UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Using Case-based Reasoning and Situated Activity to Write Geometry Proofs

Permalink
https://escholarship.org/uc/item/5cb7t3sd

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 15(0)

Author
McDougal, Thomas F.

Publication Date
1993

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/5cb7t3sc
https://escholarship.org
http://www.cdlib.org/

Using case-based reasoning and situated activity

to write geometry proofs?

Thomas F. McDougal
Department of Computer Science
University of Chicago
1100 E. 58th Street
Chicago, IL 60637
mcdougal@cs.uchicago.edu

Abstract

As models of human cognition, previous geometry
theorem-proving programs were inappropriately
influenced by the ease with which computers
manipulate syntactic formulae. The failure of
those programs to pay attention to human
perception doomed them as models of how
humans solve geometry proof problems. Just as
the study of theorem-proving once evolved into
the study of planning, it is time now for theorem-
proving to incorporate current ideas in the
planning community. A close examination of
what humans do when they try to solve
geometry proof problems, and of how geometry is
taught, reveals an emphasis on chunks of
problem-solving knowledge derived from
examples, retrieved on the basis of visual cues.
These ideas are characteristic of the case-based
reasoning and situated activity approaches in
planning. This paper concludes with a brief
description and trace of a computer program,
POLYA, which does reactive, memory-based
geometry theorem-proving.

Introduction

The computer makes a handy tool for exploring
ideas about how people think. It forces us to
define those ideas concretely, and provides us
with feedback as to whether those ideas are
adequate to describe human behavior. As we

IThis research is supported by the Office of Naval
Research under contract N00014-91-J-1185, by the
Defense Advanced Research Projects Agency monitored
by the Air Force Office of Scientific Research under
contract F30602-91-C-0028, and by the University of
Chicago School Mathematics Project Fund for Support
of Research in Math Education.

711

discover what a computer must know in order to
perform a particular task, we gain insights into
what people must know.

One danger of working with computers,
however, is that it tempts us to do things in ways
which are easy to program though not
cognitively plausible. The computer is a very
good symbol manipulator. It is easy, for
example, to program a computer to test inference
rules against a database of facts and goals.

The capabilities of the computer as a symbolic
inference engine led to early research in
automatic deduction and resolution theorem-
proving [Newell & Simon, 1956; Robinson, 1965].
Though the early programs were not necessarily
intended to model how people think, they
evolved into more ambitious models of human
problem-solving and planning [Newell & Simon,
1963, McCarthy, 1968, Fikes & Nilsson, 1971].

One characteristic common to the early
planning systems is that they had to think hard
to solve simple tasks. This was not a defect in
their construction; [Chapman, 1985] showed that
planning for conjunctive goals, as it was then
conceived, is fundamentally intractable.

Yet people do amazing things without
thinking very hard at all. They understand
stories, get themselves fed at restaurants, and
cross the street. If constructing plans is
intractable, then people must be doing something
else.

There are two apparently contradictory
theories about what that something else might
be. [Agre, 1987] showed that complex behavior
could arise from simple situation-action rules
driven by a changing world. People don't need to
plan because they can rely on the world to tell
them what to do [Chapman & Agre, 1986; Agre,


mailto:mcdougal@cs.uchicago.edu

R
x ——— —
57 L RS PQLRS
P Q
B
Y s
(a) (b)

Figure 1: In an informal experiment with 27
subjects, six people marked both angles 1 and 2
in (a); eight people marked both angles 1 and 4
in (b). Only three people marked angle 2 in (b).

1988]. This theory is now called situated
activity; it is a theory of reasoning by reacting.

Proponents of case-based reasoning (CBR), on
the other hand argue that people don't need to
plan for most tasks because they already know
how to do it, having performed the task or
similar tasks many times before [Schank, 1977;
Schank, 1982; Kolodner, 1980; Hammond, 1989].
CBR is a theory of reasoning by remembering.

An ironic characteristic of theorem-provers
and generative planners is that the more rules or
operators they have, the longer it takes them to
find a solution. The ideal situation for a CBR
system is to have a lot of experiential knowledge
in memory to increase the odds of having an
appropriate plan for a particular task.

This creates a new problem, memory indexing
and retrieval. The more plans in memory, the
richer the feature vocabulary necessary to
discriminate between them. Yet it should be
easy to recognize a problem for which one knows
the solution. The features to be used for indexing
should be readily perceivable in the world.

Thus we see that a CBR reasoning system, like
a situated action system, needs to be closely
connected to a complex world. Whereas situated
activity tries to make decisions only about the
next immediate action, CBR tries to make
decisions about the next plan.

As theorem-proving evolved into planning, we
would like to see whether the CBR and situated
activity ideas in planning can be used to build a
better model of how people prove geometry
theorems.

How people solve geometry proof
problems

To see whether the CBR or situated activity
views of planning might apply to geometry

712

PAVA

= 1 & | -
Figure 2: One textbook defines the SAS theorem
of triangle congruence with this picture.

theorem-proving, we look first at the behavior
of people.

One interesting thing that people do when
they solve geometry proof problems is they mark
the diagram. Despite the pervasiveness of this
behavior, no computer models of geometry
theorem-proving have modelled it.

The usual explanation of why people mark
the diagram is that the marks reduce the
cognitive load of remembering which objects are
congruent. This explanation is inadequate for
two reasons. First, the same information is
usually written immediately alongside the
diagram. Presumably the same cognitive
assistance could be had by checking the
information there. Second, the “cognitive load”
explanation fails to explain consistencies in the
way people mark diagrams. Given the situation
in figure 1(a) many novices and experts placed
right-angle marks in both angles 1 and 2, even
though only one mark is sufficient to record the
information. Likewise, in figure 1(b), people are
far more likely to place a right angle mark in
angle 1 or in both angles 1 and 4 than to place a
mark in angle 2, despite a tendency otherwise to
place marks in angles to the right of the vertical
perpendicular line.

The real reason for marking a diagram is
found by looking at how a good teacher or
textbook presents the formal concepts of
geometry. In [Rhoad et al.,, 1988], several
triangle congruence theorems (SAS and ASA) are
defined only by the patterns of marks in
diagrams like figure 2. Furthermore, the sample
problems and the easiest problems in the
problem set ask the student to identify the
relevant theorem solely on the basis of tick
marks in the diagrams.

Apparently, the authors believe that
patterns of marks on the triangles is the easiest
way for the student to recognize the
applicability of these theorems. This is why it
is so helpful for the student to mark congruences
on the diagram. A mark on an angle or segment
becomes also a mark on every object of which
that angle or segment is a part.



Figure 3: By rearranging triangles on an
overhead projector, a teacher provides a quick

preview of many of the congruent triangle
patterns that his students will later encounter.

As with the triangle congruence theorems, the
good textbook or teacher builds the students
knowledge of significant visual patterns. As
with triangle congruence, formal concepts are
always accompanied by one or more illustrative
diagrams, as are many informal ones. A teacher?
shuffles congruent triangles around on an
overhead projector, thereby introducing his
students to patterns of congruent triangles they
will encounter later (figure 3). This exposure
enables his students to recognize such configura-
tions as containing pairs of congruent triangles.

The behavior of people when they get stuck
shows how much they rely on visual patterns.
When people get stuck, they study the diagram
intently, grouping and regrouping objects, their
pencil frequently following their gaze as they
look for a familiar and meaningful pattern.

This may sound equivalent to mental search
for an appropriate rule, but it is not. Mental
search would be characterized by staring off into
space, tapping a pencil, asking "What rule could
I apply here?" On the contrary, when people
realize what they need to do, they exclaim,
"Oh, yes, I see it," indicating that they have just
seen something they did not see before, not that
they have successfully matched a rule to
something previously seen.

From the examples in texts, from the way good
teachers teach, and from observations of humans
solving problems, geometry theorem-proving

2John Benson, at Evanston Township High School,
Evanston, IL.

713

turns out to be more like situated activity and
case-based reasoning than like resolution
theorem-proving or deductive search. People
scem to solve problems by recognizing patterns
they have seen before and making the inferences
that were useful in the past.

We now introduce our computer program,
POLYA, a recognition model of geometry
theorem-proving.

An overview of POLYA

Our model of geometry theorem-proving calls for
a memory of well-rehearsed proof-writing
knowledge indexed by readily perceivable
features. The reason this does not trivialize the
task is because the diagram contains many more
features than can be perceived at once; what you
see depends on where you look. Furthermore, the
diagram changes during the problem-solving
task, as inferences are made and marks are
placed on the diagram to record those inferences.
Therefore, in addition to proof-writing
knowledge, the problem-solver must also have
knowledge about where to look to find the
features which will reveal the solution.

As a computer program, POLYA is very
simple. The input to POLYA is a list of givens, a
goal, and a diagram. Its output is a proof. In
between, POLYA operates as a plan interpreter
and retrieval mechanism for accessing plans in
memory.

POLYA currently has on the order of seventy
plans for geometry problem-solving, of which
there are two types: plans for directing visual
search and plans for writing proofs. Both types
of plans consist of sequences of actions and
predictions of what should result from executing
those actions. Most of the actions shift the focus
of attention or compare two objects, but POLYA
can also mark the diagram. An example of an
action is LOOK-AT-BASE-ANGLE-1, which
directs attention to one of the base angles of an
isosceles triangle.

The diagram contains labelled points and
lines described by cartesian coordinates. It also
contains segment marks and angle marks.
Segment marks are symbols such as SINGLE-TICK
stored in a list associated with the coordinates
of the segment endpoints. Angle marks are
handled similarly.

When POLYA shifts its focus to an object, it
uses a simulated visual system to compute a



T

Given: WB £ ZA
XB=YA
LTBX = LTAY

Prove:

W

(a)

(b) (c)

description of that object based on the diagram.
This visual component is designed to return the
features needed to support memory retrieval and
inference without providing more information
than a person could reasonably perceive at a
glance. POLYA can focus attention on any of the
basic geometry objects: points, angles, segments,
triangles. The descriptions of those objects
include such information as whether the object
has a congruency mark on it, its approximate
orientation, and its approximate size. In
addition, POLYA can make spatial comparisons
of two objects to find out, for example, whether
two triangles share a side or whether two
segments overlap.

The descriptions returned by the visual system
are called features, and are used to retrieve
plans from memory. POLYA'’s indexing scheme is
based on the marker-passing scheme of the
DMAP language understanding system [Martin
1990]. Usually it takes a sequence of several
features to retrieve a plan.

Thus POLYA operates in a cycle. It executes
the actions called for by a plan. The actions
generate features, which are used to retrieve
other plans from memory. The cycle stops when
POLYA completes the proof or when no more
plans have been triggered.

Example

One interesting problem that POLYA can solve is
shown in figure 4 (a); the proof POLYA produces
is in figure 5. Note that POLYA annotates the
proof with the plans that wrote each section of
the proof.

What is important, however, is not the final
solution, but how POLYA found that solution.
We summarize POLYA’s reasoning in terms of
the plans it executed. (By convention, we use the

714

Figure 4: (a) The original problem. (b) POLYA focuses attention on a base angle. (c) The
diagram, marked up, after POLYA has finished.

prefixes S- and P- to denote search and proof
plans, respectively.)

S-READ-GIVENS
Reads the given information.
P-CONGRUENT-SEGMENTS-GIVEN
Marks the pairs of congruent segments in
the diagram (runs once for each pair of
segments).
P-CONGRUENT-ANGLES-GIVEN
Marks the pairs of congruent angles.
S-CORNER-TRIANGLES
Looks at the small corner triangles.
S-SIDE+SIDE
Looks at the unmarked angles between the
marked sides of the corner triangles; also
looks at the third, unmarked sides; adds
subgoals to prove those angles and those
sides congruent.
S-PIER
Looks at the angle adjacent to the
unmarked angle in the comner triangle.
P-LINEAR-PAIR-PAIR
Proves angles WBX and ZAY congruent.
Runs a second time, starting on angle YAZ,
but quickly halts because the angle has
been marked.
S-SIDE+SIDE-1
Angle congruence goal has been satisfied.
Looks again at corner triangle.
P-SAS-SIMPLE
Proves triangles WXB and ZYA congruent.
S-READ-GOAL
Reads the goal.
S-CONGRUENT-SEGS-GOAL
Looks at the segments (WT and ZT) which
are supposed to be congruent.
S-ADJACENT-SEGMENT-ADDITION
Looks at the subsegments of WT; if they
are both marked (they aren’t), it might be



(PLAN LINEAR-PAIR-PAIR)
angle XBT =angle TAY
Therefore, angle WBX = angle YAZ because of
SUPPLEME -SUBSTITUTION-RULE

(PLAN SAS-SIMPLE)
XB =YA
WB =ZA
angle WBX =angle YAZ
Therefore, AWXB = AYZA because of SAS-RULE

(PLAN CPCTC-ANGLES)
AWXB = AYZA
Therefore, angle XWT = angle TZW because of
CPCTC-ANGLE-RULE

(PLAN ANGLES->ISOSC-LEGS)
angle XWT = angle TZW
Therefore, WT =ZT because of BASE-ANGLES-
>ISOSC-LEGS-RULE

Figure 5: The final product of POLYA’s
problem-solving activity: a proof, annotated
with the proof plans that instantiated each
step. (The givens are omitted for brevity.)

reasonable to use the segment addition
property. The script halts as soon as it
sees that BT is unmarked.
S-CPCTC-ANGLES-2
Runs twice: on angle WBX and angle TBX,
and halts prematurely because they are
already marked.
S-ISOSCELES
Looks at apex, legs, and base angles of the
large triangle.
S-CPCTC-ANGLES-1
Compares base angle W with triangle
WBX.
P-CPCTC-ANGLES
Proves corresponding angles W and Z
congruent.
S-ISOSC-1
Looks again at large triangle.
P-ANGLES->ISOSC-LEGS
Proves the legs WT and ZT congruent,
completing the proof.

Notice that POLYA took a tentative step
down a dead-end path: since WT was
subdivided, POLYA decided to check
subsegments WB and BT. If those subsegments
were already congruent to corresponding
subsegments on ZT, it could prove WT and ZT
congruent by adding the congruent subsegments.
BT was not marked, however, so POLYA
abandoned that idea.

715

This example shows a high degree of
interaction with the diagram similar to the
behavior of humans. POLYA uses features from
the diagram bottom-up to index into a memory of
plans. Those plans further direct visual search,
making it possible eventually for POLYA to
recognize how to write the proof.

Related work

Several researchers have worked on geometry
theorem-proving from a cognitive modelling
perspective. Several systems have sought to use
the diagram as a source of heuristic information
to control deductive search [Gelernter, 1959;
Nevins, 1975; Greeno, 1983]. More closely related
to POLYA is the Diagram Configuration model
(DC) described in [Koedinger & Anderson, 1990].

In the DC model, diagram configuration
schema associate patterns in the diagram with
the rules most likely to apply to them. By
parsing a diagram into schema, a restricted
space of relevant rules is generated, and a
solution is easily found by searching this
restricted space.

DC was a significant advance in terms of using
diagram configurations to organize formal
geometry knowledge. This work extends the
ideas in DC in two respects. First, POLYA
models diagram parsing as an integral part of
the problem-solving task. Second, POLYA uses
more specific schema which allow it to make
concrete decisions about which rules to
instantiate, without knowing in advance how
that rule will fit into the complete proof. In
contrast, each of DC’s schema may have several
rules to choose from. Thus DC must fall back on
traditional search within this restricted space
to decide which rules are the appropriate ones.

By using a single mechanism and representa-
tion to model the entire problem-solving task,
from diagram parsing to rule instantiation,
POLYA is a complete model of what experts
know and how they use what they know to solve
geometry proof problems.

Conclusion

Our interest in modelling how humans solve
geometry proof problems reflects a basic curiosity
about how people think. We felt that existing
models of geometry theorem-proving were too
faithful to the representations and processes of



the original theorem-provers, whose design
reflected what was easy to program rather than
particular theories of human cognition. Those
models of geometry theorem-proving failed to
acknowledge the pattern-recognition abilities of
people.

Ideas from the planning community, case-
based reasoning and situated action, seemed to
fit the behavior people exhibit when they try to
solve geometry theorem. By combining these
planning ideas, we have built a computer
program which models the visual searching and
pattern recognition of people doing geometry
proof problem-solving.

References

Agre, P. & Chapman, D. 1987. Pengi: An
Implementation of a Theory of Activity. In
The Proceedings of the Sixth National
Conference on' Artificial Intelligence, 268-72.
Menlo Park, Calif.: AAAI/M.LT. Press.

Agre, P.E. 1988. The Dynamic Structure of
Everyday Life. Ph.D. diss., Artificial
Intelligence Laboratory, MIT.

Chapman, D. 1985. Nonlinear Planning: A
Rigorous Reconstruction. In Proceedings of the
Ninth International Joint Conference on
Artificial Intelligence, International Joint
Conference on Artificial Intelligence, 1022-24.

Chapman, D., and Agre, P.E. 1986. Abstract
reasoning as emergent from concrete activity.
In Reasoning about Actions and Plans,
Proceedings of the 1986 Workshop,
Timberline, Oregon, Georgeff, M.P., Lansky,
A.L, eds. Los Altos, CA.: Morgan-Kaufmann.

Fikes, R. & Nilsson, N J. 1971. STRIPS: A new
approach to the application of theorem
proving to problem solving. Artificial
Intelligence 2:189-208.

Gelernter, H. 1959. Realization of a geometry
theorem proving machine. In The Proceedings
of the International Conference on Information
Processing, UNESCO, Reprinted in E.A.
Feigenbaum & J. Feldman (Eds.) (1963),
Computers and thought. McGraw-Hill.

Greeno, ].G. 1983. Forms of understanding in
mathematical problem solving. Learning and
Motivation in the Classroom. Paris, S.G.,
Olson, G.M,, and Stevenson, H.W., eds.
Erlbaum.

Hammond, K. 1989. Case-Based Planning:
Viewing Planning as a Memory Task.

716

Academic Press, San Diego, CA , Vol. 1,
Perspectives in Artificial Intelligence.

Koedinger, K.R. & Anderson, ].R. 1990. Abstract
planning and perceptual chunks: Elements of
expertise in geometry. Cognitive Science
14:511-550.

Kolodner, ]. 1980. Retrieval and organizational
strategies in conceptual memory: A computer
model. Ph.D. diss., Yale University.

Martin, C.E. 1990. Direct Memory Access
Parsing. Ph.D. diss., Yale University.

McCarthy, J. 1963. Programs with common sense.
In Minsky, M., Semantic Information
Processing. MIT Press.

Nevins, A.]. 1975. Plane geometry theorem
proving using forward chaining. Artificial
Intelligence Vol. 6.

Newell, A. & Simon, H.A. 1956. The logic
theory machine. IRE Transactions on
Information Theory 2:61-79.

Newell, A. & Simon, H.A. 1963. GPS, a program
that simulates human thought. In
Feigenbaum, E.A. & Feldman, J., Computers
and Thought. McGraw-Hill.

Rhoad, R., Whipple, R., & Milauskas, G. 1988.
Geometry for enjoyment and challenge,
McDougal, Littell.

Robinson, J.A. 1965. Automatic deduction with
hyper-resolution. International journal on
comutational mathematics 1:227-234.

Schank, R.C. & Abelson, R. 1977. Scripts, Plans,
Goals and Understanding, Hillsdale, New
Jersey: Erlbaum Associates.

Schank, R.C. 1982. Dynamic Memory: A Theory
of Reminding and Learning in Computers and
People, Cambridge University Press.



	cogsci_1993_711-716



