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ABSTRACT OF THE DISSERTATION
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Professor Burt Totaro, Chair

Using the recent work of Frankland and Spitzweck, we define motivic Steenrod operations Pn

on the mod p motivic cohomology of smooth varieties defined over a base field of characteristic

p. We show that the operations Pn satisfy expected properties such as the Adem relations and

Cartan formula when restricted to mod p Chow groups. We also show that Pn is the pth power

on CHn(−)/p and prove an instability result. Using these new operations, we remove previous

restrictions on the characteristic of the base field for Rost’s degree formula. We also prove

Hoffmann’s conjecture (generalized to include quadratic forms over a base field of characteristic

2) on the possible values of the first Witt index of an anisotropic quadratic form for the special

case of nonsingular anisotropic quadratic forms over a base field of characteristic 2.
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Chapter 1

Introduction

Voevodsky constructed motivic reduced power operations PnF for n ≥ 0 where the base field

F is a perfect field with char(F ) not equal to the characteristic of the coefficient field [30].

These operations were used in the proof of the Bloch-Kato conejcture. Motivic reduced power

operations can also be used to prove results about quadratic forms and degree formulas in

algebraic geometry as in [5] and [21].

For a prime p, Voevodsky’s construction of Steenrod operations for the coefficient field Fp

uses the calculation of the motivic cohomology of BSp. However, when defined over a base field

k of characteristic p, BZ/p is contractible [22, Proposition 3.3]. Hence, over the base field k,

H∗,∗(BSp,Fp) ∼= H∗,∗(k,Fp) and so one cannot carry out Voevodsky’s construction. It has also

been an open problem to just define Steenrod operations on the mod p Chow groups of smooth

schemes over a field of characteristic p. Haution made progress on this problem by constructing

the first p − 1 homological Steenrod operations on Chow groups mod p and p-primary torsion

[11], defining the first Steenrod square on mod 2 Chow groups over any base field [12], and

constructing weak forms of the second and third Steenrod squares over a field of characteristic

2 [14]. Note that in papers where Steenrod squares (or weak forms of Steenrod squares) on mod

2 Chow groups are used, the nth Steenrod square on mod 2 Chow groups corresponds to the

2nth Steenrod square on mod 2 motivic cohomology since the Bockstein homomorphism is 0 on
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mod 2 Chow groups.

For p a prime, we use the results of Frankland and Spitzweck in [8] to define Steenrod

operations Pnk : H i,j(−,Fp) → H i+2n(p−1),j+n(p−1)(−,Fp) for n ≥ 0 on the mod p motivic

cohomology of smooth schemes over a field k of characteristic p. Note that some authors use

the notation H i(−,Z(j)) in place of H i,j(−,Z) to denote motivic cohomology. For n ≥ 1, we

show that Pnk is the pth power on H2n,n(−,Fp) = CHn(−)/p, and we also prove an instability

result for the Steenrod operations. Restricted to mod p Chow groups, we prove that the P ik

satisfy expected properties such as Adem relations and the Cartan formula. We also show that

the operations Pnk agree with the operations PnK , constructed by Voevodsky for char(K) = 0,

on the mod p Chow rings of flag varieties in characteristic 0.

In Chapter 9, we extend Rost’s degree formula [21, Theorem 6.4] to a base field of arbitrary

characteristic. The degree formula we obtain at odd primes seems to be new. In Chapter 11, we

use the new operations to study quadratic forms defined over a field of characteristic 2. Previous

results or proofs avoided the case of quadratic forms in characteristic 2 since Steenrod squares

were not available. We prove Hoffmann’s conjecture (a generalization including characteristic

2 quadratic forms) on the possible values of the first Witt index of anisotropic quadratic forms

for the case of nonsingular anisotropic quadratic forms over a field of characteristic 2. In

characteristic 6= 2, Hoffmann’s conjecture was proved by Karpenko in [17]. Previously, Haution

used a weak form of the first homological Steenrod square to prove a result on the parity of

the first Witt index for nonsingular anisotropic quadratic forms over a field of characteristic 2

[13, Theorem 6.2]. Haution’s result is a corollary of the case of Hoffmann’s conjecture proved

in this paper. Using the Steenrod squares defined in this paper, it should be possible to extend

other results on quadratic forms to the case where the base field has characteristic 2.
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Chapter 2

Prior results on the dual Steenrod

algebra and setup

Let k be a field of characteristic p > 0. For a base scheme S, we let SmS denote the category of

quasi-projective separated smooth schemes of finite type over S, let H(S) denote the unstable

motivic homotopy category of spaces over S defined by Morel-Voevodsky [22], let H•(S) denote

the pointed unstable motivic homotopy category of spaces over S, and we let SH(S) denote

the stable motivic homotopy category of spectra over S [28]. Let

Σ∞+ : SmS → SH(S),

Σ∞+ : H(S)→ H•(S)→ SH(S),

denote the infinite P1-suspension functors. We recall some results from [27] and [8] that hold in

the categories H(k) and SH(k). Let Bµp ∈ H(k) denote the geometric motivic classifying space

of the group scheme µp over k of the pth roots of unity. Let HFkp ∈ SH(k) denote the motivic

Eilenberg-MacLane spectrum representing mod p motivic cohomology. Let v ∈ H2,1(Bµp,Fp)

denote the pullback of the first Chern class c1 ∈ H2,1(BGm,Fp). From the computation of the

motivic cohomology of Bµp in [30, Theorem 6.10], there exists a unique u ∈ H1,1(Bµp,Fp) such

that β(u) = v where β denotes the Bockstein homomorphism on mod p motivic cohomology.
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The class ρ = −1 in H1,1(k,Fp) = k∗/k∗ p is 0 and the class of τ = −1 in H0,1(k,Fp) = µp(k) = 0

is also 0. We need the following computation which can be deduced from [30, Theorem 6.10]

by setting ρ = 0 and τ = 0.

Theorem 2.0.1. There is an isomorphism

H∗,∗(Bµp,Fp) ∼= H∗,∗(k,Fp)Jv, uK/(u2).

Let Ak∗,∗ := π∗,∗(HFkp ∧HFkp). As described in [27, Chapter 10.2], there is a coaction map

H∗,∗(Bµp,Fp)→ Ak−∗,−∗⊗̂π−∗,−∗HFkpH
∗,∗(Bµp,Fp). (2.1)

We use the left HFkp-module structure on HFkp ∧ HFkp. For i ≥ 0 and j ≥ 1, classes τi ∈

Ak
2pi−1,pi−1

and ξj ∈ Ak2pj−2,pj−1
are defined by the coaction map:

u 7→ u+ Σi≥0τi ⊗ vp
i
,

v 7→ v + Σj≥1ξj ⊗ vp
j
.

Proposition 2.0.2. τ2
i = 0 for all i ≥ 0.

Proof. We use the argument of [30, Theorem 12.6]. First, we assume that char(k) = 2. Under

the coaction map 2.1,

u2 = 0 7→ u2 + Σi≥0τ
2
i ⊗ v2i+1

= 0.

For i ≥ 0, the coefficient of v2i+1
equals 0 = τ2

i .

Now we assume that p = char(k) is odd. Let i ≥ 0. As Ak∗,∗ is graded-commutative under

the first grading, we have τ2
i = (−1)(2pi−1)(2pi−1)τ2

i = −τ2
i which implies that τ2

i = 0.

In this paper, we shall consider finite sequences α = (ε0, r1, ε1, r2, . . .) of integers such that

εi ∈ {0, 1} and rj ≥ 0 for all i ≥ 0 and j ≥ 1. From now on, it will be assumed that any
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sequence α in this paper satisfies these conditions. To a sequence α, we associate a monomial

ω(α) = τ ε00 ξ
r1
1 τ

ε1
1 · · · ∈ Ak∗,∗ of bidegree (pα, qα). The sequences α induce a morphism

Ψk :
⊕
α

Σpα,qαHFkp → HFkp ∧HFkp

of left HFkp-modules. Frankland and Spitzweck proved the following theorem [8, Theorem 1.1]

which allows us to define Steenrod operations on mod p motivic cohomology over the base k.

Theorem 2.0.3. The morphism

Ψk :
⊕
α

Σpα,qαHFkp → HFkp ∧HFkp

is a split monomorphism.

It is conjectured that Ψk is an isomorphism. Frankland and Spitzweck proved this theorem

by comparing Ψk to the corresponding isomorphism

ΨK :
⊕
α

Σpα,qαHFKp → HFKp ∧HFKp (2.2)

of left HFKp -modules for char(K) = 0. From now on, we will identify
⊕
α

Σpα,qαHFKp with

HFKp ∧HFKp as left HFKp -modules through ΨK whenever K is a field of characteristic 0. Let D

be a complete unramified discrete valuation ring with closed point i : Spec(k) → Spec(D) and

generic point j : Spec(K)→ Spec(D) where K = Frac(D). For example, when k = Fp, we take

D = Zp and K = Qp.

For a morphism f : S1 → S2 of base schemes, we let f∗ := Rf∗ : SH(S1) → SH(S2) and

f∗ := Lf∗ : SH(S2)→ SH(S1) denote the right derived pushforward and left derived pullback

functors respectively. Pullback f∗ is strongly monoidal while f∗ is lax monoidal. Furthermore,

f∗ commutes with all suspensions Σi,j [8, Lemma 7.5].

For S a separated Noetherian scheme of finite dimension, we let ĤZS ∈ SH(S) denote

the motivic E∞ ring spectrum constructed by Spitzweck in [27] and let ĤFSp := ĤZS/p . Let

D(ĤZS) denote the homotopy category of left ĤZS-modules. See [2, Section 7.2] for a discussion
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on the homotopy category of left R-modules D(R) for a ring object R ∈ SH(S). There is a

forgetful functor US : D(ĤZS)→ SH(S). A morphism f : X → Y in D(ĤZS) is equivalent to

giving a commutative diagram

ĤZS ∧X X

ĤZS ∧ Y Y

id.∧f f

in SH(S).

The spectrum ĤZS enjoys a number of desirable properties. The spectrum ĤZS is Cartesian.

This means that for a morphism f : S1 → S2 of base schemes, the induced morphism f∗ĤZS2 →

ĤZS1 is an isomorphism in SH(S1) of E∞ ring spectra [27, Chapter 9]. Hence, the square

D(ĤZS2) D(ĤZS1)

SH(S2) SH(S1)

f∗

US2 US1

f∗

commutes.

For S = Spec(F ) with F a field, ĤZS is isomorphic as an E∞ ring spectrum to the usual

Eilenberg-MacLane spectrum HZS constructed by Voevodsky [27, Theorem 6.7]. For the dis-

crete valuation ring D, ĤZD represents Bloch-Levine motivic cohomology as defined in [20].

We briefly describe the definition of Bloch-Levine motivic cohomology in [20] for a discrete

valuation ring D. Let X → Spec(D) be a morphism of finite type with X irreducible. If the

image of the generic point ηX of X is Spec(k), then we define dim(X) :=dim(XSpec(k)). Other-

wise, we define dim(X) :=dim(XSpec(K)) + 1. For n ≥ 0, let ∆n := Spec(D[t0, . . . , tn]/Σiti − 1)

denote the algebraic n-simplex over D. Let zq(X, r) denote the free abelian group generated by

all irreducible closed subschemes C ⊂ ∆r×Spec(D)X of dimension r+ q such that C meets each

face of ∆r×Spec(D)X properly. We then set zq(X, r) = zdim(X)−q(X, r) so that we get a pullback

homomorphism zq(X, r)→ zq(X, r− 1) for each face of ∆r. Then the Zariski hypercohomology

of the complex zq(X, ∗) with alternating face maps is Bloch-Levine motivic cohomology (with

the appropriate shift).
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Theorem 2.0.4.

The morphism HFkp ∼= i∗(ĤFDp ) → i∗j∗HFKp ∼= i∗j∗j
∗ĤFDp in D(HFkp) induced by adjunction

induces a splitting i∗j∗HFKp ∼= HFkp ⊕Σ−1,−1HFkp in D(HFkp). We let π : i∗j∗HFKp → HFkp and

π0 : i∗j∗HFKp → Σ−1,−1HFkp denote the projections induced by this splitting. There is also a

splitting i∗j∗HZK ∼= HZk ⊕ Σ−1,−,1HZk in D(HZk) [8, Lemma 4.10].

Let η : id. → j∗j
∗ denote the unit map. From now on, we shall denote all adjunction

morphisms i∗E → i∗j∗j
∗E for E ∈ SH(D) by i∗η. We will also denote all Σs,tπ,Σs,tπ0 by

π and π0 respectively to make the text easier to read. The morphisms Ψk and ΨK lift to a

morphism

ΨD :
⊕
α

Σpα,qαĤFDp → ĤFDp ∧ ĤFDp

in D(ĤFDp ) [8, Lemma 3.10]. Applying i∗η to ΨD, we get a commuting square

⊕
α

Σpα,qαHFkp HFkp ∧HFkp

⊕
α

Σpα,qαi∗j∗HFKp i∗j∗(HFKp ∧HFKp )

Ψk

i∗η i∗η

i∗j∗ΨK

(2.3)

in D(HFkp). Let r : HFkp∧HFkp →
⊕
α

Σpα,qαHFkp be the retraction of Ψk defined by the following

composite [8, Theorem 5.1]

HFkp ∧HFkp i∗j∗(HFKp ∧HFKp )
⊕
α

Σpα,qαi∗j∗HFKp

⊕
α

Σpα,qαHFkp

i∗η i∗j∗Ψ
−1
K

⊕π

For S = k,K, or D (use ĤFDp ), we let µS1 : HFSp ∧HFSp → HFSp denote the multiplication

morphism. There is also a multiplication morphism

µS2 : (HFSp ∧HFSp ) ∧ (HFSp ∧HFSp )→ HFSp ∧HFSp

defined in the standard way by interchanging the two middle HFSp terms and then applying

µS1 ∧ µS1 .
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For a sequence α0, we define i∗ηα0 : HFkp ∧ HFkp → Σpα0 ,qα0HFkp in D(HFkp) to be the

composite

HFkp ∧HFkp i∗j∗(HFKp ∧HFKp )
⊕
α

Σpα,qαi∗j∗HFkp Σpα0 ,qα0 i∗j∗HFKp

Σpα0 ,qα0HFkp.

i∗η i∗j∗Ψ
−1
K proj.

π

(2.4)

The morphism i∗ηα0 is a retract of the morphism HFkp ∧ ω(α0) : Σpα0 ,qα0HFkp → HFkp ∧HFkp.

From the work of Voevodsky [29] and Friedlander-Suslin [7, Corollary 12.2], Bloch’s higher

Chow groups are isomorphic to motivic cohomology as defined by Voevodsky. The isomorphism

between motivic cohomology and Bloch’s higher Chow groups is compatible with product struc-

tures [27, Theorem 6.7]. See also [19].

Theorem 2.0.5. Let F be a field and let X ∈ SmF . Then

Hn,i(X,Z) ∼= CH i(X, 2i− n)

for all n and i ≥ 0.

Let n, i ≥ 0 such that n > 2i. From the above theorem, we get that Hn,i(X,A) = 0 for any

coefficient ring A and X ∈ SmF .
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Chapter 3

Definition of operations

In this chapter, we use the results of Frankland and Spitzweck in [8] to define new Steenrod

operations Pnk for n ≥ 0. Let

iL, iR : HFSp → HFSp ∧HFSp

denote the left and right unit maps respectively for S = D (use ĤFDp ), k, or K. Motivated by

the corresponding duality in characteristic 0, we want to define operations Pnk ∈ HFk ∗,∗p HFkp

for n ≥ 0 by taking operations dual to the ξn1 .

Definition 3.0.1. Let α be a sequence. Define Pαk ∈ HFk ∗,∗p HFkp by Pαk := i∗ηα◦iR. For n ≥ 0,

we let Pnk = P
(0,n,0,...)
k . Let βk = P

(1,0,...)
k .

There are corresponding operations PαK in characteristic 0 defined from 2.2 by

HFKp HFKp ∧HFKp Σpα,qαHFKp .
iR proj.

Definition 3.0.2. To define a homomorphism Φ : HFK ∗,∗p HFKp → HFk ∗,∗p HFkp of graded

additive groups, let f : HFKp → Σk,lHFKp be given. Define Φ(f) : HFkp → Σk,lHFkp by

Φ(f) = π ◦ i∗j∗(f) ◦ i∗η.

HFkp i∗j∗HFKp Σk,li∗j∗HFKp Σk,lHFkp
i∗η i∗j∗(f) π (3.1)
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From the definition of Φ, it is clear that Φ(id.) = id.. The following lemma will be important

for proving that the operations Pnk restricted to mod p Chow groups satisfy the Adem relations

and Cartan formula.

Lemma 3.0.1. Let X ∈ Smk and let f : Σ∞+ X → Σ2m,mHFkp be given.

1. Let α0 be a sequence. Consider the morphism

gα0 : HFkp → Σpα0−1,qα0−1HFkp

given by the following composite.

HFkp i∗j∗HFKp i∗j∗Σ
pα0 ,qα0HFKp Σpα0−1,qα0−1HFkp.

i∗η i∗j∗(P
α0
K ) π0

Then Σ2m,mgα0 ◦ f = 0.

2. The composite

Σ∞+ X Σ2m,mHFkp Σ2m,mHFkp ∧HFkp i∗j∗(Σ
2m,mHFKp ∧HFKp )

⊕
α

Σpα+2m,qα+mi∗j∗HFKp

⊕
α

Σ2m+pα−1,m+qα−1HFkp

f iR i∗η

i∗j∗Ψ
−1
K

⊕π0

is equal to 0.

Proof. Note that for any sequence α of bidegree (pα, qα), pα ≥ 2qα which implies that pα− 1 >

2(qα − 1). For (1) and (2), Theorem 2.0.5 implies that

HomSH(k)(Σ
∞
+ X,Σ

2m+pα−1,m+qα−1HFkp) = H2m+pα−1,m+qα−1(X,Fp) = 0

for any sequence α.

Theorem 3.0.2. 1. We have Φ(H∗,∗(K,Fp)) ⊂ H∗,∗(k,Fp).
10



2. Let α be a sequence. Then Φ(PαK) = Pαk . In particular, for the Bockstein βK and reduced

power operations PnK constructed by Voevodsky in characteristic 0, Φ(PnK) = Pnk for n ≥ 0

and Φ(βK) = βk. Also, P 0
k is the identity since P 0

K is the identity.

3. Let X ∈ Smk and let f : Σ∞+ X → Σ2m,mHFkp be given. Let α be a sequence and let

h : HFKp → Σi,jHFKp be given. Then

Φ(h ◦ PαK)(f) = Φ(h)(Pαk (f)).

Proof. We first prove (1). Let a ∈ H∗,∗(K,Fp). The element a corresponds to a morphism fa :

HFKp → Σm,nHFKp in D(HFKp ). The functors i∗, j∗ restrict to functors i∗ : D(ĤFDp )→ D(HFkp)

and j∗ : D(HFKp )→ D(ĤFDp ). Hence, i∗j∗(fa) is a morphism in D(HFkp). From the definition

of Φ, it follows that Φ(fa) is a morphism in D(HFkp). Thus, Φ(a) := Φ(fa) ∈ H∗,∗(k,Fp).

We now prove (2). Let α be a sequence. Applying the natural transformation i∗ → i∗j∗j
∗

to the right unit map iR : ĤFDp → ĤFDp ∧ ĤFDp , we obtain the following commuting square in

SH(k).

HFkp HFkp ∧HFkp

i∗j∗HFKp i∗j∗(HFKp ∧HFKp )

iR

i∗η i∗η

i∗j∗(iR)

From the definition of i∗ηα 2.4, the following diagram commutes.

HFkp ∧HFkp Σpα,qαHFkp Σpα,qαHFkp

i∗j∗(HFKp ∧HFKp ) i∗j∗Σ
pα,qαHFKp Σpα,qαHFkp

i∗ηα

i∗η

id.

id.

proj. π

Putting these 2 diagrams together, we get the following commuting diagram.

HFkp HFkp ∧HFkp Σpα,qαHFkp Σpα,qαHFkp

i∗j∗HFKp i∗j∗(HFKp ∧HFKp ) i∗j∗Σ
pα,qαHFKp Σpα,qαHFkp

iR

i∗η

i∗ηα

i∗η

id.

id.

i∗j∗(iR) proj. π

(3.2)

The top row of this diagram gives Pαk while the composite starting at HFkp in the top left and

continuing along the bottom row gives Φ(PαK). Hence, Φ(PαK) = Pαk .

11



Now, we prove (3). Consider the following diagram.

Σ∞+ X

Σ2m,mHFkp Σ2m+pα,m+qαHFkp Σi+2m+pα,j+m+qαHFkp

i∗j∗Σ
2m,mHFKp i∗j∗Σ

2m+pα,m+qαHFKp i∗j∗Σ
i+2m+pα,j+m+qαHFKp

Σi+2m+pα,j+m+qαHFkp.

f

Pαk

i∗η

Φ(h)

i∗η i∗η

i∗j∗PαK i∗j∗h

π

(3.3)

As Φ(PαK) = Pαk , Lemma 3.0.1 implies that the composite

i∗η ◦ Pαk ◦ f : Σ∞+ X → i∗j∗Σ
2m+pα,m+qαHFKp

in diagram 3.3 is equal to

i∗j∗P
α
K ◦ i∗η ◦ f.

Equivalently,

π0 ◦ i∗j∗PαK ◦ i∗η ◦ f = 0 : Σ∞+ X → Σ2m+pα−1,m+qα−1HFkp.

Thus, from diagram 3.3,

Φ(h)(Pαk (f)) = π ◦ i∗η ◦ Φ(h) ◦ Pαk ◦ f = π ◦ i∗j∗(h) ◦ i∗j∗(PαK) ◦ i∗η ◦ f = Φ(h ◦ PαK)(f)

as desired.

We next prove that the operations Pnk commute with base change of the field k on mod p

Chow groups. For a morphism of fields f : Spec(F1) → Spec(F2), the pullback functor f∗ :

SH(F2) → SH(F1) induces a homomorphism HFF2 ∗,∗
p HFF2

p → HFF1 ∗,∗
p HFF1

p . For char(F2) 6=

p, f∗(PnF2
) = PnF1

since the dual Steenrod algebra has the expected form in this case [16, Theorem

1.1]. However, for our situation where the base field is of characteristic p, we do not yet know

the full structure of the dual Steenrod algebra.
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Let f1 : Spec(k) → Spec(Fp) be the structure map. In the following commuting diagram,

f2, f3, i0, and j0 are maps compatible with f1.

Spec(k) Spec(Fp)

Spec(D) Spec(Zp)

Spec(K) Spec(Qp)

f1

i i0

f2

f3

j j0

Proposition 3.0.3. Let X ∈ Smk and let g : Σ∞+ X → Σ2m,mHFkp be given. Then Pnk (g) =

f∗1 (PnFp)(g) for all n ≥ 0.

Proof. Let η0 : 1 → j0 ∗j
∗
0 denote the unit map. Let f∗2 ĤFZp

p → f∗2 j0 ∗HFQp
p be the map f∗2 η0

induced by the isomorphism j∗0ĤFZp
p → HFQp

p . The exchange transformation f∗2 j0 ∗ → j∗f
∗
3

induces a morphism f∗2 j0 ∗HFQp
p → j∗f

∗
3HFQp

p . Let f∗2 ĤFZp
p → j∗f

∗
3HFQp

p be the map ηf∗2

induced by the isomorphism

j∗f∗2 ĤFZp
p = f∗3 j

∗
0ĤFZp

p → f∗3HFQp
p .

Putting these maps together, we get the following square which commutes by adjunction.

f∗2 ĤFZp
p f∗2 j0 ∗HFQp

p

f∗2 ĤFZp
p j∗f

∗
3HFQp

p

f∗2 η0

id.

ηf∗2

(3.4)

Applying the exchange transformation f∗2 j0 ∗ → j∗f
∗
3 to PnQp , we get the following commuting

square.

f∗2 j0 ∗HFQp
p f∗2 j0 ∗Σ

2n(p−1),n(p−1)HFQp
p

j∗HFKp j∗Σ
2n(p−1),n(p−1)HFKp

f∗2 j0 ∗P
n
Qp

j∗PnK

Applying i∗ to these two squares and combining with g : Σ∞+ X → Σ2m,mHFkp , we obtain the

following commuting diagram.
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Σ∞+ X Σ2m,mHFkp f∗1 i
∗
0j0 ∗Σ

2m,mHFQp
p f∗1 i

∗
0j0 ∗Σ

2(m+n(p−1)),m+n(p−1)HFQp
p

Σ∞+ X Σ2m,mHFkp i∗j∗Σ
2m,mHFKp i∗j∗Σ

2(m+n(p−1)),m+n(p−1)HFKp

g

id.

f∗1 i
∗
0η0

id.

f∗1 i
∗
0j0 ∗P

n
Qp

g i∗η i∗j∗PnK

(3.5)

Let π′ : i∗0j0 ∗HFQp
p → HFFp

p and π′0 : i∗0j0 ∗HFQp
p → Σ−1,−1HFFp

p be projection morphisms

induced by the isomorphism i∗0j0 ∗HFQp
p
∼= HFFp

p ⊕ Σ−1,−1HFFp
p of Theorem 2.0.4. From The-

orem 2.0.5, the two composites Σ∞+ X → Σ2(m+n(p−1))−1,m+n(p−1)−1HFkp given by the following

diagram are equal to 0.

Σ2(m+n(p−1))−1,m+n(p−1)−1HFkp

Σ∞+ X Σ2m,mHFkp f∗1 i
∗
0j0 ∗Σ

2m,mHFQp
p f∗1 i

∗
0j0 ∗Σ

2(m+n(p−1)),m+n(p−1)HFQp
p

Σ∞+ X Σ2m,mHFkp i∗j∗Σ
2m,mHFKp i∗j∗Σ

2(m+n(p−1)),m+n(p−1)HFKp

Σ2(m+n(p−1))−1,m+n(p−1)−1HFkp

g

id.

f∗1 i
∗
0η0

id.

f∗1 i
∗
0j0 ∗P

n
Qp

f∗1 π
′
0

g i∗η i∗j∗PnK

π0

(3.6)

Consider the following diagram.

Σ2(m+n(p−1)),m+n(p−1)HFkp

Σ∞+ X Σ2m,mHFkp f∗1 i
∗
0j0 ∗Σ

2m,mHFQp
p f∗1 i

∗
0j0 ∗Σ

2(m+n(p−1)),m+n(p−1)HFQp
p

Σ∞+ X Σ2m,mHFkp i∗j∗Σ
2m,mHFKp i∗j∗Σ

2(m+n(p−1)),m+n(p−1)HFKp

Σ2(m+n(p−1)),m+n(p−1)HFkp

g

id.

f∗1 i
∗
0η0

id.

f∗1 i
∗
0j0 ∗P

n
Qp

f∗1 π
′

g i∗η i∗j∗PnK

π

(3.7)

From Theorem 3.0.2, the composite Σ∞+ X → Σ2(m+n(p−1)),m+n(p−1)HFkp given by the upper half

of diagram 3.7 is equal to f∗1 (PnFp)(g) and the composite Σ∞+ X → Σ2(m+n(p−1)),m+n(p−1)HFkp

14



given by the lower half of diagram 3.7 is equal to Pnk (g). As diagram 3.5 commutes and the 2

composite morphisms from diagram 3.6 are 0, we then obtain that f∗1 (PnFp)(g) = Pnk (g).

We can now prove that the Steenrod operations Pnk commute with base change on mod p

Chow groups. Let f : Spec(k1) → Spec(k2) be given where k1, k2 are fields of characteristic p.

Let h : Spec(k2)→ Spec(Fp) be the structure map.

Corollary 3.0.4. Let X ∈ Smk2. Let n ≥ 0. The following square commutes.

CH∗(X)/p CH∗(X)/p

CH∗(Xk1)/p CH∗(Xk1)/p

Pnk2

f∗ f∗

Pnk1

Proof. From Proposition 3.0.3, h∗PnFp agrees with Pnk2 on CH∗(X)/p and f∗h∗PnFp agrees with

Pnk1 on CH∗(Xk1)/p. Let g : Σ∞+ X → Σ2m,mHFk2p be given. Then

f∗(Pnk2(g)) = f∗(h∗PnFp(g)) = f∗h∗(PnFp)(f
∗g) = Pnk1(f∗g)

as required.

Proposition 3.0.5. The morphism βk = P
(1,0,...)
k defined above is equal to the Bockstein ho-

momorphism β on mod p motivic cohomology.

Proof. We let β denote the Bockstein homomorphism on mod p motivic cohomology over any

base scheme. The Bockstein homomorphism β in characteristic 0 is known to be dual to τ0.

Hence, β = P
(1,0,...)
K = βK . Applying the natural transformation i∗ → i∗j∗j

∗ to the diagram

ĤZD ĤZD (ĤZD)/p Σ1,0ĤZD Σ1,0ĤZD/p·p

β

proj.
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in SH(D), we get the following commuting diagram in SH(k).

HZk HZk HFkp Σ1,0HZk Σ1,0HFkp

i∗j∗HZK i∗j∗HZK i∗j∗HFKp Σ1,0i∗j∗HZK Σ1,0i∗j∗HFKp

Σ1,0HFkp

·p

i∗η

proj.

i∗η

β

i∗η

proj.

i∗η i∗η

·p proj.

i∗j∗βK

proj.

π

(3.8)

From Theorem 3.0.2, Φ(βK) = βk. The composite in diagram 3.8 that starts at HFkp in the top

row and goes immediately down to Σ1,0HFkp is equal to Φ(βK). As the diagram commutes and

π ◦ i∗η = id., it follows that Φ(βK) = β = βk.
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Chapter 4

Adem relations

In this chapter, we use the map Φ : HFK ∗,∗p HFKp → HFk ∗,∗p HFkp 3.1 and Theorem 3.0.2 to show

that the operations Pnk for n ≥ 0 satisfy the expected Adem relations when restricted to mod p

Chow groups. The proof uses the corresponding Adem relations in characteristic 0 which can be

found in [24, Théorème 4.5.1] for p = 2 and [24, Théorème 4.5.2 ] for odd p. First, we state the

Adem relations for p = 2 over the base K of characteristic 0. Let τ ∈ H0,1(K,F2) denote the

class of −1 ∈ µ2(K) and let ρ ∈ H1,1(K,F2) denote the class of −1 ∈ K∗/K∗ 2. Set Sq2n
k := Pnk

and Sq2n+1
k = βkSq2n

k for n ≥ 0.

Theorem 4.0.1. Let a, b ∈ N with a < 2b.

1.

SqaKSqbK =

ba
2
c∑

j=0

(
b− 1− j
a− 2j

)
Sqa+b−j

K SqjK +

ba
2
c∑

j=1
j odd

ρ

(
b− 1− j
a− 2j

)
Sqa+b−j−1

K SqjK

if a is even and b is odd.

2.

SqaKSqbK =

ba
2
c∑

j=0
j odd

(
b− 1− j
a− 2j

)
Sqa+b−j

K SqjK

if a and b are odd.
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3.

SqaKSqbK =

ba
2
c∑

j=0

τ jmod 2

(
b− 1− j
a− 2j

)
Sqa+b−j

K SqjK

if a and b are even.

4.

SqaKSqbK =

ba
2
c∑

j=0
j even

(
b− 1− j
a− 2j

)
Sqa+b−j

K SqjK +

ba
2
c∑

j=1
j odd

ρ

(
b− 1− j
a− 1− 2j

)
Sqa+b−j−1

K SqjK

if a is odd and b is even.

Next, we state the characteristic 0 Adem relations for p odd.

Theorem 4.0.2. 1. Let a, b ∈ N with a < pb. Then

P aKP
b
K =

ba
p
c∑

j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−j
K P jK .

2. Let a, b ∈ N with a ≤ pb. Then

P aKβKP
b
K =

ba
p
c∑

j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
βKP

a+b−j
K P jK+

ba−1
p
c∑

j=0

(−1)a+j+1

(
(p− 1)(b− j)− 1

a− pj − 1

)
P a+b−j
K βKP

j
K .

We can now prove the Adem relations for the operations Pnk restricted to mod p Chow

groups.

Theorem 4.0.3. Let X ∈ Smk and let x ∈ H2m,m(X,Fp) = CHm(X)/p for some m ≥ 0. Let

a, b ∈ N such that a < pb. Then

P ak (P bk(x)) =

ba
p
c∑

j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−j
k (P jk (x)).

Proof. From Theorem 3.0.2, P ak (P bk(x)) = Φ(P aKP
b
K)(x). We then use the Adem relations

in characteristic 0 to rewrite P aKP
b
K ∈ HFK ∗,∗p HFKp . Note that the Bockstein βk is the 0
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homomorphism on mod p Chow groups. If p = 2, Φ(SqnK)(x) = Sqnk(x) = 0 whenever n is odd.

Thus, applying Theorem 3.0.2, we get

P ak (P bk(x)) = Φ(P aKP
b
K)(x) = Φ(

ba
p
c∑

j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−j
K P jK)(x)

=

ba
p
c∑

j=0

(−1)a+j

(
(p− 1)(b− j)− 1

a− pj

)
P a+b−j
k (P jk (x)).
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Chapter 5

Coaction map for smooth X

In this chapter, for X ∈ Smk, we describe a coaction map

λX : H∗,∗(X,Fp)→ π−∗,−∗(
⊕
α

Σpα,qαHFkp)⊗π−∗,−∗HFkp H
∗,∗(X,Fp)

such that the actions of the cohomology operations Pnk defined in Chapter 3 on H∗,∗(X,Fp) are

determined by λX . We show that λX is a ring homomorphism when restricted to mod p Chow

groups. This will allow us to prove the Cartan formula in the next chapter.

There is a multiplication morphism

m : (
⊕
α

Σpα,qαHFkp) ∧ (
⊕
α

Σpα,qαHFkp)→
⊕
α

Σpα,qαHFkp (5.1)

defined as m = r ◦ µk2 ◦ (Ψk ∧Ψk). The morphism m defines multiplication on

(
⊕
α

Σpα,qαHFkp)∗,∗(Σ∞+ X)

and

π∗,∗(
⊕
α

Σpα,qαHFkp).

For sequences α1, α2, Proposition 2.0.2 allows us to calculate the product

r∗(ω(α1))r∗(ω(α2)) ∈ π∗,∗(
⊕
α

Σpα,qαHFkp)

in terms of another sequence α1 + α2 by using the relations τ2
i = 0 for i ≥ 0.
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Proposition 5.0.1. The natural ring homomorphism

π−∗,−∗(
⊕
α

Σpα,qαHFkp)⊗π−∗,−∗HFkp H
∗,∗(X,Fp)→ (

⊕
α

Σpα,qαHFkp)∗,∗(Σ∞+ X)

is an isomorphism.

Proof. The suspension spectrum Σ∞+ X ∈ SH(k) is compact. Hence,

HomSH(k)(Σ
s,tΣ∞+ X,

⊕
α

Σpα,qαHFkp) ∼=
⊕
α

HomSH(k)(Σ
s,tΣ∞+ X,Σ

pα,qαHFkp)

for all s, t ∈ Z.

Definition 5.0.1. Using the isomorphism

(
⊕
α

Σpα,qαHFkp)∗,∗(Σ∞+ X) ∼= π−∗,−∗(
⊕
α

Σpα,qαHFkp)⊗π−∗,−∗HFkp H
∗,∗(X,Fp)

from Proposition 5.0.1 , define an additive homomorphism of graded abelian groups

λX : H∗,∗(X,Fp)→ π−∗,−∗(
⊕
α

Σpα,qαHFkp)⊗π−∗,−∗HFkp H
∗,∗(X,Fp)

by the composite

HFk ∗,∗p (Σ∞+ X) (HFkp ∧HFkp)∗,∗(Σ∞+ X)

π−∗,−∗(
⊕
α

Σpα,qαHFkp)⊗π−∗,−∗HFkp H
∗,∗(X,Fp).

iR ∗

r∗ (5.2)

Proposition 5.0.2. Restricted to mod p Chow groups, λX preserves multiplication.

Proof. Let f : Σ∞+ X → Σ2m,mHFkp and g : Σ∞+ X → Σ2n,nHFkp be given. We need to show

that λX(fg) = λX(f)λX(g). The right unit map iR is a morphism of commutative ring spectra.

Hence, iR∗ is a homomorphism of rings. Hence, we need to prove that r∗(iR∗(f)iR∗(g)) =

r∗(iR∗(f))r∗(iR∗(g)).

Applying the natural transformation i∗ → i∗j∗j
∗ to µD2 , we get a commuting diagram.

(HFkp ∧HFkp) ∧ (HFkp ∧HFkp) HFkp ∧HFkp

i∗j∗((HFKp ∧HFKp ) ∧ (HFKp ∧HFKp )) i∗j∗(HFKp ∧HFKp )

⊕
α

Σpα,qαHFkp

µk2

i∗η i∗η

i∗j∗µK2

⊕π

(5.3)

21



We will factor the left vertical morphism in this diagram. Consider the following triangle

(ĤFDp ∧ ĤFDp ) ∧ (ĤFDp ∧ ĤFDp ) j∗(HFKp ∧HFKp ) ∧ j∗(HFKp ∧HFKp )

j∗(HFKp ∧HFKp ∧HFKp ∧HFKp )

η∧η

η (5.4)

where the morphism on the hypotenuse is defined by the lax monoidal property of j∗. Note

that the counit morphism ε : j∗j∗ → id. is an isomorphism since j is open. By adjunction, the

morphism on the hypotenuse of diagram 5.4 is induced by the isomorphism

ε ∧ ε : j∗j∗(HFKp ∧HFKp ) ∧ j∗j∗(HFKp ∧HFKp )→ (HFKp ∧HFKp ) ∧ (HFKp ∧HFKp ).

The morphism η on the left leg of the triangle 5.4 is induced by the isomorphism

j∗η : j∗((ĤFDp ∧ ĤFDp ) ∧ (ĤFDp ∧ ĤFDp ))→ (HFKp ∧HFKp ) ∧ (HFKp ∧HFKp ).

Using that pullback is strongly monoidal, we then have the following commuting triangle.

j∗(ĤFDp ∧ ĤFDp ) ∧ j∗(ĤFDp ∧ ĤFDp ) j∗j∗(HFKp ∧HFKp ) ∧ j∗j∗(HFKp ∧HFKp )

(HFKp ∧HFKp ) ∧ (HFKp ∧HFKp )

j∗η∧j∗η

j∗η
ε∧ε

Thus, by adjunction, the triangle 5.4 commutes.

Applying i∗ to triangle 5.4, we then see that the commuting diagram 5.3 is a sub-diagram

of the commuting diagram

(HFkp ∧HFkp) ∧ (HFkp ∧HFkp) HFkp ∧HFkp

i∗j∗(HFKp ∧HFKp ) ∧ i∗j∗(HFKp ∧HFKp )

i∗j∗(HFKp ∧HFKp ∧HFKp ∧HFKp ) i∗j∗(HFKp ∧HFKp )

⊕
α

Σpα,qαHFkp.

µk2

i∗η∧i∗η

i∗η

i∗j∗µK2

⊕π

(5.5)
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From diagram 2.3,

(i∗η∧i∗η)◦(Ψk∧Ψk) : (
⊕
α

Σpα,qαHFkp)∧(
⊕
α

Σpα,qαHFkp)→ i∗j∗(HFKp ∧HFKp )∧i∗j∗(HFKp ∧HFKp )

is equal to the composite (i∗j∗ΨK ∧ i∗j∗ΨK) ◦ (i∗η ∧ i∗η). Hence, diagram 5.5 implies that the

multiplication morphism m = r ◦ µk2 ◦ (Ψk ∧Ψk) on

(
⊕
α

Σpα,qαHFkp) ∧ (
⊕
α

Σpα,qαHFkp)

is equal to the following composite.

(
⊕
α

Σpα,qαHFkp) ∧ (
⊕
α

Σpα,qαHFkp)

i∗j∗(HFKp ∧HFKp ) ∧ i∗j∗(HFKp ∧HFKp )

i∗j∗(HFKp ∧HFKp ∧HFKp ∧HFKp ) i∗j∗(HFKp ∧HFKp )

⊕
α

Σpα,qαHFkp

((i∗j∗ΨK)◦i∗η)∧((i∗j∗ΨK)◦i∗η)

i∗j∗µK2

⊕π

(5.6)

From Lemma 3.0.1, the composites

Σ∞+ X Σ2m,mHFkp Σ2m,mHFkp ∧HFkp Σ2m,mi∗j∗(HFKp ∧HFKp )

⊕
α

Σpα+2m,qα+mi∗j∗HFKp

⊕
α

Σpα+2m−1,qα+m−1HFkp

f iR i∗η

i∗j∗Ψ
−1
K

⊕π0

and

Σ∞+ X Σ2n,nHFkp Σ2n,nHFkp ∧HFkp Σ2n,ni∗j∗(HFKp ∧HFKp )

⊕
α

Σpα+2n,qα+ni∗j∗HFKp

⊕
α

Σpα+2n−1,qα+n−1HFkp

g iR i∗η

i∗j∗Ψ
−1
K

⊕π0
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are equal to 0. It follows that i∗η ◦ r ◦ iR ◦ f = i∗η ◦ iR ◦ f and i∗η ◦ r ◦ iR ◦ g = i∗η ◦ iR ◦ g

in the following two diagrams.

Σ∞+ X

Σ2m,mHFkp

Σ2m,mHFkp ∧HFkp

⊕
α

Σpα+2m,qα+mHFkp Σ2m,mi∗j∗(HFKp ∧HFKp )

f

iR

r i∗η

i∗η

(5.7)

Σ∞+ X

Σ2n,nHFkp

Σ2n,nHFkp ∧HFkp

⊕
α

Σpα+2n,qα+nHFkp Σ2n,ni∗j∗(HFKp ∧HFKp )

g

iR

r i∗η

i∗η

(5.8)

To show that r∗(iR∗(f)iR∗(g)) = r∗(iR∗(f))r∗(iR∗(g)), we consider the following commuting

diagram where ∆ is the diagonal morphism.
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Σ∞+ X

Σ∞+ X ∧ Σ∞+ X

Σ2m,mHFkp ∧ Σ2n,nHFkp

(Σ2m,mHFkp ∧HFkp) ∧ (Σ2n,nHFkp ∧HFkp) Σ2m,mHFkp ∧ Σ2n,nHFkp

i∗j∗(Σ
2m,mHFKp ∧HFKp ) ∧ i∗j∗(Σ2n,nHFKp ∧HFKp )

i∗j∗(Σ
2(m+n),m+nHFKp ∧HFKp ∧HFKp ∧HFKp ) i∗j∗(Σ

2(m+n),m+nHFKp ∧HFKp )

⊕
α

Σpα+2m+2n,qα+m+nHFkp

∆

f∧g

iR∧iR

i∗η∧i∗η

µk2

i∗η

i∗j∗µK2

⊕π

(5.9)

The composite ⊕π ◦ i∗η ◦µk2 ◦ (iR ∧ iR) ◦ (f ∧ g) ◦∆ in this diagram is equal to r∗(iR∗(f)iR∗(g)).

From diagrams 5.7 and 5.8, the composite given by
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Σ∞+ X

Σ∞+ X ∧ Σ∞+ X

Σ2m,mHFkp ∧ Σ2n,nHFkp

(Σ2m,mHFkp ∧HFkp) ∧ (Σ2n,nHFkp ∧HFkp)

(
⊕
α

Σpα+2m,qα+mHFkp) ∧ (
⊕
α

Σpα+2n,qα+nHFkp)

i∗j∗(Σ
2m,mHFKp ∧HFKp ) ∧ i∗j∗(Σ2n,nHFKp ∧HFKp )

i∗j∗(Σ
2(m+n),m+nHFKp ∧HFKp ∧HFKp ∧HFKp ) i∗j∗(Σ

2(m+n),m+nHFKp ∧HFKp )

⊕
α

Σpα+2m+2n,qα+m+nHFkp

∆

f∧g

iR∧iR

r∧r

i∗η∧i∗η

i∗j∗µK2

⊕π

(5.10)

is equal to the composite given by diagram 5.9. From diagram 5.6, the composite given by

diagram 5.10 is equal to Σ2(m+n),m+nm ◦ (r ∧ r) ◦ (iR ∧ iR) ◦ (f ∧ g) ◦∆ = r∗(iR∗(f))r∗(iR∗(g)).

Thus, r∗(iR∗(f)iR∗(g)) = r∗(iR∗(f))r∗(iR∗(g)) as desired.
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Chapter 6

Cartan formula

In this chapter, we use the coaction map constructed in the previous chapter to prove a Cartan

formula for the operations Pnk restricted to mod p Chow groups. Let X ∈ Smk. Let 〈·, ·〉

denote the pairing between Ak∗,∗ and HFk ∗,∗p HFkp. Let n ≥ 0. For x ∈ H∗,∗(X,Fp) with

λX(x) = Σyi ⊗ xi, we have Pnk (x) = Σ〈yi, Pnk 〉xi.

Proposition 6.0.1. Let x, y ∈ CH∗(X)/p and i ≥ 0. Then

P ik(xy) =
i∑

j=0

P jk (x)P i−jk (y).

Proof. From the definition of P ik, 〈ξi1, P ik〉 = 1 and 〈ω(α), P ik〉 = 0 for all sequences α 6=

(0, i, 0, 0, . . .). Using the coaction map 5.2, we write

λX(x) =
∑
q

ω(α1
q)⊗ xq

and

λX(y) =
∑
r

ω(α2
r)⊗ yr

for some sequences α1
q , α

2
r . Then

λX(xy) =
∑
q,r

((ω(α1
q)ω(α2

r)⊗ xqyr).

For any 2 sequences α1
q , α

2
r appearing in these sums, we have ω(α1

q)ω(α2
r) = 0 if the relation

τ2
m = 0 from Proposition 2.0.2 applies for some m ≥ 0, or else ω(α1

q)ω(α2
r) = ±ω(α1

q + α2
r).
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From the definition of λX ,

P ik(xy) =
∑
q,r

〈(ω(α1
q)ω(α2

r), P
i
k〉xqyr.

Proposition 2.0.2 implies that if ω(α1)ω(α2) = aξi1 for two sequences α1, α2 and a 6= 0 ∈

H∗,∗(k,Fp), then a = 1 and ω(α1) = ξj1, ω(α2) = ξi−j1 for some 0 ≤ j ≤ i. As P ik is dual to ξi1,

the only terms for which 〈ω(α1
q + α2

r), P
i
k〉 6= 0 are of the form ω(α1

qj ) = ξj1, ω(α2
rj ) = ξi−j1 for

0 ≤ j ≤ i. Hence,

P ik(xy) =
i∑

j=0

〈ω(α1
qj + α2

rj ), P
i
k〉xqjyrj =

i∑
j=0

P jk (x)P i−jk (y) (6.1)

as required.
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Chapter 7

pth power and instability

In this chapter, for n ∈ N, we prove that Pnk is the pth power on CHn(−)/p. Letting f :

Spec(k)→ Spec(Fp) denote the structure map, it suffices to prove that f∗(PnFp)(ιn) = ιpn for the

canonical element ιn ∈ H2n,n(Kn,k,Fp) where Kn,k ∈ H(k) is the motivic Eilenberg-MacLane

space representing H2n,n(−,Fp). Our proof makes use of Morel’s S1-recognition principle.

We refer to [6, Section 3] as a reference for the S1-recognition principle. For a base scheme

S, let PShnis(SmS) denote the category of Nisnevich local presheaves of spaces on SmS . The un-

stable motivic homotopy category H(S) can be described as the full subcategory of PShnis(SmS)

of presheaves that are A1-invariant. Let Lmot : PShnis(SmS)→ H(S) denote the A1-localization

functor. Let SHS1
(S) denote the stable motivic homotopy category of S1-spectra. For a mor-

phism f : S1 → S2 of base schemes, we have the adjoint functors of pullback f∗ := Lf∗ and

pushforward f∗ := Rf∗:

f∗ : H(S2) � H(S2) : f∗.

For f : S1 → S2 smooth, f∗ admits a left adjoint f# such that f#(X) = X ∈ H(S2) for any

X ∈ SmS1 .

For C = PShnis(SmS) or H(S), we consider the n-fold bar constructions Bn
C that are adjoint

to the nth S1-deloopings Ωn:

Bn
C : MonEn(C) � C : Ωn.
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For C = PShnis(SmS) or H(S), we let Stab(C) := C⊗Spt denote the S1-stabilization of C. We

also consider the infinite bar construction

B∞C : CMon(C) = MonE∞(C) � Stab(C) : Ω∞.

For C = PShnis(SmS), we denote Bn
C by Bn

nis and we denote B∞C by B∞nis. Similarly, for C = H(S),

we denote Bn
C by Bn

mot and we denote B∞C by B∞mot. For later use, we note that Bn
nis and B∞nis

commute with pullbacks.

Definition 7.0.1. Define X ∈ Mon(H(S)) to be strongly A1-invariant if BnisX ' BmotX.

Define X ∈ CMon(H(S)) to be strictly A1-invariant if Bn
nisX ' Bn

motX for all n ≥ 0.

Most of the proof of the following proposition was suggested to us by Marc Hoyois.

Proposition 7.0.1. Let k be a perfect field of characteristic p and let i : Spec(k)→ Spec(D) be

a closed embedding where D is a DVR with generic point j : Spec(K) → Spec(D). Fix n > 0.

We let Kn,D := Ω∞P1Σ2n,nĤFDp . Then the morphism i∗Kn,D → Kn,k induced by i∗Σ2n,nĤFDp ∼=

Σ2n,nHFkp is an isomorphism in H(k).

Proof. We first prove that Kn,D is connected. Let R be a Henselian local ring that is essentially

smooth over D. From [10, Corollary 4.2], the Bloch-Levine Chow groups CHm(R) of R vanish

for m ≥ 1. Thus, πnis
0 (Kn,D(Spec(R))) ' ∗ since Kn,D ∈ H(D) represents the codimension n

mod p Bloch-Levine Chow group.

Now we prove that i∗Kn,D is connected. As j : Spec(K) → Spec(D) is smooth, j∗Kn,D '

Kn,K . Consider the homotopy pushout P in PShnis(SmD) of the following diagram.

j#Kn,K Kn,D

Spec(K)

The morphism j#Kn,K → Spec(K) induces a bijection on πnis
0 . Hence, πnis

0 (Kn,D) ' πnis
0 (P ).

From the gluing square [22, Theorem 2.21], Lmot(P ) ' i∗i
∗(Kn,D). From [22, Corollary 3.22],

it follows that i∗i
∗(Kn,D) is connected since Kn,D is connected. Let k → Sk be an essentially
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smooth homomorphism of rings where Sk is Henselian local. The ring Sk admits a lift SD where

D → SD is essentially smooth and SD is Henselian local. Hence, i∗(Kn,D)(Sk) ' i∗i∗(Kn,D)(SD)

is connected. Thus, i∗Kn,D ∈ H(k) is connected. In particular, πnis
0 (i∗(Kn,D)) is strongly A1-

invariant. The S1-recognition principle [6, Theorem 3.1.12] then implies that i∗Kn,D is strictly

A1-invariant.

From [27, Theorem 8.18], we have

B∞moti
∗(Kn,D) ∼= i∗(B∞motKn,D) ∼= i∗(Ω∞GmΣ2n,nĤFDp ) ∼= Ω∞GmΣ2n,nHFkp ∼= B∞motKn,k

in SHS1
(k). Then [6, Corollary 3.1.15] implies that i∗Kn,D

∼= Kn,k in H(k).

Proposition 7.0.2. Let k be a field of characteristic p with structure map f : Spec(k) →

Spec(Fp) and let ιn ∈ H2n,n(Kn,k,Fp) be the canonical element. Then f∗PnFp(ιn) = ιpn.

Proof. First, we assume that k is perfect. Let D be a DVR having k as a residue field with

inclusion morphism i : Spec(k) → Spec(D) and generic point j : Spec(K) → Spec(D). From

Proposition 7.0.1, i∗Kn,D
∼= Kn,k. Over all base schemes S, we let ιn denote the canonical

element in H2n,n(Kn,S ,Fp). Apply i∗ → i∗j∗j
∗ to the natural morphism ιn : Σ∞+ Kn,D →

Σ2n,nĤFDp to get the following commuting square.

Σ∞+ Kn,k Σ2n,nHFkp

i∗j∗Σ
∞
+ Kn,K Σ2n,ni∗j∗HFKp

ιn

i∗η i∗η

i∗j∗ιn

Apply i∗η : i∗ → i∗j∗j
∗ to the morphism Σ∞+ Kn,D → Σ2pn,pnĤFDp in SH(D) corresponding to

ιpn to get the commutative diagram

Σ∞+ Kn,k Σ2pn,pnHFkp

i∗j∗Σ
∞
+ Kn,K i∗j∗Σ

2pn,pnHFKp Σ2pn,pnHFkp.

ιpn

i∗η i∗η

i∗j∗ι
p
n π

(7.1)

From [30, Lemma 9.8], i∗j∗ι
p
n = i∗j∗P

n
K(ιn). Hence, we can rewrite the bottom row of 7.1 as

i∗j∗Σ
∞
+ Kn,K i∗j∗Σ

2n,nHFKp i∗j∗Σ
2pn,pnHFKp Σ2pn,pnHFkp.

i∗j∗ιn i∗j∗PnK π
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From Theorem 3.0.2 and the above commuting diagrams, Pnk (ιn) = π◦(i∗j∗PnK)◦(i∗j∗ιn)◦i∗η.

Hence, from diagram 7.1, we get Pnk (ιn) = π ◦ (i∗j∗ι
p
n) ◦ i∗η = ιpn.

For k not perfect, we have an essentially smooth morphism f : Spec(k) → Spec(Fp)

and f∗(Kn,Fp)
∼= Kn,k [16, Theorem 2.11]. As Fp is perfect, we then have f∗(PnFp(ιn)) =

f∗(PnFp)(ιn) = f∗(ιpn) = ιpn.

From Proposition 3.0.3, we have the following corollary.

Corollary 7.0.3. Let X ∈ Smk. Then Pnk is the pth power on CHn(X)/p.

Now that we know f∗(PnFp) is the pth power on H2n,n(−,Fp) for all n ≥ 1, we can prove an

instability result. Let f : Spec(k)→ Spec(Fp) be the structure morphism.

Proposition 7.0.4. Let p, q, n ≥ 0 be integers such that n > p − q and n ≥ q. Let X ∈ H(k)

and let x ∈ Hp,q(X,Fp). Then f∗(PnFp)(x) = 0.

Proof. Voevodsky’s proof in [30, Lemma 9.9] works here since f∗(PnFp) is the pth power on

H2n,n(−,Fp) by Proposition 7.0.2.

Corollary 7.0.5. Let X ∈ Smk. Then Pnk is the 0 map on CHm(X)/p for m < n.
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Chapter 8

Proper pushforward

In this chapter, we restrict our attention to mod p Chow groups on Smk. The ring of mod p

Chow groups is an oriented cohomology pretheory in the sense of [23, Section 1] with perfect

integration given by proper pushforward on Chow groups. Consider the total cohomological

Steenrod operation Pk := P 0
k+P 1

k+P 2
k+· · · : CH∗(−)/p→ CH∗(−)/p. From the Cartan formula

6, Pk is a ring morphism of oriented cohomology pretheories in the sense of [23, Definition 1.1.7].

Let Z[[c1, c2, . . .]] denote the power series ring on Chern classes ci for i ≥ 1 and let w ∈

Z[[c1, c2, . . .]] denote the total characteristic class corresponding to the polynomial f(x) = 1 +

xp−1. For p = 2, w is the total Chern class. Let X ∈ Smk. For a line bundle L on X,

w(L) = 1+cp−1
1 (L) ∈ CH∗(X). For a vector bundle V on X that has a filtration by subbundles

with quotients given by line bundles L1, . . . , Lm, w(V ) = w(L1) · · ·w(Lm). Let wi denote the

ith homogeneous component of w for i ≥ 0. We have wi = 0 if p−1 does not divide i. Define the

total homological Steenrod operation PX := w(−TX) ·Pk : CH∗(X)/p→ CH∗(X)/p where TX

is the tangent bundle on X. For i ≥ 0, let PXi denote the (p−1)ith homogeneous component of

PX . The following proposition is a consequence of the general Riemann-Roch formulas proved

by Panin in [23]
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Proposition 8.0.1. Let f : X → Y be a morphism of smooth projective varieties over k. Then

CH∗(X)/p CH∗(X)/p

CH∗(Y )/p CH∗(Y )/p

f∗

PX

f∗

PY

commutes.

Proof. This is [23, Theorem 2.5.4]. See [23, Section 2.6] for a discussion relevant to our situation.

The main ingredients are that the operations Pnk satisfy the Cartan formula and that Pnk is the

pth power on CHn(−)/p.

Restricting to the case p = char(k) = 2, we obtain a Wu formula from the work of Panin [23,

Theorem 2.5.3]. Here, w = c is the total Chern class and we let Sq denote the total Steenrod

square Pk on CH∗(−)/2.

Proposition 8.0.2. Let X,Y be smooth projective varieties over k, and let i : X ↪−→ Y be a

closed embedding with normal bundle N . Then

i∗(c(N)) = Sq([X])

in CH∗(Y )/2 where [X] ∈ CH∗(Y )/2 denotes the mod 2 cycle class of X.
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Chapter 9

Rost’s degree formula

Now that we have Steenrod operations on mod p Chow groups of Smk, we can prove Rost’s

degree formula [21, Theorem 6.4] without any restrictions on the characteristic of the base

field. We closely follow the presentation of Merkurjev [21] where Steenrod operations (assuming

restrictions on the characteristic of the base field) are used to prove degree formulas. In [15],

Haution was able to extend the Rost degree formulas to base fields of characteristic 2.

For a variety X over k, let nX denote the greatest common divisor of deg(x) over all closed

points x ↪−→ X. Let X ∈ Smk be projective of dimension d > 0. Applying Proposition 8.0.1 to

the structure morphism X → Spec(k) and [X] ∈ CHd(X)/p, we see that p | deg(wd(−TX)).

Proposition 9.0.1. Let f : X → Y be a morphism of projective varieties X,Y ∈ Smk of

dimension d > 0. Then nY | nX and

deg(wd(−TX))

p
≡ deg(f) · deg(wd(−TY ))

p
mod nY .

Proof. The proof in [21, Theorem 6.4] works here. From Proposition 8.0.1, f∗(wd(−TX)) ≡

deg(f)wd(−TY ) ∈ CH0(Y )/p. We then take the degree homomorphism to finish the proof.
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Chapter 10

Specialization map

Fix a DVR D with residue field i : Spec(k)→ Spec(D) and fraction field j : Spec(K)→ Spec(D)

as before. Let X ∈ SmD be projective with special fiber Xk and generic fiber XK . As described

in [9, Chapter 20.3], there are specialization maps σn : CHn(XK) → CHn(Xk) defined for all

n ≥ 0. The specialization maps can be defined at the level of cycles. Namely, for an irreducible

closed subvariety ZK ⊂ XK of codimension n, we let Zk denote the special fiber of the reduced

closed subscheme ZK ⊂ X associated to ZK ⊂ X. Then σn(〈ZK〉) = 〈Zk〉 ∈ CHn(Xk). We

also let σn denote the specialization map induced on mod p Chow groups.

We now show that the Steenrod operations Pnk defined on CH∗(Xk) are compatible with

the operations PnK defined on CH∗(XK).

Proposition 10.0.1. Let m ≥ 0 and let ZK ⊂ XK be a closed subvariety of codimension n.

Let 〈ZK〉 ∈ CHn(XK)/p denote the mod p cycle class of ZK . Then

Pmk (σn(〈ZK〉)) = σn+m(p−1)(P
m
K (〈ZK〉)) ∈ CHn+m(p−1)(Xk)/p.

Proof. The mod p cycle class of ZK ⊂ X induces a map

fD : Σ∞+ X → Σ2n,nĤFDp

in SH(D). The map i∗fD gives the mod p cycle class of Zk (the special fiber of ZK ⊂ X) and
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j∗fD gives the mod p cycle class of ZK . Applying the natural transformation i∗η : i∗ → i∗j∗j
∗

to fD, we get a commuting square.

Σ∞+ Xk Σ2n,nHFkp

i∗j∗Σ
∞
+ XK i∗j∗Σ

2n,nHFKp

i∗fD

i∗η i∗η

i∗j∗j∗fD

(10.1)

From Theorem 3.0.2, Pmk = Φ(PmK ) = π ◦ i∗j∗PmK ◦ i∗η. Hence, from diagram 10.1, we get

that

π ◦ i∗η ◦ Pmk ◦ i∗fD = π ◦ i∗j∗PmK ◦ i∗j∗j∗fD ◦ i∗η

in the following commuting diagram.

Σ∞+ Xk Σ2n,nHFkp Σ2(n+m(p−1)),n+m(p−1)HFkp

i∗j∗Σ
∞
+ XK i∗j∗Σ

2n,nHFKp i∗j∗Σ
2(n+m(p−1)),n+m(p−1)HFkp

Σ2(n+m(p−1)),n+m(p−1)HFkp

i∗fD

i∗η i∗η

Pmk

i∗η

i∗j∗j∗fD i∗j∗PmK

π

(10.2)

Write PmK (〈ZK〉) =
∑q

l=1 al
〈
Z lK
〉

for some q, al ∈ Z and closed subvarieties Z lK ⊂ XK of

codimension n + m(p − 1). Taking the associated reduced closed subschemes in X, we get

an element
∑q

l=1 al

〈
Z
l
K

〉
∈ H2(n+m(p−1)),n+m(p−1)(X,Fp) which corresponds to a morphism

g : Σ∞+ X → Σ2(n+m(p−1)),n+m(p−1)ĤFDp . For 1 ≤ l ≤ q, let Z lk denote the special fiber

of Z
l
K . Taking pullbacks, i∗g gives

∑q
l=1 al

〈
Z lk
〉
∈ H2(n+m(p−1)),n+m(p−1)(Xk,Fp) and j∗g =∑q

l=1 al
〈
Z lK
〉

= PmK (〈ZK〉). Applying i∗η to g, we get a commuting diagram.

Σ∞+ Xk Σ2(n+m(p−1)),n+m(p−1)HFkp

i∗j∗Σ
∞
+ XK i∗j∗Σ

2(n+m(p−1)),n+m(p−1)HFKp

Σ2(n+m(p−1)),n+m(p−1)HFkp

i∗g

i∗η i∗η

i∗j∗j∗g

π

(10.3)
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From diagrams 10.2 and 10.3, we get

i∗g =

q∑
l=1

al

〈
Z lk

〉
= π ◦ i∗j∗j∗g ◦ i∗η = π ◦ i∗j∗(PmK (〈ZK〉)) ◦ i∗η

= π ◦ i∗j∗PmK ◦ i∗j∗j∗fD ◦ i∗η = Pmk (〈Zk〉)

as required.

We recall some facts about flag varieties, using [18] as a reference. Let Gk be a split reductive

group over k with Borel subgroup Bk and Weyl group W . From the Bruhat decomposition, we

have

Gk/Bk =
∐
w∈W

BkwBk/Bk.

For w ∈W , the closureXw
k ofBkwBk/Bk inGk/Bk is called a Schubert variety andBkwBk/Bk ∼=

Al(w)
k where l(w) is the length of w in W . Let Pk ⊇ Bk be a parabolic subgroup of Gk.

We have Pk = BWPB for some subgroup WP ≤ W . There is a related WP ⊂ W , such

that for each w ∈ WP , BkwBk/Bk is isomorphic to BkwBk/Pk under the quotient morphism

Gk/Bk → Gk/Pk [18, Lemma 1.2]. We also have a cell decomposition

Gk/Pk =
∐

w∈WP

BkwBk/Pk.

This cell decomposition is independent of the field k. It follows that the total chow group

CH∗(Gk/Pk) is freely generated as an additive group by the cycle classes 〈Y w
k 〉 of the images

Y w
k of the Schubert varieties Xw

k for w ∈WP .

Chevalley [1] and Demazure [4] showed that the chow rings

CH∗(GF1/PF1) andCH∗(GF2/PF2)

are isomorphic for any two fields F1, F2. The isomorphism is given by mapping the class of

a Schubert subscheme Y w
F1

to Y w
F2

for w ∈ WP . We now prove that the Steenrod operations

Pnk and PnK give the same action on H2∗,∗(Gk/Pk,Fp) ∼= CH∗(Gk/Pk)/p ∼= CH∗(GK/PK)/p ∼=

H2∗,∗(GK/PK ,Fp).
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Corollary 10.0.2. Let n ≥ 0 and let w0 ∈WP . We have

PnK(
〈
Y K
w0

〉
) =

∑
w∈WP

aw
〈
Y K
w

〉
in CH∗(GK/PK)/p for some aw ∈ Z. Then

Pnk (
〈
Y k
w0

〉
) =

∑
w∈WP

aw

〈
Y k
w

〉
.

Proof. We refer to [3] for facts about integral models of split reductive groups. Let w ∈ W

and let Xw
D be the reduced closed subscheme of GD/BD associated to BDwBD/BD. Note

that Xw
D is flat over Spec(D). For any field F and morphism Spec(F ) → Spec(D), the fiber

Xw
D×Spec(D) Spec(F ) in GF /BF is isomorphic to Xw

F [26, Theorem 2]. The main point to check

is that the fibers of Xw
D over Spec(D) are reduced.

Now assume that w ∈WP . Let Y w
D denote the image of Xw

D in GD/PD. Then Y w
D ×Spec(D)

Spec(F ) ∼= Y w
F for any field F and morphism Spec(F ) → Spec(D). Proposition 10.0.1 then

applies to finish the proof.
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Chapter 11

Applications to quadratic forms

In this chapter, we use the Steenrod squares Sq2n
k to prove new results about nonsingular

quadratic forms over a field k of characteristic 2. The results we prove have analogues in

characteristic 6= 2 conveniently found in [5, Sections 79-82] where the only missing ingredient

for extending to characteristic 2 was the existence of Steenrod squares satisfying expected

properties.

Recall that a quadratic form (q, V ) over k is nonsingular if the associated radical V ⊥ is

of dimension at most 1 and q is nonzero on V ⊥ \ 0. Equivalently, (q, V ) is nonsingular if

the associated projective quadric is smooth. Note that nonsingular quadratic forms are called

nondegenerate in [5]. In characteristic 2, anisotropic quadratic forms are not necessarily non-

singular. Let (q, V ) be a nonsingular anisotropic quadratic form of dimension D defined over

k and let X be the associated quadric. Over some field extension F of k, the quadric XF be-

comes split. A computation of CH∗(XF ) can be found in [5, Chapter XIII]. Let h ∈ CH1(XF )

denote the pullback of the hyperplane class in P(V ) and let ld ∈ CHd(XF ) denote the class of

a d-dimensional subspace in XF where d = b(D − 1)/2c. Let li = hi · ld for 0 ≤ i ≤ d.

Proposition 11.0.1. As an additive group, CH∗(XF ) is freely generated by hi, li for 0 ≤ i ≤ d.

For the ring structure, hd+1 = 2lD−d−1, l2d = 0 if 4 does not divide D, and l2d = l0 if 4 divides

D.
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From Corollary 10.0.2, the action of the Steenrod squares Sq2n
F on CH∗(XF )/2 agrees with

the action of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0.

We refer to [5, Corollary 78.5] for the calculation of the action of Steenrod squares on the mod

2 Chow ring of a split quadric in characteristic 0.

Proposition 11.0.2. For any 0 ≤ i ≤ d and j ≥ 0,

Sq2j
F (hi) =

(
i

j

)
hi+j and Sq2j

F (li) =

(
D + 1− i

j

)
li−j .

To state our results, we recall the definition of higher Witt indices. Let ϕ be a nonsingular

quadratic form over a field F and let F (ϕ) denote the function field of the associated quadric.

Let ϕan denote the anisotropic part of ϕ and let i0(ϕ), the Witt index of ϕ, denote the dimension

of a maximal isotropic subspace for ϕ. Start with ϕ0 := ϕan and F0 := F . Inductively define

Fi := Fi−1(ϕi−1) and ϕi := (ϕFi)an for i > 0. There exists m such that dimϕm ≤ 1. For

1 ≤ j ≤ m, we then define the jth relative higher Witt index ij(ϕ) to be i0(ϕFj )− i0(ϕFj−1).

We recall Hoffmann’s conjecture on the possible values of the first Witt index of an anisotropic

quadratic form. Hoffmann’s conjecture was originally restricted to quadratic forms over a field

of characteristic 6= 2 but it makes sense to consider the conjecture in characteristic 2 as well.

For an integer n, let v2(n) denote the 2-adic exponent of n.

Conjecture 11.0.3. Let ϕ be an anisotropic quadratic form over a field F such that dimϕ ≥ 2.

Then i1(ϕ) ≤ 2v2(dimϕ−i1(ϕ).

Hoffmann’s original conjecture for characteristic 6= 2 was proved by Karpenko in [17].

Karpenko’s proof makes use of Steenrod squares on mod 2 Chow groups. With our construc-

tion of Steenrod squares on the mod 2 Chow groups over a base field of characteristic 2, we

can now prove Hoffmann’s conjecture for nonsingular anisotropic quadratic forms over a field

of characteristic 2.

Proposition 11.0.4. Let ϕ be a nonsingular anisotropic quadratic form over k such that

dimϕ ≥ 2. Then i1(ϕ) ≤ 2v2(dimϕ−i1(ϕ).
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Proof. The proof of [5, Proposition 79.4] works in this case. We only need to use the Cartan

formula 6, the action of the Steenrod squares on the mod 2 Chow ring of a split quadric given

by Proposition 11.0.2, Corollary 3.0.4 on base change, and other facts that can be found in [5]

that are true for nonsingular anisotropic quadratic forms over a field of characteristic 2.

Proposition 11.0.4 provides further evidence for the validity of Hoffmann’s conjecture in

characteristic 2. Scully has proved that Hoffmann’s conjecture is valid for totally singular

quadratic forms over a field of characteristic 2 [25].

The conclusions of [5, Corollary 81.19] which describes an inequality on higher Witt in-

dices and [5, Corollary 82.2] on “holes in In” should also now hold for nonsingular anisotropic

quadratic forms in characteristic 2. The proofs of these results given in [5] could be imitated

for nonsingular anisotropic quadratic forms in characteristic 2 using the properties we have

established for the Steenrod squares Sq2n
k .
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Études Sci. 98 (2003), 1-57.

45

https://www.math.u-psud.fr/~riou/doc/steenrod.pdf
https://www.math.u-psud.fr/~riou/doc/steenrod.pdf

	Introduction
	Prior results on the dual Steenrod algebra and setup
	Definition of operations
	Adem relations
	Coaction map for smooth X 
	Cartan formula
	pth power and instability
	Proper pushforward
	Rost's degree formula
	Specialization map
	Applications to quadratic forms
	Bibliography



