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ABSTRACT OF THE DISSERTATION

Theoretical Studies of Biomolecular Self-Assembly near Equilibrium and Far

from Equilibrium

by

Chenghang Zong

Doctor of Philosophy in Chemistry

University of California, San Diego, 2007

Professor Peter G. Wolynes, Chair

The physical sciences have played a pre-eminent role in the advance of
biology not only by providing advanced techniques, but also by providing simple
concepts for navigating through the complexity of biological systems. One area
where simple physics concepts help understanding complicated biological phenom-
ena is the study of protein folding. By presenting the framework of a simple
funneled energy landscape, folding is no longer a paradox from the physics point
of view. In the following chapters, we present the investigations of both thermody-
namics (predicting native structure) and kinetics (predicting ¢-values) of protein
folding on the basis of energy landscape theory.

On the other hand, the discovery of assembly using biological molecular
machinery presents new challenges to statistical mechanics combining the aspects
of complexity and far-from-nonequilibrium behavior. In the fifth chapter, a study

of nonequilibrium dynamic assembly inspired by microtubule dynamics in cell is

xi



presented. The theory provide a general scheme for studying nonequilibrium as-
sembly in one dimension.

Chapter 2 is based on the material as it appears in Biochemistry 45: 6458-
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Chapter 3 is based on the material as it appears in Proc. Natl. Acad.
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128: 5168-5176 (2006). The dissertation author was the primary investigator and
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Introduction

The goal to understand protein folding mechanisms and to learn to pre-
dict structures from primary sequences, so as to provide a structural basis for
functionality analysis has made the study of protein folding one of central bat-
tlefields in biophysics. The spontaneous self-assembly of protein into one specific
three-dimensional structures within biological relevant time shows the uniqueness
of evolved systems. The famous Levinthal paradox [1] raised a key kinetic question
about folding since an astronomical number of conformations would seem to be
available to proteins. Clearly, a correct thermodynamic picture is required before
the kinetic problems can be attacked. In the late eighties, the emergence of the
funneled energy landscape picture provides a fundamental statistical mechanical
picture for folding proteins [2, 3, 4, 5]. The paradox about folding kinetics is well
illuminated by this picture. Much of the emergent understanding of protein fold-
ing came from studies of the statistical mechanics of spin glasses and structural
glasses [6, 7, 8]. Proteins are essentially a hetero-polymers with evolution selected

sequences. The randomness in random heterogeneous polymers will cause con-



flicts between stabilization of different structural elements. This “frustration” will
generate many energy wells with different depths, without forming a single domi-
nant well on the energy landscape. For protein system, however, even though the
heterogeneity in sequence still gives some ruggedness on the energy surface, one
dominant well appears in the energy landscape. The elimination of the frustration
sculpts a smooth slope toward the native state i.e. the landscape is a funnel.

The complex folding processes can be visualized on the surface of a high-
dimensional energy landscape. The energy landscape is quantitatively described
by the folding temperature Tr and the glass temperature Tg [2]. The folding
temperature, Tr, is the temperature at which the free energy of the denatured
and native states are equal. The glass temperature, T, is the temperature below
which the system would be thermodynamically frozen into structurally diverse low
energy states. The principle of minimal frustration, proposed by Bryngelson and
Wolynes [2], requires that T is larger than Tf; for a reliable fast folding. Another
characteristic temperature T4 also enters [6] which describes the change in kinetics
on a rugged energy landscape. At temperature T4, the low energy states become
into metastable states that can trap the system much longer than the time scale
of the diffusive chain dynamics.

Theoretical analysis of folding kinetics using the funneled energy land-
scape and the comparison of those prediction with the experimental results quan-
titatively tests of this picture. In Chapter 2, we characterize the folding of Pseu-
domonas aerugionsa apo-azurin [9] with a variational free energy functional method,
first introduced by Portman, Takada and Wolynes (PTW) [10, 11], based on a per-

fectly funneled landscape. The model utilizes an analogy between folding protein



from random coils to the native state and the transition from the liquid phase to
the solid phase. The folding/unfolding at the residue level is described by quanti-
fying the fluctuations of each residue around its native position. This fluctuation
amplitude is analogous to the Debye-Waller factor measured in experiments. A
high dimensional free energy surface generated by the model is described by an
analytical free energy functional having the resolution of residue level. Different
position on this high dimensional free energy surface characterizes the structural
ensemble with different probability distribution. The folding kinetics is described
by the continuous change of the probability distribution of the structural ensemble
on the folding routes. A fast numerical search procedure applied to this model
allows us to study large systems with more than 100 residues. We compare experi-
mental ¢-values [12] with our theoretical calculations. The quantitative agreement
between theory and experiment provides strong support for the funneled energy
landscape concept.

Understanding how a protein’s functions emerge along with the folding
process challenges both theorists and experimentalists. The simplest testbeds for
confronting this issue are provided by electron transfer proteins. The environment
provided by the folded protein to the cofactor tunes the metal’s electron transport
capabilities as envisioned in the entatic hypothesis [13]. The entatic hypothesis
states that through the polypeptide’s folding induced rigidity, the protein fails to
provide the expected geometry of ligating groups that would occur with freely
mobile ligands in solution, thereby tuning the ligands redox characteristics. To
see how the entatic state is achieved one must study how the folding landscape

affects and in turn is affected by the metal. In Chapter 3, I develop the free energy



functional method further in order to explicitly model how the coordination of the
metal (which results in a so-called entatic or rack-induced state) modifies the fold-
ing the Pseudomonas aerugionsa azurin metallated with a zinc ion [14]. The free
energy functional approach directly yields the proper non-linear free energy vari-
ations with temperature change for zinc-form azurin. The results agree quite well
with corresponding laboratory experiments [15]. Furthermore, the routes found
using the modified free energy functional provided a sufficient level of details to
explicitly show how the ligated entatic state is formed during the process of folding
of the backbone.

The minimal frustration principle and the funnel concept suggest that
the main features of folding process can be predicted by correctly modeling the
the stabilization energies of structural elements and the entropic costs of bringing
the peptide into the scaffold. Associative Memory Hamiltonian (AMH) has been
introduced by Friedrichs and Wolynes [16] and developed through the cumulative
efforts of many coworkers in the Wolynes group [17, 18, 19, 20, 21, 22, 23, 24].
In Chapter 4, the details of the most complete version of this predictive model
and specifically progress in developing this model for structure prediction for a/f
proteins are described. A transferable optimization scheme based on the mini-
mal frustration principle (increasing the ratio of Tr over Tg) is applied for the
parameterization of the Hamiltonian.

The folding of /3 proteins involves most of the commonly known struc-
tural and dynamic complexities of the protein energy landscapes. Thus, the inter-
play among different structural components, taking into account cooperative inter-

actions, is important in determining the success of protein structure prediction. We



present further developments of our knowledge-based force field for /5 proteins
and more realistic modeling of many-body interactions governing the folding of -
sheets. The model’s innovations highlight both specific topological characteristics
of secondary structures and the generic nonadditive interactions that are mediated
by water. The studies also show how a coarse biasing of the protein morphology
can be used to understand the role of heterogeneity in protein collapse.

After structural self-assembly of proteins, the next step for building bi-
ological functional molecular machines is the assembly of modular protein units.
These assembly are essential cellular processes for functions and many of these pro-
cesses consume energy. These systems will exist at far-from-equilibrium conditions
when the energy is stored or released. How to treat the nonequilibrium nature of
such large fluctuations is still one of difficult problems in nonequilibrium statis-
tical mechanics. In Chapter 5, I describe a scheme derived from nonequilibrium
variational principle to treat one-dimensional fiber assembly [25].

In cells, many of the large structures are constructed from fibers: actin,
microtubules and intermediate filaments [27]. The fibers self-assemble from in-
dividual proteins in a far-from-equilibrium fashion. Nonequilibrium self-assembly
results in a highly dynamic process at the subcellular level that can be regulated
and tuned to carry out many of biological functions of the cell: growth, division
and locomotion [27, 28, 29, 30, 31].

I construct and analyze a nonequilibrium model of the dynamic end
of a biological fiber that possesses site-resolved resolution. The nonequilibrium
variational principle we used is a classical version of Rayleigh-Ritz variational

method in quantum mechanics [26]. The independent left and right trial states



make the method suitable to treat dynamics described by a non-Hermitian op-
erators. The steady states of this nonequilibrium system are solved using the
variational method. The results are compared to exact numerical solutions for
systems with modest size. As test, I apply this method also to model microtubule
systems [32, 33, 34, 35, 36, 37, 38]. Using an effective reaction coordinate, we
construct an effective potential from the steady state distribution. The stochas-
tic transitions of the system can be analyzed in this representation. This picture
provide a new perspective of the dynamic instability going beyond the usual pic-
ture based on a simple two-state switch. Predictions for macroscopic catastrophe,
rescue, and dynamic instability in the steady states are made. We find that the
length of the cap of the microtubule is small as argued in some experimental stud-
ies. Furthermore, our system can be looked as a typical automata system following
the designated dynamics rules. The variational method provides new approaches

for studying the dynamics of such automata.



I1

Variational Free Energy
Functional Method in Sculpting

the Folding Energy Landscape

II.A Detailed Characterization of Free Energy Landscape

While the conceptual bottlenecks in understanding protein folding have
been overcome in the framework of energy landscape, the high-dimensional energy
surface presents major difficulties in quantitatively charactering both the thermo-
dynamics and kinetics of protein folding. In this Chapter, I present a free energy
functional that allows us to efficiently characterize the free energy profile analyti-
cally and following the folding process on the landscape. This variational scheme
was first introduced by Portman, Takada and Wolynes [10, 11].

It is clear that the large number of degrees of freedom in protein al-

lows the molecule to explore a diverse set of kinetic pathways. While superficially



TST (transition state theory) can be adapted to study the kinetics of protein fold-
ing, the large number of degrees of freedom and broader distribution of transient
states in the protein folding make the detailed characterization of the complete free
energy profile necessary. Sampling of the energy landscape by simulations provides
one route to such a free energy profile. Yet, for studying many mutants and their
folding at different concentrations of denaturant, performing simulations case by
case becomes cumbersome. Furthermore, some mutants only make very delicate
changes to the energy landscape, which can be hard to discriminate from the nearly
inevitable statistical errors in sampling. Compared to most simulation schemes,
the numerical calculations based on the variational principle offer improved effi-
ciency and accuracy. Calibrating the variational calculation avoids the statistical
disadvantages confronted in simulations. Small changes of energy landscape can be
studied efficiently. With the variational method, multiple pathways can be clearly
discerned. The high resolution of the variational calculation calibration also en-
ables the discrimination of multiple transient states in one pathway as well as the

detection of the shifting of transition states often observed in experiments.

II.B Variational Free Energy Functional

The PTW variational scheme starts with a simple model Hamiltonian of
the protein system. Both the chain model of the backbone and contact interactions
are included in the Hamiltonian expressed as H = Hpgin + H;ni. The first term
H poin = % i rilir+ %B >; ;* models a stiff chain. T';; defines the bond cor-
relation matrix. The relation between I' and the standard Rouse matrix R is given

as follows: T'= (1—g)/(1+g)*R+g/(1—g¢*) x R*—¢%/(1—¢?)* A. The parameter



g is the cosine value of the fixed free rotating angle 6 between adjacent bonds and
A accounts for the ends of the chain. The second term Hj,, = Y;; €;;u(ry;) rep-
resents the contact interactions, which are modeled by a pairwise potential u(r;;)
with an interaction strength coefficient ¢;;. The interactions strength coefficients
based on the consensus analysis are used in the model. Here, we parameterize the
€;; according to Miyazawa-Jernigan contact energies. The potential u(r;;) is mod-
eled as a sum of three Gaussian potentials representing short, intermediate and
long range part, u(r) = Yj—s:; 7k eXp[—zzr’]. Three interaction components
are parameterized to present a potential with the native distance at the minimum
of the well. To construct the free energy surface using a variational procedure, a
simple reference Hamiltonian is chosen as Hy = Hepain + 527 2 Ci(ri — V). The
parameter, C;, describes the fluctuations of the ith residue. With a reasonable
choice of the reference Hamiltonian, we can calculate the variational free energy
as follows.

F[C] = —kBT log ZO + <H — HO)O

Z, is the partition function of the reference Hamiltonian and (...), denotes the aver-
age with respect to the reference Hamiltonian. Using this relation, the calculation

of the energy and the entropy is straightforward.

I1.C ¢-value Analysis and Chevron Plot

The ¢-values are defined as the ratio AAGH/AAG (where AAGH =
Aanut — AGy: and AAG = AGpu — AGyy; mut, mutant; wt, wild-type form
of protein) if folding is a two-state process with a sharp transition state. In in

vitro experiments of protein folding, the directly measured data are presented as
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relaxation curves corresponding to the rate of equilibration of folding and unfolding
events at the particular condition (in terms of temperature, chemical-denaturant
concentration and/or pH): ks = ky + ky. Theoretical relaxation curves that cor-
respond to experimental k., are extracted from the folding pathways predicted
by the PTW method, as we describe in detail below. The free-energy changes
corresponding to the folding barrier, AG*, and the protein stability, AG, are then
estimated via linear extrapolations of the logarithms of the observed relaxation
rates to a common condition (such as zero denaturant concentration or a specific
temperature). In our theoretical calculations, we altered the balance of folding and
unfolding by changing the temperature. The Arrhenius rate coefficients &, and k;

are expressed as follows, with AGi, ;= —(G* — Gpy) and pre-factor A:

1

AG
ku = Aexp(—=L
s p(7)

A contact map (input in the PTW variational calculations) for wild-
type P. aeruginosa apo-azurin was constructed based on the distances between all
heavy atoms in the side chains (pdb file 1E65). The contacts are classified into
side-chain and backbone contacts according to the distances between side-chain
atoms and their angular orientations with respect to each other. The energy unit
€9 of Miyazawa-Jernigan contact energies is converted to kcal/mol with the es-
timated melting temperature [39] (using the room temperature as the melting
temperature). Using this scaling, we calculated a relative folding temperature of
1.91 for apo-azurin. To match the experimentally determined thermodynamic sta-
bility of P. aeruginosa apo-azurin [12], the stability (G) at 298K was set to 10kgT
in our model. With this, the relative folding temperature of 1.91 corresponds to a

value of 320K. Notably, this is only somewhat lower than the melting temperature
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reported in in vitro unfolding experiments of P. aeruginosa apo-azurin [40].

The free-energy profiles predicted from the PTW variational method for
folding of wild-type apo-azurin appear two-state-like with one broad barrier; the
profiles at the folding temperature (i.e., at T =1.91) are shown in Figure IL.1 (left
panel). The finer details of the profiles arise from the irregular compensation of
entropy loss by free energy gain. We identify two folding paths for apo-azurin at
the folding temperature; the path with the lower barrier is the pathway we will
focus on (since it is most probable). Although many saddle points are found in
both pathways, there are no distinct or highly populated intermediate states found
on either pathway. In the present treatment, therefore, we denote the point with
the highest free energy as the folding-transition state and the folding rates are
calculated as the relaxation times to cross this barrier. A structural interpretation
of the folding-transition state, that is, the TSE for folding, can be made by exam-
ining the mean-square deviation (MSD) of each residue as predicted by the PTW
variational algorithm. Here, the MSD of residue ¢ is defined as how much residue
1 fluctuates around its mean position in the probability distribution belonging to
the TSE. The MSD as a function of residue number is shown in Figure II.1 (right
panel). for the globular (unfolded), native, and transition states on the two folding
routes for wild-type apo-azurin. Similar information is visualized in the isodensity
plots for the two TSEs (see Figure I1.2 ). The construction of this type of plot
has been described previously [41]. In both transition states, a nativelike structure
appears in the core around residues 30, 50, 85, 95, and 110 with some additional
nativelike structure proximal to the N-terminus in the pathway with the higher

barrier.
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Figure I1.1: Left panel: Variational free energy versus stabilization energy of the
two folding pathways [high-energy barrier (red) and low-energy barrier (black)]
for apo-azurin at T = 1.91 (i.e., at the folding temperature). The point with the
highest free energy is denoted as the folding-transition state in each path. Right
panel: MSD as predicted by the variational algorithm for different states on wild-
type apo-azurin’s folding pathways at T = 1.91. The MSD as a function of residue
number is shown for the globular/unfolded state, the native state, as well as the
high-barrier TSE and the low-barrier TSE of the two folding pathways identified
in the left panel.

Figure II.2: The isodensity surface (p = 0.005) for the two TSE for apo-azurin
folding at T = 1.91. The left model corresponds to the low-energy barrier TSE
(i.e., the focus of this study), and the right model corresponds to the high-energy
barrier TSE
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The (un)folding barrier linearly depends on the temperature change at

the first order approximation.
AGE (T) = AGE [(Ty) + myp x (T — Tp)
Then k, ;(T) is given as follows.

kug(T) = Aexp [-AG) ((T)/T] (IL.1)
= Aexp [~(AG), ((To) = mup x To) /T + mu | (11.2)

Now the logarithms of the observed rate coefficients, log k., can be expressed as,
log kops(T) = log [exp(a +bx T71) +exp(c+dx T_l)] +log A

with a = my, b = —AGL(Ty) + my x Ty, ¢ = my, and d = —AG;(TO) +my x Tp.
The relaxation data for wild-type apo-azurin were used to prepare a theoretical
chevron plot (i.e., a plot of the log kups(7) versus T data, Figure I1.3) for wild-type
apo-azurin that was then fitted with the above expression to assign values to the
a, b, ¢, and d parameters. In the fitting procedure, parameters a and ¢ will give
opposite signs, corresponding to unfolding and folding, respectively.

To derive ¢-values for specific positions, 16 apo-azurin variants with
point-mutations were created based on the contact map of wild-type apo-azurin
(Ile7Ala, Tle20Ala, Val22Ala, Val31Ala, Leu33Ala, Hisd6Gly, Trp48Ala, Leu50Ala,
Val60Gly, Ile81Ala, Val95Ala, Phe97Ala, Tyr108Ala, Phel10Ala, His117Gly, and
Leul25Ala). In the theoretical description of the point-mutated variants, only the
side-chain contacts of the residue in question are eliminated in each case. Back-
bone contacts, that is, the hydrogen bonds in secondary structures, are not altered
in the mutated variants. The PTW variational calculation was performed on each
azurin variant to ultimately obtain a set of chevron plots (Figure I11.4). These were
then fitted with the above expression to define the parameters a, b, ¢, and d for
each variant. From the obtained values, the folding barrier (AG*) and the protein
stability, AG = —(AG? — AGH), of each system were extracted. Next, the AG*
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Free Energy [

Figure I1.3: Left Panel: Folding routes (variational free energy versus energy)
at different temperatures for wild-type apo-azurin. Only the low-energy-barrier
pathway is shown. The lines correspond to temperatures from 1.98 to 1.84 with
0.01 increments from top to bottom. Right Panel: Relaxation curves for wild-type
apo-azurin of the probability to remain in the globular/unfolded state at various
temperatures (with a zero probability value meaning full conversion to the folded
state). The curves correspond to relaxation data at temperatures from 1.98 to 1.84
with 0.02 increments from the top to the bottom.

and AG values for wild-type and variants of apo-azurin were combined to yield
the ¢-value for each mutated position. We summarize the theoretically obtained
stability and ¢-value results in Table II.1 .

To assess the accuracy of the theoretical results as compared to in vitro
experiments, we also collected experimental equilibrium- and kinetic-folding data
on all the apo-azurin variants. In Figure I1.5, we show the resulting chevron plots
for folding and unfolding kinetics of the 16 apo-azurin variants. In accord with
two-state kinetics, the constituting arms of a given chevron are linear with neither
protein concentration dependence nor missing amplitudes.

The experimentally and theoretically derived ¢-values are compared in
Figure I1.6 (Left Panel); the correlation coefficient between the two sets of data
is 0.80. The ¢-value of Leul25Ala has the largest deviation between experiment
and theory. However, this mutation only shows a 3 kJ change in the experimental
AGy(H20) value, which may make the experimental ¢-value calculation some-

what unreliable [42]. If we exclude the point for Leul25Ala in Figure I1.6 (Left
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Figure I1.4: Theoretical chevron plots (In ks versus temperature) for the 16 apo-
azurin variants studied herein. In each graph, the mutant data (red curve) is
overlaid with the wild-type data (black curve).



Table II.1: mutation table and ¢-values

wt and mutants | eliminated contacts | AG (kgT') | ¢-value

wt - 8.82 -

I7A 15,16,17,31,33 7.15 0.18
120A 29,48 6.28 0.07
V22A 99,99,125,127 6.95 0.14
V31A 48 7.91 1.04
L33A 84,87 8.40 1.14
H46G 9,10,35,46 6.96 0.13
WA4SA 20,31,84,95,110 1.56 0.33
L50A 81,97 7.09 0.67
V60G 111,113,118 5.99 0.17
I81A 97,101,108 7.19 0.58
VI5A 48 8.34 0.81
F97A 29,50 6.25 0.18
Y108A 81,102,103,125 6.26 0.19
F110A 15,17,18 5.20 0.05
H117G 13,42,112 6.76 0.00
L125A 20 8.09 0.20
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Figure I1.5: Experimental chevron plots (In ks versus GuHCI concentration) for
the sixteen apo-azurin variants. In each graph, the mutant data (thick curve) is
overlaid with the wild-type data (thin curve). The arrangement of panels is the

same as in Figure I1.4.
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Figure I1.6: Left Panel: Correlation between calculated and experimental ¢-values
at room temperature. Right Panel: Correlation between calculated and experi-
mental stability values at room temperature.

Panel), the correlation coefficient increases to 0.90. The correlation between the-
oretical, AG(298K), and experimental, AG(H,0), stability values for wild-type
and mutant apo-azurins is also excellent; is 0.88 (Figure I1.6, Right Panel). Taken
together, the comparisons show that using the PTW variational method to calcu-
late folding dynamics provides chevron plots and, thus, ¢-values that are in fine
agreement with data from in vitro protein-folding experiments. Furthermore, from
the ¢-values for the 16 positions, it emerges that apo-azurin has a localized TSE
with almost nativelike interactions around Val31, Val33, Leub0, Ile81, and Val95
bringing parts of S-strands 3-6 together. The remaining positions, which cover all
other secondary-structure elements in azurin (i.e., S-strands 1, 2, 7, and 8, as well
as the a-helix), are not structured in apo-azurin’s TSE for folding. This descrip-
tion of the TSE for folding of apo-azurin is in good agreement with the isodensity
plot for the low-energy barrier TSE (Figure I1.2, left).

Here, we have compared ¢-values derived from theoretical experiments
with ¢-values calculated from in wvitro chemical-denaturant measurements. Al-
though temperature-jump experiments may seem more appropriate in provid-

ing experimental data that correspond to the theoretical analysis, temperature
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changes can induce nontrivial dynamic solvent effects [43, 44] , which can compli-
cate straightforward analysis based on equilibrium free-energy landscape theory.
Importantly, unfolding of apo-azurin when induced by temperature- and chemical-
denaturant perturbations results in similar unfolded states with respect to far-UV
CD and fluorescence characteristics (data not shown); moreover, both methods of
perturbation are reversible and correspond to two-state transitions [45, 46]. From
a technical perspective, chemical-denaturant jumps are less complicated to execute

as compared to temperature jumps when complete chevron plots are desired.

II.D Conclusions

We used the PTW variational method to investigate the folding TSE for
the B-sandwich protein P. aeruginosa azurin. We also prepared all azurin variants
in the lab and tested their folding behavior in vitro via kinetic measurements. We
found excellent agreement between theoretically and experimentally determined
¢-values: apo-azurin’s transition state is fixed with a set of nativelike interactions
involving core residues from strands in both [-sheets. Detailed comparisons of
theoretical and experimental data demonstrate that fine-tuning is needed in the
theoretical description of point-mutated variants. Free-energy functional methods,
such as the PTW scheme, allow one to readily calculate chevron plots/¢-values and,
therefore, compare theoretical results directly with experimental measurements.
For apo-azurin, this direct comparison shows that theory and experiment agree in
a quantitative fashion. Combined theoretical /experimental studies to investigate
how the presence of zinc induces a switch from a fixed to a moving TSE in azurin

are in the following chapter.
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I11

Establishing the Entatic State in
Folding Metallated Pseudomonas

aeruginosa Azurin

III.A Introduction of Entatic Hypothesis

The entatic state occurs in proteins when a group, metal or non-metal is
forced into an unusual, energetically strained geometric or electronic state (rack-
induced state) [47, 13, 48, 49]. Through the polypeptide’s folding induced rigidity,
the protein fails to provide the expected geometry of ligating groups that would
occur with freely mobile ligands in solution, thereby tuning the ligands redox char-
acteristics. In metalloproteins, the metal ions are typically bound to the protein
through one or more lone pair donors — endogenous biological ligands (e.g., the
imidazole moiety of histidine, the carbonyl oxygen of the main-chain or the side
chain of an asparagine residue). In several cases the ligands are arranged such that
an optimal geometry is precluded [47, 13, 48, 49]. The resulting entatic state in a
given metalloprotein is determined by the entire rigid protein scaffold in concert
with the hydrogen bonding network proximal to the coordination sphere [50, 51].

The particular geometry of the rack-induced state influences the electronic struc-

20
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ture of the metal site. Moreover, the resulting forced electronic structure, at least
in certain cases, becomes essential for the protein’s biochemical function in elec-
tron transport [52]. We should remember the entatic hypothesis is in some respects
still controversial. Results from some quantum calculations have suggested that the
geometry of metal-ligand complexes identified as being rack-induced are not neces-
sarily highly strained [53], while, other theoretical studies suggest that the rigidity
of the protein may in fact be much more significant than initially thought [54].

Cupredoxins, a family of electron transfer metalloproteins, are believed to
adopt such a rack-induced state by way of a distorted tetrahedral (type I) copper
site. The geometry of the ligand set provided by the protein in this so-called entatic
state is neither optimal for Cu'™ nor Cu?*. As a result, redox interconversion does
not result in dramatic structural changes. Consequently, the overall reorganiza-
tion energy for the electron transfer, including the inner coordination sphere, of
the type I copper site is relatively small [55, 56, 57|, speeding the electron transfer
process. The architecture of a typical type I copper sites involves four canonical
ligands; specifically, a strongly coordinating thiolate of a cystine residue, the imi-
dazole nitrogens of two histidines, and a weakly coordinating thioether sulfur on
a methionine residue.

Pseudomonas aeruginosa azurin is a small (128 amino acid) cupredoxin
(i.e., a blue copper protein) composed of eight S-strands arranged in a double-
wound Greek key topology, which forms a rigid g-barrel [58]. Interestingly, the
redox-active copper is coordinated to the protein via five ligands instead of four.
In addition to the four canonical ligands (i.e., H46, C112, H117, and M121-to a
lesser extent), a secondary weak-axial ligand — the main-chain carbonyl of G45
— completes the active site, resulting in a trigonal bipyramidal geometry rather
than the canonical distorted tetrahedral arrangement often found.

Upon unfolding of metallated azurin, the copper remains bound to the
denatured polypeptide in a trigonal coordination composed of the native ligands

C112, H117, and possibly M121 [59]. In the denatured state the slow irreversible
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redox coupling between the C112 thiol and Cu?* promotes sulfur oxidation. As a
result, Cu?* metallated azurin does not fold reversibly in the laboratory [60]; thus,
a thorough investigation of how the metal center influences the protein’s stability
and folding dynamics is very difficult. Fortunately, Zn?* can be exchanged for
copper without significant change to the rigid structure of azurin [58, 61]. Because
zinc is essentially redox inactive, a more detailed assessment of the metal’s role
in the folding landscape can be performed for this system. Moreover, the main
properties of the entatic state at the least from the geometrical point of view
still hold; the first coordination sphere as well as the intricate hydrogen bonding
network that constitutes the second coordination sphere is largely unperturbed by
the substitution and like copper its geometry is not optimal for zinc coordination.

Experiments on Zn?t metallated azurin revealed a significant non-linear
free energy relationship for the kinetics under both folding and unfolding con-
ditions. The curvature in the so-called “Chevron plot” appears to result from
transition-state movement. Recently, the protein engineering method (i.e., ¢-
value analysis) pioneered by Fersht [62, 63] was used to obtain snapshots of zinc-
substituted azurin’s dynamic folding nucleus with residue specific resolution. Anal-
ysis of several point mutated variants (typically involving hydrophobic-to-alanine
transformation) of zinc metallated azurin, covering all of the secondary structure
elements, revealed that the folding nucleus is spatially delocalized and gradually
becomes more native-like around an epicenter situated on residue L50 [15]. The
dramatic difference in kinetic folding behavior between apo-azurin, which has a
fixed and rather polarized folding nucleus [12, 9], and the malleability exhibited by
the zinc-form was rationalized in terms of changes on a common broad activation
barrier. The present chapter studies the folding landscape for Zn?t metallated
azurin using a free energy functional scheme appropriately modified to treat metal
coordination events to shed light on how the dynamic folding nucleus is involved

in forming the so-called entatic state.
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ITI.B The Theoretical Foundation

II1.B.1 The Basis of the Variational Approach

Our study of the dynamic folding nucleus and free energy profile of zinc-
metallated azurin uses a variational approach that explicitly incorporates the metal
coordination reactions. The current approach starts with a functional developed
by Portman, Takada, and Wolynes (PTW) [10, 11]. The PTW variational method
is based on a coarse-grain free energy functional that only considers native contacts
consistent with the dominance of native interactions required by the principle of
minimal frustration [64, 65, 5]. The Hamiltonian for the polymeric assembly, as
described in the previous chapter, is comprised of two terms, a residue centered
contact interaction H;,;, and a backbone scaffold term H_j,;, modeling a collapsed
stiff chain of monomers each representing a residue in the protein’s primary se-

quence (II1.1).
H = Hchain+Hint
Ha = S+ LB
chain 242 > il ijly 242 : 7

Hiy = ) eju(ry)

<ij>
3
u(r) = Y qfkexp[—ﬁa;ﬂj] (ITL.1)
k=s,i,l a

Here @ is a microscopic length taken to be the mean square distance
between adjacent monomers in the chain, B is an energy term conjugate to the
radius of gyration of the chain, r; is the position of monomer 7 in the polymer chain,
and the correlations between any two C, positions are given by I'"!(25). The
second term Hj,; in the energy functional contains a pairwise potential u(r;;) with
an interaction strength coefficient €;;. Again, we parameterized the ¢;; coefficients
using Miyazawa-Jernigan contact energies. The interaction potential u(r;;) is a
sum of three Gaussian potentials representing short (s), intermediate (i) and long

(1) range parts, where o; < «; < s are the long-, intermediate-, and short-range
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widths, respectively. The long-range term is attractive, while the intermediate-

and short-range terms are repulsive (i.e., 7, < 0; 7; > 0; 75 > 0, respectively).

IT1.B.2 Modeling the Coordination Reaction

To model the metallated form of azurin, the cofactor was explicitly incor-
porated into the functional and the corresponding coordination event during the
folding process was considered. First, the appropriate metal-ligand interactions
were simply treated as contacting positions carrying electrostatic interactions dur-
ing the folding event and as a separate step these ligands are allowed to undergo
coordination reactions to the Zn?*, which confer the appropriate binding stability.
Separating, these two steps resembles the differentiation between forming contact
pairs and inner-shell reorganization in inorganic solution reactions. For some met-
als there may be barriers for the coordination step, but these are small for Zn?*. To
describe the ligand-cofactor interactions, the C112 and H117 ligands were modeled
as permanent constituents of the backbone connections, while cofactor interactions
with residues G45 and H46 were allowed to form or break during the folding and
unfolding process. The methionine at position 121 was classified as a weakly inter-
acting ligand in the folded copper-metallated protein with an interaction distance
of 3.2A, whereas zinc-substituted azurin’s interaction distance was approximated
at 3.3A [58, 61, 66, 67]. Considering that the resolution provided by x-ray crystal-
lography for the Cu?" and Zn?" metallated azurin structures is presently limited
to 1.5, the thioether’s sulfur interactions with the cofactor are geometrically indis-
tinguishable in practice. Moreover, the role of M121 as a coordinating residue in
the unfolded state is still not settled [68, 59, 15, 69]. Accordingly, this particular
residue was not explicitly modeled as a coordinating residue, only as a contact-
ing residue. Furthermore, the limited resolution provided by our current model
restricts our assessment to a given geometric structure; as a result, the detailed
effects of changing the metal cofactor geometry on the folding landscape do not

directly enter, but instead only the overall energetics of the coordination process
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enter the model. To treat electronic structure effects on the folding landscape
explicitly would require extensive ab initio quantum mechanical calculation, or at

the very least, a highly refined semi-empirical quantum treatment.

ITI1.B.3 The Coordinating Stiff Chain

To model the C112 and H117 residues as constituents of the stiff chain,
we introduce an additional term to the usual polymer backbone term H.puin. A
fixed angle # between adjacent bonds based on the molecular structure is assumed
and explicitly modeled in the inverse of the monomer correlation I'. The usual

backbone scaffold term H,,;, has a I' matrix form as follows

1— 2
r=-"9Igry 9 [KR]2—197A

l+g 1-g? — g
1 -1 0
-1 2 -1
K*=
-1 2 -1
0 -1 1
and
1 -1 0 0
-1 1
A= 0 0
1 -1
o -~ 0 -1 1
where k, = —cosf, (/2 < 0 < 7), and K% is I' in terms of a Rouse

matrix, and A accounts for the polymer boundaries of the respective termini,
based on the stiff chain model [70]. To account for the cofactor’s interaction with

the native ligand set, the correlation matrix is modified to be ['},,:

r 0
Lhoto = +Cli12,112) = Ci12,120— Chi20,112)+ Ci7,117— Clii7,120) = Cli2g,117]
0 Cli29,129]
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Cli12,129] and C[i17,129) describes the position correlations between the zinc
ion and C, atom of residue 112 and 117. The values are rescaled with the ligand
length: C'[112,112] = —0[112,129] = —0[129,112] = 0.626, 0[117,117] = —0[117,129] =
—Chagiry = 0.577 and Cligg129) = Cliiz,112) + Cuiz,ii7. The resulting backbone
scaffold is represented by

3 3 9
H pain = 22 zZjﬁ'rholo,iﬂ"]’ + 2—a2B zi:ﬁ'

IT1.B.4 Modeling the Non-covalent Ligand Interactions

Experimentally, one finds the cofactor-ligand interactions confer an addi-
tional 7 kcal mol~! of stability to the folded protein [15]. The microscopic rates of
the individual metal-ligand association reactions are significantly larger than the
overall folding rate. This suggests the ligand cofactor interactions are most proba-
bly not rate-limiting during the folding process and can be treated as representing
a quasi-equilibrium. To model the folding in the absence of the coordination reac-
tions, the metal-ligand interactions with H46 imidazole and the carbonyl of G45
were first treated using a pairwise potential that would reflect only intramolecular
charge-charge interactions within the protein. To approximate the electrostatics
effects alone the weight of a given metal-ligand charged interaction was given by
a strength coefficient ¢;; [1], based on the Miyazawa-Jernigan scale [39] with well
depths set to 3 and 5 kcal mol ! for glycine-Zn?* and histidine-Zn?*, respectively.
These electrostatic well depths were chosen based on those for glycine or histidine
interacting with singly positively charged residues, which we take to approximate
the strength of the corresponding metal-ligand interactions, when there is no spe-
cific coordination.

To accurately fit the thermodynamics of the coordination in the con-
text of the folded protein a different metal-ligand interaction Hjncoora Was used.
When the residues become coordinated the contact interactions are increased in
strength to have coefficients with well depths of 13 kcal mol~! and 15 kcal mol~!

for glycine-Zn?* and histidine-Zn?* coordination, respectively. The ligation term
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when coordination occurs is written as

Hint,courd = 6[45,metal]?1'(7’[415,metal]) + 6[46,meta,l]u(r[llﬁﬂnetal])

where €445 metar) aNd €[46,metqy) are termed the coordinate contribution of the his-
tidine and glycine metal-ligand interactions, respectively. The difference between
€[45,metal] AN €46 metar) Teflect the expected difference between histidine nitrogen and
carbonyl oxygen coordination. The overall magnitude of the binding results in a
stability change at T = 1.91 due to the coordination event that is approximately 7
kcal mol~t. Thus, the coordination strength fits the experimental thermodynamics.
Notice that this is consistent with the entatic state hypothesis; the expected addi-
tional thermodynamic stability based solely on the coordination energies would be
considerably higher (i.e., 28 kcal mol~!) than the experimental value. This reflects
the entropic cost of forming the coordination sphere in the context of the folded

protein.

I11.B.5 Approximating the Free Energy Surface

The free energy surface of the zinc-metallated protein, is obtained using
a variational scheme based on a reference Hamiltonian H, as shown in previous
chapter. The reference Hamiltonian constrains the biopolymer chain and the Zn?*
ion to fluctuate to varying extents about their location in the native state: Hy =
H ppin + % > Ci(ri — T‘ZN )2. Here C; is a set of constraining variables that reflects
the local Debye-Waller factors for main-chain motions, thereby monitoring the
fluctuation of each residue about its native position rY. The Feynman-Gibbs-
Peierls-Bogoliubov variational principle is based on the reference Hamiltonian Hy

which yields variational free energy values as follows:
F[C] = —]CBT IOg Z() + <H — HO)O

Here, Z; is the partition function of the reference Hamiltonian and < H — Hy >¢

denotes the average with respect to HO. Using this relation, energies and en-
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tropies were computed for the metallated wild-type and several variants as de-

scribed by [41].

II1.C Results and Discussion

ITTI.C.1 The Folding Free Energy Landscape of Metallated Azurin: Qual-

itative Connection between Experiment and Theory

Figure II1.1 exhibits the predicted folding free energy profile, when mod-
ified to incorporate ligation effects, as a function of a single reaction coordinate.
Although, a priori the precise energetic consequences of the ligation events requires
extensive quantum calculations, the available experimentally-measured stabilities
of azurin with and without the zinc cofactor provides a reasonable parameteriza-
tion of the energies [12, 15]. In Figure III.1 we show the free energy profile of
zinc-metallated azurin first when the non-covalent ligands (i.e., G45 and H46) are
treated as having electrostatic interactions Hy,; alone (filled circles) as well as the
profile when the residues become coordinated H;nt coora (0pen squares). Coordina-
tion confers an additional 7 kcal mol™! of stability at T = 1.91. Very significant
stabilization in the free energy profile arising from the coordination contribution
already occur at the early transition state and native state ensembles. We see that,
the entatic state forms concomitantly with the folding nucleus.

The predicted folding routes and the position of the folding barrier of
Zn?* substituted azurin are shown as a function of temperature in Figure III.2.
This collection of folding profiles reveals a stark difference between the apo- and
holo-azurin system (Figure II1.2); specifically, for the Zn?** form the position of
the rate-limiting step in a given folding route varies as a function of temperature.
In contrast to what is found for the apo-enzyme, the folding barrier for the Zn?*
metallated protein progressively moves towards the native structure as temperature
increases, in good agreement with experimental observation. Interestingly, as the

temperature increases, the ligation intermediate also becomes more stable relative
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Figure II1.1: The free energy profile of zinc metallated azurin at temperature
T=1.91. The bold line represents the free energy profile when the metal-ligand in-
teractions were simply treated as contacting positions carrying electrostatic inter-
actions during the folding event. Dashed lines connect the corresponding positions
of the free energy profile of the metallated enzyme treated with the coordinate
contribution of the histidine and glycine metal-ligand interactions Hjpt coora (Open
squares).
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Figure II1.2: The free energy profile for metallated-azurin as a function of tem-
perature. The dashed-line follows the trajectory of the metallated folding nucleus
as function of temperature. From right to left the corresponding temperatures for
the folding barriers are ~ 1.86 (early i, black circle), ~ 1.96 (middle I, red circle),
and ~ 2.06 (late I, blue circle).
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to the metal-ligand interactions approximated by the electrostatics effects alone;
thus, the two differently interacting conformational ensembles probably can coexist
under some thermodynamic conditions (e.g., T ~ 1.91) (Figure II.1). At higher
temperature the ligation intermediate finally becomes more stable than the native
state based only on the charge-charge interaction; thus, the formation of the entatic

state makes a greater contribution to the folding reaction at higher temperatures.

II1.C.2 The Structural Interpretation of the Folding Dynamics: The
Rise of the Entatic State

Figure II1.3 shows the predicted mean square deviations (MSD) of each
residue from its native location in the transition state ensemble both as a func-
tion of sequence and of temperature, based on our modified variational scheme.
This plot provides a detailed structural interpretation of how the folding routes
change with temperature. As the MSD of a residue becomes smaller, the more
native-like that position becomes. This plot clearly shows that the folding nu-
cleus becomes less diffuse (more native-like) with increasing temperature, which
is consistent with the free energy folding routes shown in Figure III.2. Fixing our
attention on the primary coordination sphere, residue C112 shows the smallest
fluctuations throughout the dynamic transition, while H117 exhibits a progressive
decrease in variability relative to its mean position as the temperature increases,
finally assuming a near native-like fluctuation at T = 2.06. Interestingly, M121
(which was not explicitly modeled as a coordinating residue, but simply as a con-
tacting position) demonstrates the most dramatic change in relative position early
in the transition (i.e., from 1.86 to 1.96). Conversely, the non-covalent coordina-
tion ligands G45 and H46 simultaneously experience a marked change only later
in the dynamic transition (i.e., 1.96 to 2.06) (Figure IIL.3).

How does the geometric entatic state develop relative to the formation
of the complete scaffold? In the early transition state of the metallated protein,

aggregation of the C-terminal region (residues 85-128 or [-strands 5, 6, 7, 8)
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Figure I11.3: The local fluctuations around the native structure of members of the
transition state ensemble as measured by the mean square deviation of residues
as function of temperature (i.e., T=1.86 (early 1), 196 (middle }), and 2.06 (late
1) represented as blue, red, and black, respectively) and residue sequence number.
The fluctuation of a given residue constituting the fold barrier is given by the
covariance matrix B, where B;; = a™%(r;— < r; >)(r;— < r; >) and a is a scaling
factor equal to 3.8 A. The cofactor is represented by the set of triangles in the
right lower corner.
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provokes a more native-like geometry at the coordinating loop; in turn, the residues
of the N-terminus (residues 1-85 or S-strands 1, 2, 3, 4, and the a-helix) experience
a significant reduction in their fluctuations, completing the ligand set as well as the
proper geometry of the entatic state (Figure I11.3). A majority of the residues in the
primary coordination sphere are formed very close to their final location very early
in the moving transition state. This reflects a considerable degree of topological
frustration in the system giving a large entropic penalty as a result of forming
this early conformation of residues distant in sequence from each other. Concisely,
the canonical loop forms and establishes native-like geometry for residues C112,
H117, and possibly M121 but precedes the native interactions with ligands 45 and
46 that complete the entatic state. In our model, we have not explicitly included
a term for non-native interactions or misligations; therefore, we do not explicitly
show any possible energetic frustration around the coordination sphere that might
result from these factors. However, the entropic factor caused by the stringent
distance and geometry requirement by itself provides sufficient destabilization in

accord with the entatic mechanism.

II1.C.3 A Comparison of the Experimentally Inferred and Predicted
Folding Dynamics

The calculated free energy profiles already provide a correct qualitative
description of the folding event likewise they also give quantitative predictions.
The apparent activation free energy determined by the natural logarithms of the
observed (un)folding rates as a function of denaturating conditions often generate
linear — or in our case, more interestingly, non-linear — extra-thermodynamic free
energy relationships with stabilization free energies. These free energy relationships
yield the so-called Chevron plots. Each Chevron plot provides an overview of the
energetic consequences of mutations on the folding barrier as well as the relative
position of the folding barrier along the reaction coordinate. Reconstruction of

a non-linear (curved) Chevron plot is not trivial, requiring accurate prediction of
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absolute folding and unfolding rates. In the theoretical calculations, the balance
of folding reaction is altered by changing the temperature, while in the laboratory
the balance is changed using chemical denaturant.

In order to calculate the folding rate at a given temperature T, first one
identifies the folding barrier position at E* on the free energy profile (Figure II1.2).
Ef is the sum of the contact energies with the highest free energy. The sum of the
contact energies is an order parameter paralleling the more commonly employed
Q, which is appropriate for funneled landscapes. This choice of coordinates is
sensible if non-native interactions are neglected. In the solvent denatured situa-
tion nonspecific collapse also probably contributes to E*. Once the rate limiting
step (i.e., the highest folding barrier) is identified, the corresponding free energy
changes to the folding barrier AGif = —(G* — G,s) can be calculated. The rate
coefficients for folding k; and unfolding &, follow using the Arrhenius equation
kys = Aexp(—AGi, ;/kBT). where A the pre-factor is be calculated microscop-
ically [11]; we fit the parameter A in the present analysis. At last, the observed
relaxation rate kg5 is the sum of k; and k,. To simplify the analysis, the rate
coefficients at different temperatures were fit using a second-order polynomial in

the exponent of Eqn. (III1.2).
kp(T) = ky(T) exp [a x (1/T = 1/T1) + b x (1/T — 1/T3)’]

ku(T) = ku(To) exp [c x (1/T = 1/Ty) +d x (1/T — 1/Ty)’]

log kows(T) = log{k(T1)exp [a x (1/T = 1/Ty) + b x (1/T — 1/Th)*| +

k(Tp) exp [e x (/T = 1/Tp) +d x (1/T — 1/T,)?[}  (IIL2)

The parameters a and c give the linear dependence of folding and unfold-
ing, respectively; while, the observed curvature of the folding and unfolding arms
are reflected by the parameters b and d, respectively. The resulting in machina
Chevron plots (Figure I11.4) (i.e., for wild-type along with 14-point mutated vari-

ants) allow for a more thorough assessment of the transition state as a function of
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Figure II[.4: Theoretical Chevron plots: Ink,s versus temperature for 14
metallated-azurin variants provides an overview of the energetic consequences of
mutations on the folding barrier along with the relative position of 1.

temperature. In the fits the parameters a, b and c, d satisfy the stability require-
ment. So there are only two independent degrees of freedom in the fitting.

The calculated Chevrons allow one to compare the relative stability of
the folded protein, AAGx p and the folding barrier, AAG; p for each variant
compared to those of the wild-type. Combining the relative changes of the folding
barrier and protein stability yields theoretical phi-values ¢ = AAG; p/AAGy_p,
which can then be directly compared to experimentally determined phi-values ¢g
(Figure II1.5). A recent experimental study that employed ¢-value analysis, as a
function of discrete denaturant concentrations, already gave snapshots of the zinc-
metallated azurin’s dynamic folding nucleus with residue-specific resolution [15].
Figure II1.5 provides a direct comparison of the theoretically and experimentally
derived ¢-values, at discrete temperatures and GuHCI concentrations with corre-
sponding stabilities, respectively. This comparison clearly shows a solid correlation
between the experimentally and theoretically derived ¢-values at each condition
(i.e., GuHCI concentration or temperature, respectively). Moreover, this correla-
tion clearly shows that the present variational scheme is quite robust, and accu-
rately predicts the zinc-metallated azurin’s dynamic folding nucleus with residue-
specific resolution that is at least on par with that provided by the experimental

study.
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Figure I11.5: A direct comparison of theoretical and experimental ¢-values. cross
label represents @egperimentar 3 OM and @neoreticar 3t T=1.86 (early ), circle label
represents Pezperimental at 2M and @upeoreticr at T=1.96 (middle ), triangle label
represents Gegperimental at 4M and @upeoreticar at T=2.06 (late ). The correlation
coefficient between the calculated and experimental values is 0.77.

III.D The Effects of the Entatic State on the Dynamic

Folding Nucleus

Although, the detailed electronic structure aspects — i.e., the quantum
mechanical features — of forming the entatic state throughout the folding reaction
(specifically with regard to the redox active copper site) can not be addressed
explicitly using the model Hamiltonian we employ, our current approach would
provide a crude prediction of the effects of tuning the reduction potential through
metal substitution. Specifically, we can examine the redox phenomenon during
folding by varying the relative coordinate contribution in the model Hamiltonian.
Unfolded copper-metallated azurin has a reduction potential of ~0.5V, which can
be ascribed to the electron-donating properties of the C112 thoilate moiety. As the
protein folds, the progressive dehydration of the metal’s milieu (i.e., hydrophobic
encapsulation proximal to the active site) lowers the redox potential [55, 60]. Thus,
as the metallated-protein folds the redox active copper becomes less susceptible

to reduction. That is to say, the ligand interactions cooperatively change as the
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molecule becomes more native-like. Our calculations show the most dramatic

changes due to ligation occur early in the resulting free energy profile.

III.LE Conclusions

In this study, the folding dynamics of zinc-metallated P. aeruginosa
azurin was investigated via a free energy functional, which models the coordination
reaction explicitly. Both the qualitative form for the free energy profile and the
quantitative predictions of the energetic consequences of mutations derived from
our modified variational scheme agree very well with experimental observation [15].
The calculations show that the progressive movement of the folding barrier toward
the native state reflects the effects of topological frustration in forming the ge-
ometric entatic state and results in a non-linear free energy relationship (i.e., a
curved Chevron plot). The calculation clearly shows that at high temperature the
activation energy required to break the bonds between the cofactor and respective
ligands (i.e., resides G45 and H46) is much larger than the barrier to simply unfold
the polypeptide. This additional rate limiting event results in a kinetic bottleneck
which in turn changes the pattern of the overall free energy relationship for zinc
metallated-azurin from that of the apo-protein. By combining theoretical model-
ing and experimental studies in the laboratory we can see how forming the entatic
state is coupled to the dynamics of folding the metallated azurin at a level of detail

that cannot be currently achieved by experiments alone.
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IV

Modeling o/ Proteins and

Structure Prediction

The folding process is a great feat that evolution has achieved in biolog-
ical systems. How proteins fold into organized structures based on their primary
sequence has been a great mystery since the day Levinthal raised his puzzles. By
characterizing the energy landscapes of proteins with principles of the statistical
mechanics of disordered systems like spin glasses, a fundamental framework and
flexible language for studying these complex and evolved systems has emerged
over the last fifteen years or so. Experimental studies reveal that many aspects of
folding dynamics can be quantitatively captured in the framework of a funneled
energy landscape, as we illustrated in previous chapters.

Both fundamental molecular mechanisms underlying the folding and many
biological processes related to folding process have been widely investigated. Even
though the energy landscape theory has been widely accepted, ab-initio predic-
tion the 3D protein structure from primary sequence remains a challenge. While
successful predictions have been made for small size systems, there is still much
to learn about folding mechanisms and much work to do for achieving universally

reliable structure prediction, especially for large systems.

38
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IV.A Introduction of the Associative Memory Hamilto-

nian

The starting point for our structure prediction potential development
is the Associative Memory Hamiltonian (AMH) introduced by Friedrichs and
Wolynes [16]. The AMH is intrinsically a coarse-grained model, where each residue
is represented by carbon «, carbon 3, and oxygen atoms. The Hamiltonian con-
tains two major components: i) sequence-independent polymer physics terms to
describe the backbone interactions, ii) sequence-dependent knowledge-based po-
tentials optimized to achieve folding of a number of training proteins. The back-
bone interactions include chain-connectivity, excluded-volume, Ramachandran and
chirality potentials. The sequence-dependent interactions involve only C* — C?,
C® — C#, and CP — CP pairs. These interactions are grouped into three proxim-
ity classes according to the sequence distance between the interacting residues, as
follows: short range (3 < |i — j| < 5), medium range (5 < |i — j| < 8), and long
range (|i — j| > 8). For the short and medium classes, a pairwise interaction in the
target protein is associated with a corresponding pairwise interaction in memory
proteins. The associative part is then expressed as follows.

n
Hav=-)_ Z’Y(Pia by, Py, Pﬁ; (J —1)O(ri; — 7"5]")
boi<j

In order to characterize the geometric features of the backbone, terms
for amino acid chirality, an excluded volume term, and a combination of harmonic
terms, and SHAKE [71] constraints which maintain the planarity of the peptide
bond, and appropriate bond lengths, and bond angles are included in Hygckpone aS

follows.

Hyackbone = —(Apw Vo + AusVas + M Vy + AevVev + Abarm Viarm)
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Figure IV.1: The atomic structure of protein backbone. Carbon a and carbon 3
are labeled as C® and C?. The two torsional degrees of freedom are labeled as ®
and ¥ angle. The SHAKE algorithm is used to constrained the distance between
C?, C? and Oxygen atom as indicated by the blue lines. The planar geometry of
the residue can be used the rest of heavy atoms in the backbone.

IV.B Water-Mediated Potential for Interactions of Large

Sequence Distance

We have used the associative memory term for treating the interactions
within close sequence distance (< 8). For the long range proximity class, simple
square well potentials, unrelated to memory proteins [23, 24], are used. The terms
of this function are partitioned into two wells, based on the physical distance.
The first well covers the 4.5A to 6.5A interval, representing a simple contact be-
tween two residues. The second well covers the 6.5A to 9.5A interval, representing
protein-mediated or water-mediated interactions. To determine whether an inter-
action is protein or water mediated, the local density around each pair of residues
is computed from p; = 3", 0%. The water-mediation is switched on only when two
residues are both exposed to water based on the criterion of density threshhold

Pwrsh- When the water-mediation is switched off, protein-mediated interactions are

prot

7% and o4 to describe the above two types of interactions.

used. We use o "

O'EU-at = H (pi - pt'rsh) H (pj - pt”’h)’ (IV1)
prot  _ 1— Owat (IVQ)

iJ i

H (p; — pirsn) = 1/2(1 — tanh (k(p; — pirsn))) (Iv.3)
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k is a parameter that describes the sharpness of the switching tanh functions (k
was set to 5.0). The o switching functions are constructed in such a way, that
when the local density p for each residue increases beyond a threshold value of

wat switches smoothly from 1 to 0, whereas, 0P switches from 0 to 1.

Ptrsh- The o
To treat the well’s boundary, we introduce Hz-IjI and summarize the inter-

actions, Hgter, as follows:

Hwater = _1/2 Z QZI]I (O’g‘]{at’)/iu;-at + O'Z-TOt’Y%mt> s (IV4)
Y]
o1 = 1/4 (1 + tanh (m(rij — T,Inlm))) (1 + tanh (I{(TTIHI(M — Tz'j))) (IV.5)

where r;; is the distance between residues ¢ and j, 7, and 7y, indicate the
endpoints of corresponding wells (7, = 45A and 7., = 6.5A for the first well,

Tmin = 6.5A and Tmaz = 9.5A for the second well).

IV.C Hydrogen Bond Potential and Modeling of 5 Sheets

The hydrogen bonding pattern between residues is described by the fol-

lowing potential:

. o —(rON— < rON 5)2 (pOH_ < pOH )2
eHB = - — 4 _ i
() = i g ewp |~ —

0.25 x (14 tanh(r{’% ., —re)) X (14 tanh(rjclazj+2 —r.)) (IV.6)

X

where rf])-N denotes the distance from the carbonyl oxygen on residue i to the
nitrogen on residue j, and rgH denotes the distance from the oxygen on residue
7 to the bonded hydrogen on residue j. The geometric constraint is expressed by
the two hyperbolic tangent terms in Eqn. (IV.6). 7. is the geometry parameter
describing the minimum five-residue strand extension. When the length of five-
residue segment is less than r., the middle residue of this segment can hardly form
hydrogen bonds with other residues in the protein. Here, we choose 7. to be 12A.

An energy function for 8 sheet formation was developed by C. Hardin et

al. [22]. Here we adapt a similar formulation. Since § strands are usually quite
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extended in order to effectively form the hydrogen bonding network, we further
added a constraint term to allow only small curvature of the strand in the 3 sheet
formation. Furthermore, we set three sequence-separation based proximity classes
for hydrogen bonding potentials: for the first class the sequence distance for a pair
of interacting residues is less than 19; for the second class it is between 19 and 45;
for the third class is larger than 45. The hydrogen bonding potentials include three
terms to represent pairwise interactions, parallel nonadditivity, and antiparallel
nonadditivity, respectively. When both pairwise and nonadditive interactions are
present, the hydrogen bonds sometimes become too difficult to break, once they
have formed. In order to avoid strong local collapse of 5 strands, we only turned
on the two nonadditive terms (As and A3 terms) when the interacting residues are
both predicted to be in a § strand from a secondary structure prediction server
JPRED [72]. Here we hypothesize that these residues are the ones giving the most
energetic stabilization to the 3 sheets. A similar conjecture about the stabilization

of 8 strands has also been discussed for the folding mechanism of 3 hairpins [73].

V(i usg = —Ai(|7— )07 (i5) — As(as, ay, |7 — i[)O7 P ()07 P (5i) —
As(ai, aj, |5 —i))O7B(i5)O"B (5,1 + 2) (IV.7)

The A terms are given as follows:

A(lg =) =X (IV.8)
Ao(ai,aj, 15 —i]) = Ao — aq In Pypyi(a)+
a1 1n Papyi(a;) + 0.500(|j — 4|) In Pyg(ai, aj) —
0.25a3(|j — i|) In(Pyug(ait1, aj—i) +In Pygp(ai-1,a;41))]  (IV.9)
As(ai, a4, 1) —i]) = A3 — auIn Ppgp(aipr)—
agIn Py () — as(]7 — i|) In Pper (@iy1, a4) (IV.10)
where the © functions are shown in Eqn. (IV.6). The A; term describes the

pairwise part of the stabilization in forming the hydrogen bonds. The Ay term

gives an additional stabilization to an anti-parallel 5 hydrogen bonding and the
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A3 term gives an additional stabilization to parallel 8 patterns. First, Ay and Aj
depend on the types of amino acids labeled by a; and a;. A 20-letter code was
used to present the residue preference for the parallel or anti-parallel formation.
Moreover, the nonadditive terms Ay and A3 are only added when residue 7 and j
were both predicted to be in 3 strands using the secondary structure prediction
algorithm. The [j — 4| dependence of functions A;, Ay, and Az indicates that the
coefficients are set respectively for each proximity class. The detailed parameters

of A and « in the A term are described in the paper [24].

IV.D Spherical and Nonspherical Gyration Radius Poten-
tial

The spherical collapse potential is generally a harmonic potential to con-
trol the gyration radius of the protein. The native gyration radius is estimated by

the formula Rg%(N) = 2.2N%38. The harmonic potential is given by:

Aradius(Rg — Rg°)? , 0.75 < Rg/Rg° < 1.5
Erodius = )\radius(l.5Rgo — Rg0)2 , Rg/RgO >1.5
Aradius(0.75Rg% — Rg®)? |, Rg/Rg® < 0.75

We take Apagius = 10.0e. For nonspherical collapse potential, the gyration on each
axis is controlled. The expression and the cutoff are the same as for the spherical
potential. The Rg), Rgy, and Rg) were chosen to reflect the shape of the native
structures. In the case of T089, Rg? is chosen to be 1.40 x Rg’, RgJ and Rg) is

chosen to be Rg®/1.40. A rod-like shape is given by this setup of collapse potential.

IV.E Constrained Self-Consistent Optimization

A self-consistent optimization scheme was used to tune the various in-
teraction strengths in the Hamiltonian. The optimization is based on the mini-

mum frustration principle [74]. The energetic stabilization in the folding process
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is described by the energy gap, 6 F, between the molten globular states and the
native-like states. At the folding temperature 7%, the energy gain, 6 F, is balanced

by the loss of configurational entropy S.. Thus, the folding temperature T} is

expressed as ‘;—C [74]. Another important characteristic of the folding process is

the ruggedness of energy landscape, described by the energy variance of molten

globular states, vV AFE?. The ratio of this variance to the entropy of the molten

VAE?

globular states, T

provides an estimate of the polypeptide chain glass tran-
sition temperature 7T,. Maximizing the ratio of the folding temperature over the
glass transition temperature, %, provides a quantitative procedure to minimize
the frustration presented in a knowledge-based Hamiltonian for a training set of
proteins.

In this optimization scheme, additional constraints are imposed upon the
mean and the variance of the molten globular structures for each proximity class.
Thus, the optimization preserves the energy balance between different proximity
classes. We used 14 «/f proteins to “train” the Hamiltonian. Decoy structures
were self-consistently generated from samplings at high temperature, 1.27¢. The
native-like ensemble of structures was generated from biasing sampling to the na-

tive region. A Lagrangian functional, containing the constraints on the mean and

variance, was minimized for each proximity class [20, 24].

IV.F Simulated Annealing and Results Discussion

We carried out molecular dynamics simulations with temperature quench-
ing (simulated annealing) to search for low energy conformations. Three a//f pro-
teins, that were dissimilar to any of the training proteins, were used to test our
current model. For each protein, 24 simulated annealing runs were carried out.
Next, we define a critical assessment of structural similarity between the native
structure and the predicted structures based on all pairwise residues distances:

(rij—r3)*

Q = m Yicj—2€Xp [_T] A structure with ¢ = 1.0 corresponds
ij
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precisely to the native structure, while the conformations having () values near
0.4 are typically characterized by 5A RMSD fit to the native structure. We used
yet another similarity measure to compare conformations, the Z score calculated
with the combinatorial extension (CE) algorithm [75]. This score identifies general
topological similarity disregarding the sequence information. In general, a Z-score
of 3.5 indicates significant structural similarity, while strong structural similarity
is achieved for Z scores larger than 4.0.

Three test proteins were CASP targets, with indices T089, T120, and
T251. The crystal structure analysis for these proteins indicates diverse topologies.
For instance, the [ sheets in the test proteins are quite different in both their shapes
and their locations. T089 is a single domain from protein 1E4F (a CASP4 target),
taken from residues 86 to 166. In the T089 native structure, a long three-strand
B sheet is formed around the « helix. The second test protein, T120, having 115
residues, is an N-terminal domain of human XRCC4DNA repair protein, 1FU1, (a
CASP4 target). The native structure of this protein is comprised of two sandwich-
like 3 sheets with two helices connecting them. The third test protein, T251,
which contains 99 residues, was taken from protein, 1XG8 (a CASP6 target). This
protein is comprised from three outer helices, in addition to a four-strand [ sheet
mainly located in the core of the protein. An interesting aspect of the T089 and
T251 topology is the nonlocal nature of 3 sheets, with § strands separated far
apart in sequence. This makes these proteins challenging targets for structure
prediction.

The structure prediction results for three test proteins, evaluated using
the @ score, are summarized in Fig. IV.2. The @) scores are plotted in the sorted
order of numerical values. For each of the three test proteins, we reached confor-
mations with @) score greater than 0.35 within 24 short annealing runs. Using the
CE score measure, we found that about 10 annealing runs for each protein sampled
structures with Z larger than 3.7, corresponding to rather native topologies. When

the nonspherical collapse potential was added to constrain the overall topology of
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Figure IV.2: Best () sampled in 24 annealing runs for proteins T089, T120 and
T251. The spherical collapse potential is used for three proteins. The nonspherical
collapse potential is used for the case of T089.

one of the targets, T089, the prediction results were significantly improved. The
best ) score reached a high value of 0.45, exhibiting very strong similarity to the
native structure. Samplings of the best predicted structures for three test proteins
are presented in Fig. IV.3, IV.4, and IV.5. The native structures and the contact
maps are also shown for comparison. Both structural drawings and the corre-
sponding contact maps indicate that the predicted structures are very similar to
the native structures, with some discrepancy in the packing of secondary structure
elements.

Thermodynamically, the average energy decrease funnels toward the pro-
tein native state. On the other hand, the ruggedness of the energy landscape also
critically affects the folding dynamics. The energy ruggedness leads to a glass
transition at low temperatures needed to completely stabilize the native structure.
To quantify the emergence of glassy behavior, while lowering the temperature, we
evaluated @Q-autocorrelation functions (Fig. IV.6). This plot provides a dynamic
information on the ruggedness of the energy landscape at the given temperature
scale. With decreasing temperature, the valleys of the energy landscape become

too deep for the protein chain to overcome by simple thermal fluctuations, leading
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Figure IV.3: A predicted structure for protein T089 with the @ = 0.46 (CE:
Z=4.1) (left) and the contact map (right). The prediction was generated with the

nonspherical collapse potential.
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Figure IV.4: A predicted structure for protein T120 with the @ = 0.39 (CE: Z=4.7)
(left), the native structure (middle) and the contact map (right).

Prediction
2

20 40 o0 50
X-Ray Structure

Figure IV.5: A predicted structure for protein T251 with the @ = 0.37 (CE: Z=3.6)
(left), the native structure (middle) and the contact map (right).
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Figure IV.6: Q auto-correlation function at different temperatures for protein T089
(the collapse potential is spherical). The x-axis is time interval, in units of 450ps.

to trapping in low energy conformations. For protein T089, for example, when T
is lowered below 0.9, the system no longer efficiently explores the configurational
space on the simulation time scale. We found that the glass temperature for T089
with new developments is significantly lower than the results from the previous
AMH study on this system [22]. We attribute this lowering to the water medi-
ated interactions and the adjusted 8 potentials, that, in turn, help to decrease the
energy ruggedness of the molten-globular states, resulting in a lower glass tran-
sition below 7' = 0.9. Reducing the energy ruggedness allows efficient sampling
of native-like structures at lower temperatures, where the free energy favors more
native structures.

In Fig IV.7, we provide a sequence of folding snapshots to illustrate the
progression of conformations in the § sandwich-like protein T120. An initial col-
lapsed conformation is shown in Fig IV.7(a). As the temperature is decreased, the
helix starts to form with some alignment of § strands (Fig IV.7(b)). Partial for-
mation of the N-terminal and C-terminal sheets were observed (Figs IV.7(c) and
IV.7(d)). As temperature is further decreased, the full hydrogen bonding network

is formed, producing a very native-like conformation.
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Figure IV.7: A sequence of snapshots was taken from a simulated annealing tra-
jectory for protein T120. This trajectory eventually sampled a (Q=0.39 structure.
Snapshots (a-e) are sampled at T=1.75, 1.5, 1.48, 1.44 and 1.17 respectively.

IV.G Conclusion

In summary, our work demonstrates that correct modeling of cooperativ-
ity that is largely mediated by water is crucial for accurate structure predictions of
B sheets in /3 proteins. First, many globular interactions are involved in forming
B sheets. During the early events of protein folding, these tertiary interactions
may occur prior to locking of hydrogen bonds between [ strands. On the other
hand, in the case of helices, the local hydrogen bonds appear prior to forming those
globular interactions. Water mediated interactions play an important role for the
recognition between 3 strands. They help to reduce the topological frustration,
which in turn leads to more efficient sampling of structures having native-like pack-
ing. In o/ proteins, the early folding of « helices provides patches of hydrophobic
surface to nucleate the alignment of 5 strands. This mechanism can be incorpo-
rated into a general capillary picture in protein folding. The exact timing of events
between nucleation processes and the formation of secondary structures regulates
the collapse of proteins. In the early stages of protein folding, the collapse can
be nonspecific or specific. Our comparative analysis indicates that potentials that

favor specific over non-specific collapse significantly improve structure prediction.
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Water-mediated potentials may be combined with higher resolution models that
include more details of the side-chains that take into account efficient packing of

native-like protein structures.
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Nonequilibrium Dynamic
Self-Assembly of a

One-Dimensional Fiber

V.A Fibers in the Cell and Introduction of the Model

After folding, proteins participate in biological functions at multiple scales
of the architecture of the cell. The complexity inherited from proteins’ sequence
and structure heterogeneity enables proteins to assemble into molecular machines
and accomplish a wide variety of biological functions. At the supramolecular level,
one immediate task facing the cell is to provide the necessary mechanical support
for its compartments. Fibers like actin, microtubule and intermediate filaments are
the main structural elements in forming the large mechanical structures of cells [27,
31]. The fibers form by the assembly of many individual protein units. Among the
well-studied examples of this supramolecular assembly are microtubules and actin
filaments [76, 77, 28]. It is worth noticing that the assembly of the fibers requires
chemical energy. The chemical-mechanical process of assembly will store chemical
energy into the fiber structures for mechanical support and work. In general, to

describe the nonequilibrium characteristics exhibited by such molecular machines

ol
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presents a new aspect of statistical mechanics. In this Chapter, I focus on the
nonequilibrium assembly /disassembly of microtubules. I present a nonequilibrium
variational analysis that allows one to study the growth/decay dynamics and the
transition between these two states.

A microtubule is a helical structure of multiple protofilaments and starts (the
lateral bonds form a line of subunits with a pitch from the horizontal) with the a/3-
tubulin heterodimer as its repeating unit. An actin filament is a double-stranded
helical structure assembled from actin monomers. Rapid growth (polymerization)
and decay (depolymerization) of the fiber ends are often observed. The tran-
sition from growth to decay, called a catastrophe, and the transition from de-
cay to growth, called a rescue, are observed but with relatively low frequencies
(34, 35, 78, 79, 32, 80, 81]. These dynamic aspects of microtubule assembly and
the treadmill-like perpetual motion of actin filaments highlight the importance of
nonequilibrium effects in cellular biology. Energy dissipation is critical for these
processes: the adenosine triphosphate (ATP) or guanosine triphosphate (GTP),
together called NTP in our notation, when associated with actin monomers or one
of tubulin dimers is irreversibly hydrolyzed to adenosine diphosphate (ADP) or
guanosine diphosphate (GDP), together called NDP, during the process of assem-
bly.

Several models have been proposed to explain the nonequilibrium linear
assembly of fibers. These models have not yielded a complete understanding of
the behavior under all conditions that have been studied. The earliest approaches
used general equilibrium assembly models, e.g., [82, 30], based on a single one-
state picture [83, 84]. These models do not distinguish the NTP and NDP states
of a subunit. Later some of the nonequilibrium features of the growth and decay
were introduced. General two-state cap models have been studied by many re-
searchers [36, 85, 86, 87, 88, 89]. However, these two-state models require a large
set of parameters or introduce ad hoc hydrolysis rules or both. The cap has been

commonly treated in two ways: one approach assumes that the hydrolysis is di-
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rectly coupled with the growth, so only a single layer cap exists in microtubules.
The other puts no ad hoc constraints on the hydrolysis; however, this type of model
cannot readily explain the experimental observation that there is no apparent lag
of hydrolysis at high concentration of tubulin-GTP in solution. Experiments have
also shown that various lateral interactions may control the fiber dynamics [90, 91].
New developments based on lattice models with fewer hydrolysis rules have been
presented in recent works [38, 92, 93].

Although simulation studies on detailed lattice models can reproduce
many experimental observations, theoretical studies of simple nonequilibrium one-
dimensional models derived from the microtubule system can give insights into
nonequilibrium phenomena of self-assembly in general.

In this chapter, I will describe a general site-resolved model based on
simple chemical processes. Multiple conformational states for each unit are explic-
itly invoked in this model. A related interesting site-resolved model of actin-cycle
dynamics has recently been empirically derived [94]. However, a systematic way
to construct the dynamics of these models has not been formulated. Here, our
variational methods can provide such a systematic solution.

For microtubule systems, we simplify the description of the cylindrical
structure by treating it as a one-dimensional fiber system. At first glance our
model looks like a crude caricature of the sophisticated filament structure and the
dynamics of microtubules. Nevertheless, this level of description is quite suitable
for studies of dynamics as we can separately label different dynamic states for each
site and list specific transitions between these states. Different lateral interactions
of conformations can be treated as different states of each site in our linear system.
For simplicity, we introduce only two states for each site in our present model.
These two states can be thought of as the two values of a “spin” variable.

For nonequilibrium systems like these dynamical fibers, energy is con-
sumed and equilibrium theories are inapplicable so we cannot rely on thermody-

namics. Only dynamic rules are available at the coarse-grained level. While the
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usual methods of statistical thermodynamics are inapplicable, we can still apply
a nonequilibrium action principle to approximate the steady states of this system
since this method does not require the potential-like Hamiltonian. This approach
also gives a simpler treatment for rare events than is provided by the more com-
monly used approaches based on the Fokker-Planck equation. The dynamic transi-
tions between assembly and disassembly in microtubules have the typical features
of rare events in chemical reaction systems. Furthermore, the variational scheme
provides a simple presentation of an effective potential for the stationary state,

which gives physical insight into the pathways for these dynamic events.

V.B Many-Body Master Equation for the Fiber End

For simplicity of modeling, we ignore the details of the helical structure
of these fibers. We plan to discuss the cooperative effects related to lateral inter-
actions in detail elsewhere. The rate constants are effectively changed with lateral
cooperativity. It is quite straightforward to extend our approximations to treat
such quasi-linear structures. Here, we study a one-dimensional lattice model [95].
Each occupied site can either have a monomer in an NDP state or in an NTP
state labeled by |0) or |1) respectively. The state of the system can be expressed
as a sequence {si, So,...,Sy} with s; =0 or 1. We focus on the dynamics of the
fiber near one end, i.e., the system we study is in fact taken to be the last N
sites of one fiber end. The rest of sites in the fiber are assumed to be in the NDP
state. This latter assumption effectively serves as a boundary condition for the
many-site Master equation. Hence in this analysis the structure of the system can
be specified as a sequence of (s1, o, - - ., Sy), for instance, (000101101...1), etc.

When new monomers arrive at the end or a monomer dissociates from
the fiber’s end, we shift the system accordingly and always keep track of the states
of the last N sites.

The detailed dynamical rules for transitions of the fiber are listed in
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Table V.1: elemental rules of the microscopic dynamics

process index process description rate constant
c (1) = (0) NTP hydrolyzes to NDP k.
g (1) = (1,1) | NTP monomer is added to NTP end kg
r (0) = (0,1) | NTP monomer is added to NDP end k.
d (2,0) = (z) NDP end is removed, z =0, 1 kq
u (1) = (1,0) | NDP monomer is added to NTP end k,
v (0) = (0,0) | NDP monomer is added to NDP end k,
w (x,1) = (x) NTP end is removed, z = 0, 1 K

Table V.1. Although the last three processes (u, v and w) in Table V.1 are not
of high probability, including them makes our model more general and allows the
system to achieve equilibrium in special cases. For example, if £, is set to be zero,
we still can keep the equilibrium of the system when u or v are not zero. This also
allows a check of the numerical studies and of our intuition.

The rate coefficients for the major processes are kg, kq, k,, and k.. Fiber
growth is controlled microscopically by the process g called growth process. Fiber
decay is controlled microscopically by the process d called decay process. The
transition from decay to growth is microscopically controlled by the process r
called rescue. These are microscopic events that should not be confused with their
macroscopic results. The relative values of these rate coefficients control the state
of the system. For convenience, we will set the k. as our inverse time unit (unless
we specify the value of k. otherwise) and change the values of kg, k4, and &, which
are then dimensionless. As we demonstrate below, a combination of fast growing
and fast decaying dynamics (large k, and k4) and rare rescue (small k,) leads to
the dynamic instability phenomenon as seen in real systems such as microtubules.

We use dynamic operators to describe the effect of these processes on
the states of the fiber [96]. The change from the NDP state to the NTP state is
controlled by creation operator a*. The change from the NTP state to the NDP

state is controlled by annihilation operator a. |{2o) is denoted as the state of the



o6

fiber with every site in the NDP state. With these conventions a state vector of
the fiber can be written as

N

|¢51,52,...,sN H sJ |Q0 (V]-)

Using these as basis vectors, we can write the state ensemble [¢) as a

linear combination

|w> = Z 051;325“'53N|¢31;527---75N> (VZ)
{s}=0,1

where cy, s, .. sy 1s the probability of finding the fiber at the ¢, 4, . s\ state.

SN

The growth process and the decay process can both be expressed in the
form of shift operators. The shift operators for the growth process are denoted
as b7 and bP for the association of an NTP monomer and an NDP monomer
respectively. The shift operator for the decay process is denoted as bS. These

shift operators can be explicitly written as functions of creation and annihilation

operators.

BT|¢51,32,...,5N H 81+1A+ |QO> (V3)

b2 |G, 59sn) = H +)si+110) (V.4)

0% Gs1,spn) = 1 (@)% |20) (V.5)

j=2
The shift operators T (IAJD ) represent the following joint dynamic events. When
a monomer is added to the fiber, the operator b7 (b°) assigns the NTP (NDP)
as the new state of the Nth site (the Nth site is the tip site of the fiber end).
Simultaneously we shift the previous state of the ith site to the (i — 1)th site
(1=2,...,N). The previous state of the first site will no longer be considered as
part of the system. When dissociation of a unit from the tip occurs, the operator bS
will shift the previous state of the ith site to the (i+1)thsite (i = 1,..., N—1). The

state of the first site will now be assigned as the NDP state based on the boundary
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condition. The shifting operators intrinsically present the linear connectivity of
the fiber and correlate the states between neighbour sites.
Given the above operator formulation, the evolution equation for the state

of the last NN sites of the fiber is written as

0 -
1) = ~LI) (V.6)

where the rate operator L is:

~

ko(atan — 0 afan) + ke (anaky — b anak) + ka(anad, — bayag) +

ko(ahay — bPakay) + ky(analy — bPanal) + kw(ahay — bakay) (V.7)

The operator form of the Master equation is given by Equation V.6. The first term
in each bracket reduces the probability at one state while the second term increases
by the same amount the probability at other states to keep the total probability

conserved.

V.B.1 Exact Numerical Results for Finite Fiber End

In the following sections, we often set k,, k, and k,, to zero. As a result,
the system does not satisfy detailed balance. Nevertheless we find only one sta-
tionary solution corresponding to the zero eigenvalue with the non-Hermitian and
nondecomposable transfer matrix of the Master equation [97]. The other eigen-
values are transient modes whose amplitudes will decay to zero in the long time
limit. For modest size systems we still can numerically diagonalize the matrix for
a wide range of parameters.

For a system of size /N, the number of the microscopic fiber states is
2N which is the linear size of the transfer matrix. The necessary computation
resource increases exponentially with the system size. So it is difficult to obtain

exact solutions for large systems. When the system has eight sites, the dimension

of the transfer matrix is 28 x 28. The diagonalization of such a matrix is a simple
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logikd)

log(kg)

Figure V.1: The critical surface of vanishing mean velocity found using the exact
solutions for a finite length of fiber end. The system size N is 8. The coordinates
of the parameter space are the logarithms of kg, k, and k4. The color bar indicates
the value of logk,. k. is set to be 1.0. Above the surface, the mean velocity is
positive (growth) and below the surface, the mean velocity is negative (decay).

task. However, the diagonalization for a ten-site system is much more difficult. We
present results for an eight-site system with the exact numerical method. We then
use this exact solution to provide a test bed for approximation methods, which
can then be used to solve larger systems.

We also calculate the mean growth velocity o, (positive sign) or the decay
velocity _ (negative sign) by ensemble averaging the velocity using these exact
solutions, where v, = (k,aNan + kranay)|y) and v_ = kganaf|v). In Figure V.1
we plot the critical surface of zero mean velocity for a range of values of parameters.
In this phase diagram, beyond the critical surface, the fiber grows on average; on
the other side of the critical surface, the fiber decays on average. The critical
surface shows how the rate constants kg, k., and k4 influence the average growth
or decay rate of the fiber. When £, is large, the value of £, is small on the critical

surface. So a small change of the critical k, can switch the sign of the mean velocity.

V.B.2 Mean Field Approximation of the Trial Function V¥4

The exact solution described above is limited by the size of the system.
To treat a larger system, a more computationally efficient method is required.

In the following two sections, we study a simple approach based on a variational



99

principle for nonequilibrium systems [26]. Two trial functions are proposed for use
with the variational method. The procedure for setting trial function ¥, is given
in this section and the procedure for an improved trial function ¥ is given in next
section.

A variational method for nonequilibrium systems can be used much like
Rayleigh-Ritz variational method in quantum mechanics. In contrast to the Rayleigh-
Ritz method for hermitian problems, not one but two trial vectors have to be
constructed. For the nonequilibrium system, the right vector is related to the
probability distribution of the system, while the left vector is an auxiliary vector

needed for the variational procedure. In the trial function W4, first we introduce

a set of parameters {ay, as,as,...,ayn} to denote the NTP probabilities at each
site. The auxiliary parameters are then given as {af,af, ok, ... ok }. Using these

parameters, we construct the left and right state vectors of our ansatz as

") = Q1+ ; a;'si) (V.8)
¥(a)) = l:Il[aiéi + (1 —a)(1 = 38)][) (V.9)

Here [Q) = Y1 [ds1,52,...5n) and 3; = a;a; [98]. Note that the vector
|1} characterizes the only probability distribution of the system based on the
parameters {a}.

Given the rate operator described above, we write out the effective action
as (YL, Lp(a)) [26]. In fact, the variation of this effective action yields the moment

closure equations, i.e. 3, 87’525?)aj = Vi(at), where m;(a) = (Q3;]v()) and

Vi(a) = <Q|§Zf/\w(a)> The dynamics of each moment of the distribution is listed
as follows:

Site N:
—dN = kcozN — kd(l — O!N)CYN_l — k,«(]_ — (l/N) -+ kuaN —+ kw(l/N(l — aN—l)
Site N-1:

—O'!N,1 = kCO./N,1 — (kg -+ ku)a/N(l — O,/Nfl) + (kr + k‘v)(l — O!N)O!Nfl +
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T T T
o0—0 kg: 1 ,kd: 1 ,kr: 1,exact
| oo kg:l,kdzl,krzl,mf
PN kg:l,kd=1,k‘_=0.01,exact X
NN kg: Lk=1k=0.01,mf g
I kg: 1 O,kd=] ,kr=0.01 .exact VA
[ kg:lO,kdzl,kI:OA()l,mf /

e
0
T

o
=N
T

Prob. of NTP

Prob. (mean-field)
<o
=
T T

Prob. (exact)

Figure V.2: Left Panel: The correlation of microscopic state probabilities between
the exact solutions and the solutions of the trial function ¥,4. There are total
28 = 256 states for the eight-site system. The rate parameters are k. = k, =
kq = k, = 1.0. Right Panel: The comparison of the NTP probability of each site
between the exact solutions and the solutions of the trial function ¥, at several
parameter sets is shown.

ka(1 — an)(an—1 —ay_2) + kyan(an_1 — ay_2)
Site 2 1,N-1,N:

—&; = ke + (kg + ku)an (o — 1) + (ke + ky) (1 — an) (0 — aig1) +

ka(1 —an)(o — aio1) + kyan(a; — 041)
Site 1:

—b&q = keog + (kg + ky)an(on — o) + (ky + k) (1 — an) (1 — az) +

ka(l — an)oq + kyanag

The moment equation array has an asymmetric form. Site N and site
N —1 are shown differently because these sites are directly coupled to the growth,
decay, and rescue processes. Site 1 also has a special form due to the boundary
condition.

In Figure V.2, we compare the results from the exact solutions with the
results of the first trial function. For a range of parameters of k4, kq, and k,, the

two solutions agree well with each other. However, for the parameters with relative
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large k, and k4 but small k,, we have found that this trial function breaks down
when compared to the exact solution. This breaking down, much as other mean-
field treatments, fails because the correlation between the sites becomes important
and large fluctuations emerge in the dynamics. The large fluctuation signals the
onset of two different long-lived dynamic states: one of which is fast growing and
the other fast decaying. In the above comparisons, we use the tip site’s NTP
probability to judge whether two solutions agree or not. We choose this property
because the tip site responds quickly to the fluctuation and influences other sites
of the fiber. We have set the criterion for “agreement” as follows: we calculate the
relative difference of the tip site’s NTP probability between the solutions of ¥ 4, and
the exact solutions. If the relative difference is less than 5%, we regard the solution
of W4 as agreeing with the exact solution. In Figure V.3, k, is scanned for two-
dimensional parameter space (logky, log kq). The critical value of k, is identified
by the minimum £k, giving the consistent solutions by the above criterion. We

summarize these critical values in Figure V.3.

V.B.3 The Tip-Site Dependent Trial Function ¥y

In the above formulation, the coupling between different sites is included
in the shift operators in the processes of growth, rescue, and decay. However, we
found that the NTP state probabilities of a growing fiber can be quiet different
from those of a decaying fiber in the exact solution as shown in Figure V.2(b).
It is important to introduce the bistable character of growth and decay dynamic
to improve the trial functions. We also know that the tip site (site N) directly
influences the ongoing dynamics. Thus we must pay special attention to the Nth
site’s state in the dynamics in the improved ansatz Vp.

First, we denote the NTP probability of the Nth site by the parameter
~. Thus the Nth site has the probability of v to be in the NTP state and the
probability of 1 — « to be in the NDP state. More importantly, the fiber will

generally access different processes for different states of the Nth site. Thus we
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log(kr)

0
log(kd)

Figure V.3: The comparison between the solutions of the trial function ¥, with
the exact solutions for the eight-site system. The x axis and the y axis are log kg4
and log k, respectively. For each point (log kg4, log k,) on the surface, we scan log &,
The color indicates the critical value of log k., above which the trial function W4
works well and below which ¥4 fails by the judgment defined above: the relative
difference of the tip site’s NTP probability between the solutions of ¥, and the
exact solutions less than 5%. When the critical value of logk, is less than —3.0,
we only show the value of —3.0 in the figure.

should have two sets of NTP probabilities {c, 8} for the sites 1,2,...,N — 1
based on the state of the Nth site. When the Nth site is in the NTP state, we
denote the NTP state probabilities of sites (1,2,..., N — 1) as (a1, g, ..., an_1)-
When the Nth site is in the NDP state, we denote the NTP state probabilities of
sites (1,2,...,N—1) as (f1, Bo, ..., Bn—1). We can see that the two-state dynamic
features are present in this formulation. Compared to the total of N degrees of
freedom in the trial function Wy, the trial function ¥z has 2N — 1 independent
state variables. It is much like a configurational interaction (CI) wave function in
quantum chemistry.

Using the same variational strategy described in the previous section, the
ansatz Vg is now written as follows:

N-1 N-1

(WP (@M)L = QA +7"8n + D af8ibsy 0+ D BF8i0sx 1) (V.10)

=1 =1
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(@) = (=) Tl o+ (1= )1 = 80060l +
¥ T84+ (- )01~ 30J6 1) (V1)

Again the left eigenvector yields a moment closure of {a;}, {3;}, and 7.
The following equations (V.12) are derived from the variations of {*}, {8F}, and

vE. Note that ag =0, ay =0, By =0, and By = 1.

(=7 = ke(ai —78) +ka(1 —7)(1 — an_1) (@i — ai1) + kuy(a; — Biv1) +

ky(L—v) (i — aiy1) + kuy(1 = Byv—1) (i — Bi1) (V.12)
7@ = keyBi +kgy(Bi — Biv1) + ka(1 = v)an—1(Bi — ai—y) +
kr(1 = 7)(B; — aig1) + kwyBn-1(Bi — Biz1) (V.13)

’3/ = —kc’)/ + kd(l — ’)/)aN,1 + kr(l — ’}/) — ku’y — kw’)/(l — ﬂNfl) (V14)

In Figure V.4, we compare the solutions of ¥ with the exact solutions
for the parameter sets where the trial function ¥4 failed. The solutions of the trial
function ¥p agree well with the exact solutions.

Furthermore, we notice that the NTP and the NDP states at site IV are
followed by different NTP state probabilities for the sites (1,2,...,N —1). When
the Nth site is in the NTP state, sites (1,2,..., N — 1) have high probabilities of
being in the NTP state. When the Nth site is in the NDP state, sites (1,2,..., N—
1) have very small probabilities of being in the NTP state. So the two sets of state
probability distributions are coupled with different states of the Nth site.

We also scanned the solutions for the trial functions ¥g in the same
parameter region as shown in Figure V.3 and compared these with the exact solu-
tions. The trial function ¥ works much better than the trial function ¥ 4. The
solutions of Wp satisfies the same criterion for W4 in the whole scanned region

including the regions for which W, failed.
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0.8 G—>o Trial B, Site 8 is NTP
&—= Trial B, Site 8 is NDP
G- © Exact, Site 8 is NTP

————— & Exact, Site 8 is NDP

02 -

Figure V.4: The comparison between the solution of the trial function ¥p and the
exact results. The rate parameters are k. = 1.0, k£, = 10.0, k; = 1.0, and k, = 0.01
respectively. Bold lines are the solution from trial function ¥p; dash lines are the
solution from the exact method. The NTP probabilities of sites (1,2,..., N — 1)
when site N is NDP are labeled with diamond; the corresponding NTP probabil-
ities when site N is NTP are labeled with circle. The NDP probability of site N
1s 0.979 in the exact solution and 0.968 in the solution of the trial function ¥g. It
is clear that when the Nth site is NDP, the rest sites of the fiber have very small
probabilities of being NTP.
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V.C Dynamical Barriers and Transition Rates

Considering the large number of microscopic states and the complicated
transitions between the steady states, one approach is to use an effective reaction
coordinate to project the dynamics of the many-site states. The choice of reaction
coordinate for such a complex dynamic system can be tricky. The parameter 7 in
the trial function ¥ g provides one choice. However, it is not a very good indicator
of the state of the chain. This can be easily seen: for example, the fiber state
(11...1110) is most likely in the growth state because all sites except the very tip
are in the N'TP state and the zero at the tip can be dropped easily. We need a
collective reaction coordinate to describe the overall features of the fiber’s state.
An obvious choice is to count the number of sites in the NTP state. With such a
description method much detailed information about the site positions is ignored,
but the counting in any event is simple and straightforward for display. In this
section, we will therefore use the number of sites in the NTP state as the reaction
coordinate. Note that the density of states will be not be uniform along this
reaction coordinate.

The probability of every microscopic fiber state can be calculated from
the stationary results of the trial function ¥g. We simply multiply the state
probability of each site in the fiber to give the probability of the corresponding
fiber state. The fiber states with same number of NTPs belong to the same point
on our reaction coordinate. The probabilities of these fiber states are summed to
give the probability of the reaction coordinate. After the probability distribution
is given, we can define an effective potential through the negative logarithm of
these probabilities.

Before showing the detailed results, we again discuss the issue of the
boundary condition. It is important to use a sufficiently large /N so as not to bring
in strong boundary effects. In Figure V.5, we show the change of the effective

potentials as we increase the system size N. When the system size increases, the
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Effective potential

GTP counts

Figure V.5: The boundary effect on the shape of the effective potential. The rate
parameters are k., = 1.0, k, = 20.0, k4 = 1.0, and k, = 0.1 respectively. The x
coordinate is the NTP count. NTP count expresses how many sites are in NTP
state in our system, which is exactly our reaction coordinates of effective potentials.
The y coordinate is the effective potential. The trend of the curves indicates the
convergence of the effective potential.

effective potential converges to an ideal potential with no boundary effects. Based
on this comparison, a reasonable system size /N can be chosen.

Now we start to investigate a 26-site system and the boundary condition
has already been tested in each case. We study how £, and £, influence the effective
potential in Figure V.6. The rate k, is taken to be one or two orders less than the
growth rate or decay rate as indicated in experiments.

In Figure V.6 (Left Panel), we keep k., k4, and k, as constants and change
the value of k;. We see that only when k4 is small enough can two basins exist at
the same time. We term these the NDP-populated basin and the NTP-populated
basin. In Figure V.6 (Right Panel), we keep k., kq, and k, as constants and change
the value of k;. We now see that when we decrease k,, the potential starts to tilt
toward the origin. So the fiber state with all sites in NDP states becomes dominant.
We also note that when £k, is larger than k4 (see the left panel of Figure V.6), there
are many sites of the fiber now in the NTP state; when k, is larger than k, (see

the right panel of Figure V.6), there are only a small number of sites in the NTP
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Effective potential
Effective potential

10
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Figure V.6: The effective potentials of a 26-site system in different parameter sets
are shown as functions of the NTP count. Left: k4 varies and k. = 1.0, k, = 20.0,
k, = 0.1. Right: k4 varies and k. = 1.0, kq = 20.0, k, = 0.1.

state.

We can also calculate the mean cap length from the ensemble of micro-
scopic states. Here, the cap length describes the number of the terminal consecutive
NTPs. In Figure V.7, the cap length is plotted as a function of the effective re-
action coordinate. A sharp increment of the cap length indicates the appearance
of the NTP cap and indicates the transition from decay to growth of the fibers.
Furthermore, we observed that at the most probable state of the NTP-populated
basin, not all the sites in the NTP state belong to the cap. Instead, many sites
that are disconnected from the cap region still have NTPs bound. Apparently
these states are entropically favored over the fiber state with all NTPs in the cap.

After we project the fiber states into the simple effective reaction coordi-
nate, the complex dynamics of the fiber can be approximated by the dynamics of
this effective potential. We first present the discrete effective potential numerically.

Then, we approximate the effective diffusion coefficient as

e ) 00
D;=05x[kexi+kgx -zt +ky
-0 (?)

The subscript ¢ describes the position on the effective reaction coordinate and

] (V.15)

@D = WLM), This effective diffusion coefficient is due to the chemical reaction
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o—o avg. cap size, k =0.1
o—o avg. cap size, kr=1A0

Cap size
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Figure V.7: The mean cap length for two sets of parameters. The rate parameters
are k, = 1.0, k; = 20.0, and kq = 1.0 respectively. k, is indicated in the figure.
The system size is 26. The mean cap length is plotted as the solid lines. For
comparison, the corresponding effective potentials are plotted with dash lines.

noise. We see that the diffusion coefficient does not depend on the k4, because the
decay of NDP at the tip does not change the amount of NTP in the system.
Moreover, the diffusion coefficients are not homogeneous, as shown in Figure V.8.

The effective potential may present only one basin. The dynamics on this
type of effective potential is simply a relaxation process. However, rare “thermal”
jumps to high positions on the potential can cause the fiber to behave differently.
Further discussion of fiber dynamics under a single-basin potential is detailed in
the next section.

For the effective potential with dual basins, transitions between these
two states become the essential dynamic feature of the system. The jumping rate
from the NDP-populated basin to the NTP-populated basin corresponds to the
macroscopic rescue rate and the jumping rate of the macroscopic reverse process
corresponds to the macroscopic catastrophe occurrence rate. In this case, a one-
dimensional Smoluchowski equation [97] can be solved numerically to estimate the
jumping rates between the NDP-populated basin and NTP-populated basin. We

estimate the jumping rate from one basin to the other assuming it is a Poisson
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Figure V.8: The diffusion coefficient defined by equation V.15 is shown as a func-
tion of the NTP counts. The rate parameters: k, = 1.0, k, = 20.0, and k4 = 1.0.

Table V.2: Compare the jump rate with the slowest mode in exact solution

rate parameters the modulus of slowest mode | jumping rate
ke=0.1,k; =2.0,kg =0.1,k, = 0.05 0.074 0.050
ke=0.1,k, =1.0,kq =0.1,k, = 0.02 0.047 0.024

process.

We then can compare the effective potential-derived jumping rate in the
eight-site system with the modulus of the slowest transient mode from the exact
solution. The rate coefficients k., kq, k,, and k4 are given in the first column of
Table V.2. The double basin potential is presented for both parameter sets. We
note that the modulus of the slowest transient mode is not exactly equivalent to
the jumping rates between two basins. However, they should be on the same time
scale because the jumping between two basins is the major process of the non-zero
transient modes. Table V.2 shows that both rates are at the scale of 1072. From
this comparison, the effective potential treatment of nonequilibrium states seems

able to capture the characteristic time-scale of the dynamics in our model.
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V.D Relation between the Catastrophe/Rescue Rate and
the Growth Rate

In microtubule systems, dynamic instability has been observed. The
switching between the two dynamic states occurs on the time scale of minutes.
Both the growth and the decay are much faster than this switching frequency. Ex-
periments [33, 35| also show that the decay rate is generally 10 to 100 fold faster
than the growth rate. The hydrolysis rate has been estimated to be on the same
time scale as the growth rate [99, 100, 101, 102]. The microscopic rescue rate is
estimated to be smaller than the hydrolysis rate by a factor of 10 to 100 fold. We
may set the dimensionless rate constants consistent with these estimated ratios
and set the hydrolysis rate k. to be 1.0. The decay rate k; is set to be 20.0 and
the microscopic rescue rate k, is set to be 0.1. Finally the catastrophe rate and
rescue rate are estimated based on the effective potential.

We have already plotted the effective potentials with this set of the pa-
rameters in Figure V.6 (Right Panel). We observe that when kg is 1.0, the effective
potential has only one minimum at zero NTP counts. When £k, increases to 2.0,
the second minimum appears. When k, becomes larger than 2.0, the new basin
becomes the only one on the effective potential. This shift of the minimum followed
by increasing k, value shows the dynamic transition between decay and growth.
The critical value of k4 is between 1.0 and 2.0.

When £, increases to 3.0, the single minimum is located in the growth
region as shown in Figure V.6 (Right Panel). We can calculate the mean growth
velocity for each position of the reaction coordinate. Based on the sign of mean
growth velocity, we thus separate the coordinate space into growth and decay
regions. The jumps from the positive growth minimum to reach the negative mean
growth velocity region can be regarded as catastrophe events. The catastrophe
involves climbing the barrier of the effective potential. In Figure V.9, we plot the

jumping rate to reach the negative mean velocity region versus k,. The catastrophe
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Figure V.9: The catastrophe rate as a function of k,. Again the system size is 26.

rate is approximately linearly proportional to the growth rate. This result agrees

with experimental observations on microtubule systems [99].

V.E Conclusion and Outlook

We present a discrete linear model to study the nonequilibrium assembly
of biological fibers. The model’s focus is on the the first N sites of the growing
dynamic fiber. By tracing the paths forming the microscopic structures of this
dynamic region, the model captures the macroscopic kinetics of the system.

In nonequilibrium fiber systems, we cannot use equilibrium statistical
thermodynamics. Only dynamic rules are available. The evolution of the classi-
cal system can be expressed in an operator formulation in analogy to quantum
field theory. However, the ‘Hamiltonian’ L is non-Hermitian for our system. We
applied the variational method for non-Hermitian dissipative systems introduced
by Eyink [26] to study this system using different trial functions. The current
study mainly focused on the stationary solutions. A dynamic analysis based on
the minimization of so-called effective action is an interesting prospect for future

study.
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An “effective potential” is used to connect the steady state probability
distributions with the rate of rare events. This projection of state distributions
into simple potentials can be quite useful for studying far-from-equilibrium systems
in general.

Using reasonable ratios between rate coefficients according to microtubule
experiments, the model captures some phenomenological features of microtubule
assembly. The present model may be adapted to study other one-dimensional fiber
assembly processes and to study assembly in the more complicated environment in
which interactions with other fibers must be included. One may introduce multiple
species to study the regulation of the heterogeneous assembly of the cytoskeleton.
In particular a complete model will need to introduce other microtubule associated
proteins (MAPs) implicitly or explicitly to mimic real cells. Many improvements
are needed to extend the studies to the cytoskeleton, but the mathematical meth-
ods we have introduced should make such an extension practical. Other quasi-

linear systems that include lateral interactions are also being investigated.
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VI

Final Remarks

To understand biological processes at molecular level, we need to char-
acterize not only structures of individual molecules, but also the dynamics at
supramolecular level. Accurately predicting protein structures from primary se-
quences was the first goal, that has led us into the postgenomic era. While the
conceptual bottlenecks have been overcome, in order to routinely be successful, we
still will need better models and faster algorithms capable of dealing with energy
calculation of diverse conformations of heterogeneous biomolecules. Beyond the
level of individual molecules, the next step in postgenomic theory is to charac-
terize how biomolecules interact with each other, to characterize which processes
are functional and which only contribute to the noise. Even though biomolecules
usually exist at equilibrium, biological functions are often achieved when the sys-
tems are perturbed from equilibrium into nonequilibrium. Studying nonequilib-
rium structure formation will be another major task in biophysics.

In this thesis, I first discussed protein folding problems and near equi-
librium energy landscape theory. This framework essentially present a picture of
the thermodynamic states for proteins that follows from the funneled energy land-
scape. Such a global landscape may be characterized quantitatively by 7T and
T whose relation encodes the minimal frustration principle, requiring essentially

that T > T for natural proteins. This principle was integrated into the polymer
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model used in Chapter 2 and 3. Free energy profiles were then found from this
landscape via variational free energy functional.

In chapter 4, I presented studies using energy landscape ideas for predict-
ing protein structures. A coarse-grained model implicitly modeling water is intro-
duced to treat solvation and water mediated interactions. Topological preference
is introduced in S-strand modeling. With this coarse-grained model, samplings of
energy landscape can be performed efficiently. Additional sources of cooperativ-
ity may be needed to achieve a universally predictive model. Many-body terms
may allow the native interactions to be much more favored compared to wrong
interactions than pairwise models allow. The extra stabilization from cooperative
many-body interactions does not have to be very big compared to pairwise energy
in order to more precisely form the native state. The correct cooperativity will not
only stabilize the native structure, but also should destabilize many of the wrong
traps.

Besides complexity intrinsic to information-carrying macromolecules, the
other characteristic of biological systems is that they are often far from equilib-
rium. Chemical energy is consumed to realize biological functions, leading to the
nonequilibrium state. On the other hand, fluctuations should not be ignored at the
scale of biomolecular machines. Sometimes fluctuation are critical to functionality.
In chapter 5, I presented a study using a nonequilibrium variational principle to
study cellular assembly processes, focusing on the nonequilibrium growth/decay
of one-dimensional fiber. A dynamic network of many such fibers provides the
mechanical support for the cellular compartments. The extension of this approach

to the network level is a task in the future.
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