Title
Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications [Journal of Power Sources 449 (2020) 227598]

Permalink
https://escholarship.org/uc/item/5cb1p8z3

Authors
Dogdibegovic, Emir
Fukuyama, Yosuke
Tucker, Michael C

Publication Date
2021-04-01

DOI
10.1016/j.jpowsour.2021.229644

Peer reviewed
Corrigendum

Corrigendum to Ethanol internal reforming in solid oxide fuel cells: A path toward high performance metal-supported cells for vehicular applications
Journal of Power Sources 449 (2020) 227598

Emir Dogdibegovic a, Yosuke Fukuyama b, Michael C. Tucker a

a Lawrence Berkeley National Laboratory, Energy Storage and Distributed Resources Division, 1 Cyclotron Rd, MS 62-203, Berkeley, CA, 94720, United States
b Nissan Motors Company, Ltd, Nissan Research Center, EV System Laboratory, 1 Natsushima-cho, Yokosuka-shi, Kanagawa, 237-8523, Japan

The authors regret that a technical mistake has been discovered, which impacts the current density and power density reported in this article. Briefly, the mistake was caused by catalyst solution leaking out of the intended 1 cm\(^2\) catalyzed area and depositing catalyst over the whole cell. As a result, the calculated current and power densities (total divided by the catalyzed area) were higher than reality because the measured current and power were dividing by the intended 1 cm\(^2\) instead of the actual area including the leakage, which was approximately 5 cm\(^2\). This issue is presented, analysed, and discussed in further detail in the supporting information of Reference 1.

The authors would like to apologise for any inconvenience caused.
