotation.  Network configurations and their associated link volumes of the remaining four

system states are used to compute associative memory matrices in the case of 276 links.

The RMSE results of SAM, RAM, and MAM in estimates are presented in Table 17.

Figures in Appendix 24 show the scatter plots and correlation coefficients for each

empirical link-failure system state used as the test case.

Table 17:  RMSEs of SAM, RAM, and MAM in 105 Zone Network with Five
     Empirical System States (276 Links)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

State 1 Training 516.5 422.1 350.7 291.5 239.2 190.5 143.7 97.06 49.55 2.16E-11 4.36E-11

Test 1051 1008 982.8 967.1 956.2 949.6 945.3 943.2 943.2 945.46 936.91

State 2 Training 521 401.6 321.2 258.8 206.3 159.9 117.4 77.24 38.38 2.18E-11 4.07E-11

Test 703 678.9 669.7 667.5 669.4 674.2 681.1 689.7 699.8 711.45 718.08

State 3 Training 444.6 353.9 292.8 244.4 202 162.3 123.5 84.13 43.28 2.26E-11 3.92E-11
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Test 1160 1144 1133 1126 1121 1118 1116 1116 1116 1118 1212.5

State 4 Training 538.7 412.1 327.9 263.7 210.4 163.5 120.4 79.41 39.55 2.11E-11 4.28E-11

Test 573.1 566.6 568.8 572.7 577.3 582.2 587.6 593.7 600.6 608.44 569.63

State 5 Training 516.4 394.6 312.8 249.2 195.8 149.2 107.3 68.97 33.37 2.14E-11 3.97E-11

Test 697.7 674.3 661.6 654.3 650.6 649.1 649.3 650.7 652.8 655.56 758.82

     The RMSE results in the case of 276 links do not significantly differ from those in the

case of 292 links.  The RMSEs become slightly higher.  The RMSE results of estimated

link volumes do not significantly vary across the associative memory models in the case

of test cases.  The same empirical link-failure system states provide the lowest test case

RMSE (empirical system state 4) and the highest test case RMSE (empirical system state

3).

7-2-2. The Comparison between the Static User Equilibrium Model and Associative

Memory Models

     The results from traffic flow analyses in section 7-2-1 indicate that traffic volumes of

a link-failure system state can be estimated from the information of empirical link-failure

system states by applying associative memory models.  Alternatively, link volumes of an

empirical link-failure system state can be predicted by using conventional transportation

network equilibrium models.  This exercise compares associative memory models with a

static network equilibrium model in terms of link volume estimation.  The comparison is

made against observed link volumes.
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     The static user equilibrium model is applied to simulate traffic flows with given

defined network configurations of the same empirical link-failure system states except

empirical system state 2.  Empirical system state 2 represents the system state under the

perfect transportation network condition.  The peak-hour weekday O-D trip matrix was

generated based on link volumes of empirical system state 2.  Thus, the simulated traffic

flows given the network configuration of empirical system state 2 would be very close to

empirical link volumes.

     Three transportation system data sets including link capacities, free-flow link travel

times, and a peak-hour weekday Los Angeles O-D trip matrix are used to simulate traffic

flows in the static user equilibrium model as system input data.  The number of 200

iterations is selected to produce equilibrium traffic flows.

     A comparison is made between link volumes derived from CaltransÕ traffic counts and

flow estimates provided by associative memory models as well as traffic flows simulated

by the static user equilibrium models.  The performance of the static user equilibrium

model and associative memory models is evaluated by four measures of performance

(MOP): (1) total volume errors between link volumes and estimated (or simulated) traffic

flows, (2) mean volume errors, (3) correlation coefficients, and (4) scatter plots.  The first

three MOP results in the case of 292 links are shown in Table 18.  Figures in Appendix

25 show the scatter plots and correlation coefficients between link volumes derived from
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CaltransÕ traffic counts and simulated traffic flows provided by the static user equilibrium

model for each empirical link-failure system state.

           Table 18:  The Comparison Study of Estimating Equilibrium Traffic Volumes
    Using the User Equilibrium Model and Associative Memories
    Under Five Empirical System States (292 Links)

SYSTEM STATE 1 (JUL 93) UE model (IT# 200) SAM RAM MAM (α=0.9)

TOTAL VOLUME ERROR: 103732 PCU 102611 PCU 100185 PCU 101046 PCU

MEAN VOLUME ERROR: 7.83% 7.75% 7.57% 7.63%

CORRELATION COEFF: 0.973525 0.955433 0.955633 0.955572

SYSTEM STATE 2 (NOV 93) UE model (IT# 200) SAM RAM MAM (α=0.4)

TOTAL VOLUME ERROR: NA 90363 PCU 89314 PCU 86622 PCU

MEAN VOLUME ERROR: NA 6.80% 6.72% 6.52%

CORRELATION COEFF: NA 0.972207 0.971809 0.975911

SYSTEM STATE 3 (FEB 94) UE model (IT# 200) SAM RAM MAM (α=0.8)

TOTAL VOLUME ERROR: 286926 PCU 114263 PCU 122279 PCU 115559 PCU

MEAN VOLUME ERROR: 22.96% 9.14% 9.78% 9.25%

CORRELATION COEFF: 0.88458 0.9385 0.925665 0.938848

SYSTEM STATE 4 (MAY 94) UE model (IT# 200) SAM RAM MAM (α=0.2)

TOTAL VOLUME ERROR: 210900 PCU 67641 PCU 65359 PCU 70322 PCU

MEAN VOLUME ERROR: 16.02% 5.14% 4.97% 5.34%

CORRELATION COEFF: 0.897719 0.980695 0.982828 0.983665

SYSTEM STATE 5 (AUG 94) UE model (IT# 200) SAM RAM MAM (α=0.6)

TOTAL VOLUME ERROR: 176418 PCU 82538 PCU 93870 PCU 83015 PCU

MEAN VOLUME ERROR: 13.29% 6.22% 7.07% 6.25%

CORRELATION COEFF: 0.930171 0.977077 0.969182 0.977673

     The results from the comparison show that associative memory models provide better

estimates of empirical link volumes than the static user equilibrium model.  This is

expected.  The conventional user equilibrium model is constructed by mathematical

formulations based on assumptions for travel behaviors of drivers.  The conventional
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approach may fail to capture behavioral characteristics of drivers in its functional forms.

In contrast, the associative memory approach does not require the identification of the

functional forms that link stimulus vectors (network configurations of link-failure system

states) with response vectors (empirical link volumes).  Thus, associative memory models

may be more flexible in capturing the association between the network configurations

and empirical link volumes.

     There is no significant difference of estimation performance across the associative

memory models.  Associative memory estimates and traffic flows predicted by the static

user equilibrium model covary very close to the empirical link volumes in the cases of

empirical system states 1.  This can be observed.  The opening of the Glen Anderson

Freeway (I-105) was scheduled.  Drivers were informed about the opening of the freeway

links.  Consequently, the state of flow equilibrium can be easily obtained from the known

change of the Los Angeles highway network.

     On the other hand, traffic flows provided by the static user equilibrium model are

significantly different from empirical link volumes in the case of empirical system state

3, whereas associative memory models still provide reliable flow estimates.  Static user

equilibrium outputs in the cases of empirical system state 4 and 5 become close to

empirical link volumes.  However, associative memory models still dominate the static

user equilibrium model in the same cases in terms of link volume prediction.  This is also

expected.  The outputs of the conventional network equilibrium model are based on the
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constrained optimization framework and assumptions.  The conventional model assumes

that drivers change their travel behaviors and routes until state of equilibrium is reached.

     Link volumes of empirical system state 3 seem to be far from the state of equilibrium

due to the occurrence of the 1994 Northridge earthquake.  Link volumes are more stable

in the cases of empirical system state 4 and 5.  However, some drivers seem to be still

adjusting their travel behaviors.  A new equilibrium state may not be reached yet.

Drivers need time to adjust their travel patterns whose outcomes will be different from

empirical link volumes before the occurrence of the Northridge earthquake.

     In contrast, associative memory models are simply mapping stimulus vectors to

response vectors without considering the nature of relationships between two sets of

vectors.  Hidden relationships that the conventional approach fails to address seem to be

captured by using associative memory models.  We have no information about the hidden

relationships.  However, associative memory models successfully construct associative

memory matrices that provide sufficiently accurate estimates of empirical link volumes.

     The same procedure is applied to the case of 276 links.  The three MOP results in the

case of 276 links are shown in Table 19.  Figures in Appendix 26 show the scatter plots

and correlation coefficients between link volumes derived from CaltransÕ traffic counts

and simulated traffic flows provided by the static user equilibrium model for each

empirical link-failure system state.
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     This exercise confirms findings from the comparison between the associative memory

models and the static user equilibrium model.  The MOP results are slightly different

compared to the MOP results in the case of 292 links.  However, the same pattern is

observed from the traffic flow analyses in the case of 276 links.

     Our empirical link-failure system states were limited to only five states.  Thus,

synthetic network flows will be simulated to increase the number of link-failure system

states.  Additional exercises will be performed by using the synthetic network flows in

the following sections.

           Table 19:  The Comparison Study of Estimating Equilibrium Traffic Volumes
    Using the User Equilibrium Model and Associative Memories
    Under Five Empirical System States (276 Links)

SYSTEM STATE 1 (JUL 93) UE model (IT# 200) SAM RAM MAM (α=0.8)

TOTAL VOLUME ERROR: 90867 PCU 100499 PCU 98918 PCU 98624 PCU

MEAN VOLUME ERROR: 7.53% 8.33% 8.20% 8.17%

CORRELATION COEFF: 0.979843 0.952113 0.952345 0.952188

SYSTEM STATE 2 (NOV 93) UE model (IT# 200) SAM RAM MAM (α=0.4)

TOTAL VOLUME ERROR: NA 88688 PCU 88669 PCU 84586 PCU

MEAN VOLUME ERROR: NA 7.32% 7.32% 6.98%

CORRELATION COEFF: NA 0.970019 0.969575 0.973967

SYSTEM STATE 3 (FEB 94) UE model (IT# 200) SAM RAM MAM (α=0.8)

TOTAL VOLUME ERROR: 277671 PCU 113459 PCU 121218 PCU 114667 PCU

MEAN VOLUME ERROR: 24.52% 10.02% 10.70% 10.13%

CORRELATION COEFF: 0.885446 0.933568 0.919437 0.933933

SYSTEM STATE 4 (MAY 94) UE model (IT# 200) SAM RAM MAM (α=0.2)

TOTAL VOLUME ERROR: 208766 PCU 67641 PCU 64947 PCU 70133 PCU

MEAN VOLUME ERROR: 17.41% 5.64% 5.42% 5.85%

CORRELATION COEFF: 0.893084 0.979212 0.981485 0.982457

SYSTEM STATE 5 (AUG 94) UE model (IT# 200) SAM RAM MAM (α=0.6)

TOTAL VOLUME ERROR: 174126 PCU 82537 PCU 93466 PCU 82699 PCU
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MEAN VOLUME ERROR: 14.39% 6.82% 7.72% 6.83%

CORRELATION COEFF: 0.925887 0.975296 0.966775 0.975952

7-3.  Synthetic Flow Simulation

     The results from associative memory applications using five empirical link-failure

system states demonstrate the potential of applying associative memory models to flow

estimation in large-scale transportation networks such as the aggregated Los Angeles

highway network.  Exercises in section 7-2 indicate that associative memory models

provide better estimates of traffic volumes than the static user equilibrium model.

However, empirical link-failure system states were limited to only five cases.  The five

empirical system states may not be sufficient for representing all possible system states of

different link-failures.

     Generating additional link-failure system states in the empirical study means

collecting traffic count data after closing network links from the actual transportation

network.  Unlike the fields of natural science, it is impossible to experiment this scenario

in traffic flow analyses.  Additional link-failure system states can be obtained from the

occurrence of another earthquake in the Los Angeles region.  Thus, the general

transportation network analysis procedure is applied to simulate post-earthquake traffic

flows for synthetic link-failure system states.

     The link failure simulation in the aggregated Los Angeles highway network can be

based on either directed link failures or couple link failures.  Directed link failures are
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general cases of coupled link failures.  The total number of link-failure system states can

be obtained from the combinatorial formula for selecting any number of links out of 292

links.  The total number of system states in the case of directed link failures is 292C1 +

292C2 + 292C3 + 292C4 + 292C5 + … + 292C292 = 292 + 42,486 + 4,106,980 + 296,729,305 +

17,091,607,968 + … + 1.

     Alternatively, coupled link failures can be exercised.  The coupled link failures

represent the system states that two links sharing origin and destination zones are closed

simultaneously.  The total number of system states in the case of coupled link failures is

146C1 + 146C2 + 146C3 + 146C4 + 146C5 + … + 146C146 = 146 + 10,585 + 508,080 +

18,163,860 + 515,853,624 + … + 1.

     This exercise is based on post-earthquake flow simulations in the case of one couple

link failure.  The total number of possible system states in this category is 146.  Seventy

coupled link-failure system states are randomly selected for representing all possible

system states of one couple link failure.  A static user equilibrium model is applied to

simulate traffic flows given network configurations of the seventy synthetic link-failure

system states.

     Three system input data sets including link capacities, free-flow link travel times, and

a peak-hour weekday Los Angeles origin-destination trip matrix are used as input data in

the static user equilibrium model.  All the seventy link-failure system states are assumed

to share the same O-D trip matrix.  Network configurations and their associated link
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flows for the seventy coupled link-failure system states are shown in Appendices 27 and

28, respectively.

7-4. Application of Associative Memory Models to Synthetic Flows Computed for the

            Aggregated Los Angeles Highway Network

     This exercise examines the application of associative memory models to the seventy

synthetic coupled link-failure system states.  Each of the last ten synthetic system states is

used as the test system state in rotation.  Network configurations and their equilibrium

traffic flows for the remaining sixty-nine synthetic system states are used to compute

associative memory matrices in each case.  The RMSE results of SAM, RAM, and MAM

in estimates in the case of synthetic coupled link-failure system states are shown in Table

20.

     The RMSE results of estimated traffic flows do not significantly vary across

associative memory models in the case of test states.  The RMSE results for test system

states show that test system state 64 provides the lowest test case RMSE.  Test system

state 69 provides the highest test case RMSE, describing the worst estimate of traffic

flows.  Figures in Appendix 29 show the scatter plots and correlation coefficients for test

system states 64 and 69.

Table 20: RMSEs of SAM, RAM, and MAM in 105 Zone Network with 70 Synthetic
    System States (292 Links)
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MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

State 61 Training 683.6 557 449.9 358.1 278.5 208.9 147.4 92.83 43.97 3.06E-11 2.93E-11

Test 914.1 914 914 914 914 914 914 914 914 913.96 913.22

State 62 Training 688.9 561.3 453.4 360.8 280.7 210.5 148.6 93.55 44.31 3.38E-11 3.45E-11

Test 278.7 278.7 278.8 278.9 278.9 278.9 278.9 278.9 278.9 278.91 281.78

State 63 Training 683.7 557.1 450 358.1 278.5 208.9 147.5 92.85 43.98 3.24E-11 3.10E-11

Test 905.7 905.6 905.6 905.6 905.6 905.6 905.6 905.6 905.6 905.54 904.78

State 64 Training 689.1 561.5 453.5 361 280.8 210.6 148.6 93.58 44.33 3.12E-11 3.09E-11

Test 202.3 202.6 202.7 202.8 202.8 202.8 202.8 202.8 202.8 202.85 206.98

State 65 Training 689 561.4 453.4 360.9 280.7 210.5 148.6 93.57 44.32 2.92E-11 3.08E-11

Test 246.3 246.4 246.5 246.5 246.5 246.6 246.6 246.6 246.6 246.57 248.38

State 66 Training 685 558.1 450.8 358.8 279.1 209.3 147.7 93.02 44.06 3.24E-11 2.82E-11

Test 797.8 797.9 797.9 797.9 797.9 797.9 798 798 798 797.96 799.37

State 67 Training 683 556.5 449.5 357.7 278.2 208.7 147.3 92.75 43.93 3.02E-11 2.98E-11

Test 961.9 961.9 961.9 961.9 961.9 961.9 961.9 961.9 961.9 961.93 961.91

State 68 Training 682.6 556.2 449.2 357.6 278.1 208.6 147.2 92.7 43.91 3.09E-11 2.87E-11

Test 987.8 987.8 987.9 987.9 987.9 987.9 987.9 987.9 987.9 987.91 988.69

State 69 Training 679.3 553.5 447.1 355.8 276.8 207.6 146.5 92.25 43.7 2.90E-11 2.97E-11

Test 1203 1203 1203 1203 1203 1203 1203 1203 1203 1203.2 1202.5

State 70 Training 683.8 557.2 450 358.2 278.6 209 147.5 92.87 43.99 3.21E-11 3.00E-11

Test 894.6 894.7 894.7 894.7 894.7 894.7 894.7 894.7 894.7 894.71 895.37

     The RMSE results from the synthetic system state exercise demonstrate the

applicability of associative memory models to the aggregated Los Angeles highway

network in estimating simulated link flows.  The RMSE results from synthetic system

state 64 are lower than any RMSE result from five empirical link-failure system states.

The RMSE results from synthetic system state 69 are close to the RMSE results from the

empirical link-failure system states.  Correlation coefficients between simulated traffic

flows and flow estimates are at least 0.9 in all ten test system states.

     The sample size of 69 training system states seems to be sufficiently large to compute

good associative memory matrices for the aggregated Los Angeles highway network.
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The computed associative memory matrices produce reliable estimates of traffic flows by

capturing the relationships between the stimulus and response vectors.  The results from

MAM models show that the estimation performance of MAM is not sensitive to the value

of α .

7-5.  Application of Associative Memory Models to Empirical and Synthetic Flows

     Earthquakes may damage more than two links simultaneously.  Three empirical link-

failure system states among the five system states represent the events of multiple link

failures.  However, building associative memory matrices based on various events of

multiple link failures would be extremely expensive.  The results from associative

memory applications to the combined sets of single link-failure system states and double

link-failure system states examined in section 4-4 demonstrated the applicability of the

associative memory approach to traffic flow estimation for combined data sets.

     This exercise examines the application of associative memory models to predict

empirical link volumes based on two scenarios of training system states: (1) a set of only

seventy synthetic coupled link-failure system states, and (2) combined sets of seventy

synthetic coupled link-failure system states and five empirical link-failure system states.

     The first exercise of associative memory models uses each of the five empirical link-

failure system states as the test system state in rotation.  The seventy synthetic coupled

link-failure system states are used to create associative memory matrices.  The computed
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memory matrices are used to estimate link volumes of each empirical link-failure system

states.  The RMSE results of associative memory models in estimates are shown in Table

21.

Table 21:  RMSEs of SAM, RAM, and MAM in 105 Zone Network with 75 Empirical
     and Synthetic System States (292 Links, Training System States: 70 Synthetic
     System States)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

Em State 1 Training 684.5 557.7 450.5 358.5 278.9 209.1 147.6 92.95 44.03 2.97E-11 2.94E-11

Testing 756.8 641.7 594.7 600.7 640.1 696.4 759.3 823.2 885.4 944.62 1613.9

Em State 2 Training 684.5 557.7 450.5 358.5 278.9 209.1 147.6 92.95 44.03 2.97E-11 2.94E-11

Testing 124.8 125 125.1 125.1 125.1 125.2 125.2 125.2 125.2 125.17 134.24

Em State 3 Training 684.5 557.7 450.5 358.5 278.9 209.1 147.6 92.95 44.03 2.97E-11 2.94E-11

Testing 1255 1212 1237 1301 1385 1476 1567 1656 1740 1819.7 2576.9

Em State 4 Training 684.5 557.7 450.5 358.5 278.9 209.1 147.6 92.95 44.03 2.97E-11 2.94E-11

Testing 823.7 827 837.9 852.9 870.1 888 905.9 923.4 940.3 956.41 842.61

Em State 5 Training 684.5 557.7 450.5 358.5 278.9 209.1 147.6 92.95 44.03 2.97E-11 2.94E-11

Testing 891.6 891.7 891.8 891.8 891.8 891.8 891.8 891.8 891.8 891.81 893.21

     The results from the associative memory applications demonstrate that flow estimates

are still reliable.  Associative memory matrices are trained by using the seventy noisy-

free, synthetic system states within the framework of network equilibrium.  The

computed memory matrices are applied to estimate five noisy, empirical link-failure

system states based on the different number of closed links.  However, the estimation

performance of the associative memory models does not vary significantly in the case of

synthetic training system states compared with the performance in the case of empirical

training system states.  The performance of MAM seems to be slightly sensitive to the
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value of α  compared to the exercise for synthetic test system states.  The value of α is in

the neighborhood of 0.2.

     The second exercise of associative memory models also uses each of the five

empirical link-failure system states as the test system state in rotation.  The remaining

four empirical link-failure system states and seventy synthetic coupled link-failure system

states are used to compute associative memory matrices as training system states.

The RMSE results from associative memory models estimated in the case of the

combined data sets are shown in Table 22.

Table 22:  RMSEs of SAM, RAM, and MAM in 105 Zone Network with 75 Empirical
     and Synthetic System States (292 Links, Training System States: 70 Synthetic
     System States and 4 Empirical System States)

MAM SAM RAM

α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 SAM RAM

Em State 1 Training 676 551.3 448.7 362.3 288.6 225.2 170.1 121.5 77.44 373.41 6.55E-11

Testing 756.3 643.2 596.9 602.8 641.8 698.2 762.1 828.6 895.5 1256.50 926.29

Em State 2 Training 677.2 551.8 449.8 364.4 292 230.2 177.2 131.5 91.43 208.87 1.49E-10

Testing 121.2 122.3 123.4 124.5 125 127.5 129.7 133.3 141 415.94 460.78

Em State 3 Training 674.4 548.9 444.6 356.2 280.7 215.8 160.6 115 80.85 1224.50 3.85E-11

Testing 1061 942.9 947 1016 1114 1221 1329 1433 1539 1926.00 1495.9

Em State 4 Training 676.1 550.7 447.9 361.4 287.8 224.7 170.5 123.7 82.25 230.93 6.10E-11

Testing 574.4 503.4 493.4 515.5 551.3 588.7 619.7 637.1 635.5 778.92 813.35

Em State 5 Training 674.1 549.4 447.5 361.9 289 226.3 172.1 124.6 81.39 180.26 7.93E-11

Testing 745.1 687.6 651.1 628.2 616.9 616 623.8 638.3 659.3 703.48 784.04

     The results from associative memory applications using the combined training data

sets provide best flow estimates compared to the previous three exercises.  A difference

exists between the empirical link-failure system states and the synthetic coupled link-
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failure system states in terms of flow errors.  Simulated traffic flows of the synthetic

system states are noise-free.  Link volumes of the empirical system states contain

unknown noise despite exclusion of daily, seasonal, and trend variations from observed

link volumes.  However, associative memory models seem to reconcile the difference

between two data sets, and provide very close estimates to empirical link volumes.

7-6.  The Study of Los Angeles Origin-Destination Trip Changes Due to the Northridge

         Earthquake and the Opening of I-105 Freeway

7-6-1.  Background

     Traffic flow simulations using the static user equilibrium model assume that a travel

demand for the aggregated Los Angeles highway network do not change across different

network configurations.  The same peak-hour weekday Los Angeles O-D trip matrix

consistent with November 1993 traffic volumes is used to all seventy synthetic link-

failure system states to simulate equilibrium link flows.  However, travel demand may

vary as the condition of network links is changed.  The opening or closure of network

links may change link travel times for certain links so that increased or decreased link

travel times influence travel behaviors of drivers.  Drivers not only try to find new

shortest routes, but also change their trip starting times.  Similarly, drivers also change

origins and/or destinations of their trips.
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     Our objective in this section is to predict trip changes in the peak-hour weekday Los

Angeles O-D trip matrix due to the opening of the Glen Anderson Freeway and the

closure of seven links caused by the 1994 Northridge earthquake.  Empirical link-failure

system state 1 represents the six-link-failure system state before the opening of the Glen

Anderson Freeway.  Empirical link-failure system state 3 represents the seven-link-

failure system state after the Northridge earthquake, and before the recovery of the

damaged links.  The LINKOD PLUS model is applied to estimate O-D trip changes given

different empirical link volumes for the two empirical link-failure system states.

     The LINKOD PLUS model estimates an origin-destination trip matrix given network

information and link volumes.  The LINKOD PLUS model requires four system input

data sets including a seed O-D trip matrix, link capacity data, free-flow link travel times,

and link volumes.  The model produces an estimated O-D trip matrix modified from the

seed O-D trip matrix, and simulated traffic flows consistent with the estimated O-D trip

matrix.

     The November 1993 O-D trip matrix consistent with peak-hour weekday link volumes

of the month of November 1993 is used as the seed O-D trip matrix.  One-thousand

iterations are selected to produce equilibrium O-D trip matrices from empirical link

volumes.  The performance of the LINKOD PLUS model is evaluated by comparing

empirical link volumes with simulated traffic flows consistent with the estimated O-D

trip matrix.
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7-6-2. Travel Demand Change Due to the Opening of the Glen Anderson Freeway

            (I-105)

     This exercise investigates O-D trip changes due to the opening of the Glen Anderson

Freeway.  Six links were opened among 292 links of the aggregated Los Angeles

highway network.  The July 1993 O-D trip matrix is estimated from the November 1993

O-D trip matrix and the July 1993 link volumes.  A comparison is made between the July

1993 O-D trip matrix and the November 1993 O-D trip matrix.  It is assumed that the

difference between the two O-D trip matrices results from the opening of the Glen

Anderson Freeway.

     The total number of O-D trips increased from 614,635 trips to 629,330 trips due to the

opening of the six network links.  There was an increase of 2.33 percent in trips.  The

origins and/or destinations changed 12.2 percent of the trips, excluding the net trip

increase.  Of the total November 1993 O-D trips, 14.53 percent changed.  Errors between

July 1993 link volumes and estimated traffic flows are 0.44 percent.

     Figure 21 shows trip changes between the July 1993 O-D trip matrix and the

November 1993 O-D trip matrix.  Figure 22 shows the difference between July 1993 link

volumes and simulated traffic flows consistent with the July 1993 O-D trip matrix.  A

table in Appendix 30 presents positive, negative, and net trip changes between the July

1993 O-D trip matrix and the November 1993 O-D trip matrix.
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Figure 21: The November 1993 vs. the July 1993 Origin-Destination Trip Matrix  
     (1279 Data Points, r=0.937727, Input O-D: the November 1993 O-D Trip
     Matrix)

Figure 22:  July 1993 Link Volumes vs. Simulated Link Flows in 105 Zone Network
      (Using the LINKOD PLUS model, Iteration Number: 1000, Input O-D:
      the November 1993 O-D Trip Matrix, Target: July 1993 Link Volumes,
      286 Links, r=0.9967658, Six Links Failed)
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7-6-3.  Travel Demand Change Due to the Northridge Earthquake

     This exercise investigates O-D trip changes due to the occurrence of the Northridge

earthquake.  The Northridge earthquake damaged seven network links.  The February

1994 O-D trip matrix is estimated from the November 1993 O-D trip matrix and the

February 1994 link volumes.  A comparison is made between the November 1993 O-D

trip matrix and the February 1994 O-D trip matrix.  It is assumed that the difference

between two O-D trip matrices results from the closure of seven network links due to the

Northridge earthquake.

     The total number of O-D trips decreased from 629,330 trips to 612,078 trips due to the

closure of the highway links.  There was a decrease of 2.74 percent in trips.  The origins

and/or destinations changed 12.06 percent of the trips, excluding the net trip increase.  Of

the total November 1993 O-D trips, 14.8 percent changed.  Errors between July 1993 link

volumes and estimated traffic flows are 16.97 percent.  The February 1994 traffic

volumes are far from the equilibrium state.

     Figure 23 shows trip changes between the November 1993 O-D trip matrix and the

February 1994 O-D trip matrix.  Figure 24 shows the difference between February 1994

link volumes and simulated traffic flows consistent with the February 1994 O-D trip
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matrix.  A table in Appendix 31 presents positive, negative, and net trip changes between

the November 1993 O-D trip matrix and the February 1994 O-D trip matrix.
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    Figure 23: The February 1994 vs. the November 1993 Origin-Destination Trip Matrix 
          (1246 Data Points, r=0.946428, Input O-D: the November 1993 O-D Trip
          Matrix)
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Figure 24:  February 1994 Link Volumes vs. Simulated Link Flows in 105 Zone
      Network (Using the LINKOD PLUS model, Iteration Number: 1000,
      Input O-D:the November 1993 O-D Trip Matrix, Target: February
      1994 Link Volumes, 285 Links, r=0.9169279, Seven Links Failed)

7-6-4.  Conclusion

     It is often assumed that travel demand increases as additional transportation facilities

are provided.  The results from two comparisons support our general hypothesis for O-D

trip changes.  The opening of Freeway 105 provided additional six network links to the

aggregated Los Angeles highway network.  Peak-hour trips increased up to 14,695 trips

after the opening of the highway links.  The 1994 Northridge earthquake damaged seven

links of the aggregated Los Angeles highway network.  Peak-hour trips decreased up to

17,292 trips with respect to the closure of the network links.

     The opening or closure of few links in a transportation network may cause significant

changes in travel demand of the network.  The opening of the Glen Anderson Freeway

provided additional six network links in service.  This 2.1 percent change of network

links resulted in 14.53 percent change of total O-D trips.  The Northridge earthquake

damaged seven links out of 292 network links.  This 2.4 percent closure of network links

resulted in 14.8 percent change of total O-D trips.  Consequently, a small change in a

transportation network causes significant impacts on behavioral changes of drivers.
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     The above comparisons are made between two peak-hour weekday O-D trip matrices.

The results from the peak-hour O-D trip comparisons lack information for sources of O-

D trip changes.  The O-D trip changes may result from changes in trip start-times, trip

origins or destinations.  The total number of daily trips from an origin point to a

destination point does not vary in the case of trip start-time changes.  The total number of

daily trips between two zones does vary in the case of trip origin and/or destination

changes.  Thus, further travel demand analyses are recommended to investigate dynamic

O-D trip changes over the entire 24 hours time period.



8.  Extensions

8-1.  Policy Implications

     This research has successfully demonstrated a transportation network analysis (TNA)

procedure that provides rapid and reliable flow estimates used for bridge retrofit

decisions in the Los Angeles highway network.  The objective of this research is to

predict system-wide traffic flow changes inexpensively with respect to the closure of

network links.  The TNA procedure developed here can be also applied to other

transportation problems that require a large number of system-wide traffic flow analyses.

Examples are: (1) new transportation policies such as congestion pricing, (2)

infrastructure investments such as High-Occupancy Vehicle (HOV) lane construction, (3)

and temporary road closures due to traffic accidents or road reconstruction.

     Traffic congestion in urban transportation systems is one of the primary concerns of

transportation planners.  Traffic congestion occurs due to the failure to price access in

current transportation systems.  Traffic congestion not only causes inefficiencies in

transportation systems, but also has impacts on many economic and environmental

aspects in urban and suburban areas.

     Congestion pricing is one of the demand management transportation policies proposed

for reducing traffic congestion problems.  Congestion pricing includes the use of the price

mechanism as a means of inducing the efficient use of freeway/roadway spaces by

reducing travel demand.  It involves the imposition of congestion tolls on heavily

congested highway/roadway systems like in the case of SR-91 Express Lanes in Southern

California.  The system-wide traffic impacts of congestion pricing applications are

difficult to predict because of the complexity of driversÕ behavioral changes.  Further,

determining the exact location and optimal number of toll instruments (or booths)

requires the study of numerous congestion pricing system states.  The results from the



applications of the TNA procedure to link-failure system states demonstrate the

applicability of the TNA procedure to congestion pricing cases.

     The performance of transportation facilities may be improved by public and private

investments in transportation sector.  Constructing additional freeway lanes or converting

existing freeway lanes to HOV lanes may improve the efficiency of a transportation

network.  Our TNA procedure can be applied to evaluate the system-wide traffic impacts

of such transportation investments.

     A temporary road closure due to traffic accidents or road reconstruction is referred to

a short-term link-failure system state.  The TNA procedure can be applied to estimate

traffic flows in the case of short-term link-failure system states.  The flow estimates can

be used to provide rapid traffic signal adjustments or traffic incident information.

8-2.  The Procedure Improvements

     TNA procedures developed in this research provide rapid and reliable estimates of

traffic flows in a large-scale transportation network.  However, the general TNA

procedure is based on the static network equilibrium model, assuming a fixed travel

demand.  This section presents research directions for improving the current TNA

procedures to a more technically advanced and empirically applicable procedure.  The

following three models are recommended for the further development of the TNA

procedures: (1) a dynamic network equilibrium model predicting dynamic travel

behaviors, (2) artificial neural network (ANN) models as alternatives to associative

memory (AM) models, and (3) a procedure predicting O-D trip changes due to future

earthquakes.

     The dynamic network equilibrium model is a generalized form of static network

equilibrium model.  Results from this research indicate that the static network



equilibrium model provided reliable estimates of link volumes during a peak-hour period.

However, traffic flow analyses will be more accurate if a dynamic pattern of travel

behaviors is incorporated with TNA procedures.

     TNA procedures developed here employ the AM approach as the alternative to the

static network equilibrium model.  An alternative to the AM approach is the ANN

approach, especially backpropagation ANN models.  The usefulness of backpropagation

ANN models has been addressed by transportation planners.  Further research is

recommended to compare ANN models with AM models with respect to traffic flow

estimation.

     The general TNA procedure assumes the same pattern of travel demand in different

system states.  However, the results from travel demand studies in section 7-6 indicated

that travel demand varies as network links are opened or closed.  An improved O-D trip

estimation procedure is required in TNA procedures to predict post-earthquake O-D trip

matrices consistent with estimated post-earthquake traffic flows.

9.  Conclusions

     The California Department of Transportation (Caltrans) has developed bridge seismic

retrofit programs that include a decision-making procedure for the structural

reinforcement of existing freeway bridges.  This decision-making procedure known as the

multi-attribute decision procedure includes a priority rating for CaliforniaÕs existing

freeway bridges due to state and local governmentsÕ limited bridge retrofit funds.



     CaltransÕ multi-attribute decision procedure addresses average daily traffic (ADT)

volumes as a major attribute for determining the importance of a bridge.  However, the

closure of a freeway bridge caused by earthquakes influences travel behaviors of drivers,

resulting in a state of new network equilibrium.  The importance of the bridge may be

accurately demonstrated by changes in total system travel times than by ADT volumes.

The total system travel time is computed by adding up all aggregated link travel times

obtained by multiplying link travel times with link flows.

     The objective of this research is to develop a transportation network analysis (TNA)

procedure that serves as a cost-effective tool for predicting system-wide traffic flows with

respect to the opening or closure of freeway links.  Flow estimates produced by the TNA

procedure can be used to estimate associated link travel times by applying the BPR link

travel cost function to the flow estimates.  The importance of a freeway bridge can be

evaluated by observing the amount of total system travel time changes with respect to the

closure of the bridge.

     The research began with the literature review on CaltransÕ bridge prioritization

procedures, current traffic analysis technology, and artificial intelligence approaches.

Two versions of the TNA procedure have been developed based on the quantity and

quality of transportation system data: the general TNA procedure and the simplified TNA

procedure.

     An important feature of these two transportation network analysis procedures is the

use of an associative memory (AM) approach as an efficient means for predicting

network flows.  The AM approach is a heuristic method that provides rapid and reliable

estimates of traffic flows to network equilibrium problems.  The general TNA procedure

contains other analytical methods for: (1) extracting seasonal and trend variations from

observed link volumes, (2) estimating origin-destination trip matrices from link volumes,



and (3) simulating network flows.  The decomposition method, the LINKOD PLUS

model, and the static user equilibrium model are selected to perform the above tasks.

     The transportation network analysis procedure has been applied to both a simple

synthetic transportation network and an aggregated representation of the Los Angeles

highway network.  The following tasks have been performed:

  (1) a simple synthetic network with seven zones and twenty-four links was
       developed;

(2) the general TNA procedure was applied to simulate traffic flows of given
        synthetic system states with respect to single-link and double-link failures;

  (3) the performance of associative memory models was evaluated by comparing
       simulated traffic flows provided by a static user equilibrium model and flow
       estimates produced by different associative memory models;

  (4) an aggregated Los Angeles highway network with 105 zones and 292 links
       was defined;

  (5) five empirical link-failure system states were identified based on the opening
       of the Glen Anderson Freeway, the closure of seven links due to the
       Northridge earthquake, and the gradual repair of closed links;

  (6) transportation system data sets including observed link volumes, an origin-
       destination trip matrix, link capacities, and free-flow link travel times were
       developed from relevant empirical data sources;

  (7) the decomposition method was employed to exclude seasonal and trend
       variations from the observed link volumes.  Other important indicators such
       as K-Factors and AWTV/ADTV ratios were identified;

  (8) the LINKOD PLUS model was applied to extract a peak-hour weekday
       origin-destination trip matrix consistent with adjusted peak-hour weekday
       link volumes for the aggregated Los Angeles highway network;

  (9) associative memory models were applied to estimate link volumes for each
of

       five empirical link-failure system states in rotation;

(10) the static user equilibrium model was applied to simulate traffic flows for
       the same five empirical link-failure system states;

(11) the estimates of traffic flows provided by different associative memory
       models were compared with the simulated traffic flows provided by the
       static user equilibrium model;



(12) the static user equilibrium model was applied to simulate traffic flows for
       seventy sets of synthetic coupled link-failure system states;

(13) associative memory models were applied to estimate synthetic traffic flows
       for each of the last ten coupled link-failure system states using the remaining
       sixty-nine system states;

(14) associative memory models were applied to estimate link volumes for each
       of the five empirical link-failure system states using seventy synthetic
       coupled link-failure system states;

(15) associative memory models were also applied to estimate link volumes for
       each of the five empirical system states using combined sets of seventy
       synthetic coupled link-failure system states and the remaining four empirical
       link-failure system states; and

(16) the LINKOD PLUS model was applied to predict changes in the Los
       Angeles O-D trip matrix due to the opening of the Glen Anderson Freeway

                   and the closure of seven links caused by the Northridge earthquake.

     Conclusions from this research include the following:

(1)  the usefulness of two TNA procedures was demonstrated with results from
various link-failure applications.  Associative memory models provide rapid
and reliable estimates of network flows. . In the case of synthetic flows, AM
models provide very good estimates.  Flow estimates in the case of multiple
link failres are very good. .  AM models trained on synthetic system states
provide very close flow estimates of the five empirical system states
summarized here.  Flow estimates provided by the best associative memory
matrix results were closer to empirical link volumes than simulated traffic
flows provided by the static user equilibrium.

(2)  Flow estimates improve with the number of training cases.  Increasing the
number of training system states improved the estimations provided by power
of associative memory models.  Results from combined data sets
demonstrated the possibility of combining empirical data sets with
syntheticdata sets.

(3)  The aggregated Los Angeles freeway network developed in this research was
sufficient to capture relevant details of the actual Los Angeles freewa
network.

(4)  The decomposition method successfully captured seasonal and trend patterns
from observed link volumes provided by Caltrans District 7.

(5)  We did not use AM models to directly estimate Origin-Destination trip
changes.  Rather, we used the equilibrium assignment method to predict O-D
trip changes from link volume changes associated with the opening of I-105
freeway and the Northridge earthquake.  The LINKOD PLUS model



successfully extracted the peak-hour weekday O-D trip matrix from link
volumes.

(6)  The results from the application of the LINKOD PLUS model to of travel
demand changes demonstrated a way of predicting travel demand changes due
to the opening and/or closure of highway links.

(7)  The procedure is fast, and speed is one of its principal advantages.  The
bigger the network, the more system states that must be accounted for, and the
more time can that can be saved.

Consider modeling traffic flows for 1,000 post-earthquake system states for a
network of the size described here.  The best conventional implementation of
the network equilibrium model may take one minute to simulate traffic flows
for each system state.  This results in a total requirement of 1,000 minutes of
computing time.  However, the associative memory approach requires only
sufficient training information to understand the generalized pair association
between network configurations and their traffic flows.  Use the network
configurations and traffic flows for the first 100 system states to train an
associative memory matrix. Using an associative memory to estimate a set of
100 system states simultaneously would also require around one minute.  Thus
the associative memory approach requires 100 minutes for the first 100
applications of the conventional network equilibrium model, and 9 minutes
for the remaining 900 system states to be estimated.  The total computation
time for the associative memory appraoch is 109 minutes.  This is a
substantial reduction in computational requirements.

If a transportation network has 1,000 traffic analysis zones and 10,000 links,
conventional models will require considerably more time to model each link-
failure system state.  Worse, there are about 50,000,000 system states
involving failures in exactly two of the 10,000 links.  The speeds associated
with an AM approach is the only way to simulate traffic flows for a
representative set of system states.

(8)  This research was completed in a distributed Unix mainframe computing
environment, but parallel work shows that micro-computing resources would
be adequate to support applications of this scale.  The primary requirement is
a reliable computer code for computing generalized matrix inverses.  This
work was done with Speakeasy, and Matlab, but other readily available
products such as SAS/IML also Mathematica also compute generalized
inverses. FORTRAN or C codes are available for computing the generalized
inverses in any environment.

     The following research directions are recommended to evaluate and improve the TNA

procedure:

(1) other transportation problems such as congestion pricing, infrastructure
      investments, or temporary road closures can be used to evaluate the
      applicability of the TNA procedure, and



(2) the TNA procedure can be further improved by incorporating dynamic
network equilibrium, trip change prediction methods, and other artificial
intelligence approaches.
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