UCLA

UCLA Electronic Theses and Dissertations

Title

Motivic Steenrod operations in characteristic p

Permalink

https://escholarship.org/uc/item/5c9463i2

Author

Primozic, Eric James

Publication Date

2019
Peer reviewed|Thesis/dissertation

UNIVERSITY OF CALIFORNIA

Los Angeles

Motivic Steenrod operations in characteristic p
A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Mathematics

by

Eric J. Primozic
(c) Copyright by

Eric J. Primozic

ABSTRACT OF THE DISSERTATION

Motivic Steenrod operations in characteristic p
by
Eric J. Primozic
Doctor of Philosophy in Mathematics
University of California, Los Angeles, 2019
Professor Burt Totaro, Chair

Using the recent work of Frankland and Spitzweck, we define motivic Steenrod operations P^{n} on the $\bmod p$ motivic cohomology of smooth varieties defined over a base field of characteristic p. We show that the operations P^{n} satisfy expected properties such as the Adem relations and Cartan formula when restricted to $\bmod p$ Chow groups. We also show that P^{n} is the p th power on $C H^{n}(-) / p$ and prove an instability result. Using these new operations, we remove previous restrictions on the characteristic of the base field for Rost's degree formula. We also prove Hoffmann's conjecture (generalized to include quadratic forms over a base field of characteristic 2) on the possible values of the first Witt index of an anisotropic quadratic form for the special case of nonsingular anisotropic quadratic forms over a base field of characteristic 2 .

The dissertation of Eric J. Primozic is approved.

Paul Balmer

Alexander Sergee Merkurjev
Raphael Alexis Rouquier
Burt Totaro, Committee Chair

University of California, Los Angeles
2019

To my parents

TABLE OF CONTENTS

1 Introduction 1
2 Prior results on the dual Steenrod algebra and setup 3
3 Definition of operations 9
4 Adem relations 17
5 Coaction map for smooth X 20
6 Cartan formula 27
7 pth power and instability 29
8 Proper pushforward 33
9 Rost's degree formula 35
10 Specialization map 36
11 Applications to quadratic forms 40
Bibliography 42

ACKNOWLEDGMENTS

It is my pleasure to thank Burt Totaro for being my PhD advisor. His guidance and generosity have enabled me to complete the work in this dissertation. I am also very grateful to Marc Hoyois for answering my questions and telling me most of the ideas used in the proof to Proposition 7.0.1. I also thank Markus Spitzweck and Chuck Weibel for answering my questions related to this dissertation.

I thank my friends and colleagues at UCLA for creating a friendly and interesting research environment. In particular, I thank David Hemminger and Will Baker.

VITA

2014
B.A. (Mathematics), Cornell University.

Chapter 1

Introduction

Voevodsky constructed motivic reduced power operations P_{F}^{n} for $n \geq 0$ where the base field F is a perfect field with $\operatorname{char}(F)$ not equal to the characteristic of the coefficient field [30]. These operations were used in the proof of the Bloch-Kato conejcture. Motivic reduced power operations can also be used to prove results about quadratic forms and degree formulas in algebraic geometry as in [5] and [21].

For a prime p, Voevodsky's construction of Steenrod operations for the coefficient field \mathbb{F}_{p} uses the calculation of the motivic cohomology of $B S_{p}$. However, when defined over a base field k of characteristic $p, B \mathbb{Z} / p$ is contractible [22, Proposition 3.3]. Hence, over the base field k, $H^{*, *}\left(B S_{p}, \mathbb{F}_{p}\right) \cong H^{*, *}\left(k, \mathbb{F}_{p}\right)$ and so one cannot carry out Voevodsky's construction. It has also been an open problem to just define Steenrod operations on the mod p Chow groups of smooth schemes over a field of characteristic p. Haution made progress on this problem by constructing the first $p-1$ homological Steenrod operations on Chow groups mod p and p-primary torsion [11], defining the first Steenrod square on mod 2 Chow groups over any base field [12], and constructing weak forms of the second and third Steenrod squares over a field of characteristic 2 [14]. Note that in papers where Steenrod squares (or weak forms of Steenrod squares) on mod 2 Chow groups are used, the nth Steenrod square on mod 2 Chow groups corresponds to the $2 n$th Steenrod square on mod 2 motivic cohomology since the Bockstein homomorphism is 0 on
mod 2 Chow groups.
For p a prime, we use the results of Frankland and Spitzweck in 8 to define Steenrod operations $P_{k}^{n}: H^{i, j}\left(-, \mathbb{F}_{p}\right) \rightarrow H^{i+2 n(p-1), j+n(p-1)}\left(-, \mathbb{F}_{p}\right)$ for $n \geq 0$ on the mod p motivic cohomology of smooth schemes over a field k of characteristic p. Note that some authors use the notation $H^{i}(-, \mathbb{Z}(j))$ in place of $H^{i, j}(-, \mathbb{Z})$ to denote motivic cohomology. For $n \geq 1$, we show that P_{k}^{n} is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)=C H^{n}(-) / p$, and we also prove an instability result for the Steenrod operations. Restricted to $\bmod p$ Chow groups, we prove that the P_{k}^{i} satisfy expected properties such as Adem relations and the Cartan formula. We also show that the operations P_{k}^{n} agree with the operations P_{K}^{n}, constructed by Voevodsky for $\operatorname{char}(K)=0$, on the $\bmod p$ Chow rings of flag varieties in characteristic 0 .

In Chapter 9, we extend Rost's degree formula [21, Theorem 6.4] to a base field of arbitrary characteristic. The degree formula we obtain at odd primes seems to be new. In Chapter 11, we use the new operations to study quadratic forms defined over a field of characteristic 2. Previous results or proofs avoided the case of quadratic forms in characteristic 2 since Steenrod squares were not available. We prove Hoffmann's conjecture (a generalization including characteristic 2 quadratic forms) on the possible values of the first Witt index of anisotropic quadratic forms for the case of nonsingular anisotropic quadratic forms over a field of characteristic 2. In characteristic $\neq 2$, Hoffmann's conjecture was proved by Karpenko in [17. Previously, Haution used a weak form of the first homological Steenrod square to prove a result on the parity of the first Witt index for nonsingular anisotropic quadratic forms over a field of characteristic 2 [13. Theorem 6.2]. Haution's result is a corollary of the case of Hoffmann's conjecture proved in this paper. Using the Steenrod squares defined in this paper, it should be possible to extend other results on quadratic forms to the case where the base field has characteristic 2 .

Chapter 2

Prior results on the dual Steenrod

algebra and setup

Let k be a field of characteristic $p>0$. For a base scheme S, we let Sm_{S} denote the category of quasi-projective separated smooth schemes of finite type over S, let $H(S)$ denote the unstable motivic homotopy category of spaces over S defined by Morel-Voevodsky [22, let $H_{\bullet}(S)$ denote the pointed unstable motivic homotopy category of spaces over S, and we let $S H(S)$ denote the stable motivic homotopy category of spectra over S [28]. Let

$$
\begin{gathered}
\Sigma_{+}^{\infty}: \operatorname{Sm}_{S} \rightarrow S H(S), \\
\Sigma_{+}^{\infty}: H(S) \rightarrow H_{\bullet}(S) \rightarrow S H(S),
\end{gathered}
$$

denote the infinite \mathbb{P}^{1}-suspension functors. We recall some results from [27] and [8] that hold in the categories $H(k)$ and $S H(k)$. Let $B \mu_{p} \in H(k)$ denote the geometric motivic classifying space of the group scheme μ_{p} over k of the p th roots of unity. Let $H \mathbb{F}_{p}^{k} \in S H(k)$ denote the motivic Eilenberg-MacLane spectrum representing mod p motivic cohomology. Let $v \in H^{2,1}\left(B \mu_{p}, \mathbb{F}_{p}\right)$ denote the pullback of the first Chern class $c_{1} \in H^{2,1}\left(B \mathbb{G}_{m}, \mathbb{F}_{p}\right)$. From the computation of the motivic cohomology of $B \mu_{p}$ in [30, Theorem 6.10], there exists a unique $u \in H^{1,1}\left(B \mu_{p}, \mathbb{F}_{p}\right)$ such that $\beta(u)=v$ where β denotes the Bockstein homomorphism on mod p motivic cohomology.

The class $\rho=-1$ in $H^{1,1}\left(k, \mathbb{F}_{p}\right)=k^{*} / k^{* p}$ is 0 and the class of $\tau=-1$ in $H^{0,1}\left(k, \mathbb{F}_{p}\right)=\mu_{p}(k)=0$ is also 0 . We need the following computation which can be deduced from [30, Theorem 6.10] by setting $\rho=0$ and $\tau=0$.

Theorem 2.0.1. There is an isomorphism

$$
H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \cong H^{*, *}\left(k, \mathbb{F}_{p}\right) \llbracket v, u \rrbracket /\left(u^{2}\right)
$$

Let $\mathcal{A}_{*, *}^{k}:=\pi_{*, *}\left(H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right)$. As described in [27, Chapter 10.2], there is a coaction map

$$
\begin{equation*}
H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \rightarrow \mathcal{A}_{-*,-*}^{k} \widehat{\otimes}_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(B \mu_{p}, \mathbb{F}_{p}\right) \tag{2.1}
\end{equation*}
$$

We use the left $H \mathbb{F}_{p}^{k}$-module structure on $H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}$. For $i \geq 0$ and $j \geq 1$, classes $\tau_{i} \in$ $\mathcal{A}_{2 p^{i}-1, p^{i}-1}^{k}$ and $\xi_{j} \in \mathcal{A}_{2 p^{j}-2, p^{j}-1}^{k}$ are defined by the coaction map:

$$
\begin{gathered}
u \mapsto u+\Sigma_{i \geq 0} \tau_{i} \otimes v^{p^{i}}, \\
v \mapsto v+\Sigma_{j \geq 1} \xi_{j} \otimes v^{p^{j}} .
\end{gathered}
$$

Proposition 2.0.2. $\tau_{i}^{2}=0$ for all $i \geq 0$.

Proof. We use the argument of [30, Theorem 12.6]. First, we assume that $\operatorname{char}(k)=2$. Under the coaction map 2.1,

$$
u^{2}=0 \mapsto u^{2}+\Sigma_{i \geq 0} \tau_{i}^{2} \otimes v^{2^{i+1}}=0
$$

For $i \geq 0$, the coefficient of $v^{2^{i+1}}$ equals $0=\tau_{i}^{2}$.
Now we assume that $p=\operatorname{char}(k)$ is odd. Let $i \geq 0$. As $\mathcal{A}_{*, *}^{k}$ is graded-commutative under the first grading, we have $\tau_{i}^{2}=(-1)^{\left(2 p^{i}-1\right)\left(2 p^{i}-1\right)} \tau_{i}^{2}=-\tau_{i}^{2}$ which implies that $\tau_{i}^{2}=0$.

In this paper, we shall consider finite sequences $\alpha=\left(\epsilon_{0}, r_{1}, \epsilon_{1}, r_{2}, \ldots\right)$ of integers such that $\epsilon_{i} \in\{0,1\}$ and $r_{j} \geq 0$ for all $i \geq 0$ and $j \geq 1$. From now on, it will be assumed that any
sequence α in this paper satisfies these conditions. To a sequence α, we associate a monomial $\omega(\alpha)=\tau_{0}^{\epsilon_{0}} \xi_{1}^{r_{1}} \tau_{1}^{\epsilon_{1}} \cdots \in \mathcal{A}_{*, *}^{k}$ of bidegree $\left(p_{\alpha}, q_{\alpha}\right)$. The sequences α induce a morphism

$$
\Psi_{k}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}
$$

of left $H \mathbb{F}_{p}^{k}$-modules. Frankland and Spitzweck proved the following theorem [8, Theorem 1.1] which allows us to define Steenrod operations on $\bmod p$ motivic cohomology over the base k.

Theorem 2.0.3. The morphism

$$
\Psi_{k}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}
$$

is a split monomorphism.

It is conjectured that Ψ_{k} is an isomorphism. Frankland and Spitzweck proved this theorem by comparing Ψ_{k} to the corresponding isomorphism

$$
\begin{equation*}
\Psi_{K}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \tag{2.2}
\end{equation*}
$$

of left $H \mathbb{F}_{p}^{K}$-modules for $\operatorname{char}(K)=0$. From now on, we will identify $\underset{\alpha}{\bigoplus^{2}} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K}$ with $H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}$ as left $H \mathbb{F}_{p}^{K}$-modules through Ψ_{K} whenever K is a field of characteristic 0 . Let D be a complete unramified discrete valuation ring with closed point $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and generic point $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$ where $K=\operatorname{Frac}(D)$. For example, when $k=\mathbb{F}_{p}$, we take $D=\mathbb{Z}_{p}$ and $K=\mathbb{Q}_{p}$.

For a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, we let $f_{*}:=R f_{*}: S H\left(S_{1}\right) \rightarrow S H\left(S_{2}\right)$ and $f^{*}:=L f^{*}: S H\left(S_{2}\right) \rightarrow S H\left(S_{1}\right)$ denote the right derived pushforward and left derived pullback functors respectively. Pullback f^{*} is strongly monoidal while f_{*} is lax monoidal. Furthermore, f_{*} commutes with all suspensions $\Sigma^{i, j}$ [8, Lemma 7.5].

For S a separated Noetherian scheme of finite dimension, we let $\widehat{H} \mathbb{Z}^{S} \in S H(S)$ denote the motivic E_{∞} ring spectrum constructed by Spitzweck in [27] and let $\widehat{H} \mathbb{F}_{p}^{S}:=\widehat{H} \mathbb{Z}^{S} / p$. Let $D\left(\widehat{H} \mathbb{Z}^{S}\right)$ denote the homotopy category of left $\widehat{H} \mathbb{Z}^{S}$-modules. See [2, Section 7.2] for a discussion
on the homotopy category of left R-modules $D(R)$ for a ring object $R \in S H(S)$. There is a forgetful functor $U_{S}: D\left(\widehat{H} \mathbb{Z}^{S}\right) \rightarrow S H(S)$. A morphism $f: X \rightarrow Y$ in $D\left(\widehat{H} \mathbb{Z}^{S}\right)$ is equivalent to giving a commutative diagram

in $S H(S)$.
The spectrum $\widehat{H} \mathbb{Z}^{S}$ enjoys a number of desirable properties. The spectrum $\widehat{H} \mathbb{Z}^{S}$ is Cartesian. This means that for a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, the induced morphism $f^{*} \widehat{H} \mathbb{Z}^{S_{2}} \rightarrow$ $\widehat{H} \mathbb{Z}^{S_{1}}$ is an isomorphism in $S H\left(S_{1}\right)$ of E_{∞} ring spectra [27, Chapter 9]. Hence, the square

commutes.
For $S=\operatorname{Spec}(F)$ with F a field, $\widehat{H} \mathbb{Z}^{S}$ is isomorphic as an E_{∞} ring spectrum to the usual Eilenberg-MacLane spectrum $H \mathbb{Z}^{S}$ constructed by Voevodsky [27, Theorem 6.7]. For the discrete valuation ring $D, \widehat{H} \mathbb{Z}^{D}$ represents Bloch-Levine motivic cohomology as defined in 20].

We briefly describe the definition of Bloch-Levine motivic cohomology in [20] for a discrete valuation ring D. Let $X \rightarrow \operatorname{Spec}(D)$ be a morphism of finite type with X irreducible. If the image of the generic point η_{X} of X is $\operatorname{Spec}(k)$, then we define $\operatorname{dim}(X):=\operatorname{dim}\left(X_{\operatorname{Spec}(k)}\right)$. Otherwise, we define $\operatorname{dim}(X):=\operatorname{dim}\left(X_{\operatorname{Spec}(K)}\right)+1$. For $n \geq 0$, let $\Delta^{n}:=\operatorname{Spec}\left(D\left[t_{0}, \ldots, t_{n}\right] / \Sigma_{i} t_{i}-1\right)$ denote the algebraic n-simplex over D. Let $z_{q}(X, r)$ denote the free abelian group generated by all irreducible closed subschemes $C \subset \Delta^{r} \times \operatorname{Spec}(D) X$ of dimension $r+q$ such that C meets each face of $\Delta^{r} \times_{\operatorname{Spec}(D)} X$ properly. We then set $z^{q}(X, r)=z_{\operatorname{dim}(X)-q}(X, r)$ so that we get a pullback homomorphism $z^{q}(X, r) \rightarrow z^{q}(X, r-1)$ for each face of Δ^{r}. Then the Zariski hypercohomology of the complex $z^{q}(X, *)$ with alternating face maps is Bloch-Levine motivic cohomology (with the appropriate shift).

Theorem 2.0.4.

The morphism $H \mathbb{F}_{p}^{k} \cong i^{*}\left(\widehat{H} \mathbb{F}_{p}^{D}\right) \rightarrow i^{*} j_{*} H \mathbb{F}_{p}^{K} \cong i^{*} j_{*} j^{*} \widehat{H} \mathbb{F}_{p}^{D}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$ induced by adjunction induces a splitting $i^{*} j_{*} H \mathbb{F}_{p}^{K} \cong H \mathbb{F}_{p}^{k} \oplus \Sigma^{-1,-1} H \mathbb{F}_{p}^{k}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$. We let $\pi: i^{*} j_{*} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k}$ and $\pi_{0}: i^{*} j_{*} H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{-1,-1} H \mathbb{F}_{p}^{k}$ denote the projections induced by this splitting. There is also a splitting $i^{*} j_{*} H \mathbb{Z}^{K} \cong H \mathbb{Z}^{k} \oplus \Sigma^{-1,-, 1} H \mathbb{Z}^{k}$ in $D\left(H \mathbb{Z}^{k}\right)$ [8, Lemma 4.10].

Let $\eta: i d . \rightarrow j_{*} j^{*}$ denote the unit map. From now on, we shall denote all adjunction morphisms $i^{*} E \rightarrow i^{*} j_{*} j^{*} E$ for $E \in S H(D)$ by $i^{*} \eta$. We will also denote all $\Sigma^{s, t} \pi, \Sigma^{s, t} \pi_{0}$ by π and π_{0} respectively to make the text easier to read. The morphisms Ψ_{k} and Ψ_{K} lift to a morphism

$$
\Psi_{D}: \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} \widehat{H} \mathbb{F}_{p}^{D} \rightarrow \widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}
$$

in $D\left(\widehat{H} \mathbb{F}_{p}^{D}\right)$ [8, Lemma 3.10]. Applying $i^{*} \eta$ to Ψ_{D}, we get a commuting square

$$
\begin{gather*}
\underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \xrightarrow[\Psi_{k}]{\downarrow^{i^{*} \eta}} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \\
\underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}, q_{\alpha}} i^{*} j_{*} H \mathbb{F}_{p}^{K} \xrightarrow{i^{*} \eta} \tag{2.3}\\
i^{*} j_{*} \Psi_{K} \\
i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
\end{gather*}
$$

in $D\left(H \mathbb{F}_{p}^{k}\right)$. Let $r: H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \rightarrow \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}$ be the retraction of Ψ_{k} defined by the following composite [8, Theorem 5.1]

For $S=k, K$, or $D\left(\right.$ use $\left.\widehat{H} \mathbb{F}_{p}^{D}\right)$, we let $\mu_{1}^{S}: H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S} \rightarrow H \mathbb{F}_{p}^{S}$ denote the multiplication morphism. There is also a multiplication morphism

$$
\mu_{2}^{S}:\left(H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}\right) \wedge\left(H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}\right) \rightarrow H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}
$$

defined in the standard way by interchanging the two middle $H \mathbb{F}_{p}^{S}$ terms and then applying $\mu_{1}^{S} \wedge \mu_{1}^{S}$.

For a sequence α_{0}, we define $i^{*} \eta_{\alpha_{0}}: H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{k}$ in $D\left(H \mathbb{F}_{p}^{k}\right)$ to be the composite

$$
H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \xrightarrow{i^{*} j_{*} \Psi_{K}^{-1}} \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} i^{*} j_{*} H \mathbb{F}_{p}^{k} \xrightarrow{\text { proj. }} \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} i^{*} j_{*} H \mathbb{F}_{p}^{K}
$$

The morphism $i^{*} \eta_{\alpha_{0}}$ is a retract of the morphism $H \mathbb{F}_{p}^{k} \wedge \omega\left(\alpha_{0}\right): \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{k} \rightarrow H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}$.
From the work of Voevodsky [29] and Friedlander-Suslin [7, Corollary 12.2], Bloch's higher Chow groups are isomorphic to motivic cohomology as defined by Voevodsky. The isomorphism between motivic cohomology and Bloch's higher Chow groups is compatible with product structures [27, Theorem 6.7]. See also [19].

Theorem 2.0.5. Let F be a field and let $X \in \operatorname{Sm}_{F}$. Then

$$
H^{n, i}(X, \mathbb{Z}) \cong C H^{i}(X, 2 i-n)
$$

for all n and $i \geq 0$.

Let $n, i \geq 0$ such that $n>2 i$. From the above theorem, we get that $H^{n, i}(X, A)=0$ for any coefficient ring A and $X \in \operatorname{Sm}_{F}$.

Chapter 3

Definition of operations

In this chapter, we use the results of Frankland and Spitzweck in [8] to define new Steenrod operations P_{k}^{n} for $n \geq 0$. Let

$$
i_{L}, i_{R}: H \mathbb{F}_{p}^{S} \rightarrow H \mathbb{F}_{p}^{S} \wedge H \mathbb{F}_{p}^{S}
$$

denote the left and right unit maps respectively for $S=D$ (use $\widehat{H} \mathbb{F}_{p}^{D}$), k, or K. Motivated by the corresponding duality in characteristic 0 , we want to define operations $P_{k}^{n} \in H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$ for $n \geq 0$ by taking operations dual to the ξ_{1}^{n}.

Definition 3.0.1. Let α be a sequence. Define $P_{k}^{\alpha} \in H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$ by $P_{k}^{\alpha}:=i^{*} \eta_{\alpha} \circ i_{R}$. For $n \geq 0$, we let $P_{k}^{n}=P_{k}^{(0, n, 0, \ldots)}$. Let $\beta_{k}=P_{k}^{(1,0, \ldots)}$.

There are corresponding operations P_{K}^{α} in characteristic 0 defined from 2.2 by

$$
H \mathbb{F}_{p}^{K} \xrightarrow{i_{R}} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \xrightarrow{\text { proj. }} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{K}
$$

Definition 3.0.2. To define a homomorphism $\Phi: H \mathbb{F}_{p}^{K *, *} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$ of graded additive groups, let $f: H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{k, l} H \mathbb{F}_{p}^{K}$ be given. Define $\Phi(f): H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{k, l} H \mathbb{F}_{p}^{k}$ by $\Phi(f)=\pi \circ i^{*} j_{*}(f) \circ i^{*} \eta$.

$$
\begin{equation*}
H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*} H \mathbb{F}_{p}^{K} \xrightarrow{i^{*} j_{*}(f)} \Sigma^{k, l} i^{*} j_{*} H \mathbb{F}_{p}^{K} \xrightarrow{\pi} \Sigma^{k, l} H \mathbb{F}_{p}^{k} \tag{3.1}
\end{equation*}
$$

From the definition of Φ, it is clear that $\Phi(i d)=.i d .$. The following lemma will be important for proving that the operations P_{k}^{n} restricted to mod p Chow groups satisfy the Adem relations and Cartan formula.

Lemma 3.0.1. Let $X \in \operatorname{Sm}_{k}$ and let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given.

1. Let α_{0} be a sequence. Consider the morphism

$$
g_{\alpha_{0}}: H \mathbb{F}_{p}^{k} \rightarrow \Sigma^{p_{\alpha_{0}}-1, q_{\alpha_{0}}-1} H \mathbb{F}_{p}^{k}
$$

given by the following composite.

$$
H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} i^{*} j_{*} H \mathbb{F}_{p}^{K^{i^{*}} j_{*}\left(P_{K}^{\alpha_{0}}\right)} i^{*} j_{*} \Sigma^{p_{\alpha_{0}}, q_{\alpha_{0}}} H \mathbb{F}_{p}^{K} \xrightarrow{\pi_{0}} \Sigma^{p_{\alpha_{0}}-1, q_{\alpha_{0}}-1} H \mathbb{F}_{p}^{k} .
$$

Then $\Sigma^{2 m, m} g_{\alpha_{0}} \circ f=0$.
2. The composite

is equal to 0 .

Proof. Note that for any sequence α of bidegree $\left(p_{\alpha}, q_{\alpha}\right), p_{\alpha} \geq 2 q_{\alpha}$ which implies that $p_{\alpha}-1>$ $2\left(q_{\alpha}-1\right)$. For (1) and (2), Theorem 2.0.5 implies that

$$
\operatorname{Hom}_{S H(k)}\left(\Sigma_{+}^{\infty} X, \Sigma^{2 m+p_{\alpha}-1, m+q_{\alpha}-1} H \mathbb{F}_{p}^{k}\right)=H^{2 m+p_{\alpha}-1, m+q_{\alpha}-1}\left(X, \mathbb{F}_{p}\right)=0
$$

for any sequence α.

Theorem 3.0.2. 1. We have $\Phi\left(H^{*, *}\left(K, \mathbb{F}_{p}\right)\right) \subset H^{*, *}\left(k, \mathbb{F}_{p}\right)$.
2. Let α be a sequence. Then $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$. In particular, for the Bockstein β_{K} and reduced power operations P_{K}^{n} constructed by Voevodsky in characteristic $0, \Phi\left(P_{K}^{n}\right)=P_{k}^{n}$ for $n \geq 0$ and $\Phi\left(\beta_{K}\right)=\beta_{k}$. Also, P_{k}^{0} is the identity since P_{K}^{0} is the identity.
3. Let $X \in \operatorname{Sm}_{k}$ and let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given. Let α be a sequence and let $h: H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{i, j} H \mathbb{F}_{p}^{K}$ be given. Then

$$
\Phi\left(h \circ P_{K}^{\alpha}\right)(f)=\Phi(h)\left(P_{k}^{\alpha}(f)\right) .
$$

Proof. We first prove (1). Let $a \in H^{*, *}\left(K, \mathbb{F}_{p}\right)$. The element a corresponds to a morphism f_{a} : $H \mathbb{F}_{p}^{K} \rightarrow \Sigma^{m, n} H \mathbb{F}_{p}^{K}$ in $D\left(H \mathbb{F}_{p}^{K}\right)$. The functors i^{*}, j_{*} restrict to functors $i^{*}: D\left(\widehat{H} \mathbb{F}_{p}^{D}\right) \rightarrow D\left(H \mathbb{F}_{p}^{k}\right)$ and $j_{*}: D\left(H \mathbb{F}_{p}^{K}\right) \rightarrow D\left(\widehat{H} \mathbb{F}_{p}^{D}\right)$. Hence, $i^{*} j_{*}\left(f_{a}\right)$ is a morphism in $D\left(H \mathbb{F}_{p}^{k}\right)$. From the definition of Φ, it follows that $\Phi\left(f_{a}\right)$ is a morphism in $D\left(H \mathbb{F}_{p}^{k}\right)$. Thus, $\Phi(a):=\Phi\left(f_{a}\right) \in H^{*, *}\left(k, \mathbb{F}_{p}\right)$.

We now prove (2). Let α be a sequence. Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the right unit map $i_{R}: \widehat{H} \mathbb{F}_{p}^{D} \rightarrow \widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}$, we obtain the following commuting square in $S H(k)$.

From the definition of $i^{*} \eta_{\alpha} 2.4$, the following diagram commutes.

Putting these 2 diagrams together, we get the following commuting diagram.

The top row of this diagram gives P_{k}^{α} while the composite starting at $H \mathbb{F}_{p}^{k}$ in the top left and continuing along the bottom row gives $\Phi\left(P_{K}^{\alpha}\right)$. Hence, $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$.

Now, we prove (3). Consider the following diagram.

As $\Phi\left(P_{K}^{\alpha}\right)=P_{k}^{\alpha}$, Lemma 3.0.1 implies that the composite

$$
i^{*} \eta \circ P_{k}^{\alpha} \circ f: \Sigma_{+}^{\infty} X \rightarrow i^{*} j_{*} \Sigma^{2 m+p_{\alpha}, m+q_{\alpha}} H \mathbb{F}_{p}^{K}
$$

in diagram 3.3 is equal to

$$
i^{*} j_{*} P_{K}^{\alpha} \circ i^{*} \eta \circ f .
$$

Equivalently,

$$
\pi_{0} \circ i^{*} j_{*} P_{K}^{\alpha} \circ i^{*} \eta \circ f=0: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m+p_{\alpha}-1, m+q_{\alpha}-1} H \mathbb{F}_{p}^{k} .
$$

Thus, from diagram 3.3 ,

$$
\Phi(h)\left(P_{k}^{\alpha}(f)\right)=\pi \circ i^{*} \eta \circ \Phi(h) \circ P_{k}^{\alpha} \circ f=\pi \circ i^{*} j_{*}(h) \circ i^{*} j_{*}\left(P_{K}^{\alpha}\right) \circ i^{*} \eta \circ f=\Phi\left(h \circ P_{K}^{\alpha}\right)(f)
$$

as desired.

We next prove that the operations P_{k}^{n} commute with base change of the field k on $\bmod p$ Chow groups. For a morphism of fields $f: \operatorname{Spec}\left(F_{1}\right) \rightarrow \operatorname{Spec}\left(F_{2}\right)$, the pullback functor f^{*} : $S H\left(F_{2}\right) \rightarrow S H\left(F_{1}\right)$ induces a homomorphism $H \mathbb{F}_{p}^{F_{2} *, *} H \mathbb{F}_{p}^{F_{2}} \rightarrow H \mathbb{F}_{p}^{F_{1} *, *} H \mathbb{F}_{p}^{F_{1}}$. For char $\left(F_{2}\right) \neq$ $p, f^{*}\left(P_{F_{2}}^{n}\right)=P_{F_{1}}^{n}$ since the dual Steenrod algebra has the expected form in this case [16, Theorem 1.1]. However, for our situation where the base field is of characteristic p, we do not yet know the full structure of the dual Steenrod algebra.

Let $f_{1}: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure map. In the following commuting diagram, f_{2}, f_{3}, i_{0}, and j_{0} are maps compatible with f_{1}.

Proposition 3.0.3. Let $X \in \operatorname{Sm}_{k}$ and let $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ be given. Then $P_{k}^{n}(g)=$ $f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)$ for all $n \geq 0$.

Proof. Let $\eta_{0}: 1 \rightarrow j_{0 * j_{0}^{*}}$ denote the unit map. Let $f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \rightarrow f_{2}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$ be the map $f_{2}^{*} \eta_{0}$ induced by the isomorphism $j_{0}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \rightarrow H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$. The exchange transformation $f_{2}^{*} j_{0 *} \rightarrow j_{*} f_{3}^{*}$ induces a morphism $f_{2}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow j_{*} f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$. Let $f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \rightarrow j_{*} f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}$ be the map ηf_{2}^{*} induced by the isomorphism

$$
j^{*} f_{2}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}}=f_{3}^{*} j_{0}^{*} \widehat{H} \mathbb{F}_{p}^{\mathbb{Z}_{p}} \rightarrow f_{3}^{*} H \mathbb{F}_{p}^{\mathbb{Q}_{p}}
$$

Putting these maps together, we get the following square which commutes by adjunction.

Applying the exchange transformation $f_{2}^{*} j_{0 *} \rightarrow j_{*} f_{3}^{*}$ to $P_{\mathbb{Q}_{p}}^{n}$, we get the following commuting square.

Applying i^{*} to these two squares and combining with $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$, we obtain the following commuting diagram.

Let $\pi^{\prime}: i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ and $\pi_{0}^{\prime}: i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \rightarrow \Sigma^{-1,-1} H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ be projection morphisms induced by the isomorphism $i_{0}^{*} j_{0 *} H \mathbb{F}_{p}^{\mathbb{Q}_{p}} \cong H \mathbb{F}_{p}^{\mathbb{F}_{p}} \oplus \Sigma^{-1,-1} H \mathbb{F}_{p}^{\mathbb{F}_{p}}$ of Theorem 2.0.4 From Theorem 2.0.5. the two composites $\Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(m+n(p-1))-1, m+n(p-1)-1} H \mathbb{F}_{p}^{k}$ given by the following diagram are equal to 0 .

Consider the following diagram.

From Theorem 3.0.2, the composite $\Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(m+n(p-1)), m+n(p-1)} H \mathbb{F}_{p}^{k}$ given by the upper half of diagram 3.7 is equal to $f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)$ and the composite $\Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(m+n(p-1)), m+n(p-1)} H \mathbb{F}_{p}^{k}$
given by the lower half of diagram 3.7 is equal to $P_{k}^{n}(g)$. As diagram 3.5 commutes and the 2 composite morphisms from diagram 3.6 are 0 , we then obtain that $f_{1}^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(g)=P_{k}^{n}(g)$.

We can now prove that the Steenrod operations P_{k}^{n} commute with base change on $\bmod p$ Chow groups. Let $f: \operatorname{Spec}\left(k_{1}\right) \rightarrow \operatorname{Spec}\left(k_{2}\right)$ be given where k_{1}, k_{2} are fields of characteristic p. Let $h: \operatorname{Spec}\left(k_{2}\right) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure map.

Corollary 3.0.4. Let $X \in \operatorname{Sm}_{k_{2}}$. Let $n \geq 0$. The following square commutes.

Proof. From Proposition 3.0.3. $h^{*} P_{\mathbb{F}_{p}}^{n}$ agrees with $P_{k_{2}}^{n}$ on $C H^{*}(X) / p$ and $f^{*} h^{*} P_{\mathbb{F}_{p}}^{n}$ agrees with $P_{k_{1}}^{n}$ on $C H^{*}\left(X_{k_{1}}\right) / p$. Let $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k_{2}}$ be given. Then

$$
f^{*}\left(P_{k_{2}}^{n}(g)\right)=f^{*}\left(h^{*} P_{\mathbb{F}_{p}}^{n}(g)\right)=f^{*} h^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(f^{*} g\right)=P_{k_{1}}^{n}\left(f^{*} g\right)
$$

as required.

Proposition 3.0.5. The morphism $\beta_{k}=P_{k}^{(1,0, \ldots)}$ defined above is equal to the Bockstein homomorphism β on $\bmod p$ motivic cohomology.

Proof. We let β denote the Bockstein homomorphism on $\bmod p$ motivic cohomology over any base scheme. The Bockstein homomorphism β in characteristic 0 is known to be dual to τ_{0}. Hence, $\beta=P_{K}^{(1,0, \ldots)}=\beta_{K}$. Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the diagram

in $S H(D)$, we get the following commuting diagram in $S H(k)$.

From Theorem 3.0.2, $\Phi\left(\beta_{K}\right)=\beta_{k}$. The composite in diagram 3.8 that starts at $H \mathbb{F}_{p}^{k}$ in the top row and goes immediately down to $\Sigma^{1,0} H \mathbb{F}_{p}^{k}$ is equal to $\Phi\left(\beta_{K}\right)$. As the diagram commutes and $\pi \circ i^{*} \eta=i d .$, it follows that $\Phi\left(\beta_{K}\right)=\beta=\beta_{k}$.

Chapter 4

Adem relations

In this chapter, we use the map $\Phi: H \mathbb{F}_{p}^{K *, *} H \mathbb{F}_{p}^{K} \rightarrow H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k} 3.1$ and Theorem 3.0.2 to show that the operations P_{k}^{n} for $n \geq 0$ satisfy the expected Adem relations when restricted to $\bmod p$ Chow groups. The proof uses the corresponding Adem relations in characteristic 0 which can be found in [24, Théorème 4.5.1] for $p=2$ and [24, Théorème 4.5.2] for odd p. First, we state the Adem relations for $p=2$ over the base K of characteristic 0 . Let $\tau \in H^{0,1}\left(K, \mathbb{F}_{2}\right)$ denote the class of $-1 \in \mu_{2}(K)$ and let $\rho \in H^{1,1}\left(K, \mathbb{F}_{2}\right)$ denote the class of $-1 \in K^{*} / K^{* 2}$. Set $\operatorname{Sq}_{k}^{2 n}:=P_{k}^{n}$ and $\mathrm{Sq}_{k}^{2 n+1}=\beta_{k} \mathrm{Sq}_{k}^{2 n}$ for $n \geq 0$.

Theorem 4.0.1. Let $a, b \in \mathbb{N}$ with $a<2 b$.
1.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}+\sum_{\substack{j=1 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor} \rho\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j-1} \mathrm{Sq}_{K}^{j}
$$

if a is even and b is odd.
2.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{\substack{j=0 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}
$$

if a and b are odd.
3.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{2}\right\rfloor} \tau^{j \bmod 2}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}
$$

if a and b are even.
4.

$$
\mathrm{Sq}_{K}^{a} \mathrm{Sq}_{K}^{b}=\sum_{\substack{j=0 \\ j \text { even }}}^{\left\lfloor\frac{a}{2}\right\rfloor}\binom{b-1-j}{a-2 j} \mathrm{Sq}_{K}^{a+b-j} \mathrm{Sq}_{K}^{j}+\sum_{\substack{j=1 \\ j \text { odd }}}^{\left\lfloor\frac{a}{2}\right\rfloor} \rho\binom{b-1-j}{a-1-2 j} \mathrm{Sq}_{K}^{a+b-j-1} \mathrm{Sq}_{K}^{j}
$$

if a is odd and b is even.

Next, we state the characteristic 0 Adem relations for p odd.

Theorem 4.0.2. 1. Let $a, b \in \mathbb{N}$ with $a<p b$. Then

$$
P_{K}^{a} P_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{K}^{a+b-j} P_{K}^{j}
$$

2. Let $a, b \in \mathbb{N}$ with $a \leq p b$. Then

$$
\begin{gathered}
P_{K}^{a} \beta_{K} P_{K}^{b}=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} \beta_{K} P_{K}^{a+b-j} P_{K}^{j}+ \\
\sum_{j=0}^{\left\lfloor\frac{a-1}{p}\right\rfloor}(-1)^{a+j+1}\binom{(p-1)(b-j)-1}{a-p j-1} P_{K}^{a+b-j} \beta_{K} P_{K}^{j} .
\end{gathered}
$$

We can now prove the Adem relations for the operations P_{k}^{n} restricted to mod p Chow groups.

Theorem 4.0.3. Let $X \in \operatorname{Sm}_{k}$ and let $x \in H^{2 m, m}\left(X, \mathbb{F}_{p}\right)=C H^{m}(X) / p$ for some $m \geq 0$. Let $a, b \in \mathbb{N}$ such that $a<p b$. Then

$$
P_{k}^{a}\left(P_{k}^{b}(x)\right)=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{k}^{a+b-j}\left(P_{k}^{j}(x)\right) .
$$

Proof. From Theorem 3.0.2, $P_{k}^{a}\left(P_{k}^{b}(x)\right)=\Phi\left(P_{K}^{a} P_{K}^{b}\right)(x)$. We then use the Adem relations in characteristic 0 to rewrite $P_{K}^{a} P_{K}^{b} \in H \mathbb{F}_{p}^{K * *} H \mathbb{F}_{p}^{K}$. Note that the Bockstein β_{k} is the 0
homomorphism on mod p Chow groups. If $p=2, \Phi\left(\operatorname{Sq}_{K}^{n}\right)(x)=\operatorname{Sq}_{k}^{n}(x)=0$ whenever n is odd. Thus, applying Theorem 3.0.2, we get

$$
\begin{gathered}
P_{k}^{a}\left(P_{k}^{b}(x)\right)=\Phi\left(P_{K}^{a} P_{K}^{b}\right)(x)=\Phi\left(\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{K}^{a+b-j} P_{K}^{j}\right)(x) \\
=\sum_{j=0}^{\left\lfloor\frac{a}{p}\right\rfloor}(-1)^{a+j}\binom{(p-1)(b-j)-1}{a-p j} P_{k}^{a+b-j}\left(P_{k}^{j}(x)\right)
\end{gathered}
$$

Chapter 5

Coaction map for smooth X

In this chapter, for $X \in \operatorname{Sm}_{k}$, we describe a coaction map

$$
\lambda_{X}: H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

such that the actions of the cohomology operations P_{k}^{n} defined in Chapter 3 on $H^{*, *}\left(X, \mathbb{F}_{p}\right)$ are determined by λ_{X}. We show that λ_{X} is a ring homomorphism when restricted to $\bmod p$ Chow groups. This will allow us to prove the Cartan formula in the next chapter.

There is a multiplication morphism

$$
\begin{equation*}
m:\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \rightarrow \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k} \tag{5.1}
\end{equation*}
$$

defined as $m=r \circ \mu_{2}^{k} \circ\left(\Psi_{k} \wedge \Psi_{k}\right)$. The morphism m defines multiplication on

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H F_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right)
$$

and

$$
\pi_{*, *}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H F_{p}^{k}\right) .
$$

For sequences α_{1}, α_{2}, Proposition 2.0 .2 allows us to calculate the product

$$
r_{*}\left(\omega\left(\alpha_{1}\right)\right) r_{*}\left(\omega\left(\alpha_{2}\right)\right) \in \pi_{*, *}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

in terms of another sequence $\alpha_{1}+\alpha_{2}$ by using the relations $\tau_{i}^{2}=0$ for $i \geq 0$.

Proposition 5.0.1. The natural ring homomorphism

$$
\pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right)
$$

is an isomorphism.

Proof. The suspension spectrum $\Sigma_{+}^{\infty} X \in S H(k)$ is compact. Hence,

$$
\operatorname{Hom}_{S H(k)}\left(\Sigma^{s, t} \Sigma_{+}^{\infty} X, \bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \cong \bigoplus_{\alpha} \operatorname{Hom}_{S H(k)}\left(\Sigma^{s, t} \Sigma_{+}^{\infty} X, \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

for all $s, t \in \mathbb{Z}$.

Definition 5.0.1. Using the isomorphism

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)^{*, *}\left(\Sigma_{+}^{\infty} X\right) \cong \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

from Proposition 5.0.1, define an additive homomorphism of graded abelian groups

$$
\lambda_{X}: H^{*, *}\left(X, \mathbb{F}_{p}\right) \rightarrow \pi_{-*,-*}\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \otimes_{\pi_{-*,-*} H \mathbb{F}_{p}^{k}} H^{*, *}\left(X, \mathbb{F}_{p}\right)
$$

by the composite

Proposition 5.0.2. Restricted to $\bmod p$ Chow groups, λ_{X} preserves multiplication.

Proof. Let $f: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 m, m} H \mathbb{F}_{p}^{k}$ and $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 n, n} H \mathbb{F}_{p}^{k}$ be given. We need to show that $\lambda_{X}(f g)=\lambda_{X}(f) \lambda_{X}(g)$. The right unit map i_{R} is a morphism of commutative ring spectra. Hence, $i_{R *}$ is a homomorphism of rings. Hence, we need to prove that $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=$ $r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$.

Applying the natural transformation $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to μ_{2}^{D}, we get a commuting diagram.

We will factor the left vertical morphism in this diagram. Consider the following triangle

$$
\begin{align*}
& \left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \wedge\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \xrightarrow{\eta \wedge \eta} j_{*}\left(H \mathbb{F}_{p}^{K}\right. \\
& \left.\downarrow \mathbb{F}_{p}^{K}\right) \wedge j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \tag{5.4}\\
& \downarrow_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge \overleftarrow{\left.H \mathbb{F}_{p}^{K}\right)}\right.
\end{align*}
$$

where the morphism on the hypotenuse is defined by the lax monoidal property of j_{*}. Note that the counit morphism $\epsilon: j^{*} j_{*} \rightarrow i d$. is an isomorphism since j is open. By adjunction, the morphism on the hypotenuse of diagram 5.4 is induced by the isomorphism

$$
\epsilon \wedge \epsilon: j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \rightarrow\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

The morphism η on the left leg of the triangle 5.4 is induced by the isomorphism

$$
j^{*} \eta: j^{*}\left(\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \wedge\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right)\right) \rightarrow\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

Using that pullback is strongly monoidal, we then have the following commuting triangle.

$$
\begin{aligned}
j^{*}\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) & \wedge j^{*}\left(\widehat{H} \mathbb{F}_{p}^{D} \wedge \widehat{H} \mathbb{F}_{p}^{D}\right) \xrightarrow{j^{*} \eta \wedge j^{*} \eta} j^{*} j_{*}\left(H \mathbb{F}_{p}^{K}\right. \\
& \left.\wedge H \mathbb{F}_{p}^{K}\right) \wedge j^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) & \wedge\left(H \mathbb{F}_{p}^{K} \wedge H \overleftarrow{\left.\mathbb{F}_{p}^{K}\right)}\right.
\end{aligned}
$$

Thus, by adjunction, the triangle 5.4 commutes.
Applying i^{*} to triangle 5.4, we then see that the commuting diagram 5.3 is a sub-diagram of the commuting diagram

From diagram 2.3,

$$
\left(i^{*} \eta \wedge i^{*} \eta\right) \circ\left(\Psi_{k} \wedge \Psi_{k}\right):\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \rightarrow i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)
$$

is equal to the composite $\left(i^{*} j_{*} \Psi_{K} \wedge i^{*} j_{*} \Psi_{K}\right) \circ\left(i^{*} \eta \wedge i^{*} \eta\right)$. Hence, diagram 5.5 implies that the multiplication morphism $m=r \circ \mu_{2}^{k} \circ\left(\Psi_{k} \wedge \Psi_{k}\right)$ on

$$
\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H F_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right)
$$

is equal to the following composite.

$$
\left.\begin{array}{ll}
\left(\underset{\alpha}{\oplus} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \wedge\left(\underset{\alpha}{\left(\bigoplus_{\alpha}\right.} \Sigma^{p_{\alpha}, q_{\alpha}} H \mathbb{F}_{p}^{k}\right) \tag{5.6}\\
& \downarrow\left(\left(i^{*} j_{*} \Psi_{K}\right) \circ^{*} \eta\right) \wedge\left(\left(i^{*} j_{*} \Psi_{K}\right) i^{*} \eta\right)
\end{array}\right)
$$

From Lemma 3.0.1, the composites

$$
\begin{aligned}
& \Sigma_{+}^{\infty} X \xrightarrow{f} \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \xrightarrow{i_{R}} \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} \Sigma^{2 m, m} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \downarrow i^{*} j_{*} \Psi_{K}^{-1} \\
& \bigoplus \Sigma^{p_{\alpha}+2 m, q_{\alpha}+m} i^{*} j_{*} H \mathbb{F}_{p}^{K} \\
& \downarrow{ }_{\downarrow} \pi_{0} \\
& \bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 m-1, q_{\alpha}+m-1} H \mathbb{F}_{p}^{k}
\end{aligned}
$$

and

$$
\begin{array}{r}
\Sigma_{+}^{\infty} X \xrightarrow{g} \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \xrightarrow{i_{R}} \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} \Sigma^{2 n, n} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
\downarrow_{i^{*} j_{*} \Psi_{K}^{-1}} \\
\underset{\alpha}{\bigoplus} \Sigma^{p_{\alpha}+2 n, q_{\alpha}+n} i^{*} j_{*} H \mathbb{F}_{p}^{K} \\
\underset{\sim}{\downarrow \pi_{0}} \\
\underset{\sim}{\bigoplus} \Sigma^{p_{\alpha}+2 n-1, q_{\alpha}+n-1} H \mathbb{F}_{p}^{k}
\end{array}
$$

are equal to 0 . It follows that $i^{*} \eta \circ r \circ i_{R} \circ f=i^{*} \eta \circ i_{R} \circ f$ and $i^{*} \eta \circ r \circ i_{R} \circ g=i^{*} \eta \circ i_{R} \circ g$ in the following two diagrams.

$\Sigma^{2 n, n} H \mathbb{F}_{p}^{k}$
$\downarrow i_{R}$
$\Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}$
$\underset{\alpha}{\bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 n, q_{\alpha}+n}} \underset{\mathbb{F}_{p}^{k} \xrightarrow{i^{*} \eta} \Sigma^{2 n, n} i^{*} j_{*}\left(H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right)}{\downarrow^{i^{*} \eta}}$
To show that $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$, we consider the following commuting diagram where Δ is the diagonal morphism.

The composite $\oplus \pi \circ i^{*} \eta \circ \mu_{2}^{k} \circ\left(i_{R} \wedge i_{R}\right) \circ(f \wedge g) \circ \Delta$ in this diagram is equal to $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)$.
From diagrams 5.7 and 5.8, the composite given by

$$
\begin{align*}
& \Sigma_{+}^{\infty} X \\
& \downarrow \Delta \\
& \Sigma_{+}^{\infty} X \wedge \Sigma_{+}^{\infty} X \\
& \downarrow f \wedge g \\
& \Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \\
& \downarrow{ }_{i i_{R} \wedge i_{R}} \\
& \left(\Sigma^{2 m, m} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \wedge\left(\Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \wedge H \mathbb{F}_{p}^{k}\right) \\
& \downarrow r \wedge r \\
& \left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 m, q_{\alpha}+m} H \mathbb{F}_{p}^{k}\right) \wedge\left(\bigoplus_{\alpha} \Sigma^{p_{\alpha}+2 n, q_{\alpha}+n} H \mathbb{F}_{p}^{k}\right) \\
& \downarrow i^{*} \eta \wedge i^{*} \eta \\
& i^{*} j_{*}\left(\Sigma^{2 m, m} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \wedge i^{*} j_{*}\left(\Sigma^{2 n, n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \downarrow \\
& i^{*} j_{*}\left(\Sigma^{2(m+n), m+n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \xrightarrow{i^{*} j_{*} \mu_{2}^{K}} i^{*} j_{*}\left(\Sigma^{2(m+n), m+n} H \mathbb{F}_{p}^{K} \wedge H \mathbb{F}_{p}^{K}\right) \\
& \downarrow{ }_{\downarrow} \oplus \pi \\
& \bigoplus \Sigma^{p_{\alpha}+2 m+2 n, q_{\alpha}+m+n} H \mathbb{F}_{p}^{k} \tag{5.10}
\end{align*}
$$

is equal to the composite given by diagram 5.9. From diagram 5.6, the composite given by diagram 5.10 is equal to $\Sigma^{2(m+n), m+n} m \circ(r \wedge r) \circ\left(i_{R} \wedge i_{R}\right) \circ(f \wedge g) \circ \Delta=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$. Thus, $r_{*}\left(i_{R *}(f) i_{R *}(g)\right)=r_{*}\left(i_{R *}(f)\right) r_{*}\left(i_{R *}(g)\right)$ as desired.

Chapter 6

Cartan formula

In this chapter, we use the coaction map constructed in the previous chapter to prove a Cartan formula for the operations P_{k}^{n} restricted to $\bmod p$ Chow groups. Let $X \in \operatorname{Sm}_{k}$. Let $\langle\cdot, \cdot\rangle$ denote the pairing between $\mathcal{A}_{*, *}^{k}$ and $H \mathbb{F}_{p}^{k *, *} H \mathbb{F}_{p}^{k}$. Let $n \geq 0$. For $x \in H^{*, *}\left(X, \mathbb{F}_{p}\right)$ with $\lambda_{X}(x)=\Sigma y_{i} \otimes x_{i}$, we have $P_{k}^{n}(x)=\Sigma\left\langle y_{i}, P_{k}^{n}\right\rangle x_{i}$.

Proposition 6.0.1. Let $x, y \in C H^{*}(X) / p$ and $i \geq 0$. Then

$$
P_{k}^{i}(x y)=\sum_{j=0}^{i} P_{k}^{j}(x) P_{k}^{i-j}(y)
$$

Proof. From the definition of $P_{k}^{i},\left\langle\xi_{1}^{i}, P_{k}^{i}\right\rangle=1$ and $\left\langle\omega(\alpha), P_{k}^{i}\right\rangle=0$ for all sequences $\alpha \neq$ $(0, i, 0,0, \ldots)$. Using the coaction map 5.2, we write

$$
\lambda_{X}(x)=\sum_{q} \omega\left(\alpha_{q}^{1}\right) \otimes x_{q}
$$

and

$$
\lambda_{X}(y)=\sum_{r} \omega\left(\alpha_{r}^{2}\right) \otimes y_{r}
$$

for some sequences $\alpha_{q}^{1}, \alpha_{r}^{2}$. Then

$$
\lambda_{X}(x y)=\sum_{q, r}\left(\left(\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right) \otimes x_{q} y_{r}\right)\right.
$$

For any 2 sequences $\alpha_{q}^{1}, \alpha_{r}^{2}$ appearing in these sums, we have $\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right)=0$ if the relation $\tau_{m}^{2}=0$ from Proposition 2.0 .2 applies for some $m \geq 0$, or else $\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right)= \pm \omega\left(\alpha_{q}^{1}+\alpha_{r}^{2}\right)$.

From the definition of λ_{X},

$$
P_{k}^{i}(x y)=\sum_{q, r}\left\langle\left(\omega\left(\alpha_{q}^{1}\right) \omega\left(\alpha_{r}^{2}\right), P_{k}^{i}\right\rangle x_{q} y_{r}\right.
$$

Proposition 2.0.2 implies that if $\omega\left(\alpha_{1}\right) \omega\left(\alpha_{2}\right)=a \xi_{1}^{i}$ for two sequences α_{1}, α_{2} and $a \neq 0 \in$ $H^{*, *}\left(k, \mathbb{F}_{p}\right)$, then $a=1$ and $\omega\left(\alpha_{1}\right)=\xi_{1}^{j}, \omega\left(\alpha_{2}\right)=\xi_{1}^{i-j}$ for some $0 \leq j \leq i$. As P_{k}^{i} is dual to ξ_{1}^{i}, the only terms for which $\left\langle\omega\left(\alpha_{q}^{1}+\alpha_{r}^{2}\right), P_{k}^{i}\right\rangle \neq 0$ are of the form $\omega\left(\alpha_{q_{j}}^{1}\right)=\xi_{1}^{j}, \omega\left(\alpha_{r_{j}}^{2}\right)=\xi_{1}^{i-j}$ for $0 \leq j \leq i$. Hence,

$$
\begin{equation*}
P_{k}^{i}(x y)=\sum_{j=0}^{i}\left\langle\omega\left(\alpha_{q_{j}}^{1}+\alpha_{r_{j}}^{2}\right), P_{k}^{i}\right\rangle x_{q_{j}} y_{r_{j}}=\sum_{j=0}^{i} P_{k}^{j}(x) P_{k}^{i-j}(y) \tag{6.1}
\end{equation*}
$$

as required.

Chapter 7

p th power and instability

In this chapter, for $n \in \mathbb{N}$, we prove that P_{k}^{n} is the p th power on $C H^{n}(-) / p$. Letting f : $\operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ denote the structure map, it suffices to prove that $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(\iota_{n}\right)=\iota_{n}^{p}$ for the canonical element $\iota_{n} \in H^{2 n, n}\left(K_{n, k}, \mathbb{F}_{p}\right)$ where $K_{n, k} \in H(k)$ is the motivic Eilenberg-MacLane space representing $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$. Our proof makes use of Morel's S^{1}-recognition principle.

We refer to [6, Section 3] as a reference for the S^{1}-recognition principle. For a base scheme S, let $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$ denote the category of Nisnevich local presheaves of spaces on Sm_{S}. The unstable motivic homotopy category $H(S)$ can be described as the full subcategory of $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$ of presheaves that are \mathbb{A}^{1}-invariant. Let $L_{\text {mot }}: \mathrm{PSh}_{\text {nis }}\left(\operatorname{Sm}_{S}\right) \rightarrow H(S)$ denote the \mathbb{A}^{1}-localization functor. Let $S H^{S^{1}}(S)$ denote the stable motivic homotopy category of S^{1}-spectra. For a morphism $f: S_{1} \rightarrow S_{2}$ of base schemes, we have the adjoint functors of pullback $f^{*}:=L f^{*}$ and pushforward $f_{*}:=R f_{*}$:

$$
f^{*}: H\left(S_{2}\right) \rightleftarrows H\left(S_{2}\right): f_{*} .
$$

For $f: S_{1} \rightarrow S_{2}$ smooth, f^{*} admits a left adjoint $f_{\#}$ such that $f_{\#}(X)=X \in H\left(S_{2}\right)$ for any $X \in \operatorname{Sm}_{S_{1}}$.

For $C=\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$ or $H(S)$, we consider the n-fold bar constructions B_{C}^{n} that are adjoint to the nth S^{1}-deloopings Ω^{n} :

$$
\mathrm{B}_{C}^{n}: \operatorname{Mon}_{\mathcal{E}_{n}}(C) \rightleftarrows C: \Omega^{n} .
$$

For $C=\operatorname{PSh}_{\text {nis }}\left(\operatorname{Sm}_{S}\right)$ or $H(S)$, we let $\operatorname{Stab}(C):=C \otimes \operatorname{Spt}$ denote the S^{1}-stabilization of C. We also consider the infinite bar construction

$$
\mathrm{B}_{C}^{\infty}: \operatorname{CMon}(C)=\operatorname{Mon}_{\mathcal{E}_{\infty}}(C) \rightleftarrows \operatorname{Stab}(C): \Omega^{\infty}
$$

For $C=\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{S}\right)$, we denote B_{C}^{n} by $\mathrm{B}_{\text {nis }}^{n}$ and we denote B_{C}^{∞} by $\mathrm{B}_{\text {nis }}^{\infty}$. Similarly, for $C=H(S)$, we denote B_{C}^{n} by $\mathrm{B}_{\mathrm{mot}}^{n}$ and we denote B_{C}^{∞} by $\mathrm{B}_{\mathrm{mot}}^{\infty}$. For later use, we note that $\mathrm{B}_{\mathrm{nis}}^{n}$ and $\mathrm{B}_{\mathrm{nis}}^{\infty}$ commute with pullbacks.

Definition 7.0.1. Define $X \in \operatorname{Mon}(H(S))$ to be strongly \mathbb{A}^{1}-invariant if $\mathrm{B}_{\mathrm{nis}} X \simeq \mathrm{~B}_{\mathrm{mot}} X$. Define $X \in \operatorname{CMon}(H(S))$ to be strictly \mathbb{A}^{1}-invariant if $\mathrm{B}_{\mathrm{nis}}^{n} X \simeq \mathrm{~B}_{\mathrm{mot}}^{n} X$ for all $n \geq 0$. Most of the proof of the following proposition was suggested to us by Marc Hoyois.

Proposition 7.0.1. Let k be a perfect field of characteristic p and let $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ be a closed embedding where D is a $D V R$ with generic point $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$. Fix $n>0$. We let $K_{n, D}:=\Omega_{\mathbb{P}^{1}}^{\infty} \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}$. Then the morphism $i^{*} K_{n, D} \rightarrow K_{n, k}$ induced by $i^{*} \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D} \cong$ $\Sigma^{2 n, n} H \mathbb{F}_{p}^{k}$ is an isomorphism in $H(k)$.

Proof. We first prove that $K_{n, D}$ is connected. Let R be a Henselian local ring that is essentially smooth over D. From [10, Corollary 4.2], the Bloch-Levine Chow groups $C H^{m}(R)$ of R vanish for $m \geq 1$. Thus, $\pi_{0}^{\text {nis }}\left(K_{n, D}(\operatorname{Spec}(R))\right) \simeq *$ since $K_{n, D} \in H(D)$ represents the codimension n $\bmod p$ Bloch-Levine Chow group.

Now we prove that $i^{*} K_{n, D}$ is connected. As $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$ is smooth, $j^{*} K_{n, D} \simeq$ $K_{n, K}$. Consider the homotopy pushout P in $\mathrm{PSh}_{\text {nis }}\left(\mathrm{Sm}_{D}\right)$ of the following diagram.

The morphism $j_{\#} K_{n, K} \rightarrow \operatorname{Spec}(K)$ induces a bijection on π_{0}^{nis}. Hence, $\pi_{0}^{\mathrm{nis}}\left(K_{n, D}\right) \simeq \pi_{0}^{\mathrm{nis}}(P)$. From the gluing square [22, Theorem 2.21], $L_{\operatorname{mot}}(P) \simeq i_{*} i^{*}\left(K_{n, D}\right)$. From [22, Corollary 3.22], it follows that $i_{*} i^{*}\left(K_{n, D}\right)$ is connected since $K_{n, D}$ is connected. Let $k \rightarrow S_{k}$ be an essentially
smooth homomorphism of rings where S_{k} is Henselian local. The ring S_{k} admits a lift S_{D} where $D \rightarrow S_{D}$ is essentially smooth and S_{D} is Henselian local. Hence, $i^{*}\left(K_{n, D}\right)\left(S_{k}\right) \simeq i_{*} i^{*}\left(K_{n, D}\right)\left(S_{D}\right)$ is connected. Thus, $i^{*} K_{n, D} \in H(k)$ is connected. In particular, $\pi_{0}^{\text {nis }}\left(i^{*}\left(K_{n, D}\right)\right)$ is strongly \mathbb{A}^{1} invariant. The S^{1}-recognition principle [6, Theorem 3.1.12] then implies that $i^{*} K_{n, D}$ is strictly \mathbb{A}^{1}-invariant.

From [27, Theorem 8.18], we have

$$
\mathrm{B}_{\mathrm{mot}}^{\infty} i^{*}\left(K_{n, D}\right) \cong i^{*}\left(\mathrm{~B}_{\mathrm{mot}}^{\infty} K_{n, D}\right) \cong i^{*}\left(\Omega_{\mathbb{G}_{m}}^{\infty} \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}\right) \cong \Omega_{\mathbb{G}_{m}}^{\infty} \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \cong \mathrm{~B}_{\mathrm{mot}}^{\infty} K_{n, k}
$$

in $S H^{S^{1}}(k)$. Then [6, Corollary 3.1.15] implies that $i^{*} K_{n, D} \cong K_{n, k}$ in $H(k)$.

Proposition 7.0.2. Let k be a field of characteristic p with structure map $f: \operatorname{Spec}(k) \rightarrow$ $\operatorname{Spec}\left(\mathbb{F}_{p}\right)$ and let $\iota_{n} \in H^{2 n, n}\left(K_{n, k}, \mathbb{F}_{p}\right)$ be the canonical element. Then $f^{*} P_{\mathbb{F}_{p}}^{n}\left(\iota_{n}\right)=\iota_{n}^{p}$.

Proof. First, we assume that k is perfect. Let D be a DVR having k as a residue field with inclusion morphism $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and generic point $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$. From Proposition 7.0.1 $i^{*} K_{n, D} \cong K_{n, k}$. Over all base schemes S, we let ι_{n} denote the canonical element in $H^{2 n, n}\left(K_{n, S}, \mathbb{F}_{p}\right)$. Apply $i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the natural morphism $\iota_{n}: \Sigma_{+}^{\infty} K_{n, D} \rightarrow$ $\Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}$ to get the following commuting square.

Apply $i^{*} \eta: i^{*} \rightarrow i^{*} j_{*} j^{*}$ to the morphism $\Sigma_{+}^{\infty} K_{n, D} \rightarrow \Sigma^{2 p n, p n} \widehat{H} \mathbb{F}_{p}^{D}$ in $S H(D)$ corresponding to ι_{n}^{p} to get the commutative diagram

$$
\begin{align*}
& \Sigma_{+}^{\infty} K_{n, k} \xrightarrow{\iota_{n}^{p}} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{k} \\
& \downarrow_{i^{*} \eta} \quad i^{i^{*} \eta} \tag{7.1}\\
& i^{*} j_{*} \Sigma_{+}^{\infty} K_{n, K} \xrightarrow{i^{*} j_{* l_{n}^{p}}^{p}} i^{*} j_{*} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{K} \xrightarrow{\pi} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{k} .
\end{align*}
$$

From [30, Lemma 9.8], $i^{*} j_{*} l_{n}^{p}=i^{*} j_{*} P_{K}^{n}\left(\iota_{n}\right)$. Hence, we can rewrite the bottom row of 7.1 as

$$
i^{*} j_{*} \Sigma_{+}^{\infty} K_{n, K} \xrightarrow{i^{*} j_{*} \not \iota_{n}} i^{*} j_{*} \Sigma^{2 n, n} H \mathbb{F}_{p}^{K} \xrightarrow{i^{*} j_{*} P_{K}^{n}} i^{*} j_{*} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{K} \xrightarrow{\pi} \Sigma^{2 p n, p n} H \mathbb{F}_{p}^{k} .
$$

From Theorem 3.0 .2 and the above commuting diagrams, $P_{k}^{n}\left(\iota_{n}\right)=\pi \circ\left(i^{*} j_{*} P_{K}^{n}\right) \circ\left(i^{*} j_{*} \iota_{n}\right) \circ i^{*} \eta$. Hence, from diagram 7.1, we get $P_{k}^{n}\left(\iota_{n}\right)=\pi \circ\left(i^{*} j_{*} \iota_{n}^{p}\right) \circ i^{*} \eta=\iota_{n}^{p}$.

For k not perfect, we have an essentially smooth morphism $f: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ and $f^{*}\left(K_{n, \mathbb{F}_{p}}\right) \cong K_{n, k}$ [16, Theorem 2.11]. As \mathbb{F}_{p} is perfect, we then have $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\left(\iota_{n}\right)\right)=$ $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)\left(\iota_{n}\right)=f^{*}\left(\iota_{n}^{p}\right)=\iota_{n}^{p}$.

From Proposition 3.0.3, we have the following corollary.

Corollary 7.0.3. Let $X \in \mathrm{Sm}_{k}$. Then P_{k}^{n} is the pth power on $C H^{n}(X) / p$.

Now that we know $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)$ is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$ for all $n \geq 1$, we can prove an instability result. Let $f: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}\left(\mathbb{F}_{p}\right)$ be the structure morphism.

Proposition 7.0.4. Let $p, q, n \geq 0$ be integers such that $n>p-q$ and $n \geq q$. Let $X \in H(k)$ and let $x \in H^{p, q}\left(X, \mathbb{F}_{p}\right)$. Then $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)(x)=0$.

Proof. Voevodsky's proof in [30, Lemma 9.9] works here since $f^{*}\left(P_{\mathbb{F}_{p}}^{n}\right)$ is the p th power on $H^{2 n, n}\left(-, \mathbb{F}_{p}\right)$ by Proposition 7.0.2.

Corollary 7.0.5. Let $X \in \operatorname{Sm}_{k}$. Then P_{k}^{n} is the 0 map on $C H^{m}(X) / p$ for $m<n$.

Chapter 8

Proper pushforward

In this chapter, we restrict our attention to $\bmod p$ Chow groups on Sm_{k}. The ring of $\bmod p$ Chow groups is an oriented cohomology pretheory in the sense of [23, Section 1] with perfect integration given by proper pushforward on Chow groups. Consider the total cohomological Steenrod operation $P_{k}:=P_{k}^{0}+P_{k}^{1}+P_{k}^{2}+\cdots: C H^{*}(-) / p \rightarrow C H^{*}(-) / p$. From the Cartan formula 6. P_{k} is a ring morphism of oriented cohomology pretheories in the sense of [23, Definition 1.1.7].

Let $\mathbb{Z}\left[\left[c_{1}, c_{2}, \ldots\right]\right]$ denote the power series ring on Chern classes c_{i} for $i \geq 1$ and let $w \in$ $\mathbb{Z}\left[\left[c_{1}, c_{2}, \ldots\right]\right]$ denote the total characteristic class corresponding to the polynomial $f(x)=1+$ x^{p-1}. For $p=2, w$ is the total Chern class. Let $X \in \operatorname{Sm}_{k}$. For a line bundle L on X, $w(L)=1+c_{1}^{p-1}(L) \in C H^{*}(X)$. For a vector bundle V on X that has a filtration by subbundles with quotients given by line bundles $L_{1}, \ldots, L_{m}, w(V)=w\left(L_{1}\right) \cdots w\left(L_{m}\right)$. Let w_{i} denote the i th homogeneous component of w for $i \geq 0$. We have $w_{i}=0$ if $p-1$ does not divide i. Define the total homological Steenrod operation $P^{X}:=w\left(-T_{X}\right) \cdot P_{k}: C H^{*}(X) / p \rightarrow C H^{*}(X) / p$ where T_{X} is the tangent bundle on X. For $i \geq 0$, let P_{i}^{X} denote the ($p-1$) ith homogeneous component of P^{X}. The following proposition is a consequence of the general Riemann-Roch formulas proved by Panin in [23]

Proposition 8.0.1. Let $f: X \rightarrow Y$ be a morphism of smooth projective varieties over k. Then

commutes.

Proof. This is [23, Theorem 2.5.4]. See [23, Section 2.6] for a discussion relevant to our situation. The main ingredients are that the operations P_{k}^{n} satisfy the Cartan formula and that P_{k}^{n} is the p th power on $C H^{n}(-) / p$.

Restricting to the case $p=\operatorname{char}(k)=2$, we obtain a Wu formula from the work of Panin [23, Theorem 2.5.3]. Here, $w=c$ is the total Chern class and we let Sq denote the total Steenrod square P_{k} on $C H^{*}(-) / 2$.

Proposition 8.0.2. Let X, Y be smooth projective varieties over k, and let $i: X \hookrightarrow Y$ be a closed embedding with normal bundle N. Then

$$
i_{*}(c(N))=\operatorname{Sq}([X])
$$

in $C H^{*}(Y) / 2$ where $[X] \in C H^{*}(Y) / 2$ denotes the mod 2 cycle class of X.

Chapter 9

Rost's degree formula

Now that we have Steenrod operations on $\bmod p$ Chow groups of Sm_{k}, we can prove Rost's degree formula [21, Theorem 6.4] without any restrictions on the characteristic of the base field. We closely follow the presentation of Merkurjev [21] where Steenrod operations (assuming restrictions on the characteristic of the base field) are used to prove degree formulas. In [15], Haution was able to extend the Rost degree formulas to base fields of characteristic 2 .

For a variety X over k, let n_{X} denote the greatest common divisor of $\operatorname{deg}(x)$ over all closed points $x \hookrightarrow X$. Let $X \in \operatorname{Sm}_{k}$ be projective of dimension $d>0$. Applying Proposition 8.0.1 to the structure morphism $X \rightarrow \operatorname{Spec}(k)$ and $[X] \in C H_{d}(X) / p$, we see that $p \mid \operatorname{deg}\left(w_{d}\left(-T_{X}\right)\right)$.

Proposition 9.0.1. Let $f: X \rightarrow Y$ be a morphism of projective varieties $X, Y \in \operatorname{Sm}_{k}$ of dimension $d>0$. Then $n_{Y} \mid n_{X}$ and

$$
\frac{\operatorname{deg}\left(w_{d}\left(-T_{X}\right)\right)}{p} \equiv \operatorname{deg}(f) \cdot \frac{\operatorname{deg}\left(w_{d}\left(-T_{Y}\right)\right)}{p} \quad \bmod n_{Y}
$$

Proof. The proof in [21, Theorem 6.4] works here. From Proposition 8.0.1, $f_{*}\left(w_{d}\left(-T_{X}\right)\right) \equiv$ $\operatorname{deg}(f) w_{d}\left(-T_{Y}\right) \in C H_{0}(Y) / p$. We then take the degree homomorphism to finish the proof.

Chapter 10

Specialization map

Fix a DVR D with residue field $i: \operatorname{Spec}(k) \rightarrow \operatorname{Spec}(D)$ and fraction field $j: \operatorname{Spec}(K) \rightarrow \operatorname{Spec}(D)$ as before. Let $X \in \operatorname{Sm}_{D}$ be projective with special fiber X_{k} and generic fiber X_{K}. As described in [9, Chapter 20.3], there are specialization maps $\sigma_{n}: C H^{n}\left(X_{K}\right) \rightarrow C H^{n}\left(X_{k}\right)$ defined for all $n \geq 0$. The specialization maps can be defined at the level of cycles. Namely, for an irreducible closed subvariety $Z_{K} \subset X_{K}$ of codimension n, we let Z_{k} denote the special fiber of the reduced closed subscheme $\overline{Z_{K}} \subset X$ associated to $Z_{K} \subset X$. Then $\sigma_{n}\left(\left\langle Z_{K}\right\rangle\right)=\left\langle Z_{k}\right\rangle \in C H^{n}\left(X_{k}\right)$. We also let σ_{n} denote the specialization map induced on $\bmod p$ Chow groups.

We now show that the Steenrod operations P_{k}^{n} defined on $C H^{*}\left(X_{k}\right)$ are compatible with the operations P_{K}^{n} defined on $C H^{*}\left(X_{K}\right)$.

Proposition 10.0.1. Let $m \geq 0$ and let $Z_{K} \subset X_{K}$ be a closed subvariety of codimension n. Let $\left\langle Z_{K}\right\rangle \in C H^{n}\left(X_{K}\right) / p$ denote the mod p cycle class of Z_{K}. Then

$$
P_{k}^{m}\left(\sigma_{n}\left(\left\langle Z_{K}\right\rangle\right)\right)=\sigma_{n+m(p-1)}\left(P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)\right) \in C H^{n+m(p-1)}\left(X_{k}\right) / p
$$

Proof. The mod p cycle class of $\overline{Z_{K}} \subset X$ induces a map

$$
f_{D}: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2 n, n} \widehat{H} \mathbb{F}_{p}^{D}
$$

in $S H(D)$. The map $i^{*} f_{D}$ gives the $\bmod p$ cycle class of Z_{k} (the special fiber of $\overline{Z_{K}} \subset X$) and
$j^{*} f_{D}$ gives the mod p cycle class of Z_{K}. Applying the natural transformation $i^{*} \eta: i^{*} \rightarrow i^{*} j_{*} j^{*}$ to f_{D}, we get a commuting square.

$$
\begin{gather*}
\Sigma_{+}^{\infty} X_{k} \xrightarrow{i^{*} f_{D}} \Sigma^{2 n, n} H \mathbb{F}_{p}^{k} \\
\downarrow_{i^{*} \eta}{ }^{i^{*} \eta} \tag{10.1}\\
j_{*} \Sigma_{+}^{\infty} X_{K} \xrightarrow{i^{*} j_{*} j^{*} f_{D}} i^{*} j_{*} \Sigma^{2 n, n} H \mathbb{F}_{p}^{K}
\end{gather*}
$$

From Theorem 3.0.2, $P_{k}^{m}=\Phi\left(P_{K}^{m}\right)=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} \eta$. Hence, from diagram 10.1, we get that

$$
\pi \circ i^{*} \eta \circ P_{k}^{m} \circ i^{*} f_{D}=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} j_{*} j^{*} f_{D} \circ i^{*} \eta
$$

in the following commuting diagram.

Write $P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)=\sum_{l=1}^{q} a_{l}\left\langle Z_{K}^{l}\right\rangle$ for some $q, a_{l} \in \mathbb{Z}$ and closed subvarieties $Z_{K}^{l} \subset X_{K}$ of codimension $n+m(p-1)$. Taking the associated reduced closed subschemes in X, we get an element $\sum_{l=1}^{q} a_{l}\left\langle\bar{Z}_{K}^{l}\right\rangle \in H^{2(n+m(p-1)), n+m(p-1)}\left(X, \mathbb{F}_{p}\right)$ which corresponds to a morphism $g: \Sigma_{+}^{\infty} X \rightarrow \Sigma^{2(n+m(p-1)), n+m(p-1)} \widehat{H} \mathbb{F}_{p}^{D}$. For $1 \leq l \leq q$, let Z_{k}^{l} denote the special fiber of \bar{Z}_{K}^{l}. Taking pullbacks, $i^{*} g$ gives $\sum_{l=1}^{q} a_{l}\left\langle Z_{k}^{l}\right\rangle \in H^{2(n+m(p-1)), n+m(p-1)}\left(X_{k}, \mathbb{F}_{p}\right)$ and $j^{*} g=$ $\sum_{l=1}^{q} a_{l}\left\langle Z_{K}^{l}\right\rangle=P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)$. Applying $i^{*} \eta$ to g, we get a commuting diagram.

From diagrams 10.2 and 10.3 , we get

$$
\begin{gathered}
i^{*} g=\sum_{l=1}^{q} a_{l}\left\langle Z_{k}^{l}\right\rangle=\pi \circ i^{*} j_{*} j^{*} g \circ i^{*} \eta=\pi \circ i^{*} j_{*}\left(P_{K}^{m}\left(\left\langle Z_{K}\right\rangle\right)\right) \circ i^{*} \eta \\
=\pi \circ i^{*} j_{*} P_{K}^{m} \circ i^{*} j_{*} j^{*} f_{D} \circ i^{*} \eta=P_{k}^{m}\left(\left\langle Z_{k}\right\rangle\right)
\end{gathered}
$$

as required.

We recall some facts about flag varieties, using [18] as a reference. Let G_{k} be a split reductive group over k with Borel subgroup B_{k} and Weyl group W. From the Bruhat decomposition, we have

$$
G_{k} / B_{k}=\coprod_{w \in W} B_{k} w B_{k} / B_{k}
$$

For $w \in W$, the closure X_{k}^{w} of $B_{k} w B_{k} / B_{k}$ in G_{k} / B_{k} is called a Schubert variety and $B_{k} w B_{k} / B_{k} \cong$ $\mathbb{A}_{k}^{l(w)}$ where $l(w)$ is the length of w in W. Let $P_{k} \supseteq B_{k}$ be a parabolic subgroup of G_{k}. We have $P_{k}=B W_{P} B$ for some subgroup $W_{P} \leq W$. There is a related $W^{P} \subset W$, such that for each $w \in W^{P}, B_{k} w B_{k} / B_{k}$ is isomorphic to $B_{k} w B_{k} / P_{k}$ under the quotient morphism $G_{k} / B_{k} \rightarrow G_{k} / P_{k}$ [18, Lemma 1.2]. We also have a cell decomposition

$$
G_{k} / P_{k}=\coprod_{w \in W^{P}} B_{k} w B_{k} / P_{k}
$$

This cell decomposition is independent of the field k. It follows that the total chow group $C H^{*}\left(G_{k} / P_{k}\right)$ is freely generated as an additive group by the cycle classes $\left\langle Y_{k}^{w}\right\rangle$ of the images Y_{k}^{w} of the Schubert varieties X_{k}^{w} for $w \in W^{P}$.

Chevalley [1] and Demazure [4] showed that the chow rings

$$
C H^{*}\left(G_{F_{1}} / P_{F_{1}}\right) \text { and } C H^{*}\left(G_{F_{2}} / P_{F_{2}}\right)
$$

are isomorphic for any two fields F_{1}, F_{2}. The isomorphism is given by mapping the class of a Schubert subscheme $Y_{F_{1}}^{w}$ to $Y_{F_{2}}^{w}$ for $w \in W^{P}$. We now prove that the Steenrod operations P_{k}^{n} and P_{K}^{n} give the same action on $H^{2 *, *}\left(G_{k} / P_{k}, \mathbb{F}_{p}\right) \cong C H^{*}\left(G_{k} / P_{k}\right) / p \cong C H^{*}\left(G_{K} / P_{K}\right) / p \cong$ $H^{2 *, *}\left(G_{K} / P_{K}, \mathbb{F}_{p}\right)$.

Corollary 10.0.2. Let $n \geq 0$ and let $w_{0} \in W^{P}$. We have

$$
P_{K}^{n}\left(\left\langle Y_{w_{0}}^{K}\right\rangle\right)=\sum_{w \in W^{P}} a_{w}\left\langle Y_{w}^{K}\right\rangle
$$

in $C H^{*}\left(G_{K} / P_{K}\right) / p$ for some $a_{w} \in \mathbb{Z}$. Then

$$
P_{k}^{n}\left(\left\langle Y_{w_{0}}^{k}\right\rangle\right)=\sum_{w \in W^{P}} a_{w}\left\langle Y_{w}^{k}\right\rangle .
$$

Proof. We refer to 3 for facts about integral models of split reductive groups. Let $w \in W$ and let X_{D}^{w} be the reduced closed subscheme of G_{D} / B_{D} associated to $B_{D} w B_{D} / B_{D}$. Note that X_{D}^{w} is flat over $\operatorname{Spec}(D)$. For any field F and morphism $\operatorname{Spec}(F) \rightarrow \operatorname{Spec}(D)$, the fiber $X_{D}^{w} \times_{\operatorname{Spec}(D)} \operatorname{Spec}(F)$ in G_{F} / B_{F} is isomorphic to X_{F}^{w} [26, Theorem 2]. The main point to check is that the fibers of X_{D}^{w} over $\operatorname{Spec}(D)$ are reduced.

Now assume that $w \in W^{P}$. Let Y_{D}^{w} denote the image of X_{D}^{w} in G_{D} / P_{D}. Then $Y_{D}^{w} \times_{\operatorname{Spec}(D)}$ $\operatorname{Spec}(F) \cong Y_{F}^{w}$ for any field F and morphism $\operatorname{Spec}(F) \rightarrow \operatorname{Spec}(D)$. Proposition 10.0.1 then applies to finish the proof.

Chapter 11

Applications to quadratic forms

In this chapter, we use the Steenrod squares $\mathrm{Sq}_{k}^{2 n}$ to prove new results about nonsingular quadratic forms over a field k of characteristic 2 . The results we prove have analogues in characteristic $\neq 2$ conveniently found in [5, Sections 79-82] where the only missing ingredient for extending to characteristic 2 was the existence of Steenrod squares satisfying expected properties.

Recall that a quadratic form (q, V) over k is nonsingular if the associated radical V^{\perp} is of dimension at most 1 and q is nonzero on $V^{\perp} \backslash 0$. Equivalently, (q, V) is nonsingular if the associated projective quadric is smooth. Note that nonsingular quadratic forms are called nondegenerate in [5. In characteristic 2, anisotropic quadratic forms are not necessarily nonsingular. Let (q, V) be a nonsingular anisotropic quadratic form of dimension D defined over k and let X be the associated quadric. Over some field extension F of k, the quadric X_{F} becomes split. A computation of $C H^{*}\left(X_{F}\right)$ can be found in [5, Chapter XIII]. Let $h \in C H^{1}\left(X_{F}\right)$ denote the pullback of the hyperplane class in $\mathbb{P}(V)$ and let $l_{d} \in C H_{d}\left(X_{F}\right)$ denote the class of a d-dimensional subspace in X_{F} where $d=\lfloor(D-1) / 2\rfloor$. Let $l_{i}=h^{i} \cdot l_{d}$ for $0 \leq i \leq d$.

Proposition 11.0.1. As an additive group, $C H^{*}\left(X_{F}\right)$ is freely generated by h^{i}, l_{i} for $0 \leq i \leq d$. For the ring structure, $h^{d+1}=2 l_{D-d-1}, l_{d}^{2}=0$ if 4 does not divide D, and $l_{d}^{2}=l_{0}$ if 4 divides D.

From Corollary 10.0.2, the action of the Steenrod squares $\mathrm{Sq}_{F}^{2 n}$ on $C H^{*}\left(X_{F}\right) / 2$ agrees with the action of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0 . We refer to [5, Corollary 78.5] for the calculation of the action of Steenrod squares on the mod 2 Chow ring of a split quadric in characteristic 0 .

Proposition 11.0.2. For any $0 \leq i \leq d$ and $j \geq 0$,

$$
\operatorname{Sq}_{F}^{2 j}\left(h^{i}\right)=\binom{i}{j} h^{i+j} \text { and } \operatorname{Sq}_{F}^{2 j}\left(l_{i}\right)=\binom{D+1-i}{j} l_{i-j}
$$

To state our results, we recall the definition of higher Witt indices. Let φ be a nonsingular quadratic form over a field F and let $F(\varphi)$ denote the function field of the associated quadric. Let $\varphi_{a n}$ denote the anisotropic part of φ and let $\mathfrak{i}_{0}(\varphi)$, the Witt index of φ, denote the dimension of a maximal isotropic subspace for φ. Start with $\varphi_{0}:=\varphi_{a n}$ and $F_{0}:=F$. Inductively define $F_{i}:=F_{i-1}\left(\varphi_{i-1}\right)$ and $\varphi_{i}:=\left(\varphi_{F_{i}}\right)_{a n}$ for $i>0$. There exists m such that $\operatorname{dim} \varphi_{m} \leq 1$. For $1 \leq j \leq m$, we then define the j th relative higher Witt index $\mathfrak{i}_{j}(\varphi)$ to be $\mathfrak{i}_{0}\left(\varphi_{F_{j}}\right)-\mathfrak{i}_{0}\left(\varphi_{F_{j-1}}\right)$.

We recall Hoffmann's conjecture on the possible values of the first Witt index of an anisotropic quadratic form. Hoffmann's conjecture was originally restricted to quadratic forms over a field of characteristic $\neq 2$ but it makes sense to consider the conjecture in characteristic 2 as well. For an integer n, let $v_{2}(n)$ denote the 2 -adic exponent of n.

Conjecture 11.0.3. Let φ be an anisotropic quadratic form over a field F such that $\operatorname{dim} \varphi \geq 2$.
Then $\mathfrak{i}_{1}(\varphi) \leq 2^{v_{2}\left(\operatorname{dim} \varphi-\mathfrak{i}_{1}(\varphi)\right.}$.

Hoffmann's original conjecture for characteristic $\neq 2$ was proved by Karpenko in [17. Karpenko's proof makes use of Steenrod squares on mod 2 Chow groups. With our construction of Steenrod squares on the mod 2 Chow groups over a base field of characteristic 2 , we can now prove Hoffmann's conjecture for nonsingular anisotropic quadratic forms over a field of characteristic 2 .

Proposition 11.0.4. Let φ be a nonsingular anisotropic quadratic form over k such that $\operatorname{dim} \varphi \geq 2$. Then $\mathfrak{i}_{1}(\varphi) \leq 2^{v_{2}\left(\operatorname{dim} \varphi-\mathfrak{i}_{1}(\varphi)\right.}$.

Proof. The proof of [5, Proposition 79.4] works in this case. We only need to use the Cartan formula 6, the action of the Steenrod squares on the mod 2 Chow ring of a split quadric given by Proposition 11.0.2, Corollary 3.0.4 on base change, and other facts that can be found in [5] that are true for nonsingular anisotropic quadratic forms over a field of characteristic 2 .

Proposition 11.0 .4 provides further evidence for the validity of Hoffmann's conjecture in characteristic 2. Scully has proved that Hoffmann's conjecture is valid for totally singular quadratic forms over a field of characteristic 2 [25].

The conclusions of [5] Corollary 81.19] which describes an inequality on higher Witt indices and [5, Corollary 82.2] on "holes in $I^{n "}$ should also now hold for nonsingular anisotropic quadratic forms in characteristic 2 . The proofs of these results given in 5 could be imitated for nonsingular anisotropic quadratic forms in characteristic 2 using the properties we have established for the Steenrod squares $\mathrm{Sq}_{k}^{2 n}$.

Bibliography

[1] C. Chevalley. Sur les décompositions cellulaires des espaces G / B. Proc. Sympos. Pure Math., 56, Part 1, Alegbraic groups and their generalizations: classical methods (University Park, PA, 1991), 1-23, Amer. Math. Soc. (1994).
[2] D.-C. Cisinski and F. Déglise. Triangulated categories of mixed motives (2012), Preprint, https://arxiv.org/abs/0912.2110.
[3] B. Conrad. Reductive group schemes, from Autour des schémas en groupes. Vol. I, Panoramas et synthèses, 42-43, Soc. Math. France, Paris (2014) 94-444.
[4] M. Demazure. Invariants symétriques entiers des groupes de Weyl et torsion. Invent. Math. 21 (1973): 287-302.
[5] R. Elman, N. Karpenko, and A. Merkurjev. The algebraic and geometric theory of quadratic forms. Vol. 56 Amer. Math Soc. (2008).
[6] E. Elmanto, M. Hoyois, A. A Khan. V. Sosnilo, and M. Yakerson. Motivic infinite loop spaces (2018), Preprint, https://arxiv.org/abs/1711.05248.
[7] E. M. Friedlander and A. Suslin. The spectral sequence relating algebraic K-theory to motivic cohomology. Annales scientifiques de l'École Normale Supérieure, Série 4, Volume 35 (2002), 773-875.
[8] M. Frankland and M. Spitzweck. Towards the dual motivic Steenrod algebra in positive characteristic (2018), Preprint, https://arxiv.org/pdf/1711.05230.pdf.
[9] W. Fulton. Intersection theory. Springer (1998).
[10] T. Geisser. Motivic cohomology over Dedekind rings. Math. Z. 248 (2004), 773-794.
[11] O. Haution. Integrality of the Chern character in small codimension. Adv. Math. 231 (2012), no. 2, 855-878.
[12] O. Haution. Duality and the topological filtration. Math. Ann. 357 (2013), no. 4, 1425-1454.
[13] O. Haution. On the first Steenrod square for Chow groups. Amer. J. Math. 135 (2013), no. 1, 53-63.
[14] O. Haution. Detection by regular schemes in degree two. Algebr. Geom. 2 (2015), no. 1, 44-61.
[15] O. Haution. Involutions of varieties and Rost's degree formula. J. Reine Angew. Math. 745 (2018), 231-252.
[16] M. Hoyois, S. Kelly, and P. A. Østvær. The motivic Steenrod algebra in positive characteristic. J. Eur. Math. Soc. 19 (2017), no. 12.
[17] N. Karpenko. On the first Witt index of quadratic forms. Invent. Math. 153 (2003), no. 2, 455-462.
[18] B. Köck. Chow motif and higher Chow theory of G/P. Manuscripta mathematica $\mathbf{7 0 . 4}$ (1991), 363-372.
[19] S. Kondo and S. Yasuda. Product structures in motivic cohomology and higher Chow groups. J. Pure Appl. Algebra 215 (2011), 511-522.
[20] M. Levine. Techniques of localization in the theory of algebraic cycles. J. Algebraic Geom. 10 (2001), 299-363.
[21] A. Merkurjev. Steenrod operations and degree formulas. J. Reine Angew. Math. 565 (2003), 12-26.
[22] F. Morel and V. Voevodsky. A^{1}-homotopy theory of schemes. Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45-143.
[23] I. Panin. Riemann-Roch theorems for oriented cohomology. Axiomatic, enriched and motivic homotopy theory (J.P.C. Greenlees, ed.) NATO Sci. Ser. II Math. Phys. Chem. 131 (2004), 261-334, Kluwer Acad. Publ., Dordrecht.
[24] J. Riou. Opérations de Steenrod motiviques (2012), Preprint, https://www.math.u-psud. fr/~riou/doc/steenrod.pdf.
[25] S. Scully. Hoffmann's conjecture for totally singular forms of prime degree. Algebra Number Theory Volume 10, no. 5 (2016), 1091-1132.
[26] C. S. Seshadri. Standard monomial theory and the work of Demazure. Algebraic Varieties and Analytic Varieties, Mathematical Society of Japan, Tokyo (1983) 355-384.
[27] M. Spitzweck. A commutative \mathbb{P}^{1}-spectrum representing motivic cohomology over Dedekind domains. Mém. Soc. Math. Fr. (N.S.) No. 157 (2018), 1-110.
[28] V. Voevodsky. A ${ }^{1}$-homotopy theory.Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), Extra Vol. I (1998), 579-604.
[29] V. Voevodsky. Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic. Int. Math. Res. Not. 7 (2002), 351-355.
[30] V. Voevodsky. Reduced power operations in motivic cohomology. Publ. Math. Inst. Hautes Études Sci. 98 (2003), 1-57.

