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Building Fault Detection and Diagnostics: Achieved Savings, and Methods to Evaluate 
Algorithm Performance 

 
Guanjing Lin*, Hannah Kramer*, Jessica Granderson* 

 
* Building Technology and Urban Systems Division, Lawrence Berkeley National Laboratory, 1 
Cyclotron Road, MS 90R3111, Berkeley, CA, US 94720 
 
 
Abstract 
Fault detection and diagnosis (FDD) represents one of the most active areas of research and 
commercial product development in the buildings industry. This paper addresses two questions 
concerning FDD implementation and advancement 1) What are today’s users of FDD saving and 
spending on the technology? 2) What methods and datasets can be used to evaluate and 
benchmark FDD algorithm performance? Relevant to the first question, 26 organizations that use 
FDD across a total 550 buildings and 97M sf achieved median savings of 8%. Twenty-seven FDD 
users reported that the median base cost for FDD software, annual recurring software cost, and 
annual labor cost were $8, $2.7 and $8 per monitoring point, with a median implementation size 
of approximately 1300 points. To address the second question, this paper describes a systematic 
methodology for evaluating the performance of FDD algorithms, curates an initial test dataset of 
air handling unit (AHU) system faults, and completes a trial to demonstrate the evaluation process 
on three sample FDD algorithms. The work provided a first step toward a standard evaluation of 
different FDD technologies. It showed the test methodology is indeed scalable and repeatable, 
provided an understanding of the types of insights that can be gained from algorithm performance 
testing, and highlighted the priorities for further expanding the test dataset.  
 
Keywords: Fault detection and diagnostics; Energy efficiency; Savings and costs; Performance 
evaluation; Algorithm testing; Data 
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1. Introduction 
Fault detection and diagnosis (FDD) is the process of identifying (detecting) deviations from 
normal or expected operation (faults) and resolving (diagnosing) the type of problem or its 
location. Automated FDD technologies can offer several interrelated benefits including energy 
savings and improved operational efficiency, utility cost savings, persistence in savings over time, 
streamlining operations and maintenance processes, and support for continuous energy 
management practices such as monitoring-based commissioning. The literature suggests that 
5%-30% of commercial building energy is wasted due to problems associated with controls 
(Deshmukh 2018; Fernandez 2017; Granderson 2017a; Katipamula 2005; Roth 2005; Wall 2018).  
 
While FDD has been in use in buildings for decades (Dexter and Pakanen 2001), its use is 
increasing, and today’s market offers dozens of full-featured FDD software product offerings 
(Granderson 2017b, Smart Energy Analytics Campaign 2019a). These offerings integrate with 
building automation systems or can be implemented as retrofit add-ons to existing equipment, 
and continuously analyze operational data streams across many system types and configurations. 
This is in contrast to historically typical variants of FDD that are delivered as original equipment 
manufacturer-embedded equipment features, or those handheld FDD devices that rely upon 
temporary field measurements. With the upsurge in software, data availability, and data analytics 
across the buildings industry, new FDD algorithms are continuously being developed (Kim and 
Katipamula 2018, Lee 2019). A great diversity of techniques have been used for FDD, including 
physical models [Bonvini 2014, Muller 2013], black box [Zhao 2015, Zhao 2017], grey box [Sun 
2014, Zogg 2016] , and rule-based approaches [Bruton 2014, House 2001]. Both the research 
and vendor communities are active in exploring new methods to improve the state of the art.  
 
Although FDD is a powerful approach to ensuring efficient operations and the technology is 
maturing, it is still in the relatively early stage of adoption stock-wide. That is, in the language of 
technology adoption, today’s users represent innovators and early adopters as opposed to early 
or late majority adopters. There is a wide range of questions that prospective users may 
confront as they consider whether or not to invest in implementing an FDD solution in their 
buildings. This paper addresses two specific questions from this broad spectrum of potential 
investigations: 

1) What are today’s users of FDD saving and spending on the technology?  
2) What methods and datasets can be used to evaluate and benchmark FDD technology 

performance? 
 
Relevant to the first question, we note that prospective FDD users must know the costs and 
savings of FDD technology to make a business case for technology investment and procurement 
decision-making. However, this information is only available in the literature in a limited number 
of case studies that document the savings and costs of commercially available FDD technology 
in real buildings. Summer (2012) reported annual energy cost savings of $18,400 and FDD 
installation costs of $94,500 at one building in the United States. Granderson (2017) showed 
18.5% reduction in annual electricity consumption between 2009 and 2015 after Microsoft 
deployed the FDD-based Energy-Smart Buildings Program campus-wide. Wall (2018) indicated 
yearly savings of 8%-20% in electricity and 13%-28% in gas for FDD implementations at three 
buildings in the Austria.  
 
To more comprehensively answer the question of FDD savings and costs, we draw from an 
ongoing public-private research partnership (Smart Energy Analytics Campaign 2019b) that 
engages analytics technology users to characterize and quantify the as-operated costs and 
benefits of technology use. We collected information from 36 organizations across the United 
States. These organizations use FDD in more than 200 million sq ft of commercial floor area and 
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more than 2200 buildings. Each organization was asked to provide FDD technology costs, annual 
energy consumption before and after implementation of the FDD technology, and up to 10 of the 
most frequently implemented measures identified with support from their FDD from a list of 26 
common operational improvements. 
 
The second question is important given that prospective FDD users are notoriously challenged in 
distinguishing among the many FDD technology offerings on the market – particularly when it 
comes to knowing whether a given tool’s underlying algorithm is sound, or any better performing 
than another’s.  In the field of building analytics software, prior work has established methods for 
testing the accuracy of building simulation software (ASHRAE 2014) and the energy information 
software that uses models for automated savings estimation (Granderson and Price, 2014, 
Granderson et al. 2015). Specific to fault diagnostics, while numerous research papers evaluate 
the performance of individual algorithms (Rossi and Braun 1997, Katipamula et al. 1999, Ferrettu 
et al. 2015) it is difficult to draw comparisons or understand the overall state of technology, as 
each study uses different datasets, test conditions, and metrics. A body of work by Yuill and Braun 
has explored these concerns, largely with a focus on handheld FDD devices for use with unitary 
systems (Yuill and Braun 2013, Yuill and Braun 2016, Yuill and Braun 2017). There is a lack of 
standard methodology and datasets for evaluating the accuracy of FDD technologies that 
continuously analyze operational data streams from building automation systems and built-up as 
well as unitary HVAC systems. In response, we describe a previously developed methodology for 
evaluating the performance of FDD algorithms (Frank et al. 2018, 2019a; Yuill and Braun 2013), 
and a newly curated initial test dataset of AHU system faults, with known ground-truth conditions. 
We’ve applied the evaluation methodology on three sample FDD algorithms, including two 
commercial tools, and an instantiation of National Institute of Standards and Technology’s 
(NIST’s) air-handling unit performance assessment (APAR) rules (House et al. 2001) against the 
dataset to understand the types of performance insights that can be gained, priorities for further 
expanding the test dataset for maximum utility in evaluating FDD algorithm performance, and 
whether the test methodology is scalable and repeatable.  
 
In summary, this paper provides two primary contributions to existing work and help organizations 
adopt the FDD technology. 1) It quantifies the achieved savings and costs of FDD use over a 
large cohort of users, using a consistent study design. This moves beyond one-off case studies 
to provide a more complete picture of the FDD value proposition, based on data from field 
implementations. While this type of analysis has been conducted for meter-analytics and 
visualization technologies (Granderson 2016), it has not been done for fault detection and 
diagnostics technologies. 2) It provides a first step toward a standard evaluation of different FDD 
technology and algorithms, including a general methodology, a newly curated initial test dataset 
of AHU system faults, and a trial to demonstrate the process on two commercial FDD tools and a 
research-grade FDD algorithm. In the long term, this public dataset will be expanded. Once a 
comprehensive dataset is curated across a wide diversity of systems and equipment, it will be 
possible to benchmark the state of the art, supporting FDD researchers and developers improve 
algorithms, and potentially to enable standard certification processes.  
In the remainder of this paper we describe the research methodology, followed by the results and 
a discussion of the findings for the two research questions respectively. The final section presents 
conclusions and future work. 
 
2. Methodology 
 
2.1 Assessment of FDD benefits and costs 
To address the first research question concerning FDD costs and savings, we collected data from 
36 geographically diverse US-located organizations using FDD technology. The data included 
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basic building and technology information, year-over-year energy use trends, most frequently 
implemented energy efficiency measures, and technology costs. As opposed to equipment-
embedded ‘on-board’ diagnostics, or other flavors of FDD, these users have implemented FDD 
solutions that comprise software systems that continuously integrate operational data from the 
building automation system (BAS) as well as stand-alone meters and sensors meters. These full-
featured software solutions commonly contain large libraries of automated fault detection logic 
that span multiple systems, subsystems, and components (Granderson et al. 2017b). The study 
cohort comprised offices and buildings from the higher education market sectors, representing 
2200 buildings and over 200 million square feet of floor area. The results of the assessment are 
presented in section 3.1. 
 
Organizations were asked to provide annual energy consumption before and after FDD 
implementation. Energy savings since installation of the FDD were determined in two ways, one 
with interval data (hourly to 15-minute), and the other with monthly bill data, reflecting the diversity 
of savings analysis approaches in this study.  

Method 1. Interval data analysis: Pre-FDD (baseline year) interval data was used to 
develop a model of building energy use. Energy use was projected using the baseline 
model and compared actual energy use during the period after installing the FDD. This 
method utilizes the IPMVP Option C methodology (EVO 2016).  
Method 2. Monthly bill analysis: Pre-FDD (baseline year) energy use based on annualized 
monthly bills was compared to the most recent full year of energy use. Where possible, 
the data was normalized for weather using ENERGY STAR Portfolio manager (ENERGY 
STAR 2019).  

Although occupancy rates can be a key driver of building energy consumption, the participating 
organizations were not able to provide occupancy data across the thousands of buildings that 
were included in the study. The effect of fluctuations in occupancy is not able to be controlled for 
in the study, however, this effect is mitigated by analyzing savings at the portfolio level for each 
participating organization. For all but two cases, respondents provided the researchers annual 
energy consumption, and the researchers calculated savings by comparing the annual energy 
use before and after FDD implementation (method 2 above). In the remaining two cases, the 
respondents provided the researchers a calculation of savings based on method 1 above. Energy 
cost savings are calculated using national average energy prices. 

To further understand how FDD technology enables the savings achieved, organizations were 
asked to indicate up to ten of the most frequently implemented measures that they identified using 
their FDD from a list of 26 common operational improvement opportunities as shown in Table 1.  
Costs to implement and use the FDD technology were gathered from study participants in the 
following categories: 

● Base cost: Cost for FDD software installation and configuration, including FDD vendor and 
service provider costs. It does not include additional costs such as the cost of energy 
metering hardware and communications, adding points to the BAS, or retrofits.  

● Recurring cost: Recurring annual cost for software license or software-as-a-service fees.  
● In-house labor cost: Cost was determined using estimated hours for the team and 

$125/hour as average labor rate. The estimated hours are the approximate time spent by 
in-house staff reviewing FDD outputs, identifying opportunities for improvement, and 
implementing measures.  
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Table 1 Twenty-six common operational improvement measures. 

Category Specific Measure 
Scheduling 
Equipment Loads 

Improve scheduling for HVAC & Refrigeration: shorten operating hours of HVAC & refrigeration 
systems to better reflect actual building occupancy schedule and service needs. 
Improve scheduling for lighting: minimize the lighting runtimes. 

Improve scheduling for plug loads: minimize office equipment runtimes, e.g. installing advanced 
power strips which automatically cut power according to an occupant-defined schedule. 

Economizer/Outside 
Air Loads 

Improve economizer operation/use: repair/optimize the mixed air economizer control in an 
AHU (e.g., fix dampers, replace damper actuators, modify economizer control sequence, etc.). 
Reduce over-ventilation: adjust the minimum outdoor air ventilation setpoint to reduce heating 
and cooling loads. 

Control Problems Reduce simultaneous heating and cooling: eliminate unintended simultaneous heating and 
cooling by repairing the stuck/leaking coil valve, sensor errors, etc. 
Tune control loops to avoid hunting: adjust equipment/actuator controls to reduce cycling 
(turning on and off). 
Optimize equipment staging: add or optimize the equipment staging control (i.e., turning the 
equipment on to meet the load while maintaining optimum part-load performance) 
Zone rebalancing: ensure proper airflow to be delivered to each zone. 

Controls: Setpoint 
Changes 

Adjustment of heating/cooling and occupied/unoccupied space temperature setpoints: add or 
optimize controls of the zone terminal units to allow spaces temperatures to drift more during 
occupied/unoccupied hours. 
Reduction of VAV box minimum setpoint: reduce the VAV box minimum setpoint to reduce the 
heating and cooling load.  
Duct static pressure setpoint change: reduce the duct static pressure setpoint to reduce fan 
energy consumption. 
Hydronic differential pressure setpoint change: reduce the hydronic differential pressure 
setpoint to reduce pump energy consumption. 
Preheat temperature setpoint change: reduce AHU preheating settings. 

Controls: Reset 
Schedule Addition 
or Modification 

Supply air temperature reset: add or optimize control of the supply air temperature based on 
either outside air temperature or space loads. 
Duct static pressure reset: add or optimize control of the duct static pressure based on either 
outside air temperature or space loads. 
Chilled water supply temperature reset: add or optimize control of the chilled water supply 
temperature based on either outside air temperature or cooling load. 
Hot water supply temperature reset or hot water plant lockout: add or optimize control of the 
hot water supply temperature based on either outside air temperature or heating load. 
Condenser water supply temperature reset: add or optimize control of the condenser water 
supply temperature based on either outside air wet-bulb temperature or chiller load. 

Equipment 
Efficiency 
Improvements  

Add or optimize variable frequency drives (VFDs): add a VFD to the fan or pump. 

Pump discharge throttled or over-pumping and low delta T: fix pump issues to allow it provide 
the proper water flow.  

Occupant Behavior 
Modification 

Routinely share energy information or guidance on proper use of equipment with occupants 
through FDD technology 
Hold an energy savings challenge using FDD data 

Retrofits Lighting upgrade or improve lighting controls: replace lighting fixtures with more efficient 
fixtures, add lighting control system. 
High efficiency HVAC equipment: airside: replace airside HVAC equipment with more efficient 
equipment. 
High efficiency HVAC equipment: waterside: replace waterside HVAC equipment with more 
efficient equipment. 

 
2.2 FDD algorithm evaluation methodology and dataset 
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To address the second research question concerning methods and datasets to evaluate and 
benchmark FDD, we developed a general FDD algorithm performance evaluation methodology, 
curated an initial test dataset of AHU system faults, and completed a trial to demonstrate the 
evaluation process on two commercial FDD tools and a research-grade FDD algorithm.  
 
The general FDD algorithm performance evaluation methodology is illustrated in six steps in 
Figure 1, with the procedure documented in Yuill and Braun (2013) as a starting point. 
Components 1, 2, 4, and 5 are original to the evaluation procedure presented by Yuill and Braun 
(2013), while components 3 and 6 have been added for clarity in implementation and execution. 
 

1. Determine a set of input scenarios, which define the driving conditions, fault types, and 
fault intensities (fault severity with respect to measurable quantities). 

2. Create a set of input samples drawn from the input scenarios, each of which is a test data 
set for which the performance evaluation will produce a single outcome. 

3. Assign ground truth information to each input sample, e.g. faulted or unfaulted, and if 
faulted, which fault cause is present. 

4. Execute the FDD algorithm that is being evaluated for each input sample. The FDD 
algorithm receives input samples and produces fault detection and fault diagnosis outputs 

5. Retrieve FDD algorithm outputs (fault detection and diagnosis results). 
6. Evaluate FDD performance metrics. First, raw outcomes are generated by comparing the 

FDD algorithm output and the ground truth information for each sample. Then, the raw 
outcomes are aggregated to produce performance metrics.  
 

 
Figure 1. Automated FDD performance evaluation procedure, generalized and adapted from (Yuill 

and Braun 2013) 
 

 
Frank et al. 2018 further documents options to define the input samples, ground truth fault 
conventions, and performance metrics. In the work presented in this paper, the evaluation 
methodology was applied with a preliminary dataset using a condition-based ground truth 
convention, and daily input samples. Metrics used for detection performance included false 
positive and false negative rate, true positive and true negative rate, and no detection rate. For 
diagnostic performance we used the correct, misdiagnosis, and no diagnosis rate. These terms 
and metrics are defined in Equations 1-7.  
  
True positive refers to the case in which the ground truth indicates a fault exists and the algorithm 
correctly reports the presence of the fault.  

The true positive rate, 𝑇𝑇𝑇𝑇𝑇𝑇 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
# 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑒𝑒𝑑𝑑 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

  (1) 
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True negative refers to the case in which the ground truth indicates a unfaulted state and the 
algorithm correctly reports a unfaulted state. 

The true negative rate, 𝑇𝑇𝑇𝑇𝑇𝑇 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
# 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

  (2) 

False positive refers to the case in which the ground truth indicates a unfaulted state but the 
algorithm reports the presence of a fault. It is also known as a false alarm or Type I error. 

The false positive rate, 𝐹𝐹𝐹𝐹𝐹𝐹 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
# 𝑜𝑜𝑜𝑜 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

  (3) 

False negative refers to the case in which the ground truth indicates a fault exists but the algorithm 
reports an unfaulted state.  It is also known as missed detection or Type II error. 

The false negative rate, 𝐹𝐹𝐹𝐹𝐹𝐹 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
# 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

 (4) 

No detection refers to the case in which the algorithm cannot be applied (for example, due to 
insufficient data) or the algorithm gives no response because of excessive uncertainty. 

The no detection rate, 𝑁𝑁𝑁𝑁𝑁𝑁 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

 (5) 

Correct diagnosis refers to the case in which the predicted fault type (cause) reported by the 
algorithm matches the true fault type defined in the ground truth. 

The correct diagnosis rate, 𝐶𝐶𝐶𝐶𝐶𝐶 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑝𝑝𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

 (6) 

Misdiagnosis refers to the case in which the predicted fault type does not match the true fault type 
defined in the ground truth. 

The misdiagnosis rate, 𝑀𝑀𝑀𝑀𝑀𝑀 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
# 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

 

No diagnosis refers to a case in which the algorithm does not or cannot provide a predicted fault 
type, for example, because of excessive uncertainty. 

The no diagnosis rate, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = # 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
# 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡𝑡𝑡𝑡 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑚𝑚

 (7) 

 
The newly curated initial test dataset of AHU system faults consists of five groups of dataset 
(Table 2). The ground truth dataset for AHU faults was created using experimental test facilities 
as well as simulation models. The test facilities included Lawrence Berkeley National Laboratory’s 
FLEXLABTM (ETA 2019) and the Energy Resource Station at the Iowa Energy Center (Wen and 
Li 2011). The simulation models comprised a Modelica (LBNL 2018) representation of a multi-
zone AHU-VAV system and HVACSim+ (Wen and Li 2011) representations of a multi-zone AHU-
VAV system. Operational data for 75 24-hr periods of fault-free (28 days) and fault-present (47 
days) conditions were collected (US DOE OpenEI), as summarized in Table 2.  

Faults were imposed one at a time (that is, no test case comprised multiple faults), for a minimum 
of one day at each fault-intensity. The measurement points included in the dataset are 
representative of points commonly monitored in building control systems. Measured at a 1-minute 
frequency these points included: 

 
AHU: Supply Air Temp. (°F) AHU: Supply Air Temp. Setpoint (°F)  

AHU: Outdoor Air Temp. (°F) AHU: Mixed Air Temp. (°F) 



8 

AHU: Return Air Temp. (°F) Occupancy mode (1-occupied, 0-unoccupied)  

AHU: Supply Air Fan Status (1-on, 0-off) AHU: Return Air Fan Status (1-on, 0-off) 

AHU: Supply Air Fan Speed Control Signal 
(0-1) 

AHU: Return Air Fan Speed Control Signal (0-1) 

AHU: Outdoor Air Damper Control Signal (0-
1)  

AHU: Return Air Damper Control Signal (0-1) 

AHU: Cooling Coil Valve Control Signal (0-1) AHU: Heating Coil Valve Control Signal (0-1) 

AHU: Supply Air Duct Static Pressure Set 
Point (psi) 

AHU: Supply Air Duct Static Pressure (psi) 

 
Table 2. Summary of the initial test dataset for AHU faults. The number in each cell indicates the 

number of 24-hour periods for which data was obtained for each fault scenario. 

Input Scenarios 

MZVAV 
AHU-1 
(Sim.) 

MZVAV AHU-2 
(Exp.) MZVAV AHU-2 (Sim.) 

SZCAV 
AHU (Exp.) 

SZVAV 
AHU (Exp.) 

Fault type Fault 
 

Spring Spring Summer Spring Summer Winter Winter Summer 

OA damper  Stuck 

Min. position       1   1   1 
Fully open             1 1 
40% open       1         
45% open         1       
50% open         1   1   

Valve of 
Heating Coil 

Stuck 
Fully closed             1   
Fully open             1 1 
50% open             1 1 

Leakin
g 

Low     1   1   1   
Medium     1   1       
High     1   1   1 1 

Valve of 
Cooling Coil 

Stuck 

Fully closed       1     1   
Fully open       1 1   1 1 
15% open         1       
50% open             1   
65% open         1       

Leakin
g 

Low             1   
High             1 1 

Outdoor air 
temp. sensor Bias 

+4F 6               
-4F 6               

Unfaulted 6 4 3 3 9 1 1 1 

 
To execute a trial of the evaluation methodology FDD algorithm developers were provided a 
description of the HVAC system including its type, a schematic diagram and the associated 
control sequences, and a list of the measurement points included in the dataset. They were not 
provided the ground truth information specifying which faults were present on which days in the 
dataset. 
 
In the trial to demonstrate the evaluation process, two commercial FDD tools and a research-
grade FDD algorithm were selected. The research-grade FDD algorithm is an instantiation of 
National Institute of Standards and Technology’s (NIST’s) air-handling unit performance 
assessment (APAR) rules (House et al. 2001). The two commercial FDD tools are two common 
tools that are used by several of the organizations in the study cohort for FDD savings and costs. 
Following the steps in the evaluation methodology (see Figure 1), the FDD algorithms were 
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executed against the input samples, and the research team directly compared the algorithm 
output to the ground truth information. The algorithm outputs for each input sample were collated 
to calculate the performance metrics.  The results of trial are presented in the section 3.2. 
 
3. Results 
Results for the benefits of FDD use are presented, followed by results from trialing the FDD 
algorithm evaluation test dataset and methodology.  
 
3.1 As-operated FDD benefits and costs 
To understand the benefits and costs of FDD to users of the technology, three primary indicators 
were considered. These include savings achieved since implementation of the technology, 
efficiency measures identified and implemented through use of the technology, and technology 
costs.  
 
Twenty-six organizations reported annual energy consumption before and after implementation 
of the FDD technology. Figure 2 shows the savings results for each participant since the 
installation of the FDD technology. These savings are based on comparing building energy use 
in the baseline year prior to FDD implementation, to that in the most recent year for which data 
were available. These data represent 26 organizations that use FDD across a total 550 buildings 
comprising 97 million sf of FDD install base. Figure 4 also shows the utility cost savings associated 
with these energy savings, across the same set of study participants.  

The results show that energy savings ranged from -1%-31% percent, with a median of 8%. The 
median utility cost savings was $0.27/sf with a range of -0.06-1.3 $/sf. It is important to note that 
these savings are not solely attributable to use of the FDD technology, as the FDD was often one 
component of a multifaceted energy management program, and efficiency measures (e.g. 
retrofits) not related to use of the FDD were likely implemented during the analysis period. The 
FDD technology is however, a critical component of respondents’ energy management process, 
and a means of achieving persistence in savings. Among the 26 organizations, nine organizations 
are in the higher education market sector, eight organizations are in the office market sector, and 
the remain organizations are in the healthcare, retail, hospitality, and laboratory market sectors. 
The median energy savings of the higher education organizations and the office organizations 
are 12% and 8% respectively.  The savings results also show that a larger portfolio size is not 
associated with a greater energy savings percentage. 

  

Figure 2: Participant energy savings (left) and cost savings (right) since installation of the FDD 
technology (n=26)  
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Study participants were asked to indicate up to 10 of the most frequently implemented measures 
that were identified through the use of FDD technology, choosing from a list of 26 common 
operational improvement opportunities. The results are shown in Figure 3, and are consistent with 
measures commonly implemented in the commissioning process (Mills 2011). 

 

 
Figure 3: Measures identified and implemented through use of FDD technology (n=26) 

 
Table 3. Ranges and median values of FDD base costs, annual recurring software costs, and 

annual labor costs 
 

 
Type of Costs 

Costs (N=27) 

[$] [$/pt] [$/building] [$/sf] 

Base Cost Range 8,000 to 5,000,000 1.1 to 263 1,300 - 83,000 0.004-0.48 

Median  110,000 8 12,500 0.05 

Annual Recurring 
Software Cost 

Range 4,000 to 1,600,000  0.3-72 80 – 65,000  0.001-0.16 

Median  33,000  2.7 4,000 0.02 

Annual Labor Cost 
(internal staff or 
contracted) 

Range  9,000 to 5,100,000 0.3 -255 270 – 850,000  0.01-0.85 

Median  60,000- 8 15,000 0.05 

 
Table 3 summarizes the ranges and median of base cost, annual recurring software cost and 
annual labor cost (internal staff or contracted) across 27 organizations using FDD. Four cost 
metrics are provided, including total dollars, dollars per data point monitored, dollars per building, 
and dollars per square feet. Across all cases, the number of points hosted within the FDD ranged 
from 300 to 200,000, and the median was 1,300 points; the number of buildings in FDD install 
base ranged from 1 to 1400, and the median was 6 buildings; the size of FDD install base ranged 
from 0.2 to 52 million square feet, and the median was 2 million square feet.  
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The median base cost for FDD software installation and configuration was $0.05/sq ft $110,000 
total, $8/pt, $12,500/building), and the median annual recurring software cost was $0.02/sq ft 
($33,000 total, $2.7/pt, $4,000/building). The median annual labor cost (internal staff or 
contracted) was $0.05/sq ft($60,000 total, $8/pt, $15,000/building). 
 
3.2 Trial FDD algorithm evaluation methodology and test dataset  
 
3.2.1 Process of implementing evaluation methodology on three algorithms 
To assess the ability to execute the FDD algorithm performance testing methodology, input 
scenarios and daily input samples (steps 1 and 2 in Figure 1) were created from the data 
summarized in Table 2. To complete step 3 of the process, for each input sample, a condition-
based convention was used to define the ground truth (faulted or fault free operational state). 
Detailed in Frank et al. 2018, a condition-based convention defines a fault as the presence of an 
improper or undesired physical condition in a system or piece of equipment, for example, a stuck 
damper, or a leaking valve. This is in contrast to behavior-based (e.g. simultaneous heating and 
cooling) or outcome-based (excessive cooling energy use) fault definitions.   
 
Step 4, running the FDD tools to generate outputs for each input sample, was conducted in two 
ways, given the two algorithm types that were used in the trial. For the commercial FDD offerings, 
vendors were provided the input sample data (not ground truth), and information on the system 
configurations and control sequences. They ran their algorithms against the data, using default 
thresholds for the fault detection logic, and provided the research team login access to review the 
FDD results. For the APAR instantiation, the process was simplified since the FDD rules were 
codified by the authors.   
 
Step 5 in the process entails retrieving the FDD tool outputs for comparison with ground truth. 
This required manually navigating different elements in the FDD software interface to merge the 
fault detection and diagnosis outputs for each day, and to identify the tool-generated diagnoses. 
An example of the outputs from the APAR instantiation and the two commercial FDD offerings, 
for the same ground truth {faulted, leaking heating valve} is shown in Tables 4-6. 
 
The final step of the process entails evaluation of performance metrics by comparing the FDD 
tool outputs to ground truth, and aggregating across all input samples in the dataset. For the 
examples shown in Tables 4-6, the ground truth was {faulted, leaking heating valve}. Since the 
APAR instantiation algorithm and both software offerings identified the presence of a fault, the 
outputs for both were deemed true positive. For each FDD algorithm/tool tested, multiple 
diagnoses were returned. The diagnosis was deemed correct diagnosis if one of the listed 
diagnoses mapped to the ground truth. In the examples in Tables 4-6, there is no diagnosis 
information for APAR instantiation algorithm, while the diagnosis for both offerings was deemed 
correct since leaking heating valve was named among the potential diagnoses. 

 
 

Table 4. Fault detection and diagnosis outputs from APAR instantiation 
 
Dataset Date Detection Output Diagnosis Output 

MZVAV 
AHU-2 
(Sim.) 

8/28/07 Persistent supply air temp 
error exists (Rule 25) 

None 
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Table 5. Fault detection and diagnosis outputs from an FDD offering 1 
  

Dataset Date Detection Output Diagnosis Output 

MZVAV 
AHU-2 
(Sim.) 

8/30/07 Supply air temperature 
higher than setpoint 

Simultaneous heating and cooling 
Undersized coils 
Stuck or broken dampers or valves 
Broken or uncalibrated sensor 
Error in control sequences 

Possible simultaneous or 
excess heating and 
cooling 

Valve is not seating properly and is leaking 
Stuck or broken valve 
Temperature sensor error or sensor installation 
error is causing improper control of the valves or 
other coils 

Supply static pressure not 
tracking setpoint 

Fan speed control error 
Damper malfunction 
Fan malfunction or failure 
Uncalibrated or malfunctioning pressure sensor 

 
Table 6. Fault detection and diagnosis outputs from an FDD offering 2  

 
Dataset Date Detection Output Diagnosis Output 

MZVAV 
AHU-2 
(Sim.) 

8/30/07 Under-economizing and 
cooling 

The AHU is using mechanical cooling and not 
fully utilizing the economizer while outside air 
temperature is less than return air temperature. 
Please review the economizer sequence and that 
the outside air damper is working properly     

Leaking heating valve Leaking heating valve 

Cooling setpoint not met NA 

Duct static pressure 
setpoint not met 

Confirm the supply fan is not overridden and the 
setpoint is reasonable for the facility 

Supply air temperature 
hunting 

NA 

 
3.2.2 FDD Algorithm Evaluation Metrics  
Figure 4 summarizes the results for each of the detection and diagnosis accuracy metrics that are 
computed in the test procedure, when aggregated across each input sample in the trial dataset. 
The dataset includes 47 faulted input samples and 28 un-faulted input samples. The evaluation 
metrics were calculated following the equations (1) – (7) in the Methodology section. For the 
current data set, across the three algorithms tested, over half of the faulted samples were correctly 
detected, with the true positive rate ranging from 70% to 94%. The false positive rates ranged 
from 36% to 86%, while 26% or less of the faulted samples were missed (false negatives). The 
true negative rate ranged from 11% to 57%. Only the APAR instantiation was unable to provide 
a detection result, with a no detection rate of 4%. The algorithm that has the highest true positive 
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rate is also the one with the highest false positive rate. This is not a surprise since higher 
sensitivity to detect faults can also result in incorrect results when faults are not actually present.  

 

  
 

Figure 4. Summary of results from exercising the test procedure and initial dataset against three FDD 
algorithms (N is the number of observations from which these percentages were calculated).  

In addition to detection accuracy, Figure 4 summarizes metrics for fault diagnosis, following 
correct detection. The correct diagnosis rates ranged from 51% to 66%, the misdiagnosis rate 
ranged from 13% to 21%, and the no diagnosis rate ranged from 0% to 6%.  

Across the algorithms tested, there were no significant differences in performance for smaller 
versus larger fault intensities. With this initial limited dataset, there were also no consistent trends 
as to which fault types were most likely to be correctly detected and correctly diagnosed. Having 
confirmed the ability to reliably create valid test data, and execute the performance testing across 
diverse algorithms, the dataset will be expanded in future work. This expansion will focus on 
generating a wider range of fault types and intensities under more diverse operational conditions. 
The expanded data set is expected to facilitate more definitive conclusions to compare algorithms 
to one another, and derive insights regarding which fault types and intensities are most 
challenging to detect and diagnose.  

In general, the results indicate that the commercial FDD products performed better than the 
instantiation of the NIST rule set, suggesting that vendors have improved the state of the art since 
the NIST rules were published in the early 2000s. Nonetheless, it is important to emphasize that 
this work is meant to illustrate methods that could in the future be used to evaluate and benchmark 
FDD algorithm performance. To draw conclusions about the general performance of FDD 
technology, or relative performance of one offering versus another, it will be necessary to further 
expand the current dataset.  
 
4. Discussion 
In the first portion of this work, the analysis of a large install base of FDD technology spanning 
200 million sf and 36 organizations showed that users are deriving significant benefits, and are 
doing so cost effectively. Since installation of the FDD technology, users have achieved median 
whole-building savings of 8%. This is general agreement with prior literature that indicates 
potential savings from FDD of 5-30%. These savings are not solely attributable to use of the FDD 
technology, which may be just one component of a multi-faceted energy management program. 
However, the FDD technology inarguably plays a key role in identifying operational savings 
opportunities, and maintaining persistence in those savings over time. The most common 
measures identified through use of the FDD technology include scheduling, reducing 
simultaneous heating and cooling, and various controls-related issues related to setpoints, resets, 
and other problems. These measures represent strong overlap with those commonly found in 
existing building commissioning, which has been documented to produce median whole building 
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savings of 16% (Mills 2011). In this study, data were collected from the portfolio-level energy 
managers. In the future, it will be beneficial to survey building-level operators asking about their 
satisfaction and use of FDD tools as well as the organizational operations and maintenance 
processes that they implement to respond to the FDD analysis results. 
 
FDD technology pricing models vary, and the costs can be represented in dollars, or normalized 
by number of buildings or square feet served, or by the number of data points that are continuously 
accessed, stored, and analyzed in the system. For the purpose of this study, costs were broken 
into three categories including base cost (median $12.5K per building), annual recurring software 
cost (median $4K per building), and annual recurring labor cost (median $15K per building). For 
21 out of 26 participants, the annual energy cost savings ($/st, Figure 2) exceed median annual 
recurring costs (software + internal labor) $0.07/sf. The magnitude of these costs can be 
considered in the context of utility expenditures. The median FDD install base in this study was 
2M square feet, and the Energy Information Administration (US EIA 2019) reports that buildings 
of this size spend an average of nearly $2M annually on energy. When considering the price of 
FDD software it is important to take into account the full picture of base and recurring costs. For 
example, with the study cohort, there are instances where the base costs are low but the recurring 
costs are much higher than average. There are also instances where the base cost is high but 
there is little to no recurring cost, as the software is hosted and managed in-house. 
      
The second portion of this study demonstrated a trial to implement for AHU systems, an FDD 
algorithm performance test using two commercial FDD tools and a research-grade FDD algorithm. 
The results show that the methodology can indeed be executed in a consistent manner across 
diverse FDD offerings. However, the process is quite manual, and for scalability and repeatability, 
additional infrastructure to support automation of key steps in the process would be useful. For 
example, Yuill 2019 offers a platform from which developers can access test data, submit their 
algorithm’s detection and diagnosis outputs, and retrieve a platform-computed set of performance 
metrics. Much of the manual nature of the process is due to the fact that FDD results are 
presented differently in different tools, as was illustrated in Section 3.2 Tables 4-6. An important 
aspect of the testing is therefore to transparently document and define how the FDD tool outputs 
are matched to the ground truth representation in the test dataset. 
 
The results of the trial evaluation surfaced the fact that FDD routines often return several potential 
diagnoses. Therefore, it is necessary to define what will qualify as a correct diagnosis. In this trial, 
a liberal interpretation was used, such that one correct diagnosis amongst a set of possible 
diagnoses was deemed correct. Alternate approaches could apply a weighting factor that 
accounts for the number of potential diagnoses that are provided. Basic performance metrics (e.g. 
true positive rate, true negative rate, correct diagnosis rate) were used in this the trial evaluation. 
There is an opportunity to further consider presentation of evaluation results by fault type when 
the dataset is expanded to cover more fault intensities and operational conditions. 
 
It is clear that for maximum usefulness the dataset must be expanded. Considering AHU systems, 
the current dataset is relatively limited in terms of fault intensities and seasonal diversity. Including 
a wider range of fault types and intensities under a more diverse operational conditions will be 
needed to more conclusively and thoroughly assess the performance of FDD algorithms. Although 
low fault intensities can be helpful in teasing out differences in performance between one 
algorithm and another, it is higher fault intensities that are likely to result in significant fault impacts 
that would be important to users of FDD technology. Accordingly, the fault impact ratio (Yuill and 
Braun 2013, 2016) is a complementary metric that could be added to the dataset and presentation 
of results. Additionally, since today’s FDD technologies cover many equipment types and 
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configurations (Granderson et al. 2017b) and often feature libraries of hundreds of diagnostic 
routines, extending the dataset to cover additional system types would be beneficial.  
 
5. Conclusions and Future Work 
Leveraging data from a large study cohort, this paper documented the costs of modern FDD 
technology, and the technology’s role in enabling persistent energy savings over time. It also 
presented a trial demonstration of how FDD algorithms might be performance tested and 
benchmarked. Several opportunities for future work are suggested by the findings. First, the study 
cohort will be expanded, and additional data will be collected to increase the sample size from 
which as-operated technology benefits can be quantified. This will provide the research and 
development community as well as industry, the largest available compendium of cost-benefit 
data for real-world FDD installations, compiled using a consistent and transparently documented 
experimental design.  
 
The state of today’s FDD technology can be advanced through research focused on enhanced 
diagnostic (as opposed to detection) approaches, and methods for fault prioritization. 
Complementary work to characterize fault prevalence based on empirical data from the field could 
also prove valuable in guiding future FDD technology development and implementation efforts. 
 
With respect to FDD algorithm evaluation and performance benchmarking, future work will focus 
on expansion of the test dataset, and provision of the dataset for public use by FDD research and 
development community. Although an ambitious undertaking, this would be most useful if 
informed by findings from a field study on fault prevalence to specify distributions of the data 
represented in the dataset. Standardization of the fault categories (names and how they are 
defined), as well as the diagnostic messages would streamline the processes of evaluating 
different tools or algorithms, however would require buy-in and agreement from a broad 
ecosystem of developers and product providers. Finally, the standards community and FDD 
vendor community will be engaged to determine the potential for longer-term formalization of 
these approaches into standard methods of test, guidelines, standards, or technology 
certifications.   
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