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ABSTRACT

Modulated-demodulated control is an effective method for asymptotic disturbance rejection and reference track-

ing of periodic signals, however, conventional static phase compensation often limits the loop gain in order to avoid

sensitivity function peaking in a neighborhood of the frequencies targeted for rejection or tracking. This paper

introducesdynamic phase compensationfor modulated-demodulated control which improves disturbance rejection

characteristics by inverting the plant phase in a neighborhood of the control frequency. Dynamic phase compen-

sation is implemented at baseband which enables the use of low-bandwidth compensators to invert high frequency

dynamics. Both static and dynamic phase compensation methods are used to demonstrate a novel application of

repetitive control for pulsed jet injection. In this application pulsing an injectant has been shown to produce advan-

tageous effects such as increased mixing in many energy generation and aerospace systems. The sharpness of the

pulse can have a large impact on the effectiveness of control. Modulated-demodulated control is used to maximize

the sharpness of a pulsed jet of air using active forcing by tracking a square wave in the jet’s temporal velocity

profile.
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1 Introduction

The disturbance rejection and reference tracking problem of periodic signals is encountered in many engineering sys-

tems. As such, there has been extensive research on repetitive control documented in the literature over a wide range of

applications such as industrial machinery [1], AC power supplies [2], [3], computer disk drives [4], [5], [6] and helicopter

blade control [7], [8]. All types of repetitive control are united in their basis, directly or indirectly, by Francis andWonham’s

Internal Model Principle (IMP) which requires a model of thedisturbance or reference to be included in the feedback loop

for perfect rejection or tracking [9]. One method of repetitive control is modulated-demodulated control, sometimes referred

to as adaptive feedforward control or adaptive feedforwardcancellation [10], [11]. This approach shifts the spectrumof

“high” frequency oscillations down to baseband which includes DC, operates at baseband, then shifts the baseband spectrum

back to high frequency. Essentially, the plant output in a neighborhood of the frequency to be controlled is estimated by

demodulation and low-pass filtering, then manipulated to form an input based on known plant dynamics which will cancel

the estimated disturbance or track a reference signal.

Modulated-demodulated control is based indirectly on the IMP as shown in [12], where Bodson et al. prove the equiva-

lence of a simple modulated-demodulated controller and a controller based directly on the IMP, the basis of the latter being

a harmonic oscillator with transfer function

Cimp(s) =
ks

s2+ω2 .

Both methods can be extended to reject/track multiple sinusoidal frequencies by placing copies of either controller inparallel.

Alternatively, the time delay repetitive controller, which has transfer function based on a time delay, L,

Ctd(s) =
e−Ls

1−e−Ls,

controls at multiple frequencies but is restricted to control harmonics of the fundamental frequency 1/L. The modulated-

demodulated controller and IMP controller both offer selective placement of poles, however, modulated-demodulatedcontrol

can be more advantageous in implementation because low-bandwidth compensators are used to control high frequency

oscillations.

Most modulated-demodulated control studies to date have focused on disturbance rejection such as in [13] and [14]

where a modulated-demodulated controller is used for vibration damping in flexible structures. Their design relies upon
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the fact that vibration occurs at distinct modes dictated bythe resonances of the structure. The modulation frequencies of

the controller are placed at the resonances to provide damping. Analysis shows an LTI transfer function for this controller

can be derived from two different perspectives, either the high frequency “control band” or the low frequency “baseband”.

The control band analysis provides information on performance while the baseband analysis provides greater insight into the

controller design.

The present paper expands upon the insight gained from the baseband analysis of [14] and presents an improved method

of phase compensation for modulated-demodulatedcontrol.Replacing conventional static phase compensation with dynamic

phase compensation improves disturbance rejection nearbythe specified rejection or tracking frequency. Additionally, static

phase and dynamic phase modulated-demodulatedcontrollers are used to demonstrate a novel application of repetitive control

for pulsed jet injection. Actively pulsing a jet can favorably influence many aspects of a flowfield such as the spread and

mixing of the jet into its surroundings. It is hypothesized these parameters will be maximized with the formation of strong,

well spaced vortex rings at the jet exit. Periodic square wave forcing is believed to be the most effective way to accomplish

this but challenges are presented in forming square waves due to non-linear dynamics identified in the actuation system.

Repetitive control is necessary to shape the jet’s measuredtemporal velocity waveform to track, as closely as possible, a

square wave.

2 Controller Architecture

The present strategy applies to single input, single outputsystems. A parallel set of individual control loops, each

designed to operate in a narrow band around a single frequency, are summed together to achieve the overall goal of rejecting

a disturbance and its harmonics or tracking a periodic reference waveform. The operating frequencies are positioned atthe

fundamental frequency, denotedωf , of the periodic disturbance or reference and a specified number of its harmonics. Thus,

the ideal measured waveform will cancel the disturbance or match the Fourier series approximation of the periodic reference

truncated at the number of harmonics tracked.

2.1 Control at a Single Frequency

Each individual control loop demodulates the measurementy to shift the spectrum ofy in the neighborhood of the

demodulation frequency down to a baseband, operates at the baseband near DC, and then modulates the signal back up to

“high” frequency. This process is detailed in Figure 1 for control at a single frequency, denotedωo. The output of the plant,

P, is split into two branches by demodulation with 2cos(ωot) and 2sin(ωot) to produceyc andys in Figure 1. These signals
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are then low-pass filtered byHLP (unity gain at DC) and compared to the constantsC1 andC2 which represent the Fourier

series coefficients of the desired harmonic signal

C1 cos(ωot)+C2sin(ωot). (1)

The error signals are integrated and then compensated to implement an approximate phase inversion ofP which produces

favorable stability and sensitivity characteristics of the closed-loop system. The method of phase compensation distinguishes

the control strategies presented in this paper from one another. Phase compensation is accomplished statically, or dynamically

(as discussed here) depending on the characteristics ofP. Following this stage, the signals are modulated back to thecontrol

band by cos(ωot) and sin(ωot), summed, and scaled byK to produce the control effortu. If control at multiple frequencies

is desired, the architecture is repeated for each frequencyand the output of each control loop is summed.

Under periodic reference tracking conditions the output has its energy concentrated in narrow bands around the har-

monics of the fundamental forcing frequency. This is similar to the narrow-band resonant structure sensor response used for

feedback in the modulated-demodulated controller of [14].The response ofy in a neighborhood ofωo is captured by the

signalsy1 andy2, i.e.

y(t) = y1(t)cos(ωot) + y2(t)sin(ωot)

in a neighborhood ofωo because the low-pass filters, denotedHLP in Figure 1, band-limity1 andy2 [15]. If the corner

frequency ofHLP is denotedωc, theny1 andy2 can be used to reconstructy in the [ωo−ωc , ωo+ωc] band. When a periodic

waveform is tracked, multiple copies of Figure 1 are summed with ωo set to the fundamental frequency of the periodic

waveform and a select number of its harmonics. In this case the corner frequencies associated with each harmonic is limited

to beωc < ωf so controllers at adjacent harmonics do not interact.

The reference signal in this setup is injected into the baseband via constantsC1 andC2. These specify the plant output

in the form of (1). WhenC1 andC2 are set to 0, this type of controller is often given the name Adaptive Feedforward

Cancellation due to its effectiveness at canceling periodic output disturbances. However, for the purposes of reference

tracking,C1 andC2 are set to the real and imaginary parts of the Fourier series coefficient at frequencyωo of a periodic

reference waveform.

Phase compensation in modulated-demodulated control is needed to invert the phase ofP to reduce the classical sensitiv-

ity function of the closed-loop system in a neighborhood ofωo. This has typically been accomplished using a phase advance

parameter given to the demodulators to adjust the controller’s phase by a constant angle. In this study we use an alternative
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implementation for phase compensation which employs either a stage of constant gains or a stage of compensators, respec-

tively, to create a static or dynamic phase characteristic in a neighborhood ofωo. The static phase compensation controller

uses constant gains, denotedRandI , in place of the dynamic compensatorsHd andHx of Figure 1. The static phase approach

is an equivalent implementation of the phase advance parameter [16]. The phase angle of the rotation, denotedφ, is defined

by gainsRandI through the rotation matrix

Q=









R I

−I R









The phase rotation is set to cancel the phase delay of the plant frequency response atωo to maximize phase margin of the

system [6]. The static phase compensation gains are defined as follows

R=
Rp

√

R2
p+ I2

p

and I =
Ip

√

R2
p+ I2

p

(2)

where

P( jωo) = Rp+ jI p. (3)

The structure of this implementation is advantageous for our purposes as the extension from static to dynamic phase

compensation is easily accomplished by replacing the static phase compensation gains with dynamic compensators. Dynamic

phase compensation reduces the sensitivity function of theclosed-loop system by inverting the plant phase in a neighborhood

of ωo. This method is most useful whenP has rapidly changing phase nearbyωo. Expression forHd andHx are developed

in the next section.

3 Controller Analysis

The modulated-demodulated system presented above is splitinto two distinct bands, the high frequency “control band”

and the low frequency baseband. As in [14], it is natural and useful to analyze the system from both perspectives. An

exact LTI transfer function fromy to u can be derived for the controller from the control band perspective, however, from the

baseband perspective, the controller can be represented bya two input, two output (TITO) baseband controller, from[y1 y2]
T

to [u1 u2]
T and a TITO compensated plant.
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3.1 Control Band Analysis

The fact the controller can be represented as an LTI system isnot straightforward. Using Laplace transforms with an

arbitrary phaseγ given to the modulating and demodulating signals, cos(ωot + γ) and sin(ωot + γ), it can be shown the

transfer function for control at a single frequency using dynamic phase compensation is given by

Cd(s) = K

[

HLP(s− jωo)(Hd(s− jωo)− jHx(s− jωo))

s− jωo
+

HLP(s+ jωo)(Hd(s+ jωo)+ jHx(s+ jωo))

s+ jωo

]

(4)

This expression is independent ofγ and, thus, represents a time-invariant compensator. Usingintegrators as the baseband

controller produces the required poles at± jωo for perfect steady state tracking of periodic references asdictated by the

internal model principle. The poles ofHLP have also been shifted to± jωo, creating a bandpass filter positioned aroundωo

with corner frequencies atωo±ωc. With static phase compensation the transfer function simplifies to

Cs(s) = K

[

HLP(s− jωo)

s− jωo
(R− jI )+

HLP(s+ jωo)

s+ jωo
(R+ jI )

]

(5)

The subscriptsd ands refer to the dynamic phase controller and static phase controller, respectively. It is worth noting that

withoutHLP and phase compensation (R= 1 andI = 0), the modulated-demodulated controller is equivalent tothe Internal

Model Principle controller,Cimp, which was shown in [12].

The loop gainL = PC closely resembles, for sufficiently small gainK, the force-to-velocity harmonic oscillator transfer

function in a neighborhood ofω0,

L(s) ≈
2Ks

s2+ω2
o
|P( jωo)|. (6)

The factor of 2 is needed to be consistent with the block diagram of Figure 1. This expression is used to approximate the rate

of convergence at each control frequency for both static anddynamic phase compensators. Dynamic phase compensation

permits the use of larger values ofK for which (6) is still a reasonable approximation ofL in a neighborhood ofωo. When

unity gain negative feedback is closed around (6), the closed-loop system has time constantτ = 1
K|P( jωo)|

.

One of the advantages of modulated-demodulated control is the ability to independently specify the convergence rate

at each frequency of control. For example, the individual loop gains can be set to be inversely proportional to the plant

magnitude atωo to equate the convergence rates at all frequencies. More precisely,K can be chosen as

K =
1

τ|P( jωo)|
(7)
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in order to achieve the closed-loop time constantτ at all control frequencies. This choice is used for the application discussed

in Section IV where the magnitude of the plant frequency response decreases by almost two orders of magnitude within the

actuation bandwidth.

3.2 Baseband Analysis

The motivation for development of dynamic phase compensation is best illustrated by analysis of the static phase con-

troller from the baseband perspective. A static phase compensated plant, denotedGs, is defined as the TITO system from

[u1 u2]
T to [y1 y2]

T in Figure 1 (the loops are broken between these signals and the 1
s compensators are removed). This is a

linear, time-periodic system that can be approximated by anLTI system if

|HLP( jω)| ≈ 0 when ω > ωc. (8)

If (8) is valid, the 2×2 system of transfer functions for the static phase compensated plant is given by

Gs(s) =









Ysd(s) Ysx(s)

−Ysx(s) Ysd(s)









(9)

where

Ysd(s) = K
1
2
[P(s− jωo)(R+ jI )+P(s+ jωo)(R− jI )]HLP(s)

Ysx(s) = K
j
2
[−P(s− jωo)(R+ jI )+P(s+ jωo)(R− jI )]HLP(s)

At s= 0,Ysx(0) = 0, providedQ exactly inverts the plant phase atωo. Additionally,Ysd(0) = 1 provided bothK andQ

exactly invert the magnitude and phase of the plant atωo, therefore,

Gs(0) = I2.

The two branches of the baseband are decoupled at DC. This effectively isolates control of the in-phase and quadrature terms

of the demodulated signal. With a non-diagonalGs, the in-phase and quadrature terms corrupt one another and reduce the

phase margin ofLs. In general, only ats= 0 will Gs be diagonal even withφ = − 6 P( jωo). It is likely any physical plant

will have have changing phase in the neighborhood ofωo and, therefore, the controller will not exactly invert the plant phase
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except atωo. This has the potential to significantly degrade the performance of the controller due to peaking in the sensitivity

function close to the control frequency. This can be avoidedby reducingK at the expense of smaller bandwidth and slower

convergence rate. Alternatively, dynamic phase compensation can improve the stability and sensitivity characteristics of the

closed-loop system, without reducingK, by diagonalizingGs over a range ofs instead of only ats= 0. The dynamic phase

compensated plant, denotedGd, is

Gd(s) =









Ydd(s) Ydx(s)

−Ydx(s) Ydd(s)









(10)

where

Ydd(s) = K
1
2
[P(s− jωo)(Hd(s)+ jHx(s))+P(s+ jωo)(Hd(s)− jHx(s))]HLP(s)

Ydx(s) = K
j
2
[−P(s− jωo)(Hd(s)+ jHx(s))+P(s+ jωo)(Hd(s)− jHx(s))]HLP(s)

Setting

Ydd(s) = 1 andYdx(s) = 0

it can be shown the diagonal and off-diagonal compensators must take the form

Hd(s) =
P(s− jωo)+P(s+ jωo)

2P(s− jωo)P(s+ jωo)HLP(s)
(11)

Hx(s) = j
P(s− jωo)−P(s+ jωo)

2P(s− jωo)P(s+ jωo)HLP(s)
(12)

By settingYdd = 1, Hd andHx invert both the magnitude and phase ofP. Therefore, each loop gain is set equal to match the

convergence rates at all frequencies. In practice,Hd andHx are obtained by fitting stable filters to the graphs of (11) and(12)

whereP is given by empirical frequency response data.

3.3 Benefits of Controller Architecture

In addition to independent manipulation of the convergencerate, modulated-demodulated control offers more flexibility

than other repetitive control techniques because of decoupling between each individual rejection/tracking frequency of the
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controller. The frequency, gain, reference, and phase compensation parameters can be independently tuned within eachfre-

quency loop. Therefore, it is possible to target specific frequencies, even those which are not harmonics of the fundamental.

It can be used to track a desired waveform as well as cancel periodic disturbances at unrelated frequencies.

When implemented digitally, the modulated-demodulated controller has an advantage over time delay repetitive con-

trollers because the sampling rate does not have to be an integer multiple of the control frequency. Furthermore, this method

of control is desirable because it only requires knowledge of the plant in a neighborhood of the fundamental and harmonics.

In fact, identification of the relevant parameters can be done in the baseband “coordinates”, i.e.Ydd andYdx can be identified

whenHd = 1 andHx = 0.

4 Experimental Application to Pulsed Jet Injection

4.1 Experimental Setup

The modulated-demodulated controllers developed in this study are used to demonstrate possible benefits of pulsed jet

injection using the schematic shown in Figure 2. The jet fluid, comprised of compressed air, is distributed into a plexiglass

plenum via a four way injection. The flow is regulated to maintain an average jet velocity of 8ms−1. The velocity is measured

using a hotwire anemometer placed at the exit of a contracting nozzle. Active forcing is applied using a lightweight piston

positioned beneath the injection point within the plenum, approximately 14 cm beneath the hotwire. The piston is actuated

using a Ling LVS-100 modal shaker which moves with one degreeof freedom, axially in line with the jet. The controllers

are implemented using Matlab’s XPC Target application witha 25kHz sampling rate. Anti-aliasing of the hotwire signal is

accomplished using an 8-pole low-pass Chebyshev filter witha 10 kHz corner frequency.

4.2 System Identification

The piston actuation system was identified in a frequency band extending from 10 Hz to 5 kHz using a band-limited

white noise input whose intensity is adjusted so that the RMSof the velocity perturbation is 0.2ms−1. As shown in Figure

3, the frequency response rolls off after a mode at 1.7 kHz (due to a resonance of the plenum). Above approximately 2 kHz

it becomes nearly impossible to influence the jet velocity. Such a limitation on the actuation system’s bandwidth presents

an obstacle when attempting to achieve a desired waveform, particularly a square wave. Due to the discontinuity in the

waveform, the Fourier series coefficients of a square wave decay at a slow rate as a function of frequency especially when

the duty cycle is small (< 20%). Thus, given the limited actuation bandwidth, only a limited number of harmonics of the

fundamental forcing frequency can be used which produces a truncated version of an ideal square wave reference waveform.
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The truncated version of the square wave has oscillations invelocity near the discontinuity and a gradual transition from

low-to-high or high-to-low velocity. The speed of the transition is dependent on the number of harmonics included in the

truncation, with the greater number or harmonics leading toa faster transition. It is important to use as many harmonicsas

possible since a rapid transition is believed to produce strong vortex rings which improve the spread and penetration ofthe

jet.

In addition to the roll-off, the frequency response displays a large amount of delay over the frequency band of interest.

One contribution to the delay is the transport lag created bythe physical distance between the piston and hotwire. Such a

large delay makes high-gain control impossible across the entire usable bandwidth of the actuator. Thus, instead of using a

wideband approach, our control problem will be broken down into multiple narrow-band control problems using modulated-

demodulated control with each frequency band positioned around the fundamental frequency and harmonics of the periodic

reference waveform. The dashed line in Figure 3 is representative of the bandwidth used for control at a single frequency

usingωc = 50 Hz. Control over the entire usable bandwidth of the actuation system is achieved by summing the control

effort from similar narrow bands.

Another notable feature of the plant’s frequency response are the “ripples” at frequencies below 400 Hz, which are

caused by dynamics associated with the injection tubing. Infact, the rapidly varying plant phase in this frequency range

motivates the development of dynamic phase compensation because of the quantitative improvement that it provides over

static phase compensation in terms of the system’s closed-loop sensitivity characteristics.

4.3 Controller Implementation

Implementation of the static phase compensation controller only requires knowledge of the plant atωo. For a single- or

multi-frequency controller this is rapidly accomplished on a sine-by-sine basis. ConstantsRandI are calculated directly from

the identification using (2). Implementation of the dynamicphase compensation controller requires plant identification in a

neighborhood of the forcing frequencies. The dynamic compensatorsHd andHx are synthesized from a model fit using the

identified plant data and (11) and (12). The goal is to create compensator models which diagonalizeGs for all s< jωx, where

ωx is some cutoff frequency. The cutoff frequency defines the range,ωo−ωx ≤ ω ≤ ωo+ωx over which the plant phase

will be inverted. A limited range is necessary to synthesizestable, low-order compensator models. The cutoff frequency

and model order are chosen for each control loop based on the dynamics of the plant nearωo. The models are designed

to capture large magnitude and phase changes in the empirically generated compensators over the widest frequency range

possible while retaining accuracy and stability. Integrators are used in the baseband controller to ensure the Fourierseries
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components of the desired waveform are asymptotically tracked. Additionally, the integrators make the baseband low-pass

in nature; therefore, it is more important to capture the dynamics closer toω = 0.

For example, Figure 4 displays the empirical and fitted phasecompensators used for control at 100 Hz. The diagonal and

off-diagonal analytical compensators have been fit up to a frequency of 42 Hz using an 8th and 6th order model, respectively.

This lies below the corner frequency ofHLP which was set to 50 Hz for these experiments. The model matches the analytical

compensators very well at low frequencies and the location of the two modes in each compensator have been captured for

bothHd andHx.

4.4 Test Results

It is fairly commonplace to track or reject sinusoidal references or disturbances at one or two frequencies but for our

application the task must be accomplished with a high numberof frequencies in order to form a periodic square wave. In the

following experiments we use a 20-frequency modulated-demodulated controller in which dynamic phase compensation was

required for [100, 200, 300, 400] Hz. The periodic waveform has a fundamental frequency of 100 Hz. Thus, 20 harmonics

fall within the actuation system bandwidth.

The reference signal used for square wave forcing is derivedfrom the Fourier series coefficients of the square wave.

The ideal waveform has a frequency defined by the fundamentalforcing frequency but has a duty cycleα, the ratio of the

temporal pulse width,τ to the waveform period,T, α = τ
T , which is dependent upon user input. The duty cycle is varied

to pinpoint the forcing conditions which optimize important characteristics of the jet such as penetration or spread. The

desired Fourier series coefficients are tracked using the closed-loop controller to produce waveforms like the two shown with

α = 20% andα = 40% in Figure 5a-b, respectively. The measured waveforms inthe thin solid line are compared to the ideal

square wave in the dashed line and the truncated Fourier series in the thick solid line. In all cases, not just the ones shown

here, the measured waveforms match the ideal truncated waveform very well. The small deviations that occur are due to

noise which falls outside the narrow-band regions around each harmonic and, therefore, are uncompensated. Figure 6 shows

the measured square wave spectrum and the Fourier series spectrum at each forcing frequency. At these points the spectra

are indistinguishable from one another.

These square waves were formed using a specified closed-looptime constant ofτ = 0.050s, which, using (7), puts the

controller gain atK = 20
|P( jωo)|

. Figure 7 shows the envelope of the response for a step input with amplitude 1.4ms−1 given

only to the 100 Hz control loop. The empirical data is compared to the analytical approximation based on the observation of

(6). The empirical time constant, measured to beτ = 0.045s, is slightly faster than the specified time constant. As mentioned
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previously, the convergence rate of the multi-frequency controller matches the 100 Hz case presented here because the

convergence rates at each frequency of control are equated by adjusting the gain of the individual control loops.

Figure 8 shows a direct comparison of the static and dynamic phase compensation loop gains in the neighborhood

of 100 Hz. Both transfer functions move through 0◦ as their phase jumps from 90◦ just belowωo to −90◦ just afterωo.

However, dynamic phase compensation is shown to reduce the slope of the loop gain phase as compared to the static phase

loop transfer function.

A closer look in terms of the stability and sensitivity characteristics of the 100 Hz control loop clearly illustrates the

benefit of using dynamic phase compensation over static phase compensation. The Nyquist plot of the 100 Hz static and

dynamic phase compensation controller loop gains,Ls andLd, measured empirically using theτ= 0.045scontroller, is shown

in Figure 9. The locus ofLs moves closer to encircling -1 thanLd at frequencies less thanωo. This has a significant impact on

the phase margin of the controller which is 46.4◦ for static phase compensation but 79.1◦ for dynamic phase compensation.

The improvement in phase margin from dynamic phase compensation also reduces the maximum sensitivity function

magnitude. Figure 10 shows the sensitivity function for 100Hz as well as 200 Hz, 300 Hz, and 400 Hz using the static

phase compensation system withτ = 0.045s. For comparison, Figure 11 shows the sensitivity function for dynamic phase

compensation at [100, 200, 300, 400] Hz with the same measured time constant,τ = 0.045s. The 100 Hz static phase sensi-

tivity function has a peak of 1.94 at 94.5 Hz which is reduced beneath 1.2 at all frequencies by dynamic phase compensation.

Additionally, the bandwidth of the 100 Hz loop is increased from 6.9 Hz to 10.5 Hz. Between 94.5 Hz and 100 Hz the plant

phase decreases by 36.9o, from −95.8◦ to −132.7◦. The rapidly changing plant phase nearωo, which can also be seen in

the loop transfer function in Figure 8, is the cause of the peaking in the sensitivity function of the static phase compensation

system and makes such an improvement in the dynamic phase compensation system possible. Dynamic phase compensation

inverts the plant dynamics at each frequency such that the sensitivity functions at each frequency are almost indistinguishable

from one another within the bandwidth of the model fit.

Another demonstration of the multi-frequency modulated-demodulatedcontrol approach is presented in Figure 12 where

the effect of closed-loop control on the hotwire noise spectrum is considered. The unforced, open-loop hotwire noise spec-

trum is shown in Figure 12a and the closed-loop hotwire noisespectrum is shown in Figure 12b. At every frequency of

control the closed-loop noise spectrum is reduced well below the broadband noise floor. Although the frequency response

data was assumed to have been generated by a linear plant, there are nonlinear features that can be observed under certain

test conditions. For example, the hotwire spectrum exhibits harmonic distortion when the amplifier is driven with a pure

tone. The open-loop and closed-loop hotwire spectra are compared again in Figure 13, however, a single tone at 100 Hz has
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been imposed which perturbs the mean jet flow by 5%. This example demonstrates the difficulty of forming a square wave

through open-loop control because of the excitation of harmonics in response to the forced tone. Perturbations at 200 Hzand

many higher frequencies can be seen in the open-loop spectrum of Figure 13a. These harmonics produce large asymmetries

and ringing in the jet’s temporal waveform if uncontrolled.The spectrum of the response to the same amplitude input at

100Hz in Figure 13b, this time applied with closed-loop control, shows a complete reduction in the harmonic production at

all frequencies under control.

Figure 14a shows the open-loop hotwire spectrum in responseto dual tone inputs at 300 Hz and 400 Hz. In addition

to harmonics of each tone, subharmonics also appear in the jet response. The production of subharmonics in this manner is

similar to intermodulation distortion. Like the 100 Hz single tone case, Figure 14b shows closed-loop forcing of these dual

tones eliminates the harmonics as well as the subharmonics.At each frequency of control the spectrum has been reduced

significantly beneath the broadband noise floor. Even at harmonics of 300 Hz and 400 Hz above 2000 Hz, the highest

frequency of control, the velocity spectrum has been reduced indicating strong coupling between the harmonics.

5 Conclusion

This paper has detailed a useful improvement upon conventional phase compensation of a modulated-demodulated

controller and demonstrated an experimental implementation of such a controller for the application of pulsed jet injection

via temporal velocity waveform tracking. The use of dynamicphase compensation instead of constant or static phase

compensation has reduced peaking in the sensitivity function and increased the bandwidth of systems for control of plants

with varying phase near the disturbance or tracking frequency.

It was also shown this controller can be used to simultaneously control a large number of frequencies to track a periodic

square wave. The well defined square waves formed in the jet’svelocity profile presented in this paper have the potential to

significantly improve the spread and mixing of jets used in a variety of aerospace applications.
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[8] Ariyur, K. B., and Krstić, M., 1999, “Feedback attenuation and adaptive cancellation of blade vortex interaction on a

helicopter blade element”,IEEE Transactions on Control Systems Technology,7(5), pp. 596–605.

[9] Francis, B. A., and Wonham, W. M., 1975, “The internal model priciple for linear multivariable regulators”,Applied

Mathematics and Optimization,12, pp. 457–465.

[10] Kandil, T. H., Khalil, H. K., Vincent, J., Grimm, T. L., Hartung, W., Popielarski, J., York, R. C., and Seshagiri, S.,2005,

“Adaptive feedforward cancellation of sinusoidal disturbances in superconducting rf cavities”,Nuclear Intruments and

Methods in Physics Research,550, pp. 514–520.

[11] Byl, M. F., Ludwick, S. J., and Trumper, D. L., 2005, “A loop shaping perspective for tuning controllers with adaptive

feedforward cancellation”,Precision Engineering,29, pp. 27–40.

[12] Bodson, M., Sacks, A., and Khosla, P., 1994, “Harmonic generation in adaptive feedforward cancellation schemes”,

IEEE Transactions on Automatic Control,39, pp. 1939–1944.

[13] Lau, K., Goodwin, G. C., and M’Closkey, R. T., 2005, “Properties of modulated and demodulated systems with

implications to feedback limitations”,Automatica,41, pp. 2123–2129.

[14] Lau, K., Quevedo, D. E., Vautier, B. J. G., Goodwin, G. C., and Moheimani, S. O. R., 2005, “Design of modultated

and demodulated controllers for flexible structures”,Control Engineering Practice,15, pp. 377–388.

[15] Goodyear, Colin, and Crosland, 1972,Signals and Information, Wiley-Interscience.

Corresponding Author: R. T. M’Closkey Paper DS-10-1327 14



[16] Cattell, J., 2003, “Adaptive feedforward cancellation viewed from an oscillator amplitude control perspective”, Master’s

thesis, Massachusetts Institute of Technology.

Corresponding Author: R. T. M’Closkey Paper DS-10-1327 15



List of Figures

1 The “Dynamic phase” modulated-demodulated controller for asymptotic reference tracking of a single sinu-

soid at frequencyωo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Pulsed jet injection experimental setup. A piston, actuated by a modal shaker, is used to actively control the

temporal velocity profile of a jet at the nozzle exit. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . 19

3 Actuation system frequency response. The magnitude roll-off after the plenum mode at 1.7 kHz produces

an actuator with an approximate bandwidth of 2 kHz. The dashed line represents the bandwidth for control

around a single frequency withωc = 50 Hz. The linear phase delay represents a significant transport lag

which makes high-gain, wide bandwidth control impossible to achieve. . . . . . . . . . . . . . . . . . . . . 20

4 An example of dynamic phase compensators for plant phase inversion in a neighborhood around the control

frequency (ωo = 100 Hz). Solid line - empirical, dashed line - model fit. a)Hd, b) Hx. The empirical data is

fit up to 42 Hz using an 8th order and 6th order model forHd andHx, respectively. . . . . . . . . . . . . . . 21

5 Details of pulses produced with a repetition rate of 100 Hz andα = 20% (case a), andα = 40% (case b). One

period of an ideal square wave (dashed line) is compared to the ideal square wave truncated at 20 sinusoids

(thick solid line) and the empirical square wave (thin solidline). . . . . . . . . . . . . . . . . . . . . . . . 22

6 Square wave spectrum a)α = 20%, b)α = 40%. The empirical square wave spectrum at each forcing

frequency (circles) is identical to the ideal square wave Fourier series (Xs). . . . . . . . . . . . . . . . . . 23

7 Envelope of the response of aωo = 100 Hz dynamic phase controller to a 1.4ms−1 step input. The controller’s

gain is determined by a specified time constant ofτ = 0.050s to beK = 20
|P( jωo)|

. . . . . . . . . . . . . . . . 24

8 Loop transfer function comparison of static phase compensation (solid) to dynamic phase compensation

(dashed) for control atωo = 100 Hz with measured time constantτ = 0.045s . . . . . . . . . . . . . . . . . 25

9 Nyquist plot comparison of static phase compensation (thick solid line) to dynamic phase compensation (thin

solid line) for control atωo = 100 Hz with measured time constantτ = 0.045s . . . . . . . . . . . . . . . . 26

10 Sensitivity function comparison of static phase compensation at 100 Hz (solid line), 200 Hz (dashed line),

300 Hz (dot-dashed line), and 400 Hz (dotted line) with measured time constantτ = 0.045s . . . . . . . . . 27

11 Sensitivity function comparison of dynamic phase compensation at 100 Hz (solid line), 200 Hz (dashed line),

300 Hz (dot-dashed line), and 400 Hz (dotted line) with measured time constantτ = 0.045s . . . . . . . . . 28

Corresponding Author: R. T. M’Closkey Paper DS-10-1327 16



12 Hotwire noise spectrum for the open-loop (case a) and closed-loop (case b) system when the reference signal

coefficients are zero. Each controller creates a deep notch in the noise spectrum in the closed-loop case. The

mean jet velocity is 8ms−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

13 Suppression of harmonic distortion in response to a 100 Hzsingle tone input (a) open-loop, b) closed-loop) 30

14 Elimination of intermodulation distortion in response to a 300 Hz and 400 Hz dual tone input (a) open-loop,

b) closed-loop) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . 31

Corresponding Author: R. T. M’Closkey Paper DS-10-1327 17



HLP(s)

HLP(s)

1
s

P(s)K

y1

y2

C1

C2

yc

ys

2cos( t)

2sin( t)

us

uc

cos( t)

sin( t)

u

+

+

+

-

+

+

+

+

-

-

Hx(s)

Hx(s)

Hd (s)

Hd (s)

y

n

++

1
s

u1

u2

Phase 

compensation

Asymptotic tracking 

of reference sinusoid

Controls rate of

convergence

o

o

o

o

Fig. 1. The “Dynamic phase” modulated-demodulated controller for asymptotic reference tracking of a single sinusoid at frequency ωo
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Fig. 12. Hotwire noise spectrum for the open-loop (case a) and closed-loop (case b) system when the reference signal coefficients are zero.

Each controller creates a deep notch in the noise spectrum in the closed-loop case. The mean jet velocity is 8 ms−1.
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Fig. 13. Suppression of harmonic distortion in response to a 100 Hz single tone input (a) open-loop, b) closed-loop)
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Fig. 14. Elimination of intermodulation distortion in response to a 300 Hz and 400 Hz dual tone input (a) open-loop, b) closed-loop)
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