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S U M M A R Y
Convection in Earth’s core is a viable mechanism for generating MAC waves when the top of
the core is stably stratified. We quantify the generation mechanism by extending the physical
description of MAC waves to include a source term due to buoyancy forces in the convecting
part of the core. Solutions for the forced motion are obtained using a Green’s function, which
is constructed from the eigenfunctions for the unforced motion. When the source term is
evaluated using the output of a numerical geodynamo model, the largest excitation occurs
at even spherical harmonic degrees, corresponding to waves with symmetric azimuthal flow
about the equator. We also find that the magnitude of the source term decreases at periods
shorter than about 60 yr. As a result most of the wave generation is confined to waves with
periods of 60 yr or longer. Quantitative predictions for the wave amplitudes depend on the
projection of the source term into the eigenfunction of the waves. Strong stratification limits
the penetration of density anomalies into the stratified layer, which means that the source term
is confined to the lowermost part of the layer. Overtones of MAC waves with large amplitudes
in the lower part of the stratified layer are more effectively generated by convection, even
though these waves are heavily damped by magnetic diffusion. Generation of MAC waves by
convection establishes a physical link between observable wave motion and deeper convective
processes. Detection of changes in the amplitude and phase of MAC waves would constrain
the generation processes and offer insights into the nature of the convection.

Key words: Composition and structure of the core; Geomagnetic induction; Rapid time
variations.

1 I N T RO D U C T I O N

Stable stratification in Earth’s core permits long-period waves with a
primary force balance between magnetic, Archimedes and Coriolis
forces (sometimes called a MAC balance). Inertia has little influence
on the wave motion, so the time dependence is due to changes in the
local magnetic field and disturbances in the density stratification.
Buoyancy and Lorentz forces are the main restoring forces for the
waves, and representative estimates yield periods of several decades
(Braginsky 1993). Evidence for zonal waves in the core has been
reported on the basis of two models for core-surface flow (Jackson
1997; Wardinski & Lesur 2012). Predictions for fluctuations in the
dipole field (Buffett 2014) were found to be in good agreement with
observations (Jackson et al. 2000; Gillet et al. 2013). Subsequent
investigations using a third model for core-surface flow (Gillet et al.
2015) produced consistent results for the strength and thickness of
fluid stratification (Buffett et al. 2016).

Damping of MAC waves by ohmic dissipation requires continual
excitation to sustain the waves over time. Convection in the interior
of the core is a likely source of excitation. Buoyant fluid rises toward
the stratified layer at the top of the core, disturbing the density strati-

fication and initiating wave motion. Turbulent convection in the Sun
has a similar role in generating internal waves in the stably stratified
radiative zone (Press 1981; Lecoanet & Quataert 2012). However,
there are important distinctions due to the style of convection. Con-
vection in the Sun produces strong inertial effects, which contribute
significantly to the generation of internal waves (e.g. Press 1981).
By comparison, inertial forces in the core are thought to be many
orders of magnitude smaller than the leading-order forces. For ex-
ample, a nominal estimate for the ratio of inertia to Coriolis forces
in the core is roughly 10−6 (Aurnou et al. 2015). Thus, buoyancy
forces due to temperature or compositional anomalies should be
important for generating MAC waves. Reynolds stresses are some-
times invoked to explain the generation of torsional waves (Teed
et al. 2014), although magnetic stresses should have a larger role
at Earth-like conditions (Teed et al. 2015). Buoyancy forces are not
effective in generating torsional waves because the wave motion is
perpendicular to the direction of gravity (Braginsky 1984).

A description of wave generation by turbulent motion was ini-
tially formulated in the context of acoustic waves (Lighthill 1952).
This general approach was later extended to include internal waves
(Stein 1967; Phillips 1966). Subsequent studies have applied this
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approach to a wide range of problems (Goldreich & Kumar 1990;
Houdek et al. 1999; Pandya & Alexander 1999; Lecoanet et al.
2015). We extend these applications by investigating the problem
of MAC wave generation due to convection in the core. We de-
velop a description of the MAC waves that includes various source
terms, including contributions from buoyancy, inertial and magnetic
forces. Solutions for the forced motion are sought using a Green’s
function, which can be constructed from the eigenfunctions of the
wave problem.

Estimates for the source terms are evaluated using a numerical
dynamo model. We focus on a numerical model that includes a ther-
mally stratified region at the top boundary to capture the influences
of a thin non-convecting region on the generation process. Insights
are drawn from the temporal and spatial dependence of the source
term, particularly concerning the symmetry of the wave generation.
We also gain insights into the prominence of overtones that were
reported in Buffett et al. (2016). Even though the higher overtones
are more heavily damped, their presence in the observations can
be explained by the nature of the excitation. Finally, we speculate
about the possibility of using observations of the waves to draw
conclusions about convection deep inside the core.

2 D E S C R I P T I O N O F M A C WAV E S

We consider the evolution of small perturbations in density, ρ ′,
velocity, v, and magnetic field, b, in a thin layer at the top of the
core. These perturbations are superimposed on background fields,
ρ̄, V and B, which are taken to be steady over the period of the
waves. The shallow depth of the layer compared with its horizontal
extent permits several standard approximations. We can assume that
the radial gradient in the perturbations is large compared with the
horizontal gradients or with the gradients in the background fields.
We can also retain only the radial component of the rotation vector
in the Coriolis force (e.g. Pedlosky 1987). Following Braginsky
(1993) we adopt a Boussinesq approximation and assume inviscid
flow. With these approximations the linearized equations for v and
b are

∂t v + V · ∇v + 2� × v = − 1

ρ̄
∇ P + 1

ρ̄μ
Br∂r b + cg (1)

∂t b = Br∂r v + η∇2b (2)

∇ · v = ∇ · b = 0 (3)

where � includes only the radial part of rotation vector, μ is the
magnetic permeability, c = ρ ′/ρ̄ is the relative density perturbation,
g = −gr̂ is the acceleration due to gravity, and η = (μσ )−1 is the
magnetic diffusivity. Here σ is the electrical conductivity of the
core.

Perturbations in density (and hence changes in c) can arise in
two ways. They can occur by radial motion through the stable den-
sity gradient (nominally ∂ρ̄/∂r ). Alternatively, they can occur when
density perturbations are swept into the stratified layer by the un-
derlying convection. In an incompressible fluid

Dρ ′

Dt
= ∂ρ ′

∂t
+ V · ∇ρ ′ + v · ∇ρ̄ = 0 (4)

so the buoyancy force in (1) evolves according to

g
∂c

∂t
= N 2v · r̂ − gV · ∇c (5)

where

N 2 = − g

ρ̄

∂ρ̄

∂r
(6)

is the squared buoyancy frequency. The first term on the right-hand
side of (5) represent the change in buoyancy force due to stable strat-
ification. The second term represents the effect of density anomalies
due to convection in the core. The latter is treated as a source term for
the waves. Omitting the source term defines the unforced motion,
which specifies the frequency and spatial structure of the waves.
The forced motion is evaluated using a Green’s function.

3 S O LU T I O N F O R Z O NA L M A C WAV E S

Braginsky (1993) obtained analytical solutions for zonal waves
when the effects of local inertia were omitted from the momentum
equation in (1). This approximation is reasonable because the wave
period is much longer than the rotation period. He also restricted
B to a dipole field to obtain solutions by separation of variables in
spherical coordinates (r, θ , φ). We adopt the same approximation
here, even though the spatial structure of the waves is altered by
the presence of radial magnetic field in the equatorial region. Any
change in the waves is liable to affect their excitation, but the gen-
eral methodology outlined here does not dependent on these details.
We simply use the analytical solutions of Braginsky (1993) as an
illustrative example.

The governing equations in Section 2 can be reduced to a single,
scalar wave equation for the azimuthal component of the magnetic
field perturbation (i.e. bφ). The steps leading to the scalar wave
equation are described in Braginsky (1993), so we include only a
few details in Appendix A. The resulting wave equation can be
written in the form

∂2
t bφ(r, θ, t) − η∂2

r ∂t bφ(r, θ, t) −
(

Va N

2�R

)2

L2
θ bφ(r, θ, t) = S

(7)

where the source term due to buoyancy fluctuations is

S = gBd

2�R
∂θ (V · ∇c) (8)

and the operator L2
θ is defined by

L2
θ (·) ≡ ∂θ

(
1

sin θ
∂θ {sin θ (·)}

)
. (9)

We use Bd to define the amplitude of the dipole (Br = Bdcos θ ) and
introduce

Va = Bd√
ρμ

(10)

to characterize the magnetic part of the restoring force. (Va repre-
sents an Alfven velocity for the radial magnetic field). Similarly, we
use � to denote the amplitude of the rotation vector (�r = � cos θ )
and let R be the radius of the core–mantle boundary (CMB). It is
clear from (7) that the waves depend on the radial magnetic field
(through Va) and the density stratification (through N). Damping of
the waves occurs by magnetic diffusion, which is represented by the
second term on the left-hand side of (7).

The wave problem is defined by setting S = 0. Introducing the
Fourier transform, defined by

b̃φ(r, θ, ω) =
∫ ∞

−∞
bφ(r, θ, t)eiωt dt , (11)
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we convert the wave equation in (7) to the frequency domain

−ω2b̃φ(r, θ, ω) + iωη∂2
r b̃φ(r, θ, ω)

−
(

Va N

2�R

)2

L2
θ b̃φ(r, θ, ω) = 0 (12)

where ω is the frequency of the wave motion. Because the variables
r and θ are separable, solutions can be found in the form

b̃φ(r, θ, ω) = b̃l (r, ω)P1
l (cos θ ) (13)

where P1
l (cos θ ) is the associated Legendre function with m = 1.

Noting that

L2
θ P1

l (cos θ ) = −l(l + 1)P1
l (cos θ ) (14)

the wave equation reduces to

− ω2b̃l (r, ω) + iωη ∂2
r b̃l (r, ω) + ω2

l b̃l (r, ω) = 0 (15)

where

ωl =
√

l(l + 1)

(
Va N

2�R

)
(16)

defines the restoring force for waves with degree l.
Solutions to the wave equation in (15) are subject to boundary

conditions at the top and bottom of the stratified layer. At the CMB
(r = R) we impose insulating conditions on the toroidal component
of the magnetic field (Braginsky 1993)

b̃l (R, ω) = 0 . (17)

We also impose continuity conditions on bl(r, ω) and ∂ rbl(r, ω) at
the base of the stratified layer (r = R − H), where H is the layer
thickness. The solution inside the layer is matched to a solution
below the stratified layer, where ωl = 0. Setting ωl = 0 in (15)
defines a diffusion equation, which corresponds to a standard skin-
depth problem (Gubbins & Roberts 1987). This solution allows the
magnetic field at the base of the stratified layer to decay to zero in
the interior of the core over a distance

δ =
√

2η

ω
. (18)

For representative frequencies, the skin depth is small compared to
H, so the solution for b̃l (r, ω) is mainly confined to the stratified
layer and its immediate vicinity. Braginsky (1993) found solutions
for b̃l (r, ω) in terms of a stretched coordinate x = (R − r)/H. His
solutions were expressed in the form

b̃l (x, ω) = b̃l (ω) sin(αx) (19)

where α is a constant. When δ/H is vanishingly small α ≈ π and ω

≈ ωl. Leading-order corrections for finite values of δ/H are

α ≈ π

(
1 − δ

2H
(1 + i)

)
(20)

and

ω ≈ ωl

(
1 − i

π 2δ2

4H 2

)
. (21)

We can also find solutions with larger radial wavenumbers, α ≈
nπ , for n = 2, 3, . . . , although these overtones are more heavily
damped. We now use these solutions to estimate the forced response
due to convection in the interior of the core.

4 G E N E R AT I O N O F WAV E S B Y
B U OYA N C Y F O RC E S

The source term for wave motion in (8) defines the rate of change
of fluid density in the vicinity of the stratified layer. We confine our
attention to zonal waves, so we represent the density fluctuations in
the form

V · ∇c =
∞∑

l=1

sl (r, t)P0
l (cos θ ) . (22)

where sl is the amplitude of zonal density fluctuations at degree l.
Substituting (22) into (8) yields

S(r, θ, t) = − gBd

2�R

∞∑
l=1

sl (r, t)P1
l (cos θ ) (23)

where we have used the relation ∂θ P0
l (cos θ ) = −P1

l (cos θ ). We now
exploit the orthogonality of the Legendre functions to decompose
the forced problem into a set of independent equations for each
degree l. Introducing S(r, θ , t) into the Fourier transform of the
general wave equation in (7) and using the solution for bφ(r, θ , ω)
from (13) gives

−ω2b̃l (r, ω) + iωη∂2
r b̃l (r, ω) + ω2

l b̃l (r, ω)

= −
(

gBd

2�R

)
s̃l (r, ω) (24)

for the forced response at each l.
We proceed by constructing a Green’s function for the response to

an impulsive forcing. When the density fluctuation is represented by
a delta function in time (i.e. sl(r, t) = sl(r)δ(t)), the Fourier transform
is simply s̃l (r, ω) = sl (r ). Immediately after the application of an
impulsive force the motion can be expressed as a linear combination
of MAC waves. In other words, the solution at each degree l can be
represented by

bl (r, t) =
∑

k

ck b(k)
l (r ) e−iωk t for t > 0 (25)

where ωk are the wave frequencies, b(k)
l (r ) are the corresponding

eigenfunctions and ck are constants that depend on the excitation
sl(r). Because we are dealing with the response at a particular degree
l, the summation over eigenfunctions in (25) includes the funda-
mental mode (k = 1) and the various overtones (k = 2, 3, . . . ). The
constants ck are determined such that the description of the forced
response in (24) is satisfied.

The steps needed to evaluate ck are well established and com-
monly applied in normal-mode seismology (Dahlen & Tromp 1998).
First, we require an orthogonality condition for the eigenfunctions
b(k)

l (r ) (or equivalently b(k)
l (x) in terms of the stretched coordinate

x). Next, we take the Fourier transform of (25) to obtain b̃l (r, ω)
and substitute the result into the forced response in (24). Finally,
we apply the orthogonality condition to (24) to isolate a single ck in
terms of sl(r). (Details are deferred to the Appendix B). When the
excitation is defined in terms of x by sl(x, t) = sl(x)δ(t), the constants
for the subsequent free motion are given by

ck = −i

(
gBd

2�R

) ∫ 1+

0
b(k)

l (x)sl (x) dx (26)

where the integral extends from the CMB (x = 0) to a depth slightly
below the base of the stratified layer (at x = 1). We use the notation
x = 1+ to signify that the integral continues a short distance into the
interior of the core. Because the eigenfunctions b(k)

l (x) vanish below
the skin depth, we can terminate the integral just inside the interior
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of the core. This result also implies that the generation of MAC
waves depends on the source function sl(x) within or immediately
below the stratified layer.

5 G E N E R AT I O N O F WAV E S B Y O T H E R
F O RC E S

Buoyancy forces represent an important source of excitation, but
other forces associated with convection may also contribute. Inertial
forces are thought to be a primary mechanism for generating internal
waves in the Sun (Goldreich & Kumar 1990), whereas magnetic
forces are liable to be more important in Earth’s core. Buoyancy
forces have a direct role in the wave generation because these forces
induce radial motion inside the stratified layer. As buoyant parcels
rise through the convecting part of the core the force balance is
expected to involve a combination of buoyancy, Coriolis, pressure
and magnetic forces (Jones 2011). This force balance is altered
once the parcels reach the base of the stratified layer. The effects
of stratification oppose the parcel buoyancy, so the associated wave
motion becomes part of the force balance. This is the origin of the
generation mechanism due to buoyancy.

Inertial and magnetic forces are less direct because the radial
components of these forces do not substantial alter the leading-order
hydrostatic balance (see eq. A1). Similarly, the θ̂ component of the
momentum equation describes a leading-order geostrophic balance
between vφ and the meridional pressure gradient (see eq. A2). The
largest components of the inertial and magnetic forces occur in φ̂

direction and this is also the component of the momentum equation
that is most easily disturbed by additional forces. Adding these
forces to the φ̂ component of the momentum equation in (A3) alters
vθ , which induces radial motion through the continuity condition in
(3).

We begin with the inertial force and denote the φ̂ component by

fφ = −(V · ∇V) · φ̂ . (27)

Adding fφ to the right-hand side of (A3) and repeating the derivation
of the wave equation for bφ from Appendix A yields the (Reynolds)
source term

SR = Bd N

4�2 R2
L2

θ

(
Fφ

cos θ

)
(28)

where

Fφ(r, θ ) =
∫ r

R
fφ(r ′, θ ) dr ′ . (29)

The source term in (28) is singular at the equator (i.e. cos θ = 0)
when Fφ is represented by an odd spherical harmonic degree l.
This is simply a consequence of the vanishing Coriolis force at the
equator, which alters the nature of the force balance and means
that we cannot evaluate vθ on the equator from (A3). A modified
description of the dynamics and the source term is required at the
equator, but most of the core surface is well represented by (28).
For the purpose of making an order-of-magnitude estimate in the
next section, we approximate the Reynolds source term by

SR ≈ Bd N

4�2 R2
l(l + 1)Fφ (30)

where l is nominally the degree of the wave. Strictly speaking l is
set by Fφ/cos θ , which can be represented as a sum of P1

l (cos θ )
terms with the highest degree being one less than the degree of Fφ

(i.e. the l = 3 part of Fφ generates l = 2 waves). The source term

due to magnetic forces is calculated in a similar way. Redefining the
φ̂ component of the force as

fφ = − 1

ρμ
(B · ∇B) · φ̂ (31)

gives the approximate the (Maxwell) source term

SM ≈ Bd N

4�2 R2
l(l + 1)Fφ . (32)

The strength of the stratification in (30) and (32) is evaluated in the
geodynamo model using the time-averaged temperature gradient at
the CMB.

6 E S T I M AT E O F S O U RC E T E R M F RO M
A G E O DY NA M O M O D E L

The source terms can be estimated from the output of a numerical
geodynamo model. We use the Calypso package (Matsui et al.
2014) and include a uniform heat sink in the temperature equation
to represent the influence of conduction down the adiabatic gradient
(e.g. Olson et al. 2015). Stable stratification develops at the top of
the core when the volume-integrated heat sink exceeds the heat
flow through the lower boundary (at r = Ri). This numerical setup
approximates the effects of a sub-adiabatic heat flow at the CMB
(Gubbins et al. 1982).

The governing equations are written in non-dimensional form
using the thickness of the fluid shell L = R − Ri as a characteristic
lengthscale and L2/ν as the characteristic timescale, where ν is
the kinematic viscosity. Velocity is scaled by ν/L, the magnetic
field is scaled by

√
ρμ�η, and temperature is scaled by the fixed

temperature difference �T between the top and bottom boundaries.
Solutions are specified by the amplitude of the heat sink Q and by
four additional dimensionless parameters:

E = ν

�L2
, Pr = ν

κ
, Pm = ν

η
, Ra = αg(R)�T L

ν�
(33)

which include the Ekman number, E, the Prandtl number, Pr, the
magnetic Prandtl number, Pm, and a modified Rayleigh number, Ra.
Here α is the coefficient of thermal expansion, g(R) is the gravita-
tional acceleration at the CMB and κ is the thermal diffusivity. Both
the mantle and inner core (r < Ri) are assumed to be electrically
insulating. An Earth-like geometry is adopted by setting r = 1.5385
and r = 0.5385 for the dimensionless radius of the core–mantle and
inner-core boundaries.

An illustrative solution is obtained using E = 5 × 10−5, Pr = 1,
Pm = 0.5 and Ra = 1200. A uniform heat source of Q = −6
corresponds to a (dimensionless) volume-integrated heat sink of
−87.6. By comparison, the time-averaged heat flow into the base of
the core is q = −4π R2

i Pr−1dT/dr = 69.0. The difference drives
a heat flow into the top of the core to close the energy budget. A
positive radial temperature gradient develops at the CMB, producing
a thin region of stable stratification (see Fig. 1). The time-averaged
temperature reaches a minimum value at r = 1.38, so the region
of stable stratification occupies the top 360 km of the core. While
this thickness exceeds the value inferred in a prior study (Buffett
et al. 2016), we avoid thinner layers in the numerical model because
they have weaker stratification and less influence on the underlying
convection. We prefer a layer with a discernible influence on the
convection, so our model choice represents a compromise between
the geometry of the layer and the strength of the stratification.
Buoyant fluid rises from the inner-core boundary and penetrates
into the region of stable stratification (see Fig. 2). However, many
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Figure 1. Time-averaged radial temperature profile from the numerical geo-
dynamo model. A region of stable stratification develops at the top of the core
when the volume-integrated heat sink in the temperature equation exceeds
the heat flow across the lower boundary.

plumes are stopped by the density stratification before they reach to
the top of the layer. The resulting temperature fluctuations inside and
immediately below the stratified layer are responsible for exciting
the MAC waves.

MAC waves are not directly detected in the dynamo model be-
cause the dimensionless parameters in the numerical calculations
cause overdamped waves. Our model differs from other numerical
studies that report magnetic waves in the interior of the core (Hori
et al. 2015). MAC waves are confined to a thin layer and this short
lengthscale enhances ohmic dissipation relative to waves in the in-
terior of the core. However, we can evaluate the source terms from
the numerical model. We begin with estimates for V · ∇c when the
density anomalies are due to thermal convection (i.e. c = −αT).
Fig. 3 shows the l = 2 part of −V · ∇T as a function of time in
the vicinity of the stratified layer. Positive and negative temperature

fluctuations are largest below the stratified layer, although many of
these fluctuations extend into the stratified zone. The largest ampli-
tude fluctuations begin with a warming phase (positive source) as
hot, buoyant parcels rise into the boundary region. The overall slope
of these features reflects the radial velocity. Warming is followed
by cooling (negative source) as warm parcels transit through the re-
gion and the temperature returns to the time-averaged value. All of
these source terms (reflecting rates of temperature fluctuation) are
subsequently multiplied by α to convert to a rate of relative density
fluctuation.

The temporal dependence of the temperature fluctuations in Fig. 3
is converted to years from our dimensionless time by choosing
the characteristic timescale L2/ν. For example, a realistic value
for the magnetic diffusivity, η = 0.8 m2 s−1, gives ν = Pm η or
0.4 m2 s−1. The corresponding viscous timescale, L2/ν, is roughly
400 kyr, and the resulting root-mean-square (rms) velocity from
the numerical calculation is about 0.03 mm yr−1. This value is
about an order of magnitude smaller than estimates inferred from
core-surface flow (Holme 2015). Alternatively, we could define a
timescale based on the secular variation of the magnetic field at
the CMB (Hulot & Le Mouël 1994). Recent satellite field models
yield a timescale of τ sv ≈ 400 yr (Lhuillier et al. 2011), which
can be realized in the geodynamo model when ν = 9.6 m2 s−1 and
L2/ν = 16.8 kyr. One concern with the secular variation timescale
is connected with the excess thickness of the layer in the model
relative to that in the Earth. A thicker layer acts as a filter for
magnetic-field variations, potentially altering the secular variation
timescale in the model. Consequently, we adopt a simpler approach
by defining a timescale based on the rms velocity at the core-surface.
Using a value of Vrms = 0.38 mm yr−1 from Holme (2015), we take
ν = 5.4 m2 s−1 and L2/ν = 30 kyr to characterize the timescale
of temperature fluctuations in Fig. 3. The corresponding magnetic
Reynolds number, Rm = VrmsL/η and magnetic Ekman number,
Eη = E/Pm, are 80 and 10−4, respectively. These values lie outside
the range recommended by Christensen et al. (2010) for a compliant
field morphology at the CMB. The minimum recommended value
for Rm at Eη = 10−4 is roughly 140, as compared with 80 in our
calculations. Our magnetic field is too dipolar (relative to Earth),

Figure 2. Snapshot of temperature (a) and radial velocity (b) in the equatorial plane from the geodynamo model. Warm plumes rise from the inner-core
boundary and penetrate into the stratified layer at the top of the core. The average (inward) heat flow at the top boundary is locally reversed in locations where
warm parcels reach the CMB.
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Figure 3. Source term, s2(r, t), for the degree 2 part of −V · ∇ T in the vicinity of the stratified layer. Positive (negative) sources corresponds to warming
(cooling). Short-duration warming events represent the influence of thermal plume(s) rising through the core. The slope of the source term as a function of r
and t reflects the radial velocity of plumes. The recurrence time of warming events is irregular but typically exceeds 100 yr.

Figure 4. Snapshot of the radial magnetic field at the CMB from the geody-
namo model. A strong dipole field is produced by the presence of a 360 km
stratified layer at the top of the core.

and this feature is amplified by the presence of a thick stratified
layer (see Fig. 4). On the other hand, our goal is to assess the
interplay between a stratified layer and the underlying convection,
so the details of the field morphology at the CMB is perhaps less
important than the strength of the stratification.

Estimates for V · ∇c are extracted from the numerical solution
over a range of spherical harmonic degrees. Each result is used to
evaluate the corresponding source amplitude, sl(r, t). Taking the
Fourier transform of sl(r, t) defines the forced response in (24). The
largest response is expected when the frequency of sl(r, t) matches
the frequency of the wave. Power spectra for sl(r, t) at the base of
the stratified layer are shown in Fig. 5 for even (l = 2, 4, 6) and odd
(l = 1, 3, 5) degrees. For reference, a vertical line is shown in Fig. 5
to mark the frequency of a nominal 60 yr oscillation. Even-degree
spectra have nearly the same amplitude at the 60 yr period. Waves
with l = 2 are predicted to have periods slightly longer than 60 yr
(e.g. Buffett et al. 2016), whereas waves with l = 6 should have
somewhat shorter periods. However, the overall level of excitation
at periods close to the nominal value of 60 yr is similar among these
three waves. Shorter wavelength waves (l > 6) have progressively
higher natural frequencies and the overall level of excitation is
predicted to be lower due to the decrease in the source terms at
higher frequency. Consequently, it is reasonable on the basis of our

numerical geodynamo model to expect zonal MAC waves to be
predominantly low degree. Odd degrees have substantially lower
source amplitudes. In particular, the excitation at l = 1 is roughly
two orders of magnitude smaller than the even source terms at a
nominal 60 yr period. While odd-degree waves should be present
in the core, we can expect their amplitude to be smaller than the
even-degree waves.

The geodynamo model predicts smaller contributions for the
inertial and magnetic source terms. The rms value of the non-
dimensional inertial force, fφ = −(V · ∇V)φ , is approximately
1600 at the base of the stratified layer. (We consider the l = 3
component of the force because it contributes most to the l = 2
wave.) Integrating fφ across the stratified layer gives Fφ = 220. A
similar value is obtained for the non-dimensional magnetic force,
fφ = (B · ∇B)φ/EPm ≈ 1800; the integrated value is Fφ = 180. The
associated source terms from (30) and (32) can now be compared
with the source term, S, due to buoyancy. The ratio of the inertial to
buoyancy sources at degree l is

SR

S
≈ 1

2

Fφ

〈sl〉 E T ′(R) l(l + 1) (34)

where 〈sl〉 is the rms value of the temperature fluctuation,
T ′(R) = 0.60 is the radial temperature gradient at the CMB and
l denotes the degree of the wave. The rms temperature fluctuation
at l = 2 is 〈s2〉 =3.6, so the inertial source is about 0.9 per cent of
the source due to buoyancy. Similarly, the magnetic source term is
about 0.8 per cent of the buoyancy source. The relative importance
of inertia is expected to decrease as the value of E decreases toward
an Earth-like value. On the other hand, the relative importance of
buoyancy and magnetic forces might be preserved if convection
in the underlying region establishes a balance between buoyancy,
magnetic and Coriolis forces (Yadav et al. 2016; Aubert et al. 2017).
Waves with higher l would have comparatively larger contributions
from the magnetic and inertial source terms.

More quantitative predictions for the effects of buoyancy forces
are given by the wave amplitudes, ck, which depend on the pro-
jection of the source amplitude sl(x) onto the eigenfunction for the
wave b(k)

l (x) (see 26). Numerical estimates for sl(x) from the dy-
namo model occasionally extend across most of the stratified layer,
but this outcome depends on the strength of the stratification. In
the numerical dynamo model the convective temperature anomalies
below the stratified layer are comparable in amplitude to the tem-
perature change across the stratified layer (see Fig. 1). Thus thermal
anomalies in the convecting region can rise through a large fraction
of the stratified layer. In fact, we observe a local reversal in the
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Figure 5. Power spectra of the source term for even (a) and odd (b) degrees. For reference, a vertical line defines the location of a 60 yr oscillation. These
power spectra are relatively flat spectra at frequencies less than 10−2 cycles yr−1 or periods longer than 100 yr. The power drops off sharply once the period is
shorter than 60 yr.

direction of CMB heat flow when warm parcels rise close to the
CMB. Stronger stratification suppresses the penetration of thermal
anomalies, so the source amplitude becomes much smaller near the
top of the stratified layer. This means that the generation of wave
motion, according to (26), is heavily weighted by the structure of the
waves in the lower part of the layer. This is liable to be the situation
in Earth’s core if the stratification is roughly N = 0.84 � (Buffett
et al. 2016). Such a stratification would correspond to a temperature
gradient (relative to the adiabat) of 0.037 K km−1. Over a 140-km
layer, we could accumulate a temperature anomaly of roughly 5.2 K,
which is large compared to a typical convective anomaly of a few
mK (Bloxham & Jackson 1990; Aurnou et al. 2003). (Composi-
tional anomalies would yield an equivalent thermal anomaly based
on the expected magnitude of c).

Fig. 6 shows the eigenfunctions b(k)
φ for a pair of MAC waves from

the numerical solution of Buffett et al. (2016), based on the model
parameters N = 0.84 � and H = 140 km. While these waves do
not permit solutions by separation of variables due to the assumed
form of the radial magnetic field, it is still possible to characterize
the solutions by a dominant l. The fundamental and first overtone
for the l = 4 wave reveal a distinct radial structure. The amplitude
of b(k)

φ for the first overtone is larger in the lower part of the layer
compared to that for the fundamental wave. This difference can
enhance the generation of the first overtone when the source term
is confined the lower part of the layer. This enhanced generation
may partially compensate for the higher damping of the overtone,
which would otherwise reduce the response to an imposed forcing.
The prevalence of overtones among the waves needed to account for
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Figure 6. Eigenfunctions for the fundamental (a) and first overtone (b) of the l = 4 wave from the numerical calculation of Buffett et al. (2016). A larger
amplitude in the lower part of the stratified layer means that the generation processes is more effective when the source term is confined to the lower part of the
layer. The large amplitude for the first overtone could explain the prominence of overtones in the fit of MAC waves to core-surface flows.

models of core-surface flow (despite heavier damping) is compatible
with the idea that zonal MAC waves are generated primarily near
the base of the stratified layer.

7 D I S C U S S I O N

Source amplitudes due to buoyancy in the geodynamo model can
be characterized as brief events that occur at irregular intervals
(see Fig. 3). The short duration of each event can be treated as
nearly impulsive forces and the recurrence time is nominally 100–
200 yr. Longer intervals are occasionally observed where there is no
significant forcing. A complementary perspective of the recurrence
interval comes from the power spectra in Fig. 5. A nearly flat spectra
at low frequency is compatible with random, uncorrelated forcing at
long periods. The corner frequency in the power spectra corresponds
to a period of roughly 60 yr, so we might expect the time between
large and independent excitations to be longer than 60 yr. Once the
MAC waves are generated by an impulsive source their amplitudes
gradually decay with time. A typical decay time for waves from
the study of Buffett et al. (2016) was 100 yr or less. (The longest
decay time corresponds to the lowest l.) This suggests that waves
can undergo substantial decay between typical source events. Thus
the relative amplitude of the various waves could be highly variable
in time. The fact that we currently observe a dominant 60 yr period
might reflect only the present transient state in the core. Future
sources of excitation could produce very different combinations
of waves. Consequently, the dominant period at some time in the
future might be quite different than 60 yr. For example, a dominant
l = 2 wave would correspond to a 116 yr period, according to the
predictions in Buffett et al. (2016). Periods shorter than 60 yr are
also possible.

Insights into the underlying convection can be extracted from
more detailed investigations of the generation process. For exam-
ple, we might convolve the Green’s function with a finite duration
source to estimate how quickly the amplitudes and phases of the
various waves change. These predictions could be compared with
the amplitude and phase of MAC waves needed to account for core-
surface flow or dipole fluctuations over longer intervals of time.

Such comparisons would furnish information about the duration of
the source, which could be related to the size and velocity of buoy-
ant parcels in the core. Achieving this goal would require a more
general description of the Green’s function to allow more flexible
descriptions of the density stratification and the distribution of ra-
dial magnetic field, but in principle we can construct a physical
model that connects observable waves to the processes that gener-
ate them. Current estimates of zonal core-surface flow are mostly
(or entirely) symmetric about the equator, which supports the notion
that the source function is largest for even degrees. This expectation
is consistent with the nature of rapidly rotating flow (Jones 2011;
Jault & Finlay 2015), and it is compatible with the predictions of a
geodynamo model.

8 C O N C LU S I O N S

Convection in Earth’s core is an effective mechanism for generat-
ing MAC waves in a stratified layer below the CMB. We describe
a method for quantifying the generation of axisymmetric MAC
waves and illustrate the approach using a simple, analytical model
(Braginsky 1993). However, the general approach can be extended
to permit more realistic wave models. Numerical estimates for the
source terms are obtained from a geodynamo model. We find that
the largest source terms are due to buoyancy forces, and most of
the excitation occurs at even spherical harmonic degrees, corre-
sponding to waves with azimuthal flow that is symmetric about the
equator. Power spectra for the source terms suggest that the am-
plitude of wave generation decreases at periods shorter than about
60 yr. This result implies that most of the wave generation is con-
fined to low-degree waves, although the relative amplitude of these
waves is liable to change over time.

Quantitative estimates for the wave amplitudes depend on the
projection of the source term onto the eigenfunctions of the in-
dividual waves. Strong stratification due to either thermal (Gub-
bins et al. 1982; Lister & Buffett 1998) or compositional effects
(Buffett & Seagle 2010; Gubbins & Davies 2013) limits the pene-
tration of convective density anomalies into the stratified layer. As
a result the source terms are restricted to the lowermost part of the
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layer. Overtones with large wave amplitudes in the lower part of the
stratified layer are more effectively generated by convection even
though these waves are heavily damped by magnetic diffusion. This
behaviour may explain the prominence of overtones when MAC
waves are fit to models of core-surface flow.

Generation of MAC waves by convection in the core provides
a physical link between observable wave motion at the surface of
the core and the deeper convective processes. Detection of changes
in the amplitude and phase of MAC waves would constrain the
generation process and potentially offer new insights into the nature
of convection.
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A P P E N D I X A : WAV E E Q UAT I O N F O R
Z O NA L M A C WAV E S

Braginsky (1993) converts the governing eqs (1)–(3) into a single
scalar wave equations for bφ . We follow his treatment but include



Generation of MAC waves 1335

an additional term to describe the change in the buoyancy force due
to the influence of background convection. This additional term de-
fines an excitation source in the wave equation. When the effects of
inertia and viscous forces are omitted from the momentum equation,
the leading-order terms in the MAC force balance are

g c = − 1

ρ

∂ P

∂r
(A1)

2�rvφ = 1

ρr

∂ P

∂θ
(A2)

2�rvθ = Br

ρμ

∂bφ

∂r
(A3)

where Br and �r are the radial components of the background
magnetic field and rotation vector. Magnetic perturbations in the θ

and φ directions are governed by

∂bθ,φ

∂t
− η

∂2bθ,φ

∂r 2
= Br

∂vθ,φ

∂r
(A4)

whereas the radial component br can be computed from the
solenoidal condition ∇ · b = 0. Similarly, the radial component
of the velocity field in a thin layer is given by

∂vr

∂r
= − 1

R sin θ

∂(sin θvθ )

∂θ
(A5)

where R is the radius of the CMB. Substituting for vθ from (A3) and
integrating over radius yields

vr = −
(

Br

2�rρμR

)
1

sin θ

∂(sin θbφ)

∂θ
(A6)

where we use the boundary condition vr = bφ = 0 at r = R to
evaluate the integration constant.

Eliminating pressure P from (A1) and (A2) relates the azimuthal
flow vφ to the buoyancy force g c. Substituting for vφ in the φ

component of the induction in (A4) gives

∂bφ

∂t
− η

∂2bφ

∂r 2
= −

(
Br

2�r R

)
∂(g c)

∂θ
(A7)

where we can reasonably approximate g as a constant. Taking the
time derivative of (A7) and substituting for the evolution of the
buoyancy force from (5) gives

∂2bφ

∂t2
− η

∂3bφ

∂r 2∂t
= −

(
Br

2�r R

)
∂

∂θ
(N 2vr − gV · ∇c) (A8)

Finally, we substitute for vr from (A6) to obtain

∂2bφ

∂t2
− η

∂3bφ

∂r 2∂t
−

(
B2

r N 2

4�2
r R2ρμ

)
L2

θ bφ = S (A9)

where the source S is defined in (8) and the operator L2
θ is defined

in (9).

A P P E N D I X B : O RT H O G O NA L I T Y
C O N D I T I O N F O R M A C WAV E S

A Green’s function for the impulse response can be constructed
from the eigenfunctions of the unforced problem. We begin with
the Fourier transform of the wave equation from (15). Solutions
for the unforced motion have frequencies ωk and eigenfunctions

b̃(k)
l . When we adopt the stretched coordinate x = (R − r)/H, the

solutions obey the wave equation

− ω2
k b̃(k)

l + i

(
ωkη

H 2

)
∂2

x b̃(k)
l + ω2

l b̃(k)
l = 0 . (B1)

where ω2
l characterizes the restoring force for the waves. Multiply-

ing (B1) by a second eigenfunction, b̃( j)
l , and integrating over the

domain gives

(ω2
l − ω2

k )
∫ 1+

0
b̃( j)
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l dx + i
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ωkη

H 2

) ∫ 1+

0
b̃( j)

l ∂2
x b̃(k)

l dx = 0 (B2)

where x = 1+ defines the depth at which the eigenfunction vanishes
inside the core. We integrate the second term in (B2) by parts, and
use the boundary condition b̃l = 0 at x = 0 and x = 1+, to obtain

(ω2
l − ω2

k )[b̃( j)
l , b̃(k)

l ] − i
ωkη

H 2
[∂x b̃( j)

l , ∂x b̃(k)
l ] = 0 (B3)

where we introduce the notation Lognonné (1991)

[a, b] =
∫ 1+

0
(a b) dx . (B4)

Interchanging indices j and k and taking the difference from (B3)
gives

(ω2
j − ω2

k )[b̃( j)
l , b̃(k)

l ] + i
η

H 2
(ω j − ωk)[∂x b̃( j)
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Factoring ω2
j − ω2

k and dividing (B5) by ωj − ωk yields the orthog-
onality condition

(ω j + ωk)[b̃( j)
l , b̃(k)

l ] + i
η

H 2
[∂x b̃( j)

l , ∂x b̃(k)
l ] = 0 . (B6)

We can define a normalization for the eigenfunctions by setting j = k
and letting ωj → ωk. Thus we obtain

2ωk[b̃(k)
l , b̃(k)

l ] + i
η

H 2
[∂x b̃(k)
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l ] = 1 . (B7)

We now use the orthogonality condition to obtain a solution to the
forced problem. When the source term is impulsive (i.e. sl(x, t) = sl

(x)δ(t)), the Fourier transform of the wave equation from (24) can
be written as

−ω2b̃l (x, w) + i
ωη

H 2
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x b̃l (x, ω) + ω2
l b̃l (x, ω)

= −
(
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After the application of an impulse force, the motion can be repre-
sented by a linear combination of waves (as shown in 25). Taking
the Fourier transform of (25) gives

b̃l (x, ω) =
∑

k

ick

ω − ωk
b̃(k)

l . (B9)

We now substitute (B9) into (B8) to define a condition on the con-
stants ck. If we multiply this condition by b̃( j)

l and integrate over x,
we obtain
∑
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To extract numerical values for the constants, ck, we note that

∑
k

ick

ω − ωk

(
(ω2

l − ω2
k )[b̃( j)

l , b̃(k)
l ] − i

ωkη

H 2
[∂x b̃( j)

l , ∂x b̃(k)
l ]

)

= 0 (B11)



1336 E. Jaupart and B. Buffett

by virtue of (B3), so we take the difference between (B10) and (B11)
to obtain
∑
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Finally, we let ω → ωj, so that each term in the summation
over k vanishes unless j = k. From the single surviving term we
find

c j = −i
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