
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
A Network-Aware Distributed Storage Cache for Data Intensive
Environments

Permalink
https://escholarship.org/uc/item/5c79s19x

Authors
Tierney, B.L.
Lee, J.R.
Johnston, W.E.
et al.

Publication Date
1999-12-23

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5c79s19x
https://escholarship.org/uc/item/5c79s19x#author
https://escholarship.org
http://www.cdlib.org/

ata

the
g.

ses

 at
e
 is
tes
 and
 to
f

l
 of
s a
id
rk

we

es
 of

he
ee,
te,

th

search
 In
act
A Network-Aware Distributed Storage Cache for Data Intensive Environments1

 Brian L. Tierney, Jason Lee, Brian Crowley, Mason Holding

Computing Sciences Directorate
Lawrence Berkeley National Laboratory

University of California, Berkeley, CA, 94720

Jeremy Hylton, Fred L. Drake, Jr.
Corporation for National Research Initiatives, Reston, VA 20191

Abstract
Modern scientific computing involves organizing, moving,
visualizing, and analyzing massive amounts of data at
multiple sites around the world. The technologies, the
middleware services, and the architectures that are used to
build useful high-speed, wide area distributed systems,
constitute the field of data intensive computing. In this
paper we will describe an architecture for data intensive
applications where we use a high-speed distributed data
cache as a common element for all of the sources and sinks
of data. This cache-based approach provides standard
interfaces to a large, application-oriented, distributed,
on-line, transient storage system. We describe our
implementation of this cache, how we have made it
“network aware,” and how we do dynamic load balancing
based on the current network conditions. We also show
large increases in application throughput by access to
knowledge of the network conditions.

1.0 Introduction

High-speed data streams resulting from the operation of
on-line instruments and imaging systems are a staple of
modern scientific, health care, and intelligence
environments. The advent of high-speed networks is
providing the potential for new approaches to the
collection, organization, storage, analysis, visualization,
and distribution of the large-data-objects that result from

such data streams. The result will be to make both the d
and its analysis much more readily available.

For example, health care imaging systems illustrate
need for both high data rates and real-time catalogin
Medical video and image data used for diagnostic purpo
— e.g., X-ray CT, MRI, and cardio-angiography — are
collected at centralized facilities and may be accessed
locations other than the point of collection (e.g., th
hospitals of the referring physicians). A second example
high energy physics experiments, which generate high ra
and massive volumes of data that must be processed
archived in real time. This data must also be accessible
large scientific collaborations — typically hundreds o
investigators at dozens of institutions around the world.

In this paper we will describe how “Computationa
Grid” environments can be used to help with these types
applications, and how a high-speed network cache i
particularly important component in a data intensive gr
architecture. We describe our implementation of a netwo
cache, how we have made it “network aware,” and how
adapt its operation to current network conditions.

2.0 Data Intensive Grids

The integration of the various technological approach
being used to address the problem of integrated use
dispersed resources is frequently called a “grid,” or a
computational grid — a name arising by analogy with t
grid that supplies ubiquitous access to electric power. S
e.g., [10]. Basic grid services are those that locate, alloca
coordinate, utilize, and provide for human interaction wi

1. The work described in this paper is supported by DARPA, Information Technology Office (http://www.darpa.mil/ito/Re
Areas.html) and the U. S. Dept. of Energy, Office of Science, Office of Computational and Technology Research, Mathematical,forma-
tion, and Computational Sciences Division (http://www.er.doe.gov/production/octr/mics/index.html), under contr
DE-AC03-76SF00098 with the University of California. This is report no. LBNL-42896.
1

 an
 of
eed
any
llel

the
ent

In
for
he

al
ry
10

a
].
ir
lity.

ce
in a
es
han
ust
ns

es
all
g
is
the various resources that actually perform useful
functions.

Grids are built from collections of primarily independent
services. The essential aspect of grid services is that they
are uniformly available throughout the distributed
environment of the grid. Services may be grouped into
integrated sets of services, sometimes called “middleware.”
Current grid tools include Globus [8], Legion [16], SRB
[3], and workbench systems like Habanero [11] and
WebFlow [2].

From the application’s point of view, the Grid is a
collection of middleware services that provide applications
with a uniform view of distributed resource components
and the mechanisms for assembling them into systems.
From the middleware systems points of view, the Grid is a
standardized set of basic services providing scheduling,
resource discovery, global data directories, security,
communication services, etc. However, from the Grid
implementor’s point of view, these services result from and
must interact with a heterogeneous set of capabilities, and
frequently involve “drilling” down through the various
layers of the computing and communications infrastructure.

2.1 Architecture for Data Intensive Environments

Our model is to use a high-speed distributed data storage
cache as a common element for all of the sources and sinks
of data involved in high-performance data systems. We use
the term “cache” to mean storage that is faster than typical
local disk, and temporary in nature. This cache-based
approach provides standard interfaces to a large,
application-oriented, distributed, on-line, transient storage
system.

Each data source deposits its data in the cache, and each
data consumer takes data from the cache, often writing the
processed data back to the cache. A tertiary storage system
manager migrates data to and from the cache at various
stages of processing. (See Figur e1.) We have used this
model for data handling systems for high energy physics
data and for medical imaging data. For more information
see [15] and [14].

The high-speed cache serves several roles in this
environment. It provides a standard high data rate interface
for high-speed access by data sources, processing
resources, mass storage systems (MSS), and user interface /
data visualization elements. It provides the functionality of
a single very large, random access, block-oriented I/O
device (i.e., a “virtual disk”). It serves to isolate the
application from tertiary storage systems and instrument
data sources, helping eliminate contention for those
resources

This cache can be used as a large buffer, able to absorb
data from a high rate data source and then to forward it to a

slower tertiary storage system. The cache also provides
“impedance matching” function between a small number
high throughput streams to a larger number of lower sp
streams, e.g. between fine-grained accesses by m
applications and the coarse-grained nature of a few para
tape drives in the tertiary storage system.

Depending on the size of the cache relative to
objects of interest, the tertiary storage system managem
may only involve moving partial objects to the cache.
other words, the cache may contain a moving window
an extremely large off-line object/data set. Generally, t
cache storage configuration is large (e.g., 100s of
gigabytes) compared to the available disks of a typic
computing environment (e.g., 10s of gigabytes), and ve
large compared to any single disk (e.g. hundreds of ~
gigabytes).

2.2 Network-Aware Applications

In order to efficiently use high-speed wide are
networks, applications will need to be “network-aware”[6
Network-aware applications attempt to adjust the
demands in response to changes in resource availabi
For example, emerging QoS services will allow
network-aware applications to participate in resour
management, so that network resources are applied
way that is most effective for the applications. Servic
with a QoS assurance are likely to be more expensive t
best-effort services, so applications may prefer to adj
rather than pay a higher price. Network-aware applicatio
will require a general-purpose service that provid
information about the past, current, and future state of
the network links that it wishes to use. Our monitorin
system, described below, is a first step in providing th
service.

Figure 1 The Data Handling Model

Parallel computation /
data analysis

real-time data
cache partition

processing
scratch
partition

application
data cache

partition

large, high-speed network cache

data cataloguing, archiving,
and access control system

Data
Source

(instrument or
simulation)

visualization
applications

tertiaray storage
system

Disk Storage Tape Storage
2

ce
ave
ber
e

 1
us
rces

r, a
he
k
ales
0

e
g
to
he

s
he
r of

 as
ait

ing
ta
e

tely
e
e,
be

e
 by

]
ed
3.0 The Distributed-Parallel Storage System

Our implementation of this high-speed, distributed
cache is called the Distributed-Parallel Storage System
(DPSS) [7]. LBNL designed and implemented the DPSS as
part of the DARPA MAGIC project [18], and as part of the
U.S. Department of Energy’s high-speed distributed
computing program. This technology has been successful
in providing an economical, high-performance, widely
distributed, and highly scalable architecture for caching
large amounts of data that can potentially be used by many
different users.

Typical DPSS implementations consist of several
low-cost workstations as DPSS block servers, each with
several disk controllers, and several disks on each
controller. A four-server DPSS with a capacity of one
Terabyte (costing about $80K in mid-1999) can thus
produce throughputs of over 50 MBytes/sec by providing
parallel access to 20-30 disks.

Other papers describing the DPSS in more detail include
[23], which describes how the DPSS was used to provide
high-speed access to remote data for a terrain visualization
application, [24], which describes the basic architecture
and implementation, and [25], which describes how the
instrumentation abilities in the DPSS were used to help
track down a wide area network problem. This paper
focuses on how we were able to greatly improve total
throughput to applications by making the DPSS “network
aware.”

The application interface to the DPSS cache supports a
variety of I/O semantics, including Unix-like I/O semantics
through an easy to use client API library (e.g. dpssOpen(),
dpssRead(), dpssWrite(), dpssLSeek(), dpssClose()). The
data layout on the disks is completely up to the application,
and the usual strategy for sequential reading applications is
to write the data “round-robin,” striping blocks of data
across the servers. The client library also includes a flexible
data replication ability, allowing for multiple levels of fault
tolerance. The DPSS client library is multi-threaded, where
the number of client threads is equal to the number of
DPSS servers. Therefore the speed of the client scales with
the speed of the server, assuming the client host is powerful
enough.

The internal architecture of the DPSS is illustrated in
Figur e2. Requests for blocks of data are sent from the
client to the “DPSS master” process, which determines
which “DPSS block servers” the blocks are located on, and
forwards the requests to the appropriate servers. The server
then sends the block directly back to the client. Servers
may be anywhere in the network: there is no assumption
that they are all at the same location, or even the same city.

DPSS performance, as measured by total throughput, is
optimized for a relatively smaller number (a few thousand)

of relatively large files (greater than 50 MB). Performan
is the same for any file sizes greater than 50 MB. We h
also shown that performance scales well with the num
of clients, up to at least 64 clients. For example, if th
DPSS system is configured to provide 50 MB/sec to
client, it can provide 1 MB/sec to each of 50 simultaneo
clients. The DPSS master host starts to run out of resou
with more than 64 clients.

Because of the threaded nature of the DPSS serve
server scales linearly with the number of disks, up to t
network limit of the host (possibly limited by the networ
card or the CPU). The total DPSS system throughput sc
linearly with the number of servers, up to at least 1
servers.

The DPSS provides several important and uniqu
capabilities for data intensive distributed computin
environments. It provides application-specific interfaces
an extremely large space of logical blocks; it offers t
ability to build large, high-performance storage system
from inexpensive commodity components; and it offers t
ability to increase performance by increasing the numbe
parallel disk servers.

DPSS data blocks are available to clients immediately
they are placed into the cache. It is not necessary to w
until the entire file has been transferred before request
data. This is particularly useful to clients requesting da
from a tape archive. As the file moves from tape to th
DPSS cache, the blocks in the cache are immedia
available to the client. If a block is not available, th
application can either block, waiting for the data to arriv
or continue to request other blocks of data which may
ready to read.

The DPSS is dynamically reconfigurable, allowing on
to add or remove servers or disks on the fly. This is done
storing the DPSS hardware resource information in a
Globus Metacomputing Directory Service (MDS)[5
formatted LDAP database, which may be updat

Client
Application

Shared Memory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS Master

from other DPSS servers

*

DPSS Data Server

to other

DPSS se
rve

rs

Block
Writer
Thread

to other
 clients

Disk Disk DiskDisk

Figure 2: DPSS Architecture
3

ng
ne

t the
to

s
e
the
e
ble
ht

e

nd
cts

ks
ses
ow
ill

m
e

ts
ore

or
re
he

 in
ers
d
the
also
 a
the
he
),

 a
ply
rk

 is a
rver
um

rs
 a
the
dynamically. Software agents are used to monitor network,
host, and disk availability and load, storing this information
into the LDAP database as well. This information can then
be used for fault tolerance and load balancing. We describe
this load balancing facility in more detail below.

4.0 Network-Aware Adaptation

For the DPSS cache to be effective in a wide area
network environment, it must have sufficient knowledge of
the network to adjust for a wide range of network
performance conditions and sufficient adaptability to be
able to dynamically reconfigure itself in the face of
congestion and component failure.

4.1 Monitoring System

We have developed a software agent architecture for
distributed system monitoring and management. We call
this system Java Agents for Monitoring and Management
(JAMM) [13]. The agents, whose implementation is based
on Java and RMI, can be used to launch a wide range of
system and network monitoring tools, extract their results,
and publish them into an LDAP database. These agents can
securely start any monitoring program on any host and
manage the output of any monitoring data. For example, we
use the agents to run netperf [19] and ping for network
monitoring, vmstat and uptime for host monitoring, and
xntpdc for host clock synchronization monitoring. These
results are uploaded to an LDAP database at regular
intervals, typically every few minutes, for easy access by
any process in the system. We run these agents on every
host in a distributed system, including the client host, so
that we can learn about the network path between the client
and any server.

4.2 TCP Receive Buffers

The DPSS uses the TCP protocol for data transfers. For
TCP to perform well over high-speeds networks, it is
critical that there be enough buffer space for the congestion
control algorithms to work correctly [12]. Proper buffer
size is a function of the network bandwidth-delay product,
but because bandwidth-delay products in the Internet can
span 4-5 orders of magnitude, it is impossible to configure
the default TCP parameters on a host to be optimal for all
connections [21].

To solve this problem, the DPSS client library
automatically determines the bandwidth-delay product for
each connection to a DPSS server and sets the TCP buffer
size to the optimal value. The bandwidth and delay of each
link are obtained from the agent monitoring results which
are stored in the LDAP database.

There are several open issues involved in obtaini
accurate network throughput and latency measures. O
issue is that the use of past performance data to predic
future may be of limited utility. Another issue is whether
use active or passive measurement techniques.

Network information such as available bandwidth varie
dynamically due to changing traffic and often cannot b
measured accurately. As a result, characterizing
network with a single number can be misleading. Th
measured bandwidth availability might appear to be sta
based on measurements every 10 minutes, but mig
actually be very bursty; this burstiness might only b
noticed if measurements are made every few seconds.

These issues are described in more detail in [17] a
[27]. We plan to adopt techniques used in other proje
such as NWS, once they are proven to be sound.

4.3 Load Balancing

The DPSS can perform load balancing if the data bloc
are replicated on multiple servers. The DPSS master u
status information in the LDAP database to determine h
to forward a client's block request to the server that w
give the fastest response. A minimum cost flow algorith
[1][9] is used by the DPSS master to optimize th
assignment of block requests to servers.

Our approach is to treat load balancing as a
combinatorial problem. There is some number of clien
and servers. Each client must be assigned to one or m
servers without any server being overloaded.

The minimum cost flow approach is a good match f
the combinatorial nature of the problem, but there a
several practical challenges to overcome. In particular, t
minimum cost flow algorithm is an offline algorithm; the
number of blocks each client will request must be know
advance in order to generate a flow of blocks from serv
to clients for a given period. However, client arrivals an
departures are unpredictable, and for some clients,
request rate and the amount of data requested is
variable. Our solution is to run the algorithm each time
client request arrives, using the actual request for
current client and estimates for every other client. T
algorithm itself is fast (less than 1 ms for typical graphs
so this solution is workable.

We model the DPSS load balancing problem as
transportation problem [1] (p. 99). Each server has a sup
of blocks that must be delivered to the clients. The netwo
is represented as a bipartite graph, where each node
client or server and each edge is a network path from se
to client. Each edge has a per-block cost and a maxim
capacity. The algorithm finds a flow of blocks from serve
to clients that minimizes the total cost. It is defined for
balanced network, where the total demand is equal to
4

m
er
d

ock
 on.
ers

e
rs
ss,
ing
e
e

se
ion
e
p
a

he
he
e5
ng
the
ork
on
n
ork
er
g

total supply. For the DPSS, this situation occurs only when
the clients have saturated the servers. To create a balanced
problem, we introduce a ghost client and a ghost server that
have infinite capacity and high-cost links to other servers
and clients, respectively. Supply or demand is assigned to
one of the ghosts to create a balanced problem.

We assign a cost and capacity based on the assumption
that network latency is the dominant factor affecting
application performance, so that selecting servers with the
lowest latency will maximize application performance. The
total latency from a client's request to its receipt of the first
tile from a server is affected by three different network
paths: the paths from client to master, master to server, and
server to client. The master obtains the latencies from these
three paths from the LDAP database. The total delay for the
edge cost is the sum of the three latencies, the processing
delay at the master and server, and the transmission delay
of a data block across the link between server and client.
Data blocks are large (typically 64KB), so the transmission
delay is non-trivial, even across a high-speed network.

One limitation of this approach is that the graph does not
represent the actual network topology. Several edges in the
graph may actually share the same bottleneck link in the
real network, but the graph does not capture this
information. The minimum cost flow algorithm could
accommodate a more detailed model of the network, but
the monitoring system only collects information about
host-to-host performance.

The edge capacity is set to the bandwidth obtained from
the LDAP database. This capacity may be reduced based on
the degree of replication of the data blocks. When data is
loaded into the DPSS, blocks are distributed acrosn
servers and each block is replicated m times, where m <= n.
If we assume blocks are uniformly distributed to servers,
then it is unlikely that any one server will store more than
m/n percent of the blocks requested. The actual edge
capacity assigned is the minimum of the bandwidth and
m/n percent of the data requested by the client.

The bandwidth data from the LDAP database is also
used to set the server's supply. The supply at a server is the
total bandwidth available to all clients. This bandwidth
must be determined heuristically because the monitoring
system only reports the maximum bandwidth available to
each client. We might naively assume that the total
bandwidth is the sum of the bandwidth available to each
client. If several clients share the same bottleneck link,
however, the total bandwidth will be less. We
conservatively assume that all clients share the same
bottleneck link and set the total bandwidth to the maximum
bandwidth available to any one client.

The load balancing implementation maintains a graph
data structure that is modified whenever clients arrive or
leave. The edge costs are recomputed every three minutes

based on data from LDAP. We use the CS2 [4] minimu
cost flow solver. For a particular request, the solv
determines what proportion of the blocks will be delivere
by each server. Each block must be looked up in the bl
database to determine which specific servers it is loaded
A stride scheduler [26] chooses one of the available serv
based on the proportions assigned by the solver.

5.0 Results

5.1 TCP Buffer Tuning

Table 1 shows the results from dynamic setting of th
TCP receive buffer size. This table illustrates that buffe
can be hand-tuned for either LAN access or WAN acce
but not both at once. It is also apparent that while sett
the buffer size big enough is particularly important for th
WAN case, it is also important not to set it too big for th
LAN environment.

If the buffers are too large, throughput may decrea
because the larger receive buffer allows the congest
window to grow sufficiently large that multiple packets ar
lost (in a major buffer overflow) during a single round tri
time (RTT), which then leads to a timeout instead of
smooth fast retransmit/recovery. [20]

5.2 Load Balancing

We first ran a series of tests to verify that latency is t
dominant factor in determining which server to use in t
load balancing algorithm. Figure 3, Figur e4, and Fig ur
show the results of using dynamic load balancing varyi
one factor at a time. In Figure 3 we used servers with
same load and latency, and varied the available netw
throughput (the first two servers were on OC-3, the third
10BT ethernet, and the fourth on 100BT ethernet). I
Figur e4 we used DPSS servers with the same netw
throughput and latency, but varied the server CPU pow
available by using servers with other jobs runnin

Table 1

buffer method network Total
Throughput

hand tune for LAN
(64KB buffers)

LAN 33 MBytes/sec

WAN 5.5 MBytes/sec

hand tune for WAN
(512 KB buffers)

LAN 19 MBytes/sec

WAN 14 MBytes/sec

auto tune in DPSS
library

LAN 33 MBytes/sec

WAN 14 MBytes/sec

LAN RTT = 1 ms over OC-12 (622 Mbit/sec) network
WAN RTT = 44 ms over OC-3 (155 Mbit/sec) network
5

he
lay
s,

hat
is
sts
ll

the
S

e of
ter
the
 that
the

d
tor
ing
by
ed
ak

ut
e

n
 set
 on
-y,
the
e, a
4
or
simultaneously. The first server had no load, the second had
33%, the third had 50%, and the fourth had 66% load. For
the test shown in Figu re5, we used servers with the same
network throughput and load, but with varied latencies,
where the first server had a latency of 0.5 ms, the second
and fourth of 40 ms, the third of 2 ms.

Note that the results for the DPSS without load
balancing actually decrease starting with the third server in
Figur e3, which is on 10 Mbit/sec ethernet, because without
load balancing total throughput is constrained by the speed
of the slowest server. The same thing happens in Fi gure4
and Figure 5. Therefore, the total throughput of the system
with no load balancing is the speed of the slowest server,
times the number of servers. The overall throughput in
Figure 5 is less than in Figures 3 and 4 because the servers
used were considerably less powerful, and were connected
by networks with a throughput of only 12 Mbits/sec.

5.3 Test Environment

We used the testbed environment shown in Figure 7 to
evaluate the effectiveness of load balancing in the DPSS.
The network performance in the testbed limits the
performance improvements we could achieve with load
balancing. This section outlines the basic network
performance data obtained from the monitoring system,
based on its netperf and ping measurements. These
measurements are performed every five minutes.

The platforms and operating systems varied from host to
host, which caused each host to have slightly different
performance characteristics. Server A at LBNL is a 2-CPU
UltraSparc 2 running Solaris 2.6, while Server B is 2-CPU
200 MHz Pentium II running Solaris X86. The sustained
bandwidth from Server A to Client A is 112 Mbps, but only
80 Mbps to Server B.

A network configuration problem limited the bandwidth
between Server C and Client B to 11 Mbps, although
Server C achieved 107 Mbps to Client A and Client B to
Server A achieved 56 Mbps. All West Coast hosts can ping
each other with 0 or 1 ms delay. Server D and Client C,
both in Kansas, achieved 85 Mbps throughput; the delay is
3ms.

The DS3 link between the West Coast sites and t
machines in Kansas could sustain up to 14 Mbps. The de
for pings across the DS3 link ranged from 35ms to 44m
depending on the specific hosts involved.

We performed a series of tests using a test client t
reads a single 150MB file from the DPSS. The file
loaded in 2400 64KB data blocks, and the client reque
64 data blocks (4 MB) at a time. The client waits until a
64 blocks are delivered before issuing the next request.

We compare the load balancing code, which we call
minimum cost master, to a previous version of the DPS
master, called the greedy master. We also vary the degre
replication and the number of clients. The greedy mas
uses a two-part server selection strategy. For 75% of
requests, it uses a greedy strategy, selecting the server
has the highest bandwidth connection to the client. For
other requests, it randomly selects a server.

5.4 Performance Result

Our experiments show that replication and loa
balancing increase the throughput of the DPSS by a fac
of 2.17 compared to the use of unreplicated data. Us
replicated data, load balancing increases throughput
33% compared to the greedy strategy. In the testb
configuration, the minimum cost master sustained a pe
throughput of 128 Mbps to three clients using a fully
replicated data set; without replication, the peak throughp
was only 59 MBps. With replicated data, throughput for th
greedy master was 96 Mbps

We experimented with load balancing and replicatio
using four different data set configurations. When a data
is loaded on the DPSS, each data block can be loaded
one or more servers. We label a configuration as x-by
where x is the total number of servers used and y is
number of servers each block is loaded on. For exampl
data set that is fully replicated on four servers is a 4x
configuration. For our tests, one configuration was 4x4. F

of DPSS servers

th
ro

ug
hp

ut
 (M

By
te

s/
se

c)

0

10

20

30

40

1 2 43

50 = with load
balancing
= no load
balancing

Figure 3: varied
network speed

Figure 4: varied
server CPU

Figure 5: varied
latency

of DPSS servers

th
ro

ug
hp

ut
 (M

By
te

s/
se

c)

0

10

20

30

40

1 2 43

50
= with load
balancing
= no load
balancing

of DPSS servers
th

ro
ug

hp
ut

 (M
By

te
s/

se
c)

0

10

20

30

40

1 2 43

50 = with load
balancing
= no load
balancing

ATM Sw i t ch

Lawrence Berke ley
Nat iona l Lab , CA

Univers i ty o f Kansas,
Lawrence , KS

Spr in t ,
Kansas C i t y , KS

SRI , Men lo
Pa rk , CA

DPSS C l i en t A

DPSS C l i en t B
DPSS C l i en t C

D S 3

O C - 1 2
ATM Sw i t ch

D P S S s e r v e r B

D P S S s e r v e r A

D P S S s e r v e r C

D P S S M a s t e r

D P S S s e r v e r DATM Sw i t ch

ATM Sw i t ch

ATM Sw i t ch O C - 1 2

O C - 3

O C - 3

Figure 6: Test configuration
6

e
ess
tal

ost
s,

ted
 the
t, it

est
's

st
ion
ee
 the
unt
fy
ver.
t C
hest
ad
 a
er
the other tests, three servers (A, C, D) were used. One
configuration was fully replicated (3x3), one was
replicated twice (3x2), and was not replicated (3x1). Since
we expect this type of storage cache to be mainly used with
very large data sets, in practice the data will likely only be
replicated at most twice.

We performed two series of tests. The first series
measured a single client accessing the DPSS to provide a
performance baseline. The second series measured three
clients using the DPSS simultaneously.

Load balancing has a greater effect when multiple
clients are running, because a small number of clients can
produce more load than a single server can handle. The
master dynamically adapts to the load generated by clients
to reduce contention at busy servers.

Our first test measured the sustained throughput a single
client could achieve for each data set. The test was intended
to show the best possible bandwidth that a client could
achieve for a given configuration, which provides a
baseline for future tests.

The test client ramps up to maximum performance over
the first two or three block requests. We exclude this ramp
up from the results by measuring the performance over the
last half of the requests. Figure7 s hows the results for these
tests, using clients on hosts A, B and C in Figur e6. They
show that the clients' performance is governed by the
quality of their connections to the servers. For the 4x4 data
set, Client A does the best, while Client C, which has a
slow connection to the local servers, does the worst.

Our second test measured the total sustained throughput
of the DPSS when three clients were running
simultaneously. These tests require measuring the
effectiveness of the load balancing algorithm at allocating
clients to servers without overloading servers. Figure
shows the results for the 3-client tests. It shows the total
throughput delivered to each client.

 The total throughput for the 4x4, 3-client test is 75% of
the sum of the single client tests. Clients A and B both used
Server A in the single client test. When they run

simultaneously, their total bandwidth requirements ar
more than the server can handle. Some of the exc
demand is handle by Server B. As a result, the to
throughput is lower.

The 3x2 case shows the benefits of the minimum c
flow algorithm. No server has a copy of all the data block
so each client must use two or more servers. This limi
replication increases contention at servers and reduces
aggregrate throughput of the DPSS. For the 3x2 data se
can only get two-thirds of the data from Server D. The r
of the data comes from Server A, which lowers Client C
throughput.

Figur e9 shows the performance of the minimum co
flow load balancing method vs. the greedy server select
method, showing the sum of the throughput from all thr
clients. The greedy strategy does not perform as well as
minimum cost master, because it does not take into acco
latency, the amount of bandwidth needed to satis
requests, or the number of clients using the same ser
Each problem occurs in practice. For the 3x2 test, Clien
had to use some servers on the West Coast. The hig
bandwidth link also had the highest latency; the lo
balancing algorithm got better performance by choosing
server with lower bandwidth and lower latency. In oth

Figure 7: Results for 1 client

���
���
���

���
���

�

��

��

��

��

���

��� ��� ��� ���

level of replication

to
ta

l t
hr

ou
pu

t (
M

bp
s)

	

�

Figure 8: Results for 3 simultaneous clients

��

��
��

��
��

�

��

��

��

��

���

��� ��� ��� ���

level of replication

to
ta

l t
hr

ou
gh

pu
t (

M
bp

s)

	

�

����������������������������
����������������������������
��
��
��
��
��

�

��

��

��

��

���

���

���

��� ��� ��� ���

	
�
	 � �
�	������

��
��
�
��
��
�
	
�

�
�
��

�
�

��� ��� ��

��

Figure 9: Comparison with “greedy” method
7

ts
g
n
n
e

lar
].
lly
s.
se
tage
ery
nd
ny
S is

t
is

ur

e
ts
nd

ly
ed
 We
be
e

to a
e

g
e
s
al
ll
s.
ve
cost
al
nd
ch as
ed
tests, the greedy master causes a single server to be
overloaded by choosing the same server for several clients.

Overall, load balancing and replication increase the
bandwidth delivered to applications. Replication allows
clients to use multiple servers, but without load balancing
clients are still limited by the speed of the slower server.
The minimum cost flow approach to load balancing
increases the total throughput of the system by adapting to
varying client demand. A summary of the total throughput
results for the 3 server, 2-way replicated scenario is shown
in Table 2 below.

5.5 Future Work

Our work on the DPSS is continuing in several areas.
We plan to test the DPSS in a larger testbed, with an

OC-12 wide area link and more clients. This will allow us
to evaluate the minimum cost master under heavier load,
where we expect load balancing to have a greater impact.

The specific minimum cost flow algorithm used is also
being studied. We currently model load balancing as a
single-commodity flow problem, which requires that
different data sets used by clients as be loaded on the same
servers and with the same degree of replication. A
multi-commodity flow algorithm, while computationally
more expensive, would not impose this requirement.

We would also like to investigate the use of a more
detailed network model to drive the minimum cost flow
algorithm. One improvement would be to monitor
performance between end hosts and internal network
nodes, which would allow the master to detect contention
on shared links. We also plan to experiment with other
network monitoring methods, such as passive methods, for
collecting network throughput information.

6.0 Related Work

Research on automatic TCP receive buffer tuning in the
operating system is being done by the Pittsburgh
Supercomputer Center [21]. While this is a very nice
approach, it will currently only help applications running
on hosts with a customized version of the NetBSD
operating system. Our approach can be used by any
distributed application on any Unix system.

Other network-aware application or middleware projec
include the Remulac project [6][22], which is also doin
network monitoring and application adaptation based o
the current network conditions. This project focuses o
designing a middleware API for applications to use; w
focus instead on issues for data intensive computing.

The goals of our network monitoring system are simi
to that of the NPACI Network Weather Service (NWS)[27
NWS is a distributed system that allows one to periodica
monitor various network and computational resource
NWS then dynamically forecasts the performance of the
resources based on their past performance. The advan
of our system is that the agent mechanism makes it v
easy to dynamically change what is being monitored, a
our use of LDAP to publish results makes it easy for a
application to access the results. The advantage of NW
that it maintains historical information and can do
predictions of future performance. This ability to predic
future performance would be extremely valuable for th
system, and we plan to try to incorporate NWS into o
JAMM system.

Our monitoring system is also somewhat similar to th
Globus network performance tool, GloPerf, which suppor
dynamic measurement and publication of network a
bandwidth information.

7.0 Conclusions

We have described a data architecture for wide
distributed data intensive applications, which is center
around the use of a high-speed network-aware cache.
believe that this type of network-aware data cache will
an important architectural component to building effectiv
data intensive computational grids.

We have also shown that adding network-awareness
distributed system can greatly improve its performance. W
are using real time network and system monitorin
information as input to a load balancing algorithm. Whil
more testing is needed to validate the utility of thi
particular load balancing algorithm in more gener
network environments, clearly this type of monitoring wi
be required to enable high performance grid-like system

Finally, in order to achieve best performance we ha
shown that data should be replicated. There is clearly a
involved in doing this, namely the cost of addition
servers/disks. However, this cost is relatively small, a
much less that the cost of enhancing other resources su
network capacity. Moreover, replication has the add
benefit of providing redundancy for fault tolerance.

Table 2

number
of clients

no
replication

(3x1)

greedy
master
(3x2)

min flow
master
(3x2)

1 60 Mbps 71 Mbps 87 Mbps

3 60 Mbps 82 Mbps 124 Mbps
8

.
ce

,

r

e
i-
d
9.

ry
n
A
M
).

d
is-
he
.

e
:

.

-
n-
,

k
ce

”

8.0 References

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B.
Orlin. Network Flows: Theory, Applications, and Algo-
rithms. Prentice-Hall: Englewood Cliffs, N.J., 1993.

[2] Erol Akarsu, Geoffrey C. Fox, Wojtek Furmanski, Tomasz
Haupt, “WebFlow - High-Level Programming Environ-
ment and Visual Authoring Toolkit for High Performance
Distributed Computing,” Proceedings of IEEE Supercom-
puting ‘98, Nov. 1998.

[3] Chaitanya Baru, Reagan Moore, Arcot Rajasekar, Michael
Wan, “The SDSC Storage Resource Broker,” Proc. CAS-
CON’98 Conference, Nov.30-Dec.3, 1998, Toronto, Can-
ada. (http://www.npaci.edu/DICE/SRB/)

[4] Boris Cherkassky and Andrew Goldberg. CS2.
http://www.star-lab.com/goldberg/soft.html.

[5] K. Czajkowski, I. Foster, C., Kesselman, N. Karonis, S.
Martin, W. Smith, S. Tuecke. “A Resource Management
Architecture for Metacomputing Systems,” Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies
for Parallel Processing,1998.

[6] DeWitt, T. Gross, T. Lowekamp, B. Miller, N. Steenkiste,
P. Subhlok, J. Sutherland, D., “ReMoS: A Resource Moni-
toring System for Network-Aware Applications” Carnegie
Mellon School of Computer Science, CMU-CS-97-194.
http://www.cs.cmu.edu/afs/cs/project/cmcl/www/remu-
lac/remos.html

[7] DPSS: http://www-didc.lbl.gov/DPSS

[8] Globus: See http://www.globus.org

[9] Andrew V. Goldberg. An Efficient Implementation of a
Scaling Minimum-Cost Flow Algorithm by A. V. Gold-
berg, Journal of Algorithms, Vol. 22, pp. 1-29, January
1997.

[10] Grid: The Grid: Blueprint for a New Computing Infra-
structure, edited by Ian Foster and Carl Kesselman. Mor-
gan Kaufmann, Pub. August 1998. ISBN 1-55860-475-8.
http://www.mkp.com/books_catalog/1-55860-475-8.asp

[11] Habanero: http://www.ncsa.uiuc.edu/SDG/Software/
Habanero/

[12] V. Jacobson, “Congestion Avoidance and Control,” Pro-
ceedings of ACM SIGCOMM ‘88, August 1988.

[13] JAMM: http://www-didc.lbl.gov/JAMM/

[14] William E. Johnston. “Real-Time Widely Distributed
Instrumentation Systems,” In The Grid: Blueprint for a
New Computing Infrastructur. Edited by Ian Foster and
Carl Kesselman. Morgan Kaufmann, Pubs. August 1998.

[15] William E. Johnston, W. Greiman, G. Hoo, J. Lee, B. Tier-
ney, C. Tull, and D. Olson. “High-Speed Distributed Data
Handling for On-Line Instrumentation Systems,” Proceed-
ings of ACM/IEEE SC97: High Performance Networking
and Computing. Nov., 1997. http://www-itg.lbl.gov/
~johnston/papers.html

[16] Legion: See http://www.cs.virginia.edu/~legion/

[17] Bruce Lowekamp, B. Miller, N. Sutherland, D. Gross, T
Steenkiste, P. Subhlok, J., “A Resource Query Interfa
for Network-Aware Applications,” 7th IEEE Sympo-
sium on High-Performance Distributed Computing, IEEE
July 1998, Chicago

[18] MAGIC: “The MAGIC Gigabit Network.” See:
http://www.magic.net

[19] Netperf: http://www.netperf.org/

[20] Vern Paxson, private communication.

[21] J. Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffe
Tuning,” Computer Communication Review, ACM SIG-
COMM, volume 28, number 4, Oct. 1998.

[22] P. Steenkiste, “Adaptation Models for Network-Awar
Distributed Computations,” 3rd Workshop on Commun
cation, Architecture, and Applications for Network-base
Parallel Computing (CANPC’99), Orlando, January, 199

[23] Brian Tierney, William E. Johnston, Hanan Herzog, Ga
Hoo, Guojun Jin, Jason Lee, Ling Tony Chen, Doro
Rotem. “Distributed Parallel Data Storage Systems:
Scalable Approach to High Speed Image Servers,” AC
Multimedia ‘94 (San Francisco, October 1994
http://www-itg.lbl.gov/DPSS/papers/

[24] Brian Tierney, W. Johnston, H. Herzog, G. Hoo, G Jin, an
J. Lee, “System Issues in Implementing High Speed D
tributed Parallel Storage Systems,” Proceedings of t
USENIX Symposium on High Speed Networking, Aug
1994, LBL-35775. http://www-itg.lbl.gov/DPSS/
papers.html.

[25] Brian Tierney, W. Johnston, G. Hoo, J. Lee, “Performanc
Analysis in High-Speed Wide-Area ATM Networks
Top-to-Bottom End-to-End Monitoring,” IEEE Network,
May, 1996, Vol. 10, no. 3. LBL Report 38246, 1996
http://www-itg.lbl.gov/DPSS/papers.html

[26] Carl A. Waldspurger and William E. Weihl. Stride Sched
uling: Deterministic Proportional-Share Resource Ma
agement, Technical Memorandum MIT/LCS/TM-528
MIT Laboratory for Computer Science, June 1995.

[27] Rich Wolski, Neil Spring, and Jim Hayes, “The Networ
Weather Services: A Distributed Resource Performan
Forecasting Service for Metacomputing,
http://nsw.npaci.edu/
9

	# of DPSS servers
	throughput (MBytes/sec)
	# of DPSS servers
	throughput (MBytes/sec)
	# of DPSS servers
	throughput (MBytes/sec)
	A Network-Aware Distributed Storage Cache for Data Intensive Environments
	Brian L. Tierney, Jason Lee, Brian Crowley, Mason Holding
	Computing Sciences Directorate
	Lawrence Berkeley National Laboratory
	University of California, Berkeley, CA, 94720
	Jeremy Hylton, Fred L. Drake, Jr.
	Corporation for National Research Initiatives, Reston, VA 20191
	Abstract
	1.0 Introduction
	2.0 Data Intensive Grids
	2.1 Architecture for Data Intensive Environments
	Figure 1 � The Data Handling Model

	2.2 Network-Aware Applications

	3.0 The Distributed-Parallel Storage System
	Figure 2: � DPSS Architecture

	4.0 Network-Aware Adaptation
	4.1 Monitoring System
	4.2 TCP Receive Buffers
	4.3 Load Balancing

	5.0 Results
	5.1 TCP Buffer Tuning
	Table 1

	buffer method
	network
	Total Throughput
	hand tune for LAN
	(64KB buffers)
	LAN
	33 MBytes/sec
	WAN
	5.5 MBytes/sec
	hand tune for WAN
	(512 KB buffers)
	LAN
	19 MBytes/sec
	WAN
	14 MBytes/sec
	auto tune in DPSS library
	LAN
	33 MBytes/sec
	WAN
	14 MBytes/sec

	LAN RTT = 1 ms over OC-12 (622 Mbit/sec) network
	WAN RTT = 44 ms over OC-3 (155 Mbit/sec) network
	5.2 Load Balancing
	Figure 3: � varied network speed
	Figure 4: � varied server CPU
	Figure 5: � varied latency

	5.3 Test Environment
	Figure 6: � Test configuration

	5.4 Performance Results
	Figure 7: � Results for 1 client
	Figure 8: � Results for 3 simultaneous clients
	Figure 9: � Comparison with “greedy” method
	Table 2

	number of clients
	no replication (3x1)
	greedy master (3x2)
	min flow master (3x2)
	1
	60 Mbps
	71 Mbps
	87 Mbps
	3
	60 Mbps
	82 Mbps
	124 Mbps
	5.5 Future Work
	6.0 Related Work
	7.0 Conclusions
	8.0 References
	[1] � Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory, Applicati...
	[2] � Erol Akarsu, Geoffrey C. Fox, Wojtek Furmanski, Tomasz Haupt, “WebFlow - High-Level Program...
	[3] � Chaitanya Baru, Reagan Moore, Arcot Rajasekar, Michael Wan, “The SDSC Storage Resource Brok...
	[4] � Boris Cherkassky and Andrew Goldberg. CS2. http://www.star-lab.com/goldberg/soft.html.
	[5] � K. Czajkowski, I. Foster, C., Kesselman, N. Karonis, S. Martin, W. Smith, S. Tuecke. “A Res...
	[6] � DeWitt, T. Gross, T. Lowekamp, B. Miller, N. Steenkiste, P. Subhlok, J. Sutherland, D., “Re...
	[7] � DPSS: http://www-didc.lbl.gov/DPSS
	[8] � Globus: See http://www.globus.org
	[9] � Andrew V. Goldberg. An Efficient Implementation of a Scaling Minimum-Cost Flow Algorithm by...
	[10] � Grid: The Grid: Blueprint for a New Computing Infrastructure, edited by Ian Foster and Car...
	[11] � Habanero: http://www.ncsa.uiuc.edu/SDG/Software/ Habanero/
	[12] � V. Jacobson, “Congestion Avoidance and Control,” Proceedings of ACM SIGCOMM ‘88, August 1988.
	[13] � JAMM: http://www-didc.lbl.gov/JAMM/
	[14] � William E. Johnston. “Real-Time Widely Distributed Instrumentation Systems,” In The Grid: ...
	[15] � William E. Johnston, W. Greiman, G. Hoo, J. Lee, B. Tierney, C. Tull, and D. Olson. “High-...
	[16] � Legion: See http://www.cs.virginia.edu/~legion/
	[17] � Bruce Lowekamp, B. Miller, N. Sutherland, D. Gross, T. Steenkiste, P. Subhlok, J., “A Reso...
	[18] � MAGIC: “The MAGIC Gigabit Network.” See: http://www.magic.net
	[19] � Netperf: http://www.netperf.org/
	[20] � Vern Paxson, private communication.
	[21] � J. Semke, J. Mahdavi, M. Mathis, “Automatic TCP Buffer Tuning,” Computer Communication Rev...
	[22] � P. Steenkiste, “Adaptation Models for Network-Aware Distributed Computations,” 3rd Worksho...
	[23] � Brian Tierney, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, Jason Lee, Ling To...
	[24] � Brian Tierney, W. Johnston, H. Herzog, G. Hoo, G Jin, and J. Lee, “System Issues in Implem...
	[25] � Brian Tierney, W. Johnston, G. Hoo, J. Lee, “Performance Analysis in High-Speed Wide-Area ...
	[26] � Carl A. Waldspurger and William E. Weihl. Stride Scheduling: Deterministic Proportional-Sh...
	[27] � Rich Wolski, Neil Spring, and Jim Hayes, “The Network Weather Services: A Distributed Reso...

