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Abstract

Background—In populations with prevalent chronic kidney disease (CKD), lower serum

bicarbonate is associated with more rapid CKD progression, but whether lower bicarbonate is also

associated with risk of incident estimated glomerular filtration rate (eGFR) <60 mL/min/1.73m2

and progression among community-living persons with predominantly preserved kidney function

is unknown.

Study Design—Longitudinal observational cohort study.

Setting & Participants—Well functioning community living elders aged 70–79 years at

inception.

Predictor—Serum bicarbonate measured at the time of collection by arterialized venous blood

sample using an arterial blood gas analyzer.

Outcomes—Change in eGFR, and new eGFR < 60 ml/min/1.73m2 and loss of ≥1 ml/min/

1.73m2 per year at follow-up.

Measurements—Linear and logistic regressions were used to evaluate associations of baseline

serum bicarbonate with change in eGFR and incident eGFR <60 mL/min/1.73m2.

Results—At baseline, mean eGFR was 84±16 (SD) mL/min/1.73m2, and serum bicarbonate was

25.2±1.9 mmol/L. Compared to participants with higher bicarbonate concentrations (23.0–28.0

mmol/L), those with bicarbonate concentrations < 23 mmol/L (n=85 [8%]) lost eGFR 0.55

(95%CI, 0.13–0.97) mL/min/1.73m2 per year faster in models adjusted for demographics, CKD

risk factors, baseline eGFR, and urine albumin-creatinine ratio. Among the 989 (92%) participants

with baseline eGFR>60 mL/min/1.73m2, 252 (25%) developed incident eGFR <60 mL/min/

1.73m2 at follow-up. Adjusting for the same covariates, participants with bicarbonate

concentrations < 23 mmol/L had nearly 2-fold greater odds of incident eGFR <60 mL/min/1.73m2

(OR, 1.72; 95% CI, 0.97–3.07) compared to those with higher bicarbonate concentrations.

Limitations—Only two measurements of kidney function separated by seven years and loss to

follow up due to intervening mortality in this elderly population.

Conclusions—Lower serum bicarbonate concentrations are independently associated with

decline in eGFR and incident eGFR <60 mL/min/1.73m2 in community-living older persons. If

confirmed, serum bicarbonate levels may give insights into kidney tubule health among persons
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with preserved eGFR and suggest a possible new target for intervention to prevent CKD

development.

Keywords

Acidosis; alkalosis; kidney disease; aging; risk factor; renal disease; disease progression; kidney
disease trajectory

The kidney plays a central role in maintenance of acid-base homeostasis. Proximal tubule

and collecting duct cells are responsible for bicarbonate reclamation from the urinary filtrate

and ammoniagenesis and jointly contribute to renal acid-base regulation. In advanced CKD,

the kidney’s ability to regulate acid-base homeostasis is impaired, frequently resulting in

metabolic acidosis.1, 2 The degree of acidosis may informrenal prognosis above and beyond

established glomerular markers of kidney function such as estimated glomerular filtration

rate (eGFR) and urine albumin-creatinine ratio (ACR). Among populations with prevalent

CKD, lower serum bicarbonate concentrations have been associated with CKD progression,

incident ESRD, and mortality in prior studies.3–9 In all but one of these,4 the association

remained statistically significant when adjusted for baseline eGFR or iothalamate GFR.

On average, overt acidosis is observed in relatively advanced CKD. However, there is

considerable heterogeneity, and modest decrements in serum bicarbonate are observed in

some individuals with mild reductions in kidney function.10, 11 Whether lower serum

bicarbonate concentrations may precede development of—and identify risk for—incident

eGFR <60 mL/min/1.73m2 is unknown. If so, then serum bicarbonate concentrations, a

readily available clinical test, may allow identification of individuals at higher risk for

incident eGFR <60 mL/min/1.73m2. Acidosis may also contribute to progression of kidney

disease12 and alkali therapy may be a preventive strategy in populations at high risk for

CKD progression. Thus, our objective was to determine the association of serum

bicarbonate concentrations with rate of change in eGFR and incident development of

eGFR<60 mL/min/1.73m2 among a cohort of community-living elderly persons with seven

years follow-up in the Health, Aging, and Body Composition (Health ABC) Study. A priori,

we hypothesized that lower serum bicarbonate concentrations would be associated with

more rapid rate of change in eGFR and incident development of eGFR <60 mL/min/1.73m2

independent of baseline eGFR, ACR, and CKD risk factors.

METHODS

Study Population

The Health ABC cohort enrolled 3,075 well-functioning men and women aged 70–79 years

from two clinical sites in Memphis, Tennessee and Pittsburgh, Pennsylvania from April

1997 through June 1998. Participant eligibility required self-reported ability to walk a

quarter mile, climb 10 steps, perform basic activities of daily living without difficulty, the

absence of life-threatening illness, and plans to remain in the geographic area for at least 3

years. Participants underwent a baseline evaluation that included a medical history taken in

the home and a clinic visit about two weeks later that included physiological tests, physical

activity assessment, and radiographic tests. Venous blood and spot urine specimens were
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obtained. Participants returned for repeat evaluation annually for the subsequent 5 years and

biannually thereafter. The study was approved by the institutional review boards at the

University of Tennessee Health Science Center and the University of Pittsburgh. In addition,

the present study was approved by the institutional review board at University of California

San Diego.

We evaluated participants who attended the year-3 Health ABC clinic evaluation, which

served as the baseline visit for this study as it was the only visit at which serum bicarbonate

concentrations were determined. Among the 2,921 participants who participated in the

year-3 visit, we excluded 634 with missing serum bicarbonate measurements, 202 for

missing baseline eGFR measurements at year 3, and 919 who either did not return to the

year-10 visit or did not provide repeat measurement of eGFR. Of these 919 participants, 467

had died in the intervening period. Among the remaining participants, we excluded 93 due

to missing covariate information, resulting in a final analytic sample size of 1,073

individuals for this analysis.

Measurements

Serum Bicarbonate—Serum bicarbonate was determined through analysis of arterialized

venous blood gas samples obtained from a cannulated hand or wrist vein subsequently

placed in a warmer set to 42°C and warmed for a minimum of 15 minutes prior to blood

sampling. Samples were obtained after at least 2 hours of fasting and analyzed on site on the

day of phlebotomy. Each sample was measured for pH and Pco2 on an ABL5 blood gas

analyzer (Radiometer, Copenhagen, Denmark). The pH and Pco2 were analyzed

potentiometrically using a glass membrane and glass/silver/silver chloride electrode,

respectively. Serum bicarbonate was calculated using the Henderson–Hasselbalch equation.

Each sample was measured 3 times and results were averaged.

Kidney Function—Kidney function was determined using identical methods at the year-3

and year-10 visits. There were no assessments of kidney function in the intervening years.

Blood samples were obtained after an overnight fast. Creatinine was measured in a central

laboratory using an Ektachem 700 Analyzer (Vitols 950 Analyzer, Johnson & Johnson, New

Brunswick, NJ) using a colorimetric assay and were calibrated to IDMS-traceable

standards.13 Cystatin C was analyzed on a BNII nephelometer (Dade Behring Inc, Deerfield,

IL) using a particle-enhanced immunonephelometric assay.14 Demographics, creatinine, and

cystatin C were combined to estimate glomerular filtration rate using the CKD-EPI (CKD

Epidemiology Collaboration) creatinine—cystatin C equation.15

Urine ACR measurements were not available at the year-3 examination, however they were

measured at baseline. Thus, we used the baseline measurements and carried them forward to

the year-3 examination. Urine albumin was measured using a particle-enhanced

turbidimetric inhibition immunoassay allowing for direct albumin quantification (Siemens,

Newark, DE). Urine creatinine was measured by a modified Jaffe method on a clinical

chemistry analyzer (Siemens, Newark, DE).16 Intra-assay and interassay coefficients of

variation (CVs) were 2% and 6% for albumin and 0.6% and 1% for creatinine, respectively.
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Other Measurements—Age, sex, race, and smoking status were determined by self-

report. Height was measured to the nearest millimeter by using a Harpenden stadiometer

(Holtain Ltd, Crosswell, Wales, UK) without shoes. Weight was measured to the nearest 0.1

kg using a balance beam scale with the participant wearing lightweight clothing.17 Body

mass index was calculated in kg/m2. Diabetes was defined by use of hypoglycemic agents,

self-reported history, fasting plasma glucose ≥ 126 mg/dl, or a 2-hour oral glucose tolerance

test ≥ 200 mg/dl. Systolic and diastolic blood pressures were obtained by trained and

certified clinical staff from the right arm using a conventional mercury sphygmomanometer

with the participant in a seated position. Hypertension was defined as a systolic blood

pressure ≥ 140 mmHg, diastolic blood pressure ≥ 90 mmHg, or current use of

antihypertensive medications and a self-reported physician's diagnosis of hypertension.

Obstructive lung disease was determined based on spirometry at the year-1 visit using a

horizontal dry rolling seal spirometer (SensorMedics Corporation, Yorba Linda, CA).18

Participants’ medications brought to the study visits were recorded by study personnel and

categorized using the Iowa Drug Information System into major therapeutic groups based on

the ingredients in the medications.

Statistical Analysis—We began by calculating annualized change in eGFR as the

difference between the year-3 and year-10 eGFR measurements and dividing by the number

of intervening years to provide annual change in eGFR in ml/min/1.73m2 per year. To

explore the functional form of the relationship of interest, we used linear regression with

change in eGFR as the dependent variable, and evaluated bicarbonate categories (each 1

mmol/L defining a category), age, sex, race, and baseline eGFR as independent variables.

This exploratory analysis suggested that participants with bicarbonate concentrations < 23.0

and > 28.0 mmol/L had more rapid change in eGFR than individuals within the intermediate

categories. Thus, the intermediate categories (5 categories within 23.0–28.0 mmol/L) were

collapsed and three bicarbonate categories (< 23.0, 23.0–28.0, and > 28.0 mmol/L) were

used in subsequent analysis. The 23.0–28.0 mmol/L bicarbonate category was set as the

referent.

We compared the distribution of demographics, baseline kidney function, and kidney

disease risk factors across the three bicarbonate categories using ANOVA for continuous

variables (or Kruskal-Wallis for skewed variables), and the chi square test (or Fisher’s exact

test) for categorical variables, as appropriate. Next, we used linear regression to determine

the association of baseline bicarbonate category with change in eGFR. An initial model

adjusted for age, sex, race, clinical site, baseline eGFR, and ACR. A subsequent model

additionally adjusted for diabetes (yes/no), systolic blood pressure (continuous), obstructive

lung disease (yes/no), smoking (current, former, never), renin-angiotensin-aldosterone

system (RAAS) inhibitor use (yes/no), and diuretic use (yes/no). Next, we defined a binary

outcome of “rapid kidney function decline”, defined as an annual decline in eGFR ≥ 3

ml/min/1.73m2 per year. This definition has been used in prior studies in older adults and is

known to be associated with adverse outcomes.19 We used logistic regression to evaluate the

association of baseline bicarbonate categories with rapid kidney function decline adjusting

for the same series of covariates as for the continuous change in eGFR outcome. Last, to

determine whether baseline bicarbonate concentrations are associated with incident
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development of eGFR <60 mL/min/1.73m2, we excluded individuals with eGFR <60

ml/min/1.73m2 at baseline. Among the remaining participants, we defined incident eGFR

<60 ml/min/1.73m2 as an eGFR < 60 ml/min/1.73m2 and a decline of at least 7 ml/min/

1.73m2 (corresponding to a loss of at least 1 ml/min/1.73m2 per year) at the follow-up

examination. We evaluated the association of baseline bicarbonate categories with the

incident eGFR<60 mL/min/1.73 m2 outcome using logistic regression using the

aforementioned series of adjusted models.

All analyses were conducted using Stata SE version 11 (StataCorp LP, College Station, TX).

P-values < 0.05 were considered statistically significant for all analyses.

RESULTS

By necessity, we excluded individuals who presented to baseline examination but ultimately

did not have sufficient data for analysis due to death or missing follow-up kidney function

data. Compared to those with available data, those without were older, more frequently

black, more likely to be current smokers, had higher ACR, had more diabetes and

obstructive lung disease, and had higher systolic blood pressures. Other variables including

baseline eGFR were similar (Table S1, available as online supplementary material).

Among the 1,073 study participants included in this analysis, the mean age was 75.2 ± 2.8

(standard deviation) years, 52% were women, and 33% were black. The mean baseline

eGFR was 84.2 ± 15.8 ml/min/1.73m2, and 7.8% had a baseline eGFR <60 ml/min/1.73m2.

The mean rate of change in eGFR during follow-up was −2.1 ± 2.0 ml/min/1.73m2 per year.

Compared to participants with bicarbonate levels of 23–28 mmol/L, those with lower

bicarbonate concentrations were more likely to be white, male, to use RAAS inhibitors and

to smoke, while they were less likely to use diuretics or have obstructive lung disease (Table

1). Established CKD risk factors including age, diabetes, and blood pressure did not differ

significantly across bicarbonate categories. Baseline eGFR was lower and ACR was higher

in the low bicarbonate category.

In models adjusted for age, sex, race, and baseline eGFR, the relationship of serum

bicarbonate with annual change in eGFR was U-shaped; both persons with bicarbonate <

23.0 and > 28.0 mmol/L had more rapid longitudinal decline in eGFR than those in

intermediate categories (Figure 1). When the 23.0–28.0 mmol/L bicarbonate categories were

collapsed and set as the referent, participants with lower bicarbonate concentrations lost

eGFR approximately 0.5 ml/min/1.73m2 per year faster during follow-up in unadjusted

analysis (Table 2). This association was essentially unaltered when adjusted for age, gender,

race, clinical site, baseline eGFR, and ACR, and in the final model with additional

adjustment for diabetes, systolic blood pressure, obstructive lung disease, smoking, RAAS

inhibitor, and diuretic use. Compared to persons in the serum bicarbonate 23.0–28.0 mmol/L

reference category, those with higher bicarbonate concentrations had eGFR loss

approximately 0.3 ml/min/1.73m2 per year faster, but this association was not statistically

significant across the sequence of models.
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Next, we evaluated the association of baseline serum bicarbonate concentration with a

binary outcome of rapid kidney function decline, defined as eGFR loss greater than 3

ml/min/1.73m2 per year (Table 3). Compared to participants with bicarbonate values in the

23.0–28.0 mmol/L category, those with lower bicarbonate had approximately 50%–60%

greater odds of rapid kidney function decline across the sequence of models, although this

association failed to reach statistical significance in any model.

We then excluded the 84 individuals with eGFR < 60 ml/min/1.73m2 at baseline and

examined the association of serum bicarbonate concentrations with incident development of

eGFR <60 mL/min/1.73m2 during follow-up among the remaining 989 participants. Among

these, 252 (25%) developed incident eGFR <60 mL/min/1.73m2 at follow-up 7 years later.

Compared to participants with bicarbonate concentrations of 23.0–28.0 mmol/L, those with

lower serum bicarbonate were at approximately two-fold greater odds for incident eGFR

<60 mL/min/1.73m2 in unadjusted models (Table 4). The association was slightly attenuated

in the final model but remained significantly associated with a 1.8-fold greater odds of

incident eGFR <60 mL/min/1.73m2.

DISCUSSION

Among well-functioning community-living elders predominantly with preserved kidney

function at baseline, we found that lower serum bicarbonate concentrations were associated

with more rapid loss of kidney function over time. Within the subset of persons with eGFR

>60 mL/min/1.73m2 at baseline, lower serum bicarbonate concentrations were associated

with development of incident eGFR <60 mL/min/1.73m2 during follow-up. These

associations became apparent in individuals with baseline serum bicarbonate concentrations

< 23 mmol/L, and were independent of baseline eGFR, urine ACR, demographics, and

established CKD risk factors.

Kidney tubule cells are integral for maintenance of acid-base homeostasis, and metabolic

acidosis is well established as a hallmark of advanced CKD. Several prior studies conducted

in populations with established CKD have demonstrated that lower serum bicarbonate

concentrations are associated with more rapid progression of CKD, incident development of

ESRD, and all-cause mortality.3–9 Some have shown that lower bicarbonate concentrations

are associated with ESRD independent of iothalamate-measured GFR.6 Small clinical trials

suggest that treating metabolic acidosis with oral bicarbonate can slow progression of

CKD.20–22 Collectively, these studies suggest that the associations of lower serum

bicarbonate with CKD progression may not merely reflect residual confounding by GFR.

However, most prior studies evaluated populations with prevalent CKD.3–9 Thus, the

contribution of this study is in demonstrating that lower serum bicarbonate concentrations

predict CKD progression and, for the first time, incident development of eGFR <60 mL/min/

1.73m2 in individuals with normal or near-normal GFR living in the general population.

Prior studies have demonstrated a fairly linear relationship between CKD stage and the

prevalence of metabolic acidosis; approximately 5% of patients with CKD stages 2–3 have a

serum bicarbonate concentration < 22 mmol/L whereas the prevalence increases to

approximately 18% in CKD stage 4.10, 11 While metabolic acidosis and lower eGFR are
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linked processes, these studies also highlight marked inter-individual heterogeneity; despite

severe CKD, the majority of patients with CKD stage 4 maintain serum bicarbonate

concentrations ≥ 23 mmol/L. Alternatively, and shown again in our analysis, some

individuals with much less severe CKD may have low serum bicarbonate concentrations.

However, whether lower serum bicarbonate serves simply as a marker of kidney tubule

dysfunction or may be causally linked to CKD progression is uncertain.

Metabolic acidosis in CKD reflects a decrease in total renal ammoniagenesis resulting from

a diminished number of functioning tubules. At the same time, the remaining functioning

tubules can increase the single nephron ammonia generation in an effort to compensate for

the diminished functioning tubule number.23 In animal models, an increase in

ammoniagenesis leads to complement activation and tubulointerstitial injury.24 Treatment

with bicarbonate is believed to decrease ammoniagenesis and potentially decrease associated

kidney injury. Indeed, a clinical trial in a CKD population suggested that alkali therapy may

slow CKD progression over time.21 Furthermore, at least one small clinical trial in a

population with relatively preserved eGFR also demonstrated a trend toward preservation of

kidney function.20 Our results support the intriguing possibility that initiation of alkali

therapy in persons with normal or near-normal kidney function may decrease CKD

incidence. This hypothesis will require testing in future intervention studies.

A second possibility is that acidosis is not causal but is rather a marker of tubular

dysfunction. It is well established that the degree of renal tubule atrophy and

tubulointerstitial fibrosis on kidney biopsy are strong risk markers for progression of

CKD,25–27 but this fibrosis is not well captured by standard clinical measures of kidney

function including eGFR, iothalamate GFR, and urine ACR. For example, a recent study

evaluated the correlates of nephrosclerosis in kidney biopsy specimens among 1,203 healthy

kidney donor candidates. The authors found that nephrosclerosis ranged from 3% in the 20-

to 29-year age group to 73% in those aged 70–79 years. However, the nephrosclerosis on

biopsy had no relationship with iothalamate-measured GFR after adjusting for age.28

Because the kidney tubule is responsible for acid-base regulation, we hypothesize that

individuals with lower serum bicarbonate concentrations in our study may have had more

severe renal tubulointerstitial disease, and thus associations with longitudinal decline in

kidney function may be because serum bicarbonate is providing information on non-

glomerular aspects of renal tubulointerstitial disease. Future studies with concurrent kidney

biopsy data will be required to investigate this hypothesis.

Recent findings suggest that non-glomerular markers of kidney tubule dysfunction and

injury may inform CKD prognosis independent of eGFR and urine ACR. For example,

several urine markers of kidney tubule injury such as kidney injury molecule 1 (KIM-1) and

neutrophil gelatinase-associated lipocalin (NGAL) have been studied primarily within the

context of hospitalized acute kidney injury. Recently, several studies have demonstrated that

these markers may inform prognosis in community-living individuals without acute kidney

injury. Peralta and colleagues demonstrated that higher urine KIM-1 concentrations were

associated with incident development of CKD and more rapid loss of eGFR independent of

baseline eGFR or ACR in the Multi-Ethnic Study of Atherosclerosis (MESA).29 Bahvsar

and colleagues made similar observations evaluating urine NGAL concentrations in the
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ARIC (Atherosclerosis Risk in Communities) study.30 Serum bicarbonate could be another

readily available marker of tubular function providing prognosis independent of eGFR and

albuminuria.

A third possibility is that lower serum bicarbonate concentrations may reflect non-renal

processes. For example, studies in patients with advanced CKD demonstrate that intake of

diets high in fruits and vegetables may increase serum bicarbonate concentrations.31

Conversely, high protein consumption will reduce serum bicarbonate concentrations. This

may have direct deleterious effects on kidney function through non–bicarbonate-mediated

mechanisms. If similar results were to generalize to healthy community-living older

individuals without advanced CKD, then low serum bicarbonate may reflect differences in

diet intake instead of tubulointerstitial kidney disease. Differences in dietary choices, in turn,

may be linked with other lifestyle factors and health habits. However, if our results are

confirmed, low serum bicarbonate may still serve as a useful marker of risk of CKD

progression even if not causally related.

In a companion paper appearing in this issue of AJKD, the association of serum bicarbonate

concentrations and decline in kidney function and incident CKD was evaluated in the MESA

cohort.32 The authors also found associations of lower serum bicarbonate with CKD

progression and incident CKD. This confirmation is important considering differences

between methods and study populations between the two studies. The MESA cohort was

younger (mean age, 61 vs. years) and excluded participants with cardiovascular disease. The

mean serum bicarbonate level was also lower in MESA (23 vs. 25 mmol/L). Bicarbonate

was measured in serum samples from long-term storage that had been shipped to the central

laboratory in MESA, whereas it was measured on an arterial blood gas machine at the point

of care in Health ABC. Thus, the lower mean bicarbonate level in MESA may reflect loss of

carbon dioxide through specimen processing.33 Nonetheless, the associations with outcomes

were similar. Finally, the Health ABC cohort includes pulmonary function data and

demonstrates that the association remains robust even after adjusting for obstructive lung

disease.

Strengths of this study include the availability of creatinine and cystatin C measurements at

both baseline and follow-up 7 years later, as well as ACR and serum bicarbonate

concentrations at baseline in a relatively large sample of community-living elders.

Participants represented both genders, white and black race, and were recruited from the

community in multiple sites, increasing generalizability. Serum bicarbonate concentrations

were measured in triplicate and averaged, decreasing measurement error. Information on

potential confounders including demographics, medication use, and lung disease, were

available for adjustment. The study also has important limitations. Kidney function

measures were available only at baseline and again 7 years later without intervening

measurements. Repeat measurement of eGFR was required to define a trajectory of change

in eGFR and incident eGFR <60 mL/min/1.73m2. Because we evaluated an older cohort,

some individuals died prior to repeat eGFR assessment. Those who remained alive but did

not return to provide repeat eGFR measurement were likely older and of poorer health status

than those retained in the analysis. The companion paper had more frequent assessment of

kidney function over time and confirms our findings.32 Study participants were all aged 70
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years or older at baseline and of white or black race. Whether results generalize to younger

persons or other races/ethnicities is uncertain. We lacked gold standard measures of GFR,

and residual confounding by GFR cannot be excluded. Prior intervention trials suggest

causal relationships of metabolic acidosis with CKD progression.20–22 This observational

study cannot assess causality. Nonetheless, we believe our findings may assist in assessing

CKD prognosis above and beyond the baseline eGFR and ACR irrespective of whether

bicarbonate serves as a marker or is causally related to CKD progression.

In conclusion, lower serum bicarbonate concentrations are associated with more rapid loss

of eGFR over time and incident development of eGFR <60 mL/min/1.73m2 in well-

functioning community-living elders. These relationships are independent of the baseline

eGFR and urine ACR level. Future studies with concurrent availability of serum bicarbonate

concentrations and kidney biopsy data are required to determine whether lower serum

bicarbonate concentrations may mark the presence or severity of tubulointerstitial atrophy

and fibrosis, and whether serum bicarbonate concentrations may improve CKD risk

prognostication by marking non-glomerular aspects of kidney damage. If our findings are

confirmed, future intervention trials would be warranted to assess whether alkali therapy

may prevent incident eGFR<60 mL/min/1.73m2 development in high risk individuals with

preserved kidney function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association of Serum Bicarbonate Concentrations with Annual Change in eGFR
Figure shows the adjusted association of baseline serum bicarbonate concentration with

annual change in eGFR in community-living elders. The model is adjusted for age, gender,

race, and baseline eGFR. The X-axis shows serum bicarbonate categories. The Y-axis shows

the annualized rate of change in eGFR. Error bars reflect 95% confidence intervals.
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Table 2

Association of Baseline Bicarbonate Category with Annual Change in eGFR

< 23.0 mmol/L 23.0–28.0 mmol/L > 28.0 mmol/L

No. of participants (%) 85 (8%) 887 (83%) 101 (9%)

Annual change in eGFR

Unadjusted −0.436 (−0.870 to −0.003); 0.05 (referent group) −0.337 (−0.735 to −0.067); 0.1

Model 1* −0.552 (−0.974 to −0.131); 0.01 (referent group) −0.270 (−0.658 to 0.118); 0.2

Model 2** −0.543 (−0.965 to −0.121); 0.01 (referent group) −0.245 (−0.640 to 0.150); 0.2

Note: Annual change in eGFR is expressed as mL/min/1.73 m2 per year. Unless otherwise indicated, values are given as Δ (95% confidence
interval); p-value.

eGFR, estimated glomerular filtration rate

*
Adjusted for age, race, gender, clinical site, baseline eGFR, urine albumin-creatinine ratio.

**
Adjusted for Model 1 variables plus diabetes, systolic blood pressure, obstructive lung disease, smoking, renin-angiotensin-aldosterone system

inhibitor use, and diuretic use.
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Table 3

Association of Baseline Bicarbonate Category with Rapid Kidney Function Loss

< 23.0 mmol/L 23.0–28.0 mmol/L > 28.0 mmol/L

No. of participants (%) 85 (8%) 887 (83%) 101 (9%)

OR for Rapid Kidney Function Loss

Unadjusted 1.53 (0.96 −2.45); 0.08 1.00 (reference) 1.49 (0.96 −2.30); 0.07

Model 1* 1.60 (0.98 −2.61); 0.06 1.00 (reference) 1.41 (0.90 −2.21); 0.1

Model 2** 1.57 (0.94 −2.61); 0.08 1.00 (reference) 1.31 (0.81 −2.10); 0.3

Note: Rapid kidney function loss is defined as >3 mL/min/1.73 m2 per year. Unless otherwise indicated, values are given as odds ratio (95%
confidence interval); p-value.

eGFR, estimated glomerular filtration rate

*
Adjusted for age, race, gender, clinical site, baseline eGFR, urine albumin-creatinine ratio.

**
Adjusted for Model 1 variables plus diabetes, systolic blood pressure, obstructive lung disease, smoking, renin-angiotensin-aldosterone system

inhibitor use, and diuretic use.
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Table 4

Association of Baseline Bicarbonate Categories with Incident eGFR<60 mL/min/1.73m2

< 23.0 mmol/L 23.0–28.0 mmol/L > 28.0 mmol/L

No. of participants (%) 69 (7%) 825 (83%) 95 (10%)

OR for incident eGFR < 60

Unadjusted 2.05 (1.23 −3.41); 0.006 1.00 (reference) 1.33 (0.83 −2.13); 0.2

Model 1* 1.72 (0.97 −3.07); 0.06 1.00 (reference) 1.32 (0.78 −2.24); 0.3

Model 2** 1.81 (1.01 −3.27); 0.05 1.00 (reference) 1.10 (0.63 −1.93); 0.7

Note: Unless otherwise indicated, values are given as odds ratio (95% confidence interval); p-value.

eGFR, estimated glomerular filtration rate

*
Adjusted for age, race, gender, clinical site, baseline eGFR, urine albumin/creatinine ratio

**
Adjusted for Model 1 variables plus diabetes, systolic blood pressure, obstructive lung disease, smoking, renin-angiotensin-aldosterone system

inhibitor use, and diuretic use.
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