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ABSTRACT OF THE DISSERTATION

Statistical mechanics and dynamics of semiflexible filaments, and the role of

curvature in elastic low dimensional soft matter

by

Jonathan Matthew Kernes

Doctor of Philosophy in Physics

University of California, Los Angeles, 2020

Professor Alex J. Levine, Chair

In Part I, we examine both the statistical mechanics and dynamics of semiflexible

filaments that are coupled to an external system. Chapters 2 and 3 look at semi-

flexible filaments in network, where the external system is the elastic response of

the filamentous network itself. The linear elastic compliance of the network is mod-

eled by attaching a Hookean spring at the boundary of the filament, which in turn,

introduces a nonlinearity into to the Hamiltonian. Chapter 2 uses this model to pro-

pose a method for noninvasive microrheology measurements of semiflexible filament

networks based on thermal fluctuations of transverse undulations. The external

force is seen to counteract bending strain, broadening fluctuations at the bound-

aries. Chapter 3 considers the dynamics of this model, using the Martin-Siggia-

Rose-Janssen-De-Dominicis formalism to compute the time-dependent correlation

functions of transverse undulations and of the filament’s end-to-end distance. The

spring serves to renormalize the filament’s tension, altering the cross-over frequency

between tension- and bending-dominated modes of the system.
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In Chapter 4, we look at the dynamics of bundles of semiflexible filaments, bound

together by transient crosslinkers. We explore bundle dynamics across a broad range

of unbinding times τoff, finding the behavior is determined by whether crosslinkers

prefer to relax via diffusion or unbinding. In both cases, the linker stiffness is ef-

fectively reduced. Linker unbinding introduces a frequency scale τ−1
off , set by the

unbinding rate, at which the bundle dynamics are affected by cross-linkers

In Part II, we explore the properties of lower dimensional elastic structures whose

stress-free state is curved. The mechanics of these structures depends strongly on

geometry. Chapter 5 studies the coupling of in-plane to out-of-plane elastic modes,

focusing on the simplest nontrivial structure – a curved elastic rod. We find undula-

tory waves becomes gapped in the presence of finite curvature. Bending modes are

absent below a frequency proportional to the curvature of the rod. Undulatory waves

with frequencies in the gap associated with the curved region, may tunnel through

that curved region via conversion into compression waves.

Finally, motivated by the results of Chapter 5, Chapter 6 explores the fate of

undulatory waves across a nearly flat, thin membrane, roughened by a Gaussian

quenched disordered height field with power-law correlations. We adopt the Donnell-

Mushtari-Vlasov theory of membrane elasticity in which the membrane responds

instantaneously to relieve in-plane stress. The amplitude of undulatory waves is

related to its energy density, a conserved quantity, and shown to obey a diffusion

equation at long length/time scales. Time-reversed interference corrections, the so-

called coherent backscattering effect, are shown to reduce the diffusion coefficient

logarithmically with respect to system size, in agreement with general results for 2D

localization.
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CHAPTER 1

Introduction

Soft condensed matter is concerned with the physics of bodies that behave classi-

cally, which includes both classical and statistical mechanics. Recently, physicists

have increasingly drawn inspiration from the realm of biology, where a diverse array

of complex structures gives rise to nontrivial mechanics. Understanding these struc-

tures has applications not just for biology, but more broadly in understanding and

classifying interesting soft materials.

To examine soft matter structures, we typically appeal to elasticity theory, which

provides an extension of the classical mechanics of point-like objects to the classical

mechanics of deformable bodies. Objects deform in response to an applied force,

whether it is applied in the bulk of the material or at the boundary. Elastic objects

are defined by the property that upon removing the forces responsible for deforma-

tion, known as stresses, they relax back to a unique undeformed state. Of course,

this does not describe all materials, as anyone who has bent a paper clip, or “worn

in” a baseball glove knows (such examples would be plastic deformations, which do

not return to their undeformed state). However, for sufficiently small forces, all de-

formable materials approach an elastic regime. This is a simple consequence of the

known result in classical mechanics, that at small enough distances near a potential

minimum, everything looks like a spring. Thus, elastic theory provides a rather good
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approximation for the behavior of many soft materials.

Though the theories of elasticity, classical mechanics, and statistical physics have

been established for centuries [83], their application to biologically inspired struc-

tures is still an active area of research. The principal reason for this has to do with

geometry. The starting point in elasticity theory is understanding the deformations

of a solid block of some material, assumed to be homogeneous in the sense that if

the theory is defined by some set of elastic constants, then these constants are the

same throughout the block. Typically, we think of this elastic block as represent-

ing some physical material, and therefore imagine that it has some volume in three

dimensional space, and can deform in any of those three dimensions. This problem

can be understood without too much difficulty. In biology however, we rarely en-

counter such slabs of material, and indeed if we did, they wouldn’t be terribly useful

to perform functions in the body.

As engineers have known since antiquity, elastic objects can be much more useful

if we form them into some shape. Indeed, biology agrees, and there exist a number

of elastic architectures [61, 156]. By shaping our hypothetical block of material, we

do two things: first, we are endowing it with some sort of geometry. For example,

like carving a statue we could chip away at the edges to form say a sphere instead

of a block. The sphere certainly has different elastic behavior, but that’s an entirely

due to the boundary. If we are a concerned with elasticity in the bulk, not much

has changed. A second and more interesting thing we can do is to reduce some of

the dimensions of the elastic block. For example, we could fashion it into a rod or a

thin membrane. These represent lower dimensional elastic structures. As it turns

out, the mechanics of such structure is driven largely by geometry. This dependence

on geometry allows for the same elastic block to exhibit wildly different mechanics

2



simply based on how it’s shaped.

In this thesis, we study the geometrical mechanics of lower dimensional elastic

structures. We do this both on a broad theoretical level (such as in Chapter 5), and

also in the context of particular biological structures. One structure that is common

throughout biology, is the semiflexible network, which is composed of semiflexible

biopolymers. Biopolymers represent a rod-like lower dimensional elastic structure,

consisting of a material whose two lateral dimensions are much smaller than its

length. Examples of semiflexible networks include the extra-cellular matrix (ECM),

cytoskeleton, and filamentous-actin (F-actin) [15]. Another structure that appears

frequently is a membrane. A membrane is an elastic structure in which one dimension

(the membrane thickness) is much smaller than the others. Examples include red

blood cells, cell membranes, and viral capsids [156, 121, 73, 81].

In Part I of this thesis, we focus on understanding the physics of semiflexible

networks. The physics of a single constituent, the semiflexible filament, can be un-

derstood phenomenologically rather easily. It’s easiest to first think of a thermalized

filament. In general, such a filament will want to contract. This is a consequence of

entropy. As the filament straightens out, there are fewer configurations availble in

its phase space. A semiflexible filament, can then be thought of as a filament whose

bending stiffness is just strong enough such to compete with the entropically driven

contraction, keeping the filament nearly straight.

There are two effects: there is an energetic cost to extension/contraction of the

filament length, and an energetic cost due to bending. The former is often much

greater (and in fact infinite in the case of inextensible filaments) than the latter.

To a good approximation, we can treat semiflexible filaments as inextensible leaving
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only bending as the remaining effect. To model bending, we can view the filament as

possessing a number of rods placed normal to its longitudinal direction, that measure

its deviation from a straight configuration. For small deformations about the straight

state, mismatch of the local normal directions will result in an energy penalty. Since

the deformation is small, we can model the rods as feeling as a spring-like restoring

force to maintain alignment of normals. Summing over all rods leads to the discrete

Hamiltonian

Hbend =
∑

i

κ̃

2
(n̂i+1 − n̂i)2 ≈

∑

〈ij〉

kn̂i · n̂j, (1.1)

where we have introduced some spring constant κ̃ and normal vectors n̂i. We note,

that this decomposition of the elastic structure into a lattice of normals is capable

of describing a discrete membrane as well. Taking the continuum limit in which n̂j

approaches n̂i, we obtain a Hamiltonian

Hbend =

∫ `

0

κ

2

∣∣∣∣
dt

ds

∣∣∣∣
2

ds, (1.2)

where we identify the bending rigidity κ, the filament length `, the arclength s, and

the local tangent vector t. In terms of the arclength parametrization, inextensibility

is trivial. Since the filament is assumed to be nearly straight, we can instead consider

a Monge representation whereby we define a transverse undulation field u(x), in

terms of longitudinal displacement x. Inextensibility is then enforced via lagrange

multiplier τ , which we identify as the tension along the filament. We arrive at the

semiflexible filament Hamiltonian in the nearly straight limit

Hfil =

∫ `

0

dx

{
τ

(
du

dx

)2

+ κ

(
d2u

ds2

)}
. (1.3)

As expected, there are clearly two contributions: bending and tension. One of

the most important features of such filaments are their force-extension curve [98].
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Suppose we have a solution or gel of such semiflexible filaments separated by mesh

spacing ξ. For small applied tension, the filaments will extend by some amount kδ`,

where k is determined by longitudinal linear response of the filament. If this tension

is due to a macroscopic stress in the material, we can similarly consider the extension

as arising from some strain θ, with the relation δ` = θ`. A given cross-section will

contain on average ξ−2 filament segments per area, and so by eliminating δ` we can

determine a shear modulus G′ ∼ k/ξ2 of the network that is determined solely by

the behavior of a single filament.

The ability to understand the elasticity of an entire network of filaments based on

the mechanics of only a single constituent filament is a powerful tool. This is further

reinforced by the ease with which single filaments can be fabricated experimentally.

In the laboratory, in-vitro biopolymer networks can be synthetically created from

filamentous actin, microtubules and intermediate filaments [15], thus providing a

suitable test ground for theories of filamentous networks.

In our brief overview, we have largely ignored the details of computing the force-

extension curve. Critically, we have not discussed boundary conditions at all. In

fact, the mechanics of individual filaments depend strongly on the type of boundary

condition. In Chapters 2 and 3 we fully consider this problem. We look at both the

equilibrium and dynamical consequences of the boundary condition on the statistical

mechanics of individual filaments. Such an analysis is relevant to the behavior of

semiflexible networks, in which the local mechanical properties can deviate strongly

from elastic behavior. We propose the detailed analysis of the fluctuations of in-

network filaments as means to determine a local tension mapping of semiflexible

networks, a technique known as activity microscopy.
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We have so far not discussed the methods by which semiflexible networks are

dynamically formed. Semiflexible networks can exhibit varying degrees of structure

from solutions to rigid networks. Broadly, filaments form structures by joining to-

gether at certain intersection points with the help of proteins known as cross linkers.

Cross linkers themselves can exhibit a number of properties, including a bias to bind

filaments along certain angles. One important feature is that cross linkers are not

necessarily permanently bound. Indeed, in response to stress, networks can relax

by unbinding cross linkers. As a result, there is an inherent dynamical aspect of

the mechanics of semiflexible networks, due to cross linker transience. These can be

viewed most strikingly via a non-Newtonian rheology in the low-frequency regime of

transeintly cross-linked networks. In Chapter 4, we consider the cross-linker filament

interaction more broadly, and explore the consequences of cross-linker transience on

the mechanics of bundled networks. These are networks whose constituents are not

individual filament segments, but instead bundles of such filaments that are cross-

linked together. The network is a hierarchicaly structure composed from a collection

of such bundles.

In Part II, we consider more theoretical aspects of the elasticity of lower dimen-

sional elastic structures, beyond the results of a single system such as semiflexible

networks. Geometry biases between different directions of deformation along the

elastic structure. For example, for physically realizable membranes there is every-

where a normal direction (not necessarily unique) along the elastic structure breaks

the symmetry of an isotropic material with D internal dimensions living in D dimen-

sional space. The consequences of this can be seen by re-examining the Hamiltonian

of a nearly straight semiflexible filament in Eq. 1.3.

An unusual feature is the appearance of the second spatial derivative of the field
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u. Normally, when constructing a Landau-Ginzburg free energy for say a scalar field

φ(x), one retains only the first order derivative term ∼ |∇φ|2. With filaments and

membranes, we must also retain the bending term (for fluid membranes there is an

analogous surface tension term [112]), which implies a separation in scales between

bending and tension effects. For membranes, broken symmetry means that defor-

mations in the local surface normal known as undulations, will behave qualitatively

different than in-plane deformations. Suppose we want to ask what would be the

effective two-dimensional Young’s modulus Y2D, found by squeezing a material with

usual Young’s modulus Y = Y3D into a membrane. The result is expressed as an

algebraic combination of phenomenological parameters called the Lamé coefficients.

We would find that the Lame coefficients are directly proportional to the membrane

thickness h, i.e. ∼ λ ∼ Y3Dh, while the bending modulus is proportional to the third

power of membrane thickness κ ∼ κ ∼ Y3Dh
3 [77]. As a result, there is a separation

in energy scales between undulations and in-plane deformation for thin membranes,

with undulations requiring much lower energies. We see that bending plays a crucial

role in lower dimensional systems.

The aforementioned separation of energy scales between in-plane and out-of-plane

deformations is due only to the thinness of the membrane. Flat, thin plates, lacking

any kind of nontrivial geometry, will exhibit this separation of scales. We are more

interested in the way that geometry can use this scale separation to significantly

impact mechanics. To this end, we consider curved lower dimensional elastic struc-

tures. Of course, by nature any body that is deformed will obviously be curved.

More specifically, we are referring to structures whose stress-free state is curved.

That is, upon removal of all stresses or external forces, the relaxed state of the body

is curved.
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The principle effect of curvature, is that it mixes bending an stretching in an elas-

tic material. A curved elastic structure is then a complicated interacting field theory,

where one field represents bending deformations, another in-plane deformations, and

finally a third the curvature, which couples these two fields. Though our study is

couched in the more complicated language of field theory, the effects of curvature on

elasticity can be understood through a simple thought experiment.

Consider the inflation of a balloon, modeled as a spherical shell of radius R in

the stress-free state. A convenient property of the sphere is that the local radius of

curvature, which is inversely proportional to the curvature, is everywhere given by

1/R. We now deform the balloon uniformly by increasing the radius from R→ R+

δR. This is a pure out-of-plane displacement, i.e. a bending deformation. However,

such a deformation would necessarily increase the surface area by an amount S →
S + 8πRδR + O(δR2), which we note is first order in the change of the radius of

curvature δR. The increase in surface area indicates that even to lowest order in δR,

bending must be accompanied by stretching. When a system has inherent curvature

in the undeformed state, further bending and stretching cannot occur independently.

For lower dimensional objects with internal structure (i.e. excluding things like fluid

membranes) the softer bending modes are stiffened by in-plane deformation. The

importance of considering in-plane deformations has long been known to be crucial

to the “order-from-disorder” stability of tethered polymerized membranes [112]. By

integrating out in-plane modes, one finds an effective action that couples Gaussian

curvatures via a massless ∼ ∇4 scalar. This pseudo-long range potential leads to a

finite crumpling transition for physical membranes, even at the näıve lower critical

dimension of D = 2 internal dimensions.

Understanding the elasticity of non-idealized objects, especially in biological con-
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texts, can be complicated by several factors. Typical biological membranes can be

highly hetereogenous, and furthermore may not be constructed from a block of elas-

tic material. These problems can be partially remedied by working instead with a

phenomenological theory. Despite the lack of well-defined elastic continua in biolog-

ical contexts, the theory of thin shells and rods has nevertheless successfully been

applied provided we supply the theory with a set of minimal phenomenological pa-

rameters. These usually pertain to a bending rigidity and Young’s modulus type

term penalizing stretching. The problem of hetereogeneity however, still persists.

When systems exhibit seemingly random behavior from sample to sample, they

are a good candidate for applying probabilistic analysis. The problem of hetereo-

geneity can be greatly simplified by considering ensembles of systems. While the

physics of one particular instance of the ensemble would be difficulty if not impossi-

ble to solve for analytically, averages over the ensemble tend to be tractable. In the

context of ensembles, we consider deviations in hetereogeneity of the system from

sample to sample as specifying a specific realization of “disorder”. In this thesis, we

will not be concerned with disorder in the elastic constants of materials, but instead

in disorder due to geometry. This is explored fully in Chapter 6, where we analyze

the mechanics of warped membranes, which are nearly flat membranes whose back-

ground height configuration is disordered. Per our previous discussion of the role of

curvature in coupling bending and stretching, this allows us to further understand

how this coupling is affected by a disordered geometry

Dynamically, to linear order in elasticity theory membranes support waves like

any other material. One major effect of curvature on such waves is the scattering

of undulations via change in Gauss curvature. This suggests that disordered geom-

etry can place undulatory waves in an effective random media, where the media is
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represented by scattering due to Gauss curvature. This analogy leads us in to the

extensively studied field of localization and wave propagation in random media. This

subject has a long history, stretching back to its roots in Anderson’s seminal 1958

paper Absence of Diffusion in certain random lattices [5], regarding the localization

of electrons in a lattice with impurities. Much of the early work on the localization

problem was done in hard condensed matter, looking at the conductivity of dirty

metals. However, concurrently many of the same conclusions were reached through

parallel studies in classical contexts, such as coherent backscattering in the albedo.

What these parallel tracks have in common, is a mesoscopic treatment of wave equa-

tions. This is a length scale below the transition to a geometric optics approach,

yet above the length scales of a single quantum state or eigenmode. In this regime,

waves undergoing multiple scattering due to the random medium can interfere con-

structively, leading to long-range quantities. Though it’s easy to understand how

random scattering can lead to diffusive transport, what is less obvious is that these

coherent paths can lead to localization.

Localization is when the eigenstates of a system become spatially localized in the

absence of a potential well. In other words, there are eigenstates of the system that

are impervious to boundary conditions. In real space this indicates that a wavepacket

whose amplitude is initially confined to a small spatial region will remain in that

region for all time. This is a mesoscopic effect arising from coherence, and does not

have to do with whether or not waves possess enough energy to tunnel through an

energy barrier (to clarify, there are no energy barriers in localization).

To oversimplify things, one can imagine starting at the limit of freely propagating

waves. These have constant velocity, and they transport energy linearly in time

away from an initial disturbance. If we add in disorder that scatters these waves
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into random directions while still conserving energy, we can imagine that due to

bouncing around and no longer taking a straight path, the waves will spread out

slower. This is the diffusive regime, where energy propagates like
√
t away from a

disturbance. With increasing disorder, waves can become essentially trapped among

many scatterings, staying localized around the initial disturbance.

To understand the latter point, let’s consider two quantities. The average am-

plitude of a wave away from the origin and the average intensity. Suppose we start

with a monochromatic wave eik·x. We can constuct a scattering experiment where

we inject a plane wave eik·x in to the random media, then look for outgoing plane

waves eik·x. The amplitude/probability to go from the incoming plane wave k to the

outgoing plane wave k is given heuristically via

A(k′,k) =
∑

i,j

f(xi,xj)e
i(k·xi−k′·xj), (1.4)

where f(xi,xj) denotes an amplitude/probability for a wave/particle to travel from

location xi to xj. The disorder average is taken by summing over all scattering

events, which can be considered as sum over scatters being put at all locations.

The sum over paths can be viewed as a series of multiple scattering events at

positions x1, x2, . . .

f(xN , x0) = f(xN , xN−1)f(xN−1, xN−2) . . . f(x1, x0), (1.5)

hence prior use of the term multiple scattering. Each complex amplitude/probability

for a single path can be broken into a number times a phase as

fone path j = |fj|eiδj . (1.6)
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The phase is additive in length, and the source of familiar interference effects like

two-slit interference and thin lensing. Taking a disorder average of the amplitude,

we find that it is a sum of random phases

〈A(k′, k)〉 ∼
∑

j

|fj|eiδj → 0, (1.7)

which on average will vanish. The further away we get from the source at the

origin (in the context of our simulation) or the further a monochromatic wave travels

through a disorded medium, the more scattering it will encounter, and the more

possible paths that exist to average over and destroy phase coherence. As a result,

the amplitude is a short range object. It is as often positive as negative and will

exhibit exponential decay on average with respect to distance traveled. This is the

mean free path ` we try to calculate later

More interesting is the propagation of intensity. This can be written in terms of

the amplitude/probability

|A(k′,k)|2 =
∑

i,j,m,n

f(xi,xj)f
∗(xm,xn)ei(k·xi−k

′·xj)ei(k·xm−k
′·xn). (1.8)

The spatial intensity amplitude now contains two phases

f(xi,xj)f
∗(xm,xn) =

∑

ij

|fi||fj|ei(δi−δj), (1.9)

one for the retarded amplitude associated with ζ(x, t) and the advanced amplitude

associated with ζ∗(x, t). These can be viewed as a wave moving forward in time

paired with a wave moving backwards. This sum behaves fundamentally differently.

If the phases cancel δi = δj, then there is no random phase cancellation due to

disorder averaging, and the intensity becomes a long range object, capable of trav-

eling diffusive distances. This occurs when the retarded/advanced fields follow the
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same scattering trajectory, and is a coherent effect capable of withstanding multiple

scattering. This is the source of diffusion.

There is an additional contribution to the sum that the system will have if it

exhibits time reversal symmetry. In other words, if the probability to go from one

spot to another is the same forwards moving forward or backward in time. In this

event, we can run the advanced trajectory backwards in time. This is easier seen in

terms of monochromatic waves. The total amplitude for identical scattering paths

would be

|A(k′,k)|2 =
∑

i,j

|f(xi,xj)|2
(

1 + ei(k+k′)·(xi−xj)
)
. (1.10)

In general, the second term vanishes due to phase cancellation. However, if we look

at process that either A: return to the origin (xi = xj), or B: backscattering in the

direction of the initial incoming wave (k = −k′), then the second term also vanishes.

This is the origin of the coherent backscattering effect whereby the amplitude of a

wave coming out of disordered media doubles coming back.

The outline of the thesis is as follows. We first conclude the introduction by

presenting a brief summary of two relevant topics that will be used throughout. The

first is a discussion functional techniques in classical field theory. This includes a def-

inition of the self energy, which we will make extensive use of. The second is a general

derivation of the equations of elasticity for lower dimensional elastic structures. We

show that the principal effect of reducing dimensionality is to introduce soft bending

modes. The derivation is most relevant to the mechanics of membranes, however can

also be used to understand rods and filaments by shrinking an additional internal

dimension of the membrane.
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We then break the thesis into two parts. The first part is concerned with fila-

ments, and more generally networks of such filaments. In Chapters 2 and 3 we discuss

the equilibrium and dynamical behaviors of semiflexible filaments cross linked into a

network. These calculations depend critically on the boundary conditions imposed

on the filament, which we here model as a spring representing the linear compli-

ance of the network. This introduces a nonlinearity that we treat through functional

methods. Our main objective is to study the precise role of boundary conditions

on heigh-height correlation functions of an individual filament. More broadly, we

propose this as a means of noninvasive microrheology of filamentous networks. We

model a network as composed of semiflexible filaments joined by crosslinkers at a col-

lection of junctions. For any given filament in network, the local tension determines

the boundary conditions. By solving for the fluctutation spectrum as a function

of the boundary, we provide a precise profile specific to a given tension. By mea-

suring the fluctuation spectrum for each filament in network, in principle one may

then deduce a tension map of the whole system. In order to test and calibrate the

method, precise manipulation of the boundary conditions may be done via optical

tweezers, pinning one end of the filament, or sandwiching a filament between two

known forces. In Chapter 4, we discuss the interaction between filaments and cross

linkers, particularly looking at how cross linker transience affects the mechanics of

bundles.

In Part II, we look at the elasticity of lower dimensional structures more theo-

retically. In Chapter 5, we first demonstrate the main effects of coupling in-plane

stretching to out-of-plane bending, namely a gapping of the frequency spectrum and

a suppression of undulations in regions of curvature. This is a simpler example of the

well-known result that bending undulations on a membrane are suppressed in regions
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of positive Gauss curvature [153]. However, due to the coupling of undulations to

stretching, we find that bending waves can “tunnel” through such regions, by first

converting to stretching modes. These points motivate our study in Chapter 6 of the

fate of undulatory waves on randomly curved surfaces. Since we know that curvature

scatters undulatory waves, we study the propagation of undulatory waves through a

random media that is entirely geometrically induced. We find that undulatory waves

undergo geometrically induced diffusion. This diffusion is reduced by the usual weak

localization corrections studied for other waves in random media. We find that the

behavior of this reduction though, is highly dependent on the nature of the disor-

der. For sufficiently jagged surfaces, low frequency undulatory waves can become

localized.

1.0.1 Functional methods in classical field theory

For simplicity, in this section we shall work with a scalar field φ(x, t), with the

understanding that x represents some d-dimensional position vector, t the time, and

φ some field; for example, φ could represent the spin density on an ising lattice,

or the longitudinal compression amplitude of a sound wave. The mechanics of our

field are determined by its Hamiltonian H = H([φ(x, t)], x, t). We are interested in

hamiltonians that do not depend explicitly on either x or t, and can be expressed in

terms of polynomials of the field φ(x, t) and its gradients∇φ(x, t),∇2φ(x, t). Suppose

we have a Hamiltonian of the form

H =

∫
ddx

{
1

2
(∇φ)2 +

m

2
φ2 + V (φ(x))

}
, (1.11)

where we have omitted the time dependence, and grouped nonlinear terms into a

general potential of the form V ([phi(x)]). First, the equations of equilibrium are
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defined by the condition δH/δφ(x) = 0. Here, we use δ to denote a functional

derivative. A functional derivative can be viewed as an infinite dimensional gradient

as follows. Looking at one dimension for simplicity (the result easily generalizes) we

first discretize the function φ(x) into N lattice positions, such that it is described by

the N -dimensional vector

φ(x)→




φ1

φ2

.

.

.

φN




, (1.12)

where each component is determined by evaluating the continuous function at each

of the lattice sites φi = φ(xi). Given the functional F ([φ(x)]), F now becomes a

multivariable function of the N components φi, i.e. F → F (φ1, . . . , φN). We take

the functional derivative acting with the N -dimensional gradient operator ∂φiF . To

rederive the continuum limit, it’s easiest to consider the Taylor series

F ([φ(x) + δφ(x)])→ F (φi + δφi) = F (φi) +
∑

j

∂F

∂φj
δφj +O(δφj). (1.13)

multiplying by an infinitesimal length 1 = dx/dx, we take the continuum limit to

find

F ([φ(x) + δφ(x)]) = F ([φ(x)]) +

∫
dx

δF

δφ(x)
, (1.14)

where we have defined

δF

δφ(x)
= lim

dx→0

F (. . . , φi + δφi, . . .)− F (. . . , φi, . . .)

dxδφi
. (1.15)
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In the continuum limit, the perturbation δφi is confined precisely to location xi. We

can enact this via a delta function, and formally define the functional derivative as

δF ([φ(x)])

δφ(y)
= lim

ε→0

F ([φ(x)] + εδ(x− y))− F ([φ(x)])

ε
. (1.16)

The trivial case gives δφ(x)/δφ(y) = δ(x − y). Using this, we can retain the chain

rule from single variable calculus, and write the formal result

δF ([φ(x)])

δφ(y)
=
∂F

∂φ
δ(x− y). (1.17)

The functional derivative will be our main tool. Often times, we are interested

in computing the Green’s function of a system. The Green’s function is a kernel

associated with linear partial differential equations that allows us to determine the

solution φ in the presence of a δ-function forcing. Form this, we can find the solution

in the presence of any arbitrary source function by summing over a collection of

δ-potential forces. Broadly, suppose that we are given a linear differential operator

L̂, and a source field j(x), such that the scalar field obeys the equation of motion

L̂φ = j =

∫
ddx′L(x, x′)φ(x′) = j(x). (1.18)

Here, x is once again d-dimensional. Now, suppose that we know a another function

G, such that

L̂Ĝ = 1 =

∫
ddx“L(x, x“)G(x“, x′) = δ(x− x′), (1.19)

which depends on two positions x and x′. By multiplying the first equation on the

left by G and the second on the left by φ then subtracting, we find

φ = Ĝj +
[
φL̂G−GL̂φ

]
, (1.20)

where we have suppressed the position labels, and in position space the operator

acts explicitly as Ĝφ =
∫
ddx′G(x, x′)φ(x′). Now, since L̂ is a linear differential
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operator, it consists of terms ∇,∇2, . . .. If the operator describes a well-posed partial

differential equation, it is specified at the boundary and we can integrate by parts the

term in brackets to produce something that depends only on the (known) boundary

conditions. We are then left with a general solution to φ in terms of any source j.

Though the Green’s function, if it can be computed, is a powerful tool for an-

alyzing systems, it is limited to only linear partial differential equations. Thus, in

the presence of the nonlinear potential V ([φ(x)]), the equations of motion do not

possess a Green’s function. Despite this, we can still define an operator Ĝ that sat-

isfies Eq. 1.19 for L̂ nonlinear. This operator is usually referred to as the two-point

function, as it depends on two positions x and x′.

The Green’s function can be reformulated in terms of functional integral, as the

moments of some generating function. This representation has the added advantage

that nonlinearities can easily be incorporated, and we can generalize to higher point

functions. Furthermore, these higher point functions can be interpreted as moments

of the field φ, distributed according to some ensemble. This allows us greater freedom

to study ensembles originating from both thermal and quantum fluctuations, making

the functional integral approach a robust method. To begin, we start with the

generating function definition

Z[j] =

∫
D[φ(x)]e−βH([φ(x)])e

∫
ddxφ(x)j(x), (1.21)

where j is a source field, β some constant (β = (kBT )−1 in statistical physics), and

D[φ(x)] denotes the path integral measure over all configurations of field φ (these

configurations include any imposed boundary conditions). Expectation values are

found via functional derivatives δ/δj(x). For example, the expectation of φ can be

18



found via

δ lnZ[j]

δj(x)
=

∫
D[φ(x)]φ(x)e−βH([φ(x)])e

∫
ddxφ(x)j(x)

∫
D[φ(x)]e−βH([φ(x)])e

∫
ddxφ(x)j(x)

= 〈φ(x)〉, (1.22)

where we have used 〈. . .〉 to denote the normalized expectation value of some quantity.

Taking two functional derivatives produces

δ2 lnZ[j]

δj(x)δj(y)
=
Z[j]〈φ(x)φ(y)〉

Z[j]
− (Z[j]〈φ(x)〉Z[j]〈φ(y)〉

Z[j]2
= 〈φ(x)φ(y)〉 − 〈φ(x)〉〈φ(y)〉,

(1.23)

which we identify as the second cumulant. Generally, we may find the nth cumulant

via functional differentiation

〈φ(x1) . . . φ(xn)〉c =
n∏

i=1

δ

δφ(xi)
lnZ[j], (1.24)

We define the expectation without the subscript c as the n-point function. Let us

now consider the two-point function specifically. Given suitable boundary conditions,

the total functional derivative of a functional vanishes:

∫
D[φ(x)]

δ

δφ(x)
(. . .) = 0. (1.25)

Applying this identity to the expectation value 〈φ(x)〉 evaluated at j = 0, we find

1

Z[0]

∫
D[φ(y)]

δ

δφ(x)

(
φ(y)e−βH([φ(y)]

)
=

1

Z[0]

∫
D[φ(x)]×

δ

δφ(x)

(
δ(x− y)− β δH

δφ(y)
φ(x)

)
. (1.26)

In terms of expectation values, exchanging x↔ y this yields the equation

β

〈
δH

δφ(x)
φ(y)

〉
= δ(x− y). (1.27)

If H is at most quadratic in φ, its functional derivative leads to a linear differen-

tial operator L̂. In this case, we can pull L̂ outside of the expectation value, thus
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recovering the Green’s function equation of Eq. 1.19 provided we identify

〈φ(x)〉φ(y)〉 = G(x, y). (1.28)

We have thus shown that the Green’s function of an operator may be computed via

the identity

G(x, y) =
δ

δj(x)

δ

δj(y)
ln

∫
D[φ(x)]e−

1
2

∫
φ(x)G−1(x,y)φ(y)ddxddye

∫
j(x)φ(x)ddx

∣∣∣∣
j=0

. (1.29)

The functional integral approach lends itself well to nonlinear potentials, since we

can generalize our idea of the Green’s function in the presence of nonlinearity to

the computation of the two point function. Furthermore, if the potential is small

in some parameter about a Gaussian Hamiltonian, we can performa a perturbation

expansion of the two-point function in terms of this small parameter. The series

can be organized in terms of diagrams, and goes by the name of diagrammatic

perturbation theory.

Continuing our analysis of the two-point function, it can be entirely specified

in terms of a new object called the self-energy, denoted by the operator Σ̂. The

self-energy is defined provided we split the Hamiltonian into a Gaussian piece H0,

whose Green’s function Ĝ0 is known, plus an interaction term Hint containing the

nonlinearities. The full two point function G(x, y) = 〈φ(x)φ(y)〉, can be decomposed

as

Ĝ = Ĝ0 − Σ̂. (1.30)

This equation defines Σ̂. All terms are understood to be operators. Since G0 is

assumed known, finding Σ̂ is equivalent to finding G. An important property of Σ̂,

that it is diagrammatically given by the set of all diagrams that remain connected

upon cutting any propagator/Green’s function (known as one-particle irreducible or
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1PI). To see the equivalence, define Ô as the 1PI vertex operator. We can then

construct the full Green’s function by summing all numbers of insertions of operator

Ô. Schematically, we have

Ĝ = Ĝ0 + Ĝ0ÔĜ0 + Ĝ0ÔĜ0 . . . Ĝ0ÔĜ0 = Ĝ0 + Ĝ0ÔĜ (1.31)

In the last equality, we have used that the infinite summation can be related to

the definition of Ĝ providing a self consistent equation. Making use of the operator

inverse (ÂB̂)−1 = B̂−1Â−1, we easily arrive at the solution Ĝ = (Ĝ0 − Ô)−1. Com-

parison with the defining equation for the self energy confirms that Σ̂ is indeed the

1PI vertex.

1.0.2 Free energy of lower dimensional elastic solids

In this section, we derive the general equations of motion and free energy governing

curved lower dimensional elastic structures, for which bending is the softest energy

scale. We will further work in the limit of weak curvature, to be defined more

precisely. This lays the groundwork for all future calculations, in which elasticity of

specific structures may be derived of subsets of the general formulas. Without loss

of generality, we refer to such structures as membranes, with specific structures like

rods consisting of a membrane in which one of its later dimensions is shrunk.

We define a lower dimensional elastic structures as a surface whose internal co-

ordinate dimension is less than the embedding dimension. In particular, we consider

structures that are curved in the stress-free state. to determine the mechanics, we

develop a phenomenological free energy or Hamiltonian governing the structure

Lower dimensional structures break the symmetry amongst deformations in the

embedding space. In doing so, fluctuations about an equilibrium configuration are
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both dependent on the internal coordinate, as well as the direction of deformation in

the embedding space. These complications lead us to analyze membranes separately

in terms of bending undulations out of the tangent plane, and stretching modes in the

plane. On a curved background, these two types of displacement fields are coupled.

First we introduce an effect Landau-Ginzburg free energy for the elastic defor-

mations of a curved rod, with the condition that it has a stable ground state. The

parameters of the theory can be related to the three dimensional elasticity con-

stants of an isotropic material by carefully considering the limiting process from

higher to lower dimension, or analyzing the deformation under constant pressure

stresses. The limiting process is given schematically as follows: given a parametriza-

tion X(V )(x1, . . . , xd) of the volume of the elastic solid, we define a lower dimensional

surface X(S)(x1, . . . , xd−dc , that depends only on the d−dc internal coordinates. The

volume parametrization is related to the surface parametrization by including the dc

normal vectors n̂i, to give X(V ) = X(S) +
∑d

i=d−dc+1 xin̂i. The new normal coordi-

nates xi>d−dc now regulate the membrane thickness, and can easily be taken small.

In making this mapping, we have required that the surface vector X(S) describes

a stress-free state. The d → (d − dc, dc) decomposition for dc = 1 arises in the

initial-value formulation of relativity, from which we find that the lower dimensional

surface now depends on two (d−1) dimensional tensors, i.e. the metric and extrinsic

curvature tensors.

A similar effect occurs here: the energy of the membrane must solely be a function

of the metric tensor and extrinsic curvature tensor. This is in contrast to elastic

continua, in which the energy is dependent only on the metric tensor. Our goal

then, is to formulate an a reduced elastic theory that depends only on the internal

coordinates x1, . . . , xd−dc . We start by defining, for a given parametrization X, the

22



metric tensor gab:

gab = ∂aX · ∂bX, (1.32)

where indices a, b run over internal dimension. The metric tensor fully specifies

intrinsic curvature, that is, the properties of the surface in the local tangent plane.

Since our embedding dimension is not equal to our internal dimension, there exists

extrinsic curvature in the system. For a given metric tensor, multiple surface can

lead to the same intrinsic curvature. The extrinsic curvature differentiates between

these surfaces, and depends on the shape of the surface in the embedding dimension.

Extrinsic curvature is controlled by the curvature tensor dab, also known as the

second fundamental form. It can be defined in terms of covariant derivatives Da of

the parameterization field and normal vector n as

dab = n ·DaDbX. (1.33)

Though the free energy or Hamiltonian of an elastic solid must depend on some

function of the metric and curvature tensors, not all arguments represent a physically

realizable surface. In order to ensure that there exists a physical parametrization that

reproduces a given combination of gab and dab, we must impose integrability condi-

tions known as the Gauss-Mainardi-Codazzi equations. The compatibility equations

essentially impose that the non-covariant partial derivatives in the embedding space

commute, i.e. that we must have Dadbc = Dbdac. Since we will be deriving our free

energy or Hamiltonian starting from a parametrization, we will no longer concern

ourselves with this issue.

Bending is, essentially, an energetic cost to rotations of the normal vectors. We

can generalize the concept of bending to higher dimensions by associating a bending

energy with the cost of normal vector rotations in a locally orthonormal frame. As
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the dimension of the internal space is reduced, more frame rotations of out-of-plane

normals become available, leading to more tensors need to describe the embedding.

For codimension one, we have only a single normal vector, and so the energy can be

represented by only a metric and bending tensor. For codimension two, relevant to

rods or filaments, there are two normal directions. There now exists the possiblity

that the two normal vectors can rotate, without changing the orientation of the local

tangent plane. These deformations correspond to twisting, and can be associated

with a torsion tensor. Since we are modeling the lower dimensional elastic structures

as truly lower dimensional, we have no means twist the local frame, other than by

curving it. In this case, torsion effects correspond to higher curved surfaces. Follow-

ing a space curve along such a surface, the curvature, which corresponds to rotations

between the local tangent vector and normal, will increase as the torsion, which

corresponds to rotations in the plane spanend by the local tangent and binormal,

increases. We can thus focus on bending as the primary and dominant aspect of the

elasticity of lower dimensional elastic structures.

We now construct the free energy or Hamiltonian. Energy is assumed minimum

for some background surface configuration given by the d-dimensional vector X0(σa)

and parametrized by d−dc internal coordinates σa. For small displacements from me-

chanical equilibrium, we construct a Landau-Ginzburg free energy, listing all terms

allowed by symmetry. The equilibrium state is assumed curved, with fixed back-

ground metric g0
ab. Global translational and rotational invariance imply the energy

can only be a function of contractions of the local tangent vector t ≡ ∂aX. We find

for some coefficients ci:
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F0 = Ftop +

∫
dDσ
√
g0

{
c0ta · ta + c1(ta · ta)2 + c2(ta · tb)2

+ c3n · ∇c · tc + c4∇at
b · ∇bt

a + c5∇at
a · ∇bt

b
}
. (1.34)

The c3 term represents a spontaneous mean curvature and only appears in three

dimensions. Ftop indicates topological terms. Examples include the winding number

W = 1
2π`

∫
dσ|t × ṫ| for d = 1, dc = 1, and the Euler character 4πχ =

∫
d2σ
√
gR

for d = 2, dc = 1. Provided our surface is in the regime of elasticity and does not

undergo major changes such as puncturing, this term can safely be ignored. If we

were to introduce a local filed such as for hexatic membranes with topological defects

though, these terms may be important.

If the background metric is approximately flat, then only the first line in Eq. 1.34

may be kept: this has a minimum for c0 < 0 provided that ti · tj = −c0g
0
ij/(2Dc1 +

2c2), which tells us that t may be interpreted as a tangent field of some surface.

Thus, the term ∇atb represents the second fundamental form dab of the background

surface. We can now remove the constraint of a nearly flat background with the

knowledge that the ta represent tangent vectors in equilibrium. Dynamics are found

by expanding to second order about the minimum. This somewhat lengthy procedure

is simplified by instead varying the quantities δ(ta · tb) ≡ 2Uab and δ(∇at
b) ≡ Kb

a.

The justification for this is two-fold.

Although we demand only that δF/δta = 0, solution gab ∼ ta · tb also implies

δF/δgab = 0. Since δgab contains terms of order δt2, some nonlinear terms in the

fluctuation will actually vanish.

Second, varying the extrinsic curvature supposes that the equilibrium solution for

ta(σb) is consistent with the background extrinsic curvature, and whatever external
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pressures are needed to ensure this are implied. The two tensors are recognized from

elasticity theory as the shear strain tensor and bending strain tensor.

If we were to keep the next order in derivatives, we would produce a tensor

Tabc ∼ δ(∇a∇b
~tc). For codimension one, this will simply be derivatives of the bending

and stretching tensors. For higher codimension, it will contain new terms describing

torsion, i.e. rotation of the normal vectors amongst themselves. We can now make

more precise our earlier claim that such terms can be ignored.

Between two points infinitesimally far apart, there will be an energy cost incurred

by changes in length and changes in the coordinate frame. The former corresponds to

the metric, which for codimension zero will be the only tensor needed to construct the

energy. In codimension one, the unit normal vector breaks local euclidean invariance,

indicating a preferred set of locoal orthonormal coordinates. If we look at a non-

coordinate basis with unit normal ên, then the energy due to bending of the normal

is êa · ∇bên ≡ ωabn, for ωabc the Ricci rotation coefficient.

For a given geodesic parametrized by coordinate s, there is a unique normal

vector satisfying nDt̂/Ds = 1. The generalized Serret-Frenet relations tell us that

each additional normal vector to this tangent can be ordered by powers of tangential

derivative,s since ∂
(m)
s t ∼ nm. Thus, torsional effects are small compared to bending

and stretching.

Lastly, the spin connection implies an addition to the Christoffel symbols ac-

counting for the change of orthonormal frame. Indeed, the covariant derivative is

modified by ∇̃ → ∇− h2dab as the thickness h of the normal direction goes to zero,

reaffirming our earlier statement that bending and stretching are coupled.

Finally, we arrive at our expression for the free energy of a membrane
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F =
1

2

∫
dDσ

√
g0

{
λUa

aU
b
b + 2µU b

aU
a
b (1.35)

+(κ− κG)Ka
aK

b
b + κGK

b
aK

a
b

}

The coefficients have been renamed to reflect elastic theory. KG has been singled

out as the coefficient of a purely topological term in D = 2, d = 3.

Indices are raised and lowered with the background metric g0
ab. While it’s tempt-

ing to consider Uab, Kab as the fundamental fields to vary, we must remember that

they are subject to the Gauss-Codazzi constraints. In this instance, the constraints

are further complicated by the fact that the constraint equations involve the full

metric and curvature tensors, i.e. background plus perturbation. Instead, the rela-

tions will be automatically satisfied if we instead vary the fields ta describing the

embedding.

In order to understand the relationship between bending and stretching, as well

as describe the actual deformations of the structure, we must implement a coordinate

system. Naturally, we choose the normal coordinate representation. We parametrize

displacements in the along the local tangent plane and the local normals via: δ ~X =
∑

c uct̂c + fn̂. To linear order in the out-of-plane displacements fα and in-plane

displacements fa, the shear and bending strain tensors are

Uab =
1

2
(Daub +Dbua)− dabf (1.36)

K b
a = DaD

bf + d ca d
b
c f + ucDad

b
c (1.37)

In general, the definition of Kab is somewhat arbitrary, since raising and lowering

indices add terms 2UacKcb to the definition. To remedy this, we look at the regime of

linearized shallow shelly theory, also known as the Donnell-Mushtari-Vlasov (DMV)
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equations. Here, only the first term ∇a∇bfα for the bending tensor is retained. Since

this is the only term unchanged with respect to definition of Kab, it is a physically

reasonable approximation. It pertains to the limit h � λ � R, where the wave-

length of characteristic deformations λ is much greater than the small dimensions h

(membrane thickness or filament radius), yet much smaller than the local radius of

curvature R.

Finally, to formulate a dynamical theory, we will need a kinetic energy term.

Curvature causes non-uniformity of the displacement field, implying a spatially de-

pendent rotational inertia. We must take into account the volume elements due to

the finite thickness of the membrane.

We work according to the Kirchoff hypothesis, that normals remain normals (i.e.

the membrane is like a sandwich of width). This can be written mathematically

as the condition that under a small displacement of surface X → X + δX that

(n + δn) · (t + δt) = 0. This implies that t · δn = −n · δt. Since the background does

not fluctuate, the kinetic term writes:

Tmembrane =
σ

2

∫ h/2

−h/2
dz(δẊ)2 (1.38)

for µ the mass per unit volume. The variation of X, δ ~X = δ ~X0 + zδ~n = (uc + ~tc ·
δ~n)~tc+f~n. Using δta = (∂af +dabu

b)~n+(...)~t, the Kirchoff assumption, and the unit

normalization of n̂, we have the kinetic energy:

Tmembrane =
σ

2

∫ z/2

−z/2
dz

{
u̇2
a + ḟ 2 + z2

(
∂aḟ − dabu̇b

)2
}
. (1.39)

In the limit of weak curvature, the last term may be dropped, leaving just the usual

kinetic terms for non-curved structures.
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Part I

Semiflexible networks
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CHAPTER 2

Equilibrium fluctuations of a semiflexible filament

cross linked into a network

2.1 Introduction

A variety of biological materials are composed of semiflexible filamentous networks,

including F-actin, collagen, fibrin, and intermediate filaments [125, 15, 21]. Such

networks have a rich linear rheology [106, 107, 109] and exhibit a characteristic set

of nonlinear mechanical features such as negative normal stress [62, 67], nonaffine

deformations [52, 55, 35], and strain hardening [145, 98]. Because of these nonlin-

earities, tension propagation in filament networks appears to strongly deviate from

the predictions of continuum elasticity theory, making it difficult to predict both

the interactions between molecular motors in cytoskeletal networks and between

force-generating cells in the extracellular matrix. Microrheology has been a useful

probe for the local mechanical properties of such systems and a number of tech-

niques have been developed [21]. This approach uses the position fluctuations of

tracer particles, measured using any one of a variety of instruments such as optical

tweezers [144, 1, 85] or laser deflection tracking [41, 136], to extract the collective

elastic response properties of the network. A related microrheological approach that

might allow one to map tension in filament networks, is to monitor the transverse
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u(x, t)

`

Figure 2.1: (color online) A schematic diagram of a particular filament (blue) cross

linked into a network of similar filaments (red). The cross links are represented by

rings.

undulations of network’s filaments. Each filament’s observed fluctuation profile is

specified by its intrinsic bending rigidity and applied tension so these measurements

produce a tension map in the network, as already explored by Lissek et al. [97]. To

enable this activity microscopy, one must consider the predicted fluctuation spec-

trum of a filament cross linked into a network of similar filaments. This cross linking

to the network introduces new mechanical boundary conditions on the ends of the

filament so that the filament’s fluctuation spectrum not only reports on its intrinsic

mechanics, e.g., bending modulus, but also on the collective mechanical compliance

and stress state of the network to which it is coupled.

In this chapter we focus on this question of the role of the boundary conditions

on filament fluctuations, showing that coupling the filament to an elastic network

necessarily introduces a non-quadratic term in the filament’s Hamiltonian, even in

the small bending approximation. The analysis of this issue, which is necessary

to enable activity microscopy in the filament networks, poses a few theoretically

interesting problems explored here.
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In the remainder of this chapter, we explore the role of boundary conditions of

various complexities, starting from the classic problem [98] of a filament with its ends

constrained to lie along one axis and subjected to a fixed tensile load. Our analysis

culminates with the case in which the filament’s end point is coupled to a combination

of two Hookean (linear) elastic springs with differing spring constants such that one

is oriented perpendicular and the other parallel to the undeformed filament’s path.

This is the most general possible coupling of the filament to a linear elastic solid.

We do not consider the effect of applied constraint torques at the boundary, because

we assume that the linker molecules are too small to provide significant torques. In

addition, we allow a variation of the rest length of the longitudinal spring, enabling

us to apply a fluctuating tension with a nonzero mean. This allows us to explore

how the local filament fluctuations report on the stress state of the network. We

summarize our result as well as discuss experimental tests and dynamical extensions

in section 2.5.

2.2 Semiflexible filament model

To study the effect of various boundary conditions on filament fluctuations, we will

compute the two-point correlation function of the transverse displacement u(x) of

an element of a filament labeled by an arclength variable x. The two-point function

G(x, x′) = 〈u(x)u(x′)〉, (2.1)

is a natural extension of the particle mean-square displacement to filaments. The

angular brackets 〈. . .〉 denote a thermal average. We do not consider here nonequilib-

rium (e.g., motor driven) situations, but such extensions are, in principle, possible.
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A schematic drawing of the filament is shown in the upper panel of Fig. 2.2. The

projected length `, contour length `∞, and longitudinal spring anchor point x0 are all

shown in the lower panel of that figure. We treat the filament as being inextensible

with contour length `∞ less than its persistence length `p ≡ κ/kBT . In this limit

we may neglect states of the filament containing loops or overhangs and describe its

state of deformation by a two dimensional vector valued function u(x), giving the

transverse displacement of a material element of the filament parameterized by the

arclength. To quadratic order in these displacements, the Hamiltonian admits two

independent polarization states of these undulatory waves; we focus on just one of

these here, replacing the vector u(x) by a scalar quantity u(x). In the presence of

externally applied tension τ applied, the elastic energy of deformation is given by [98]

H0 =
1

2

∫ `

0

dx
[
κu′′(x)2 + τ appliedu

′(x)2
]

+ (2.2)

−τ applied`∞ +
1

2
k̃‖ (∆`+ x0)2 .

Here primes denote derivatives with respect to arclength x. k̃‖ is the spring constant

of the external longitudinal spring. We introduce the transverse spring shown in

Fig. 2.2 through the boundary conditions, as discussed below. To this order in u, we

may neglect the distinction between that arclength and the projected length along

the direction of the undeformed filament x̂. We here, and throughout this chapter,

take the range of integration to be over the projected length ` and hereafter suppress

the limits of integration on such integrals. One may neglect the penultimate term in

Eq. 2.2 proportional to the externally applied tension, τ applied.

Inextensibility demands that the contour length `∞ remain unchanged, while

filament undulations decrease the filament’s projected length ` relative to the contour

33



u(x, t)
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k?

x0

x0

k̃k

`1

` �` > 0

x0 < 0

Figure 2.2: (color online) Above: Schematic diagram of a single semiflexible filament

with the left endpoint pinned. Both endpoints are subject to torque-free boundary

conditions. The right endpoint is attached to a combination of a longitudinal spring

of rest length x0 with spring constant k‖, and a transverse spring of zero rest length

with spring constant k⊥. These represent the elastic compliance of the network.

Below: A schematic diagram showing the connection of the longitudinal spring and

the various lengths defined in the text. The spring’s anchor point x0 is positive

when that spring applies tension to the perfectly stretched filament, ` = `∞. The

change in projected length ∆` is defined oppositely, becoming positive as the filament

contracts.
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length. Geometry relates the difference between these two lengths, defining ∆` as

∆` ≡ `∞ − ` ≈
1

2

∫
u′(x)2dx, (2.3)

where we have kept terms in the integral up to O(u′2).

The boundary conditions obeyed by the filament are found by applying the vari-

ational principle to Eq. 2.2. Due to the appearance of fourth order derivatives in

the equation of motion, there are four equations to be satisfied. Pinning the left end

of the filament at zero and demanding that the second derivatives u′′(x) vanish at

both endpoints (the torque free condition) eliminates three of these. The remaining

boundary condition corresponds to controlling either the transverse force F ext
⊥ (con-

jugate to u) or the displacement of the right end point. The first choice of fixing the

transverse force leads to

− κu′′′(`) + τu′(`) = F ext
⊥ , (2.4)

while pinning the transverse displacement at the right end leads to the simpler con-

dition

u(`) = 0. (2.5)

Using Eq. 2.4 we may impose any number of forces on the end point that depend

on that point’s displacement. The most useful for our purposes is that of a Hookean

spring (with zero rest length), which we implement by adding to the Hamiltonian

Hk⊥ =
1

2
k⊥u(L)2, (2.6)

which leads to the boundary condition

F ext
⊥ = −k⊥u(`). (2.7)

We have assumed the rest length of the transverse spring to be zero. Any finite

rest length can be eliminated by rotating the mean filament axis, and insisting that
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the longitudinal spring remain longitudinal. In this chapter we consider boundary

conditions in which the two springs remain orthogonal to each other so that their

energies decouple to lowest order in stretching. More complex elastic boundary

conditions can also be explored.

Eqs. 2.2, and 2.3 allow us to account for the forces associated with the defor-

mation of the longitudinal spring. This generates a shift in the tension from the

externally applied one τ applied to one that accounts for the spring’s forces τ – see

below. Due to that spring, the instantaneous tension acting on the filament depends

on its deformation state. This introduces a nonlinear and nonlocal term into the en-

ergy functional, because the tension depends on the difference between the projected

length and arclength of the filament, which is given by an integral over the filament’s

configuration. We obtain

H =
1

2

∫ [
κu′′(x)2 + τu′(x)2

]
dx+ (2.8)

+
k‖
2

∫
u′(x)2u′(y)2dxdy,

provided we identify

τ = τapplied + k̃‖x0 (2.9)

k‖ = k̃‖/4. (2.10)

In this calculation we assume that the change in tension along the filament is

instantaneous. This means that we treat the longitudinal speed of sound in the

filament as being infinite, which is consistent with our inextensibility condition. Pre-

sumably, this condition may be violated for very high wavenumber modes on very

long filaments so that these modes relax faster than the tension propagation time.
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There are, indeed, other nonlinear terms associated with higher curvature config-

urations of the filament. Such corrections include geometrically nonlinear but local

terms in the Hamiltonian of the form (u′′u′2n)2 for n ≥ 1 [79]. There may also be

local elastic nonlinearities that affect the energetics of highly bent configurations of

the filament. We justify neglecting all of these terms by requiring the persistence

length be sufficiently large, which suppresses highly bent (small radius of curvature)

configurations. The new nonlinear and nonlocal term introduced by the longitudinal

spring may not be neglected in this limit of stiff filaments. We emphasize that, while

both the longitudinal and transverse springs affect the boundary conditions, only the

longitudinal spring introduces nonlocal terms in the Hamiltonian.

Before studying the full problem, we first briefly review the properties of the equi-

librium two-point function (Eq. 2.1) for a filament with pinned transverse undulations

at its endpoints [98]. The remaining pieces of the Hamiltonian are diagonalized by

Fourier sine series

u(x) ≡
∑

p

up sin(px). (2.11)

The zero displacement boundary condition – see Eq. 2.5 – is satisfied by expanding

the transverse displacements in half-integer wavelengths p = nπ
`
n ∈ N. The two-

point function is then

G(0)
nm =

2kBT/`

κp4
n + τp2

n

δnm. (2.12)

There is a crossover between curvature-dominated modes at high p and tension-

dominated ones for modes with wavenumber smaller than
√
τ/κ. Thus, tensed

filaments admit a second length scale in addition to the thermal persistence length:

`t =
√
κ/τ, (2.13)
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which we refer to as the tension length. An alternative description of this result

is that the filament’s fluctuations are governed primarily by bending provided that

the tension is small in magnitude when compared to scale of the compressive force

necessary to induce Euler-buckling: κ/`2 = k BT`p/`
2.

Because of the Kronnecker delta linking the wavenumbers p and p′ in the two-

point function, it is straightforward to transform G
(0)
mn back into position space to

obtain G0(x, x′). We find

G(x, x′) =
2k BT

τ

∞∑

n=1

sin (nπx/`) sin (nπx′/`)

`2
tp

4
n + p2

n

. (2.14)

We observe that the amplitude of mean square undulations
√
G(x, x) peaks at the

midpoint `/2, and that the fluctuation amplitude is dominated by the longest wave-

length modes, which are on the order of the contour length `.

2.3 Two-point function of filament attached to springs

We now determine fluctuations of a filament attached to both a transverse and

longitudinal spring, k⊥ and k‖ respectively, at its right end point. These elastic

couplings may be thought of as representing the elastic compliance of the network

in which the filament is embedded. A sketch of such a situation is shown in Fig. 2.1.

The schematic diagram corresponding to the single filament model is shown in the

upper panel of Fig. 2.2. We begin by examining the effect of each type of spring

individually on the fluctuation spectrum of the filament, before considering their

combined effect.
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2.3.1 Transverse boundary spring

We start with only a transverse spring. This spring shifts introduces a force-controlled

boundary condition given by Eqs. 2.4 and 2.7. The terms of the sine series intro-

duced in Eq. 2.11 no longer individually satisfy this boundary condition. This and

the additional energy associated with the transverse spring constitute its full effect.

We seek to compute the partition sum

Z =

∫
Due−βH . (2.15)

Normally, this is accomplished by expanding the conformations of the filament in

terms of the eigenfunctions of the Hamiltonian. This expansion makes the sum over

states straightforward. The introduction of the more complex boundary condition

at the right end of the filament makes these eigenfunctions much more complicated

than the simple sine series we used earlier. In this subsection, we first show that

one can still use the sine series and impose the transverse force boundary condition

as a constraint on the infinite sum of the amplitudes of these sine modes. We then

translate those constraints into a correction to the Hamiltonian, which now may be

expanded in the sine series without further consideration of the problematic boundary

condition.

We begin by writing the partition sum, Eq. 2.15, in terms of a sine series, and

impose the boundary conditions by a delta function as

Z =

∫ ∏

q

duq

[
δ

(∑

q

F [uq]

)]
e−βH[uq ]. (2.16)

These boundary conditions introduce a constraint on the set of all the Fourier mode

necessary to satisfy transverse force balance at the right hand side of the filament.
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We further assume that the equation of constraint is a homogeneous function of the

amplitude of the Fourier mode uq of first degree so that it may be written as

F [un] = ψnun. (2.17)

There is no sum over the repeated index. The form of ψn depends on the bound-

ary condition employed, but this form will always result as long as that boundary

condition is a linear function of the displacement field and its derivatives.

We replace the delta functions by their limit as narrow Gaussians and thereby

push the equations of constraint into the exponent, writing

Z = lim
ε→0

1√
4πε

∫ ∏

n

dun e
−β
∑
nm{F [un]F [um]

4εβ
+H[un]}. (2.18)

The boundary conditions now make up part of a new Hamiltonian of the filament

H̃[uq] which is still quadratic in the u fields but no longer diagonal in them. The

effective Hamiltonian is given by

H̃nm =
1

2

[
G(0)
nm

]−1
u2
n +

1

2

[
G(1)

]−1

nm
unum. (2.19)

The purely diagonal part G
(0)
nm ∝ δnm is given by Eq. 2.12. The correction to this

coming from enforcing the boundary conditions is

[
G(1)
nm

]−1
=

ψn√
2εβ

ψm√
2εβ

. (2.20)

For the case of a transverse spring attached to the right endpoint, we find that

ψn = (−1)n
[
κp3

n + τpn + k⊥ cos(nπ) sin(nπ)
]
. (2.21)

It appears that the last term in the above expression can be safely set to zero, but

this amounts to an incorrect ordering of limits that will result in not enforcing the
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Figure 2.3: The free propagator and nonlocal vertex. Slashes denote multiplica-

tion by momentum squared. The four field interaction depends on two independent

momenta.

transverse force balance term correctly at the endpoint. We return to this point

below.

The Sherman-Morrison identity [141] allows one to write the inverse of a matrix

plus a dyadic as

(G−1 + vwT )−1 = G− GvwTG

1 + wTGv
. (2.22)

Using this, we invert the quantity
[
G(0)

]−1
+
[
G(1)

]−1
and obtain

G̃nm = G(0)
nm −

G
(0)
nkψkψlG

(0)
lm

2ε+ ψkG
(0)
kl ψl

. (2.23)

This ε → 0 limit is now well defined. Taking that limit here, we arrive at the

two-point function corrected for the transverse spring boundary conditions.

The result as written contains indeterminate parts equal to divergent sums multi-

plying zero. We address these now. We may write the two point function in Eq. 2.23

in form

G̃nm = G(0)(pn)δnm −
FnFm
D

(2.24a)

D = ψkG
(0)
kl ψl (2.24b)

Fn = G(0)
nmψm. (2.24c)
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The key term is D, which is given by

Dβ =
∞∑

n=1

(
κp2

n + τ
)

+ k`

∞∑

n=1

sin 2nπ

nπ
+

+ k2`2

∞∑

n=1

sin2 nπ

n2π2
.

(2.25)

D is clearly divergent. This arises because we are evaluating a Fourier-series outside

of its radius of convergence, requiring us to analytically continue the sums. We start

by noting that the third term is convergent so we may safely set it to zero using

the sine function. The first term may be quickly calculated by noting continuations

of the Riemann zeta function: ζ(0) = 1/2 and ζ(−2) = 0. Since the sums start at

n = 1 we find for the first line −τ/2. The second term is indeterminate. However,

we notice that it is the Fourier sine series of the function k`
(

1
2
− x

2L

)
, evaluated at

x = 2L. From this we observe that the sum must give −k`/2.

Turning to the calculation of F we find

2β

`
Fn = (−1)n/pn, (2.26)

as may be checked directly from Eq. 2.24c and the definitions of G(0) and ψ. Putting

these pieces together we find the corrected two-point function:

G̃nm =
2kBT/`

κp4
n + τp2

n

δnm +
4kBT/`

τ + k⊥`

(−1)n+m

pnpm
. (2.27)

The two-point function decomposes into a sum of a diagonal part identical to that of

the pinned filament – see Eq. 2.12 – and an off-diagonal term, coupling modes with

different wavenumbers. This off-diagonal coupling results from the transverse spring

boundary condition that introduces a coupling between various modes (labeled by

wavenumber) since that boundary condition enforces a constraint on the sum of those

modes.
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The off-diagonal term in Eq. 2.27 depends on the sum of two tensions: the exter-

nally imposed tension τ and a term proportional to the transverse spring constant

k⊥`. The magnitude of this term is controlled by the larger of these two tensions.

When both the tension and transverse spring constant both go to zero, we have the

problem of a filament with a free end. The expansion of the system in terms of sines

then fails, as is signaled by the divergence of the two-point function. We note that

the real-space solution for the two-point function G(x, x′) for the case of a transverse

spring can also be obtained, as shown in Appendix A.1.

2.3.2 Longitudinal spring

We now consider a filament pinned at its right endpoint and attached to a longi-

tudinal spring. The Hamiltonian is Eq. 2.8, with the boundary condition Eq. 2.5.

This time, incorporating the boundary condition generates a nonlocal term in the

Hamiltonian:

V =
k‖
2

∫
u′(x)2u′(y)2dxdy, (2.28)

as seen in the second line of Eq. 2.8. Despite this complication, the two-point function

remains exactly solvable. We write the two-point function in terms of a perturbation

theory in the parameter k‖. Although the second term of Eq. 2.8 is not small, we

will find that we can sum up all perturbative corrections to obtain a finite answer.

The two-point function can be written as a sum over cumulants [68],

〈u(x)u(x′)〉 =
∞∑

n=0

(−β)n

n!
〈V nu(x)u(x′)〉0,c, (2.29)

where 〈. . .〉0,c denotes the cumulant averaged with respect to the Hamiltonian in

Eq. 2.2. The perturbation series is most easily evaluated by reciprocal space. We
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may organize the perturbation theory diagrammatically – see Fig. 2.3. The interac-

tion vertex, Eq. 2.28, is rather unusual. It is represented by a pair of disconnected

propagators, with arbitrary wavenumbers p, p′ respectively.

The series Eq. 2.29 is shown diagrammatically for the first few terms in Fig. 2.4.

Consider the m th order contribution to the two-point function. It is given by all

possible contractions of m vertices and two external legs. Due to the form of the

interaction term, all loops are disconnected and thus do not contribute to the cu-

mulant. As a result, only lines contribute to the two-point function. Each diagram

at m th order is identical and equal to
βk‖`

2

8
p4G0(p)G0(p)2m, with G0(p) defined in

Eq. 2.12. The final step is to determine the combinatoric factor counting the number

of identical diagrams at m th order. Inspecting Fig. 2.4, we find a total of (4m)!!

possible contractions at m th order. Thus we obtain

〈upup′〉 = δpp′G0(p)
∞∑

n=0

(
−βk‖`2p4G0(p)2

)n (4n)!!

8nn!
. (2.30)

The sum can be simplified by two identities. First (4n)!!8−nn!−1 = (2n − 1)!!.

The second is (2n− 1)!! = (2π)−1/2
∫
dse−s

2/2s2n. The second identity regulates the

infinite sum in Eq. 2.30. Inserting these two identities and summing the resulting

geometric series yields

G(p) = G0(p)

√
2

π

∫ ∞

0

ds
e−s

2/2

1 + βk‖`2p4G2
0s

2
, (2.31)

where we have written Gnm(p) = G(p)δnm. Performing this integral, we complete

the calculation of the two-point function. We find

Gnm(p) =

√
π

2βk‖`2

ez
2
nErfc(zn)

p2
n

δnm, (2.32)

where we have introduced

zn =
κp2

n + τ

2
√

2k‖/β
. (2.33)
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Figure 2.4: The first three diagrams in the perturbative expansion of Green’s func-

tion. No loops are possible in the connected diagrams, allowing the series to be

resummed.

In order to gain some physical insight into this result, we rewrite Eq. 2.32 as an

integral by using the definition of the complimentary error function:

G(p) =
1

p2

∫ ∞

0

dλe−
1
2
β`(κp2+τ)λ− 1

2
βk‖`

2λ2

. (2.34)

The integral is dominated by its small λ behavior. Specifically, the integral is con-

trolled by the value of λ for which the argument of the exponential

− 2Φ(λ) =

(
p2``p +

`p`

`2
t

)
λ+

`p`
2

`3
k

λ2 (2.35)

equals one. Here we have defined a new length scale

`k = (κ/k‖)
1/3 (2.36)

governing the competition between bending and spring effects. Considering the ther-

mal persistence length and the tension length, the filament coupled to a longitudinal

spring admits three independent length scales. The dependence of the integral upon

p and these length scales is determined by which of the three terms in Eq. 2.35
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reaches unity first with increasing λ. There are clearly three possibilities generating

three distinct results as shown in Fig. 2.5.

We fix the ratio of the persistence length to the total of the filament: z = `p/`.

Since the lowest order bending mode will dominate, we may replace the wavenumber

p` by π in the following. In the spring dominated region the λ2 term in Φ reaches

unity before the other two terms (with increasing λ). This provides two inequali-

ties. The first, it requires that y = `t/` is greater than x3/4(z/2)1/4 where x = `k/`.

The second, it requires x < x? = (2/z)1/3π−4/3. These provide the boundaries of

the spring dominated regime (spring). Below and to the right of the spring domi-

nated region lies the tension-dominated regime (tension) in which the tension term

(z/2)λy−2 reaches unity before the other two terms. This region extends to the right

of y = x3/4(z/2)1/4 and bounded above by y = 1/π. Finally, the remaining part of

the parameter space diagram is dominated by the longest wavelength bending mode.

This is the bending dominated regime (bending). See Fig. 2.5.

The basic principle determining these regions is that the stiffest elastic element

exerts the dominant influence upon the fluctuation amplitude. The corresponds to

picking the shortest of the length scales associated with tension, bending, and net-

work compliance introduced above. The key signature of these three regimes can be

understood as follows. Within the bending-dominated regime, the bending modulus

dominates the amplitude of transverse undulations so that 〈u2〉 ∼ `3T/κ. In the

tension-dominated regime, the same undulations are controlled by the tensile stress

in the network so we expect 〈u2〉 ∼ `T/τ . Finally, in the region of parameter space

where the network’s compliance controls the amplitude of filament undulations, we

expect to observe 〈u2〉 ∼ `
√
T/k‖, making the variance of u in this regime propor-

tional to
√
T .
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Figure 2.5: Parameter space spanned by the ratios of the tension length and the

longitudinal spring length to the filament’s length. The three regions are defined by

the type of boundary term that dominates the fluctuation profile: tension, network

compliance (spring), or filament bending. The three regions coincide at the point

((2/z)1/3π−4/3, π). The persistence length is set to be `p = ` so that z = 1.
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In order to use the observed fluctuations for a filament-based tension probe, it is

desirable to be in the tension dominated regime. For most semiflexible filaments of

interest z = `p/` ≤ 1. As a result, the boundary x? is typically quite small, resulting

in a large tension-dominated regime. Based on the boundary between the tension

and network compliance (spring) dominated regions, we expect that the minimum

observable tension should be ∼
√
Tk‖. In fact, the region of parameter space at small

tension y < π−1 where there is a transition from the tension-dominated fluctuation

spectrum to the transverse spring dominated fluctuation spectrum (along the curve

y = π−1(x/x?)3/4) is likely to be hard to access experimentally. All three regions,

however, may be observable, particularly for sufficiently stiff filaments.

For a fixed set of parameters we examine the scaling behavior of the two-point

function with wavenumber p. Using the result for the two-point function with a lon-

gitudinal spring in Eq. 2.32, we make a log-log plot as shown in Fig. 2.6. For large

k‖, a series expansion shows that G(p) ∼ p−2, as expected for a tension-dominated

filament. As for a simply pinned filament, there is a transition with increasing

wavenumber from this tension-dominated regime G(p) ∼ p−2, to a bending domi-

nated one where G(p) ∼ p−4. The presence of the longitudinal spring changes that

crossover point when that spring constant is sufficiently large.

These two scaling regimes are well-known for semiflexible polymers under a fixed

tension [98]. The crossover wavenumber is there given as p∗ = `−1
t =

√
τ/κ. When

the spring constant is sufficiently small, i.e., k‖ < k∗‖ = min( τ
2`
κ
, π4κ2

2`4kBT
), the crossover

wavenumber is essentially unaltered by the presence of the spring. But, when k‖ > k∗‖,

then p∗ ≈ (`k`)
1/4, which implies that, with decreasing spring constant, p∗ decreases

as p∗ ∼ k
1/4
‖ until it reaches `−1

t .
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Figure 2.6: (color online) Log-log plot of the two-point function G(p) with respect

to wavenumber for parameters ` = 1µm, κ = 0.0413(pNµm), τ = 4.133(pN), and

k‖ = 5(pN/µm). There are two scaling regimes. The dashed lines illustrate their

slopes in the two regimes. At low wavenumber, the fluctuations are dominated

by a combination of tension and network compliance, while at high wavenumber,

they are controlled by the filament’s bending stiffness. Network compliance shifts

the transition p∗ ≈ (`3
k`)
−1/4 to the higher wavenumbers, provided we are in the

spring-dominated regime `t & (`3
k`)

1/4.
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Figure 2.7: Plots of the exact root mean square height-height fluctuations for param-

eters ` = 1µm, `p = 4/3`, `t = 0.1`. The average tensions of 0.1, 1, and 10(pN/µ)

correspond to lengths `k = 0.1123, .0498, and .01937(µm) respectively. The mean

tension 〈τ〉 is calculated using Eq. 2.37.

The transition from bending dominated to tension dominated modes should be

experimentally accessible upon changing the longitudinal spring constant using a

laser trap to hold one end of the filament. For filaments with lengths on the order of

µm and a slightly longer persistence length, the longitudinal spring k‖ controls the

crossover wavenumber p∗ when the applied tension is O(1)pN, and the longitudinal

spring constant is sufficiently small: k‖ . O(1)pN/nm. This is achievable with laser

traps.

In addition to the crossover between bending and tension dominated regimes, one

may look for the mean tension in the filament. This is perhaps the most important
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theoretical result for the purposes of activity microscopy in networks. We can simply

determine the mean filament tension from the relation

〈τ〉 = τapplied + k‖x0 + k‖〈∆`〉. (2.37)

The average reduction of projected length of the filament due to thermal undulations

can be directly computed from the two-point function via: 〈∆`〉 = `
2

∑
pG(p)p2. We

show in Fig. 2.7 the expected fluctuation profiles for a range of values κ and 〈τ〉.
From these one can compute the mean tension.

2.4 Transverse and longitudinal springs

Now we consider the combination of a longitudinal and a transverse spring attached

to the right end point. This represents the most complex boundary condition that

will be encountered in a generic filament network. For this combination of springs,

we have not found an exact solution, but we provide a self-consistent (Hartree)

calculation for the fluctuation spectrum in which we replace the fluctuating tension in

the filament by the longitudinal spring with its mean value obtained self-consistently

in the calculation.

The essential step is to replace the quartic term in the Hamiltonian Eq. 2.8 by

k‖
2

[∫
u′(x)2dx

]2

→
∑

p

k‖

[(
`

2

)
p2〈∆`〉+

1

2

(
`

2

)2

p4Gp

]
u2
p. (2.38)

The second term results from the mixed term 〈u′(x)u′(y)〉. We will show that it may

be safely ignored. Upon substituting Eq. 2.38, the two-point function is immediately

found to be

〈upup〉MFT =
2kBT/`

κp4 + τp2 + 2k‖〈∆`〉p2 + k‖`p4〈upup〉MFT

. (2.39)
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The final term in the denominator on the right hand side of Eq. 2.39 depends

on the full two-point function and must be satisfied self-consistently. In short, we

replace:
k‖
2

[∫
u′(x)2dx

]2

−−−→
MFT

k‖〈∆`〉
∫
u′(x)2dx. (2.40)

Now we impose a self-consistency condition on the heretofore unknown value of

〈∆`〉. This approximation is valid provided that the variance of ∆` is small, i.e.,
√
〈∆`2〉c � 〈∆`〉.

The MFT Hamiltonian is of the form Eq. 2.2, but with τ −→ τ+k‖〈∆`〉. The two-

point function is found using our previous analysis of the transverse spring problem.

We write

〈upup〉MFT =
2kBT/`

κp4 + τp2 + 2k‖〈∆`〉p2
. (2.41)

We now impose the self-consistency condition by requiring that

〈∆`〉 =
kBT

2

∑

p

1

κp2 + τ + 2k‖〈∆`〉
. (2.42)

Because of the slow convergence of the sum, it is more convenient to solve the self-

consistency condition Eq. 2.42 in position space. We note that Eq. 2.41 is the Fourier-

transformed Green’s function associated with the equation of motion for u(x), as

can be obtained by the functional derivative of the self-consistent Hamiltonian. This

result, however, applies to the case in which we do not allow transverse displacements

at the right end. By changing this Green’s function to the one appropriate for

the transverse spring boundary condition while keeping the shift in tension, we can

obtain the correct self-consistent condition for the case of a transverse spring (as

well as a longitudinal spring). The position space Green’s functions for transverse

boundary conditions, and their respective self-consistency conditions are shown in
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Figure 2.8: (color online) The MFT root-mean square fluctuations for various values

of the transverse spring constant k⊥. The inset provides a log plot of the root-mean

square fluctuations at the spring (right hand side), as a function of k⊥. For large large

k⊥, the endpoint fluctuation scales as
√
u2(`) ∼ k−1

⊥ , as expected for an ideal spring.

Parameter values are κ = 0.0413(pNµm), τ = 4.133(pN), and k‖ = 5(pN/µm).

Appendix A.1. Specifically, we make use of Eqs. A.7 and A.11 to plot fluctuation

dependence on transverse spring strength, as shown in Fig. 2.8.

Fig. 2.8 plots the self-consistent two-point function 〈u(x)2〉 MFT with a transverse

and longitudinal spring. We vary the spring constant of the transverse spring k⊥ mak-

ing several curves. Stiffer transverse springs clearly suppress endpoint fluctuations,

but that suppression only decreases the variance of the endpoint logarithmically in

k⊥. Modest amplitude decreases require exponentially larger spring constants.
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2.5 Conclusion

We have analyzed the effect of various mechanical boundary conditions on the equi-

librium fluctuation spectrum of a semiflexible filament. This work expands upon the

well-known case of equilibrium filament undulations for a filament constrained to

have its end points fixed to lie on an axis and with a prescribed tension. Specifically,

we have considered the case in which there are Hookean elements constraining both

the transverse and longitudinal displacement of an end in the presence of mean ten-

sion (or compression). We have shown that one can directly account for the effect of

a transverse harmonic pinning potential acting on the filament ends. More interest-

ingly, the effect of the longitudinal harmonic potential acting on the projected length

of the filament introduces a fluctuating tension, which is manifested as a nonlinear

(quartic) term in the filament Hamiltonian, even in the case of filaments shorter than

their own thermal persistence length, where geometric nonlinearities associated with

the local filament curvature can be neglected. Understanding the implications of

these boundary conditions for the fluctuations enable one to quantitatively interpret

the fluctuations of a filament segment cross-linked to a network of such filaments in

terms of the various model parameters, since the surrounding network acts to impose

elastic constraints on the segment’s end points.

Previous studies of worm-like chain dynamics have incorporated local filament

extensibility by introducing a new elastic variable, the elongational strain, which is

geometrically related to transverse undulations [116]. Our tensile load is treated as

being uniform along the filament, but it is controlled by the transverse undulations

of the filament, leading to our nonlocal term in the Hamiltonian. For extensible fila-

ments, however, the locally varying tension would also depend on these elongational
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modes.

We point out that applying the elastic element to only one end should be relevant

for this application to networks, since the energy of these “network springs” depends

only on the filament’s deviation from being straight and its projected length along

its path in an unstressed state. Moreover, the local effect of shear deformation

should be to apply a local tension or compression. Even in the case of nonaffine

deformation [52, 159], where applied shear stress leads to local bending, we expect

that the linearity of the response of the filament to bending (over small angles)

will decouple the fluctuations from the mean bending. Thus, this analysis should

allow one rather generally to use the observed transverse fluctuations as sort of a

microrheological probe of tension propagation in networks using activity microscopy.

When we consider a filament subjected to a longitudinal elastic boundary con-

dition that also imposes a finite mean tension, we note that there are three distinct

regimes of fluctuations in which the scale of transverse undulations is controlled by

one of: (i) the elastic boundary condition, (ii) filament bending, or (iii) mean tension.

We have determined the boundaries of these parameter regimes, showing that tension

dominates the longitudinal compliance down to small tensions on the order of
√
Tk‖.

This result sets the minimum tension that may be resolved by activity microscopy.

Using this result, we expect that for biopolymer networks with a modulus on the

order of kPa and mesh size on the order of one micron, we will be able to resolve ten-

sions down to ∼ 1pN. This should enable the detection of both prestress in networks

and molecular motor activity. For small affine network deformations, we may use

the self-consistent longitudinal spring constant k‖ to estimate the real part G′ of the

network shear modulus. For a given cross section of the network, there are ξ−2 seg-

ments, for ξ the average network mesh size. This leads to a modulus G ∼ k‖/ξ [98].
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Using as an example an F-actin network with modulus ∼ 100Pa and a mesh size of

0.5 µm, we estimate this network generates an effective k‖ ≈ 0.2pN/nm. Thus, the

network compliance should affect the cross over from tension to bending dominated

fluctuations – see the discussion of Fig. 6.

The most direct experimental test of the theory is, however, in the analysis of

the fluctuations of a single filament with one pinned end and Hookean constraints

on the other. This might be achieved using a filament bound to particles that

are either optically or magnetically trapped. The trapping potential of the bead

provides (approximate) Hookean boundary conditions, which are both adjustable and

independently measurable. As a result, the theory may be tested using a biopolymer

filament of known bending modulus and measured length (e.g., F-actin) with no

remaining fitting parameters.

Based on these calculations, one may imagine two directions for further study.

First, one may attempt a self-consistent evaluation of the compliance of the “network

springs” under the assumption that they represent a network of filaments identical

to the one under consideration. Such effective medium or mean-field theories have

been pursued for networks of filaments and springs [34, 23, 139].

Secondly, one may ask how the various boundary conditions affect the dynamics of

filament undulations. Other studies have explored the dynamics of the longitudinal

response of inextensible worm-like chains to local perturbations [117, 18, 47, 49].

It remains an open question as to how the boundary conditions studied here in

equilibrium affect those dynamical results. The presence of a longitudinal compliance

once again renders the basic Langevin theory (with a local drag approximation [59] or

even slender body hydrodynamics [86]) nonlinear. We intend to explore this question
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in future work in the limit of slow dynamics where the tension propagation time along

the filament may be neglected. Of course, this is consistent with our treatment here

of the filament being inextensible.

57



CHAPTER 3

Dynamics of undulatory fluctuations of

semiflexible filaments in a network

3.1 Introduction

Semiflexible filaments networks underlie the structure of a number of biological ma-

terials, including the cytoskeleton and the extracellular matrix of tissues [125, 15, 21].

The mechanical properties of such materials depend on the mechanics of their in-

dividual filaments. These semiflexible filaments are essentially inextensible, with

lengths less than their thermal persistence length, indicating a large bending rigidity

κ that keeps them oriented along a mean direction.

Filamentous networks exhibit a number of interesting mechanical properties that

differ from typical elastic continua, such as nonaffine deformation [56, 35] and neg-

ative normal stress [62, 67]. There is now a well-developed theory connecting the

tension response of individual filaments to the linear collective shear response of their

networks: G(ω). Due to the appearance of multiple time scales in the networks’ dy-

namics, G(ω) exhibits a rich variety of behaviors [41, ?, 45, 108].

There is currently considerable interest in local microrheological probes of tension

within the network at the single filament scale. Individual filaments in network are
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subject to thermal fluctuations. Their fluctuation spectrum is, in part, controlled by

the filament’s mechanical boundary conditions imposed by its coupling to the rest

of the network. For example, the fluctuations of the (red) filament in Fig. 3.1 are

modified by that filament’s mechanical coupling via cross links (black/gray circles) to

the surrounding network of (blue) filaments. These boundary conditions include the

tension imposed on the filament, allowing, in principle, one to extract local tensions

from the observations of the stochastic undulations of individual strands within the

network. The technique is called activity microscopy [97, 71].

In our previous paper [71], we examined how the surrounding network, includ-

ing its elastic compliance and state of tension, affects the equilibrium fluctuation

spectrum of the transverse undulations of a constituent filament in the network. In

this chapter, we expand our analysis to dynamics, looking at the time-dependent

correlation and response functions of both individual transverse modes of the fila-

ment and its end-to-end distance. These results will be important for future work on

the frequency-dependent nonequilibrium fluctuations of network filament segments

driven by endogenous molecular motors [105, 99, 104, 90].

We model the mechanical boundary conditions on the semiflexible filament by

both a mean state of tension τ and a linear elastic compliance, representing the

surrounding network. This elastic compliance may be thought of as attaching the

filament’s end to a pair of Hookean springs, one longitudinal spring aligned with

the mean extension of the filament and one perpendicular to it. These springs have

spring constants k and k⊥ respectively. The lower panel of Fig. 3.1 shows a schematic

illustration of the system, whose dynamics will be the focus of this chapter. The

perpendicular spring changes the spatial structure of the eigenmodes of filament

deformation – see Appendix B.4. The longitudinal spring is the most interesting, as
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it introduces a nonlinearity into the filament’s Hamiltonian even in the limit of small

bending. The origin of this nonlinearity (explained more fully below and in Ref. [71])

is that the state of tension in the filament depends on the instantaneous projected

length of the filament. Since we work in the limit that the filament is inextensible,

tension propagation is instantaneous, and the longitudinal spring introduces a term

that is non-diagonal in the Fourier modes of the filament’s undulations, but local in

time. As a result of this nonlinearity, the equilibrium fluctuation spectrum [71] of

the filament and its dynamics are controlled by the set of parameters (κ, τ, k), and

are related to deformation of the network under compression and shear.

The nonlinearity introduced by the boundary compliance (due to the rest of the

network) alters the power spectrum of the variations of the projected length of a

filament’s end-to-end distance when it is cross linked into a network. We study

that here. Using our model, we also calculate the response of that distance to

applied forces. The time-dependent, single-filament response can be then be used to

calculate the dynamic shear modulus and compliance of the network by well-known

methods [?]. The most direct experimental test of our theory, however, is to be

found at the single filament level. We propose that one can directly measure the

relaxational dynamics of a single filament anchored to a substrate and attached to a

bead held in an optical trap [144, 1, 85]. In such a configuration, the trap provides

a longitudinal spring of known (in principle) spring constant. By moving the trap’s

center, one can measure the changes in filament’s fluctuations as a function of tension.

In addition to passive measurements, one should also be able to actively measure the

response function of the filament’s end-to-end distance by driving it via the sinusoidal

oscillations of the trap’s center. We predict that the new effect associated with the

elastic compliance of the trap will be most evident at small values of applied tension.
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Figure 3.1: (color online) Top: visualization of a particular filament (red) cross linked

into a network of similar filaments (blue). The cross links are represented by black

and gray rings. Bottom: schematic diagram of a single semiflexible filament. The

left endpoint is pinned, and the right attached to a longitudinal spring with spring

constant k and a transverse spring with spring constant k⊥. These represent the

elastic compliance of the network. We focus on the effect of the longitudinal spring.

Both endpoints are subject to torque-free boundary conditions.
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The remainder of this chapter is organized as follows. We introduce the model,

including the stochastic equation of motion (Langevin equation) of the filament using

slender body dynamics, in Sec. 3.2.1. Due to the nonlinearity in the Hamiltonian, we

cannot solve these dynamical equations exactly. Instead, in Sec. 3.3 we first compute

the linear response to transverse applied loads in the wavenumber domain to second

order in the longitudinal spring constant. From this, we determine the dynamical

two-point function 〈|up(ω)|2〉 in Fourier space. These perturbative calculations are

organized using the Martin-Siggia-Rose/Janssen-De-Dominicis (MSRJD) functional

integral formalism [146]. Within this diagrammatic expansion, we comment on var-

ious classes of diagrams and propose an approximation using a resummation of the

dominant terms of the perturbation series.

To make these approximations precise, we develop an effective field theory (in

Sec. 3.4), whose mean-field solution reproduces the resummation of the dominant

terms. The mean-field solution is a type of dynamical self-consistent theory, which

we analyze in Sec. 3.4.1. This self-consistent approach allows us to explore non-

equilibrium dynamics and the time-dependent response of pulled filaments. Later,

in Sec. 3.4.2 we expand our effective field theory about its mean-field solution, al-

lowing us to compute fluctuations, particularly of normal modes and the filament’s

projected length. These corrections are found to be rooted diagrammatically in the

random phase approximation borrowed from solid state physics. By considering the

terms arising at higher orders in the expansion about the mean field, we identify

the various classes of diagrams postulated from the second-order perturbative re-

sult, thus determining the validity of our initial approximations. We conclude with

a discussion of our results in Sec. 3.5, where we discuss the expected experimental

signature of the filament’s mechanical boundary conditions on its dynamics. The
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reader interested primarily in those predictions is encouraged to turn first to that

section.

We find two principal effects of the longitudinal spring. The primary one is

a renormalization of the tension by the mean force of the spring, which can be

schematically viewed as τ → τ + k〈∆`〉. Even if one tunes the applied tension to

a small value, the spring, responding to the fluctuations of the end-to-end filament

distance, will impose a tension on its own. The spring thus adds an additional

energy scale that competes with the work done by the imposed tension. We may

approximate the value k∗ at which the spring begins to compete with tension by using

the spring-free result for projected length change 〈∆`free〉 = kBT`
2/12κ [98]. Using

that estimate to compute the renormalized tension, we find the longitudinal spring

constant becomes significant when k ≥ k∗ ≈ 12κτ/kBT`
2. Secondly, the nonlinearity

generically reduces the effective longitudinal spring constant k, as a result of the

nonlinearity transferring the elastic energy amongst the normal modes of filament

deformation to a more energetically favorable configuration. This effect is primarily

seen in the dynamical projected length fluctuations. At high frequencies, this effect

goes away so that the bare spring constant once again becomes observable.

3.2 Filament dynamics

3.2.1 The Model

The filament Hamiltonian with the spring-induced nonlinearity was discussed ear-

lier [71], but we briefly reintroduce it here. Since the filament of length ` is assumed

to be nearly straight, we work in a Monge representation, omitting overhangs, so
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we may specify the filament’s configuration by its transverse coordinate u(x) at a

distance x along the mean orientation. Here we work in two dimensions, with the

understanding that in three dimensions the dynamics simply involves two copies

of the fluctuations considered here, one for each polarization state of the undula-

tions. Where necessary, we later mention the inclusion of both transverse degrees

of freedom. We treat the filament as being inextensible. Tension propagation is

instantaneous. The change in the filament’s projected length due to bending is given

to quadratic order in the transverse displacement by

∆` =
1

2

∫ `

0

(∂xu)2 dx. (3.1)

The Hamiltonian of the filament with bending rigidity κ, under tension τ , and

coupled to a longitudinal spring with spring constant k is

H =
κ

2

∫ `

0

dx
(
∂2
xu
)2

+ τ∆`+
1

2
k∆`2, (3.2)

where ∆` is the amount of the length of the filament taken up by its undulations

– see Eq. 3.1. For notational convenience, the spring constant k used here is equal

to 4k in Ref. [71]. The first term is the usual worm-like chain model, with the

restriction of no overhangs. The second term represents the contribution due to

tension. The third and novel term is due to to a Hookean spring at the boundary.

Since ∆L depends quadratically on the normal modes of the filament, this final

term is nonlinear. Though the nonlinearity was introduced via a boundary condition

(coupling the filament to a longitudinal spring), it manifests as a contribution to the

bulk Hamiltonian.

The tension τ = τapplied + kx0 can be freely adjusted using the externally applied

tension τapplied, or by adjusting the anchoring point of the longitudinal spring x0. By
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a suitable choice of x0, it can be made to vanish. We assume that filament’s ends

are pinned to the x axis and torque free: u and ∂2
xu vanish at the endpoints. This

choice enables one to expand the transverse undulations in a sine expansion

u(x, t) =
∑

p

up(t) sin(px), (3.3)

with wave numbers

pn = nπ/`, (3.4)

where n = 1, 2, . . ..

This Hamiltonian provides minimal coupling of a filament in a network to its

surroundings (treated as a linear elastic solid). It is necessarily nonlinear. The

assumption of instantaneous tension propagation will eventually be violated at suf-

ficiently high wavenumber since these undulatory modes will relax faster than the

tension propagation time. Accounting for tension propagation introduces other non-

linearities to the Hamiltonian, which have been extensively studied [46, 48, 50]. We

return to the relation of our work to these studies in Sec. 3.4.1.

The network is overdamped, being immersed in a viscous fluid with viscosity

η so that inertial effects may be ignored. We treat the hydrodynamic forces on

the filament using resistive-force theory, where the drag force is linear in velocity

and decomposes locally into a component perpendicular to (with coefficient ξ⊥) and

parallel to (with coefficient ξ‖) the mean tangent t̂ ≈ x̂. In terms of the position

vector of a segment of the filament: ~u = (x, u1(x), u2(x)), where the 1, 2 subscripts

label the coordinates transverse to the direction of the undeformed filament x̂, the

drag force is [158]
[
ξ‖t̂t̂+ ξ⊥(1− t̂t̂)

]
· ∂t~u = −~Fdrag, (3.5)
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where the drag coefficients are given by ξ⊥ ≈ 4πη
ln `/a

, ξ‖ ≈ ξ⊥/2. We neglect any

modification of the effective drag per unit length near the filaments ends, and we

neglect any nonlocal hydrodynamics which produce logarithmic time corrections [33,

45]. The drag terms retained give the leading contribution to the drag forces in

slender body theory, which provides a power series in ln(`/a)−1 [95] at zero Reynolds

number. Lastly, if we keep the drag forces acting on the filament only to linear order

in u, we may neglect the drag associated with tangential motion.

We now obtain overdamped, model A dynamics [59]

ξ⊥∂tu(x, t) = −δH/δu(x, t) + ζ(x, t). (3.6)

We also include Gaussian white noise

〈ζ(x, t)ζ(x′, t′)〉 = 2ξ⊥kBTδ(x− x′)δ(t− t′) (3.7)

in the stochastic equation of motion, Eq. 3.6, consistent with the fluctuation-dissipation

theorem. The analysis presented here is immediately generalizable to nonequilibrium

and frequency-dependent noise, as long as it remains Gaussian.

3.2.2 Spring-free results

We first review the previously studied dynamics of a filament with fixed applied

tension and no coupling to springs. The Langevin equation is linear and admits a

normal mode decomposition in terms of half integer wavelength sine waves discussed

above. Integrating over frequencies and averaging with respect to the white noise

produces the dynamic correlation function for the amplitudes of these sine waves [15]

– see Eqs. 3.3, 3.4.

〈up(t)up(0)〉 =
2kBT

`

e−γ
0
pt/ξ⊥

γ0
p

, (3.8)
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where we have introduced

γ0
p = κp4 + τp2, (3.9)

so that γ0
p/ξ⊥ is the wavenumber-dependent decay rate. There are no cross correla-

tions between amplitudes of different normal modes.

There is a crossover between tension- and bending-dominated relaxational dy-

namics, set by the tension length

`τ =
√
κ/τ. (3.10)

In the long-wavelength λ � `t tension-dominated regime, modes have an approxi-

mate relaxation time τrelax ∼ ηλ2

τ ln(`/a)
. In the short-wavelength bending-dominated

regime, modes have an approximate relaxation time τrelax ∼ ηλ4

κ ln(`/a)
. With vanish-

ing applied tension, one observes a very broad range of relaxation times due to the

λ4-dependence. We now consider dynamics with the inclusion of the longitudinal

spring, which mixes the filament’s normal modes.

3.3 The longitudinal spring: perturbative expansion

We hereafter work in units such that kBT = 1. At the end of any calculation, we

must then input factors of kBT where units of energy are needed. In these units, we

can use the Einstein relation

D = ξ−1
⊥ (3.11)

to freely switch from ξ⊥ to D, the latter of which represents a diffusion constant

times a length. We now return to the full model A equation of motion defined by

Eq. 3.6. By using Eqs. 3.1 and 3.2, we find

∂up
∂t

= −Dγ0
pup −Dk∆`up + hp + ζp, (3.12)
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where ζp(t) and hp(t) represent noise and externally applied transverse force re-

spectively, each absorbing a factor of D. From Eq. 3.7, we infer that equilibrium

correlations of the Gaussian white noise obey the usual relation

〈ζp(t)ζp′(t′)〉 = (4D/`)δpp′δ(t− t′). (3.13)

The second term on the right hand side of Eq. 3.12, proportional to k, couples

each mode (labeled by p) to changes in the total projected length of the filament,

which depends on a sum over the square of amplitudes of all the dynamical modes. As

a result, this term in the equation of motion is nonlinear. In order to systematically

compute correlation functions in the presence of this nonlinearity, we make use of

the MSRJD functional integral method [146, 4].

We start by introducing the moment generating MSRJD functional

Z[j, j̄] =

∫
D[iū(x)]D[u(x)]e−

∫
(A(ū,u)−j̄ū−ju )dxdt, (3.14)

with the action A separated into: a Gaussian part A0, which generates correlation

functions of the spring-free system, the nonlinear and spring-dependent correction

Aint, and a term representing the external h-dependent forcing:

A[u(x, t), ū(x, t)] = A0 +Aint +D

∫
dxdt ūh. (3.15)

The Gaussian part is

A0 =

∫
dtdx

[
ū
(
∂t +D(κ∂4

x − τ∂2
x)
)
u−Dū2

]
, (3.16)

and the nonlinear interaction is

Aint = −Dk
2

∫
dtdxdy ū(x, t)

∂2u(x, t)

∂x2

(
∂u(y, t)

∂y

)2

. (3.17)
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For the nonlinear action, we have explicitly written out the spatial and time depen-

dencies. Each field is evaluated at the same time (a consequence of instantaneous

tension propagation), yet there are two independent spatial variables x and y (non-

locality).

Finally, we recall that (n, n̄)-point cumulants, representing response functions

and correlation functions, are computed via functional derivatives of the logarithm

of the MSRJD functional:

〈
n,n̄∏

i,k

uiūk〉 =

n,n̄∏

i,j

δ

δji

δ

δj̄k
lnZ[j, j̄]|j=j̄=0, (3.18)

where the brackets denote averages over the stochastic forces ζ(x, t). Specifically,

by taking a derivative δ〈u(x, t)〉/δh(x′, t′)|h(x′,t′)=0, we obtain the transverse linear

response function:

χuu(x, x
′; t, t′) = D〈u(x, t)ū(x′, t′)〉. (3.19)

The source field j̄ provides the same information as h. Hereafter we set h = 0. The

response function is trivially related to the propagator G(x, x′; t, t′) of the theory via

a factor of D:

G(x, x′; t, t′) = D−1χuu(x, x
′; t, t′). (3.20)

We also define the dynamic or time-dependent correlation function

C(x, x′; t, t′) = 〈u(x, t)u(x′, t′)〉, (3.21)

hereafter referred to as the correlator. Given knowledge of χuu(x, x
′; t, t′), it can

be found easily via fluctuation-dissipation theorem, so it need not be calculated

independently, at least for the equilibrium dynamics that we study here.

We have chosen the Ito formulation of the Langevin equation, such that the

Jacobian of our field transformation from ζ(x, t) to u(x, t) is unity. This corresponds
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p

t1

t1

p

q

q0

p0

p0

Figure 3.2: Diagrams contributing to the perturbation theory of the (u, ū)

fields. The propagator (left) is a function of a single p and the time difference:

〈up(t)up′(t′)〉 = δpp′G
0
p(t − t′). The noise vertex (middle) produces two outgo-

ing lines, and has a coefficient D. The interaction vertex (right) is equivalent to

−Dk`2
8

p2q2δpp′δqq′ . It carries two Kronecker deltas, and depends on two wavenumbers

p, q. This is a consequence of the spatial nonlocality of the nonlinear interaction.

Dashed lines connect two points at equal times. In the interaction vertex (right), we

associated a factor of p2δpp′ (q2δqq′) with each vertex of the dashed and solid lines,

and a factor of −Dk`
2

8
with the dashed line itself.

to the step function continuation Θ(0) = 0, and, as a result, all perturbative terms

consisting of closed response loops evaluate to zero, consistent with causality. For

general time ordering schemes, closed response loops can be shown to be canceled

by the appropriate Jacobian factor, ensuring that the physical result is independent

of discretization choice [146].

Eqs. 3.14, 3.15 enable the full machinery of diagrammatic perturbation theory

in k. Expectation values with respect to the Gaussian action are denoted by the

brackets 〈. . . 〉0. The diagrammatic rules are summarized in Fig. 3.2. In wavenum-

ber space, the Gaussian propagator is proportional to a Kronecker delta δpp′ , and

therefore depends only on a single wavenumber. The retarded (+) and advanced (−)
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propagators are given by

G0,±
p (t) =

2

`
θ(±t)e∓γ0

pt, (3.22)

and represented by a directed line from earlier to later times. The comma in the

superscript emphasizes that the 0 is a label, and not related to the whether the

propagator is advanced or retarded. The step function allows us to identify outgoing

lines as ū fields and incoming lines as u fields.

One may further define an undirected line to be the bare correlator

C0(x, y, t) = 〈u(x, t)u(y, 0)〉0. (3.23)

However, since the bare correlator is related to the transverse linear response func-

tion via fluctuation-dissipation theorem, we can avoiding introducing the additional

undirected propagator by treating the noise term ∼ Dū2 term in Eq. 3.16 as a new

vertex [146] denoted by the filled square in the middle of Fig. 3.2.

The spring-induced nonlinearity generates a spatially nonlocal, but instantaneous

vertex. As a result, the bare vertex shown in Fig. 3.2 carries two independent Kro-

necker deltas in wavenumber and a delta function in time (dashed line), as well as

four factors of wavenumber. See the caption of Fig. 3.2 for further details. We can

easily switch from the time domain to the frequency domain, by Fourier transforming

the fields

up(t) =

∫ ∞

−∞

dω

2π
up(ω)e−iωt, (3.24)

and imposing frequency conservation at each vertex.

Using these diagrammatic rules, we compute the k-dependent corrections to the

propagator to two-loop order, which is also second order in k. Generally, in per-

turbation theory these corrections can be neatly grouped into a self-energy Σp(ω),
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defined by the relation 〈Gp(ω)〉−1 = (G0
p)
−1(ω)−Σp(ω) [4]. The physical interpreta-

tion of this quantity is found in the shift of the bare decay rate from Eq. 3.9, so that

γ0
p → γ0

p − 2
D`

Σp(ω). As such, we define the adjusted self-energy

Σ̃p(ω) =
2

D`
Σp(ω), (3.25)

which is precisely the shift in γ0
p .

All the necessary diagrams for this calculation are shown in Fig. 3.3, and we refer

to them hereafter by their label in that figure, beginning with A1 at the top and con-

tinuing to D4 in the bottom right. They are individually calculated in Appendix B.1.

Here, we report the full two-loop self-energy (writing out kBT explicitly for clarity):

Σ̃p̄(Ω) = −kkBT p̄
2

κ

[
1

p̄2 + 1
+

1

2

∑

q̄

1

q̄2 + 1

]

+
k2k2

BT
2

κτ 2

[
p̄2

2(p̄2 + 1)3
+

3p̄4

(p̄2 + 1)2(−iΩ + 3p̄2(p̄2 + 1))

+
1

2

p̄2

(p̄2 + 1)

∑

q̄

1

(q̄2 + 1)2

(
1− −iΩ
−iΩ + 2q̄2(q̄2 + 1) + γp̄

)

+
p̄2

4

∑

q̄

1

q̄2 + 1

∑

q̄

1

(q̄2 + 1)2

]
. (3.26)

We have introduced dimensionless wavenumbers p̄ = p
√
κ/τ = p`τ and frequen-

cies Ω = ωκ
Dτ2 = ω/ω∗. These units are convenient, provided that the tension is not so

small that `τ ≈ `, but they are primarily used in order to aid in a qualitative analysis

of Eq. 3.26. Physically, these units correspond to the distance from the spring-free

bending-tension dominated transition. For an alternative scheme valid at small τ ,

see Eq. B.10.
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(D1) (D2) 

(D3) (D4) 

(C1) 

(C2) (C3) 

(A1*) (A2) 

(B2) 

(B1*) 

(B3) 

Tension 
renormalization 
(dominant) 

Spring constant 
renormalization 
(subdominant) 

Remaining  
terms 
  

O(k2)

Figure 3.3: All diagrams contributing to the self-energy (see definition preceding

Eq. 3.25) through O(k2). There are two O(k) contributions marked by an aster-

isk. For detailed calculations, see Appendix B.1. Diagrams A1 and B1 are later

used to renormalize tension (Eq. 3.34) and self-consistently compute the self-energy

(Eq. 3.28).
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The O(k) correction is negative, and proportional to p̄2, which tells us that it

renormalizes the effective tension to a larger value. This is expected, as the spring

stiffens the filament to elongation, causing it relax faster. To analyze the effects

of the spring beyond first order, we categorize the two-loop self-energy into three

types of contributions, beginning with the most dominant. The first group consists

of type A diagrams in Fig. 3.3. These are ∼ p̄2 so they become appreciable at large

wavenumber. Due to the summations, they also grow with system size, i.e., filament

length. As we will see in Sec. 3.4.1 (and commented on more in Appendix B.1), these

correspond to a renormalization of the tension, and may be eliminated by using a

self-consistent approach to the Green’s function.

The second group consists of the type B diagrams in Fig. 3.3. After τ renor-

malization, these are the next most important class of diagrams. We will later find

that they correspond to renormalization of the spring constant k. At large p̄, they

plateau to a constant value, and, at small p̄, they decay as p̄2. These corrections are

important for p̄ ≤ 1. These contributions are largest at zero frequency, where they

acquire a prefactor ∼∑q̄(q̄
2 + 1)−2. But this remains small when compared to the

type A diagrams, which are proportional to
∑

q̄(q̄
2 + 1)−1. In general, we will find

(see Sec. 3.4.2) that any diagram containing a solid loop with n outgoing dashed lines

will be proportional to a summation
∑

q̄(q̄
2 + 1)−n, and thus represent increasingly

smaller contributions.

The third and final group consists of both type C and D diagrams of Fig. 3.3.

These diagrams have a single solid line with crossed (type C) or uncrossed (type

D) dashed lines. At large p̄, these vanish and are therefore small compared to the

diagrams of the first (A) and second groups (B). At small p̄, they go to zero as p̄2,

however, they lack a summation compared to the other terms in Fig. 3.3 and are
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thus still smaller. At O(k2), these summations are ∼∑p̄ p̄
−2. As a result, we infer

that the missing summations in type C and D diagrams cause them to be about an

order of magnitude smaller than the contributions from the other O(k2) diagrams.

Furthermore, at high frequency, the contributions from the crossed (C) diagrams are

smaller than those from non-crossing (D) diagrams. This suggests that we may ignore

crossed diagrams in any self-consistent treatment of the dynamics, as described be-

low. This distinction between the crossing and non-crossing diagrams is analogous to

impurity scattering in condensed matter, where one also finds that crossing diagrams

in electron impurity scattering calculations may be safely ignored [130, 163].

We now use the previous analysis to develop a self-consistent approximation for

the propagator of Eq. 3.20 in frequency/wavenumber space. The principal effect of

the longitudinal spring is to renormalize tension. The details of that process will be

shown in Sec. 3.4.1. We account for this by defining

γp = κp4 + τRp
2, (3.27)

which everywhere replaces γ0
p . τR is the renormalized tension due to the longitudinal

spring. We next incorporate the remaining first order correction (diagram A1), by

considering it as the first term in a series of diagrams that contain a single solid

line, with no crossed dashed lines (the O(k2) term in this series consists of all type D

diagrams in Fig. 3.3). The infinite summation can quickly be achieved by demanding

that the self energy is equal to the contribution in diagram A1, so long as we replace

the bare propagators by a dressed ones. This leads to the self-consistent equation

Σ̃NCA
p (ω) = − kkBTp

4

γp − Σ̃NCA
p (ω)

, (3.28)

known as the non-crossing approximation (NCA). This is certainly correct to O(k),

and as ω → ∞ becomes precise to all orders in k. Since this is a self-consistent
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equation, we are free to extend k to large values where we can see its effect. Eq. 3.28

is algebraic, and we easily find the solution

Σ̃NCA
p (ω) =

γp
2

(
1−

√
1 +

4kkBTp4

γ2
p

)
. (3.29)

The simplicity of this result is a direct consequence of the spatial nonlocality of our

interaction; since dashed lines do not carry wavenumber, there is no summation over

modes in diagram A1. From Σ̃NCA
p (ω), we find the NCA transverse linear response

function

χNCA
p (ω) =

2D/`

−iω + 1
2
Dγp

(
1 +

√
1 + 4kkBTp4/γ2

p

) (3.30)

Using the fluctuation-dissipation theorem and reinserting kBT where necessary to

work in physical units, we obtain the dynamic correlator

CNCA
p (ω) =

4kBT/ξ⊥`

ω2 +
γ2
p

4ξ2
⊥

(
1 +

√
1 + 4kkBTp4/γ2

p

)2 . (3.31)

At low tension, we intuitively expect the effect of the longitudinal spring to be

stronger. We thus seek units in which the tension can easily be taken to small

values. Per the discussion of Sec. 3.2.2, at low wavenumber, the system is in a

tension-dominated regime. Accordingly, we switch to a dimensionless length scale

by factoring out the wavenumber of the lowest mode p1 = π/`. We also adopt a

dimensionless tension, spring constant, and frequency:

φ =
τ`2

κπ2
, (3.32a)

k̄ =
kkBT`

4

κ2π4
, (3.32b)

ω̄ =
ωξ⊥`

4

κπ4
. (3.32c)
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Figure 3.4: (color online) NCA dynamical correlation function normalized by its first

mode at both low (black) and high (blue) tension in the presence (solid) or absence

(dashed) of the longitudinal spring. ω̄ = 100. The solid black curve overlaps with the

solid blue curve at low mode numbers, indicating that the spring generates tension

in the absence of any pre-existing tension, given in a nondimensionalized form as

φ. In the presence applied tension φ > 0, the spring increases the effective tension,

pushing the transition from tension- to bending-governed fluctuations to higher mode

numbers (blue curves).
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To compute Cp(ω), we must further calculate tension renormalization. In terms of

φ, this amounts to the replacement

φR = φ+ ∆φ, (3.33)

where ∆φ is defined by the self-consistent equation

∆φ =
k̄

2

∞∑

n=1

1

n2 + φ+ ∆φ
. (3.34)

This equation can be derived by approximating the entire self-energy correction by

the dominate diagram A2 in Fig. 3.3, provided we replace the loop propagator with

the dressed one. This approximation is discussed more fully in the context of the

mean-field theory in Sec. 3.4.1. In terms of mode number n, we find the correlator

to be

CNCA
n (ω̄) =

4kBTξ⊥`
7/κ2π8

ω̄2 +
(

1
2
n2(n2 + φR)

(
1 +

√
1 + 4k̄

(n2+φR)2

))2 . (3.35)

In Fig. 3.4, we plot the NCA correlator as a function of wavenumber. Generi-

cally there are three regimes going from low to high mode number. There is a low

wavenumber plateau transitioning into a n−4 decay, followed by an n−8 decay at suf-

ficiently high mode numbers. The effect of the spring is to shift these transitions to

lower mode number. For sufficiently high spring constants, the plateau regime may

disappear entirely as shown by the (blue and black) solid curves in the figure. The

condition for the appearance of the plateau is that ω̄ > max{n4/4, φ/4} for some

n ≥ 1. The principal effect of the spring is still tension renormalization. Even as

φ → 0, the longitudinal spring ensures that the filament still behaves as if it were

under tension. For finite values of the applied tension, the effect of the spring still

increases the total effective or renormalized tension, moving the transition to higher-

frequency, bending-dominated fluctuations to still higher modes. The fact that the
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mode where the fluctuations change from being stretching- to bending-dominated

moves in response to the external spring suggests that the effects of even a weak

spring will be most easily observed near this tension-to-bending transition (p = `−1
τ )

of the spring-free model.

In Fig. 3.5, we look at how varying the applied tension and spring constant shift

the lowest mode C1(ω). If the spring does not significantly alter ∆`, then the tension

k∆` created by the spring increases linearly in k. However, due to the self-consistent

condition, at high k, ∆` diminishes, causing tension to increase as k2/3. We discuss

this scaling more fully in Sec. 3.4.1. As a result, the correlator decays like k̄−4/3, as

shown in the top panel of Fig. 3.5. The transition occurs when k∗ = τ/∆`, which

we approximate as k∗ ≈ 12κτ/kBT`
2 by replacing ∆` with its small tension and

spring-free result [98].

We can also see the transition in the correlation function by keeping k constant

and varying tension. The correlator transitions from being φ-independent to decaying

as φ−2 with increasing φ, as shown in the bottom panel of Fig. 3.5. The dependence

of the correlator upon applied tension is the same as in the spring-free model. The

transition occurs once φ is greater than both 4ω̄2 (for the lowest mode) and the

renormalized tension ∆φ, due to the spring. As a result, the spring washes out the

effect of small applied tensions, replacing the overall tension with its renormalized

value. We now turn to a justification of the approximations outlined above, as well

as derive new results concerning projected length fluctuations. Our main tool will

be functional techniques using the MSRJD formalism.
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Figure 3.5: (color online) Lowest mode of the dynamic correlation function vs. (top)

spring constant and (bottom) applied tension. The top panel is evaluated at low

tension, φ = 10−2, and the bottom at ω̄ = 1. At large k̄, the effective tension grows

sublinearly as ∼ k̄2/3, leading to the k̄−4/3 dependence of C1. In the bottom panel,

the lowest mode dynamic correlation function decays as φ−2, which is identical to

the spring-free k = 0 case. The transition to the φ−2 decay occurs at tensions higher

than φ ≈ k̄〈∆`〉.
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3.4 Projected length auxiliary field theory

The spatially nonlocal theory presented here was previously examined in equilib-

rium, where the nonlocal aspect allowed for a complete resummation of diagrams

contributing to the two point function [71]. In the dynamical version, however, this

resummation fails. The previous calculation of equal-time correlation functions al-

lowed for a great simplification due to the fact that all of these diagrams collapsed

into one of two groups - see Ref. [71]. The calculation of dynamical correlations

here, however, introduces a time associated with each interaction. This time order-

ing makes all the previously identical diagrams from Ref. [71] distinct. Since, in

the dynamical theory, dashed lines carry frequency, there are an infinite number of

inequivalent single-line diagrams, differentiated by the arrangement of dashed-line

contractions (for example, compare the class C and D diagrams in Fig. 3.3).

Despite this complication, we may still proceed along the lines of Ref. [71]. Inspec-

tion of Eq. 3.2 suggests that the Hamiltonian is more naturally expressed in terms of

∆`(t) rather than u(x, t). This will allow us to more easily compute projected length

fluctuations 〈∆`(t)∆`(t′)〉, which are relevant for experiments measuring the dynamic

shear modulus. As a tradeoff, solving for the two-point function, 〈up(ω)up′(ω
′)〉, will

be harder.

In order to change functional integration variables from u(x, t) → ∆`(t), we

first employ a Hubbard-Stratonovich transformation to write the quartic interaction,

1
2
k∆`2, in terms of an interaction with auxiliary fields λ, λ̄. This amounts to using

the identity [164]

e−
∫
dtz̄z =

∫
D(λ̄, λ)e−

∫
[λ̄λ−z̄λ−λ̄z]dt (3.36)

in Eq. 3.14, while making the identifications z̄ = −Dk
∫
ūu′′dx and z = ∆` =
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Figure 3.6: λūu and λ̄uu interactions. The Hubbard-Stratonovich transformation

cuts the four-point vertex into two three-point vertices. Dashed lines are now di-

rected, with λ incoming and λ̄ outgoing.

1
2

∫
u′2dx. Diagrammatically, this transformation severs the undirected dashed line

into the two three-point vertices depicted in Fig. 3.6. This transformation is essen-

tially a δ-function, acting to assign the change in projected length to the variable

λ(t). We may alternatively arrive at this step by introducing a Lagrange multiplier

into the Hamiltonian, writing down the Langevin equation, then finding the MSRJD

functional.

We now add additional source terms
∫
dtjλ(t)λ(t) + j̄λλ̄(t) to the expanded func-

tional, which will generate correlations of the auxiliary λ, λ̄ fields. To understand

the physical meaning of these new auxiliary fields, we take the functional derivatives

δ
δjλ
, δ
δjλ̄

of the generating functional before and after integration over (λ̄, λ), and com-

pare the results. δZ[jλ, j̄λ̄]/δjλ produces the moments of ∆`(t). As a result, there is

a one-to-one correspondence between expectation values of λ(t) and ∆`(t). That is,

for any N -point correlation

〈
N∏

i

λ(ti)〉 = 〈
N∏

i

∆`(ti)〉. (3.37)

λ̄ is related to the linear response of the projected length to an applied tension.
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For a small change in applied tension ∆τ , this is defined as

χ∆`(t, t
′) =

δ∆`(t)

δ∆τ(t′)

∣∣∣∣
∆τ=0

. (3.38)

Eq. 3.36 shows that λ̄ appears conjugate to ∆`, in the same manner as would a

time-dependent applied tension. Applying two derivatives δ2 lnZ
δjλδj̄λ̄

∣∣∣
jλ=j̄λ̄=0

before and

after integration over auxiliary fields, and then comparing the results, we find the

linear response is expressed in terms of the auxiliary fields as

χ∆`(t, t
′) = k−1(1− 〈λ(t)λ̄(t′)〉). (3.39)

As a result of the Hubbard-Stratonovich transformation, the action A now de-

pends on four fields A[λ̄, λ, ū, u]. It is quadratic in the fields ū, u, so we may integrate

them them out. Doing so, yields the effective action

A[λ̄, λ, j̄, j] =

∫
λ̄λdt+

1

2
Tr ln G−1 − 1

2

∫
jTGjdt, (3.40a)

G−1
p =


 −2D1 (G+

p )−1

(G−p )−1 −p2λ̄1


 (3.40b)

plus λ, λ̄-dependent source terms. In the above expressions, the lower case, bold

letters stand for the vectors of the fields u = (ū, u), λ = (λ̄, λ), and j = (j̄, j). The

trace runs over fields. It also includes a summation over wavenumbers p. We have

defined the 2x2 block matrix (since its components are operators) G−1 in terms of

the advanced/retarded propagators

G±p (t, t′) = G0,±
p (t)e∓Dkp

2
∫ t
t′ λ(t′′)dt′′ . (3.41)

Since A retains its dependence on the source terms j, we may still generate

correlations of the transverse displacement field via functional differentiation, as
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defined in Eq. 3.18. As expected, correlations 〈uu〉 depend on expectation values of

operator inverses containing stochastic fields λ. We have traded calculating a simple

observable with a complex probability functional for a nonlinear observable with a

simple probability functional. Correlations with respect to ∆`, on the other hand,

are evaluated at j = 0 and are tractable, provided we can simplify the trace-log

appearing in A.

Since the spring constant k appears only in the combination ∼ Dkp2λ, we may

shift integration variables λ → λ/Dk, thereby putting all of the k dependence in

A into the first term
∫
dtλ̄λ/Dk. As k → 0, A oscillates wildly, indicating that

saddle-point evaluation of the functional integral becomes exact. We may then carry

out a controlled small k expansion of A about its saddle-point solution (λ̄0, λ0)

plus fluctuations. Incidentally, the saddle-point solution λ0 is precisely the average

〈∆`(t)〉, regardless of whether or not k is small.

3.4.1 Mean field theory

We investigate the saddle-point solution corresponding to the effective action Eq. 3.40a,

which becomes exact as k → 0. We denote the saddle point solutions for the auxil-

iary fields by λ0 and λ̄0. We will find that the saddle-point solution corresponds to a

type of dynamical “mean-field theory” (MFT), and henceforth refer to λ̄0, λ0 as the

mean-field solutions.

The saddle-point equations are

δA/δλ = δA/δλ̄ = 0, (3.42)

evaluated at λ = λ0 and λ̄ = λ̄0. Functional differentiation of the trace-log appearing
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in A is carried out in the standard way [4], using δλ̄ Tr ln G−1 = Tr
(
Ĝδλ̄Ĝ

−1
)

. As λ̄

appears only in the (22) component of G−1, functional differentiation yields a matrix

with one in the (22) component, and zeroes elsewhere. Taking the matrix product

with G and performing the trace yields the (22) component of G. We emphasize

again that G−1 is really a 2x2 block matrix, with each block representing an operator.

Since G−1 is not diagonal in either the time or frequency domains, we cannot trivially

invert it. Instead, we determine G via its defining equation (Ĝ−1)ikĜkj = δijδ(t−t′).
This yields the result G22 = (1− p2Ĉpλ̄0)−1Ĉp.

Since δĜ/δλ = 0, the first saddle-point equation is trivially

λ̄0(t) = 0. (3.43)

The second saddle-point equation can now be easily found by setting λ̄0 = 0. We

find the second saddle-point equation

λ0(t) = D
∑

p

p2

∫ t

−∞

[
G+
p (t, t′)

]2
dt′, (3.44)

where G+
p (t, t′) was defined in Eq. 3.41. This depends only on λ0, and we call it the

mean-field condition.

There are two alternative ways to interpret this result, each of which add to our

physical understanding. First, in the context of the (ū, u) diagrammatic perturbation

theory defined by Fig. 3.2, we can recover the mean-field condition by summing over

all one-correlator loop corrections to the propagator. These contributions can be

grouped into a mean-field self energy ΣMFT
p (t). We then demand that ΣMFT

p (t) is

equivalent to diagram A1 in Fig. 3.3, when the loop correlator is replaced by a

dressed correlator. Looking for a solution of the form Σ̃MFT
p (t) = −k̄p2λ0 reproduces

the mean-field condition. This observation suggests that the mean-field theory is
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the leading term in an expansion of A[λ̄, λ], determined by the maximal number of

dashed lines emanating from a closed, solid line loop. We call a subdiagram with n

outgoing dashed lines an n-bubble. The suggestion turns out to be accurate, and is

elaborated on more in Sec. 3.4.2.

Second, we may arrive at Eq. 3.44 by employing a type of mean-field approxima-

tion, in which we make the replacement: ∆`2 → 2〈∆`〉∆` in the Hamiltonian – see

Eq. 3.2. The angled brackets denote averages with respect to the noise. Looking at

this replacement more closely, we note that the equilibrium average 〈∆`(t)〉 must be

a constant in time. Here, however, the averaging is applied with respect only to the

noise, and not to the initial configuration of the filament. In that case, the average

〈∆`(t)〉 can evolve in time from any particular initial condition. The mean-field the-

ory is capable of describing the relaxation of this variable to its equilibrium value.

For example, we can consider a situation where the filament is pulled starting at

time t = 0.

Returning to our mean field approximation, the MFT Hamiltonian is now linear.

The resulting Langevin equation is also linear, and can be solved for up(t) in terms of

the noise ζp(t) and 〈∆`(t)〉. Imposing the self-consistency condition given by the def-

inition in Eq. 3.1 of projected length, and identifying λ0(t) = 〈∆`(t)〉, we reproduce

the mean-field condition Eq. 3.44. Physically, the mean-field approximation assumes

that the normal modes respond only to the change in the averaged projected length,

and ignore changes in ∆` due to fluctuations of other normal modes. This approach

is actually a mean-field differential equation for the function λ0(t). The mean-field

theory is neatly summarized as the following Langevin equation

∂up(t)

∂t
= −D

[
γ0
p + kp2λ0(t)

]
up(t) + ζp(t), (3.45a)
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with the condition

λ0(t) =
`

4

∑

p

p2〈u2
p(t)〉. (3.45b)

Combining these two equations results in the integral equation given by Eq. 3.44

for λ0(t). When solving the integral equation, it is more convenient to work with the

time derivative of λ0(t). Following the notation of Hallatschek et al. [46, 48, 50], we

hereafter refer to Eq. 3.44 as a partial-integro differential equation (PIDE). The quan-

tity kλ0(t) acts as a time-dependent tension, whose value depends self-consistently on

the instantaneous conformation of the filament. Our model appears similar to those

describing nonlinear tension propagation along inextensible filaments [138, 46, 48, 50].

This is true for both the ordinary and multiscale perturbation theory [48]. These

authors obtain a PIDE similar to ours, where our λ0(t) is analogous to their stored

thermal length 〈%(t)〉. Our analysis differs from the previous work in that the inherent

longitudinal compliance of the system is concentrated in the external longitudinal

spring, rather than the extensional deformation of the filament. The longitudinal

spring responds only to a particular, collective degree of freedom of the system –

the end-to-end length. Moreover, the longitudinal spring constant can be changed

arbitrarily for a filament with fixed elastic compliance, which provides more freedom

for exploration.

When comparing our analysis to the multiscale perturbation theory PIDE, the

key distinction is that our λ0(t) does not have spatial dependence. Theories of ten-

sion propagation in untensed and tensed filaments [138, 58, 116] allow for a finite

propagation speed of tension, which requires that the longitudinal extension be spa-

tially dependent. In either case, provided we are looking at filaments short enough

that we may neglect the finite speed of tension propagation, our results should hold.
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The filament length upper bound occurs roughly when the total longitudinal fric-

tional force is equal to the forcing applied at the boundary. This, in turn, defines a

time-dependent length scale `‖(t) beyond which filament segments are set into lon-

gitudinal motion due to tension propagation. This length scale is to be compared

to the characteristic length `⊥(t) of transverse undulations. Previous authors have

shown that the ratio `‖(t)/`⊥(t) ∼ (`p/`)
1/2, which in our stiff filament approximation

ensures that we may neglect tension propagation [48].

In Eq. 3.53, we show the predicted response function of the end-to-end distance

in the presence of prestress. While the projected length fluctuations in the absence

of prestress have been studied [40, 108, 45], there has not been an explicit discussion

of the problem with prestress 1. We leave details of the evaluation of λ0(t) to Ap-

pendix B.2, and here discuss the results. In the long time limit, λ0(t) must approach

its equilibrium configuration, a constant λ0. Writing λ0(t) = Dkλ0, we find λ0 obeys

the self-consistent equation (restoring kBT for the moment for ease of comparison)

λ0 =
kBT

2

∑

p

1

κp2 + τ + kλ0

, (3.46)

which can be interpreted as a renormalization of the tension τ → τ + k〈∆`〉. In

terms of the dimensionless tension φ (see Eq. 3.32a), this is expressed as the shift

φ→ φ+ ∆φ, where ∆φ satisfies the MFT equation in Eq. 3.34. The MFT dynamics

of a filament attached to a longitudinal spring in equilibrium are thus the same as

for a semiflexible filament under tension, provided we renormalize tension.

The time-dependent λ0(t) solution is determined by its initial condition. We

1The response of unstressed filaments in an equilibrium ensemble to an applied tension at t = 0
has been studied [45, 48], and incorrectly extended to filament fluctuations under prestress via
fluctuation dissipation theorem [15]. The response is not in the linear forcing regime, and thereby
the fluctuation dissipation theorem does not hold
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Figure 3.7: (color online) Growth of additive tension renormalization ∆φ as a func-

tion of the dimensionless spring constant k̄. φ = 100. At k = τ/∆`0, we can no

longer approximate ∆` as being k-independent. It decays like k−1/3, leading to the

shift to k̄2/3 growth in ∆φ.
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consider the case where the filament is initially in equilibrium with the longitudinal

spring, then at t = 0, we apply a small additional tension δf(t) to an already tensed

filament with tension τ � δf(t). In Appendix B.2, we derive the general solution

for this situation. We define the change in the projected length from its equilibrium

value,

δλ0(t) = λ0(t)− λ0. (3.47)

At t = 0, δλ0(t) vanishes, and at t =∞ it must plateau to a constant as the system

again reaches a new equilibrium. The Laplace transform δλ0(z) obeys the equation

δλ0(z) = − M̃(z)

1 + kM̃(z)/z
δF (z), (3.48)

where the kernel M̃(z) is defined in Eq. B.26. The function δF (z) is the Laplace

transform of the time-integrated applied tension defined in Eq. B.19. The negative

sign arises because putting a filament under tension causes it to extend, thereby

increasing total projected length, and thus decreasing ∆`.

We now examine two cases:

δf(t) =





oscillating: f sinωt

constant: f
, (3.49)

corresponding to oscillatory and constant applied tensions respectively. These lead

to the Laplace-transformed integrated tensions

δF (z) =





oscillating: f(z/ω)/(z2 + ω2)

constant: f/z2
. (3.50)

The Laplace transform of the MFT longitudinal linear response is trivially related

to δλ0(z):

χ∆`(z) = δλ0(z)/f. (3.51)
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The remaining step is to take the inverse Laplace transformation in both cases.

We first discuss the oscillatory solution. In the long time limit, only residues

corresponding to the purely imaginary poles will remain. The only contributing poles

are due to δF (z), which occur at z = ±iω. We can thus substitute χ∆`(z → −iω)

to obtain the long-time oscillatory solution. An alternative derivation is presented

later in Sec. 3.4.2 using the MSRJD formalism. Comparing M̃(−iω) with Π+(ω)

(defined later in Eq. 3.61), and χ∆`(z) with the later MSRJD result in Eq. 3.39,

we observe that the MFT Langevin equation exactly reproduces the more rigorous

MSRJD analysis. We thus postulate (but do not prove in this chapter) that the MFT

Langevin equation is capable of providing the exact correlations 〈∆`(t1)...∆`(tN)〉
for any product of N λ0(t) fields.

The p summation appearing in the kernel M̃(z) (Eq. B.26 ) can be performed, but

is unwieldy. It is easily performed numerically. We used that numerical summation

to plot δ〈∆`〉/δf in Fig. 3.8. Analytically, we look at the long and short time limits,

and then comment on the transition between the two. Long/short times correspond

to small/large z respectively. At long times, M̃(z → 0) ∼ z, while at short times

M̃(z → ∞) ∼ z1/4. The long-time limit leads to a constant value λ0, which is

determined by the self-consistent Eq. 3.46 with τ replaced by τ + f .

At short times, z is large, and so the factor of kM̃(z)/z ∼ z−3/4 is negligible

compared to 1. We find the simpler expression

χ∆`(z � 1) = −M̃(z)

z2
. (3.52)

The inverse Laplace transform yields

χ∆`(t� 1) =
kBT

2

∑

p

e−2Dp2t(κp2+τ) − 1

(κp2 + τ)2 (3.53)
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This is precisely the spring-free result for the longitudinal linear response of a tensed

filament.

To extract the short-time behavior, we replace the summation with an integration,

extend the limits of integration from 0 to ∞, and make the variable substitution

p → p(2Dκt)1/4. At small t, the p4 bending terms in the exponent are dominant,

leading to

χ∆`(t� 1) ≈ kBT`

2πκ2
(2Dκt)3/4

∫ ∞

0

e−z
4 − 1

z4
dz. (3.54)

The integral is Γ(1/4)/3. From this we find the final result

χ∆`(t� 1) ≈ kBT`Γ(1/4)

3π21/4κ5/4ξ
3/4
⊥

t3/4. (3.55)

The short time power law growth t3/4 is the same as for flexible filaments [15].

However, this is only the leading term at short time. Due to the presence of τ , the

filament breaks self-similarity and the function does not obey a power law.

The short-time longitudinal response is bending dominated, and independent of

the spring. From Eq. 3.48, we expect the longitudinal spring to become important

when kM̃(z)/z > 1. As k → ∞, the M̃(z)/z in the numerator and denominator

cancel out, leaving the inverse Laplace transform of −f/zk, which gives a constant.

Thus, the spring shortens the relaxation time. Since, in the short time limit M̃(z) ∼
z1/4, this suggests that the relaxation time to equilibrium decreases with increasing

spring constant like k−4/3.

In Fig. 3.8, we plot the response function by performing a numerical inverse

Laplace transform of Eq. 3.51 using Eq. B.27, for several values of k. It exhibits the

predicted t3/4 spring-free growth. Increasing k shortens the equilibration time.

To conclude the section, we consider how the decay rates of normal modes are
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Figure 3.8: (color online) MFT longitudinal linear response normalized by the plateau

value χ0
∆` = χ∆`(t̄ = ∞, k̄ = 0) of the spring-free filament. t̄ = t`4ξ⊥/κπ

4. At early

times, there is t̄3/4 growth, but the function does not exhibit power-law behavior.

The longitudinal spring decreases the relaxation time, roughly proportional to k̄4/3.
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altered in the MFT. From Eq. B.12, specifying up(0) then averaging over the noise

suggests that normal modes obey a time-dependent decay rate, τdecay, given by

τ−1
decay(t) = ξ−1

⊥

(
κp4 + τp2 + kt−1

∫ t

0

λ0(t′)dt′
)
. (3.56)

At short times, λ0(t) ∼ t3/4, which implies an additional stretched exponential pref-

actor 〈up(t)〉 ∼ e−kt
7/4/ξ⊥ (again, the average is over noise and up(0) is specified).

Since at small times t > t7/4, we expect this effect to be difficult to observe in

experiment.

3.4.2 Fluctuations/Random phase approximation

The saddle-point approximation, while accurately calculating 〈∆`(t)〉, does not ad-

dress multipoint correlations of ∆`(t). This prevents us from understanding how

the spring-induced nonlinearity affects dynamic fluctuations of ∆`(t). We define the

longitudinal correlator

Cδ`(t, t
′) = 〈∆`(t)∆`(t′)〉 − 〈∆`(t)〉〈∆`(t′)〉 (3.57)

to be the correlation functions of the end-to-end distance. This quantity is related

to the dynamic shear modulus [41, 40] and informs frequency-dependent activity

microscopy [97, 71].

We account for fluctuations by expanding the trace-log term Tr ln G−1(λ0+δλ, δλ̄)

of the action (Eq. 3.40a) in powers of δλ, δλ̄, about the saddle-point. In principle,

one may carry out the expansion to arbitrary order. We stop at the quadratic terms.

This truncation is a valid approximation for stiff filaments, where the equilibrium

end-to-end contraction is small compared to contour length.
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Since we are considering fluctuations about equilibrium, time-translation invari-

ance allows us to Fourier transform to the frequency domain. In frequency/wavenumber

space, the propagators and correlators appearing in the expansion refer to the saddle-

point/MFT values:

Ḡ+
p (ω) =

2/`

−iω +Dp2(κp2 + τ + kλ0)
, (3.58a)

C̄p(ω) =
4D/`

ω2 + [Dp2(κp2 + τ + kλ0)]2
. (3.58b)

In Appendix B.3, we carry out the trace-log expansion to quadratic order, yielding

the Gaussian approximation to the action at the saddle point:

Aeff[δλ̄, δλ] =
1

2

∫
dω

2π
δλTωM−1

ω δλ−ω, (3.59)

where the matrix M−1
ω is defined in Eq. B.36. This is our final expression for the

effective action Aeff. We are primarily concerned with the inverse Mω. It is related

to fluctuations in the projected length, and its linear response to applied tension.

We compute

Mω =


 0 1

1+kΠ−ω

1
1+kΠ+

ω

Π0
ω

|1+kΠ+
ω |2


 , (3.60)

where the polarization functions, Π±ω and Π0
ω, are defined as

Π±(ω) =
∑

p

Dp4

γp(∓iω + 2Dγp)
, (3.61)

Π0(ω) =
∑

p

2Dp4

γp(ω2 + 4D2γ2
p)
. (3.62)

The Π0 function is precisely the Fourier transform of the spring-free correlator [40].

The ± functions are complex conjugates of one another, i.e. Π+ = (Π−)∗. They can
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be related to Π0 via a fluctuation-dissipation-like relation (Eq. B.37). Using Eq. 3.39,

we relate the Π+ function to the longitudinal linear response via

χ∆`(ω) =
Π+(ω)

1 + kΠ+(ω)
. (3.63)

Comparison of the correlation function with χ∆` confirms that the fluctuation-dissipation

theorem is satisfied.

The ratio
Cδ`(ω)

C free
δ` (ω)

=
1

|1 + kΠ+(ω)|2 , (3.64)

of projected length fluctuations in the presence/absence of a longitudinal spring,

makes the effect of the spring more transparent. That ratio is plotted in Fig. 3.9.

We first analyze the k dependence of the ratio. If we slowly increase k, we see that,

below |kΠ+(ω)| = 1, there is little deviation from the spring-free result. When k is

large enough to exceed the bound |kΠ+(ω)| = 1, then the end-to-end fluctuations

diminish as k−2. This is supported numerically – see the inset of Fig. 3.9. It is

interesting that below a certain value of k, the effect of the longitudinal spring

on the end-to-end distance fluctuations is screened. To make the connection with

screening more clear, consider the low frequency limit Π+(ω) ∼ iω, then inverse

Fourier transform Eq. 3.64. We find exponential time decay set by the longitudinal

spring constant, an effect analogous to that of the more familiar position space

screening. The screening effect shows that the effect of the longitudinal spring goes

beyond tension renormalization. When looking at the dynamics of the end-to-end

fluctuations, we now observe the filament length stored in the various normal modes

at different times interact (through the spring) to make the dynamics of the end-to-

end length more complex.

The value k∗ beyond which screening breaks down is, itself, frequency dependent.
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Specifically, k∗ ≈ |Π+(ω)|−1. Since Π+(ω) is decreasing with ω, screening breaks

down at smaller values k∗ as ω decreases, bottoming out in the static limit (ω = 0)

with a minimum value k̄∗min = [
∑∞

n=1(n2 + φ)−2]
−1

. Below this spring constant k̄∗min,

screening occurs at all frequencies.

The frequency dependence of the ratio of the correlators with and without the

spring can be understood similarly. At ω = 0, if k > k∗min, then the longitudinal

spring shifts the longitudinal correlator to its mean-field result. In the opposite limit

where ω →∞, screening becomes perfectly effective, and there is no deviation from

the spring-free result. In the main panel of Fig. 3.9, we see that the longitudinal

correlator transitions from the spring-dominant, mean-field result to the spring-free

result across a range of frequencies that increases with k.

By examining the saddle point analysis, we obtain further insight into which of

the perturbative corrections we have taken into account in this approach. Examining

the action in Eq. 3.59, we claim that it is a renormalization of the dashed line

propagators of the original (ū, u) theory. Since all dashed-line renormalizations are

necessarily bubble type diagrams, M contains the contributions from all two-bubbles

(the general n-bubble subdiagram is a solid line loop with exactly n outgoing dashed

lines). Taking higher order terms in the expansion of the trace-log will result in

bubbles with n > 2 external dashed lines, which are exactly the n-bubbles. The

fluctuation expansion is not just a k expansion, but a systematic inclusion of higher

number bubbles.

We can estimate the relative importance of successive terms. The one-bubble

returns just the static change in projected length ∆`0. The two-bubble ∼∑pG
2
p(ω =

0) ∼ ∂τ 〈∆`0〉, is proportional to the static susceptibility χ∆`, with each higher order
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Figure 3.9: (color online) Ratio of the longitudinal correlator to its spring-free value.

φ = 1. At high frequency, individual modes have not relaxed to a new equilibrium

that accounts for the longitudinal spring, so the ratio flattens to one. As frequency

decreases, we approach the static result of Eq. 3.46, whereby we find a reduced

amplitude, with zero slope. The inset shows that, for a fixed frequency (ω̄ = 10)

and zero tension φ = 0, the ratio decays as k̄−2 after passing a frequency-dependent

cross-over spring constant k∗.
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gaining another derivative of the projected length with respect to ∂τ . Since each

derivative lowers the summand by p−2, successive terms quickly become small.

Classifying the diagrams in Fig. 3.3 of the perturbation series, to O(k2) they

can be divided into one-bubbles, two-bubbles, and the rest. Per the saddle-point

analysis, the one/two-bubbles are the leading/subleading terms, corresponding to

renormalization of the effective tension/spring constant. This is consistent with our

analysis in Sec. 3.3, where our grouping of diagrams into dominant and subdominant

classes was in fact a grouping into n-bubbles.

Returning to our analysis of the effective action, we observe that the resummation

of bubble diagrams is an approximation known as the random phase approximation

(RPA) [4]. The RPA applies only to the dashed line, which in any actual diagram

must be attached to two solid lines according to the rules in Fig. 3.6. The two-bubble

renormalized vertex is given by the diagrams in Fig. 3.10, which yield the equations:

M21(ω) = 1− kD`2

4

∑

p

∫
dω′

2π
p4C̄p(ω

′ − ω)Ḡ+
p (ω′), (3.65a)

M22(ω) = |M21(ω)|2
∑

p

∫
dω′

2π

p4`2

4
C̄p(ω − ω′)C̄p(ω′). (3.65b)

Solving these reproduces Eq. 3.60, thus confirming our claim. Since the dashed lines

appear only in combination with k, the RPA amounts to a renormalization of k. M21

and M22 represent effective vertices, whose lowest order terms reproduce diagrams

B1 and B2, and B3 respectively in Fig. 3.3.

Finally, we consider the longitudinal response function given in Eq. 3.63. This

provides an estimate for the high-frequency behavior of the dynamic shear modulus

of semiflexible networks [58, 116], via the relation G̃(ω) = 1
15
ρ`χ−1

ω − iωη [40], where
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= +M21 M21

M22 M21 M21=

Figure 3.10: Random phase approximation for computing renormalized interaction

vertex. When used in a diagram, the directed dashed lines must join to external

solid lines according to Fig. 3.6. Mij refers to the matrix elements of M. M21 = 〈λλ̄〉
is directed from a vertex with two incoming lines, to one with an incoming and

outgoing.

ρ denotes the density of filaments. Note that the dynamic shear modulus, G̃(ω),

must be distinguished from our earlier definitions of propagators. Ignoring the vis-

cous term, in Fig. 3.11 we plot both J(ω) and G̃(ω) for both k̄ = 0 and k̄ = 104.

G̃(ω) possesses three distinct scaling regimes, regardless of the longitudinal spring:

a low-frequency regime ∼ ω, an intermediate-frequency regime ∼ ω1/2, and a high-

frequency bending regime ∼ ω3/4. The spring does not affect this scaling, but shifts

the transition region to higher ω as k increases, which is consistent with our assertion

that tension renormalization is the spring’s main effect.

3.5 Conclusion

We have extended the static analysis of Ref. [71] to include the dynamics of the fluc-

tuations of a filament in network, whose linear compliance is modeled as a hookean
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Figure 3.11: (color online) Real (solid lines) and imaginary (dashed lines) parts of

the shear modulus G̃(ω) and network compliance J(ω) for k̄ = 0 (black) and for

k̄ = 104 (blue). φ = 102. G̃ and J are normalized by their spring-free plateau values.

The transition of G̃(ω) from ω1/2 to ω3/4 scaling signals the shift from tension- to

bending-dominated behavior [138, 45]. The longitudinal spring does not alter the

power-law dependence, but shifts the cross-over between them to higher frequencies.
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spring attached to the boundary. The principal motive behind these calculations is

to provide a precise prediction for the dynamical fluctuations of filaments based on

κ, τ , and k, that can then be used to perform local activity microscopy.

The addition of the spring boundary condition introduces a nonlinearity into

the problem, which is peculiar in the sense that it is nonlocal in space but local in

time. It depends at each instant on the projected length of the whole filament. The

peculiarity stems from our assumption of instantaneous tension propagation. The

strength of the nonlinearity can be externally governed via the spring constant k.

For a filament bound to a larger network, the spring constant k approximates the

compliance of the entire surrounding network. To get an estimate for experimentally

relevant values of parameters, we use as an example an F-actin network with shear

modulus G ≈ 100Pa, and mesh spacing ξ ≈ 0.5µm, which we assume is comparable

to the mean distance between consecutive cross links along the same filament. Using

the relation G ∼ k/ξ [98], we estimate a spring constant of 0.05pN/nm [71]. We

further assume a persistence length `p = κ/kBT that is approximately an order of

magnitude greater than the filament segment length, and kBT ≈ 4 pN nm. These

suggest k̄ ∼ 103. In these dimensionless units, a tension of 1pN corresponds to

φ ∼ 102.

The most direct and quantitatively precise experimental test of this analysis is

directly examining the dynamics of a single filament tethered to a bead in an optical

(or magnetic) trap. In that case, one can independently control both the mean

tension in the filament and the effective spring constant k by varying the position of

the optical trap and its intensity respectively. In this setup, one may imagine two

distinct types of measurements. One could observe the end-to-end length fluctuations
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by tracking the bead in the trap with high spatial and temporal resolution. Or, one

could observe the undulations of the filament directly, which would allow one to

measure the u correlation functions computed here. In both of these cases, one

might also measure the response functions by observing the response of either u or

the end-to-end distance of the filament to changes in the trap’s center.

We find the main effect of the spring is to renormalize tension. Even for untensed

filaments, once a spring is added, the filament behaves as if it were under tension

τR ≈ k〈∆`〉0. Perhaps, this blending of spring effects into an effective tension explains

the success of previous theories, which have neglected nonlinearities introduced by a

longitudinal boundary spring [98, 15]. We have shown that an increasing spring con-

stant decreases the relaxation times of all the fluctuating degrees of freedom of the

filament. Given a fixed external tension τ , there is a scale k∗ ≈ 12 κτ/kBT`
2 of the

external spring constant, above which the dominant contribution to tension comes

from the spring and not the bare applied tension. Using this crossover, we estimate

the minimum spring constant whose effect on filament dynamics should be observ-

able. For typical filaments on the order of microns (with persistence lengths greater

than their contour length) and tensions ∼ 10pN, we expect this transition to occur

at k ≈ 1(pN/nm). This is achievable near the upper limit of optical trap strength

(∼ 100pN/100nm), or by alternatively using a magnetic trap that can achieve higher

k values.

One could alternatively use optical tweezers to exert localized forces within a net-

work of filaments, putting some of them under tension τ . We predict that increasing

τ will not affect fluctuations up until a transition tension τ ∗ ≈ kkBT`
2/12κ, after

which the amplitude of fluctuations will decrease as τ−2. In the absence of the net-

work compliance (the spring in our model), the transition occurs at a lower tension,
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which is frequency-dependent. One may also look for nontrivial changes in filament

tension and fluctuations as a function of network stiffness. Since the change in ten-

sion due to the spring is ∆τ ∼ k∆`, for sufficiently stiff networks where the effective

spring constant k > k∗, the change in tension switches from a linear k dependence

to a weaker one ∼ k2/3, due to the shortening of ∆`. This leads to a k−4/3 decrease

in the amplitude of transverse fluctuations.

We also considered fluctuations of the end-to-end projected length of the fila-

ment, and its response to an applied tension. We found that including the external

longitudinal spring does not affect the short-time longitudinal, linear response of

projected length to an abrupt change in applied tension. The change in projected

length grows initially like t3/4, but does not exhibit a power law at longer times. The

longitudinal spring, does, however, shortening the relaxation time of the end-to-end

length by a factor ∼ k−4/3. From the response function of the end-to-end distance of

a single filament to oscillatory forcing, we can predict the collective dynamic shear

modulus of the network using now standard arguments. We find that the spring

shifts the transition from tension dominated, G(ω) ∼ ω1/2, to bending dominated,

G(ω) ∼ ω3/4, to higher frequencies.

Finally, there is an additional frequency-dependent effect that can be observed

from fluctuations in the end-to-end projected length, which arises as a result of the

nonlinear interaction the spring induces on normal modes. In the static, ω → 0

limit, the amplitude of end-to-end fluctuations will be lower than that for a filament

not attached to a longitudinal boundary spring. As frequency increases, however,

the effect of the spring diminishes, approaching the spring-free result as ω →∞. At

high frequencies the normal modes adjust so as to screen the effect of the longitudinal

spring. We report a minimum value k̄∗min, below which the longitudinal spring is
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screened at all frequencies. This occurs when k̄∗min = [
∑

n(n2 + φ)−2]
−1

. This minimal

spring stiffness necessary for complete screening grows with applied tension as ∼ τ 3/2.

Future directions for this work include a first-principles calculation of the effective

spring constant k representing the network. At least, one may imagine pursuing a

type of self-consistent analysis by demanding that the force extension relation of the

filament coupled to the spring is identical to those of the network filaments, whose

collective elasticity is represented by that spring. Secondly, one may consider how the

transverse undulations of a filament in the network (represented by external springs

coupled to the end of that filament) behave in response to nonequilibrium driving,

such as would be experienced by the filament in a network driven by endogenous

molecular motors.
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CHAPTER 4

Dynamics of transiently cross-linked bundles

4.1 Introduction

Reconstituted cytoskeletal networks are a useful model for understanding the me-

chanics of living cells [38, 74, 157, 11, 69]. The cytoskeleton is composed mostly of

filamentous biopolymer F-actin, cross-linked together to form a network [29]. Since

the thermal persistence length is longer than the typical contour length between

cross-links, F-actin comprises a semiflexble filamentous network. Studying the rhe-

ology of such networks is advantageous both for its ease of in vitro experimental

fabrication, as well as its generalization to networks composed of other biopolymers

such as microtubules [161, 96].

At higher concentrations, semiflexible filaments tend to coalesce into a cross-

linked collections of aligned filaments called bundles, which also form a hierarchical

semiflexible bundle network [92, 94, 93]. The viscoelasticity of these networks devi-

ates from that of non-bundled semiflexible networks, a fact that can be traced to the

difference in mechanical behavior between single filaments and bundles [123, 135, 10].

More precisely, network rheology can be extrapolated from the compliance of con-

stituent filaments [40], which are in turn determined by their transverse undulations.

The mechanics of such bundle networks can be described by viewing each filament
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as an effective worm-like bundle (WLB) [56, 57]. The WLB differs from the worm-

like chain (WLC) in the introduction of a new parameter k×, representing the cross-

linker stiffness, which couples bundle deformation to cross-link shear. This effect is a

consequence of arclength mismatch between adjacent, bent filaments, and as shown

in Fig. 4.1, is present for as few as two filaments.

For permanently bound linkers [10], linker shear leads to a stiffening of bundles

at long wavelength, with a more complicated shift to the WLC model (decoupled

limit) as stiffness decreases [56]. An extension to slowly deformed bundles shows an

unbinding transition for highly curved bundles [54].

As cross-links are only transiently bound, their viscoelasticity cannot be fully

described by the permanently bound models. Indeed, at low frequencies, semiflexible

filamentous networks obey cross-link governed dynamics, exhibiting a shear modulus

G ∼ ω1/2 due to a broad spectrum of relaxation times originating from the relaxation

of constraints from linker unbinding [16]. An extension of this analysis to simulations

on semiflexble bundle networks, shows a similar low frequency non-Newtonian ω1/2

rheology, with an additional intermediate regime associated with bundle-dissolution

and large-scale rearrangements of the network [111].

A full description of bundle dynamics necessitates the simultaneous consideration

of both the cross-linker/bundle interaction [56], (first introduced for two filament

bundles as the rail-way track model by Everaers et. al. [32]) as well as the unbinding

of cross-links. In addition to the coupling scale k×, we must also consider a new

parameter, the linker unbinding rate koff. The combined linker-bundle system con-

stitutes an interacting dynamical field theory, whereby bundle deformations respond

to changes in cross-linker density and vice-versa.
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Figure 4.1: (color online) Filament bending introduces cross-linker shearing. Fila-

ments are constrained to distance a apart, with hard rod widths σ set by the spacing

of adsorption sites. Transverse displacements are labeled by u(x), with x represent-

ing the distance along the mean orientation. Arclength mismatch incurs a shear

energy cost for cross-linkers attached at locations where the filament is not directed

along the mean orientation.

A closer look at the railway track model shows that a single unbinding rate

is insufficient to describe the full dynamics of cross-linkers. For a cross-linker to

detach, it must unbind from both filaments before re-attaching. As koff → 0, there is

an increasing probability for a linker to unbind only one filament, then reattach at an

adjacent site, allowing the linker to precess along the bundle. This grants cross-linkers

an alternative diffusive means of transport, in contrast to the hopping described by

a single unbinding rate. The precession model shown in Fig. 4.2 introduces a new

time scale τwalk that competes with unbinding when ratio of on to off rates is unity.

The new time scale, τwalk, signals the existence of a an additional dynamical

regime, where linkers remain bound to the bundle, yet are free to diffuse across

it. Furthermore, long lived cross-linkers are subject to thermal Casimir attractions
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Figure 4.2: (color online) Walking cycle to traverse one lattice spacing. Reverse

processes are ignored for clarity. Red bubbles indicates a bound linker, clear bubbles

an unbound site. Linkers unbind according to rates kon/off. For kon � koff, and for ε

small, the linker is more likely to re-attach to an adjacent site (bottom right) than

to completely unbind (center), and for small enough distances, the linkers prefer to

equilibrate via walking.
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between nearest neighbors [65], suggesting that the bundle must respond to the

dynamics of a strongly correlated cross-linker fluid [66].

Since network properties can be extracted from the behavior of a single bundle,

we focus our attention on the dynamics of the bundle, and, where possible, the vis-

coelastic implications. We broadly explore the mechanics of the bundle/linker system

as a function of the un/binding rate kon/off, as well as the walking rate kwalk. We

estimate the shortest relaxation time of the problem to determine the principal dy-

namical features, and the appropriate dynamical model. This leads to three distinct

regimes, that we model with three separate linker/bundle theories.

First, at low koff, we approach the permanently cross-linked regime [56, 57, 10].

Cross-linkers are modeled as a correlated fluid. At high koff, linkers quickly unbind in

response to bundle deformation, approaching a collection of independent WLCs. In

the intermediate regime, either τwalk or τoff (for τoff the detachment rate) can be the

dominant time scale, equilibrating on roughly the same time scales as the bundle.

The outline of this paper is as follows. First, we provide a phase space estimate

for the various regions. Since bundle rigidity is mode-dependent in the presence of

linkers, we find a parameter space spanned by the unbinding rate and the bundle

length. The competition between walking vs. unbinding is approximated via a two-

step Michaelis-Menten enzymatic precession of linkers along the bundle [114], which

gives an estimate in terms of a single off and a single on rate. We then analyze

the dynamics in each of the three regimes separately, before commenting on the

distinguishing characterstics between these.
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4.2 Overview

We focus our attention on the two-filament bundle, as our main concern is analyz-

ing the linker/bundle interaction. The nature of the bundle cross-section can have

strong effects on bundle mechanics [56], but we expect the two-filament approxima-

tion to capture the dynamical consequences of linker transience. The two-filament

bundle confined to two dimensions, is known as the railway-track model [32]. This

assumes the bundle is composed of two inextensible worm-like chains, in contact with

a reservoir of cross-linkers inextensible in the direction transverse to the bundle axis,

and compliant parallel to it. The distinguishing feature of this model (sketched in

Fig. 4.1) from a mere collection of WLCs, is an energetic penalty for bending due to

cross-linker shear arising from inextensibility of the constituent filaments.

The bundle is assumed to be nearly straight, with an average orientation θ = 0

defined along the x-axis. Transverse displacements u(x, t), and the local angle

θ(x, t) = u′(x, t), are parametrized by distance along the bundle direction. This

assumes no overlaps/overhangs of the filaments. For bending rigidity κ, The semi-

flexible filament energy is described by the well-known WLC Hamiltonian

HWLC =
κ

2

∫ (
∂θ

∂x

)2

dx. (4.1)

Cross-linkers may discretely, reversibly bind to any of Ns sites located along the

bundle, with mean spacing σ between sites. The binding sites permit only a single

linker to be occupied. For low occupation numbers N/Ns � 1 of linkers to sites, this

distinction is unimportant. However, for larger concentrations this constraint will

modify the ideal gas free energy of linkers in the bound theory, and the commutation

relations of the linker Hamiltonian in the kinetic theory.
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For a large number sites Ns = `/σ � 1 we may approximate bound cross-linkers

via an continuous occupation density function n(x, t). Due to inextensibility, bundle

bending leads to an arc-length mismatch between adjacent filaments, which in turn

shears cross-links, as illustrated in Fig. 4.1. Cross-links are modeled as incompressible

transverse to the filament (thus fixing a), and linearly compliant to shear, with a

spring coefficient k×. This leads to the railway-track model interaction [56, 32]

Hint =
k×a

2

2

∫
n(x, t)θ2(x, t). (4.2)

This is only strictly applicable for permanently bound cross-links. Its extension to

transient linkers is one of the main goals of our paper. To understand the breakdown

of Eq. 4.2 for transient linkers, consider the example process shown in Fig. 4.3. Cross-

linkers that unbind in response to shear will predominantly re-bind into a zero-shear

state with nonzero local angle θ(x, t) with respect to the mean orientation. In effect,

linkers display a memory; they prefer the bundle to be in the same configuration as

it was when they first bound.

Bundle dynamics partitions into a strongly bound small koff limit given by the

railway-track model, and a weakly bound large koff limit, which we shall refer to as

the memory model. The memory model is described by an appropriate generalization

of Eq. 4.2 in Sec. 4.4. That such a transition occurs, consider the high koff limit:

if the bundle deforms slowly, cross-linkers quickly unbind and re-attach, rendering

Hint = 0 (this is in contrast to Ref. [54], whereby linkers were assumed to re-bind in

a sheared state).

More qualitatively, the transition from the railway track to the memory model

occurs approximately when the relaxation time of the bundle is equal to the unbind-
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Figure 4.3: (color online) From left to right we describe a binding mediated transition

to a preferred curved metastable state. The left figure is the preferred flat configu-

ration. The center figure illustrates linker unbinding to relax stress in response to

bundle induced shear. The right figure shows the linkers re-binding into a zero shear

configuration, despite the bundle having curvature. The far right figure will incur a

shear penalty if it tries to flatten out, and is thus a meta-stable energy minimum,

compared to the global minimum on the leftmost figure.

ing time. The true relaxation time of the bundle is complicated by its coupling to

the linkers. To get an estimate, we assume that linkers are permanently cross-linked.

The relaxation time is mode-dependent. The lowest mode π/` (for pinned boundary

conditions), determines the relaxation time of a filament of length `. we have the

length dependent relaxation time [32]

τWLB =

(
4πκη

k2
×a

4n2
0 ln(`/r)

) ¯̀4

1 + ¯̀2
. (4.3)

n0 is the homogeneous part of the density n(x, t), η the visocity, and r the filament

radius. We have further defined the dimensionless length ¯̀ = `/`×, where `× =
√
κπ2/k×a2n0 is the length beyond which the bundle stiffens due to linker shear.

Additionally, we have used the standard drag coefficient ζ = 4πη/ ln(`/r), describing

the motion of slender bodies in viscous fluid [15]. Since the unbinding rate of linkers
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is assumed to be constant up to a renormalization due to shear, there is a transition

length above which the bundle relaxation time is longer than the unbinding time.

More specifically, we are interested not in the unbinding time, but the detachment

time K−1
off denoted by a capital letter, for a a linker to completely unbind from both

filaments. This should increase in response to shear, and contain spatial dependence.

From detailed balance, we expect the detachment rate in the presence of shear to be

increased by a Boltzmann factor to

Koff(x) = Koffe
βk×a2θ2(x)/2. (4.4)

β = (kBT )−1 is the inverse temperature. We estimate a renormalized detachment rate

by replacing θ2(x) with its non-dynamical spatial and equilibrium average θ2(x) =

`−1
∫ `

0
〈θ2〉dx. This leads to

Koff = Koff exp

(
1

2n0`

∞∑

n=1

¯̀2

n2 + ¯̀2

)
. (4.5)

Koff monotonically increases from zero to a plateau value Koffe
π/4n0`× . We shall

thus ignore the difference between Koff and Koff. For a given detachment rate, the

condition τWLB(¯̀) = K
−1

off , determines the length above which the railway-track model

transitions to the memory model.

To complete our description, we must further prescribe the dynamical equations

governing cross-linkers. When viewed as a cross-linker fluid, this amounts to supply-

ing a generalized force (derived from a grand potential or hamiltonian) and diffusion

coefficient. When viewed as a non-conserved density in contact with a reservoir, this

amounts to supplying the kinetic equations.

The two viewpoints correspond physically to cross-linker walking vs hopping. To

describe walking, we consider the simple precession mechanism of Fig. 4.2. Linker
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Figure 4.4: (color online) Trajectories of relaxation rates as function of dimensionless

filament length. Top: k×a2n0π2

ζKwalkσ2 = 5 > 1. Bottom: k×a2n0π2

ζKwalkσ2 > 1 = 0.2 < 1. The

shortest time scale determines the dominant mechanism describing dynamics, and

hence the appropriate model to choose. On the right we give an alternative viewpoint,

where length is fixed and the detachment rate free to change. For long enough

filaments (or short τoff) linker unbinding is always fastest, leading to the memory

model. Conversely, at short lengths (or long unbinding time) the bundle relaxes as

if linkers are permanent, while linkers respond to deformations diffusively. In the

intermediate regions, precession/hopping must be considered in concert with bundle

fluctuations.
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unbinding is viewed as a two-step process, whereby linkers must unbind from both

filaments to fully detach. When a single filament detaches (B/D), there is a possibility

for it to attach to an adjacent site (C), with rate reduced by a Boltzmann factored

due to linker extension. For koff � kon and βε < 1, the linker prefers to walk to

an adjacent site, rather than hop. We describe this walking process via Michaelis-

Menten kinetics [114]. Considering only the production of states C and F, we write

the rate equations

A
koff−−⇀↽−−
kon

B
kone−βε−−−−→ C (4.6)

A
koff−−⇀↽−−
kon

B
koff−−→ F. (4.7)

Approximating the intermediate concentration by its equilibrium value leads to

the effective rate constants

Koff ≈
k2

off

kon

, Kwalk ≈
koff

1 + eβε
. (4.8)

The phenomenological parameter ε is no more fundamental than Kwalk and we hence-

forth assume that Kwalk has been specified. The diffusion coefficient for walking is

thus given by D× = Kwalkσ
2, from which we find the Thouless time to diffuse a

distance `,

τDwalk =

(
κπ2

Kwalkk×a2σ2n0

)
¯̀2. (4.9)

The superscript D emphasizes that this is different than the adjacent site walk-

ing time τwalk = K−1
walk. This determines the time scale for diffusive relaxation via

precession. Like for the WLB, we have a length dependent transition condition
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τDwalk = K−1
off . This sets a scale ` ≈ σ

√
konKwalk/k2

off below which linkers prefer to

walk, and above which they prefer to hop.

System dynamics are determined by the shortest of the three relaxation times

τoff, τWLB, and τDwalk, which in turn corresponds to a maximum of three transition

lengths. We plot the length dependent relaxation times in Fig. 4.4, which reveals

that there are either two or three intersections, depending on whether or not τWLB

and τDwalk cross. Comparison of Eq. 4.9 to Eq. 4.3 shows that for k×a2n0π2

ζKwalkσ2 > 1, τDwalk

is always greater than τWLB.

These two ”phase” portraits are shown in Fig. 4.4. At low ¯̀, the system tends

to the permanently cross-linked railway-track model. Due to the vanishing of τwalk

with length, the short ¯̀ region always relaxes its linkers diffusively (assuming σ � `),

preferring to re-arrange locally. As length increases, both the bundle and walking

mechanisms require more time to relax, while the linker unbinding time remains

fixed. At long enough lengths the system tends to the memory model, which at

infinite length or unbinding rate reaches the decoupled limit, whereby the bundle

behaves as a collection of independent WLCs. The diffusive region and the memory

model can both be understood as perturbative expansions from the permanently

linked and decoupled bundles respectively.

At intermediate lengths, the situations is slightly more complicated. If τDwalk

intersects τWLB, then there is a region where τDwalk is the shortest relaxation time,

and linkers prefer to diffuse rather than hop. In this region, linker diffusion can

be expected to have a noticeable impact on bundle relaxation, and we call it the

diffusive dominated regime.

If τDwalk does not intersect τWLB, then the diffusive dominated regime vanishes.
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Instead, there is a region where linkers prefer to hop rather than diffuse, and both

the unbinding time and bundle relaxation time are of the same order. Here, the

linkers cannot unbind fast enough to relax shear, yet they are also not long enough

lived to be considered permanently linked. The system still obeys the railway track

model, but with transient linkers. This regime is governed by what we call the kinetic

railway track model.

In summary, there are essentially four regimes. The first is the koff = 0 perma-

nently linked railway-track model. As koff increases, linkers begin to diffuse with

diffusion coefficient D×, which can be considered as a perturbative parameter. If

k×a2n0π2

ζKwalkσ2 < 1, then upon further increasing koff the system will reach a region where

τDwalk is the shortest length scale of the problem, and we are in the diffusion dominated

regime. If not, the system will encounter a crossover length ` = σ
√
konKwalk/k2

off at

which point linkers prefer to hop rather than diffuse. Increasing koff we enter the

kinetic railway track model, which can be obtained perturbatively from the perma-

nently linked model via the parameter 1/τoff. Eventually, we reach a point where τoff

is the shortest relaxation time, the memory model. Pushing τoff → 0 we recover the

WLC. The memory model is found by slowly raising τoff back up to finite values, and

can be considered a perturbative expansion about the WLC.

Experimentally, it is difficult to resolve the distribution of cross-linkers. Undu-

lations of the bundle on the other hand, can easily be observed via confocal imag-

ing. Cross-linker dynamics can be indirectly observed via its effect on the response

of the bundle to either an applied load, or measurement of thermal fluctuations.

The linear response of u(x, t) to a transverse, sinusoidal/harmonic applied load,

χp(ω) = δup(ω)/δFp(ω) is diagonal in frequency and wavenumber. Coupling to a

spatio-temporal linker density results in nonlinear corrections that can be grouped
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into a renormalized bending rigidity κR(p, ω). The response to transverse loads can

be written

χp(ω) =
1

−iωζ + κR(p, ω)p4
. (4.10)

The determination of κR(p, ω) is our main focus. Using the fluctuation dissipation

theorem, we can easily determine the power spectrum

Cp(ω) =
2kBT

ω
χ′′p(ω) (4.11)

from the imaginary part of the response function. The high frequency shear mod-

ulus of a material can be related to the longitudinal response function α(ω) of an

individual bundle, via G(ω) = ρ`
15α(ω)

− iωη [40]. In terms of the transverse response

function, the longitudinal response function can be expressed as (see Chapter 3)

α(ω) = 2ζ
∑

q

∫
dω′

2π
q4χq(ω

′)Cq(ω − ω′). (4.12)

We now turn our attention to analyzing the dynamics in each of the three models

discussed. Afterwards, we compare/contrast the results in the final section. We

begin with the intermediate kinetic regime, as it is the most natural extension of the

previously studied railway track model.

4.3 Kinetic railway track model

The kinetic railway-track model is an intermediate regime that arises provided k×a2n0π2

ζKwalkσ2 <

1, and the detachment rate is comparable to the inverse of the bundle relaxation time.
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It can be accessed by beginning with the permanently linked railway track model,

then slowly decreasing τoff.

Since the bundle relaxes as fast or faster than cross-linkers, any linker memory of

its initial bound state is quickly erased and averaged out. The railway track coupling

Hint remains intact, but we must further account for cross-linkers detachment in

response to bundle deformation. As sketched in Fig. 4.5, this implies that cross-

linkers tend to aggregate near flat sections of the bundle. Through a quick application

of the static barometric law n(x)
n0
∼ e−

1
2
βk×a2θ2(x) and expanding θ(x0+x) near θ(x0) =

0, we see that linker density is Gaussian distributed around flat bundle sections. It

exhibits a skin depth ξ =
√
T/k×a2R(x0)2, with R(x0) the local radius of curvature

at x0.

The extension of the railway track model to include cross-linker mobility was

first studied for slow bundle deformations in Ref. [54], ignoring the feedback of linker

rearrangement on bundle configuration. Here we extend the analysis to an interacting

field theory by allowing both linkers and bundle to equilibrate simultaneously.

The bundle is the main driver of linker rearrangement, and so we ignore linker-

linker interactions (arising for example from hard rod repulsions or thermal Casimir

forces [65, 66]). We also ignore the two-step unbinding mechanism, and consider only

a detachment and attachment rate Koff/on. Binding now refers to the simultaneous

attachment to both filaments. The analysis is greatly simplified, and it suffices

to examine the density at a particular location, say the ith site, along the bundle.

Linker-concentration is described via a simple birth-death kinetic process ni
Koff−−⇀↽−−
Kon

∅

between the bound and unbound states. Coupling is introduced via a modification

of the off rate as described in Eq. 4.4. We further define define the on rate in terms
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u(x)
✓ = 0

⇠

Figure 4.5: (color online) Railway track model at fixed u(x, t). Bundle deformation

causes bound cross-linkers to shear, regardless of when they first attached, driv-

ing them to cluster along regions locally aligned with the mean bundle orientation.

Linker concentration (indicated by blue shading) near these wells is Gaussian dis-

tributed, with boundary layer length ξ =
√
T/k×a2|R|−1, for R the local radius of

curvature.
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of the off rate via Koff(θ = 0) = Konz
−1 and the parameter z. For an equilibrium

system, we infer from detailed balance that z is the fugacity z = eβµ.

The condition ∅ + ni = 1 allows us to eliminate the function ∅. To extend the

single site analysis to a field description, we consider the number of linkers on a

particular site as a density per unit lattice spacing. This can be enacted easily by

replacing n(x, t) = ni(t)/σ in the single site equation, which is equivalent to a density

function n(x, t) = 1
`

∑Ns
i=1 θ(σ − |x − xi|)ni(t). The number of sites Ns is related to

the lattice spacing via Ns = `/σ. We arrive at the kinetic equation

1

zKoff

∂n

∂t
= −

(
1 + z−1e

1
2
βk×a2θ2(x,t)

)
n+Ns/`. (4.13)

This must be supplemented with dynamics for the angle field θ(x, t), governed by

the Hamiltonian terms Eqs. 4.1, 4.2. Forces act on the transverse displacement field

u(x, t), and thereby indirectly on the angle field θ(x, t) = ∂xu(x, t).

We use slender body resistive-force theory to describe overdamped dynamics of

the bundle, in terms of fluctuations of the transverse displacement field u(x). For

individual filaments in viscous fluid whose length ` is much greater than its radius

r, hydrodynamic interactions due to finiteness of the filament are accounted for via

the drag coefficient ζ defined in the paragraph following Eq. 4.3, and we may neglect

longitudinal friction terms.

Consequently, u(x) obeys model A dynamics [59]. That is, ∂tu = −DδH/δu +

ξ(x, t). We have introduced the parameter D = ζ−1, which is a diffusion coefficient

times a length. The field ξ(x, t) represents a white noise force with variance 〈ξ2〉 =

2DTδ(x− x′)δ(t− t′). Taking a functional derivative of the Hamiltonian found from
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the sum of Eqs. 4.1 and 4.2, we find the Langevin equation

∂u

∂t
= −D

(
κu′′′′ − k×a2(nu′)′

)
+ ξ. (4.14)

This, together with Eq. 4.13, define the kinetic railway track model. The coupled

equations are highly nonlinear. The Koff → 0 limit implies that n(x, t) is a constant,

and reproduces the permanently linked railway track model as expected.

Slowly increasing Koff from infinity to a finite value, u(x, t) relaxes much faster

than n(x, t), and remains near its near its equilibrium value θ(x, t) = 0. This implies

θ(x, t) is small as well, and suggests we Taylor expand the Boltzmann weight of

Eq. 4.13. The lowest order solution for n(x, t) is time-independent, given by

n0 = Ns`
−1(1 + z−1)−1. (4.15)

This expresses the linker density of the permanently-linked railway-track model in

terms of the fugacity. The permanent linker limit is also approached as βk×a
2 → 0,

as in the absence of coupling, the linkers have no preferred binding location and

distribute equally.

In App. C.1, we decompose n(x, t) = n0 + δn(x, t), and Taylor expand the dy-

namical equations in δn(x, t), θ(x, t). We then compute perturbative corrections to

κR(p, ω). The validity of the expansion is justified a posteriori by inspecting the terms

that appear. We find the perturbative series is regulated by the small parameter

ε =
τWLC

τoff

=
ζ`4

τoffκπ4
, (4.16)

which is a ratio of the relaxation times of the linkers to the bundle. Clearly, taking

the limit ε = 0 reproduces the permanently linked railway track model, indicating

that for small but finite ε, linkers acquire a long but finite binding lifetime. We
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are thus computing perturbative correction in ε about the permanently linked limit.

This corresponds to moving leftward from τoff = ∞ in the lower right timeline in

Fig. 4.4.

The ε expansion is most easily computed in Fourier space. We assume periodic

boundary conditions, leading to the Fourier series/transform

δn(x, t) =
∑

p

∫
dω

2π
δnp(ω)ei(px−ωt) (4.17)

u(x, t) =
∑

p 6=0

∫
dω

2π
up(ω)ei(px−ωt). (4.18)

Wave-numbers are quantized to pn = 2πn/`, for n ∈ Z.. We have further removed

bulk translations of the bundle, setting the p = 0 component of u(p, ω) to zero. The

p = 0 component of δn(x, t) is not zero, as the bundle can shift the homogeneous

part of the density. Alternatively, one can assume that n0 represents the measured

linker density, and then omit the p = 0 modes. Here, we do the former, and retain

the zero modes, since for high enough φ we will find that the bundle undergoes an

unbinding transition. In simulations/experiment we do the latter, assuming that n0

represents the homogeneous part of the bundle renormalized density.

The first two corrections to the bending rigidity κR(pn, ω) = κ+∆κ
(1)
n (ω)+∆κ

(2)
n

are
∆κ

(1)
n (ω)

κ
= − εφ2

2n2N

∞∑

m=1

(4m2 + φ)−1

−iω̄ + 4m2(4m2 + φ) + ε(1 + z)
(4.19)

∆κ
(2)
n

κ
= − φ2

4n2Nl(1 + z)

∞∑

m=1

1

4m2 + φ
(4.20)

We have used the dimensionless force

φ = ¯̀2 =
k×a

2n0`
2

κπ2
, (4.21)
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and frequency

ω̄ = ω`4/Dκπ4. (4.22)

The latter is equivalent to rescaling time to units of τWLC. N = n0` is the total

number of bound linkers. Both corrections are negative, indicating that linker tran-

sient allows the bundle to relax shear by unbinding, thereby reducing the effective

bending rigidity.

At fixed ε, |∆κ(1)
n | is monotonically increasing in φ, with limφ→∞∆κ

(1)
n = επ2

48n0`

suggesting a large radius of convergence ε < 48n0`
π2 . Similarly, in the limit ε →

∞, ∆κ1 < ∞ and more specifically ∆κ
(1)
n = 2∆κ

(2)
n . This is expected as ε → ∞

corresponds to the static limit, in which all first order corrections must be identical.

The parameter ε can be alternatively viewed as controlling the transition from statics

to dynamics.

∆κ
(2)
n , is problematic, since it violates our assumption that κR(p, ω) is expressible

as a power series in ε. It is a purely static contribution, arising precisely at zero

frequency transfer (Eq. C.6), i.e. when δn(x, t) is time-independent. Its survival at

ε = 0 is a consequence of non-commutativity of the limits ε → 0 and ω̄ → 0. First

taking the limit ω̄ → 0, and then ε→ 0, ensures that there is a finite time for linkers

to unbind, and reproduces the correct static result. We can thus retain the ε power

series provided we are able to systematically account for all zero-frequency static

corrections. These corrections will renormalize n0 → nR, and are consistent with the

non-conservation of linker number. Replacing n0 → nR accounts for all contributions

that are ε-independent and we can thus set ∆κ
(1)
n to zero.

In App. C.1, we exactly calculate all ε-independent diagrams to find the self-
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Figure 4.6: Renormalization of linker density with respect to linker stiffness.

L = π, n0 = 20, z = 10. Solid line represents self-consistent solution, while the

dashed line the bare solution, whereby the right side of Eq. 4.23 uses nR = n0. At high

φ the bundle undergoes a discontinuous unbinding transition at φ∗ ≈ 2
√

2(N+1)2/π2.
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consistent renormalized density equation

nR =
Ns/`

1 + 1/zR(φnR/n0)
, (4.23)

where

zR(φ) = z

(
1− 1

n0`

(
π
√
φ

2
coth

(
π
√
φ

2

)
− 1

))1/2

. (4.24)

zR(φ) represents a renormalized fugacity. To reiterate, the linker density n0 corre-

sponds to the density of linkers bound to a rigidly flat bundle. Numerical investiga-

tion of the self-consistent equation shows that nR is well approximated by the ”bare”

solution, where we replace zR(φnR/n0)→ zR(φ). This holds, up until an unbinding

transition at φ∗ ≈ 2
√

2(N + 1)2/π2 as shown in Fig. 4.6. The bare solution predicts

an unbinding transition at
√

2φ∗, and the reduction factor of 1/
√

2 was found numer-

ically to predict the transition for a variety of parameters. The unbinding transition

is solely a property of the nonlinear interaction, which is in contrast to earlier studies

on dynamic linkers that predict an unbinding transition as the number of filaments

in the bundle grows [54]. The transition grows ∼ N2 for N the total number of

bound linkers, and this effect is likely unobservable for typical bundles sizes.

Summarizing our results, we find the renormalized bending rigidity of the mth

mode
κR(pm, ω̄)

κ
= 1 +

φR
m2
− ∆κ

(1)
n (ω̄, φR, nR)

κ
, (4.25)

where ∆κ(1) is a function of the renormalized density, φR = φnR/n0, subject to the

constraints φ < φ∗, and ε < 48n0`/π
2. At any particular frequency and wavenumber,

the inhomogeneous rigidity correction is much smaller than the permanent linker

correction φR/m
2, and justifies previous neglect of linker dynamics [56]. At large

wavenumber however, there is a transition mode n∗ where the power spectrum Cm(ω)
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Figure 4.7: (color online) Cn(ω̄) as function of the nth mode, normalized by the first

mode: ω̄ = 1, ε = 1, φ = 100, N = 20, z = 10. Below n∗ ≈ 52, Cn(ω̄) exhibits the

usual transition from tension to bending like behavior. Above n∗, linker dynamics

become important, causing Cn(ω̄) decay more slowly as ∼ n−6.

decays as ∼ m−6, as opposed to the usual ∼ m−8. This is a consequence of the

frequency dependence of ∆κ(1), with the transition number occurring at

n∗ =

[
2εφ2

N

∞∑

m=1

(4m2 + φ)−1

ω̄2 + (4m2(4m2 + φ) + ε(1 + z))2

]−1/2

. (4.26)

4.4 Memory model

We start with the WLC limit τoff = 0, given by the left endpoint on the timelines

of Fig. 4.4. As the unbinding time raised from zero, cross-linkers develop a finite

lifetime, shearing in response to bundle deformation. This allows them to couple to

the bundle with an interaction strength set by 1/ε, with ε as defined in Eq. 4.16. In
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this section, we develop a perturbative expansion at large ε, naming the resulting

dynamical equations the memory model.

Cross-linkers interact based on previous configurations of the bundle, remember-

ing the local angle when they first bound (hence the name memory model). The

memory model transitions to the WLC at ε = ∞, and at ε = 1, it begins to transi-

tion to either the kinetic railway track model (Sec. 4.3) or the diffusive dominated

model (Sec. 4.5).

In order to account for cross-linker memory of the bundle configuration, we in-

troduce a continuous species index s, labeling the local angle s = θ(x, tbind) of the

bundle for a cross-linker attached at position x at time tbind. The density now carries

a species subscript n(x)→ ns(x). As a result, we modify the interaction Hamiltonian

of Eq. 4.2 to

Hint =
k×a

2

2

∫
dx

∫ π/2

−π/2
ds ns(x, t)(θ(x, t)− s)2. (4.27)

To complete our model, we must also prescribe the dynamical equation(s) de-

scribing multi-species linkers. Here, we present a quick derivation based on kinetic

equations. This is justified in App. C.3 where we give a microscopic derivation of

Eq. 4.31 beginning with the master equation written in terms of many-body theory

raising and lowering operators [146, 17].

As in the kinetic railway track model, linkers are non-interacting, and it suffices to

examine the density at a particular location along the bundle. Linker-concentration

now obeys the s dependent birth-death kinetic process ns
µs−⇀↽−
βs

∅ between the bound

and unbound states. In setting up the dynamical equations, we briefly use β and

µ with subscripts to refer to birth/death rates, in line with the literature. The
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appropriate generalization of Eq. 4.4 gives the birth and death rates respectively

βs = Konδ(θ − s), µs = Konz
−1e

1
2
βk×a2(θ−s)2

. (4.28)

θ(x, t) is a time and spatially dependent function, and so both on/off rates are now

configuration dependent. We have also made use of the relation Koff = Konz
−1. The

binding rate is assumed constant, and we have imposed that linkers always bind in

a non-sheared configuration. The latter constraint can, in principle, be generalized.

However, due to the exponential increase of the off rate of sheared linkers, we have

assumed binding into a sheared configuration to be negligible. Inserting the θ depen-

dent rates we arrive at the kinetic equations governing the probability distribution

∅ of the unbound state, and ns of the s-type bound state

d∅
dt

= −βs∅ +

∫
ds′µs′ns′ds

′ (4.29)

dns
dt

= −µsns + βs∅. (4.30)

Adding the two equations gives the additional the conservation of probability

relation ∅ +
∫
dsns = 1. As a result, we can eliminate the ∅ function and write in

terms of ns only. Extending from the single site to a density we find

1

Koff

dns
dt

= −zδθs
∫
ns′ds

′ − e 1
2
α(θ−s)2

ns + z
Ns

`
. (4.31)

The equation has a simple interpretation; the first two terms on the right side

represent the s-dependent unbinding rate, accounting for penalties due to misalign-

ment of species index with bundle configuration. The the last term on the right is

constant pumping rate of new linkers driven by the reservoir. In the single species

limit, we recover the kinetic equations of Sec. 4.3
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Let us consider the solution n
(0)
s corresponding to the limit Koff → ∞. This

amounts to setting the left hand side to zero. n
(0)
s is solved by the ansatz

n(0)
s (x, t) =

Ns

`

δ(s− θ(x, t))
1 + z−1

= n0δ(s− θ(x, t)). (4.32)

This solution pins the species to the preferred configuration. The time derivative

dn
(0)
s /dt ∼ dθ/dt, the latter of which is zero on the time scale (infinitely fast) of

linker rearrangement. This implies dθ/dt must be zero as well, and the solution n
(0)
s

represents a steady state configuration, approximately valid for very slow bundle

deformations. Inserting n
(0)
s into the Hamiltonian, we find that the interaction term

in Eq. 4.27 vanishes. As expected, the bundle behaves like a collection of decoupled

WLCs.

In the opposite limit, where the bundle equilibrates much faster than the linkers,

we can average Eq. 4.32 with respect to θ, which yields a Gaussian like profile ns ∼
e−s

2/2〈θ2〉. As this distribution respects the symmetry θ → −θ, it cannot create an

energy cost due to species index. This is consistent with our neglect of species index

in the kinetic railway-track model.

The notion of slow deformations is made precise by examining the bundle dynam-

ical equation. This is derived similarly following the procedure leading to Eq. 4.14.

In terms of the dimensionless time τ = Kofft, the bundle Langevin equation

∂u

∂τ
= −1

ε

`4

π4
u′′′′ +

1

ε

φ`2

n0π2

∫
ds(ns(u

′ − s))′ + τoffξ (4.33)

is proportional to the small parameter ε−1, as claimed in the beginning of the section.

The ε =∞ solution, n
(0)
s , decouples the filaments and linkers, generating no nontriv-

ial solution. As ε decreases, bound linkers will develop a finite lifetime, interacting
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Figure 4.8: Transverse load response function of n = 1 mode in high Koff limit,

normalized by the plateau response χ(ω = 0). ε = 10. The solid curve corresponds

to the WLC result. There are two transition frequencies, when ω̄ = ε, φ.
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with the bundle through shear deformations. This suggests the density is expressible

as a power series in ε:

ns(x, t) =
∞∑

m=0

n(m)
s (x, t)ε−m, (4.34)

with the leading order term given in Eq. 4.31. Inserting this into the kinetic equation,

we find at O(1/ε)

∂n
(1)
s

∂τ
= −zδθs

∫
n

(1)
s′ ds

′ − e 1
2
α(θ−s)2

ns − εzn0
∂θ

∂τ
. (4.35)

This equation is solved by a similar ansatz to that used for the steady state

solution: n
(1)
s (x, t) = δ′(θ(x, t)−s)ñ(1)

s . Time derivatives acting on the delta function

produce terms with an additional 1/ε factor, and are discarded at this order. An

overall factor of δ′(θ − s) drops out and we are left with the single-species equation

∂ñ
(1)
s

∂τ
= −e 1

2
α(θ−s)2

ñ(1)
s − εzn0

∂θ

∂τ
. (4.36)

Inputting the n
(1)
s ansatz into the Langevin equation, we find that the interaction

force depends only on the s = θ component in the form −ε−2 φ`2

n0π2∂xn
(1)
θ . The differ-

ential equation obeyed by nθ is linear, and can be readily solved by Fourier transfor-

mation n
(1)
s = − εz

1+z−1
−iω̃
−iω̃+1

, with ω̃ = ωτoff. Upon insertion into the bundle Langevin

equation we obtain for the mth mode

− iω̃um = −1

ε
m4um −

1

ε
φ
−iω̃
−iω̃ + 1

m2um + τoffξ. (4.37)

We have here assumed pinned and torque free boundary conditions as opposed to

periodic. These are both satisfied by the sine Fourier series

u(x, t) =
∑

p

up(t) sin(px) (4.38)
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with pnπ/`, and n the positive definite integers. To compare with the kinetic model,

we convert to the dimensionless frequency ω̄ = ωτWLC by substituting ω̃ → ω̄/ε.

This gives

− iω̄um = −m2

(
m2 +

−iω̄
−iω̄ + ε

φ

)
um + τWLCξ. (4.39)

This suggests the simple renormalized bending rigidity

κR(pn)

κ
= 1 +

φ

m2

−iω̄
−iω̄ + ε

, (4.40)

and accordingly the transverse response function

χmemory
m (ω) =

`4

κπ4

1

−iω̄ +m4 +m2 −iω̄
−iω̄+ε

(4.41)

Unbinding has caused the ”tension” induced by the cross-linkers to become fre-

quency dependent. At low frequencies, the bundle behaves like a collection of WLCs,

and at high frequencies it behaves like the permanently liked railway-track model.

There is a transition between the two at frequency ω = τ−1
off , i.e. when the applied

frequency is equal to the unbinding time.

The mode dependence of the power spectrum can be significantly altered by linker

unbinding even for small off rates (large ε). As shown in Fig. 4.9, the bundle behaves

as a WLC up until a transition wavenumber

n∗ =

√
ε2 + ω2

εφ
, (4.42)

beyond which the power spectrum decays only as n−6 in contrast to the n−8 behavior

of the WLC. This behavior was also found in the kinetic railway track model, though

for the memory model, the transition can occur at much lower modes.
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Figure 4.9: (color online) Mode dependence of power spectrum, normalized by first

mode: ε = 104, φ = 50, ω̄ = 10. Solid line is the memory model, and the dashed

line the permanently-linked railway track model for comparison. The memory model

behaves like the WLC with Cn ∼ n−8 up until a transition wavenumber n∗ denoted

by the gridline, whereby it only decreases as n−6.
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Figure 4.10: (color online) Dynamic shear modulus normalized by G0 = G(ω̄ = 0):

ε = 10, φ = 103. Gridlines at ω̄ = ε, φ show where the power-law self averaging

behavior of the bundle is destroyed by linker unbinding, similar to that observed in

Ref. [111].

Linker unbinding can dramatically effect the shear modulus G(ω) for frequencies

near τ−1
off . To calculate, we begin with the longitudinal response function defined in

Eq. 4.12. Inspection of χmemory shows that it has two poles in ōmega in the lower

half plane, which are easily found via the quadratic formula. We can perform the ω̄′

integration by summation of the residues of the two complex conjugate poles in the

upper half plane. The result is exceedingly long, and we omit it here. The remaining

summation over wavenumber can then be performed numerically, and the results are

plotted in Fig. 4.10.

Qualitatively, our model captures the results of previous numerical simulations of

bundle networks [111], for all but the lowest frequencies, where the network stabil-

ity assumptions relating α(ω) to G(ω) breakdown. Typical bundles consist of many

136



more than two filaments, which can drastically alter the power-law high/low ω̄ de-

pendences. We expect that a more accurate extension of our model to include more

filaments would accurately match the observed power-laws as well.

4.5 Diffusive cross-linkers

Due to the vanishing of τDwalk with respect to length, at short enough scales (with lower

bound set by the lattice spacing σ), walking becomes the preferred method of cross-

linker rearrangement. For fixed rates, this preference persists up to a length `∗ ≈
σ
√
konKwalk/k2

off, at which point linkers prefer to hop. In the permanent/diffusive

regime highlighted in dark blue in Fig. 4.4, the bundle behaves as if the linkers are

fixed, while linkers locally diffuse. If k×a2n0π2

ζKwalk
> 1, then for the low detachment

rate (but not necessarily low unbinding rate) or for lengths ` < `∗, then cross-linker

diffusion is the shortest time scale and we are in the diffusive dominated regime.

In the diffusive regime, cross-linkers are long lived and can begin to interact with

each other. In addition to a hard-core repulsion due to the discreteness of binding

sites, thermal Casimir forces arising from filament fluctuations, cause an attractive

force between adjacent linkers [65]. This motivates the description of bound cross-

linkers as a one-dimensional fluid with attractive nearest-neighbor Casimir forces

and a repulsive hard rod potential at distances less than the site spacing σ. Casimir

interactions are not necessarily negligible, as at sufficiently low chemical potential

the bundle can undergo a discontinuous unbinding transition [66].

We assume periodic boundary conditions. The linker-bundle interaction (Eq. 4.2)

breaks translational symmetry, meaning that for non-constant θ(x, t), the linker den-

sity will be nonuniform. Since the interaction hamiltonian is of the form Hint ∼
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∫
dxn(x, t)V [θ(x, t)] (for some function V), cross-linkers may be viewed as an in-

homogeneous fluid in an external potential. This situation is aptly described by

dynamic density functional theory (DDFT) [100, 101, 6, 24]. The dynamical equa-

tion governing linker density can be written as

∂n(x, t)

∂t
=
D×
T

∂

∂x

(
n(x, t)

∂

∂x

δF [n(x, t)]

δn(x, t)
,

)
(4.43)

where the intrinsic Helmholtz free energy is given by

F [n(x, t)] = T

∫
n(x, t) (ln(Λn(x, t))− 1) dx

+ Fex[n(x, t)] +
1

2
k×a

2

∫
θ2(x, t)n(x, t)dx. (4.44)

The density n(x, t) has already been averaged over internal noise, leading to

the appearance of the walker diffusion coefficient D× = Kwalkσ
2. The linker fluid

responds deterministically to bundle configurations. The DDFT is a generalized

Smoluchowski equation, with driving force determined by the gradient of an inhomo-

geneous chemical potential µ(x, t) = δF/δn(x, t). The intrinsic free energy contains

three contributions.

The first is an ideal gas term (Λ denotes the thermal wavelength), and ensures

diffusive behavior. We have represented bound linkers as an ideal gas, assuming that

if we are in the diffusive regime, jamming must be negligible.

The third term is simply a driving force due to an external potential. This arises

due to bundle-induced linker shear, and is obtained by a functional derivative of the

interaction Hamiltonian.

The second term is the excess over ideal free-energy. It encodes linker-linker in-

teractions. Determination of Fex is the most difficult step of formulating the DDFT.
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Since bundle fluctuations erase any long lived potential minima and restore transla-

tional invariance, we expect that density will not aggregate at any preferred location

along the bundle. This suggests we proceed analogously to our treatment of the

kinetic railway track model in Sec. 4.3, and decompose n(x, t) = n0 + δn(x, t) into a

homogeneous n0, and a spatially varying δn(x, t) with the same symmetry as θ(x, t).

n0 represents the density of linkers at vanishing stiffness (φ = 0). At finite φ,

δn(x, t) acquires a homogeneous part δn, that renormalizes n0 to the liquid density

nl = n0 +δn. nl merely represents the measured equilibrium concentration of linkers.

We first replace n0 with nl and omit the zero wavenumber mode from the Fourier

series of δn(x, t), later returning to the question of renormalization of n0. Like in the

kinetic railway track model, at sufficiently high φ, bundle fluctuations can push nl to

zero, signifying an unbinding transition. For now, we focus on dynamical properties,

assuming we are below the transition.

The amplitude of fluctuations δn(x, t) decrease with θ(x, t), and can be driven

arbitrarily low by suppressing thermal fluctuations/reducing the applied load. We

thus approximate 1 Fex by its Taylor expansion to second order in density about

the θ(x, t) = 0 excess free energy. This is equivalent to the method of direct inte-

gration [53, 28], replacing correlations with their θ(x, t) = 0 values. This procedure

gives the Ramakrishnan-Yussouff excess free-energy [129, 128]

Fex = −T
2

∫
δn(x, t)c(2)([n0];x− x′)δn(x′, t)dxdx′, (4.45)

where c(2)([n0];x−x′) denotes the equilibrium direct correlation function at θ(x, t) =

0. The difficulty has now been shifted onto solving for the direct correlation function

1The exact expression Fex in the presence of arbitrary θ(x), in fact, admits a formal solution
as given in Ref. [124]. It is valid for any one dimensional fluid with nearest neighbor interactions;
however, the resulting expressions are analytically intractable.
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Figure 4.11: (color online) Structure function for unhinged (d⊥α = 2) and hinged

(d⊥α = 4) cross-linkers at a packing fraction of n0σ = 0.7. HS denotes the hard rod

solution without Casimir interactions. Wavenumber is in units of lattice spacing.

of an interacting fluid, in general a formidable task.

Casimir forces act only between nearest neighbors [65]. The statistical mechanics

of a one dimensional fluid with nearest neighbor interactions is, in fact, an exactly

solvable system [36, 134, 124], and so we can calculate c(2)([n0];x − x′) without ap-

proximation. The details are presented in App. C.2, where we derive the equation of

state [66], the radial distribution function, and the direct/total correlation functions.

The radial distribution function g(r) can be found experimentally by counting the

number of linkers within a shell of width dr at a radius r away from a reference

linker, then ensemble averaging.

The dynamical equation for δn is given by linearization of Eq. 4.43 [6]. Further-

more, we implement periodic boundary conditions, taking the Fourier series

δn(x, t) =
∑

p 6=0

δnp(t)e
ipx (4.46)

and likewise for u(x, t), again, omitting the zero mode by assumption. p is restricted
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to nonzero values p = 2πn/`, n ∈ Z. This gives the dynamical equation

∂δnp
∂t

= −D×p2S−1
p δnp −

1

2
D×k×a

2n0p
2
∑

p′

θp−p′θp′ . (4.47)

We have further defined the structure function of the homogeneous fluid [51]

Sp =
1

1− nlcp
, (4.48)

where cp are the Fourier coefficients c(2)([n0];x) =
∑

p cpe
ipx. Sp is plotted in Fig. 4.11

with and without Casimir forces. We find that to a good approximation, we can

ignore Casimir forces and consider only the hard core repulsion.

Eq. 4.47, in combination with the bundle Langevin equation (Eq. 4.14), com-

pletes our diffusive linker model. The k× = 0 equation predicts a mode dependent

relaxation time τwalk ∼ D×p
2 (Sp tends to unity with p and is negligible) consistent

with our predicted ¯̀2 growth given by simple diffusive arguments in Sec. 4.2.

Fourier transforming δnp(t) =
∫

dω
2π
e−iωtδnp(ω), we can solve for δn and insert

into the bundle equation, leading to an effective u(x, t) theory with a nonlinear

interaction proportional to D×. A perturbative expansion is thus applicable as the

linker diffusion coefficient approaches zero. The nonlinear term can be represented

diagrammatically by the vertex

q, !

p1

p2

p3

p4

=
DD×k

2
×a

4n0`

2T

p1p2p3p4q
2

−iω +D×q2S−1
q

, (4.49)
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At first order, there is only a single contribution to the self energy (see the

discussion preceding Eq. C.5)

Σ̃ =
D×k

2
×a

4n0

`

∑

q

p2q2(p− q)2

γq−p(−iω +Dγq +D×k×a2q2S−1
q )

, (4.50)

which leads to the correction of the nth mode

∆κn
κ

=
−ηφ2

4n2N

∑

m 6=n

m2(4(n−m)2 + φ)−1

−iω̄ + 4m2(4m2 + φ) + 4ηφm2S−1
m

. (4.51)

We have defined the small parameter

η =
D×
Dn0

, (4.52)

which regulates the perturbation series. When η > 1, we enter the diffusive domi-

nated regime highlighted by light blue in Fig. 4.4. The n−2 prefactor of ∆κn indicates

that diffusion renormalizes φ.

Overall, the correction is negligible. This can be seen by graphing numerically

for a large range of parameters, as well as by examining each parameter dependence

individually. Ror small η, ∆κn is trivially small. At low φ, ∆κn falls off as φ2, and at

large φ it tends to a constant, indicating it is small at all φ. It is also monotonically

decreasing with respect to frequency, number of bound linkers, and mode number.

The latter can be inferred by setting ω̄ = 0 and η = 0 in the denominator, then

performing the summation over m. We find the summation transitions from n-

independent to n−2 decay at large n. This is in contrast to the kinetic railway track

model, and as such the response function does not gain a new power law mode decay

at large wavenumber.

In the permanent/diffusive regime, the bundle is impervious to linker diffusion.

To probe the diffusion dominated regime, we must look at large η, which is technically
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Figure 4.12: (color online) Mode-dependent φ renormalization to first order in the

diffusion dominated η = ∞ regime(φ = 0.1). At increased packing fraction, linker

induced corrections increase, localizing around peaks in the structure function. The

inset shows φ dependence of the mode n = 46, corresponding to the first peak. More

generally, for all modes ∆φn decreases with respect to φ.

beyond the perturbation theory. Physically, as η approaches infinity, linkers diffusive

instantaneously on the scale of bundle relaxation. Due to the η appearing in the

denominator of ∆κn, the η →∞ limit is well-defined, and we can extend our result.

In this limit we find the correction

∆φη=∞
n

φ
=
−1

4nl`

∑

m6=0,n

Sm
4(n−m)2 + φ

. (4.53)

Where have defined ∆φn = 4n2∆κn/κ to emphasize that this is a φ correction.

The structure function acts like a two-body interaction between θ2(x, t) at different

locations on the bundle. It is plotted in Fig. 4.11. It has a principal peak at low

wavenumber, followed by decaying oscillations about unity with increasing wavenum-
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ber.

For a given mode n, the summand reaches its largest values for m near n, and m

near the peaks of the structure function. This tells us that the dominant contribu-

tions to ∆φη=∞
n from from modes n near the mode corresponding to the maximum

of Sn. In Fig. 4.12, we compute ∆φη=∞
n through the first 200 modes. We find that

linker diffusion is still a small correction, at most %2.5 of φ, and peaks with the

structure function. At increasing φ, ∆φη=∞
n grows slower than linear, leading to a

vanishing contribution.

The principle dynamical effect, is a small reduction in the effective stiffness of

linkers for bundle deformations with wavenumber coinciding with peaks of the cross-

linker structure function. As the linkers approach full packing however, these peaks

become infinitely sharp delta functions, making the reduction more pronounced.

Lastly, we return to the question of the zero mode, and renormalization of nl. For

packing fractions not close to unity, this is the principle effect. It is a non-dynamical

calculation, and so our starting point is the DFT grand potential Ω[n(x, t)], obtained

from the free energy functional by Legendre transformation

Ωθ[n(x, t)] = F [n(x, t)]−
∫
dx(µ− V (θ(x, t)))n(x, t)dx. (4.54)

Minimization with respect to n(x, t) determines the density profile for a specific

configuration θ(x, t). Since θ(x, t) is itself a fluctuating field, the bundle averaged

grand potential is given by

〈Ω[n(x, t)]〉 = −kBT ln

∫
Dθ(x)e−βΩθ[n(x,t)]e−βHWLC[θ(x,t)]. (4.55)

Averaging demands that n(x, t) is spatially homogeneous, and so we look for so-

lutions of the form n = nl+δn. Inserting the RY free energy and WLC Hamiltonian,
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we find that functional integral is Gaussian, and can easily be performed. This leads

to the grand potential

Ω[n] = Ω0[nl] +
1

2
ln

(
sinh

√
nφ/nl√

nφ/nl

)

+ n` ln(n/nl)− (n− nl)`

− 1

2
c

(2)
0 (n− nl)`2. (4.56)

Stability demands c
(2)
0 , which is satisfied for the models we consider. We minimize

with respect to n, allowing us to discard Ω0[nl]. The logarithm in the first line is

the effective potential due to bundle fluctuations combined with linker shear. It is

monotonically increasing and shifts the minimum to n < nl.

Given a measured value of the linker density for some value φ, Fig. 4.13 shows

how the density renormalizes as φ increases. Eventually n = 0 is reached, indicating

a shear induced unbinding transition. This can occur independently of both the

Casimir force mediated transition [66], and the number of filaments in the bundle [54].

4.6 Conclusion

We have explored the dynamics of semiflexible filament bundles with transiently

cound cross-linkers for a broad range of unbinding times τoff. We found that the

dynamics can be segmented into two types of behavior, based on whether or not

the cross-linkers prefer to relax via diffusion or unbinding. Linkers that prefer to

unbind exhibit a frequency dependent stiffness. At high frequency, the cross-linkers

do not have time to relax in response to changes in the bundle configuration, and

we thereby recover the permanently linked railway-track model. At low frequencies,

the linkers unbind quickly in response to bundle deformation and therefore have
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Figure 4.13: Renormalization of measured density nl with respect to stiffness force.

L = 1 and σ is adjusted to keep the packing fraction at 0.25 for each curve. At high

φ, the density vanishes, indicating a unbinding transition.

vanishing effective stiffness. The transition between these two regimes occurs for

frequencies near the unbinding rate ω ∼ τ−1
off . This picture explains qualitatively

previous numerical findings of a non-self averaging viscoelasticity regime.

In the diffusive crosslinker regime, we find that effective linker stiffness is reduced

for bundle wavenumbers corresponding to peaks in the cross-linker fluid structure

function. Finally, we found a shear mediated unbinding transition at high enough

linker stiffness for both diffusive and unbinding linkers.
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Part II

Membranes and rods
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CHAPTER 5

Effects of curvature on the propagation of

undulatory waves in lower dimensional elastic

materials

5.1 Introduction

Lower dimensional elastic structures are materials in which one (or more) of their

characteristic length scales is small, while the others are not. Examples include

biopolymer filaments [15] (two such small lengths and one large one), ribbons [75],

and membranes or shells (one small length and two large ones) [112]. The physics of

lower dimensional elastic structures is broadly applicable to problems ranging from

nanometer lengths in carbon nanotubes [155, 14] to ∼ 106 meters when discussing

continental plates [70]. In the purely biological context, lower dimensional elastic

structures are central to several systems, including viral capsids [91, 103, 73, 142],

and cell membranes [156, 120, 121], as well as filaments and and their bundles.

Due to their having one (or more) microscopic dimensions, lower dimensional

elastic structures have a large separation of energy scales associated with deformation

along the “thin” directions as compared to the directions normal to them [83]. This

is well known in the study of flat elastic shells, in which the out-of-plane motion
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of the sheet, that arises due to bending deformations, requires low energies when

compared to in-plane deformations. For a shell of lateral extent L and thickness

h � L, this separation of energy scales can be parameterized by the Föppl-von

Kármán number νK ∼ (L/h)2 � 1 [115, 133]. For a flattened shell (i.e. a plate)

and within linear elasticity theory, these soft bending modes decouple from the stiff

in-plane deformations. When the elastic reference (stress-free) state of the shell is

not flat, these modes are coupled by the local curvature. The result is that shells

with complex geometry have significantly different elastic behavior [87, 13, 77]. For

example, thin shells with local positive Gauss curvature in their stress-free state

inhibit bending undulations [153]. Previous studies of the dynamics of undulatory

waves on curved shells have shown that, in the geometric optics limit, these waves are

reflected and refracted by changes in the local curvature. They can even undergo total

internal reflection when propagating from regions of negative to positive Gaussian

curvature [31]. Such effects have measurable implications for the spatial distribution

of thermal undulations on red blood cells, which have regions of both positive and

negative Gauss curvature [30].

The coupling of bending to stretching by curvature alters the normal-mode fre-

quency spectrum by mixing in-plane and out-of-plane deformations. One may ask

whether one could, in effect, “hear” the curvature of a shell by examining its eigenfre-

quencies of vibration. Famously, such a question was posed with regard to hearing

the shape of drum [64], which was in the negative [43]. We suggest by an exam-

ple discussed below, that one can, in fact, hear the shape of a bent rod; this has

implications for understanding the phonon structure of some carbon nanotubes [9].

In this manuscript, we study the propagation of elastic waves on an undamped

filament, where the elastic reference state couples bending and stretching deforma-
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tions within the framework of linear elasticity. Our goal is go beyond the geometric

optics analysis of undulatory waves and produce the analog of the Fresnel equations,

allowing one to understand the transmission and reflection of elastic energy intensity

at various geometric interfaces. The simplest model that retains the geometric cou-

pling of in-plane deformation and bending is the elastic rod. While we believe that

these results will inform work on membranes with more complex curvature, the the-

ory is directly applicable to a wide variety of filaments. After introducing the elastic

Hamiltonian in Sec. 5.2, we analyze in Sec. 5.3 the effect of uniform curvature on the

eigenmodes of a rod, addressing the question of whether one can, in this instance,

observe the effect of curvature on the mode spectrum. In Sec. 5.4, we look at the

scattering of elastic waves on an infinite rod by localized regions of curvature, where

we find that undulations can tunnel through curved regions that do not support such

undulations in the bulk. Finally, we summarize our results and comment on their

implications in Sec. 5.5.

5.2 Model

We consider the elastic dynamics of a thin curved rod embedded in two dimensions.

We neglect twisting/torsional modes of deformation. Neglect of twisting is justified

by our treatment of the rod as infinitesimal, and lacking internal structure. Naively,

we may neglect torsion as it does not exist for surfaces of codimension one, and

therefore is not a general feature of all lower dimensional elastic structures. A more

detailed explanation is given following Eq. 5.5. We do not consider the elastic defor-

mation of the material in the rod’s cross section. Where applicable, we will state the

results for a rod of uniform cross section and composed of isotropic elastic continuum
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Figure 5.1: (color online) Schematic representation of an undulatory wave on a

curved rod. The (black) solid line is the space curve of the undeformed rod with

radius of curvature R supporting a sinusoidal wave (not to scale) shown as the (red)

dashed line. Deformations about the undeformed state are decomposed locally into

a displacement u (wide blue arrow) along the local tangent, and a displacement f

(wide red arrow) along the local normal. The weak curvature approximation assumes

that the radius of curvature R of the stress-free state (solid black line) is much larger

than wavelength λ of characteristic deformations (dashed red line).

with uniform elastic constants.

We develop the mechanics of curved rods by determining the action, from which

the equations of motion are derived. We work in the weak curvature limit shown

schematically in Fig. 5.1. The weak curvature limit is equivalent to the inequalities

h � λ � R, where h represents the cross sectional radius, λ the length of charac-

teristic deformations, and R the local radius of curvature. This is a one-dimensional

version of the linearized shallow shell theory approximations [115, 31].

The stress-free configuration of the rod, shown in Fig. 5.1, is described by a two-

dimensional space curve X0(s), where s denotes the arclength. The local tangent is
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given by t̂ = dX0/ds. One may also compute the local normal (and binormal, which

is trivial for the rod embedded in the plane) vectors via the well-known Frenet-Serret

relations [143]. We may write these relations as

dt̂

ds
= κ(s)n̂,

dn̂

ds
= −κ(s)̂t, (5.1)

where κ(s) is the arclength dependent curvature (equivalent to the inverse radius

of of curvature R(s)), n̂ the local normal vector, and bold-face symbols refers to

two-dimensional vectors.

Due to our assumption of weak curvature, we may neglect self-intersections of

the rod so that its elastic energy density is determined solely by its local state of

deformation. For small deformations δX(s), the space curve describing the deformed

state is then

X(s) = X0(s) + δX(s). (5.2)

Translational invariance demands that the elastic energy, U , be function of dX0

ds
, dX
ds

and their derivatives. Given the curved stress-free state of the rod, we also require

that U vanishes when X = X0. We obtain the elastic energy

U =
1

2

∫
ds

[
aU2 + bK2

]
, (5.3)

where a and b represent phenomenological parameters governing stretching and bend-

ing respectively. We have introduced the one-dimensional longitudinal strain tensor

U =
1√
2

[∣∣∣∣
dX

ds

∣∣∣∣
2

−
∣∣∣∣
dX0

ds

∣∣∣∣
2
]1/2

= t̂ · dδX
ds

+O(δX2), (5.4)

and the bending tensor

K =
1

κ
√

2

[∣∣∣∣
d2X

ds2

∣∣∣∣
2

−
∣∣∣∣
d2X0

ds2

∣∣∣∣
2
]1/2

= n̂ · dδX
ds

+O(δX2). (5.5)
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The appearance of these terms, including using square roots in the definitions of U

and K, is chosen to align with the generalized representations of elasticity in higher

dimensions. They are equivalent to the more familiar bending and stretching elastic

energy terms [26, 82].

For rods (and generally for objects of codimension greater than one), there exist

additional torsion degrees freedom that may contribute to the elastic energy [22].

These consist of displacements normal to both the local tangent, as well as the

unique bending normal orthonormal to the covariant derivative of a local geodesic.

The generalized Serret-Frenet relations tell us that each additional normal vector is

proportional to a power m > 1 of the local tangent. For weakly curved rods, these

torsion terms constructed out of higher order derivatives may thus be neglected in

comparison to the aforementioned bending and stretching contributions.

Deformations are parametrized in normal coordinates [112]

δX = ut̂ + f n̂, (5.6)

where u represents the local in-plane stretching, and f the local out-of-plane bending.

Rewriting U and K in terms of normal coordinates, we find (using primes to denote

arclength derivatives)

U = u′ − κf, (5.7)

and

K = f ′′ + 2κu′ + κ′u− κ2f. (5.8)

In the weak curvature limit, the second and fourth terms are negligible. The third

term is more subtle. It can certainly be discarded for rods with constant curvature,

which we study here, but also may be discarded provided R′/R is small. We thus

find K ≈ f ′′.
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To determine the action, we introduce the kinetic energy, taking the mass density

(mass per unit length) of the rod to be ρ. In the weak curvature limit, the kinetic

energy density can be approximated by its flat rod result, as corrections are higher

order in curvature. Using dots (primes) for time (spatial) derivatives, we obtain the

action

S =
1

2

∫
ds
{
ρḟ 2 + ρu̇2 − a(u′ − κf)2 − bf ′′2

}
. (5.9)

For a uniform elastic rod with Young’s modulus Y , cross sectional area A, and

moment of inertia I, the two phenomenological elastic constants can be expressed

in terms of these more microscopic ones as: a = Y A and b = Y I/2 [83]. We

may eliminate the dependence on a, b by a suitable rescaling of length and time,

introducing dimensionless independent variables: s→ s/`∗ and t→ t/t∗, where

`∗ =

√
b

a
(5.10)

t∗ =

√
bρ

a
. (5.11)

Variations with respect to u and f yield the equations of motion

∂2
t f + ∂4

sf +M2f = M∂su (5.12a)

∂2
t u− ∂2

su = −∂s(Mf), (5.12b)

where we have defined the dimensionless curvature

M(s) = `∗/R(s), (5.13)

in terms of the the arclength dependent stress-free radius of curvatureR(s). Eqs. 5.12a

and 5.12b are one-dimensional versions of the linearized shallow shell equations gov-

erning thin shells [115].
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The boundary conditions are also obtained by variation of the action. In addi-

tion to continuity of u, f , and f ′ across the boundary, we find three force balance

equations. These equations require the continuity

∆(u′ −Mf) = 0 (5.14)

∆(f ′′) = 0 (5.15)

∆(f ′′′) = 0, (5.16)

across an interface where the curvature of the rod changes, say at s = 0. In the above

equations we use the notation ∆(φ) = lims→0+ φ− lims→0− φ to represent the discon-

tinuity of some variable φ across a boundary. At a boundary where the curvature

changes discontinuously, there is a subtlety in that κ′ is not well defined, suggesting

that we are not justified in discarding the term κ′u in the bending tensor K – see

Eq. 5.8. However, in the presence of discontinuous curvature, our assumptions lead-

ing to the derivation of K cease to hold as well. Physically, the boundary conditions

Eqs. 5.14–5.16 represent longitudinal force balance, transverse force balance, and

torque balance across the interface. Within the linearized shallow shell theory [115]

approximation K ≈ f ′′, these boundary conditions still provide the correct physical

continuity of force and torque. Eqs. 5.12 and boundary conditions Eqs. 5.14–5.16

represent the minimal coupling of an elastic rod to curvature.

5.3 Eigenmodes and frequencies

We consider the case of constant curvature, which corresponds to the replacement

M(s) → M . Eqs. 5.12a, 5.12b now constitute a set of linear partial differential

equations. In the frequency domain, these equations can be made to appear like the
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time-independent Schrödinger equation for a spinor-valued state ket |ψ〉:

Ĥ |ψ〉 = ω2 |ψ〉 , (5.17)

which may be written in the s or arclength basis

〈s|ψ〉 = f(s) |f〉+ u(s) |u〉 , (5.18)

in terms of basis spinors |f〉 = (1 0)T and |u〉 = (0 1)T , and two “wavefunctions” f(s)

and u(s), which correspond to the amplitude of bending and stretching deformation

respectively. In terms of this spinor fu basis, the Hamiltonian is given by

Ĥ =


 ∂4

s +M2 −M∂s

M∂s −∂2
s


 . (5.19)

Note that the f and u problems decouple on a straight rod (M = 0) as expected

– see below. We look for traveling wave solutions of the form eiks |ψk〉, where the

spinor |ψk〉 is s-independent. The Hamiltonian acting on such a state becomes

Ĥ(k,M) =


 k4 +M2 −iMk

iMk k2


 . (5.20)

5.3.1 Zero curvature

We briefly review the case of zero curvature (M = 0). The Hamiltonian is diagonal,

with eigenfrequency and eigenstate pairs

(ω = k)↔ |u〉 , (ω = k2)↔ |f〉 . (5.21)

f and u waves have quadratic and linear dispersion relations respectively. In their

mode spectrum there are three points of degeneracy: k = 0,±1.
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For a finite rod of length `, boundary conditions restrict the allowed values of

wavenumber k, producing a discrete spectrum of eigenvalues or frequencies. We

consider a clamped rod, requiring that u, f , and f ′ vanish at the boundary. The

eigenvalue equation (Eq. 5.17) has a solution of the form |ψ(s)〉 = eiks |ψk〉, provided

that det(ω21 − Ĥ(k)) = 0. This is satisfied for any wavenumber k that fulfills the

condition

(ω2 − k2)(ω2 − k4) = 0. (5.22)

There are six solutions. These include two propagating u waves of the form e±iωs |u〉,
two propagating f waves of the form e±i

√
ωs |f〉, and two exponential (evanescent)

f waves corresponding to imaginary solutions of wavenumber. These are given by

e±
√
ωs |f〉.

We determine the allowed frequencies by first projecting |ψ〉 onto the wavenumber

basis

ψ(k) =
∑

σ=±

cuσe
σiωs |u〉+

(
cfσe

σi
√
ωs + cE,fσ eσ

√
ωs
)
|f〉 , (5.23)

in terms of the undetermined coefficients cu±, c
f
±, c

E,f
± . The six boundary conditions

(three at each end) produce a set of six equations for the six coefficients. A solu-

tion exists provided the determinant of the coefficient matrix vanishes, yielding the

eigenfrequency condition

[
cos(
√
ω`) cosh(

√
ω`)− 1

]
sin(ω`) = 0. (5.24)

Frequencies ωf that cause the bracketed expression to vanish correspond to purely |f〉
bending modes, whereas frequencies ωu that cause the sine to vanish are purely |u〉
stretching modes. Since the function cosh(x) grows exponentially with its argument,

to good approximation, we may use the approximate f -mode frequency condition
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Figure 5.2: (color online) Dispersion relation of a uniformly curved rod. M = 0.05.

The degeneracy between the M = 0 dispersion curves (dashed black lines) is lifted

due to curvature. Level splitting between the upper branch (red) and lower branch

(black) is O(M) near wavenumbers k = ±1 and k = 0.
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cos(
√
ωf`) = 0 when

√
ω` > 1. This leads to the (approximate) solutions for the

bending-mode eigenfrequencies

ωf ≈
(

(n+ 1/2)π

`

)2

, (5.25)

for positive integers n. The stretching eigenfrequencies, which correspond to vanish-

ing of sin(ωu`), are easily found to be

ωu =
nπ

`
. (5.26)

5.3.2 Uniform curvature

In the presence of uniform curvature M , the eigenfrequencies of Eq. 5.20 split into

two branches:

ω2
± =

1

2

[
(k4 + k2 +M2)±

√
(k4 + k2 +M2)2 − 4k6

]
, (5.27)

where the (+) subscript refers to the upper branch, and the (-) subscript to the lower.

In the limit M → 0 and |k| > 1, these reduce to ω+ = k2 and ω− = k, indicating

that the upper branch corresponds to a bending mode, and the lower branch to a

stretching mode. For |k| < 1, the identification is reversed, with ω+ = k and ω− =

k2. These identifications are further supported by looking at the (unnormalized)

eigenmodes, which may be written as

|+〉 = |f〉+
−ikM

k2 − ω2
+(k,M)

|u〉 (5.28)

|−〉 = |u〉+
ikM

k4 +M2 − ω2
−(k,M)

|f〉 . (5.29)

For |k| > 1, the M → 0 limit recovers the zero-curvature results |+〉 = |f〉 and

|−〉 = |u〉. Again, the identifications are reversed for |k| < 1.
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Figure 5.3: (color online) The dispersion relation of a rod with uniform curvature,

color-coded according to the normalized amplitude of its corresponding |f〉 eigen-

state. M = 0.15 and ` = 1. Mode mixing is strongest near the degeneracy points

of the M = 0 case. In the inset, we show the behavior for larger curvature M > 1.

At small k, the upper branch is essentially flat, while the lower branch develops an

ω− ≈ |k|3/M power law, in contrast to its quadratic dispersion relation at small

curvature.
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In Fig. 5.2, we plot the dispersion relations of elastic waves on the rod at fixed

M 6= 0. Curvature lifts the degeneracies at wavenumbers k = 0,±1. The magnitude

of the level splitting is O(M). The upper branch is gapped; it does not tend to zero

with wavenumber, but instead to ω(k = 0) = M . In this sense, the upper branch

acts as if it has acquired a mass due to curvature, hence our use of the notation M .

If the system possess frequencies ω < M , they must have complex wavenumber and

are necessarily bound. At finite M , in the limit k → 0, the eigenmode of the upper

branch becomes a pure |f〉 mode. Bending modes are gapped in the presence of

curvature, which can be viewed as the one-dimensional analog of the suppression of

undulations on thin shells at areas of positive Gauss curvature [153, 31]. In the case

of shells, this suppression is due to a change in character of the elasticity equations

from hyperbolic to elliptic upon changing the sign of Gauss curvature [115]. Here,

the effect manifests as a gap in the dispersion.

In the absence of curvature, the linear and quadratic dispersion corresponded to

directly to |u〉 and |f〉 normal modes. In the presence of curvature, these normal

modes are mixed. In Fig. 5.3, we show the same free dispersion relation color coded

by normal mode amplitude. The amplitudes obey the normalization constraint |u|2+

|f |2 = 1, which implies that |f | = 1 when |u| = 0, and vice-versa. The effects of

mode-mixing are most prevalent at wavenumbers near level splitting. At these points,

the normal mode amplitudes of the two branches switch character between u and f

dominated. This ensures that only bending (stretching) dominated normal modes

exhibit quadratic (linear) dispersion at large wavenumber. For wavenumber k < 1,

the lower branch ω− ∼ |k|3/M , in contrast to the zero curvature quadratic dispersion.

At fixed k, the frequencies on the upper (lower) branch of Eq. 5.27 increase (de-

crease) with increasing M . At large k, the frequencies on the lower branch decrease
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∼M−1, while those on the upper branch are hyperbolic and approach the asymptote

ω = M . As a result, frequencies ω+ may never fall below M . This is due to the

k = 0 band gap shown in Fig. 5.2 (see the inset of that figure).

The large curvature limit of Eqs. 5.28, 5.29 shows that the eigenstates that mix

bending and stretching modes once again decouple so that |+〉 → |f〉 and |−〉 → |u〉.
Interestingly, this is the same result as for M → 0. Since at large M the |+〉 states

become pure bending modes, we deduce that bending dominated modes may not

have frequencies ω < M . Moreover, by increasing the curvature, one can identify

which eigenfrequencies are related to primarily bending (stretching) dynamics, by

seeing if they increase (decrease) with M . At larger curvature, due to the frequency

gap, these frequencies are separated by the line ω = M .

We now turn from the case of an infinite rod to a finite one. For a finite rod, we

must impose boundary conditions at the ends, which generally lead to a quantized set

of eigenfrequencies ωn. To study how the frequency spectrum changes with respect

to curvature, we fix clamped boundary conditions at the ends and vary only the

curvature M . Thus, we demand that u, f, and f ′ vanish at the endpoints s = 0, `.

Following the steps of Sec. 5.3.1 to determine the eigenfrequencies involves solv-

ing a cubic characteristic equation for k2 as a function of ω, followed by finding the

roots of an analytically complicated transcendental equation. Instead, we compute

the eigenfrequencies and eigenfunctions directly in position space numerically, us-

ing collocation methods on a Chebyshev grid [148]. The eigenmode amplitudes are

determined via numerical integration
∫ `
0 |f |

2ds∫ `
0 (|f |2+|u|2)ds

, performed via quadrature.

In the upper panel of Fig. 5.4, we plot the eigenfrequencies as a function of

curvature for a rod of length ` = 20, color coded so that an increasing ratio of
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bending to stretching amplitude runs from dark to light. Broadly, frequencies that

increase with respect to curvature are associated with bending f -modes, and such

modes are still restricted to frequencies ω > M . The lower frequency modes show

more mixing of bending and stretching.

Due to changing the rod’s curvature, spectral lines (frequencies) corresponding

to different modes cross. There are three regimes, dictated by the strength of inter-

action between different harmonics. At high frequency (and accordingly high |k|),
curvature-induced coupling between bending and stretching is negligible. The spec-

tral curves can be well approximated by using the zero-curvature k values, Eq. 5.25

and Eq. 5.26, in the equations for the ω+ and ω− branches. As for the infinite rod,

bending (stretching) modes increase (decrease) with increasing curvature. At low

frequencies, curvature significantly affects the rod, and the free dispersion relation

gives a poor fit.

At intermediate frequencies (approximately 1 < k < 1.75 in the upper panel

of Fig. 5.4), frequencies exhibit oscillatory behavior, due to level splitting between

other harmonics. To understand this effect, we expand the state |ψ〉 of Eq. 5.17 in

the basis of zero curvature eigenmodes

|ψ〉 =
∑

n

cn(M) |ψ(0)
n 〉 , (5.30)

for some M -dependent coefficients. This leads to an equation for the coefficients cn:

[
ω2(M)− ω2

n

]
cn =

∑

m

〈ψ(0)
n |V̂ |ψ(0)

m 〉 cm, (5.31)

where we have introduced the M = 0 eigenfrequencies ωn corresponding to the
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Figure 5.4: (color online) The frequency spectrum of a clamped rod of length ` = 20

as a function of curvature M . Top: the M -dependence of the frequency spectrum,

color coded by the relative amplitude of its f to umode, where lighter colors represent

more bending f -amplitude. Due to parametric M -dependence, each curve represents

one eigenmode. We find three distinct regimes: high ω where the curves look like their

infinite-rod counterparts, intermediate ω, where they spectrum is approximated by

free dispersion curves with level splitting, and low ω where curvature strongly distorts

the spectrum. Bottom: a close up view of the frequency spectrum (black solid lines)

overlaid with the infinite rod dispersion curves for several modes labeled by n in the

figure (dashed lines). Level splitting occurs between even and odd numbered modes,

as explained in the text.
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eigenmodes |ψn〉, and we have defined the perturbation operator

V̂ =


 M2 −M∂s

M∂s 0


 . (5.32)

The perturbed eigenfrequencies ω(M) retain implicit dependence on the curvature

M . For the infinite rod, the direct solution of Eq. 5.30 leads to the frequencies and

states ω±, |±〉. We do not try to recover this result, but instead look at the possible

straight-rod states coupled by the perturbation operator. Evaluating the off diagonal

matrix elements of Vmn we find

〈m|V̂ |n〉m6=n = −2M

∫ `

0

fm∂sunds, (5.33)

where fm and um represent the zero curvature eigenfunctions corresponding to the

mth and nth eigenfrequencies – see Eqs. 5.25, 5.26. The zero-curvature Hamiltonian

Ĥ0, is invariant under a parity transformation Ĥ0(s) = Ĥ0(−s). As a result, the

eigenfunctions fn and un are either even or odd. Since the operator ∂s is odd under

parity, the operator V̂ connects states of opposite parity. The coupling Vm 6=n is non-

vanishing only when m is even and n is odd, or vice-versa. In the lower panel of

Fig. 5.4, we show a close-up view of the frequency spectrum overlaid with the free

dispersion curves labeled by their harmonic. Level splitting occurs precisely between

odd and even harmonics, which leads to the oscillatory-like behavior.

5.4 Scattering

We study the transmission and reflection of undulatory and compression waves

through regions of nonzero curvature. We imagine the scattering problem as fol-

lows. Two semi-infinite straight rod segments are appended to the left and right
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sides of a region of constant curvature M (i.e. the arc of a circle), such that both the

rod and its tangents are everywhere continuous. We choose a coordinate system so

that the center s = 0 is the symmetry point of the figure and note that the circular

arc has length `. The curvature jumps discontinuously from 0→M on the left, and

M → 0 on the right. See Fig. 5.5.

In the straight domains |s| > `/2, waves are defined by the eigenmodes and eigen-

frequencies of Sec. 5.3.1. Radiative incoming and outgoing states are thus determined

solely by the basis of plane wave solutions, i.e., values k that satisfy the infinite rod

dispersion relation. After demanding the solution be finite at ±∞, each semi-infinite

rod has five such solutions: an incoming/outgoing f -wave, an incoming/outgoing

u-wave, and one evanescent f -wave.

In the curved domain s ∈ [−`/2, `/2], k can take complex values. This differs

from the well-known transmission through a barrier in quantum mechanics, where

the allowed k values are either purely real or imaginary [132]. In general, states with

real k correspond to propagating solutions, and facilitate transmission. We refer to

the number of propagating solutions in the curved region as the number of channels,

whereby a wave may be transmitted through the curved domain. Before computing

transmission/reflection coefficients for an incoming plane wave, we study how the

number of available channels is set by the combination of both the curvature of the

rod and the frequency of an incoming plane wave.

The characteristic equation is found by demanding that the eigenvalue problem

defined by Eq. 5.17 with Hamiltonian given by Eq. 5.20 has a solution. This is

ensured provided

det
[
ω21− Ĥ(k,M)

]
= 0. (5.34)
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We find the characteristic equation for κ = k2 is cubic:

κ3 − ω2κ2 − ω2κ− ω2
(
M2 − ω2

)
= 0. (5.35)

Real solutions κ < 0 and κ > 0 correspond to evanescent and propagating waves

respectively. Complex κ corresponds to damped propagating waves.

The number of channels is twice the number of real, positive roots κ. These roots

are a function of frequency and curvature. At zero curvature (M = 0), there are

three roots at κ = ±ω, κ = ω2, leading to four channels (two pure f -waves, and two

pure u-waves). At nonzero M , Descartes’ rule of signs states that the number of

positive (negative) roots is equal to or less than (by an even number) the number of

sign changes of the coefficients when ordered in decreasing powers of κ (−κ).

For M > ω, the polynomial coefficients undergo one sign change. There is only

one positive root. When 0 ≤ M < ω, Descartes’ rule determines that there are

either two or zero positive roots. In the limit M = 0, we already know that the

characteristic equation contains two positive roots, and has a positive y-intercept.

Increasing M will only serve to shift the characteristic polynomial downward, while

keeping the y-intercept positive for 0 ≤ M < ω. This shift cannot remove the two

positive roots. We conclude that for 0 ≤ M < ω the characteristic polynomial has

two positive roots.

In summary, there are four available channels when 0 ≤ M < ω, but for M > ω

there are only two available channels. The reduction in the number of channels with

decreasing frequency can be traced back to the vanishing of f dominated eigenmodes

for frequencies ω < M . However, the two available channels are not pure u-modes,

but instead some combination of f and u displacements. This mixing of the modes

allows pure f or u modes to interconvert in the presence of curvature, which has
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implications for phonon transmission through curved regions.

5.4.1 Transmission/reflection through constant curvature

We consider the case of an incoming, purely f mode wave ei
√
ωs |f〉, or a purely u

mode wave eiωs |u〉. In both cases, we take the incident wave to have unit amplitude

far to the left of the circular arc. The wave, scattered by the curved region, produces

two transmitted f and u waves with transmission amplitudes tf and tu, two reflected

waves with amplitudes rf and ru, and two evanescent waves with amplitudes rEf and

tEf , which decay exponentially away from s = ±`/2. The situation is summarized in

Fig. 5.5.

The transmission (reflection) coefficient, denoted by a capital letter T (R), is

defined as the ratio of the outgoing flux of amplitude to the incoming flux. The flux

is given by the product of the amplitude squared times the group velocity. For an

incoming f wave of unit amplitude, the f -mode transmission/reflection coefficients

are

Tf = |tf |2, Rf = |rf |2. (5.36)

However, since bending and compression waves obey different dispersion relations,

we must account for their difference in group velocity. Compression u-waves have

unit velocity, while bending waves have a group velocity of dω/dk = 2
√
ω. For an

incoming f wave, the transmitted/reflected u waves are given by

Tu =
|tu|2
2
√
ω
, Ru =

|ru|2
2
√
ω
. (5.37)

To solve for the transmission/reflection coefficients, we must explicitly solve Eq. 5.17

at nonzero M , and then employ the boundary conditions – Eqs. 5.14-5.16 – to stitch

together solutions at the boundaries s = ±`/2.
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Figure 5.5: (color online) Schematic representation of an elastic rod (solid gray line)

formed by adjoining two semi-infinite straight rods at the (black) dashed lines to the

left (s = −`/2) and right (s = `/2) of the curved rod segment (arc of a circle with

radius R), such that the rod and its tangent are everywhere continuous. We consider

the scattering of an incoming bending f wave from the left, through the region of

constant curvature M . Curvy arrows correspond to propagating asymptotic states,

and decaying arrows to evanescent states. The darker (lighter) colors refer to u (f)

modes. There are six unknown transmission/reflection amplitudes. In the curved

region, there are either two or four propagating channels, determined by the value

of M .
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Since we are looking for plane wave solutions of the form |ψ(s)〉 = eiks |ψk〉, we

shall reformulate Eq. 5.17 as an eigenvalue problem of the operator ∂s at fixed ω. This

is accomplished by reducing all higher order derivatives ∂s through the introduction

of new fields fa ≡ ∂as f and ua = ∂asu, for integers a ≥ 0. The resulting system of

equations may be written as a vector differential equation

∂x |χ〉 = Â |χ〉 (5.38)

for six-dimensional vector

|χ〉 =




u0

u1

f0

f1

f2

f3




(5.39)

and matrix

Â =




0 1 0 0 0 0

−ω2 0 0 M 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 M ω2 −M2 0 0 0




. (5.40)

The boundary conditions are now algebraic relations amongst all these fields. For

a trial solution of the form eiks |χk〉, there are six possible solutions in the curved

region, one for each value k that is a root of the characteristic polynomial – see

Eq. 5.35. The full solution is given by a linear superposition these trial solutions

with six undetermined coefficients. We also have six more undetermined coefficients
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associated with the incident, reflected, and transmitted waves, giving a total of twelve

undetermined coefficients. These are fixed by imposing the continuity of u, f , and f ′

at s = ±`/2 (six conditions), as well as the three force balance conditions –Eq. 5.14

–at s = ±`/2 (six conditions). Thus, we have a system of twelve linear equations

that can be solved for the scattering amplitudes.

We solve these equations numerically. In Fig. 5.6, we plot the transmission and

reflection coefficients for an f wave of unit amplitude incident on an interval of

length ` = 10, with uniform curvature M = 3. In the upper panel of Fig. 5.6, we

show both the bending and compression transmission coefficients separately. Due to

conservation of energy, we can define a total transmission coefficient Ttot = Tf + Tu,

and reflection coefficient Rtot = Rf +Ru, such that their sum Ttot +Rtot = 1 is unity.

Though we consider only an incoming bending wave, we find that curvature allows

the rod to convert bending into stretching deformations, leading to the production

of compression waves.

At low frequencies, ω < M , the circular arc of the rod cannot support bending-

dominant modes. The nonzero transmission coefficient for incident bending waves

indicates that the f -waves can, in effect, tunnel through the curved region via conver-

sion to compression u-waves, which then convert back into outgoing bending f -waves

in the righthand straight segment of the rod. In the curved domain, the incoming

bending mode propagates through one of the two available channels. As frequency

increases through ω = M , the number of available channels in the curved domain

jumps from two to four. This leads to a dramatic increase in the transmission coef-

ficient.

For higher frequencies, ω > M , the circular arc can support bending-dominant
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Figure 5.6: (color online) Transmission and reflection coefficients for a bending wave

of unit amplitude incident on a region of length ` = 10, with uniform curvature

M = 3. Top: the transmission coefficients for bending (orange) and compression

(black) waves. Bottom: the total transmission and reflection coefficients. Due to

conservation of energy, the coefficients obey Tf +Tu+Rf +Ru = 1. Curvature mixes

eigenmodes, converting the incident pure bending wave into a linear combination of

bending and compression waves.
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modes. As a result, the transmission coefficient for f -waves in the upper panel of

Fig. 5.6 is much larger than that for u-waves, and tends to one as ω → ∞. The

two principal effects of curvature – conversion from bending to compression and

suppression of bending modes – diminish at high frequency.

In addition to these jumps, the transmission coefficients are oscillatory. It is

well-known that peaks in the scattering amplitude correspond to bound states un-

der a change of sign of the eigenvalue ω2 → −ω2 [44]. Since f has these peaks,

they must correspond to eigenmodes in the curved region, which we know to be

u-dominant. Therefore, the incident bending wave uses these u-dominant modes to

“tunnel” through the curved region.

When ω < M , the upper panel of Fig. 5.6 shows Tf and Tu oscillating in phase.

This supports idea that bending modes propagate via compression-dominated eigen-

modes in the curved domain. Alternatively, for ω > M , Tf and Tu oscillate out of

phase. Peaks in Tf occur at frequencies corresponding to bending-dominated bound

states. The fact that Tf and Tu are now out of phase shows that bending f waves

are not traversing the curved region by conversion into compression u waves.

Finally, we observe that Tf is a decreasing function of frequency in the domain

0 ≤ ω < M , while Tu is an increasing function of frequency on that same domain.

Transmission of bending waves is a minimum for frequencies just below ω = M . This

suggests that bending waves are most effective at tunneling through curvature for

both small and large frequencies.

In Fig. 5.7 we show the transmission and reflection coefficients for the case of an

incoming u-wave. We find similar results. The main difference lies at frequencies

ω < M . Bending waves arise only if they are produced via mode coupling in the
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curved domain. We find that Tf follows Tu, decreasing as frequency goes to zero, in

contrast to its behavior for a purely bending incoming wave.

5.5 Conclusion

We investigate the interplay of bending and stretching in a curved, one-dimensional

elastic rod. This is the simplest model that retains both bending and stretching

deformations, and allows their coupling via the geometry of the unstressed state [7].

In the limit of small deformations, we find a set of two coupled equations for out-

of-plane deformations f and in-plane deformations u, corresponding to bending and

stretching respectively. These equations are the one-dimensional analog of the lin-

earized shallow shell equations for a thin elastic shell. In fact, those equations reduce

to the ones we study here in the limit of a membrane in which spatial variations occur

along one direction only.

We find that there are two principal effects of curvature. The first is the opening

of a frequency gap in the dispersion relation. This prevents bending f -modes with

frequencies ω < M , with ω and M being the dimensionless frequency and curvature

respectively. This is the simpler one-dimensional equivalent of the suppression of

bending undulations on membranes at areas of positive Gauss curvature [153, 31].

For a finite rod with discrete frequency spectrum, the restriction of ω > M for

bending eigenfrequencies causes eigenfrequencies to cross with increasing curvature.

By slowly bending a ringing rod, one can, in effect, “hear” the effects of curvature

by noting the modes split into an upper branch tending to the curve ω = M , and a

lower branch tending to zero. In this restricted sense, one can indeed hear changing

curvature in a rod. We also note that one observes an oscillation of eigenfrequencies
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Figure 5.7: (color online) Transmission and reflection coefficients for a compression

wave of unit amplitude incident on a region of length ` = 10, with uniform curvature

M = 3. Top: the transmission coefficients for bending (orange) and compression

(black) waves. Bottom: the total transmission and reflection coefficients. In contrast

to an incident bending wave, see Fig. 5.6, the transmission coefficients vanish as

ω → 0.
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with respect to M , as consequence of level splitting among harmonics.

The second principal effect of curvature is the ability for undulatory f -waves with

frequency ω, to tunnel through regions of curvature M > ω. Though the curved

region cannot support such bending waves, by coupling to in-plane modes, these

undulatory waves can convert to compression waves in order to tunnel through cur-

vature. This tunneling effect may be significant for understanding the propagation of

flexural (bending) phonons over large distances in rods or membranes with complex

curvature in their stress-free state. Physical examples should include the propaga-

tion of phonons in bent carbon nanotubes or ribbons, as well as the propagation of

membrane undulations along cell membranes [30].

One may inquire if multiple scattering of bending waves from randomly curved

surfaces can lead to localization, and then consider how the “tunneling” of bending

waves may affect this result. We provide answers to such questions in Chapter 6.
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CHAPTER 6

Geometrical diffusion of undulatory waves on a

warped membrane

6.1 Introduction

Thin, elastic shells, whose lateral size is much larger than their thickness, arise in a

diverse array of contexts and across systems spanning several orders of magnitude in

length [70, 155, 14]. Though the initial theory was formulated more than a century

ago, shells that retain curvature in the stress-free state exhibit complex solutions due

to geometrically induced nonlinearity, which has continued to inspire research [153,

87, 13]. The mechanical properties of shells with curved stress-free states is vital to

the functionality of a number of biological applications, including red blood cells [156,

120, 121], viral capsids [91, 61, 81, 103, 73], and plant morphogenesis [25]. Though

these latter examples lack well defined elastic continua, they have nevertheless been

successfully studied using thin shell theory.

The mechanics of thin shells are determined by geometry, and shells of different

curvature in the stress-free state can exhibit wildly different characteristics [127, 110,

126, 89]. Due to Gauss’ theorema egregium, Gaussian curvature couples the typically

soft bending undulations to the much stiffer stretching deformations. As a result,
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areas of positive Gauss curvature suppress bending undulations [153], which can

lead to spatially heterogenous pockets of large undulations separated by boundary

curves of zero normal curvature, as has been observed in the fluctuations of red blood

cells [30]. As undulations typically represent the softest elastic modes, these can have

serious consequences on the ability for shells to equilibrate, which has applications

for the stability of cell membranes with actively driven pumps.

An examination of undulatory waves in the geometric optics limits shows that

Gauss curvature scatters undulatory waves, and can even lead to total internal re-

flection at boundaries where the sign changes [31]. This suggests that for thin shells

with random stress-free curvature, energy transport could be severely slowed, if not

localized, purely as a consequence of geometry.

In this manuscript, we present an analysis of the propagation of undulatory waves

through randomly curved thin shells that, in contrast to the large literature of wave

propagation in random media [60], is driven entirely by geometry. Wave propagation

in random media has been extensively studied [3, 130, 151, 140, 20] across a broad

array of subjects [19, 76, 12], which we use as a guide.

The outline of this paper is as follows. First, a general consequence of random

scattering is to shift energy propagation from ballistic to diffusive, which we quan-

titatively compute in the weak scattering limit. This is done via a hydrodynamic

derivation, looking at the long length/time limits of energy transport [140, 154, 8].

In Appendix D.4, we present an alternative diagrammatic derivation in terms of the

well-known ladder diagram approximation [3, 130, 151, 140, 20]. Time reversal in-

variant systems possess an additional contribution in the hydrodynamic limit, weak

localization [2, 160, 149], that serves to inhibit diffusion. After computing the weak
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localization correction, we consider the behavior of waves in the strong scattering

regime. At strong scattering, waves can undergo a localization transition [5, 147],

whereby they are spatially localized even in the absence of energy barriers. We ex-

tend our weak localization result to the strong scattering limit via a self-consistent

condition [154], where we find that undulatory waves exhibit the same exponentially

large localization length endemic to other two dimensional systems, such as electrons

in a random potential [140].

Finally, we attempt to summarize our results in the limits of waves propagating

through large/small disorder where the weighty expressions simplify.

6.2 Generalized Donnel-Mushtari-Vlasov (DMV) linearized

shallow shell theory

We define membranes as a particular class of thin shells. Membranes are elastic

media with two internal dimensions describing in-plane stretching deformations, and

dc surface normals describing the direction of bending undulations, embedded in a

dc + 2 dimensional space. Throughout this manuscript, we employ the convention

that Greek indices correspond to the dc normal directions, and Latin indices to the

two internal dimensions. Bold-face letters refer to vectors in the (dc+2) dimensional

embedding space.

The purpose of this generalization to arbitrary embedding dimension is to later

allow us to use the self-consistent screening approximation (SCSA) to partially resum

perturbation series encountered upon disorder averaging (see Appendix D.1) [77, 78].

Ultimately, we are interested in the physically realizable case of dc = 1, which we
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Figure 6.1: (color online) parametrization of a physical membrane middle surface X0

in the Monge representation, with small deformations f, u1, and u2 given in normal

coordinates. Displacements u1, u2 (in blue) are along the local surface tangent of

the curved background surface, while displacements f (in red) are in the direction of

the local surface normal. Misalignment of the local surface normal with the global ẑ

direction is responsible for additional curvature terms in the strain (see Eq. 6.8).

hereafter refer to as physical membranes.

To isolate the role of geometry, we focus our analysis on warped membranes [77,

78] (for behavior of these membranes under thermal fluctuations see Refs [127, 126,

110, 89]); these are nearly flat membranes of internal volume L2, with stress-free

local height configuration that can be given in the Monge representation [112] by a

quenched, random background height field hβ(x). Specifically, the stress-free mem-

brane is described by the vector

X0(xa) = xata + hβnβ, (6.1)
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where ta represent the local surface tangents, and nβ the local surface normals. See

Fig. 6.1 for details. The total displacement field after small deformation is denoted

X(xa). The quenched height field is a random variable, whose Fourier coefficients

h(p) =
1

L2

∫
d2xh(x)e−ip·x, (6.2)

are sampled from a Gaussian distribution with zero mean, and variance

〈hα(p)hβ(p′)〉 =
γδαβδp,−p′

L2p2dH
. (6.3)

The parameter γ specifies the amplitude of the quenched height field and determines

the strength of disorder. We focus on the experimentally relevant cases dH = 0, 2, 4,

which may be realized in biological contexts by rapid polymerization of fluctuating

lipid bilayers [84, 131, 78].

To quadratic order, the change in potential energy about a particular configura-

tion X(xa) is [77]

U =
1

2

∫
d2x

{
2µ(Uab)

2 + λ(Ucc)
2 + κ(Kcc)

2
}
. (6.4)

The tensors Uab and Kab represent the variation in the metric tensor and generalized

bending tensor respectively, from their background configurations;

Uab = ∂aX · ∂bX− δab, Kab = ∂a∂bX− dab, (6.5)

and we have defined the quenched background curvature tensor

dab = (∂a∂bhβ)nβ. (6.6)

Ignoring small deformations of O((∂ahβ)2), the background metric tensor is flat (δab).

The background curvature tensor (second fundamental form [115, 37]) then encodes

all effects of the disordered geometry.
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We decompose the deformation vector X = X0 + δX into a background con-

figuration X0 plus small deformation δX. The latter is parametrized in normal

coordinates [112], separating local strain into in-hyperplane displacements, ua(xa),

and out-of-hyperplane displacements, fβ(xa), via

δX = uata + fβnβ. (6.7)

The equations of motion derived from Eq. 6.4 are formidable. We work in the

limit where variations in curvature are slow on the scale of characteristic deformation

wavelength. This is summarized as the condition w � λ� |R|, for w the membrane

thickness, λ the characteristic deformation wavelength, and R the average radius of

curvature. Utilizing the definition of the tangent vector, ta = ∂aX, this leads to the

linearized strain fields

Uab =
1

2
(∂aub + ∂bua)− fα∂a∂bhα, Kab = (∂a∂bfα)nα. (6.8)

This is the lowest order coupling of bending undulations to Gauss curvature. Defor-

mations fβ are considered small compared to hβ, and hence nonlinear terms may be

neglected. In terms of the fields ua, fβ, the elastic energy now reads:

U =
1

2

∫
d2x

{
κ(∇2fβ)2 + ua∇2

(
(λ+ 2µ)P̂L

ab + µP̂ T
ab

)
ub

+ 2µTr

((
P̂ T
abfα∂b∂chα

)2
)

+ λ(P̂ T
abfα∂a∂bhα)2

+2λ∂aua(P̂
T
bcfα∂b∂chα)

}
,

(6.9)

where we have defined the projection operators

P̂L
ij = ∇−2∂i∂j, P̂ T

ij = δij − P̂L
ij . (6.10)
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The first line of Eq. 6.9 is the elastic energy of a flat plate. In-hyperplane defor-

mations split into longitudinal and transverse components. The second line penalizes

bending in regions of positive Gauss curvature. The third line is the linear coupling

between bending and stretching, which can allow undulations to tunnel through

regions of positive Gauss curvature. Only the longitudinal component of ua(xa)

couples.

To find dynamical solutions, we must form an action by including a kinetic energy

density. Since in-hyperplane displacements relax much faster than bending undula-

tions, we approximate that the ua fields respond instantaneously to deformation.

We therefore only include an undulatory kinetic energy density (σ/2)(∂tfβ)2, for σ

the surface mass density. Furthermore, since ua is simply a constraint field, we may

eliminate it by setting it equal to its equation of motion, yielding an effective action

describing the dynamics of undulatory waves subject to a long range potential. As

the membrane length L is considered large, its bulk properties do not depend on

boundary condition, which we will assume to be periodic. We switch to and from

Fourier space via

f(x) =
∑

p

fpe
ip·x, (6.11a)

fp =
1

Ld

∫
ddxf(x)e−ip·x. (6.11b)

Here, and for the remainder of the manuscript, bold face refers to vectors in the

internal two-dimensional space. The summations run over p1, p2 = 2πn/L, for n ∈ Z.

In Fourier space we find the effective undulation action [127, 78]
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S = S0 + Sint, (6.12)

S0 =
L2

2

∑

q

(
κq4 − σω2

)
fqf−q, (6.13)

Sint =
∑

q2+q4=−q
q1+q3=q

L2

dc
qi1q

j
1Rij,kl(q)qk2q

l
2h

α
q1
hβq2

fαq3
fβq4

, (6.14)

where we have defined the interaction tensor

R̂ij,kl =
µ̃

2

(
P̂ T
ikP̂

T
jl + P̂ T

il P̂
T
jk +

2λ̃

λ̃+ 2µ̃
P̂ T
ij P̂

T
kl

)
. (6.15)

This form is valid for arbitrary internal dimension. For physical membranes with

two internal dimensions, the indices are irrelevant and we can write the simpler form

Rij,kl(q) =
Y

2dc
P T
ik(q)P

T
jl (q), (6.16)

where Y is the two dimensional Young’s modulus

Y =
4µ(λ+ µ)

λ+ 2µ
. (6.17)

The equations of motion are typically written including the displacements ua, and

are derived by variation of the elastic energy in Eq. 6.9. These, in turn, are further

reduced by eliminating ua in terms of a scalar Airy stress function χ, defined by its

relation to the stress tensor δU/δUab = εacεbd∂c∂dχ. In terms of χ and f , we find the

Donnell-Mushtari-Vlasov (DMV) linearized shallow shell equations [115, 31, 153]

1

Y
∇4χ+ L̂f = 0 (6.18)

κ∇4f − σ∂
2f

∂t2
− L̂χ = 0. (6.19)
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The operator

L̂ = εacεbd(∂a∂bh)∂c∂d, (6.20)

contains the quenched random height field, and encodes undulatory scattering due

to curvature. Though for elastic continua Y represents a Young’s modulus and κ a

bending rigidity, these may alternatively be viewed as phenomenological parameters

governing the strength of stretching and bending respectively when the membrane

is not derivable from elastic continua. Eqs. 6.18, 6.19 represent the main equations

of motion for physical membranes in linearized shallow shell theory.

By formally integrating out the fields χ, we find the f field experiences an effective

potential V̂ = L̂∇−4L̂. Via the Gauss-Bonnet theorem [112], the Riemann curvature

is equal to twice the Gauss curvature. Since the metric is flat, the total Gauss curva-

ture is then given by the determinant of the total bending tensor dab+Kab (these are

dc + 2 dimensional vectors). To linear order in f , δR(x, t) = L̂f represents the local

change in Gauss curvature. Geometry can be viewed as inducing a two-body ∇−4

potential acting between different regions of Gauss curvature, attractive/repulsive

between opposite/same sign, as a response to the membrane trying to flatten [113].

6.3 Signatures of localization

We now illustrate several quantities that measure the degree of localization and

diffusion for undulatory waves. Conserved quantities are particularly useful, as they

retain information about an initial injected disturbance at both long times and after

disorder averaging, and have the potential for diffusive dynamics. Their propagation

through the membrane (or lack thereof) acts as a marker for the spatial localization

of waves.
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We give two examples. First, the equations of motion are time reversal invariant,

indicating total energy is conserved. Transport of energy across the membrane gives

information on heat transfer and the thermal conductivity of the system, both of

which are of interest in mechanics of cellular membranes [30]. Second, the Gauss-

Bonnet theorem stipulates that the integral of the Riemann curvature over the mem-

brane is a fixed, topological value, identical over all instances of disorder. For physical

membranes, the Gauss curvature is proportional to the Riemann curvature and hence

can play the role of a conserved quantity.

An additional quantity to study is the kinetic energy, which for monochromatic

waves is proportional to the disorder averaged local intensity 〈|fβ(x)|2〉. We will

find that undulation intensity obeys diffusive dynamics, and is the primary cause of

diffusive energy/curvature transport. We thus focus our efforts on intensity, which

is fortunate, as working with the total energy is analytically challenging.

In order to describe wave propagation, we translate the problem into the language

of Green’s functions [63, 72]. We consider a physical membrane (dc = 1) for ease of

notation, with generalization to higher dimensionality straightforward. Without loss

of generality, the equation of motion may be written as (∂2
t − Â)f(x, t) = j(x, t), for

some operator Â derived from minimization of the action in Eq. 6.12, and arbitrary

undulation source j(x, t). Associated with this is a Green’s function, G(x, x′; t, t′),

that satisfies the equation (∂2
t − Â)G(x, x′; t, t′) = δ(x− x′)δ(t− t′).

We are interested in the source-free situation where at times t < 0, the membrane

is in mechanical equilibrium (f(x, 0) = 0), then at t = 0 it is plucked (∂tf(x, 0) = 1)

with unit velocity at the origin, thereby injecting energy into the system localized

at the origin. This is accomplished in the Green’s function formalism by imposing
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initial conditions [72]

∂tG
+(x,x′; 0) = δ(x− x′), (6.21)

G+(x,x′; t < 0) = 0. (6.22)

Provided the initial pluck is truly δ-like, the main result is that we can everywhere

replace the time-dependent amplitude by a Green’s function via

f(x, t) = G+(x, 0; t). (6.23)

We now define the disorder averaged quantity φ(x, t), which represents the intensity

of undulations across the membrane in response to an initial pluck at the origin:

φ(x, t) = 〈G+(x, 0; t)G−(0,x; t)〉. (6.24)

Here and throughout, angular brackets refer to disorder averaging over the quenched

random height field. Our principle object of study is the four-point function

φpp′(q,Ω) ≡ 〈G+
ω+

(p+,p
′
+)G−ω−(p−,p

′
−)〉, (6.25)

which gives the Fourier components of φ(x, t) upon summation over p, p′ and inte-

gration of ω. We have introduced the shorthand p± ≡ p ± q/2 and ω± ≡ ω ± Ω/2.

We refer to ω as the internal frequency, and Ω as the external frequency. The four-

point function is the product of an advanced and retarded propagator, and has the

necessary phase cancellation to propagate across multiple scattering processes. In

terms of the four-point function, the disorder averaged kinetic energy density is

T (x,Ω) =
1

2

∫
dω

2π
(ω2 + Ω2/4)

∑

pp′q

eiq·xφpp′(q,Ω). (6.26)

We measure the degree of localization by the normalized spatial variance of kinetic

energy in the long-time limit. For diffusive waves, the variance grows linearly in time,
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while for propagating waves it grows quadratically. This leads us to define the kinetic

energy diffusion coefficient [63]

DE = lim
t→∞

1

t

∫
x2T (x, t)dx∫
T (x, t)dx

. (6.27)

We enact the long time limit by means of the identity [102]

lim
t→∞

f(t) = lim
η→0

η

∫
f(t)e−ηtdt. (6.28)

Upon Fourier transform, we obtain

DE = lim
η→0

−2η2
∫

dω
2π
ω2∇2

q|q=0

∑
kk′ φkk′(q,−2iη)

η
∫

dω
2π
ω2
∑

kk′ φkk′(q,−2iη)
(6.29)

In general, the frequency integrations will diverge as a consequence of the δ-

function singularity of the initial spike. This can be regulated by replacing the

δ-function with a Gaussian impulse at t = 0 of width ∆t. The integrations are

regulated by simply adjusting the measure dω → dωe−
1
2
ω2∆t. If the disorder is short-

ranged, corresponding to dH = 0, high frequencies are cutoff as a consequence of

finite lattice spacing, and this may be the more relevant cutoff for short impulses.

We can further simplify DE by anticipating that at small frequency Ω, the four-

point function is diffusive. Indeed, borrowing the later result in Eq. 6.55,

∑

pp′

φpp′ =
πν/(2σ2ω2L2)

−2η +D(ω)q2
. (6.30)

we obtain the much simpler form

DE = 4

∫
dω ν(ω)D(ω)∫
dω ν(ω)

, (6.31)

where the frequency dependence of ν has been made explicit. The function ν repre-

sents the density of states, and suggests the quantity D(ω) is a frequency dependent

intensity diffusion coefficient.
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In fact, D(ω) corresponds precisely to the diffusion coefficient of intensity in

response to a harmonic, transverse load applied at the origin. To show this, we

note that the four-point function corresponding to harmonic loading at the origin is

equivalent to that of Eq. 6.25, so long as we take Ω → −2iη and pin the internal

frequency to ω as opposed to integrating. The variance in intensity is then given

by Eq. 6.29 if we apply the same conditions, which after simplification yields the

frequency dependent diffusivity

The calculation of D(ω) is a point of contact with numerical simulations that are

solved in the frequency domain. Specifically, given knowledge of the solution f(x, ω)

in response to harmonic loading, one identifies

D(ω) = −1

2
lim
η→0

η

∫
d2xx2|f(x, ω − iη)|2∫
d2x|f(x, ω − iη)|2 . (6.32)

6.4 Hydrodynamics

The four-point function defined in Eq. 6.25 is the fundamental quantity governing

diffusion/localization. In this section we present a derivation of its diffusive behavior

at long length/time scales.

The four point function is a disorder averaged object, which may in general

be decomposed into a sum of independently averaged Green’s functions, plus all

connected averages. Implementing this procedure leads to the Bethe-Salpeter (BS)

equation [154]

φpp′(q,Ω) = 〈G+
p+

(ω+)〉〈G−p−(ω−)〉 × (6.33)
(
δpp′ +

∑

k

Upk(q,Ω)φkp′(q,Ω)

)
.
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The lack of a summation over frequencies is a consequence of quenched disorder.

The frequency dependence can be grouped into a single three-vector (p, ω). When

not explicitly written, the three-vector is implied. The function Upk(q,Ω) represents

the irreducible vertex, and contains all information on connected averages between

retarded/advanced Green’s functions.

The utility of the BS equation, is that it allows us to work in terms of only

disorder averaged Green’s functions. Thus, for ease of notation, we shall drop the

〈〉 brackets, and assume that all Green’s functions are replaced with their disorder

averaged values, unless otherwise specified.

〈Ĝ〉 is the Green’s function corresponding to the full action of Eq. 6.12. In

order to compute this, we first separate S into a part S0 whose Green function is

readily solvable, plus a perturbative piece Sint that contains the disorder field. It

is well known that the configurational average of a translationally invariant Green’s

function for such a system can then be written in the Fourier basis as the inverse of

the sum of the bare Green’s function pertaining to S0, and a self energy operator Σ̂,

as [140]

〈G±p±(ω±)〉−1 = L2
(
κp4
± − σω2

±
)
− Σ±p±(ω±). (6.34)

We have not yet solved for 〈Ĝ〉. Instead, all effects of disorder averaging have been

moved onto 〈Σ̂〉. The real part of Σ̂ renormalizes the phase velocity, while the imag-

inary part introduces a mean free path length, beyond which the phase information

of a single monochromatic wave has been erased by scattering processes. We will

find that the self-energy does, in fact, have an imaginary part, which implies that

〈Ĝ〉 is a short range object, i.e. its disorder average vanishes exponentially with re-
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spect to length. For the remainder of the manuscript, unless otherwise specified, we

assume that we are in the weak scattering limit, whereby the imaginary part of the

self energy is small.

The self energy obeys the useful relation Σ̂+ =
(

Σ̂−
)∗

. Using this in combination

with the identity AB = (A−1 − B−1)−1(B − A), we can rewrite the BS equation to

arrive at the Boltzmann equation [154]
(
−Ω + (vp · q)− 1

L2

∆Σp(q)

2σω

)
φpp′(q) =

−∆Gp(q)

2σωL2

(
δpp′ +

∑

k

Upk(q)φkp′(q)

)
.

(6.35)

The velocity

vp =
2κp2

σω
p, (6.36)

contains an additional term ∼ q2q that we have discarded in anticipation of later

taking the diffusive limit. The ∆ symbol means the difference between retarded and

advanced quantities. We will only be concerned with its action on the self-energy

and Green’s function, namely

∆Σp(q) = Σ+
p+

(ω+)− Σ−p−(ω−), (6.37a)

∆Gp(q) = G+
p+

(ω+)−G−p−(ω−). (6.37b)

For ease of notation, when the q dependence of a quantity is not explicitly written,

it is evaluated at q = 0, but not at Ω = 0. For example, ∆Gp = G+
p (ω + Ω/2) −

G−p (ω − Ω/2).

We may also consider the group velocity of undulatory waves. This depends on

the self energy and can be written

vGp = vp
1− δ1

1 + δ2

, (6.38)
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where we have defined the dimensionless quantities

δ1 =
1

4κp3

∂ReΣ

∂p
, (6.39)

and

δ2 =
1

2σω

∂ReΣ

∂ω
. (6.40)

We will encounter the function δ1 frequently in our calculations.

Inspecting Eq. 6.35, we see that the p′ index can be freely summed. Doing so

allows us to work with the simpler function

φp(q) ≡
∑

p′

φpp′(q). (6.41)

The right hand side of Eq. 6.35 is proportional to ∆Gp. In the weak scattering

limit, the imaginary part of Σ̂ is small and so ∆Gp as a strongly peaked Lorentzian

around some value p = pF determined by the condition

ReG−1
pF

= 0. (6.42)

In alignment with the terminology appearing in hard condensed matter [4], we refer to

this wavenumber pF as the Fermi wavenumber, though our system is purely classical.

From Eq. 6.36, we additionally define the associated Fermi velocity vF = 2κp3
F/σω.

The sharpness of ∆Gp around pF suggests that we may approximate it as a δ-function

pinning the wavenumber magnitude to p = pF . Using the large L limit to replace

summations with integrations, we find the identity

∑

p

∆Gp(...) −−−−−−−−→
weak scattering

iπν

σω

∫ 2π

0

dθ

2π
(...)|p=pF , (6.43)

which we will make extensive use of. We have further defined the density of states

per unit volume

ν =
pF

2πvF (1− δ1)
. (6.44)
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Combining Eqs. 6.33 and 6.43, we notice that φp(q) is strongly peaked around

the forward direction, i.e. p̂ · q̂ = 0. This suggests that φp(q) is approximately given

by the first couple moments of its Legendre expansion. We define

S ≡
∑

p

φp(q), J ≡
∑

p

vpφp(q). (6.45)

These represent the intensity propagation density S, and current density J. The

velocity vp is the zero curvature group velocity of undulations. It is proportional

to, yet not necessarily equal to, the transport velocity, i.e. the average velocity of

intensity across the membrane. Solutions S and J are found by taking the first two

moments of the Boltzmann equation (Eq. 6.35).

The first moment is found by summing both sides of the Boltzmann equation

over p, p′. We obtain

− ΩS + q · J =
πν

iσωL2
+

+
1

2σωL2

∑

pp′k

(∆Σp(q)δpk −∆Gp(q)Upk(q))φkp′(q).
(6.46)

In order for S to exhibit diffusive behavior, all terms ∼ S in the equation must

vanish in the limit q, Ω→ 0. The existence of a diffusive solution is thus contingent

on the vanishing of the final term. This is indeed the case, as is ensured by the Ward

identity (WI)

∆Σp(q) =
∑

p′

Upp′(q)∆Gp′(q). (6.47)

In the limit q,Ω → 0, we can replace ∆Σp → 2iImΣp, so that the WI relates the

imaginary part of the forward scattering amplitude to the total cross section. The

WI is thus a generalized optical theorem [140], and depends on the type of wave

equation studied [80, 150, 152]. The derivation of the WI is nontrivial and presented

in Appendix D.3.
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Implementing the WI yields the continuity equation

− iΩS + iq · J =
πν

σωL2
+O(q2). (6.48)

In position space, Eq. 6.48 is of the form ∂tS +∇ · J = πν/σωL2, hence the name

continuity equation.

In order to obtain a closed set of hydrodynamic equations, we must relate J to

S. If the intensity is to exhibit diffusive behavior, then the current J must obey

Fick’s law J = −D∇S, with D(ω) some diffusion coefficient to be determined. The

coefficient D can, and will, depend on the internal frequency ω.

We begin by taking the second moment of the Boltzmann equation, i.e. applying
∑

p(vp · q̂)(...) to both sides of Eq. 6.35. As we are interested in the long length/time

limit, we retain only the lowest terms through O(Ω, q). We obtain

q
∑

p

(vp · q̂)2φp(q) =

1

2σωL2

∑

pk

(vp · q̂)

(
∆Σp(q)δpk −∆Gp(q)Upk(q)

)
φk(q).

(6.49)

The left hand side (LHS) is the third moment of φp(q), and prevents a closed solution

in S and J. This is remedied in the usual way, by everywhere replacing φp(q) with

its truncated Legendre expansion

φp(q) =
∆Gp

iπν/(σω)

(
S +

2

v2
p

(vp · q̂)(q̂ · Ĵ)

)
. (6.50)

The LHS is evaluated using the identity Ω−1
d

∫
dΩd(a · p̂)(b · p̂) = d−1a · b, valid for

arbitrary vectors a and b, in any dimension d, with solid angle Ωd. As a result, this

term is simply

LHS = q
v2
F

2
S. (6.51)
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The right hand side (RHS) is more difficult to simplify than it was when deriving

the continuity equation, as the angular dependence in (vp · q̂) prevents direct appli-

cation of the WI. Inserting the Legendre expansion of φk(q) and using Eq. 6.43 to

perform the k summation, we find that the term ∼ S on the RHS vanishes by means

of the WI. Computing the remaining terms we find

RHS =

(
iImΣpF

σωL2
−M0

)
(q̂ · J) (6.52)

where

M0 =
1

iπνv2
FL

2

∑

pp′

∆Gp(vp · q̂)Upp′(vp′ · q̂)∆Gp′ . (6.53)

Collecting all terms and trivially rearranging, we arrive at Fick’s Law

J = −iq
(
L2σω

ImΣpF

v2
F/2

1− σωL2M0/(iImΣpF (ω))

)
S. (6.54)

The term M0 in the denominator encodes the effects of coherent scattering, and is

also responsible for weak/strong localization. Eqs. 6.48, 6.50 and 6.54, and complete

the hydrodynamic description.

6.5 Diffusion and weak/strong localization

The hydrodynamical equations contain a wealth of information about undulatory

wave propagation, whose physical meanings are opaquely hidden in M0 and Σ̂. Be-

fore directly computing the diffusion coefficient and weak localization correction,

we briefly discuss computation of disorder averages in general. This has the addi-

tional benefit of laying the groundwork for analysis beyond the average intensity, for

example, computing the fluctuations in intensity transport known as speckle corre-

lations [151].
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The well-known particle/wave duality in quantum mechanics affords a fruitful

language for describing the propagation of undulatory on a membrane. A single

undulatory wavepacket can be viewed as a particle that is scattered by a random

potential resulting from Gauss curvature. In this language, the disorder averaged

retarded (advanced) Green’s function, 〈Ĝ±(x,x′; t)〉, gives the amplitude for one

particle initially at position x′ to propagate forward (backward) in time t to point

x. In the weak scattering limit, this average can be computed by considering the

path as consisting of a series of scattering events with the random potential. The

perturbative series is ordered by the number of scatterings, which at a fixed distance

|x− x′| becomes smaller at weak curvature.

In the particle formulation, 〈Ĝ±〉 contains only single-particle information. Scat-

tering events are independent, and there are no interference effects between undu-

latory waves. In contrast, the four-point function defined in Eq. 6.25 contains two-

particle information. It is the disorder average of two particles, one moving forward

in time and one moving backward in time (called a hole or anti-particle) to the same

initial/final positions. The two particles have the potential to constructively inter-

fere with one another, which is the source of the long-range nature of the four-point

function. Viewed as waves, two-particle information encodes coherence effects in the

system.

Schematically, the two particles interfere constructively when they encounter the

same sequence of scattering paths. This results in a long range object for intensity

transport called the diffuson. In the special case of return to the origin (x = x′),

time reversal invariance in the action permits another solution whereby one of the

particles is traversed backwards in time. This leads to another long range object

that reduces diffusion, called the cooperon. Analysis of intensity transport in terms
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of diffusons/cooperons is given in Appendix D.4, where we provide a diagrammatic

derivation of the hydrodynamical equations in section 6.4. The diagrammatical anal-

ysis allows one to extend beyond the level of analysis in this manuscript. In particu-

lar, one can use the formalism to describe fluctuations in intensity, which arise from

diffuson-diffuson scattering [3].

All of the information regarding diffusion is contained in the long length/time

limit of the four-point function, to which we now turn. By combining the continuity

equation with Fick’s law (Eqs. 6.48, 6.54), we arrive at

φpp′(q) =

( −1

2πνL2

)
∆Gp∆Gp′

−iΩ +Dq2
, (6.55)

which has the diffusive form postulated in section 6.3. The coefficient D is precisely

that appearing on the righthand side of Eq. 6.31. From our hydrodynamic analysis,

we further obtain

D−1 = D−1
0 +D−1

0 iτM0, (6.56)

where D0 is the Drude-Boltzmann diffusion coefficient 1, given by

D0 =
1

2
v2
F τ, (6.57)

and τ is the scattering time given by

τ−1 =
ImΣpF

σωL2
. (6.58)

The diffusion coefficient of Eq. 6.57 takes the standard form, implying the intensity

transport velocity, vt, is equivalent to the group velocity evaluated at the Fermi

wavenumber:

vt = vF . (6.59)

1This name was chosen to agree with the nomenclature used for this approximation in computing
the conductivity of a metal. See Ref. [3] for more details
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Both D0 and τ depend only on the self-energy, which can obtained by computing

the disorder average of only a single Green’s function. By combining vt and τ , we

determine the mean free path

` = vtτ = vF τ. (6.60)

The scattering time and mean free path represent the average time/length before an

undulation wavepacket is scattered by Gaussian curvature. In position space, this

correspond to an exponential decay 〈G+(x, 0;ω)〉 ∼ e−|x|/`.

Per Eq. 6.57, D−1 is a sum of two pieces: single-particle effects coming from D0,

and two-particle effects mediated via the irreducible vertex Upp′ . Setting Upp′(q) =

0 (and thereby M0), is the Drude-Boltzmann approximation, whereby 〈Ĝ+Ĝ−〉 is

replaced by the product of its averages 〈Ĝ+〉〈Ĝ−〉.

In order to proceed further, we must further specify the irreducible vertex. Our

arguments at the beginning of the section suggest coherent scattering will primarily

lead to two effects: diffusion and weak localization. Anticipating this, we decompose

Upp′(q) into the sum of two terms

Upp′(q) ≈ U0
pp′(q) + U

(MC)
pp′ (q), (6.61)

called the bare vertex U0
pp′(q), and the maximally crossed vertex U

(MC)
pp′ (q). These are

responsible for diffusion and weak localization respectively. Likewise, we decompose

the diffusion coefficient into a sum of two pieces

D−1 = D−1
c +D−1

× . (6.62)

Dc represents the coherent diffusion coefficient found by choosing Û = Û0. Inserting

Û0 into Eq. 6.56 and rearranging, we identify

Dc = D0(1 + δc)
−1, (6.63)
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where we have defined the reduction factor

δc = iτM0|Upp′ (q)=U0
pp′
. (6.64)

The calculation of δc is presented in Appendix D.2.

D× is the maximally crossed diffusion coefficient found by choosing Û = Û (MC),

and ignoring the D−1
0 contribution that has already been counted. It is explicitly

given by

D−1
× = D−1

0 iτM0

∣∣
Û=Û(MC) . (6.65)

We begin by first studying the Û0 contribution to D−1.

The bare vertex is defined as the minimally disorder averaged vertex connecting

two pairs of retarded and advanced propagators. For an explicit representation of

U0
pp′(q) in terms of diagrammatic perturbation theory (Appendix D.1) see Fig. D.5.

The bare vertex represents a single particle-hole scattering event. Inputting U0
pp′(q)

into the BS equation generates all trajectories where the particle and hole scatter off

the same sites, in the same order. In the diagrammatic derivation of Appendix D.4,

these trajectories correspond to summing over the set of all box diagrams with un-

crossed disorder lines, the so-called ladder approximation [3].

The hydrodynamic analysis has thus shown that long-range contributions to the

four-point function come from summations over ladder-type diagrams, or in the posi-

tion space representation, a summation over scattering events where the particle and

hole traverse the same trajectory in the same order. If the system is time-reversal

invariant (as is the case here) there exists an additional long-range contribution to

the four-point function, found by reversing the order of scattering for one of the

particles (i.e. running backwards in time). Using time-reversal symmetry, we can
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additionally change the signs of the hole wavenumber to obtain the identity

φ(p+, p
′
+; p−, p

′
−) = φ(p+, p

′
+;−p′−,−p−), (6.66)

where we have explicitly written the dependence on all four wavenumbers. Reducing

to a function of only three wavenumbers we find

φpp′(q) = φ 1
2

(p−p′−q), 1
2

(p′−p−q)(p+ p′). (6.67)

This identity trivially allows us to sum over all maximally crossed diagrams, by

mapping them onto a summation over uncrossed diagrams. Furthermore, we know

that this must be a long-range object that becomes divergent for some combination

of p,p′ and q as Ω→ 0, and hence can have an appreciable effect.

In Fig. 6.2, we compute Û (MC) diagrammatically. The procedure is as follows:

write the maximally crossed irreducible vertex by crossing two bare irreducible ver-

tices and inserting the full four point function between them, uncross the diagram,

then use time-reversal symmetry to reverse wavenumbers bringing it into a standard

form. We find the equation [140]

U
(MC)
pp′ (q) =

∑

k,k′

Up̃k(Q)φkk′(Q)Uk′p̃′(Q), (6.68)

where p̃, p̃′ and Q are defined in Fig. 6.2. As expected, Û (MC) diverges as Ω, Q→ 0,

per Eq. 6.55. Working in the divergent limit where Û (MC) is appreciable, we discard

all terms O(Q) and perform the summations using the WI (Eq. 6.47) to obtain

U
(MC)
pp′ (Q,Ω) =

( −1

2πνL2

)
∆Σp̃∆Σp̃′

−iΩ +DcQ2
. (6.69)
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U0 U0 A± = A ± Q/2

Figure 6.2: (color online) diagrammatic construction of the maximally crossed irre-

ducible vertex. White boxes represent the bare irreducible vertex Û0; the shaded box

represents the diffusive four-point function in Eq. 6.55. Crossing refers to overlap

of Û0 vertices. The summation over maximally crossed diagrams can alternatively

be viewed as summation over uncrossed diagrams with all lines on the lower rung

reversed. Time-reversal symmetry allows us to flip arrow orientation bringing it to

standard form.
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The definition of Q tells us that Û (MC) is maximal when p′ ≈ −p. In the wavenum-

ber representation, p and p′ correspond to the incoming and outgoing wavenumbers

for an initial wave incident on the disordered media. p ≈ −p′ thus corresponds

to backscattering, which in position space corresponds to particle trajectories that

return to the point of departure.

We continue the calculation of D× by inserting Û (MC) into M0 (Eq. 6.53). We

work in the Q → 0 limit, approximating the summation by everywhere replacing

p′ = −p. This yields the intermediate expression

M0 =
1

2iπ2L4ν2v2
F

∑

p,Q

(∆Gp)
2(vp · q̂)2 ∆Σp̃∆Σp̃′

−iΩ +DcQ2
. (6.70)

In the weak scattering approximation, we may ignore terms containing (Ĝ±)2 inside

the summation, allowing us to use (∆Gp)
2 ≈ −2∆Gp/∆Σp [140, 3]. In the diffusive

limit, q is also small and we can replace p̃, p̃′ with p, p′. Using Eq. 6.43 to perform the

p summation and adding a factor of (1/2) from the remaining angular integration

we find

M0 =
1

2πν

∆ΣpF

σωL4

∑

Q

1

−iΩ +DcQ2
. (6.71)

Inserting M0 into Eq. 6.65 and using the definition of τ (Eq. 6.58) we obtain the

maximally crossed diffusion coefficient

D−1
× = D−1

0

1

πνL2

∑

Q

1

−iΩ +DcQ2
, (6.72)

and from Eq. 6.57, the total diffusion coefficient [154]

D−1 = D−1
c +D−1

0

1

πν

∫
d2Q

(2π)2

1

−iΩ +DcQ2
. (6.73)

In the last line we have taken the continuum limit. The limits of integration over Q

must be limited to the domain where diffusive transport is applicable. The upper
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bound is set by the inverse mean free path `−1 defined in Eq. 6.60, while the lower

bound is set by the inverse system size L−1.

In the weak disorder limit, D ≈ Dc, and so the rightmost term of Eq. 6.73 may

be considered small. Taking the long time Ω→ 0 limit, performing the integration,

and using the definition of ν in Eq. 6.44 we find

D = Dc − δD, (6.74)

where we have defined the weak localization correction

δD =
2κp2

F (1− δ1)

πσω(1 + δc)
ln

(
L

`

)
. (6.75)

This is one of our main results. The summation of maximally crossed diagrams

has led to a reduction in the diffusion coefficien, which diverges like lnL as L→∞.

The logarithmic dependence on system size is a universal result for 2D mesoscopic

systems [3], and appears in our model as well. Formally, in the L→∞ limit all states

are localized, however, since the weak localization correction is only logarithmic, if

may be difficult for finite systems to localize.

All of the quantities appearing in δD have been computed elsewhere already (`,

pF , and δ1 in Appendix D.1, δc in Appendix D.2), and can be determined immediately.

In Appendix D.5 we give the full analytic expressions in dH = 0, 1, 2 for δD, as well

as the other main quantities in this manuscript.

The weak localization correction breaks down near the localization transition

(δD ≈ Dc). In order to probe the onset of localization, we treat Eq. 6.73 self-

consistently, replacing Dc under the integration on the right side with the full diffu-

sion coefficient D [154]. This has the effect of renormalizing each of the two-particle

propagators appearing in the ladder diagrams of Dc with maximally crossed vertices,
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and vice versa for those appearing in D×. In the diagrammatic language, this corre-

sponds to renormalizing the diffuson with all numbers of insertions of cooperons. In

the localized regime, we expect the diffusion coefficient to vanish at long times. We

can then posit a localization length [154, 140]

ξ2 = lim
Ω→0

D(Ω)

−iΩ . (6.76)

The localization length ξ determines the length beyond which all states are localized.

Assuming such a length exists in the system, we no longer need to restrict the

wavenumber integration over Q to be larger than L−1, as ξ will regulate the low

wavenumber divergence. Solving the self-consistent extension of Eq. 6.73 we find

ξ/` =
(
e4π2νD0 − 1

)1/2

. (6.77)

The localization length describes transport in the strong scattering regime. This

result, combined with the weak localization solution of Eq. 6.75, and the coherent

diffusion coefficient Dc of Eq. 6.63, completes our description of undulatory transport

on a warped membrane.

6.6 Results
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Table 6.1: Dimensionless scattering time τ = ω/ImΣpF , and dimensionless transport velocity vt, in each of

dH = 0, 1, 2. These are calculated within the SCSA (see Appendix D.1 for more details). We have further used

the weak-scattering approximation to determine ImΣpF , and hence τ . For dH < 2, the continuum picture

breaks down and quantities depend on the underlying lattice. This is taken into account by restricting

wavenumbers to lie below an upper cutoff Λ ∼ 1/a, for a the lattice spacing.

τ vt

dH = 0 :
(

3
2

)2/3 Λ4/3

πω2α1/3 2
√
ω
√

2
3αΛ2

dH = 1 : 6
19πα2ω

(1 + 3α/2+12α ln(Λ/
√
ω)+1√

3α+12α ln(Λ/
√
ω)+1

) 2
√
ω


 2

1+

√
12α ln

(
Λ√
ω

)
+3α+1




3/4

dH = 2 : 2ω
3πα2

(
1 + 3

2
ln(1 + α

ω
)
)

2
√
ω

(√
9α2

4ω2 + 1− 3α
2ω

)3/2
a, 2
√
ω

(
2
√

2

(6 ln(αω )+7)
3/4

)
b

a α� ω, b α� ω
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There are two fundamental quantities to compute: the self-energy Σ̂ and the

coherent diffusion reduction factor δc, from which, all other quantities may be de-

rived. Calculation of these quantities must be done starting directly from the DMV

equations for physical membranes, Eqs. 6.18 and 6.19, or the action in Eq. 6.12, if

working with generalized membranes. Computation of Σ̂ is lengthy, so to simplify

matters we shall immediately switch to working with dimensionless quantities.

We measure lengths in units of
√
κ/Y and time in units of

√
κσ/Y . Henceforth,

we redefine wavenumber and frequency

p→ p/
√
κ/Y , (6.78a)

ω → ω/
√
κσ/Y, (6.78b)

so that p, ω refer to the dimensionless wavenumber and frequency. These, in turn,

lead us to define the dimensionless self energy

Σ̄p =
Σp

κL2(Y/κ)2
, (6.79)

and disorder amplitude

α =
γ

16π

(
Y

κ

)2−dH
. (6.80)

This choice of length and time conveniently allows us to set Y, κ, σ = 1 in the DMV

equations.

From Eq. 6.34, the self-energy is found via a disorder average of the DMV Green’s

function. For any given realization of the quenched background height field, the

DMV equations represent a well-defined, albeit intractable, pair of partial differential

equations. To overcome this, one typically decomposes the Green’s function into a

zero disorder contribution with known solution, plus corrections that tend to zero as

the amplitude of the quenched height field vanishes.
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In Appendix D.1.1 we compute the first order correction to Σp. We find that the

perturbation series is governed by a dH-dependent parameter Y h2
eff(p)/κ (defined in

Eq. D.7) [77], that is system size dependent for dH ≤ 1 and divergent at p = 0

for dH > 1. The perturbation series fails, and any perturbative computation must

include a partial re-summation of some set of terms.

To remedy the failure of the perturbation series, we employ the self-consistent

screening approximation (SCSA) [88, 126, 162, 39]. In terms of generalized mem-

brane with two internal dimensions and dc normals, the SCSA provides the leading

order term in a d−1
c expansion of the self-energy. The SCSA has found success in de-

termining the renormalized elastic constants of both athermal [77] and thermal [78]

warped membranes.

The self-energy is computed in Appendix D.1, where we also develop the dia-

grammatic perturbation theory. The remaining quantity to calculate, the reduction

coefficient δc, is computed in Appendix D.2. We hereafter discuss only the results,

and refer the reader to the appropriate appendix for further details.

Beginning with one-particle quantities, in Tab. 6.1 we present results for vt and

τ in dH = 0, 1, 2. The Drude-Boltzmann diffusion coefficient and mean free path can

easily be found from these two quantities using Eqs. 6.57 and 6.60 respectively.

For membranes that are flat in the stress-free state, the transport velocity is

equal to the group velocity 2
√
ω. The frequency dependence is a consequence of

the biharmonic ∇4 term appearing in the DMV equations. For all values dH , and

at fixed frequency, both the transport velocity and scattering time decrease due

to geometrical disorder. The former is a consequence of random scattering, which

prevents undulatory waves from propagating along a straight line. The latter is due
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to an increased density of scatters with increasing disorder. Generally, the slowing

down of waves due to multiple scattering gives rise to diffusive transport.

In Fig. 6.2, we give asymptotic results at small/large α for the mean free path

`. We find at small α, that ` ∼ α−5/6 in dH = 0 and α ∼ α−2 for both dH = 1, 2.

As expected, increased disorder leads to a reduction in `, and as a result, phase

information of an undulatory wave is lost at shorter distances from the point of force

application.

The frequency dependence of ` is more interesting. For dH = 2, ` ∼ ω3/2 increases

with frequency, while for dH 6= 2 it decreases. Waves with high frequency can better

resolve the geometry of the surface, as their characteristic wavelengths are smaller.

One would expect that at higher frequency the effective curvature is smaller, leading

to fewer scattering events and a longer mean free path.

The breakdown of this explanation for dH < 2 is due to the lack of a well-defined

curvature, which depends on two spatial derivatives of the quenched height field.

There is no meaningful derivative that can be assigned to the quenched height field,

as the derivatives of the height field become arbitrarily large as the lattice spacing

tends to zero. The continuum picture breaks down and quantities depend on the

underlying lattice spacing a. This is taken into account by restricting wavenumbers

to lie below an upper cutoff Λ ∼ 1/a (this is an inverse length, and per Eq. 6.78a,

written in units of
√
κ/Y ). The decrease in mean free path with respect to frequency

for dH ≤ 1 can be understood as the wave scattering off the now-resolved short-

distance roughness, which would otherwise be smoothed over.

dH = 1 is the marginal case; the system develops logarithm dependence on Λ.

The dH = 0 case (white noise disorder) however, is more extreme. We find that Λ
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dominates the behavior of the system; indeed, from Tab. 6.2, the coherent diffusion

coefficient Dc ∼ (α2Λ)−2/3. Though we have studied the properties of the dH = 0

membrane (and list the corresponding results), we shall restrict our analysis to the

more physical cases of dH = 1, 2. We now consider two-particle quantities, i.e. the

diffusion coefficient and localization length.

In Appendix. D.5, we list the full analytic expressions for Dc, δD, ξ, ` and ν,

which in combination with the contents of Tab. 6.1, comprise the main results of our

manuscript. In Tab. 6.2 we give asymptotic limits at small/large α of the quantities

of interest, namely the coherent diffusion coefficient and weak localization correction.

Beginning with dH = 2, in Fig. 6.3 we plot the total diffusion coefficient D as a

function of both α and ω. D depends only on the ratio α/ω, and so its frequency

dependence is trivially inverse to that of its disorder dependence. Focusing on the

case of fixed disorder, we see that at low ω the diffusion coefficient sharply drops to

zero. This occurs near Dc ≈ δD and corresponds to the localization transition. The

localization transition frequency grows linearly with α, telling us that as disorder

increases low frequency states are first to localize. In the weak disorder regime, we

find that D decreases ∼ α−2 and, conversely, at fixed α increases ∼ ω2. The increase

of D with ω indicates disorder acts like a high-pass filter, trapping low frequency

undulatory waves.

In Fig. 6.4, we plot the dH = 1 diffusion coefficient versus both α and ω. As a

function of α, dH = 1 behaves similarly to dH = 2. D ∼ α−2 at low α, and there is

a localization transition at high disorder. In contrast, dH = 1 has only logarithmic

frequency dependence. Increasing the frequency by orders of magnitude marginally

decreases the value α at which the wave localizes. The logarithmic frequency depen-
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Table 6.2: Asymptotic limits of the primary quantities contributing to localization:

the coherent diffusion coefficient Dc, the weak localization correction δD, and the

mean free path `, in each of dH = 0, 1, 2.

α� 1

Dc δD a `

dH = 0 : 2
π

(2/3)1/3

α4/3ωΛ2/3
1
π

(
3
2

)4/3
α1/3Λ2/3 ln

(
L
`

) (96)1/6

π
Λ1/3

α5/6ω3/2

dH = 1 : 48
(11+76π)α2

(
152

11+76π
+O(α ln Λ)

)
ln
(
L
`

)
12

19πα2
√
ω

dH = 2 : c 16ω2

3(1+4π)α2
8

1+4π
ln
(
L
`

)
4ω3/2

3πα2

α� 1

Dc δD a `

dH = 0 : -b -b -b

dH = 1 : ∼ α−9/4 ln−1/4
(

Λ√
ω

)
∼ ln(L/`)

α1/8 ln1/8(Λ/
√
ω)
∼ ln5/8(Λ/

√
ω)

α11/8
√
ω

dH = 2 : c ∼ ω2

α2 ∼ ln
(
L
`

)
∼ ω3/2

α2

a The weak localization correction δD is only defined for L > `, i.e. when the argument of ln is

greater than one.

b These are the same as the α� 1 limit, as Λ is the dominant parameter.

c The precise limits here are instead (α/ω)� 1 and (α/ω)� 1
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Figure 6.3: (color online) diffusion coefficient as a function of both disorder α (top)

and frequency ω (bottom). D decays ∼ α2 at small α, and grows like ω2 at large α.

At low ω there is a localization transition where D vanishes. At smaller system size

L, the localization transition is pushed to smaller/larger frequencies/disorder.
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Figure 6.4: (color online) diffusion coefficient in dH = 1 versus both disorder am-

plitude (top) and frequency (bottom). As for dH = 2, D ∼ α−2 at low alpha, and

reaches a localization transition at large α. The transition decrease logarithmically

in frequency. If the system localizes, it occurs first at high frequency. In the lower

panel, the weak frequency dependence of D is shown to hold ten orders of magnitude,

and even up to the upper limit ω ≈ Λ2.
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dence of D is shown clearly in the lower panel of Fig. 6.4, where in a log-log plot

it appears as a flat line. At fixed α, increasing the frequency over several orders

of ten orders of magnitude does not significantly alter D, even as ω approaches its

upper limit Λ2. D is not entirely independent of frequency however, as in the upper

panel of Fig. 6.4 we see that increasing ω lowers the disorder amplitude at the local-

ization transition. Though the transition point only decreases logarithmically with

frequency, this behavior is still in contrast to that observed in dH = 2, where increas-

ing frequency raises the localization transition disorder amplitude. This analysis at

large α is circumspect however, as the calculation of D assumes we are in the weak

scattering regime. Despite this, a strong scattering calculation of the localization

length (shown in Fig. 6.6) confirms that for dH = 1, high frequency waves are first

to localize.

The computation of D is only valid in the weak scattering approximation, α� 1.

The vanishing of D in both dH = 1, 2 above a certain value of α signals a transition to

the localization regime. To probe this, we consider the localization length ξ defined

in Eq. 6.77, and its size relative to the mean free path `.

In Fig. 6.5 we plot ξ and ` as functions of both α and ω for dH = 2. Localization

occurs approximately when ξ < `: in other words, when the wave has not yet had

a chance to scatter before being localized. In agreement with the high α prediction

of Fig. 6.3, at large enough disorder, the localization length becomes shorter than

the mean free path. When frequency is decreased, the the disorder amplitude at the

localization transition decreases as well. The lower panel of Fig. 6.5, shows that ξ

transitions from ∼ ω5/2 to ∼ eω
2

dependence near the transition. The exponential

increase of localization length tells us that undulatory waves are sharply divided

between extended and localized.
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Figure 6.5: (color online) top: localization length and mean free path as a function

of disorder in dH = 2. Solid (dashed) lines refer to ξ (`). Black is for ω = 10−3, red

is for ω = 0.1. Bottom: ξ and ` as a function of frequency at fixed α = 10−3 (black)

and α = 0.1 (red). Localization occurs at both high disorder and low frequency.
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Figure 6.6: (color online) localization length ξ and mean free path ` in dH = 1 as a

function of both disorder amplitude (top) and frequency (bottom). In the top panel,

black (red) lines correspond to ω = 1 (ω = 10−4). Solid (dashed) lines refer to ξ (`).

The wave localizes when ξ falls below `. This occurs at weaker disorder (smaller α)

with increasing frequency. In the lower panel, we show the ω−1/2 decay of the mean

free path. The localization length is ω-independent, and not shown.
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In Fig. 6.6, we perform the same analysis of ξ and ` in dH = 1 as we did for dH = 2.

As expected, the localization length decays with increasing disorder (∼ α−19/8) faster

than the mean free path at both small (∼ α−9/4 and large (∼ α−11/8) disorder. In

contrast to dH = 2, the ratio ξ/` is frequency independent in dH = 1. The lower

panel of Fig. 6.6 shows the mean free path is a decreasing function of frequency

(∼ ω−1/2). At fixed disorder, ξ ∼ ` and so the localization length will run parallel to

the mean free path. Frequency does not affect the localization transition.

Though we can take the strong scattering limit via our self-consistent treatment

of D leading to ξ, these results should be interpreted with caution for two rea-

sons. First, at high α, the quenched height field may produce stronger curvature.

Our derivation of the warped membrane equations assume that derivatives |∇h|2

were small, thus allowing us to use the flat metric. A proper extension to strong

curvature would require the use of covariant derivatives and a non-flat metric, sig-

nificantly increasing the difficulty. Second, the underlying DMV equations assume

that the characteristic wavelength of deformations is much smaller than the radius

of curvature (see discussion following Eq. 6.7. When this does not hold, there are

additional contributions to the change in the curvature tensor Kab (see the definition

in Eq. 6.8) that couple stretching to bending [115].

6.7 Conclusion

We analyze the transport of undulatory waves on a membrane whose stress-free state

is curved. Due to Gauss’ theorema egregium, curvature couples in-plane stretching

deformations to the much softer our-of-plane bending undulations. As a result,

undulatory wave are scattered by changes in Gauss curvature, a purely geometric
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mechanism.

We study a particular class of curved surfaces called warped membranes [77].

The stress-free state of these membranes is nearly flat, and can be parametrized

by a quenched height field h(x) drawn from a Gaussian ensemble with variance

set by Eq. 6.3. By considering ensemble averages over membrane realizations, we

can compute general transport quantities, independent of a particular realization of

disorder.

The elastic equations of a nearly flat membrane are described using the linearized

DMV equations. This isolates the effects of curvature, which can be appreciable

before nonlinearities need be accounted for. Typically, membranes are much stiffer

to stretching than bending, and so the in-plane deformations relax on a time scale

much shorter than undulations. Integrating out these in-plane modes, we arrive

at an effective, linear field theory of undulatory waves. The resulting undulatory

equations of motion appear similar to those describing wave propagation in random

media, albeit with a complicated nonlocal potential and biharmonic term.

As undulations obey a linear partial differential equation, the amplitude of un-

dulations in response to a transverse applied load can be described by a Green’s

function. We consider an experiment whereby an initially undeformed membrane is

suddenly plucked at the origin, thereby injecting energy into the system. On aver-

age, the amplitude at any point is the sum of many random phases, and averages

to zero. The disorder averaged Green’s function is thus a short range quantity. In

contrast, the energy is a conserved quantity, and it must survive disorder averaging.

Its propagation through (or lack thereof) the membrane is an indicator for diffu-

sion/localization. We find that the kinetic energy alone, and more specifically the
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undulation intensity (a product of a retarded and advanced Green’s function), is a

long-range object capable of describing diffusion/localization. We focus on studying

undulation intensity transport in response to an applied transverse load of fixed fre-

quency at the origin. This defines a frequency dependent diffusion coefficient D(ω),

from which we can determine the diffusion coefficient of any finite sized wavepacket.

Our theory obeys a Ward identity (WI) relating the self-energy to the irreducible

four-point function. Using the WI, we derive diffusive dynamics of undulation inten-

sity for long times and lengths. The resulting expression for the diffusion coefficient

is found to depend critically on the type of noise under consideration, as well as

the frequency of the applied load. For Gaussian noise with power law variance in

wavenumber space, we find that only membranes with variance 〈|hq|2〉 ∼ q−2dH with

dH > 1 are well defined and independent of the short distance cutoff, with dH = 1

the marginal case.

For all types of noise, geometry is found to decrease both the transport velocity

and scattering time. The strength of the effect increases with amplitude of the

quenched height field. The combination of random scattering and slowed propagation

is responsible for diffusive behavior of disorder averaged intensity transport.

Considering the effect of coherent scattering on intensity transport, we compute

the diffusion coefficient and its weak localization correction in the limit of weak scat-

tering (small quenched height field amplitude). The weak localization correction is

found to behave similar to those in other 2D systems, lowering the diffusion coefficient

∼ lnL, which is logarithmically dependent on the system size. [140, 3, 154]

For membranes belonging to the dH = 2 ensemble, we find at fixed frequency

the diffusion coefficient decrease like α−2, for α the dimensionless amplitude of the
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quenched height field. At large enough α, the system undergoes a localization tran-

sition, whereby the diffusion coefficient vanishes. The weak scattering prediction

is confirmed by self-consistently extending the weak localization correction to the

strong scattering regime, where we find the localization length ξ to decrease with α.

At fixed α, waves first localize at low frequency. Away from the localization transi-

tion, the diffusion coefficient grows ∼ ω2 with increasing frequency. This effects of

random geometry are mitigated at high frequency.

For dH = 1, the diffusion coefficient decreases ∼ α−2 until a localization tran-

sition at high α, just like for dH = 2 membranes. However, for dH = 1, both the

diffusion coefficient and localization are only logarithmically frequency dependence.

Increasing the frequency over n orders of magnitude, we observe that the value α

at the localization transition is reduced by a factor of n. In contrast to dH = 2,

this suggests that the localizing effects of random geometry are enhanced at high

frequency (though exponentially small).

For dH = 0, we find that transport is completely determined by the short-distance

cutoff of the theory, where the continuum description breaks down. Upon further

analysis, this failure can be traced back to the unphysical nature of dH = 0 mem-

branes. Since there is no correlation in amplitude of the quenched height field be-

tween arbitrarily close points in space, derivatives can become arbitrarily large as the

lattice spacing goes to zero, resulting in a lack of a well-defined curvature. We can

still analyze the theory, however, and we find the diffusion coefficient to be ∼ ω−1.

This supports the claim that dH = 1 is the marginal case; for short range disorder

(dH < 1) geometry acs as a high-pass filter, and for longer range disorder (dH > 1)

it acts as a low-pass filter.

219



The unphysical dependence on Λ plaguing the dH = 0 case, also appears to an

extent for dH = 1. An alternative way to express the claim that dH = 1 represents

the marginal case, is by looking at its Λ dependence. Membranes belonging to the

dH = 0 ensemble exhibit are ∼ Λ2, in the dH = 1 ensemble ∼ ln Λ, and in the dH = 2

ensemble Λ-independent.

In all cases of disorder, the localization length is found to depend exponentially

on α and ω. This is a feature of two dimensional systems, and indicates that the

divide between localized/extended states is sharp.

In future work we would like to explore fluctuation corrections to our results. In

particular, it would be interesting to look at intensity fluctuations in the diffusive

limit, and see if the system obeys a type of geometrical speckle-correlation. Addition-

ally, we would like to understand the sensitivity of our results to inelastic scattering.

In biological applications, membranes are immersed in viscous fluid. Whether or not

localization effects persist in the overdamped limit is a question of interest.
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APPENDIX A

Appendices for equilibrium fluctuations of a

semiflexible filament cross linked into a network

A.1 Real space MFT Green’s functions

The Green’s function satisfies the equation of motion

[
κ∂4

x − (τ + 4k‖〈∆`〉)∂2
x

]
G(x, x′) = δ(x− x′). (A.1)

To make the equations more readable, we define:

λ ≡ 2〈∆`〉. (A.2)

We solve for the Green’s function by first finding solutions of Eq. A.1 in the regions

x 6= x′. We then fix the undetermined coefficients according to the prescribed bound-

ary conditions and the jump discontinuity at x = x′ necessary to generate the delta

function. The general solutions on the left (L) and right (R) of this discontinuity are

uL,R(x) = A+Bx+ C cosh(px) +D sinh(px), (A.3)

where

p ≡
√
τ + 2k‖λ/κ, (A.4)
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and {A,B,C,D} are, as yet, undetermined coefficients. We require that uL(x) and

uR(x) be equal through the second derivative. The jump discontinuity then gives

u′′′R(x′) − u′′′L (x′) = 1/κ. Applying the boundary conditions at the discontinuity as

well as at the prescribed boundaries yields an algebraic system of equations from

which the undetermined coefficients may be found. We obtain:

G(x, x)pinned =

√
κ

(
coth

(√
2k‖λ+τ

κ

)
sinh2

(
x

√
2k‖λ+τ

κ

))

(2k‖λ+ τ)3/2
(A.5)

−
√
κ

2

(
sinh

(
2x

√
2k‖λ+τ

κ

)
− (x− 1)x

√
2k‖λ+τ

κ

)

(2k‖λ+ τ)3/2

G(x, x)free =

√
κ

(2k‖λ+ τ)3/2

[
coth

(√
2k‖λ+ τ

κ

)
sinh2

(
x

√
2k‖λ+ τ

κ

)

− 1

2
sinh

(
2x

√
2k‖λ+ τ

κ

)
+ x

√
2k‖λ+ τ

κ

]
(A.6)

G(x, x)k⊥ =
x(k⊥(−x) + k⊥ + 2k‖λ+ τ)

(2k‖λ+ τ)(k⊥ + 2k‖λ+ τ)
−

√
κcsch

(√
2k‖λ+τ

κ

)
cosh

(√
2k‖λ+τ

κ

)

2(2k‖λ+ τ)3/2

(A.7)

+

√
κcsch

(√
2k‖λ+τ

κ

)
cosh

(
(1− 2x)

√
2k‖λ+τ

κ

)

2(2k‖λ+ τ)3/2

To write the final answer, we must determine λ. The self-consistency condition

is

λ =

∫ L

0

dx lim
x′→x

∂x∂x′G(x, x′). (A.8)
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For each of the three cases we find

λfree =

κ

√
2k‖λ+τ

κ
+ (2k‖λ+ τ) coth

(√
2k‖λ+τ

κ

)

2
√
κ(2k‖λ+ τ)3/2

(A.9)

λpinned =

(2k‖λ+ τ) coth

(√
2k‖λ+τ

κ

)
− κ
√

2k‖λ+τ

κ

2
√
κ(2k‖λ+ τ)3/2

(A.10)

λspring =

κ

√
2k‖λ+τ

κ
+ (2k‖λ+ τ) coth

(√
2k‖λ+τ

κ

)

2
√
κ(2k‖λ+ τ)3/2

− k⊥
(2k‖λ+ τ)(k⊥ + 2k‖λ+ τ)

.

(A.11)
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APPENDIX B

Appendices for dynamics of undulatory

fluctuations of semiflexible filaments in a network

B.1 Diagrammatic perturbation theory to O(k2)

We compute the adjusted self energy given in Eq. 3.25 to O(k2). For readability,

in this section we drop the 0 superscript, with γp referring to γ0
p . When we re-

fer to diagrams appearing in Fig. 3.3, we are including not only the diagram, but

also its combinatorial factor for contracting the legs. We also include a factor of

(−Dk`2/8)n/n! at O(kn). Diagram B1 has combinatorial factor 2, A1 has 1, all C

and D diagrams have 23, B2 has 22, B3 has 23, and A2 has 22.

We calculate for the O(k) diagrams:

A1 = −1

2
kp2

∑

q

q2

γq
, (B.1)

and

B1 = −kp
4

γp
. (B.2)

For the D diagrams, D1 and D2 vanish due to a closed response loop. D3 and D4

give identical contributions, leading us to write the D contribution

D3 +D4 =
k2p8

γ3
p

. (B.3)
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All three of the C diagrams give the same contribution. Summing these gives

C1 + C2 + C3 = k2 3Dp8

γ2
p(−iω + 3Dγp)

. (B.4)

Lastly, for the B diagrams,

B2 = k2 p
4

γp

∑

q

Dq4

γq(−iω + 2Dγq +Dγp)
, (B.5)

and

B3 = k2p4
∑

q

Dq4

2γ2
q (−iω + 2Dγq +Dγp)

. (B.6)

Taking the sum, we simplify to

B2 +B3 =
k2p4

2γp

∑

q

q4

γ2
q

(
1− −iω
−iω +D(2γq + γp)

)
. (B.7)

The last diagram is

A2 = k2p2

(∑

q

q2

2γq

)(∑

q

q4

2γ2
q

)
. (B.8)

The adjusted self-energy is simply the sum of these contributions. Altogether we

find

Σ̃p(ω) = −k
(
p4

γp
+
p2

2

∑

q

q2

γq

)
+ k2

[
p8

γ2
p

(
1

γp
+

3D

−iω + 3Dγp

)

+
p4

2γp

∑

q

q4

γ2
q

(
1− −iω
−iω +D(2γq + γp)

)
+

1

4
p2

(∑

q

q2

γq

)(∑

q

q4

γ2
q

)]

+ O(k3). (B.9)

We may rewrite this in terms of the dimensionless tension, φ = τ`2

π2κ
, and dimen-
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sionless frequency, ω̄ = ω`4/(Dκπ4), as

Σ̃n(ω) = −kkBT

κ

(
n2

n2 + φ
+
n2

2

∑

m

1

m2 + φ

)

+
k2`4k2

BT
2

κ3π4

[
n2

(n2 + φ)3
+

3n4

−iω̄ + 3n2(n2 + φ)

+
1

2

n2

n2 + φ

∑

m

1

(m2 + φ)2

(
1− −iω̄
−iω̄ + 2m2(m2 + φ) + n2(n2 + φ)

)

+
n2

4

∑

m,m′

1

(m2 + φ)(m′2 + φ)2

]
, (B.10)

where m, m′, and n are positive integers, and we have restored factors of kBT .

Rewriting Σ̃p(ω) in terms of the dimensionless wavenumber p̄ = p
√
κ/τ instead

leads to Eq. 3.26. We can categorize several of the diagrams in terms of the n-bubble

expansion. Diagrams of type A contain one-bubbles, and generate a shift in the

effective tension. Diagrams of type B contain two-bubbles, and generate a shift in

the effective spring constant k. The remaining diagrams are single line topologies.

B.2 Mean-field theory solution in time-domain

Our starting point is Eq. 3.45. We begin by defining the integrated projected length

Λ(t) =

∫ t

λ0(t′)dt′, (B.11)

as the antiderivative of λ0(t). The differential equations of motion (Eq. 3.45a) gov-

erning the normal modes can be solved in terms of λ0(t). We find

up(t) = up(0)χ̃p(t, 0) +

∫ t

0

dt′χ̃p(t, t
′)ζp(t

′), (B.12)

where we defined

χ̃q(t, t
′) = e−D(κq4+τq2)(t−t′)−Dkq2(Λ(t)−Λ(t′)), (B.13)

226



in agreement with the notation of Refs. [58, 116]. The initial condition up(0) may

either be specified, or treated as a random variable. Using Eq. 3.45b, we can eliminate

the normal modes in favor of a single PIDE governing λ0(t). We obtain

dΛ

dt
=
`

4

∑

q

q2

{
χ2
q(t, 0)〈u2

q(0)〉+
4D

`

∫ t

0

χ2
q(t, t

′)dt′
}
. (B.14)

The brackets around up(0) indicate an average over these initial amplitudes. Since

the average over the initial amplitudes (u2
q) may be taken with respect to any en-

semble, this equation can describe the relaxation of a nonequilibrium state. In this

section however, we will be concerned with the case where up(0) is sampled from the

equilibrium ensemble.

We begin our analysis with the long-time or equilibrium limit. We implement

the long-time limit by removing the initial condition and setting the lower limit of

integration to −∞. This gives the long-time limit PIDE

dΛ

dt
= D`

∑

p

p2

∫ t

−∞
e−2Dγ0

p(t−t′)−2Dkp2(Λ(t)−Λ(t′))dt′. (B.15)

In the long-time limit, we expect the system to reach equilibrium. Accordingly, we

seek a solution of the form Λ(t) = λ0t, i.e., constant λ0(t). χq(t, t
′) then depends only

on the time difference (t− t′), and we are free to Fourier transform. The right hand

side of the PIDE can be viewed as the Fourier transform of χ̃2
q(t, 0)Θ(t) evaluated at

zero frequency, which leads us immediately to Eq. 3.46.

As expected, this reproduces the equilibrium mean-field theory equation of Ref. [71].

While, the sum can be performed in closed form, we approximate the summation

by an integration in order to understand its k-dependence. Since deviations in λ0

from the spring-free result occur at larger values of k, the distinction between the

summation and integration is immaterial. In terms of the k-independent change in
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projected length λfree
0 (found by setting k = 0 in Eq. 3.46), we find the equation

λ0

λfree
0

=

[
1 +

kλfree
0

τ

(
λ0

λfree
0

)]−1/2

. (B.16)

The most interesting result is found at high k, where the solution to this equation

demands λ0/λ
free
0 ∼ k−1/3. Consequently, the effective tension kλ0 ∼ k2/3. The

transition occurs when kλ0/τ ≈ 1. These results are confirmed by Fig. 3.7.

We now consider the short-time limit, where the behavior is dependent on the

initial condition. We treat the case where up(0) is averaged over the k 6= 0 equilibrium

ensemble, and at t = 0 a small, additional time-dependent tension

τ(t) = τ + δf(t)Θ(t), (B.17)

is applied. For reference, in equilibrium

〈u2
p(0)〉eq =

2kBT/`

κp2(p2 + τ + kλ0)
, (B.18)

which can be inferred from the long-time MFT solution. δf(t) has magnitude f , and

is superimposed on top of a prestress τ . In analogy with defining the time-integrated

projected length, we find it useful to introduce the time-integrated applied tension

δF (t) =

∫ t

0

δf(t′)dt′. (B.19)

Upon turning on the additional tension δf(t), the projected length will change an

amount δ〈∆`(t)〉 = 〈∆`(t)−∆`(0)〉, and the integrated projected length will change

by an amount Λ(t) = Λ0 + δΛ(t), where Λ0 = λ∞0 t is the long-time constant solution.

Comparing the two, we can identify

∂tδΛ = δ〈∆`〉. (B.20)
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This relates δΛ to the projected length response (which is not necessarily linear).

Decomposing Λ = Λ0 + δΛ, we redefine

χ̃q(t, t
′) = e−Dq

2(κq2+τ+kλ0)(t−t′)e−Dq
2(δA(t)+δA(t′), (B.21)

where we have grouped the two perturbations δΛ(t) and δF (t) into a single function

δA(t) = kδΛ(t) + δF (t). (B.22)

This can similarly be accomplished by setting τ → τ + kλ0 + δf(t) and replacing

Λ(t) → δΛ(t) in Eq. B.13. Substituting and averaging over the initial condition

yields the PIDE

dδΛ

dt
=
kBT

2

∑

q

{
χ̃2
q(t, 0)− 1

κq2 + τ + kλ0

+
2q2

ξ⊥

∫ t

0

χ̃2
q(t, t

′)dt′
}
. (B.23)

We are interested in the short-time solution to this equation. Since the projected

length must be finite at t = 0, this implies that at, short times, δΛ(t) ∼ tη for

some η > 1. The prestress ensures that δF (t) can be made small (by reducing the

amplitude of applied tension) relative to τ at all values q, allowing one to expand

δF (t) in the exponential of χ̃q(t, t
′) as t → 0 [116]. Consequently, the change δΛ(t)

will be small as well, since it vanishes at f = 0. These considerations suggest that

we can expand χ̃q(t, t
′) in a power series about δΛ(t) and δF (t). Doing so, we find

dδΛ

dt
= −

∫ t

0

M(t− t′)[kδΛ(t′) + δF (t′)]dt′, (B.24)

where we have defined the kernel

M(t) =
∑

p

[
Dp2δ(t)

κp2 + τ + kλ0

− 2D2p4e−2Dp2(κp2+τ+kλ0)t

]
. (B.25)
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This may be solved by Laplace transformation. The Laplace transform of the kernel

is

M̃(z) =
∑

p

zDp2

(κp2 + τ + kλ0)[z + 2Dp2(κp2 + τ + kλ0)]
. (B.26)

In terms of the dimensionless tension φ, the shift ∆φ defined in Eq. 3.34, k̄, and the

dimensionless Laplace variable z̄ = z`4/Dκπ4, we can equivalently write this as

M̃(z̄) =
∞∑

n=1

Dn2z̄/κ

(n2 + φ+ ∆φ)[z̄ + 2n2(n2 + φ+ ∆φ)]
(B.27)

Solving, the transformed change in projected length δΛ(z) is

δΛ(z) = − M̃(z)/z

1 + kM̃(z)/z
δF (z). (B.28)

Since F (z) is proportional to f , we may divide both sides by f , then use Eq. B.20

to obtain the Laplace transform of the projected length linear response

χ∆`(z) = −z M̃(z)/z

1 + kM̃(z)/z

δF (z)

f
. (B.29)

B.3 Polarization function calculation

It is computationally easier to begin by working in the time domain. We decompose

M−1(t, t′) in terms of its k = 0 and k 6= 0 pieces via

M−1(t, t′) = σ +DkΠ(t, t′), (B.30)

where σ represents the 2x2 block matrix with zeros along the diagonal, and iden-

tity matrices on the off diagonal. We call the additional contribution, Π(t, t′), the

polarization matrix, in analogy to electron screening in metals [4]. It encodes fluctu-

ation corrections, and is determined by the trace-log. Specifically, it is given by the
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second-order term in the Taylor expansion of Tr ln(1 + Dkp2Ĝδ̂λ) about the small

matrix

δ̂λ(t) =


 0 δλ(t)

δλ(t) −δλ(t)


 . (B.31)

Ĝ is the saddle-point, matrix-valued Green’s function

Ĝ(t, t′) =


 0 Ḡ−p (t− t′)

Ḡ+
p (t− t′) C̄p(t− t′)


 , (B.32)

with components given by the time representation of Eq. 3.58a,

Ḡ±p (t) = Θ(±t)e∓Dγpt, (B.33)

and Eq. 3.58b,

C̄p(t, t
′) = 2D

∫
dτG+(t− τ)G−(τ − t′). (B.34)

The modified function γp = γ0
p + kp2λ0, includes the saddle-point value λ0.

The logarithm of matrices is defined via its Taylor series, whose quadratic term

is −1
2

Tr Ĝδ̂λĜδ̂λ. The factor of 1/2 can be factored out, per the definition of Π.

Products of the form Ĝ±(t)Ĝ±(−t) have vanishing support due to the θ functions

and are zero. Carrying out the matrix products, we find that Π(t, t′) = Π(t− t′) is

a function only of the time difference, with the result

Π(t) =
∑

p

p4


 −C2

p(t) 2G+
p (t)Cp(t)

2G−p (t)Cp(t) 0


 . (B.35)

Since each of the operators depend on only the time difference t− t′, we may Fourier

transform to frequency space. Including the σ contribution we find the effective

functional matrix

M−1
ω =


 −Π0

ω Π+
ω + 1

Π−ω + 1 0


 . (B.36)
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The individual components are given by Eqs. 3.61 and 3.62. We have chosen the

± notation to emphasize the similarity of Π± to Green’s functions, and Π0 to the

spring-free correlator. Indeed, Π+ = (Π−)∗, and, as a consequence of the fluctuation-

dissipation, the Π functions obey the relationship

ImΠ+
ω =

ω

2kBT
Π0
ω. (B.37)

We thus need only compute Π+ to fully specify the polarization matrix.

B.4 Transverse spring only

For completeness, we report the solution of the problem for a purely transverse spring

attached at the endpoint (i.e., no longitudinal component). To incorporate both

the longitudinal and transverse springs simultaneously, we simply replace the decay

rates below with those calculated in the main text in the presence of a longitudinal

spring. We follow the method of Ref. [71] for dealing with inhomogeneous boundary

conditions in Fourier space. In this section, primes refer to spatial derivatives.

The homogeneous boundary conditions are pinned, with zero torque at both

endpoints: u(xS) = u′′(xS) = 0, and xS = 0, `. Wavenumbers are set to pn = nπ/`,

for n a positive integer. The transverse spring replaces the pinned boundary condition

u(`) = 0 with the new condition

− κu′′′′(`) + τu′′(`) = −k⊥u(`). (B.38)

In the bulk, we still have the linear Langevin equation

∂tu+Dκu′′′′ −Dτu′′ = ζ(x, t), (B.39)
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subject to the aforementioned boundary conditions. In order to implement the

boundary condition, we add an additional force operator that is non-diagonal in

wavenumber and regulated by a parameter ε that we take to zero at the end of the

calculation [71]. We write:
[
δnm

(
∂t +Dκp4

n +Dτp2
n

)
+

1

4ε
ψnψm

]
um = δnmξm, (B.40)

where we have defined the infinite dimensional vector

ψn = (−1)n
(
γn
pn

+
1

2
k⊥ sin 2nπ

)
. (B.41)

This is solved by the method of Green’s functions. We replace ζ on the right side with

a δ-function in time and a Kronecker delta δnk, and um(t) by the Green’s function

χ⊥mk(t− t′). The response is still given by a sum over sines

χ⊥(x, x′; t) =
∞∑

m,n=1

χ⊥mn(t) sin(pnx) sin(pmx
′). (B.42)

Next, we Laplace transform the χ version of Eq. B.40, take the inverse of the left

side, and finally take the ε→ 0 limit to find

χ⊥mk(s) = χD
mk(s) + χBC

mk(s), (B.43)

which has decomposed into a homogeneous part plus boundary term. The homoge-

neous part is

χD
nm(s) = χ0

n(s)δnm =
δnm
s+ γn

, (B.44)

where for this section we have defined

γn = Dκp4
n +Dτp2

n. (B.45)

The boundary term is given by

χBC
mk(t) =

−(χ0
nψn)2

∑∞
n=1 ψnχ

0
nψn

. (B.46)
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. The numerator is

numerator = −(−1)n+m

pnpm

[
γnγm

(s+ γn)(s+ γm)

]
. (B.47)

The denominator is a divergent sum. It has two main pieces

∞∑

n=1

{
γ2
n

p2
n(s+ γn)

+ k⊥
γn sin 2πn

pn(s+ γn)
+ convergent

}
(B.48)

The third piece is a convergent sum proportional to sin 2π, and can be safely set to

zero. We rewrite the series by subtracting out the divergent pieces as

∞∑

n=1

{ −sγn
p2
n(s+ γn)

+
γn
p2
n

+
−s sin 2πn

pn(s+ γn)
+
k⊥ sin 2πn

pn

}
(B.49)

The first and third are now convergent, so the third can immediately be set to

zero. The second and fourth need regularization. These sums were computed previ-

ously [71], with the results −τ/2 and −k⊥`/2 respectively. We then have

denominator = −1

2
(τ + k⊥`)−

∞∑

n=1

s(κp2
n + τ)

s+ κp4
n + τp2

n

. (B.50)

Combining, we find the boundary response

χBC
mn(s) =

2(−1)n+mγnγm
pnpm(τ + k⊥`+ F (s))(s+ γn)(s+ γm)

, (B.51)

where

F (s) = 2
∞∑

n=1

s(κp2
n + τ)

s+ κp4
n + τp2

n

. (B.52)

The sum of Eqs B.44 and B.51 gives the final result for the Laplace-transformed

response function for a purely transverse spring at the boundary. To obtain the

space/time domain solution, one can numerically perform the inverse transform and

sum over modes according to Eq. B.42.
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APPENDIX C

Appendices for dynamics of transiently

cross-linked bundles

C.1 Perturbative ε expansion of kinetic railway track model

Insertion of n(x, t) = n0 + δn(x, t) into Eq. 4.13 gives the equation of motion for

δn(x, t). Our calculation begins with the two dynamical equations
[

1

Koff

d

dt
+ (1 + z) + V (θ)

]
δn = −n0V (θ) (C.1a)

∂u

∂t
= −D(κu′′′′ − k×a2n0u

′′ − k×a2(δnu′)′) + ξ, (C.1b)

where we have defined the Mayer-function like potential

V (θ) = e
1
2
βk×a2θ2(x,t) − 1. (C.2)

To develop the perturbation theory, we must identify a small parameter. Near

the boundary between the transient and permanently linked railway track models,

the bundle relaxes much faster than the cross-linkers. This suggests a ratio of the

relaxation times of linkers to the bundle is small, approaching zero in the permanently

linked limit. In this regime, the bundle is dominated by its ¯̀4 scaling, and so we

approximate τWLB ≈ τWLC, where τWLC = κπ4

ζ`4
. Rescaling units of time to τ =

t/τWLC, we find that dδn/dτ ∼ ε, where ε = τoff

τWLC
as defined in Eq. 4.16.
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The potential V (θ) ∼ ε as well, and so the third term on the right side of Eq. C.1b

can be treated perturbatively. The potential V (θ) however, remains highly nonlinear.

Performing a pre-average of the Boltzmann factor as in Eq. 4.5, we find that the

argument of the exponential is small for all values k×. We thus expand V (θ) in a

power series with respect to θ, yielding the lowest order result

[
1

Koff

d

dt
+ (1 + z)

]
δn(x, t) = −n0α

2
θ2. (C.3)

We have additionally defined the dimensionless ratio α = βk×a
2 (not to be con-

fused with the longitudinal response, which we do not reference in this section).

Formally solving for δn(x, t) and substituting into the Langevin equation gives the

nonlinear generalized force 1
2
Dαk×a

2n0

(
u′ Koff

∂t+Koff(1+z)
u′2
)′

. The nonlinearity can be

treated graphically in terms of Feynman diagrams. To do so, we first assume periodic

boundary conditions and represent u(x, t), δn(x, t) by their Fourier series/transforms

defined in Eqs. 4.17, 4.18. Our normalization requires a factor of 1/` for the inverse

Fourier series. We have further removed the zero mode of u(x, t), fixing the midline

of the bundle to lie along the x̂-axis. This, in combination with Eq. C.1a, eliminates

the zero mode from the δn Fourier series as well. This does not preclude a zero

frequency component though.

The nonlinear interaction can be viewed diagrammatically as the vertex

q, !

p1

p2

p3

p4

=
Dk2
×a

4n0`

2kBTτoff

p1p2p3p4

−iω + (1 + z)/τoff

. (C.4)
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The delta functions conserving wavenumber and frequency at each vertex are im-

plied. Each leg with wavenumber pi also carries a frequency ωi, and q = p1 −
p2, ω = ω1 − ω2. Directed solid lines denote the δn(x, t) = 0 Green’s function

G0(p, ω) = (1/`)(−iω + D(κp4 + k×a
2p2))−1. Undirected solid lines denote the

correlator C0(p, ω) = (2DkBT/`)(ω
2 + D2γ2

p)
−1, which has accounted for a fac-

tor of 2D coming from noise averaging. As usual, the Green’s function is deter-

mined by the set of one particle irreducible connected diagrams Σ, via the relation

G−1(p, ω) = G−1
0 (p, ω) − Σ(p, ω) [?]. We focus on calculating Σ̃ = − 1

D`
Σ, such that

the renormalized stiffness is κR(p, ω) = κ + Σ̃(p, ω)p−4. There are two diagrams at

lowest order, given by

Σ̃1(p, ω) = 2 =

−p
2

`

∑

q

q2k2
×a

4n0

γq(−iωτoff +Dτoffγq + (1 + z))
(C.5)

Σ̃2(p, ω) = = −p
2k2
×a

4n0

2`(1 + z)

∑

q

q2

γq
. (C.6)

Rearranging in terms of dimensionless quantities leads to the bending rigidity

corrections ∆κ1(pn, ω) and ∆κ2(pn, ω) given in Eqs. 4.19 and 4.20 of the main text.

We now compute the n0 renormalization. All ε-independent terms are represented

diagrammatically by tadpoles, where cutting any dashed line will disconnect the

diagram. Higher order terms require us to also expand V [θ(x, t)] to higher orders in

well. We can, in fact, sum over all tadpole that appear when using the full nonlinear

potential V [θ(x, t)].
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This is done by first starting at Eq. C.1a without the small α approximation. We

formally solve for the basis independent δ̂n, expressing it in terms of the operator

inverse Ĝn = (K−1
off ∂t + (1 + z))−1. This gives the formal result

δ̂n = −n0(1 + ĜnV̂ )−1ĜnV̂ . (C.7)

Insertion into Eq. C.1b and taking the power series δ̂n = n0

∑∞
m=1(−ĜnV̂ )m tells

us the types of diagrams that appear. The first order term in the Fourier basis,

(−ĜnV̂ ), is precisely the vertex of Eq. C.4. Ĝn generates dashed lines connecting

the function on its right to that on its left, representing the propagator for a density

excitation. in general, the mth term of the series consists of a string of m vertices V

connected by m dashed lines. The vertex V is itself represented by its own power

series V (θ) =
∑∞

m=1 cm(αθ2)m which can be depicted Fourier space diagrammatically

as the sum over all diagrams

p1

p2

p3

p4

 . . . =

p1

p2

p3

p6

p4

p5

+ +q, !

p1

p2

c2↵
2

c1↵

(C.8)

with one incoming and one outgoing line connected by a dashed line to a vertex con-

sisting of any even number of incoming lines. The coefficients cn can be determined

from the Taylor expansion, but the exact form will ultimately be irrelevant. The

full δ̂n contribution, is then given by the sum over such effective vertices chained

together in a row by m dashed lines. We omit diagrams that transfer frequency, as
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they will be proportional to ε. The remaining diagrams are the zero-frequency tad-

poles. These correspond to contracting each V vertex independently of the rest, so

that every dashed line in the diagram carries zero frequency; the latter corresponds

to replacing Gn with (1 + z)−1.

For any given diagram of the V vertex series, all contractions are identical, form-

ing a closed loop. The single loop contraction was already computed in Eq. C.6.

Each contraction thus gives a factor of the static value

〈θ2
p〉st =

∑

m 6=0

T`/κπ2

4m2 + φ
=

1

N

(
π
√
φ

2
coth

(
π
√
φ

2

)
− 1

)
. (C.9)

The rest is now a combinatorics problem. Taking into account the number of

ways to contract vertices, we find

〈V 〉 =
∑

n

(2n− 1)!!cn
(
α〈θ2〉st

)n
. (C.10)

The series is Borel summable and we may replace (2n − 1)!! by its representation

as a Gaussian integral (2π)−1/2
∫
s2ne−s

2/2ds. This introduces no new combinato-

rial factors, so we can grouping the dummy integration variable s with 〈θ2〉st and

trivially re-sum the series to get back the original function. The net result of these

manipulations, is the replacement

V (θ2)→ (2π)−1/2

∫
dse−s

2/2V (s2〈θ2〉st). (C.11)

The integral is still Gaussian, and we find the main result

V (θ)
tadpoles−−−−→

√
1− α〈θ2〉 − 1. (C.12)

To determine the renormalization, we again solve for δn(x, t) (which is now a con-

stant) and insert back into Eq. C.1b. Simplifying, we find that the bundle Langevin
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equation maintains the same form provided we make the replacement

n0
tadpole−−−−→ Ns/`

1 + zR(φ)−1
. (C.13)

where

zR(φ) = z

(
1− 1

N

(
π
√
φ

2
coth

(
π
√
φ

2

)
− 1

))1/2

(C.14)

To complete our calculation, we must also account for diagrams where the propaga-

tors themselves are renormalized by tadpoles. This is accomplished by making the

self-consistent extension of replacing n0 on the right hand side of Eq. C.13, with the

fully renormalized nR. Doing so yields the self-consistent Eqs. 4.23, 4.24 in the main

text.

Finally, the non self-consistent value for nR predicts that the linker density van-

ishes at zR(φ∗) = 0. Assuming N is large, this must occur at large φ as well, allowing

us to replace the coth with 1 and find the unbinding condition φ∗ = (2(N + 1)/π)2.

C.2 One dimensional nearest-neighbor free energy

Our exposition closely follows reference [134]. Our primary task is to calculate the

radial distribution function g(r), which gives the probability density of a particle

located at radius r, provided there is a particle at the origin. From there, we can

recover the full statistical mechanics.

We first define p1(x), the probability that if a particle is at some location x0, its

nearest neighbor will be located at position x0 + x. Due to translational invariance,

this is a function only of the separation x between neighbors. The related probability

pN(x), that theN th nearest neighbor is located distance x away, satisfies the recursion
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relation

pN(x) =

∫ x

0

pN−1(x− x′)p1(x′)dx′. (C.15)

Due to the convolution, Laplace transform yields the solution

pN(s) = pN1 (s). (C.16)

Our remaining job is to determine p1(s). We consider an arbitrary configuration of

the N particle system, extending from x = 0 to x = L, and at pressure P . Due to

the one-dimensional nature of the problem, each particle is uniquely determined by

its ordering on the line. The N+1 particle system is built recursively by inserting an

additional particle bounded from the left by 0 and on the right by the N th particle,

then integrating over positions of the last two particles. As a result, we may write

p1(r) ∼
∫ ∞

r

dLe−βPL
N∏

i=2

∫ L

xi−1

dxie
−βV (xi−xi−1). (C.17)

with boundary conditions x1 = r and xN = L. Here, β = (kBT )−1 and P is the

pressure.

Effecting the change of variables xi → xi − xi−1, the upper limits become L− r,
l − r − r1, L − r − r1 − r2 − . . .. Sending L → L + r renders the iterated integrals

independent of r, and so we can set it to a constant c. This gives

p1(r) = ce−βPre−βV (r). (C.18)

Next, we define the function

Ω(s) =

∫
dre−sre−βV (r), (C.19)

which is the Laplace transform of the Boltzmann weight. In terms of Ω(s), the

Laplace transform of the nearest neighbor distribution is then given by p1(s) =
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cΩ(s+ βP ). The constant c is determined by enforcing the normalization condition
∫
drp1(r) = 1, which is equivalent to p1(0) = 1. As a result,

c = 1/Ω(βP ). (C.20)

We can now determine the radial distribution function. Summing the geometric

series for the Laplace transform g(s) = 1
n

∑∞
i=1 p1(x)i gives

ĝ(s) =
1

nl

Ω(s+ βP )

Ω(βP )− Ω(s+ βP )
. (C.21)

The density nl, and as a result the equation of state, is determined by requiring that

as r →∞, particles are uncorrelated. This implies that the total number of particles

a distance r away is given simply by the average density nl. This corresponds to the

condition 1 = lims→0 sĝ(s), leading to the equation of state

nl = − Ω(βP )

Ω′(βP )
. (C.22)

The right hand side is the inverse of a logarithmic derivative with respect to pressure.

In combination with the thermodynamic relations ` =
(
∂G
∂P

)
and G = µN , we identify

the chemical potential

µ = NkBT ln

(
Λ

Ω(βP )

)
. (C.23)

Here, Λ is the thermal de Broglie wavelength. The total correlation function h(r) is

related to the radial distribution function via h(r) = g(r) − 1. In Fourier space, hq

given by

hq = ĝ(iq) + ĝ(−iq). (C.24)

The zero mode is treated separately. It is given by the limit lims→0 2(R(s) − s−1),

which yields

h0 = 2

(
Ω′(βP )

Ω(βP )
− Ω′′(βP )

2Ω′(βP )

)
. (C.25)
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From the density and total correlation function, we can determine a number of other

quantities. Of special interest is the structure function

Sq = 1 + nlhq. (C.26)

From the Ornstein-Zernicke equation [134] we can relate the total correlation to the

direct correlation function. In Fourier space this relation is

c(2)
q =

hq
1 + nlhq

. (C.27)

This concludes the main results we will need for one-dimensional nearest neigh-

bor systems. We now apply this to hard rods interacting via Casimir forces. The

Boltzmann factor pertaining to Casimir interactions is given by [66]

e−βV = (r/λc)
−βd⊥αΘ(|x| − σ), (C.28)

where d⊥ is the number of transverse directions, α is the number of degrees of freedom

constrained at the boundary (one for pinned and two for pinning position plus angle),

and λc is an inconsequential phase space volume. We focus on the cases d⊥α = 2, 4.

The special case d⊥α = 0 is the hard rod only model. Performing the Laplace

transform, we calculate the fundamental quantity

Ω(s) = (βP )−1+d⊥αΓ(1− d⊥α, βPσ), (C.29)

where Γ denotes the upper incomplete gamma function. From this, we find the

equation of state [66]

nl = βPσ
Γ(1− d⊥α, βPσ)

Γ(2− d⊥α, βPσ)
. (C.30)

Generally, one must prescribe either the density nl, or the pressure per temper-

ature βP , then determine the other via the equation of state. The total correlation
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function is

hk =
2

nl
Re

[(
−1 +

Ed⊥α(βP )

Ed⊥α((βP + iq)σ)

)−1
]
, (C.31)

and the structure function

Sq = 1 + 2Re

[(
−1 +

Ed⊥α(βP )

Ed⊥α((βP + iq)σ)

)−1
]
. (C.32)

We have written these in terms of the exponential integral function, defined as

Ed(z) =

∫ ∞

1

e−ztt−ddt. (C.33)

For the special case of hard rods (d⊥α = 0), these take can be expressed in terms

of trigonometric functions. We remove the pressure from the equation of state, and

σ by defining the packing fraction nσ = η̄ and dimensionless wavenumber q̄ = qσ.

The packing fraction is necessarily less than or equal to one. We write

S
(HS)
q̄ =

q̄2 (η̄ − 1) 2

q̄2 (η̄ − 1) 2 − 2q̄η̄ (η̄ − 1) sin q̄ − 2η̄2 cos q̄ + 2η̄2
. (C.34)

For completeness, in Fig. C.1 we plot both the direct correlation function and

radial distribution function in real space. The positive correlation tail for distances

x > σ is responsible for the density-density interaction in the RY free energy of

Eq. 4.45, and is in contrast to hard rods. Peaks in radial distribution function are

dampened by Casimir interactions.

C.3 Master equation for linker hopping

A particular state of bound/unbound linkers is given by the set of numbers {n1, . . . , nNs}
denoting the number of linkers bound at any of the Ns binding sites.
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Figure C.1: Top: direct correlation function of cross-linker fluid. σ = 1, βP = 1 and

3000 modes were summed over in the Fourier series. The inset shows a close up of the

transition at x = σ. Bottom: radial distribution function for the physically relevant

case d⊥α = 2 compared to hard rods. Packing fraction is 0.5 and we summed over

1000 Fourier modes.
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We work in a continuum picture whereby the number of binding sites per unit

length is dense and we can replace lattice index i with a smooth position x. In doing

so, we must take care to maintain the hard-core repulsion property of cross-linkers,

that is, at every site there can be only one particle (ni = 0, 1). Since the particles

are non-interacting, it is sufficient to first examine our theory for a single site, then

later add in position.

We shall build a field theory by using the second-quantized Doi-Peliti operator

method [27, 122]. We postulate a Fock-space with vacuum |∅〉 and integer val-

ued occupation numbers. The so-called hard-core bosonic theory can be explicitly

constructed in the species space [118, 119]. We denote the vacuum state of no cross-

linkers by |∅〉, and the state of a single species of type s as |s〉. We define then the

creation and annihilation operators

as = |∅〉 〈s| , ās = |s〉 〈∅| . (C.35)

Using this, it’s not hard to confirm that ās |∅〉 |s〉 and as |s′〉 = δss′ |∅〉. Further-

more, we have the hard core exclusion identities

asas′ = āsās′ = 0, (C.36)

which tells us that only one species occupy a site at a given time. Finally, our

operators obey the anti-commutation relation

{as, ās} = 1−
∑

s′ 6=s

as′ ās′ . (C.37)

The second-quantized operators are only useful provided we have a state ket to
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act on. We introduce the second-quantized state ket

|Ψ〉 = P∅ |∅〉+
∑

s

Ps(t) |s〉 , (C.38)

where each of the Pi(t) functions represent the probability for the system to be in

state |i〉. In general, we would like to compute expectation values in this formalism.

The expectation of some operator A given in the Fock-space basis, is given by 〈A〉 =

A∅P∅ +
∑

s PsAs. We define the projection bra 〈·| = 〈∅| +∑s 〈s| which sums over

each possible state. Applying the projection operator, we can succinctly write the

expectation value 〈A〉 = 〈·|A|Ψ(t)〉. Conservation of probability leads to the identity

〈·|Ψ(t)〉 =
∑

s Ps = 1.

In order to build a dynamical theory, we must provide microscopic input. Our

starting point is the master equation

∂Pβ
∂t

=
∑

α

(w(α→ β)Pα − w(β → α)Pβ) . (C.39)

To describe cross-linker binding/unbinding, we must now re-introduce the spatial

coordinate. Assuming for a moment that the operators were defined on a lattice, we

identify the annihilation operator at site j by the operator aj = 1⊗ . . .⊗ aj ⊗ . . . 1.

Clearly, all of the operators commute at different positions, hence the bosonic part

of the hard-core boson nomenclature.

We restrict our attention to to the probability that after one time step, a single

location is occupied by a cross-linker of type α. Locally, there are two ways to do

so. We can begin from the vacuum state and bind an α particle, or we can start

with an α particle already bound and stay that way. To describe the full transition

probability though, we must also sum over configurations where binding/unbinding

transitions occur at all other locations along the bundle (synchronous updating).
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In order to circumvent this difficulty, we adopt an asynchronous model, whereby

at each time time step only one cross-linker may bind/unbind at a time. This is

a similar procedure to the linear Glauber model for spin flips in a kinetic Ising

model [42]. With this restriction, we lose information on rare events whereby a

large number of linkers simultaneously bind/unbind. However, for smooth bundle

fluctuations we expect such sharp transitions to be negligible.

Lastly, we consider the form of the rates wα→β. To account for different linker

species, we must adjust the interaction Hamiltonian of Eq. 4.2 by replacing θ(x, t)→
θ(x, t)− s. Accordingly, we must also slightly adjust the detailed balance condition

of Eq. 4.4 by the same θ(x, t) transformation. For notational simplicity, we identify

the fugacity z = eβµ. Furthermore, since only one binding constant is required, we

redefine Kon = k and Koff(x, t; s) = kz−1e
1
2
βk×a2(θ(x,t)−s)2

.

We only allow binding to occur to the lowest possible configuration at any given

time. That is, a cross-linker will never choose to bind in a sheared state. This is

imposed by defining kbind(x, s; t) = kδ(θ(x, t) − s). The off and on rates define a

birth/death process. Particularly, this a multi-species form of the simple telegraph

model. The death rate at a particular site is proportional to the number of particles

n, while the birth rate is proportional to the number of empty sites 1− n. We now

find the master equation

∂P{ni}(t)

∂t
=
∑

i

−kon(1− ni)Pn+
i
− koffniPni+

+kon(1− n−i )Pn−i + koff(n+
i )Pn+

i
.

(C.40)

We have used the notation n±i = ni ± 1, the species and spatial dependence of

the kinetic coefficients is suppressed for clarity, and on the right hand side it is
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understood that all other sites are held fixed with the subscripted site changed. The

master equation in ket space takes the form of a linear Schrodinger like equation

∂ |Ψ(t)〉
∂t

= −Ĥ |Ψ(t)〉 (C.41)

governed by the pseudo-Hamiltonian Ĥ. We make use of the definition of the number

operator n̂s(x) = ās(x)as(x), to express H in second-quantized form

Ĥs(ā, a) = βs − βsās − µsas − (βs − µs)āsas. (C.42)

With the x, t dependence of βs and µs not explicitly shown. Particularly, they are

βs(x, t) = kδ(θ(x, t)− s), µs(x, t) = kz−1e
1
2
βk×a2(θ−s)2

. (C.43)

The Hamiltonian obeys 〈·| Ĥ = 0, and so probability is conserved. We may then

write all expectations in terms of the commutator 〈A〉 = 〈[H,A]〉. Particularly, we

are interested in computing the cross-link density function ns(x, t) = 〈āsas〉, which

due to occupancy limit is equivalent to the density probability distribution. Using

Eqs. C.35-C.37, we compute 〈[Ĥ, āsas]〉 to find the kinetic equations

∂ns
∂t

= −kz−1e
1
2
g(θ−s)2

ns + kδθs 〈∅|Ψ(t)〉 . (C.44)

d

dt
〈∅|Ψ(t)〉 = −kδsθ 〈∅|Ψ(t)〉+

∫
ds′µs′ns′ (C.45)

Utilizing probabilty conservation 〈∅|Ψ(t)〉 +
∫
dsns = 1, we may eliminate the un-

bound probability to write

∂ns
∂t

= −kδθs
∫
ds′ns′ − kz−1e

1
2
g(θ−s)2

ns + kδθs, (C.46)

which reproduces Eq. 4.31.
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APPENDIX D

Appendices for geometrical diffusion of

undulatory waves on a warped membrane

D.1 Self-energy calculation

The reader primarily interested in the results, is encouraged to skip directly to

Tab. D.2.

We compute the disorder averaged Green’s function 〈G+〉 and thereby, via Eq. ??,

the self-energy. The field theory is defined by the action in Eq. 6.12, and the pertur-

bation theory by the subsequent decomposition of S into a Gaussian piece S0, and

an interacting piece Sint. The dimensionless parameter regulating the perturbation

series is determined post factum after computing the first order correction. The

elementary propagators and vertices are shown diagrammatically in Fig. D.1. All

calculations are performed using the large L limit, whereby we replace summations

L−2
∑

p(. . .) with integrations
∫

d2p
(2π)2 (. . .). The projection operators appearing in

the disorder vertex can alternatively be written as the cross product of two two-

dimensional vectors projected in to three dimensions as

piP
T
ij (q)pj =

|p× q|2
q2

, (D.1)

which will prove useful. Since p and q are not actually vectors, we omit the bold
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dc
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iqi)�q,�q0�↵�

⇥q1
i q

2
jq

3
kq

4
l P

T
ij (q)PT

kl(q)

=
1

L2

�q,�q0�!,�!0�↵�
q4 � �!2

q
↵ �
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l
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�
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�q,�q0�↵�
q2dH

Figure D.1: Straight (wavy) lines represent propagators for the undulation (disorder)

fields. The effective disorder vertex corresponding to Eq. 6.14, is on the third line.

The vertex carries factors of wavenumber that can be accounted for by the following

rule: each line (both wavy and solid) carries one factor wavenumber for each inter-

section that it terminates at. Only diagrams that remain connected when disorder

lines are cut contribute to disorder averages.
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A B C 

D E F 

Figure D.2: A: The first order correction to the self-energy and Green’s function.

The absence of an internal propagator makes this contribution purely real. B: Sec-

ond order correction of higher order O(1/d2
c). C: Second order term in SCSA and

first order term for the imaginary component of self energy. D: An example of for-

bidden diagrams, in which a horizontal cut across disorder lines leaves the graph

disconnected. Double solid lines indicate fully dressed Green’s function. E: Third

order term in SCSA, but left out by the NCA. F: An example of a crossed diagram,

whose phase space is restricted, leading to a result of higher order in 1/(pF `). These

diagrams are small in both the SCSA and NCA approximations.

face, with the understanding that cross products are evaluated according to Eq. D.1

The rule for contracting lines is slightly different than for typical field theories

due to the nature of the disorder average. In any diagram, one must first contract

all solid lines in order to build the propagators Ĝ+, Ĝ−, then afterwards contract

the remaining wavy lines to perform the disorder average. This is accounted for by

implementing the additional rule that only diagrams that remain fully connected

when all disorder lines are cut may contribute to any given calculation. An example

of a particular class of forbidden diagrams is shown in Fig. D.2D.

As usual, the self energy is given by the set of one-particle irreducible diagrams,
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i.e. diagrams that remain connected after an solid line is removed. Per the disorder

rules, dashed lines and solid lines count toward connectivity, but wavy lines do not.

D.1.1 perturbation series

The lowest order term for the self-energy, shown in Fig. D.2A, is equal to the equation

Σ(1)
p =

−γY L2

dc

∫
d2q

(2π)2

|p× q|4
q4(q − p)2dH

. (D.2)

Since there is no imaginary part or ω dependence, there is no distinction between

advanced/retarded and we thus omit the ± index. Counting powers of q we see

that the integrand ∼ q2−2dH , which indicates a divergence at high (low) wavenumber

for dH less (greater) than one. We regulate the high wavenumber divergence by

imposing an upper cutoff Λ beyond which the continuum model breaks down. If the

membrane possess an underlying lattice structure, Λ is on the order of the inverse

lattice spacing (or grid spacing in numerical calculations). Integrating the angular

components we find

Σ(1)
p =

−γY L2p6−2dH

4π2dc

∫ Λ/p

0

qIdH (q)dq, (D.3)

where we have defined the commonly occurring function

IdH (p) =

∫ 2π

0

sin4 θ dθ

(p2 + 1− 2p cos θ)dH
. (D.4)

IdH is easily solved by substitution z = eiθ, followed by a contour integration around

the unit circle. The results for dH = 0, 1, 2 are summarized in Tab. D.1.

Substituting and performing the radial integration we find

Σ(1)
p =

−3γY L2p4

16πdc
×





Λ2/2 dH = 0

p2

6Λ2 + ln
(

Λ
p

)
+ 1

4
dH = 1

1
p2 − 1

2Λ2 dH = 2

. (D.5)
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Table D.1: Values of IdH (q) for dH = 0, 1, 2.

dH = 0 dH = 1 dH = 2

IdH (q) 3π
4

3π
4 max(q,1)2

(
1− min(q,1)2

3 max(q,1)2

)
3π

4 max(q,1)2

The Λ divergence is due to the lack of a well-defined curvature tensor for surfaces

dH < 2, which can be inferred from the large p limit of 〈|∇2h|〉 ∼ p2−dH . This

suggests that the weak scattering approximation is only realizable (and physically

meaningful) for dH ≥ 1.

We infer that the perturbation series is regulated by the dH-dependent parame-

ter [77]
Y h2

eff

κ
< 1, (D.6)

where heff denotes an effective averaged height field

h2
eff(q) ∼





q2−2dH dH ≥ 2

ln Λ/q dH = 1

Λ2−2dH dH < 1

. (D.7)

The strong dependence on dH has dramatic consequences for the effective elastic

constants of warped membranes, leading to a system size dependent rigidity κ ∼ L for

dH = 2, compared to only a weak logarithmic κ ∼ lnL and system size independent

scaling for dH = 1 and dH = 0 respectively [77].

Keeping only the lowest order contribution to the self energy is plagued by two

issues. The first is the dependence on the of short distance cutoff Λ, which causes

the perturbation series to diverge. The second, and more important, is the lack of an

imaginary component, which is necessary to describe scattering. The lowest order

contribution to ImΣ occurs at two loop order (see Figs. D.2B and D.2C).
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+=

Figure D.3: The full disorder averaged propagator is represented by a double solid

line, and the full vertex by a shaded bubble with two wavy lines and two solid lines

attached. Top: The SCSA for the fully dressed Green’s function. Bottom: The

SCSA for the renormalized vertex function

Both of these problems are treated by performing a partial resummation of the

perturbation series known as the self-consistent screening approximation (SCSA) [88,

77, 78]. We now turn to a calculation of the SCSA self energy

D.1.2 self-consistent screening approximation

The SCSA has proven successful in describing the thermal fluctuations of warped

membranes [88, 77, 78]. It is exact in the limit dc →∞, and corresponds to the re-

summation of all diagrams at O(d−1
c ). In the example diagrams shown in Fig. D.2,

C and E are O(d−1
c ) and contribute to the SCSA, while B and F are O(d−2

c ) and

O(d−4
c ) respectively, and do not. The latter two admit crossed disorder lines. The

SCSA can be viewed as a generalization of the non-crossing approximation used in

electron transport calculations [130].

The resummation of all O(d−1
c ) diagrams is done diagrammatically in Fig. D.3.

This is equivalent to the set of self-consistent equations
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G±p = L−2(κp4 − σω2 ∓ iε)−1−
2d−1

c L−2

κp4− σω2 ∓ iε
∑

q

pipjR
SCSA
ij,kl (q)pkpl

(q − p)2dH (κp4 − σω2 − L−2Σ±p )
,

(D.8a)

RSCSA
ij,kl (q) = Rij,kl(q)−

∑

p

2L2Rij,mn(q)pmpnprpsR
SCSA
rs,kl (q)

(p− q)2dH (κp4 − σω2 − Σ±p )
, (D.8b)

describing the dressed propagator and vertex.

We simplify these equations as follows. We first rewrite Eq. D.8a in terms of the

self energy by multiplying both sides by L2(κp4 − σω2 ∓ iε)(G±p )−1 and using the

definition in Eq. ??. Rearranging leads to

Σ±p =
−2

dcL2

∑

p

pipjR
SCSA
ij,kl (q)pkpl

(p− q)2dH
. (D.9)

The tensor indices appearing in RSCSA
ij,kl are removed by assuming a solution of the

form

RSCSA
ij,kl (q) = YR(q)P T

ij (q)P
T
kl(q), (D.10)

which amounts to a renormalization of the Young’s modulus Y . Insertion into

Eq. D.8b immediately yields the solution

YR(q) =
Y

1 + Πq

, (D.11)

where we have defined the function

Πq =
γY

L2

∑

q′

[
q′iP

T
ij (q)q

′
j

]2

(q − q′)2dH (κq′4 − σω2 − Σq′L−2)
. (D.12)

Inputting Eq. D.10 into Eq. D.9 we complete our setup of the SCSA. This has been

reduced to solving the set of self consistent equations

Σp =
−γY
dc

∑

q

|p× q|4
q4(q − p)2dH (1 + Πq)

, (D.13a)
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Πq =
γY

L2

∑

q′

|q × q′|4
q4(q − q′)2dH (κq′4 − σω2 − L−2Σq′)

, (D.13b)

where we have made use of Eq. D.1. These equations must be solved for each of the

cases dH = 0, 1, 2.

For the remainder of the section, ω, p refer to their dimensionless versions defined

in Sec. 6.6, Eq. 6.78. We further work with the dimensionless self-energy Σp defined in

Eq. 6.79 and the dimensionless disorder amplitude α defined in Eq. 6.80. The upper

cutoff has units of inverse length and is also nondimensionlized. The dimensionless

SCSA equations are now

Πp = 16πα

∫
d2q

(2π)2

|p× q|4
p4(p− q)2dH (q4 − ω2 − Σq)

(D.14a)

Σp =
−16πα

dc

∫
d2q

(2π)2

|p× q|4
q4(p− q)2dH (1 + Πq)

. (D.14b)

We can further perform the angular integrations, to arrive at

Πp =
4α

π

∫ Λ/p

0

q5−2dHIdH (q) dq

q4 − ω2 − Σq

(D.15a)

Σp =
−4αp4−2dH

πdc

∫ Λ/p

0

qIdH (q) dq

1 + Πq

. (D.15b)

This form is suited for numerical evaluation, and is used to provide a check on our

analytical solutions. The imaginary part of the self energy

ImΣp =
−4αp4−2dH

πdc

∫ Λ/p

0

qIdH (q)ImΠq

|1 + Πq|2
dq, (D.16)

is Π-dependent. In the weak scattering limit, we expect YR(pF ) is not significantly

renormalized, which implies that Π(pF ) is small. We thus approximate Im(1+Π)−1 ≈
ImΠ. This approximation ignores vertex renormalization and is equivalent to the
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self-consistent diagrammatic equation

ImΣp ≈ Im . (D.17)

In the weak scattering approximation, ImΠ(q) can be simplified using Eq. 6.43 to

eliminate the radial q′ integration. We focus on the particular solution when p = pF

which is relevant for the scattering time and mean free path. We obtain

ImΣpF =
−4α2p8−4dH

F

πdc(1− δ1)

∫ Λ/pF

0

qI2
dH

(q)dq. (D.18)

Explicitly for dH = 0, 1, 2:

ImΣpF =
πα2

dc(1− δ1)
×





9Λ2p6
F/8 dH = 0

19p4
F/12 dH = 1

3/2 dH = 2

(D.19)

The fermi wavenumber pF and δ1 both depend on the real part of the self-energy,

and hence must be checked to be consistent with the SCSA.

In the following sections we solve the SCSA equations to determine the self energy.

The main results are collected in Tab. D.2.
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Table D.2: We tabulate the main results of the SCSA. The imaginary part of the self energy is given in the

weak scattering limit.

dH pF ReΣp ImΣpF

0 ω1/2(3αΛ2/2)−1/6 −(3αω/2)1/2Λp3 9πα2Λ2p6
F /8

1+ 1
2

(3/2)3/2Λα1/2ω1/2/p2
F

1 21/4√ω(
1+
√

1+12α(ln(Λ/
√
ω)+1/4)

)1/4
q4

2

(
1−

√
1 + 12α(ln(Λ/q) + 1/4)

)
19πα2p4

F /6

1+
3α/2+12α ln(Λ/pF )+1√

3α+12α ln(Λ/pF )+1

2
√
ω1,

√
ω

4
√

3
2

ln(αω )+ 7
4

2 −3αp2

2

(
1− α

p2 ln(1 + p2

α
) + p2

α
ln(1 + α

p2 )
)

3πα2/2

1+ 3
2

ln(1+α/p2
F )
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D.1.2.1 iterative solution

In principle, the SCSA Eqs. D.15b, D.15a can be solved via iteration. This is done

by first guessing zeroth order solutions (we say order, though there is no formal order

parameter governing the iteration) Σ
(0)

p ,Π(0), then performing the integrations on the

right hand side to obtain new solutions Σ
(1)

p ,Π
(1)
p . These, in turn, are put into the

right hand side and integrated over yielding another set of solutions Σ
(2)

p ,Π
(2)
p . The

process is repeated ad infinitum until a stationary solution is reached, i.e. the nth

order solution is equal to the (n−1)th to within some desired tolerance. We make use

of this method to develop an approximate solution after only a couple of iterations.

Our first task is to determine a reasonable zeroth order solution. The simplest

function we can construct is a power law Σ
(0)

q ,Π
(0)
q ∼ qηs,ηp . The solution is ω-

independent, and the exponents ηs, ηp can be determined by power counting. If

0 ≤ ηs ≤ 4, then Eq. D.14a implies Π
(0)
q ∼ q2−2dH , i.e. ηp = 2− 2dH .

For dH ≥ 1, Π
(0)
q is a decreasing function which does not contribute to power

counting on the right side of Eq. D.14b at large q. Since the integral is peaked

around the value q ≈ p, the small q divergence of Π
(0)
q will not significantly alter

the integration so long as p is not much less than one. The scaling of Σ is then

Σ
(0)

q ∼ q6−2dH , which is indeed self-consistent.

For dH < 1, the integration on the right side of Eq. D.14a diverges unless ηs > 4.

However, since the integration on the right side of Eq. D.14b cannot push ηs greater

than four, it must be the case that Π
(0)
q depends on the upper cutoff as Π

(0)
q ∼ Λ2−2dH .

Likewise, the integration on the right side of Eq. D.14b also depends on the upper

cutoff ∼ Λ2−2dH . We then find the set of self-consistent solutions Σ
(0)

q ∼ q4Λ2−2dH

and Π
(0)
q ∼ Λ2−2dH .
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Table D.3: The zeroth order trial solutions in the iterative method of solving the

SCSA equations (Eq. D.14). Imaginary parts appear at first order in the iterative

solution.

dH Σ
(0)

q Π
(0)
q

0 ∼ q4Λ2 ∼ Λ2

1 ∼ q4 ∼ ln Λ/q

2 ∼ q2 ∼ q−2

The zeroth order solutions for each case of dH are summarized in Tab. D.3. Next

we insert these into Eq. D.14 and perform the integrations to obtain the first order

solutions Σ
(1)

q ,Π
(1)
q , at which point we terminate the iteration. This step is performed

individually for each of the three cases dH = 0, 1, 2. Finally, the first order solutions

are inserted into Eq. D.15 numerically evaluated to assess how closely they satisfy

the SCSA.

D.1.2.2 dh = 2

Per Tab. D.3, we use Π
(0)
q ∼ q−2 and Σ

(0)

q ∼ q2. Since Σ
(0)
q does not scale with a

power higher than q4, we expect the evaluation of the integrand in Eq. D.14a to

depend only weakly on Σ
(0)

q ,and thus solve for Π
(1)
q by setting Σ

(0)

q = 0. The second

term in the denominator of Eq. D.14a is a completed square, which we factorize into

Π(1)
q =

16πα

p4

∫
d2q

4π2

papbpcpdεaiεbjεcmεdnqiqjqmqn
(q − p)4(q2 − ω ∓ iε)(q2 + ω ± iε)) . (D.20)

Here, εij represents the two-dimensional antisymmetric Levi-Civita symbol, and iε

an infinitesimal imaginary parameter taken to zero at the end of the calculation that

keeps track of the retarded/advanced distinction. The remaining integral can now
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be performed via the method of Feynman parameters [137]. We obtain

Π(1)
q =

3αω

4q4

(
iπ +

2q2

ω
+

(
q4

ω2
− 1

)
ln

(
q2 + ω

q2 − ω

))
(D.21)

The zeroth order divergence at small q is now cured at first order, with ReΠ
(1)
q→0 ∼

q2/ω2. For large q, the leading term is ReΠ
(1)
q→∞ = 3/q2. This has the same behavior

as the zeroth order ansatz, and we shall use this to fix the proportionality constant,

i.e. Π
(0)
q = 3/q2.

The integral in Eq. D.14b is performed using the same techniques as before, with

the result

ReΣ
(1)

q =
−3αq2

2dc

[
1− α

q2
ln

(
1 +

q2

α

)
+
q2

α
ln

(
1 +

α

q2

)]
(D.22)

From this, we may solve for renormalized group velocity and Fermi wavenumber

(see Eqs. 6.38 and 6.42 respectively). Trivially, δ2 = 0 and

δ1 =
−3

2dc
ln

(
1 +

α

q2

)
. (D.23)

The Fermi wavenumber, pF , is given by the solution to the nonlinear equation

p4
F − ω2 = ReΣpF . We can find a solution in two limits. For α � ω, ReΣ = −3αp2

yielding a quadratic equation for p2
F . In this limit, we use

pF (α� ω) =

√
1

2

(√
9α2 + 4ω2 − 3α

)
. (D.24)

In the opposite limit, we find that ReΣp → −3
4

(q4 + 2q4 ln (α/q2)). This yields an

approximate solution

pF (α� ω) =

√
ω

4

√
7
4

+ 3
2

ln
(
α
ω

) . (D.25)
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D.1.2.3 dH = 1

Per Tab. D.3, we use zero order solutions

Π(0)
q = (cπ − 1), Σ

(0)

q = (1− c4
s)q

4, (D.26)

for some constants cπ, cs to be determined. Both integrals of the SCSA are logarith-

mically divergent and depend on the upper cutoff Λ. Assuming Λ � 1, we discard

terms O(Λ−1). Σ
(1)

q is evaluated easily from Eq. D.15b, giving

Σ
(1)

q =
−3αq4

cπdc
(ln(Λ/q) + 1/4) . (D.27)

Π
(1)
q is calculated from Eq. D.14a using the method of Feynman parameters as

was done for the dh = 2 case. We find

Π(1)
q =

3α

c4
s

∫ 1

0

(1− x1)

(
ln

(
c2
sΛ

2

∆2ω

)
− 3

2

)
dx1dx2, (D.28)

where we have defined

∆2 = (1− x1)

(
c2
sq

2

ω
x1 + (2x2 − 1)

)
. (D.29)

The remaining integrations over Feynman parameters x1 and x2, may be carried out

to give

ΠdH=1
1 (y) =

α

4c4
sy

4

[
−ln(y4−1)−6y2 tanh−1

(
y2
)
+y4

(
3 ln

(
c4
sΛ

4/ω2

y4 − 1

)
+ 5

)
(D.30)

− 2y6 coth−1
(
y2
)

+ iπ(1− 6y2)

]
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with y = csq/ω
1/2. We only use this expression insofar as to perform numerical

checks on our calculation, since we are principally interested in the calculation of Σp.

We can construct an approximation of this function as follows.

First, we note that the integrand of Eq. D.28 is most strongly peaked at q = 0

and at q = Λ. In the former limit, the integrand is determined primarily by the

larger of q2, ω. This suggests that we may approximate Π1(q) as a piecewise function

transitioning from the low q to high q behavior near q ∼ ω1/2. Specifically, Taylor

expanding Eq. D.28 at low/high q then solving for the value q∗ at which the difference

between the two solutions is minimized, we find a transition point q∗ = 61/4ω1/2. This

yields the approximate solution

ReΠ(1)
q ≈

3α

c4
s





ln
(
csΛ/ω

1/2
)
− c4sq

4

24ω2 q < 61/4ω1/2/cs

ln(Λ/q) + 1/4 q ≥ 61/4ω1/2/cs
(D.31)

The constants cπ, cs are determined by matching the first order solution to the

zeroth order solution, which is most easily accomplished in limit q → Λ. Critically,

our power law analysis of the zeroth order solution omitted non-analytic functions.

Eq. D.31 suggests cπ, cs are not strictly constant, but can admit logarithmic depen-

dence on q. Matching the q → Λ limit of Eqs. D.31 and D.27 to Eq. D.26 yields the

set of equations

cπ − 1 =
3α

dcc4
s

(ln(Λ/q) + 1/4) , (D.32a)

1− c4
s =
−3α

dccp
(ln(Λ/q) + 1/4) . (D.32b)

These have the solution

c4
s =

1

2

(
1±

√
1 + 12αd−1

c (ln(Λ/q) + 1/4)
)
. (D.33)
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The condition c4
s = 1 at α = 0 requires that we choose the (+) solution. Finally, we

can quickly find Σ
(1)

q by using the matching condition Σ
(1)

q = (1− c4
s)q

4 to find

ReΣ
(1)

q =
q4

2

(
1−

√
1 +

12α

dc
(ln(Λ/q) + 1/4)

)
. (D.34)

We solve for the Fermi wavenumber by evaluating ReΣp at p = ω1/2. This

approximation is increasingly accurate as either α→ 0 and/or Λ→∞. We obtain

pF = 21/4ω1/2

(
1 +

√
1 +

12α

dc
(ln(Λ/ω1/2) + 1/4)

)−1/4

. (D.35)

The group velocity constant δ2 = 0, and

δ1 =
1

2
− 3α/2 + 12α ln

(
Λ

ω1/2

)
+ 1

2
√

3α + 12α ln
(

Λ
ω1/2

)
+ 1

. (D.36)

In the numerical calculations of Fig. D.4, the obtained value for cs is input back into

Eq. D.30 to determine Π
(1)
q .

D.1.2.4 dH = 0

We start with Eqs. D.15a and D.15b. The zero order solutions are

Π(0)
q = cπ, Σ

(0)

q = csq
4, (D.37)

as for dH = 1. The integrations are quadratically divergent, and dominated by the

upper wavenumber cutoff. To lowest order in Λ−1 we find the SCSA equations

cπ =
3αΛ2

2

1

1− cs
, (D.38a)

cs =
−3αΛ2

2

1

dc(1 + cp)
. (D.38b)
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These have the solution

c±s =
1

2dc

(
1− 3Λ2αω

2q2
(1− dc)±

√(
1− 3Λ2αω

2q2
(1− dc)

)2

+
6Λ2αω

q2
dc


 .

(D.39)

In order to choose the correct branch, we consider the limit α→ 0. This corresponds

to zero disorder, i.e. γ → 0. In this limit, the self energy should vanish and so

cs → 0. This uniquely singles out the (-) solution c−s .

Now we consider the limit Λ � 1. For physical membranes we also set dc = 1,

which we do first, noting that the limits dc → 1 and Λ → ∞ do not commute. To

leading order in Λ we find

cs =




−Λ
q

√
3αω

2
: dc = 1

1
2dc

: dc 6= 1
(D.40)

cs is a renormalization of the bending rigidity κ → κ(1 + cs). Since by definition

Λ > q for all q, cs dominates the effective bending rigidity for all but very small

disorder and very low frequency. Assuming that q � Λ (which is consistent with

linearized shallow shell theory), the renormalized dimensionless propagator is

(G±q )−1 ∼ 1√
3αω/2Λq3 − ω2 − iImΣ±q

. (D.41)

We easily determine the Fermi wavenumber

pF = ω1/2

(
2

3αΛ2

)1/6

. (D.42)

The assumption pF � Λ is self consistent, as pF is dampened by a factor of Λ1/3.

The group velocity can be found directly,

vG = (12α)1/3Λ2/3q. (D.43)
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The function

δ1 =
−3

4

(
3αω

2

)1/2
Λ

q
, (D.44)

in combination with Eq. D.19, gives the intermediate expression for the imaginary

part of the self-energy

ImΣpF =
9πα2Λ2p6

F/8

1 + 3
4

Λ
pF

√
3αω

2

(D.45)

Inputting Eq. D.42 for pF then taking the large Λ limit we obtain

ImΣpF = (2/3)2/3 πω3α1/3Λ−4/3. (D.46)

D.1.2.5 numerical checks

In Fig. D.4 we numerically test the accuracy of the first order SCSA solutions. This

is done by inputting Σ
(1)

q ,Π
(1)
q into Eq. D.15 for the real part of the self-energy, and

using Eq. D.19 for the imaginary part. The numerical integration is performed at

fixed p and compared to the analytic solution. With the exception of dH = 0, the

self-energy is a p-dependent function, so the comparison is done over a range of

wavenumbers. For dH = 0, we find a single value for cs, cπ, in good agreement with

the analytical result. For dH = 1, 2 we find good agreement in the weak scattering

approximation for α = 10−3, with increasing precision for wavenumbers q >
√
ω on

the order of a percent difference.

D.2 δc calculation

We begin with the definition of the coherent diffusion coefficient Dc in Eq. 6.63. The

parameter δc is

δc = iτM0. (D.47)
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Figure D.4: Data points represent the numerical integration result for ReΣq and Πq,

using the numerical integrations defined in Eqs. D.15a D.15b. Curves represent the

analytic result. We consider the cases dH = 1, 2, where the solutions for Σq,Πq are

nontrivial functions. Beyond weak scattering we find our analytic approximations to

be inaccurate, however, the shape of the curves is still accurate, which we need for

deriving the diffusion coefficient.
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Figure D.5: The bare irreducible vertex. This is the simplest four-point vertex that

can be constructed that remains fully connected after cutting all wavy lines.

The scattering time τ was found earlier in Appendix D.1 (and tabulated in Tab. 6.1),

so we need only evaluate M0, which was defined in Eq. 6.53.

Dc is found by replacing the irreducible vertex U with the bare vertex U0, defined

in Fig. D.5. U0 is evaluated at q = 0 and affords the simpler representation

U0
pp′ =

γ2Y 2

2dc

∑

k

|p× k|4|k × p′|4
(k − p)2dH (k − p)2dHk8

, (D.48)

where the cross product is as defined in Eq. D.1. We insert this into the definition

of M0 then evaluate the corresponding integrals. In the weak scattering approxima-

tion, the radial integrations are performed using Eq. 6.43, leaving only the angular

integrations:

M0 =
iπν

σ2ω2

∫ 2π

0

dp̂dp̂′(q̂ · p̂)Up̂p̂′(q̂ · p̂′), (D.49)

and dp̂ is understood to mean the angular integration on p̂. There are four unit

vectors to consider, and a total of 4! angles to consider. We define angles according

to Fig. D.6.

The angles β, β′ can be eliminated in favor of φ, θ, θ′, allowing us to use q̂ · p̂ =

cos(φ − θ) and q̂ · p̂′ = cos(φ − θ′). Simplifying Eq. D.49 according to Fig. D.6, we

269



q̂

k̂

p̂

p̂0

�

✓

✓0

�
�0

Figure D.6: Angles between unit vectors at fixed orientation in the calculation of

M0. Only q̂ is not integrated over. We first fix k̂, then perform the integrations over

dp̂ = dθ and dp̂′ = dθ′. This yields a function JdH (k;φ) that is then integrated over

φ.

find

M0 =
πνL2p2−4dH

F

2σ2ω2idc

∫ Λ/pF

0

kdk

4π2

∫ 2π

0

dφJ2
dH

(k;φ), (D.50)

where we have defined

JdH (k;φ) =

∫
dθ

cos(θ − φ) sin4 θ

(k2 + 1− 2k cos θ)2dH
. (D.51)

JdH (k;φ) is computed via substitution z = eiθ followed by contour integration. Per-

forming the remaining integrations yields M0, which is then trivially related to δc.

The results for both JdH (k;φ) and δc are shown in Tab. D.4 for dH = 0, 1, 2.

In terms of the dimensionless wavenumber, frequency, and disorder amplitude,

we find the final results

Dc = D0 ×





1 dH = 0(
1 +

11α2p4
F τ

24ω

)−1

dH = 1
(

1 + 3α2τ
8ω

)−1

dH = 2

(D.52)
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Table D.4: Angular integration function JdH (k;φ) and δc for each of dH = 0, 1, 2.

We use dimensionless frequency, wavenumber, and disorder amplitude.

dH δc JdH (k;φ)

0 0 0

1
11α2p4

F τ

24ω

πmin(k,1)(2 max(k,1)2−min(k,1)2) cosφ

8 max(k,1)5

2 3α2τ
8ω

πmin(k,1) cosφ
2 max(k,1)5

D.3 Ward identity

In this section the vector nature of positions and wavenumbers are understood, and

we omit bold-face lettering. Additionally, we deviate from the notation of the main

text, and use Ĝ± to refer to the unaveraged Green’s function. The WI is most easily

derived using a functional integral representation for the Green’s function [102]. We

define the moment generating function

Z[j+, j−] =

∫
Df+Df−e−

∫
A[f+,f−]−j+f+−j−f−d2x, (D.53)

where we have defined the total action as the sum of retarded/advanced actions

A[f+(x), f−(x)] = A+[f+(x)] + A−[f−(x)] (D.54)

that, in turn, are decomposed into the sum of a Gaussian action

A±0 =
κ

2
(∇2f±)2 +

σω2
+

2
(f±)2, (D.55)

and a disorder interaction

A±int =
Y

dc
(L̂f±)∇−4(L̂f±). (D.56)
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A±0 and A±int are the real space representations of the DMV action in Eq. 6.13 and

Eq. 6.14. The operator L̂ was defined in Eq. 6.20; for our purposes, it is most

important to note that it is hermitian, i.e. for any two functions g and h, we have

the identity ∫
gL̂h d2x =

∫
hL̂g d2x. (D.57)

For a fixed realization of disorder, we may obtain the unaveraged Green’s function

in the usual way, via functional derivatives:

G+(x, x′) =
δ2

δj+(x)δj+(x′)
lnZ[j+, j−]

∣∣∣∣
j±=0

. (D.58)

In this section, we will use different notation than the main text, with respect to

averaging. The functional integral method first computes the Green’s function as

the two-point function of f+ with regards to the ensemble dictated by the action.

This is done at fixed disorder, and the resulting Green’s function must subsequently

be averaged over the disorder. We use angular brackets 〈. . .〉 to denote averaging over

the f+ ensemble, and an overline . . . to denote disorder averaging. In this notation,

the Green’s function is written as

G+(x, x′) = 〈f+(x)f+(x′)〉. (D.59)

The four-point function can similarly be written

φ(x, x′; y, y′) = 〈f+(x)f+(x′)〉〈f−(y)f−(y′)〉. (D.60)

At zero external frequency Ω, the total action A possesses an O(2) symmetry

between retarded/advanced fields, and is invariant under the transformation

 f+

f−


→


 cos θ sin θ

− sin θ cos θ




 f+

f−


 . (D.61)
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For nonzero Ω, we perform the change of variables

f+ → f+ + εf− (D.62a)

f− → f− − εf+, (D.62b)

for ε an infinitesimal parameter. Since ε is small, we Taylor expand the exponential

and use invariance of the functional integral change of variables to find the equation

〈−2σωΩf+f− + j+f− − j−f+〉 = 0. (D.63)

In obtaining this equation, since the realization of disorder is identical for both f+

and f− fields, the variation δSint vanishes. Taking two function derivatives δ2

δj+δj−
,

setting j+ = j− = 0, then performing the disorder average we find

2ωΩφ(x, x′; y, y′) =
[
G+(x, x′)−G−(y, y′)

]
δ(x− y)δ(x′ − y′) (D.64)

Using the position space definition of the Green’s function

G±(x, x′) = κ∇4 − σω2
± − Σ̂±, (D.65)

we can formally divide by Ĝ+Ĝ− and use the BS equation to find the solution

∆Σ̂± = Û∆̂G±. (D.66)

In the wavenumber basis, this takes the simpler form

∆Σp(q) =
∑

p′

Upp′(q)∆Gp′(q). (D.67)

The WI is identical to the well-known result for electrons in disordered media [154].

As a check, the WI can easily be seen to hold for the choice of irreducible vertex

U0
pp′(q) (Fig. D.5 and Eq. D.48) and self-energy (Eq. D.17) used in this chapter.
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D.4 Derivation of Diffuson and Cooperon

We begin with deriving the diffuson, which we denote as Γ̂. In the position basis,

the diffuson is a function of four points Γ(x1, x2, x3, x4), and in the Fourier basis a

function of three wavenumbers Γpp′(q) due to translational invariance. The diffuson

is an IR divergent four-point vertex, that diverges in the limit q,Ω → 0. This

divergence ensures that even after after disorder averaging, the diffuson is long-range

object, and hence represents a two-particle propagator associated with the diffusive

dynamics of the intensity field.

The Green’s functions G±(x,x′;ω) represent plane waves of frequency ω propa-

gating froward/backward (+,-) in time from position x′ → x, and can be interpreted

as particles (see section 6.5). The four-point function is the disorder averaged quan-

tity describing propagation of two paired particles in space. From this representa-

tion, we can define the diffuson as the contribution to this amplitude from all paths

whereby the paired particles undergo identical scattering paths. In Fourier space,

these correspond to the ladder type diagrams of Fig. D.7.

Summation over ladder diagrams is formally given as a Bethe-Salpeter equation

Γ̂ = Û + Û : Ĝ+ ⊗ Ĝ− : Γ̂. (D.68)

The colons indicate that Û and Γ̂ are contracted with the tensor product of Ĝ+⊗Ĝ−.

We keep the same notation as in the text that all Green’s functions represent their

disorder average. Γ̂ decomposes into the two-particle irreducible vertex U (which is

currently unspecified), plus the set of ladder diagrams connecting additional vertices

by a retarded and advanced propagator. In Fourier space, we find the less abstract
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Figure D.7: Dominant contributions to the four-point vertex in the diffusive

limit. Upper/lower lines carry retarded/advanced propagators, each with fre-

quency ω + (−)Ω/2. The frequency is a passive index and is not integrated over

since the disorder field is quenched. Top: diagrammatic representation of the

Bethe-Salpeter equation defining the diffuson contribution to the four point ver-

tex Γ̂. Bottom: diagrammatic derivation of the cooperon. The new wavenumbers

are p̃ = 1
2
(p− p′ + q), p̃′ = 1

2
(p′ − p+ q), and Q = p+ p′, in agreement with Fig. 6.2.
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form

Γpp′(q) = Upp′ +
∑

k

UpkG
+
k+q/2G

−
k−q/2Γkp′(q). (D.69)

Since we are interested in contributions to Γpp′(q) that diverge in the limit Ω, q → 0,

we have replaced the first Upp′(q) on the right with its q = 0 value Upp′ .

When all of the external legs of the reducible vertex Γ̂ are put on shell, we obtain

the four-point function of Eq. 6.25. Explicitly,

φpp′(q) = G+
p+q/2G

−
p−q/2Γpp′(q)G

+
p+q/2G

−
p′−q/2. (D.70)

This relation allows us to directly use our results from section 6.4 to solve for Γpp′(q).

Looking at the small q, Ω limit, we set q = 0 in the Green’s functions and use the

identity G+
p G
−
p = ∆Gp/2iImΣp. Comparing to the solution for φpp′(q) in Eq. 6.55,

we immediately find

Γ
(D)
pp′ (q) =

2

πνL2

ImΣpImΣp′

−iΩ +Dc(ω)q2
. (D.71)

The superscript (D) emphasizes this is not the full reducible vertex, but instead

its long time/length limit, the diffuson. The appearance of Dc in the denominator

is a consequence of the choice U = U0 for the irreducible vertex, where U0 is the

bare irreducible vertex defined in Fig. D.5. This choice generates the sum of all

non-crossing box diagrams.

The cooperon is derived by first crossing all bare vertices Û0, then individually

crossing the wavy lines within each Û0 as shown in the lower half of Fig. D.7. This

is equivalent to a summation over all maximally crossed box diagrams. By left-right

reflection of the lower lines (i.e. reversing all of the arrows), we can un-cross the

box diagrams, thereby obtaining an identical set of ladder diagrams as used for the

diffuson. The new wavenumbers are reversed and of opposite sign. We thus find the
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cooperon

Γ
(C)
pp′ (q) = Γ

(D)
1
2

(p−p′+q), 1
2

(p′−p+q)(p+ p′). (D.72)

Finally, we note that by including cooperon insertions into the ladder diagrams

defining the diffuson [154], we find corrections to the diffusion coefficient Dc that

recover the weak localization calculation of section 6.5.

D.5 Full analytic expressions

D.5.1 dH = 0

Dc = D0 =
2

π

(2/3)1/3

α4/3ωΛ2/3
(D.73)

` =
(96)1/6Λ1/3

πα5/6ω3/2
(D.74)

δD =
1

π

(
3

2

)4/3

α1/3Λ2/3 ln

(
L

`

)
(D.75)

ξ =

√√√√exp

(
4 (2/3)5/3

α5/3Λ4/3ω

)
− 1 (D.76)

ν =
(2/3)4/3

2πα1/3Λ2/3
(D.77)
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D.5.2 dH = 1

For convenience we define the quantity

H =

√
3α + 12α ln

(
Λ

pF

)
+ 1. (D.78)

pF =
21/4
√
ω

(√
12α ln

(
Λ√
ω

)
+ 3α + 1 + 1

)1/4
(D.79)

Dc =
48p2

F

(
3α + 24α ln

(
Λ
pF

)
+ 2H + 2

)

α2ω
(

33α
(

8 ln
(

Λ
pF

)
+ 1
)

+ 304πH + 22H + 22
) (D.80)

` =
3
(

3α + 24α ln
(

Λ
pF

)
+ 2H + 2

)

19πα2pFH
(D.81)

δD =
152p2

F

(
3α + 24α ln

(
Λ
pF

)
+ 2H + 2

)

ω
(

33α
(

8 ln
(

Λ
pF

)
+ 1
)

+ 304πH + 22H + 22
) ln

(
L

`

)
(D.82)

ν =
ωH

πp2
F

(
3α + 24α ln

(
Λ
pF

)
+ 2H + 2

) (D.83)

ξ =

√
e

12
19α2 − 1 (D.84)

D.5.3 dH = 2

pF (α� ω) =

√
1

2

(√
9α2 + 4ω2 − 3α

)
(D.85)
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pF (α� ω) =

√
2ω

(6 ln
(
α
ω

)
+ 7)1/4

(D.86)

Dc(α� ω) =
2
√

9α2 + 4ω2
(√

9α2 + 4ω2 − 3α
)3

3α2ω
(√

9α2 + 4ω2 + 4π
(√

9α2 + 4ω2 − 3α
)) , (D.87)

Dc(α� ω) =

32ω2

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 2

)(
6 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 5

)2

3α2
(
6 ln

(
α
ω

)
+ 7
)3/2

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 8π + 2

)

∼ ω2

α2
, (D.88)

`(α� ω) =

√
18α2 + 8ω2

√√
9α2 + 4ω2 − 3α

3πα2
∼ ω3/2

α2
(D.89)

`(α� ω) =

2
√

2ω3/2

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 2

)(
6 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 5

)

3πα2
(
6 ln

(
α
ω

)
+ 7
)3/4

∼ ω3/2

α2
(D.90)

δD(α� ω) =
16ω
√

9α2 + 4ω2

3α
(√

9α2 + 4ω2 + 3α
)

+ 4(1 + 4π)ω2
ln

(
L

`

)
(D.91)

δD(α� ω) =

16

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 2

)

√
6 ln

(
α
ω

)
+ 7

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 8π + 2

) ln

(
L

`

)
(D.92)
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ξ(α� ω) = `

√√√√exp

((√
9α2 + 4ω2 − 3α

)2

3α2

)
− 1 (D.93)

ξ(α� ω) = `

√√√√√√√√
exp




4ω2

(
6 ln

(
α
√

6 ln(αω )+7
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+ 5

)2

3α2
(
6 ln

(
α
ω
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)


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ν(α� ω) =
ω

2π
√

9α2 + 4ω2
(D.95)

ν(α� ω) =

√
6 ln

(
α
ω

)
+ 7

4π

(
3 ln

(
α
√

6 ln(αω )+7

2ω

)
+ 2

) (D.96)
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[142] Amit R Singh, Andrej Košmrlj, and Robijn Bruinsma. Finite temperature
phase behavior of viral capsids as oriented particle shells. Phys. Rev. Lett.,
124(15):158101, 2020.

[143] Michael D Spivak. A Comprehensive Introduction to Differential Geometry.
Publish or Perish, Houston, 3rd edition, 1999.

[144] L Starrs and P Bartlett. One-and two-point micro-rheology of viscoelastic
media. Journal of Physics: Condensed Matter, 15(1):S251, 2002.

[145] Cornelis Storm, Jennifer J Pastore, Fred C MacKintosh, Tom C Lubensky, and
Paul A Janmey. Nonlinear elasticity in biological gels. Nature, 435(7039):191,
2005.
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