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Abstract. A query game is a pair of a setQ of queries and a setF of functions, or codewords
f : Q → Z. We think of this as a two-player game. One player, Codemaker, picks a
hidden codeword f ∈ F . The other player, Codebreaker, then tries to determine f by
asking a sequence of queries q ∈ Q, after each of which Codemaker must respond with
the value f(q). The goal of Codebreaker is to uniquely determine f using as few queries
as possible. Two classical examples of such games are coin-weighing with a spring scale,
and Mastermind, which are of interest both as recreational games and for their connection
to information theory.

In this paper, we will present a general framework for finding short solutions to query
games. As applications, we give new self-contained proofs of the query complexity of vari-
ations of the coin-weighing problems, and prove new results that the deterministic query
complexity of Mastermind with n positions and k colors is Θ(n log k/ log n + k) if only
black-peg information is provided, andΘ(n log k/ log n+k/n) if both black- and white-peg
information is provided. In the deterministic setting, these are the first up to constant factor
optimal solutions to Mastermind known for any k ⩾ n1−o(1).
Keywords. Combinatorial games, query complexity, Mastermind, coin–weighing
Mathematics Subject Classifications. 91A46, 68Q11, 05B99

1. Introduction

In 1960, Shapiro and Fine [SF60] posed the following question. Given n coins of unknown
composition, where counterfeit coins weigh 9 grams and genuine coins weigh 10 grams, and an
accurate spring scale (not a balance), how many weighings are required to isolate the counterfeit
coins? For n ⩾ 4, Shapiro and Fine observed that this can be done in fewer than n weighings,
leading to the conjecture that, in general, o(n) weighings would suffice.

The problem of determining the optimal number of weighings became the subject of much
independent research in the subsequent years. To summarize the findings, we distinguish be-
tween static solutions where the weighings are fixed before learning the answers, and adaptive
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solutions where each weighing may depend on answers to previous weighings. The minimum
number of weighings required in static solutions is known to be(

2 +O
(
log log n

log n

))
n

log2 n
,

where the lower bound is due to [ER63, Mos70] and the upper bound is due to constructions
given by Cantor and Mills [CM66] and Lindström [Lin64, Lin65]. It was also shown by Erdős
and Rényi [ER63] that a sequence of weighings chosen uniformly at random is likely to be able
to distinguish between all configurations of counterfeit coins, albeit at a slightly higher number
of (log2 9+ o(1))n/ log2 n weighings. See also the last section of their paper for an overview of
further early works on this topic.

While one would expect adaptive solutions to be more powerful, they are also harder to
analyze. In either the static or adaptive case, the best known lower bounds are established by
considering upper bounds on the amount of information that can be obtained in a single weigh-
ing, assuming the coins are independently either counterfeit or genuine, each with probability 1

2
.

In the static case, the results of each weighing follow a binomial distribution, which is concen-
trated on

√
n values, limiting the query entropy to roughly log2

√
n = 1

2
log2 n. However, in the

adaptive case, the distribution of values returned from the weighings depends on how queries
are generated. It is reasonable to think that optimal adaptive solutions would make use of this
to make queries with higher information content, but to what extent this can be done remains
unknown. The best known bounds on the minimum number T of queries needed in the adaptive
case is

n

log2(n+ 1)
⩽ T ⩽

(
2 +O

(
log log n

log n

))
n

log2 n
,

where the upper bound is given by the static solutions, and the lower bound is obtained by
bounding the query entropy by log2(n + 1), which is an upper bound on the entropy of any
distribution on {0, 1, . . . , n}. This leaves a gap of a factor of 2 between the upper and lower
bounds, which remains an important open question to this day.

To better understand the difference between static and adaptive solutions, it is useful to exam-
ine games where this contrast is more apparent. An example of such a game is the popular board
game Mastermind, which was introduced commercially in the 1970s and formally described in
1983 by Chvátal [Chv83]. In Mastermind, one player, known as the Codemaker, creates a hid-
den pattern, or codeword, consisting of n entries, each of which can be one of k different colors.
The other player, known as the Codebreaker, must try to guess this pattern by making a series
of guesses. After each guess, the Codebreaker is awarded a certain number of black and white
pegs, which indicate how close the guess is to the hidden pattern. Denoting the codeword x and
a query q as elements of [k]n, the corresponding number of black pegs

bp(x, q) := |{i ∈ [n] : xi = qi}|

denotes the number of entries in the guess that match the corresponding entries in the hidden
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pattern1, while the number of white pegs

wp(x, q) := max
σ

|{i ∈ [n] : xi = qσ(i)}| − bp(x, q),

where σ goes over all permutations of [n], denotes the the number of entries that have the correct
color but are in the wrong position. The game ends when the Codebreaker correctly guesses the
hidden pattern.

We will below distinguish between black-peg Mastermind, where the Codebreaker is only
told the number of black pegs corresponding to a query, and white-peg Mastermind, where the
Codebreaker is also told the number of white pegs.

Since Mastermind with two colors and coin-weighing are essentially equivalent, see [ST04],
Mastermind can be seen as a direct extension of coin-weighing. Analogously to the entropy
bound for coin-weighing, we can derive lower bounds on the minimum number of adaptive
queries T needed to recover any codeword. For black-peg Mastermind, this yields the bound

n log2 k

log2(n+ 1)
⩽ T,

while for white-peg Mastermind, this yields the bound

n log2 k

log2
(
n+2
2

) ⩽ T.

We note that these bounds only differ by a factor of 2 + o(1).
For 2 ⩽ k ⩽ n1−ε for any fixed ε > 0, solutions also behave similar to coin-weighing.

Chvátal [Chv83] showed that, for any k in this range, there exists a sequence of

T = (2 + ε)n
1 + 2 log2 k

log2 n− log2 k

static queries that uniquely determines any codeword, using only black-peg information. The
proof uses the probabilistic method in a similar way to the proof by Erdős and Rényi [ER63]
for coin-weighing. As this matches the general lower bounds up to a constant factor, this means
that, regardless of whether the queries are static or adaptive, and whether black-peg or white-
peg Mastermind is considered, the minimum number of queries needed to recover any codeword
is Θε(n log k/ log n), with implicit constants depending on ε > 0.

Static black-peg Mastermind has been the focus of interest in its own right due to its equiv-
alent formulation as the metric dimension or rigidity of Hamming graphs. By extending the
coin-weighing solution of Lindström [Lin64, Lin65], Jiang and Polyanskii [JP19] showed that
for any constant k ⩾ 2, (

2 +O
(
log log n

log n

))
n log2 k

log2 n

1Later in the paper, when treating general query games, we will identify codewords with functions mapping
queries to the integers. For instance, in Mastermind with black-peg feedback, we would identify the codeword x
with the map bp(x, ·).
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static guesses are optimal.
For larger k, progress towards determining the length of optimal adaptive solutions has been

slower. While the information-theoretic lower bound is linear in nwhenever k ∼ nα for any con-
stantα > 0, Chvátal states that the best upper bound he can offer for k ⩾ n isO(n log n+k/n) in
the white-peg setting andO(n log n+k) in the black-peg setting. Variations of these bounds with
improved constants were proposed by Chen, Cunha and Homer [CCH96], Goodrich [Goo09],
and Jäger and Peczarski [JP11]. It can be noted that the terms k/n and k in the above bounds are
necessary, as, before guessing a color xi in the codeword right at least once, Codebreaker has no
way of distinguishing between two colors it has yet to try. This means that the solutions above
are all optimal up to constants if k = Ω(n2 log n) for white-peg Mastermind, or k = Ω(n log n)
for black-peg Mastermind, but in particular for k = n this still leaves a gap of a factor Θ(log n).

In 2016, Doerr, Doerr, Spöhel and Thomas [DDST16] first managed to narrow this gap by
showing that black-peg Mastermind with k = n colors can be solved in O(n log log n) queries.
Finally, a recent work of the author together with Su [MS21] construct a randomized solutions
for black-peg Mastermind with k = n colors using O(n) queries. This randomized solution has
the property that, for any choice of the hidden codeword, Codebreaker will be able to uniquely
identify it with probability at least 1−e−Ω(n). This directly implies the existence of a randomized
solution to black-peg Mastermind for any k ⩾ 2 using O(n+ k) queries. Moreover, combining
this with results from Doerr, Doerr, Spöhel and Thomas, it follows that there exists a randomized
solution to white-peg Mastermind using O(n + k/n) queries. Both of these results are best
possible up to constant factors for k ⩾ nε for any ε > 0.

The difference between the cases where k ⩽ n1−ε and k = n in Mastermind can be explained
by the concept of adaptivity. In the former case, optimal static solutions are up to constant factors
as short as adaptive ones. However, for larger values of k, this is no longer true. In fact, Doerr,
Doerr, Spöhel and Thomas showed that Θ(n log n) queries are optimal for static Mastermind
with k = n colors. The reason for this is that in the static case, assuming the codeword is chosen
uniformly at random, the number of black pegs returned from any query follows a Bin(n, 1/k)
distribution, which has Θε(log n) entropy when k ⩽ n1−ε, but only Θ(1) when k = n. Adding
white-peg information does not change this picture unless k is large. White pegs only carry
information about the codeword up to permutations, which has negligible entropy compared to
the full codeword when k = O(n). Therefore, in order to match the information-theoretic lower
bound for Mastermind for k = n in either the black-peg or white-peg setting, one needs a precise
understanding of the connection between adaptivity and information content of queries.

In this paper, we will take a more general approach to guessing games with integer feed-
back, such as coin-weighing and Mastermind. We will introduce a framework that allows us
to express various guessing games, and adaptive solutions thereof in a common language. A
virtue of the framework is that the information-theoretic speedup can be done using this abstract
language, which makes it possible to separate the problem of making information-dense queries
from problems relating to the specific game at hand. Our main technical results, Theorems 2.5
and 2.6, capture this by giving sufficient conditions for games to have short adaptive solutions.

As applications of our main results, we present a sequence of self-contained proofs of the ex-
istence of, up to constants, optimal deterministic adaptive solutions for various guessing games.
In particular, using our results, we are able to determine the deterministic query complexity of
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Mastermind in both the black-peg and white-peg settings.

Theorem 1.1. The minimum number of adaptive queries needed to solve black-peg Mastermind
with n positions and k ⩾ 2 colors is Θ

(
n log k

logn
+ k
)

.

Theorem 1.2. The minimum number of adaptive queries needed to solve white-peg Mastermind
with n positions and k ⩾ 2 colors is Θ

(
n log k

logn
+ k/n

)
.

This matches the performance of the randomized solutions proposed by the author and
Su [MS21]. In the deterministic setting, these are the first known optimal solutions for
any k ⩾ n1−o(1).

It can further be remarked that the proofs of Theorems 1.1 and 1.2 are constructive and the
corresponding solutions can be turned into efficient algorithms, including efficient decoding of
the hidden codeword. In this respect, our results also improve upon the previous solutions found
through the probabilistic method by Chvátal in the range 2 ⩽ k ⩽ n1−ε. It is worth noting
that the algorithmic problem of determining the hidden codeword from a general sequence of
query-answer pairs is known to be NP-hard in both the black-peg and white-peg settings [SZ06,
Goo09, Vig12]. Therefore, efficient recovery of the codeword is not immediate even in the cases
where it is uniquely determined.

As part of deriving the solution for white-peg Mastermind, we further determine the query
complexity of a new sparse version of the coin-weighing problem called sparse set query, where
the player is faced with a collection of k coins and is told at most n are counterfeit, for some pa-
rameters k ⩾ n. The problem is to determine which coins are counterfeit through few weighings,
under the condition that at most n coins may be placed on the scale at a time.

Theorem 1.3. For any n ⩽ k, the minimum number of adaptive queries needed to solve sparse
set query is Θ

(
n log(1+k/n)

logn
+ k/n

)
.

As a warm-up to proving these results, we will further derive up to constant factor optimal
solutions to variations of the coin-weighing problem, and give a simplified proof for the existence
of an O(n) solution to black-peg Mastermind with k = n in the case where the hidden codeword
is required to be a permutation (but queries may still contain repeated colors).

In a sibling paper, we will further discuss how to use this framework to find optimal solutions
for Permutation Mastermind, where k = n and guesses and codewords are both forbidden to
contain repeated colors.

The remaining part of the paper will be structured as follows. In Section 2 we will introduce
the abstract framework and the two technical main results, Theorems 2.5 and 2.6. In Section 3
we will discuss applications of the main technical results, including Theorems 1.1, 1.2 and 1.3.
Theorems 2.5 and 2.6 will be proven in Sections 4 and 5 respectively. Finally, in Section 6 we
make some concluding remarks about our results.

2. Query games

A query game, A = (Q,F), is a pair of a set Q, and a non-empty set of functions F where
f : Q → Z for all f ∈ F . We call the elements of Q queries and the elements of F codewords.
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For technical reasons, we always require that query games contain a zero-query 0 ∈ Q such
that f(0) = 0 for all f ∈ F .

We can think of A = (Q,F) as a two-player game as follows. The first player, Codemaker,
first chooses a codeword f ∈ F without telling the other player the choice. The second player,
Codebreaker, must then determine f by asking a series of queries q(1), q(2), . . . , where, after
each query q(t), Codemaker must respond with the value of f(q(t)). Throughout this paper,
we will assume that the series of queries can be made adaptively, meaning that the choice of a
query q(t)may depend on the answers f(q(1)), . . . , f(q(t−1)) to all previous queries. The game
is won after T steps if f is uniquely determined by Codemaker’s responses to q(1), . . . , q(T ).
That is, if, for every f ′ ∈ F \ {f}, there exists a 1 ⩽ t ⩽ T such that f ′(q(t)) ̸= f(q(t)).

We will use upper case lettersA,B,C, . . . to denote query games, and bold upper case letters
A,B,C, . . . to denote sets of query games. We will below treat two games as identical if they
are isomorphic in the sense that they only differ by a relabelling of their queries.

Given two query games A = (QA,FA) and B = (QB,FB), we define the sum game A+B
as the query game (QA × QB,FA × FB), where we denote by qA + qB and fA + fB the pairs
formed by (qA, qB) ∈ QA ×QB and (fA, fB) ∈ FA ×FB respectively, and where we define

(fA + fB)(qA + qB) := fA(qA) + fB(qB).

In other words, A + B is the game in which Codemaker picks a pair of codewords, one from
each of A and B. For each query in the sum game, Codebreaker asks a query from A and a
query from B simultaneously, and is told in return the sum of the responses. For sets of query
games A and B, we define A+B := {A+B : A ∈ A, B ∈ B}.

We remark that the assumption that query games contain zero-queries ensures that we can
query individual terms in a sum game A+B according to qA + 0 and 0 + qB respectively.

Example 2.1. A classical example of a query game is coin-weighing with n coins. We can define
this formally as Cn := (2[n], 2[n]), where we think of a codeword f ∈ 2[n] as a function 2[n] → Z
by defining f(q) := |f ∩ q|. In other words, Codemaker presents a pile of n coins, and tasks
Codebreaker to determine which coins are counterfeit. In each query, Codebreaker is allowed to
pick an arbitrary subset of the coins and ask how many in the given set are fake.

It can be seen that this game, up to isomorphisms, satisfies

Cn = n · C1,

where n · C1 denotes the n-fold sum C1 + · · · + C1, and, for any 1 ⩽ k ⩽ n − 1, we similarly
have

Cn = Ck + Cn−k.

For a given game A = (QA,FA) a strategy is an adaptively constructed sequence of
queries (q(t))Tt=1. More precisely, for each 1 ⩽ t ⩽ T , the choice of query

q(t) = q
(
t, f(q(1)), . . . , f(q(t− 1))

)
is allowed to depend on the responses of the preceding queries. We refer to T as the length
of the strategy. A strategy is called a solution if it can uniquely determine any hidden
codeword f ∈ FA.
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Rather than attempting to construct solutions to query games directly, we often find it more
effective to identify a sequence of reductions. To see how this works for query games, con-
sider an instance of a query game A = (QA,FA), where Codebreaker uses a strategy (q(t))Tt=1.
Suppose that, given the corresponding sequence of answers f(q(1)), . . . f(q(T )), Codebreaker
concludes that the hidden codeword f is contained in some subset F ′ ⊆ FA. At this point, we
can consider A as reduced a query game B = (QB,FB), provided that each codeword f ′ ∈ F ′

can be uniquely identified with a codeword g′ ∈ FB that is identical to f ′ up to relabelling and
possibly discarding some elements of QA. Thus any solution of B can be used from this point
to solve A. We will refer to a strategy as a reduction from a query game A to a set of query
games B, if for any possible answer sequence there is a query game B ∈ B with this property.
We can state this more formally as follows.

Definition 2.2. Let A = (QA,FA) be a query game, and B a set of query games. We say that A
can be reduced to B in T queries, denoted A

T−→ B, if there exists a strategy (q(t))Tt=1 of length T
for A, with the following property. For any answer sequence a = (a1, . . . , aT ), there exists a
choice of a game B = (QB,FB) ∈ B, depending only on a, and maps φ = φa : QB → QA

and Φ = Φa : FB → FA such that

(i) f ′ ◦ φ ∈ FB, and

(ii) Φ(f ′ ◦ φ) = f ′

for any f ′ ∈ FA consistent with a, that is, for any f ′ for which the given strategy (q(t))Tt=1 would
produce the answer sequence a.

We denote by A
T−→ B that A T−→ B for all A ∈ A. With slight abuse of notation, we will

write A T−→ B and A
T−→ B to denote reduction to the set {B}.

When proving that a strategy satisfies the definition to be a reduction, it is often helpful
to start by identifying the codewords of game A that are compatible with the answer sequence
obtained so far with codewords of a game B. Once these codewords are identified, we can then
construct maps φ : QB → QA and Φ : FB → FA such that f ′(φ(q)) = g′ and Φ(g′) = f ′ for
all identified pairs of codewords f ′ and g′, and for all q ∈ QB. One can note that this contrasts
the formal definition, where these notions are introduced in the opposite order.

The map φ first describes how to convert queries of B to queries of A. By property (i),
we know that asking any query from QB in the game A with hidden codeword f will return
answers consistent with asking the same query in B with hidden codeword g := f ◦ φ ∈ FB.
By property (ii), once we determine this codeword g in B, the codeword of the original game
is given by Φ(g). Thus, any not yet ruled out codeword f ′ of A is implicitly identified with the
codeword f ′ ◦ φ ∈ FB, where the map Φ ensures that no two codewords of A are paired with
the same codeword in B.

Example 2.3. For any query game A = (QA,FA), any q ∈ QA can be seen as a reduction of
length one to the set of games

A
1−→ {(QA, {f ∈ FA : f(q) = a})},
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where a goes over all values in {f(q) : f ∈ FA}, with φ and Φ both being identity maps.
Moreover, for any two query games A,B such that B has a solution (q(t))Tt=1, we have

A+B
T−→ A,

formed by the reduction 0+ q(t) for t = 1, . . . , T , φ(q) := q+0 and Φa(f) := f +fa, where fa
is the unique codeword in B consistent with the answer sequence a.

We will refer to the query game whose only query is the zero-query and whose only codeword
is the map 0 7→ 0 as the trivial game and denote it by ∅.

Proposition 2.4. Let T, S ⩾ 1 and let A,B and C be sets of query games. The following holds:

(i) A
T−→ ∅ if and only if each A ∈ A has a solution of length T ,

(ii) if A T−→ B and B
S−→ C then the strategy formed by concatenating the respective reductions

forms a reduction A
T+S−−→ C.

Proof. (i) Reduction to the trivial game means that, for any f ′ ∈ FA consistent with a
certain answer sequence a = (f(q(1), . . . , f(q(T ))), we have f ′ = Φa(f

′ ◦ φa). But
as f ′ ◦ φa ∈ F∅ = {0 7→ 0}, it follows that f ′ = Φa(0 7→ 0) is uniquely determined by a.
Hence the hidden codeword is given by Φa(0 7→ 0). Conversely, any solution can be seen as a
reduction to ∅ by putting φ ≡ 0 and Φa ≡ fa where fa denotes the unique solution consistent
with answers a.

(ii) Given any A = (QA,FA) ∈ A, we start by playing the strategy (q(t))Tt=1 from A
T−→ B

and based on the answer sequence a compute the corresponding game B = (QB,FB), and the
maps φ : QB → QA and Φ : FB → FA. We proceed by making the queries as dictated by the
strategy (q′(s))Ss=1 from the reduction B

S−→ C, according to φ(q′(1)), φ(q′(2)), . . . , φ(q′(S))
and based on the answer sequence b compute the corresponding game C = (QC ,FC), and the
maps φ′ : QC → QB and Φ′ : FC → FB. Note that for any choice f ∈ FA of the hidden
codeword, asking any query φ(q) for q ∈ QB is consistent with asking the query q in B with
hidden codeword g := f ◦ φ ∈ FB, hence b, C, φ′ and Φ′ will all be given as if strategy q′(s)
was played on B with hidden codeword g.

We now argue that this is a well-defined reduction from A to C, as given by the game C
and the maps φ ◦ φ′ and Φ ◦ Φ′ as given above. Indeed, for any function f ∈ FA

consistent with the full answer sequence (a,b), that is, f(q(t)) = a(t) for all 1 ⩽ t ⩽ T
and f(φ(q′(s))) = b(s) for all 1 ⩽ s ⩽ S, we have by the first reduction g := f ◦ φ ∈ FB. By
assumption on f , we have that g is consistent with answers b and hence g ◦ φ′ ∈ FC . It follows
that Φ(Φ′(f ◦ φ ◦ φ′)) = Φ(Φ′(g ◦ φ′)) = Φ(g) = Φ(f ◦ φ) = f, as desired.

With these definitions at hand, we are now ready to present the main technical results of
the paper. Given a sequence (An)n⩾1 of sets of query games, it is natural to ask for a simple
condition for the games to allow for short solutions. Our results give conditions for this to hold
in terms of finding certain reductions. As we shall see in Section 3, such reductions appear
naturally in many games.
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For the first result, we say that a query game A has a simple reduction to B of length T ,
A

T
99K B, if there is a reduction (q(t))Tt=1 such that f(q(t)) ∈ {0, 1} for all f ∈ FA and

all 1 ⩽ t ⩽ T .

Theorem 2.5. Let (An)n⩾1 be a sequence of sets of query games over the integers. If there exists
a constant α > 0 such that

A1
α
99K ∅,

and, for all n ⩾ 2

An
α·n
999K A⌈n/2⌉ +A⌊n/2⌋,

then An
O(α·n)−−−−→ ∅.

We will prove this in Section 4.
This approach to find solutions to query games can be seen as a variation of the classical

divide and conquer method, where Theorem 2.5 plays the role of the so-called Master theorem.
However, constructing solutions from sequences of reductions as above will require combining
reductions in a non-trivial way to form information-dense queries, which does not have an ana-
logue in the usual divide-and-conquer setting. In particular, if one were to do all reductions
indicated above to solve An in sequence, this would result in a solution of length Θ(α ·n log n).
Instead, the solutions generated by Theorem 2.5 will compress the Θ(α ·n log n) simple queries
into Θ(α · n) actual queries with the same information content.

Simple reductions appear naturally in some query games, such as coin-weighing and the
restriction of Mastermind to permutation codewords. However, in other games, such as Mas-
termind with general codewords, the requirement that queries must return 0 or 1 appears too
restrictive. Finding a suitable set of queries may not be significantly easier than finding a solu-
tion, or perhaps even such queries do not exist at all. Our second result states that the requirement
for the underlying reductions to be simple can be relaxed to allow any queries, but where queries
that may return a large value are associated with a higher cost, or weight.

We say that a reduction (q(t))t⩾1 from A to B is bounded if there exists a function
b(t) = b(t, f(q(1)), . . . f(q(t − 1))) such that 0 ⩽ f(q(t)) ⩽ b(t) for all t. We say that this
reduction has weight at most T , A T

⇝ B, if we have∑
t

log2(b(t) + 1)2 ⩽ T,

for any choice f of the hidden codeword. We have the following result.

Theorem 2.6. Let (An)n⩾1 be a sequence of sets of query games over the integers. If there exists
a constant α > 0 such that

A1
α
⇝ ∅,

and, for all n ⩾ 2
An

α·n
⇝ A⌈n/2⌉ +A⌊n/2⌋,

then An
O(α·n)−−−−→ ∅.



10 Anders Martinsson

This will be shown in Section 5. We remark that, with a more careful analysis, log2(·)2 could
be replaced by a function of smaller growth. However, as this will not make a difference for our
applications, we will not elaborate on this. Furthermore, as any simple reduction is by definition
also bounded, Theorem 2.5 can be seen as a corollary of Theorem 2.6. We will still prove the two
theorems independently. The proof of Theorem 2.5 is simpler, and can thus form as a warm-up
for the general case. Moreover, the solutions constructed from simple reductions are arguably
much simpler, and definitely shorter.

3. Applications

In this section, we will show how Theorems 2.5 and 2.6 can be used to prove the existence of
efficient solutions to various classes of query games. We believe that these theorems apply in
much greater generality, and we hope that this section can serve as inspiration to find solutions to
other query games. In addition to being a powerful tool, our framework also has the benefit that
a deep understanding of the underlying coin-weighing schemes is not needed to build solutions.

For any query game (Q,F), we define the information-theoretic lower bound as the expres-
sion

log2 |F|/ log2
(
max
q∈Q

|{f(q) : f ∈ F}|
)
. (3.1)

A simple counting argument shows that any solution to (Q,F) needs at least this many queries.
We will below give multiple examples of query games where our main technical results show
that the information-theoretic lower bound is sharp up to constant factors.

3.1. Coin-weighing variations

Recall that Cn, coin-weighing with n coins, is the query game

Cn := (2[n], 2[n]),

where f(q) = |f ∩ q| for all f, q ∈ 2[n]. The information-theoretic lower bound of this query
game is given by n/ log2(n + 1). Multiple solutions that solve this problem within a constant
factor of this lower bound have been given in [ER63, CM66, Lin65].

Let us reprove this statement using Theorem 2.5.

Proposition 3.1. Cn
O(n/ log2(n+1))−−−−−−−−−→ ∅.

Proof. As Theorem 2.5 always gives solutions of length O(n), we aim to apply it to a sequence(
CΘ(n log2 n)

)
n⩾1

. The key condition to verify is the existence of a simple reduction of length
O(n) from coin-weighing with Θ(n log2 n) coins to Θ((n/2) log2(n/2) + (n/2) log2(n/2))
coins. But as

(n/2) log2(n/2) + (n/2) log2(n/2) = n log2 n− n,

this can be done by weighing Θ(n) coins one by one, and dividing the remaining ones into two
piles of appropriate sizes.
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Let us make this more precise. We define kn recursively by k1 = 1 and, for all n ⩾ 2,
kn = n + k⌈n/2⌉ + k⌊n/2⌋. It can be checked that this implies that kn = n (1 + ⌊log2 n⌋). Thus
by the aforementioned strategy,

Ckn

n
99K Ckn−n = Ck⌈n/2⌉ + Ck⌊n/2⌋ ,

and clearly
Ck1 = C1

1
99K ∅.

Hence, by Theorem 2.5, coin-weighing with kn = Θ(n log n) coins can be solved in O(n)
queries.

The proof above directly extends to any n-fold sum of query games where each game has a
simple or a bounded solution.

Proposition 3.2. Let A be any set of query games such that A α
⇝ ∅. Then the n-fold sum n ·A

can be solved in O(α · n/ log(n+ 1)) queries.

Proof. Let Bn := kn · A, where kn is as in the proof of Proposition 3.1. We have that
B1 = A

α
⇝ ∅, and

Bn = kn ·A
α·n
⇝ (kn − n) ·A = (k⌈n/2⌉ + k⌊n/2⌋) ·A = B⌈n/2⌉ +B⌊n/2⌋.

It follows by Theorem 2.6 that Bn has a solution of length O(α · n).

In fact, we can extend this speed up also to sequences of query games satisfying similar
conditions to Theorem 2.6, but where the splitting operation can be performed with sublinear
weight. This is analogous to the leaf-heavy regime of the Master theorem for divide-and-conquer
recurrences.

Proposition 3.3. Let c > 0 be fixed. Let An be a sequence of sets of query games such that

An
α·n1−c

⇝ A⌈n/2⌉ +A⌊n/2⌋

for all n ⩾ 2 and A1
α
⇝ ∅, for some α > 0. Then

An
Oc(α·n/ log(n+1))−−−−−−−−−−→ ∅.

Proof. We begin by performing the following reductions in sequence

An ⇝ A⌈n/2⌉ +A⌊n/2⌋ ⇝ . . .⇝ AΘ(
√
n) + · · ·+AΘ(

√
n),

until what remains is a sum of 2k=Θ(
√
n) query games, each with parameterΘ(n/2k)=Θ(

√
n),

where k ⩾ 0 is an appropriately chosen integer. The total weight of the concatenated reduction is

k−1∑
i=0

2i · α ·Θ
(
(n/2i)1−c

)
= Θc(α · n1−c · 2ck) = Θc(α · n1−c/2).
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In particular, as the weight of a query is at least one, the total reduction has length Oc(α ·n1−c/2).
We now solve the remaining sum of games in parallel. Let Tk denote the minimum weight

such that Ak
Tk⇝ ∅. We have, by assumption, that T1 ⩽ α and Tk ⩽ α · k1−c + T⌈k/2⌉ + T⌊k/2⌋,

which implies that Tk = Oc(α · k). Applying Proposition 3.2 to the remaining game,
with n′ = Θ(

√
n) equal to the number of terms and α′ = Oc(α

√
n) equal to the

maximum weight needed to solve each individual term, it follows that An can be solved
in Oc(αn

1−c/2 + αn/ log(n+ 1)) = Oc(αn/ log(n+ 1)) queries, as desired.

Given the above propositions, we now turn to generalized versions of coin-weighing. First,
Djačkov [Dja77] and Lindström [Lin75] proposed a sparse version of coin-weighing where the
total number of counterfeit coins d is fixed beforehand. Formally, we can describe this as the
query game

Cn,d :=

(
2[n],

(
[n]

d

))
, (3.2)

for any 1 ⩽ d ⩽ n, and where, again, f(q) := |f ∩ q| for all q ∈ 2[n] and f ∈
(
[n]
d

)
.

For d ⩽ n/2, it can be seen that the information-theoretic lower bound is given by

log2

(
n

d

)
/ log2(d+ 1) = Ω (log(n/d) · d/ log(d+ 1)) ,

and, by symmetry, for d ⩾ n/2 the bound is given by log2
(
n
d

)
/ log2(n− d + 1). We remark in

the latter case that even though queries can return any value between 0 and d, no one fixed query
can span this full range when d > n/2.

A second generalization of sparse coin-weighing is to allow the coins to have arbitrary non-
negative integer weights where the total weight of the coins is known from the start of the game.
Let us denote by CW

n this version of coin-weighing with n coins where the total weight of coins
is W . Here, the information-theoretic lower bound is given by

log2

(
W + n− 1

n− 1

)
/ log2(W + 1) =

{
Ω
(
log
(
1 + n

W

)
W/ log(W + 1)

)
if W ⩽ n,

Ω
(
log
(
1 + W

n

)
n/ log(W + 1)

)
if W ⩾ n.

Coin-weighing with exactly one fake coin is of course a very classical problem, and is canon-
ically solved by binary search. The reader is referred to [Bsh09] for an overview of research in
the case of d = 2. In the general case, it was shown in 2000 by Grebinski and Kucherov [GK00]
that the information-theoretic lower bounds for Cn,d and CW

n are tight up to constant factors in
the full parameter range. As their solution is based on the probabilistic method, it is inherently
non-constructive, and it took until 2009 before the first deterministic polynomial time solutions
of the same lengths were found by Bshouty [Bsh09].

We will now use Proposition 3.3 to derive optimal solutions to Cn,d for all n, d and for CW
n

in the case where W = O(n).

Proposition 3.4. Let n, d,W ⩾ 1 be such that d ⩽ n. Then

(i) Cn,d can be solved in O(log
(
n
d

)
/ log(min(d+ 1, n− d+ 1))) queries, and

(ii) CW
n can be solved in O (max(1, log(n/W ))W/ log(W + 1)) queries.
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Proof. By symmetry between genuine and counterfeit coins, it suffices to show (i) for d ⩽ n/2,
in which case the upper bound simplifies to O(d log(n/d)/ log(d + 1)). This is a special case
of (ii) for W = d. Hence, the proposition follows if we can prove (ii). To do this, let λ ⩾ 2 and
define

Aλ
m := {CW

n : W + n/λ ⩽ 2m}.
We wish to apply Proposition 3.3 to the sequence

(
Aλ

m

)
m⩾1

.

We first claim that Aλ
1

O(log λ)
⇝ ∅. This is because the only non-trivial games in this set is C1

n

for 2 ⩽ n ⩽ λ, which can be solved in ⌈log2 n⌉ simple queries using binary search. Second,
let m ⩾ 2 and let CW

n be any query game in Aλ
m. Note that W ⩽ 2m and n ⩽ 2λm. To build

our reduction, first determine the largest integer 0 ⩽ i ⩽ n such that

i+ f({1, 2, . . . , i})/λ ⩽ 2⌈m/2⌉.

As the left-hand side is increasing in i, this can be found in O(log n) queries using binary search.
Given this i, we define L := {1, 2, . . . , i} and R := {i + 2, . . . n} and note that the subgames
formed by the coins in L and R are in Aλ

⌈m/2⌉ and Aλ
⌊m/2⌋ respectively. Hence, by possibly

performing one last query to determine the value of coin i + 1, we have the desired reduction.
As the answer to any query used here is at most W ⩽ 2m, we can bound the weight of this
reduction by O(log(λm)(logm)2) = O(log λ) · polylog(m).

Applying Proposition 3.3 to Aλ
m with α = O(log λ)) and, say, c = 1

2
, it follows

that Aλ
m

O(log λ·m/ log(m+1))−−−−−−−−−−−−→ ∅. For any given n,W ⩾ 1, the result follows by noting
that CW

n ∈ Aλ
W where λ := max (2, n/W ).

3.2. Mastermind with permutation codeword

We now turn our attention to Mastermind. In this subsection, as a warm-up, we consider the
simplified version of black-peg Mastermind where the number of positions and colors are both n,
and where the codeword chosen by Codemaker is required to be a permutation of [n].

We will formalize this in the query game setting as

Mperm
n = (({0} ∪ [n])n, Sn),

whereSn denotes the set of permutations of [n], and where we interpret each f ∈ Sn as a function
from the queries to the natural numbers according to

f(q) := |{i : qi = fi}|.

We remark that the query game formulation differs slightly from the game mentioned above in
that Codebreaker may guess blank at certain positions of queries by putting qi = 0.

This problem was previously considered by the author and Su in [MS21] where it was
shown that it has a solution of length O(n). Indeed, as the information-theoretic lower bound
is log n!/ log(n + 1) = Ω(n), this is optimal up to constants. In the same paper, it was shown
that black-peg Mastermind with n = k has a randomized reduction to this game ([MS21,
Lemma 3.4]).

We first prove that allowing blank guesses does not make the problem significantly easier, as
blank guesses can be simulated in the usual game by performing a few additional queries.
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Claim 3.5. If Mperm
n

T−→ ∅, then black-peg Mastermind with a permutation codeword (without
blank guesses) can be solved in T + 2⌈log2 n⌉ queries.

Proof. Observe that if we can identify a query b ∈ [n]n that has no matching entries with the
hidden codeword, we can simulate guessing blank by replacing each instance of qi = 0 by the
value bi. So it suffices to show that such a b can be found in 2⌈log2 n⌉ queries.

For each i = 1, . . . , ⌈log2 n⌉, we make two queries. In the first query, we guess 1 at all
indices where the i:th least significant bit in its binary representation is a 0 and color 2 where
the bit is a 1. In the second, we reverse the colors.

We claim that one of these queries must return 0. As the hidden codeword f is a permu-
tation, there are unique indices j1, j2 such that fj1 = 1 and fj2 = 2. Considering the binary
representations of j1 and j2, as they different numbers between 1 and n, there must be some
position i in which the numbers have different digits. One of the two corresponding queries will
return 0.

Proposition 3.6. Mperm
n

O(n)−−−→ ∅.

Proof. We prove this using Theorem 2.5. Note that Mperm
1 is trivial – the only hidden codeword

is “1”, so we only need to consider the reduction of Mperm
n for n ⩾ 2.

Consider the strategy of length n formed by, for each 1 ⩽ t ⩽ n taking the query

q(t) = (t, . . . , t, 0, . . . , 0)

which is t in the first ⌈n/2⌉ entries, and 0 everywhere else, that is, it is 0 in the last ⌊n/2⌋ entries.
Depending on whether color t is in the left or right half of the codeword, the t:th query will either
return 1 or 0, so this strategy is simple. Moreover, given this information, we can treat the remain-
ing game as a sum of two instances of Mastermind whose codewords are each a permutation of
the colors t that returned 1 and 0 respectively, hence yielding a reduction toMperm

⌈n/2⌉+Mperm
⌊n/2⌋.

3.3. Black-peg Mastermind

We now turn to the proof of Theorem 1.1. Consider full black-peg Mastermind game with n
positions and k colors, with no restrictions on the codeword. The formalized version of this
game was first considered by Chvátal [Chv83]. We will here formalize black-peg Mastermind
as the query game

Mn,k := (({0} ∪ [k])n, [k]n),

where, same as the previous section, we define f(q) := |{i : fi = qi}|. We will write Mn to
denote Mn,n.

We again start by showing that the assumption that Codebreaker can make blank guesses
does not make the problem significantly easier by showing that blank guesses can be simulated
in the usual version of the game. This uses a slightly more elaborate argument than in the last
section.

Claim 3.7. If Mn,k
T−→ ∅, then black-peg Mastermind with n slots and k ⩾ 2 colors can be

solved in T +O(n/ log n) queries.
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Proof. Analogous to Claim 3.5, it suffices to find a string b ∈ [k]n that does not match
the codeword in any position. We will find such a b by determining, for each i ∈ [n],
whether fi = 1, fi = 2, or fi ∈ {3, . . . , k}.

We first query the all ones string. Let us denote this by 1. After this, for any query q ∈ {1, 2}n
we note that

f(q)− f(1) + |{i ∈ [n] : qi = 2}| =
n∑

i=1

1fi=qi − 1fi=1 + 1qi=2,

where we note that the summand in the right-hand side is always 0 for qi = 1, and for qi = 2
it is 0 if fi = 1, it is 2 if fi = 2 and it is 1 if fi ̸= 1, 2. Hence this problem can be seen as
equivalent to coin-weighing with weights 0, 1 and 2. This can be solved in O(n/ log n) queries
using Proposition 3.2.

With this statement at hand, it remains to determine the optimal number of queries needed to
solve Mn,k. We have two natural lower bounds for this number. First, the information-theoretic
lower bound is n log k/ log(n+1). Second, for any index i ∈ [n] it may be that the value of fi is
one of the two last colors to ever get queried in position i, meaning that no strategy is guaranteed
to determine the codeword in fewer than k − 1 queries. Putting these together gives us a lower
bound of

Ω

(
n log k

log n

)
+ k. (3.3)

We note that the first term dominates when k = o(n), the second term dominates
when k = ω(n), and the terms are comparable when k = Θ(n).

In order to show that (3.3) is tight, we distinguish two parameter regimes. If k ⩽ n1−ε for any
small fixed ε > 0, then it suffices to apply the sparse coin-weighing solution in Proposition 3.4
once for each color. Proposition 3.8 shows that this matches the information theoretic lower
bound up to constant factors. If k ⩾ n1−ε, then (3.3) simplifies to Ωε(n) + k. It is not too
hard to reduce this problem to showing that Mn

O(n)−−−→ ∅. This is done in Observation 3.9 and
Proposition 3.10, which finishes the proof of Theorem 1.1.

Proposition 3.8. For any ε > 0 and 2 ⩽ k ⩽ n1−ε, the game Mn,k can be solved in
Oε(n log k/ log n) queries.

Proof. For each color c = 1, 2, . . . k, we first ask the all ‘c’ query to determine how many
times dc the color c appears in the hidden codeword. If dc ⩾ 1, we apply the solution from
Proposition 3.4 to determine the positions of the dc occurrences of the color by making queries
in {0, c}n. Observe that, since we already know the colors at d1 + d2 + · · ·+ dc−1 positions, we
may assume when applying Proposition 3.4 that the total number of coins is n−

∑
c′<c dc′ .

It remains to show that the number of queries,

k +
k∑

c=1

O
(
log

(
n−

∑
c′<c dc′

dc

)
/ logmin(dc + 1, n− dc + 1)

)
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has the prescribed upper bound. For this we consider three cases. First, there could be one color c
for which dc > n/2. This will in worst case take as long as the dense coin-weighing problem,
that is O(n/ log n). Second, the contribution from colors c such that

√
n/k ⩽ dc ⩽ n/2 is at

most

Oε

(∑
c

log

(
n−

∑
c′<c dc′

dc

)
/ log n

)
= Oε

(
log

(
n

d1, d2, . . . , dk

)
/ log n

)
,

where the multinomial coefficient can be bounded by kn. Finally, the contribution from colors c
where dc ⩽

√
n/k is at most O(k ·

√
n/k polylog(n)) = O(n1−ε/2 polylog(n)), which is

negligibly small.

It remains to show that Mn,k has as solution of length O(n)+k for any k ⩾ n1−ε. In fact, this
is true for any k ⩾ 2. We show this in two steps. In the first step, we make queries (c, c, . . . , c)
for all c ∈ [k] to determine the total number of times each color appears in the codeword. In the
language of query games, this is a reduction from Mn,k to the set of query games

Mn := {Mn(c1, c2, . . . ) : c1 + c2 + · · · = n},

where Mn(c1, c2, . . . , ck) denotes the query game formed by restricting Mn,k to only those code-
words which has c1 occurrences of color 1, c2 of color 2 and so on. We can think of each query
game M ∈ Mn as an instance of Mastermind where Codebreaker is given hints consisting of
how many times each color appears in the codeword.

In the second step, we apply Theorem 2.6 to solve Mn in O(n) in a similar way to Mperm
n .

The fact that we apply the framework to Mn instead of Mn,k means that the reductions need to
be set up such that the resulting subgames still contain information about how many times each
color appears. In fact, this is necessary to ensure that the reductions of the subgames are still
bounded with an appropriate bound on its weight.

Observation 3.9. Mn,k
k−→ Mn.

Proof. Using k queries, we determine for each i ∈ [k] the total number of times ci each color
appears in the codeword. This forms a reduction with reduced game to M(c1, . . . , ck).

Proposition 3.10. Mn
O(n)−−−→ ∅.

Proof. We will show this using Theorem 2.6. M1 is trivially solved as the hints of any game
in this set uniquely determine the codeword. So it suffices to find a bounded reduction of Mn

for n ⩾ 2.
Fix any Mn(c1, c2, . . . ) ∈ Mn. To form the reduction Mn(c1, c2, . . . )⇝M⌈n/2⌉ +M⌊n/2⌋,

we make the following queries. For each i ⩾ 1 such that ci > 0, query (i, . . . , i, 0, . . . , 0), where,
similar to the previous subsection, the blocks denote the first ⌈n/2⌉ and the last ⌊n/2⌋ positions
respectively. As we already know the total number of occurrences ci of color i in the codeword,
we can use ci as an upper bound for this query.

Given this information, we can determine the number of times c′i each color i appears in the
left half of the codeword, and how many times c′′i = ci − c′i it appears in the right half, which
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directly defines the reduced game M⌈n/2⌉(c
′
1, c

′
2, . . . ) +M⌊n/2⌋(c

′′
1, c

′′
2, . . . ) ∈ M⌈n/2⌉ +M⌊n/2⌋,

which shows that this is a reduction. Moreover, as∑
i : ci>0

log2(ci + 1)2 ⩽
∑

i : ci>0

O(ci) = O(n),

the reduction is bounded with weight O(n). By Theorem 2.6, it follows that Mn
O(n)−−−→ ∅, as

desired.

3.4. White-peg Mastermind and sparse set query

We now turn to determining the minimum number of queries needed to solve white-peg Mas-
termind. Recall that this means that both black- and white-peg information is provided for each
query.

Let us first discuss a bit how adding white-peg information changes the setting compared to
black-peg Mastermind. The information-theoretic lower bounds for both of these games were
discussed in the introduction, where we noted that the lower bound for white-peg Mastermind
is a factor 2 + o(1) smaller than that that of black-peg Mastermind. As we already know that
this bound is sharp up to constant factors when k = O(n). Thus for any k = O(n), white-peg
Mastermind can be solved optimally up to constants by simply ignoring the white-peg answers,
and apply the black-peg solution derived the in the previous section.

For k = o(n), the picture is even clearer. Observe that any solution to white-peg Mastermind
can be turned into a solution to black-peg Mastermind by first making k queries to determine the
number of times each color appears in the hidden codeword. As the number of queries needed
to solve black-peg Mastermind is ω(k) when k = o(n) it follows that the length of optimal
solutions to black- and white-peg Mastermind only differ by a factor 1 + o(1) in this range.

Instead, the regime where white pegs shine is when k = ω(n). Unlike for black-peg Master-
mind where Codebreaker may need to try all but one color in each position of the query to get
any positive indication for what colors are present in the codeword, in white-peg Mastermind
Codebreaker can gain information about about occurrences of a certain color in the codeword
by making queries that contain said color in any position. This lowers the combinatorial lower
bound from Ω(k) to Ω(k/n).

Given the results for black-peg Mastermind, it only remains to consider the case
where k = Ω(n), say k ⩾ 2n, in which case we need a solution that matches the lower
bound Ω(n+ k/n).

To build our solution, we will determine which colors are actually present in the hidden
codeword by observing the total number of (black and white) pegs returned from each query.
Since the total number of colors present is clearly at most n, we already know how to solve the
game optimally from that point. In order to approach this, we will consider a slightly cleaner
version of the problem which we call sparse set query, as described in the introduction. For
any k ⩾ n, we define this as a query game

Xk,n :=

((
[k]

⩽ n

)
,

(
[k]

⩽ n

))
,
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where f(q) := |f ∩ q|. We can think of this as a variation of sparse coin-weighing with k coins,
where we know that at most n coins are counterfeit, and where the scale fit at most n coins.

Analogous to Mastermind, there are two natural lower bounds to the number
of queries needed to solve this. On the one hand, the information-theoretic bound
is log

(∑n
i=0

(
k
i

))
/ log(n+ 1) which is Ω(n log k

n
/ log(n+ 1)) if k ⩾ 2n and Ω(k/ log(n+ 1))

if n ⩽ k < 2n. On the other hand, we need at least ⌈k/n⌉ queries to weigh each coin at least
once.

It is not too hard to see that the game can be solved in O(n/ log(n + 1)) queries
when n ⩽ k < 2n. For instance, one may divide [k] into two sets each with at most n ele-
ments and apply any efficient solution to the classical coin-weighing problem. So in order to
solve this game optimally, it suffices to consider the case when k ⩾ 2n. We will divide this
further into two subcases. First, if k is polynomially smaller than n2, say 2n ⩽ k ⩽ n2−ε for
some ε > 0, then a direct application of sparse coin-weighing schemes shows that the informa-
tion theoretic lower bound is sharp. This will be done in Proposition 3.11. Second, if k ⩾ n2−ε

we can simplify the general lower bound to Ωε(n + k/n). As we can always pretend to add
additional dummy elements to the sets, we may in this latter case always assume that n ⩾ k2,
without affecting the lower bound. We will show in Proposition 3.12 that O(n + k/n) queries
suffice in this case. This will conclude the proof of Theorem 1.3.

Proposition 3.11. Let ε > 0 be fixed. If 2n ⩽ k ⩽ n2−ε, then Xk,n
Oε(n log(k/n)/ logn)−−−−−−−−−−−−→ ∅.

Proof. We build our solution as follows. Partition [k] into ⌈k/n⌉ sets D1, D2, . . . of size at
most n. For each part Di we first query the full set to determine the number di of counterfeit
coins, and then use the sparse coin-weighing scheme from Proposition 3.4 to determine which
coins are counterfeit. The number of queries needed for this is

⌈k/n⌉+
⌈k/n⌉∑
i=1

O
(
log

(
|Di|
di

)
/ log(di + 1)

)
.

In order to bound this expression, let us distinguish terms in this sum depending on the size
of di. If di < nε/2, we can bound the summand by O(di log n) = O(nε/2 log n), and thus the
total contribution from such terms is at most O((k/n) · nε/2 log n) ⩽ O(n1−ε/2 log n), which is
polynomially smaller than n. In the case when di ⩾ nε/2, we have log(di +1) = Θε(log n), and
thus the contribution from these terms are at most

1

log n
Oε

log

⌈k/n⌉∏
i=1

(
|Di|
di

) ⩽ 1

log n
Oε

(
log

(
k

n

))
= Oε(n log(k/n)/ log n),

as desired.

Proposition 3.12. For any k ⩾ n2, we have Xk,n
O(k/n)−−−−→ Xn2,n and for any n ⩾ 1 we

have Xn2,n
O(n)−−−→ ∅.
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Proof. The first reduction can be done by querying the elements in groups of n and discarding
elements in sets that return 0 until only n2 elements remain.

For the solution to Xn2,n, we will apply Theorem 2.6. We start similarly to black-peg Mas-
termind by making a sequence of queries to obtain upper bounds of parts of the codeword. In
this case, fix a balanced n-partitioning [n2] = D1 ∪ · · · ∪Dn and query these sets. This forms a
reduction Xn2,n

n−→ Xn2,n to the set of games where the number of elements in common between
each set Di and the codeword is fixed. Note that by definition X12,1 is trivial, so again it suffices
to find a bounded splitting reduction for n ⩾ 2.

Fixing a game X(D1, d1, D2, d2, . . . ) ∈ Xn2,n in which the codeword is restricted to sat-
isfying f(Di) = di for all i ∈ [n], we form this reduction as follows. For each i ∈ [n] such
that di > 0, we partitionDi into three partsDi = Di,1∪Di,2∪Di,3 each of size at most ⌊n/2⌋, and
query the first two parts to determine f(Di,1), f(Di,2), and f(Di,3) = f(Di)−f(Di,1)−f(Di,2).
Given these function values, we greedily build two lists L and R consisting of sets with non-
zero overlap with the codeword, under the condition that the total overlap between f and L is at
most ⌈n/2⌉ and the total overlap between f and R is at most ⌊n/2⌋, and a set Z consisting of
the union of all sets with no overlap with f . Note that as any set added to L and R contains at
least one element, this implies that |L| ⩽ ⌈n/2⌉ and |R| ⩽ ⌊n/2⌋.

This procedure will leave at most one set Di,j with non-trivial overlap with f that does not
fit in either L nor R – if two such sets D,D′ existed, then the total overlap of L ∪ D and f is
greater than ⌈n/2⌉ and the total overlap between R ∪D′ and f is greater than ⌊n/2⌋, which is
a contradiction as the total overlap is at most n. In case such a set Di,j occurs, we resolve it by
querying its elements one at the time and distribute the singletons between L, R and Z.

Finally, we use the elements of Z to extend the lists L and R until they contain ⌈n/2⌉ sets of
size ⌈n/2⌉ and ⌊n/2⌋ sets of size ⌊n/2⌋ respectively. This gives us a reduction to a sum of sparse
set query on ∪iLi and ∪iRi respectively, with L and R describing the hints for the sub-games.

Finally, we need to check that this reduction has weight at most O(n). Indeed, using di as
upper bound when querying f(Di,1) and f(Di,2) gives a total weight of 2

∑
i : di>0 log(di+1)2 =

2
∑

i : di>0O(di) = O(n). For querying singletons of the remaining set, we make n queries with
upper bound 1, whose weight is clearly also O(n), as desired.

With an efficient solution to the sparse set game at hand, we now come back to Theorem 1.2.

Proof of Theorem 1.2. As remarked, given Theorem 1.1, it remains to solve white-peg Master-
mind in for k ⩾ 2n in O(n + k/n) queries. We will do so by simulating sparse set query to
find the set of colors present in the hidden codeword. Given this, we can apply the black-peg
Mastermind algorithm to solve the rest in O(n) time.

We begin by identifying a color, call it z, that never appears in the hidden codeword. As k>n
we know that one such color exists. Indeed, by asking all ‘i’ queries for i = 1, 2, . . . , n + 1, at
least one of these must return 0 black and white pegs.

Given such a z, we next aim to determine the set X ⊆ [k] \ {k} of colors present in the
hidden codeword f ∈ [k]n. Clearly |X| ⩽ n. For any set Y ⊆ [k] \ {k} of size at most n,
let qY ∈ [k]n denote a query such that each color of Y appears once in qY , and all remaining
positions are filled up with the color z. The total number of black and white pegs returned for



20 Anders Martinsson

any query qY equals |X ∩ Y |, and thus by the preceding propositions, we can determine X
in O(n log(k/n)/ log n+ k/n) queries by simulating sparse set query.

With knowledge of the colors that appear in f , we can now apply the black-peg solution from
Theorem 1.1 to determine the codeword after an additional O(n) queries, as desired.

4. Proof of Theorem 2.5

We now turn to the problem of constructing short solutions for query games satisfying the con-
ditions of Theorem 2.5. As we shall see, after carefully setting up building blocks of the proof,
the theorem can be shown by induction on n. This is inspired by the recursive construction by
Cantor and Mills [CM66] for coin-weighing.

Before outlining our solution, let us take a moment to reflect on what to aim for. The only
operations allowed to us by the theorem is the splitting

Ak
α·k
999K A⌈k/2⌉ +A⌊k/2⌋,

and solving any term A1 in α simple queries. By applying these operations sequentially, we
would form a solution to An in O(α · n log n) simple queries, which is too slow. To speed this
up, the aim is that once the game is split into sufficiently many terms we can run the reductions
more efficient in parallel. Indeed, as the answer to each individual query is known to be either 0
or 1 this parallelism is very similar to classical coin-weighing. A natural approach to improve
this is to consider a sequence of reductions layer by layer

An → An/2 +An/2 → An/4 +An/4 +An/4 +An/4 → . . . ,

where reduction i = 1, . . . ,O(log n), can be performed in Θ(α ·n/2i ·2i/i) = Θ(α ·n/i) queries
by using standard coin-weighing schemes. But as

∑O(logn)
i=1 Θ(α ·n/i) = Θ(α ·n log log n), this

is still too slow. The reason why this is still not fast is that the coin-weighing paradigm gives
a meaningful speedup at first when the game is already split into many terms. In fact, it only
gives the necessary factor log n speedup once the game has been split into nΩ(1) terms. While
the layer-by-layer approach eventually attains this, it spends too much time initially to split all
large (and therefore most costly to split) games at a time when no meaningful parallelism is
possible. The way we remedy this is to consider an intermediate game Pn, the preprocessed
game, which is formed from An by recursively applying the splitting operation a fraction of
terms as they appear in the game. This has the strength that, on the one hand, one can reduce An

to Pn using O(α · n) simple queries. On the other hand, Pn consists of a sum of polynomially
many A-games, meaning we can more directly apply coin-weighing techniques.

Before formally introducing the preprocessed game, we start by stating the lemma that will
allow us to run reductions in parallel. Analogous to how we can determine the value of four coins
in three weighings, this lemma states that, in the setting of sums of query games we can run four
reductions in parallel at the cost (i.e. number of queries) of three of them, provided one reduction
is simple. We will be able to construct efficient solutions by applying this recursively. We will
choose the exact definition of the preprocessed game below so that it matches this statement
nicely.
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Lemma 4.1. Let T > 0 and let A,B,C,D,E be sets of query games such that A T−→ ∅,
B

T−→ ∅, C T−→ ∅, D
T
99K E. Then A+B+C+D

3T−→ E.

Proof. Given games A,B,C, and D from the respective sets, and strategies (qA(t))
T
t=1,

(qB(t))
T
t=1, (qC(t))

T
t=1 and (qD(t))

T
t=1 as in the statement of the lemma, we define a strategy

(q(t))3Tt=1 on A+B + C +D by, for each t = 1, . . . , T , letting

q(3t− 2) := 0 + qB(t) + qC(t) + qD(t)

q(3t− 1) := qA(t) + 0 + qC(t) + qD(t)

q(3t) := qA(t) + qB(t) + 0 + qD(t),

where for each t and each X ∈ {A,B,C,D}, the subquery qX(t) is generated as if past queries
have returned fX(qX(1)), . . . , fX(qX(t− 1)) where f = fA+ fB + fC + fD denotes the hidden
codeword of the sum game.

To see that this is a well-defined strategy, we need to show that fX(qX(t)) can be uniquely
determined by f(q(1)), . . . , f(q(3t)). Note that, given the answers to the first 3t queries, we can
compute

f(q(3t)) + f(q(3t− 1))− f(q(3t− 2)) = 2 · fA(qA(t)) + fD(qD(t)),

and as qD is simple, we can determine fD(qD(t)) by considering the parity of this sum. Given
this, we can compute

f(q(3t− 2))− fD(qD(t)) = fB(qB(t)) + fC(qC(t)),

f(q(3t− 1))− fD(qD(t)) = fA(qA(t)) + fC(qC(t)),

f(q(3t))− fD(qD(t)) = fA(qA(t)) + fB(qB(t)),

from which fA(qA(t)), fB(qB(t)) and fC(qC(t)) can be determined by linear algebra.
To show that (q(t))3Tt=1 is indeed the desired reduction, note that as (qA(t))

T
t=1, (qB(t))

T
t=1,

and (qC(t))
T
t=1 are solutions for their respective terms, the answers provided uniquely deter-

mine fA, fB and fC of the codeword. At the same time, for the subgame D = (QD,FD), the
answers to (qD(t))

T
t=1 determine a game E = (QE,FE) ∈ E and maps φ : QE → QD

and Φ : FE → FD. One immediately checks that the maps q 7→ 0 + 0 + 0 + φ(q) for q ∈ QE

and f ′ 7→ fA + fB + fC + Φ(f ′) for f ′ ∈ FE satisfy the definition of a reduction
from A+B + C +D to E, as desired.

Remark 4.2. To illustrate the strength of applying Lemma 4.1, consider any sets of games Bn

such that Bn
3n

99K ∅ for all n ⩾ 0. We claim that this implies that

Bn + 3 ·Bn−1 + 9 ·Bn−2 + · · ·+ 3n ·B0
3n+1

−−→ ∅.

Indeed, this can be shown by induction. For n = 0 the statement is clearly true with room to
spare, and for the induction step one may apply Lemma 4.1 for A = B = C = Bn−1+3·Bn−2+
· · ·+3n−1 ·B0, D = Bn and E = ∅. Note that this solution resolves a total of (n+1)3n queries
from the subgames by making 3n+1 queries in the sum game.
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With this lemma at hand, we are now ready to build our solution. For a given sequence of
sets of query games An as in Theorem 2.5, we define the preprocessed game Pn, as follows

Pn :=

{
∅ if n ⩽ 3,

P⌈⌈n/2⌉/2⌉ +P⌊⌈n/2⌉/2⌋ +P⌈⌊n/2⌋/2⌉ +A⌊⌊n/2⌋/2⌋ if n ⩾ 4.
(4.1)

We note that the indices of the four terms in the right-hand side is always equal to ⌈n/4⌉ or ⌊n/4⌋.
In particular, ⌈⌈n/2⌉/2⌉ is always equal to the former, and ⌊⌊n/2⌋/2⌋ equal to the latter, and the
sum of all four indices is n.

We now give a simple reduction from An to the preprocessed game. This will be used both
as the first step of the solution of An, and also as a building block for the second step when
solving Pn.

Claim 4.3. For any n ⩾ 1, An
8αn−7α
999999K Pn.

Proof by induction. It is straightforward to check that the statement holds for n ⩽ 3. We have

A1
α
99K ∅ = P1, thus A1

α
99K P1

A2
2α
99K A1 +A1

α+α
9999K ∅ = P2, thus A2

4α
99K P2,

A3
3α
99K A2 +A1

4α+α
9999K ∅ = P3, thus A3

8α
99K P3.

Here, the reductions A1+A1 99K ∅ and A2+A1 99K ∅ are formed by solving the subgames
one at a time through queries of the form q + 0 and 0 + q′.

For n ⩾ 4, we have the following sequence of reductions

An
αn
999K A⌈n/2⌉ +A⌊n/2⌋

α⌈n/2⌉+α⌊n/2⌋
99999999999K A⌈⌈n/2⌉/2⌉ +A⌊⌈n/2⌉/2⌋ +A⌈⌊n/2⌋/2⌉ +A⌊⌊n/2⌋/2⌋

8α⌈3n/4⌉−21α
9999999999K P⌈⌈n/2⌉/2⌉ +P⌊⌈n/2⌉/2⌋ +P⌈⌊n/2⌋/2⌉ +A⌊⌊n/2⌋/2⌋ = Pn.

By upper bounding ⌈3n/4⌉ by 3n/4 + 3/4, we see that the concatenation of the above steps
forms a simple reduction from An to Pn in 8αn− 15α ⩽ 8αn− 7α, as desired.

With this at hand, we are now ready to construct the solution to the preprocessed game.

Claim 4.4. For any n ⩾ 1, Pn
8α(n−1)−−−−−→ ∅.

Proof by induction. As P1 = P2 = P3 = ∅, the statement is trivial for n ⩽ 3. For n ⩾ 4,
define

T = max (8α⌈n/4⌉ − 8α, 8α⌊n/4⌋ − 7α) ,

and note that, we have the reductions

Pn = P⌈⌈n/2⌉/2⌉︸ ︷︷ ︸
T−→∅

+P⌊⌈n/2⌉/2⌋︸ ︷︷ ︸
T−→∅

+P⌈⌊n/2⌋/2⌉︸ ︷︷ ︸
T−→∅

+ A⌊⌊n/2⌋/2⌋︸ ︷︷ ︸
T
99KP⌊⌊n/2⌋/2⌋

,
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where the solutions of the first three terms follow from the induction hypothesis, and the reduc-
tion of the last term from Claim 4.3. Hence by Lemma 4.1, we get

Pn
3T−→ P⌊n/4⌋

8α(⌊n/4⌋−1)−−−−−−−→ ∅,

where the last step is, again, by the induction hypothesis.
Hence, it suffices to check that the length 3T + 8α(⌊n/4⌋ − 1) of the concatenated strategy

is always at most 8α(n− 1). Indeed

24α⌈n/4⌉ − 24α + 8α(⌊n/4⌋ − 1) ⩽ 24α(n+ 3)/4− 24α + 8α(n/4− 1) = 8αn− 14α,

24α⌊n/4⌋ − 21α + 8α(⌊n/4⌋ − 1) ⩽ 32α · n/4− 29α = 8αn− 29α.

To conclude the proof of Theorem 2.5 we note by Claims 4.3 and 4.4 that

An
8α·n−7α
999999K Pn

8α(n−1)−−−−−→ ∅,

which indeed combines to a solution of length 16α · n− 15α.

5. Proof of Theorem 2.6

In this section, we modify the arguments from the last section to allow for queries whose answer
can be larger than one, provided sensible upper bounds on each query are known beforehand.
We will construct the solution in a very similar way to the previous section. We again use
the preprocessed game (4.1) and define our solution around it recursively as before. The main
challenge is how to generalize Lemma 4.1.

We will do this by showing that it is possible to replace the simple reduction in Lemma 4.1
with a reduction (q(t))Tt=1 with the property that f(q(t)) ∈ [0, r(t)] for all 1 ⩽ t ⩽ T and for
a carefully chosen (non-adaptive) function r : {1, 2, . . . } → {0, 1, 2, . . . }. This comes with a
few caveats. First, we can no longer allow arbitrary solutions for the first three terms, A,B,C,
but the solutions need to have additional structure. Second, the choice of the function r(t) will
depend on the solutions to A,B and C, so, rather, we will need to consider a set R and require
that r-bounded reductions exist for all functions r(t) in R.

The set R we will work with is the set of functions r(t) that satisfy that there exists a se-
quence a1, a2, . . . of integers such that

r(t) =

{
22

i − 1 if t ≡ ai mod 4i for some i ⩾ 1

0 otherwise.

We say thatA has anR-reduction toB in T steps,A T−→
R

B, if there exist r(t)-bounded reductions
from A to B in T steps for all r(t) ∈ R.

Proposition 5.1. If A T
⇝ B, then A

4T−→
R

B.
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Proof. Given any bounded reduction (q(t))t⩾1 with an adaptive upper bound (b(t))t⩾1
where

∑
t log2(b(t) + 1)2 ⩽ T and any r(t) ∈ R we construct an r(t)-bounded reduc-

tion (q′(t))4Tt=1 by appropriately padding with zeros: Initially let s = 1. For each t = 1, 2, . . .
until the bounded reduction terminates, if b(s) ⩽ r(t) we let q′(t) := q(s) and increase s by one.
Otherwise, we let q′(t) := 0 and do not update s.

As the new strategy does not change which queries are being made, it is still a reduction,
and it is by construction r(t)-bounded. It suffices to show that this procedure always stops
with t ⩽ 4T . Suppose at a time t ⩾ 1, the strategy has just made the query q(s − 1), and
we know that b(s) ⩽ 22

i − 1 for some suitable i ⩾ 1, then by definition of R, the strategy will
make the query q(s) at most 4i time steps later. For any b(s) ⩾ 1, we can always find such
an i ⩾ 1 with 2i ⩽ 2 log2(b(s) + 1), or, equivalently, 4i ⩽ 4 log2(b(s) + 1)2. Hence, the total
amount of time needed to make all queries is 4

∑
s log2(b(s) + 1)2 ⩽ 4T , as desired.

The rest of the section will be dedicated to proving the following statement. Theorem 2.6
follows immediately by taking β := 4α and plugging in Proposition 5.1.

Theorem 5.2. Let R be as above, and let An be a sequence of sets of query games such that

An
β·n−−→
R

A⌈n/2⌉ +A⌊n/2⌋,

and A1
β−→
R

∅ for some constant β ⩾ 1. Then An
O(β·n)−−−−→ ∅.

In order to show this, we need yet another special kind of reduction. For any function
p(t) : {1, 2, . . . } → {1, 2, . . . } we say that a game A has a p(t)-predictable reduction to B

in T queries, A T
=⇒
p

B, if there exists a reduction such that the congruence class of f(q(t))
modulo p(t) is uniquely determined by f(q(1)), . . . , f(q(t− 1)) for all 1 ⩽ t ⩽ T .

In order to relate p(t)-predictable reductions to r(t)-bounded reductions, we need to intro-
duce some additional structure. Let Q be the set of pairs of functions (x(t), y(t))t⩾1 such that

• x(t) is a power of two and 0 ⩽ y(t) ⩽ x(t)− 1 for all t ⩾ 1, and

• for any pair of integers i ⩾ 1 and 0 ⩽ j ⩽ 2i − 1, there exists a constant aij such that

(x(t), y(t)) = (2i, j) ⇔ t ≡ aij mod 4i.

It is not too hard to see that such pairs of functions exist. For instance, one can imagine going
through the pairs (i, j) as above in lexicographical order and letting aij be the smallest inte-
ger a ⩾ 1 such that a ̸≡ ai′j′ mod 4i

′ for any (i′, j′) < (i, j). Such an a always exists as the total
density of integers covered by congruence classes (i′, j′) < (i, j) is

∑
(i′,j′)<(i,j) 4

−i′ < 1.
For any pair (x(t), y(t))t⩾1 ∈ Q say that a reduction is (x(t), y(t))-bounded if it is r(t)-

bounded for the function r(t) := 1y(t)=0(2
x(t) − 1). We say that a reduction is (x(t), y(t))-

predictable if it is p(t)-predictable for p(t) := 2y(t). We will write A
T−→
Q

B and A
T
=⇒
Q

B to
denote that (x(t), y(t))-bounded reductions and (x(t), y(t))-predictable reductions respectively
exists for all (x(t), y(t)) ∈ Q. Note that if A T−→

R
B then we also have A T−→

Q
B.
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Lemma 5.3. If A T
=⇒
Q

∅, B T
=⇒
Q

∅, C T
=⇒
Q

∅, and D
T−→
Q

E, then A+B+C+D
3T+6
===⇒

Q
E.

Proof. Let A,B,C,D be query games from the respective sets, and let (x(t), y(t)) ∈ Q. We
construct a (x(t), y(t))-predictable reduction from A+B + C +D to E as follows.

Let qA(t), qB(t) and qC(t) denote three (xA(t), yA(t))-predictable, (xB(t), yB(t))-predic-
table and (xC(t), yC(t))-predictable reductions respectively where

(xA(t), yA(t)) = (x(3t), y(3t)− 1 mod x(3t)),

(xB(t), yB(t)) = (x(3t+ 1), y(3t+ 1)− 1 mod x(3t+ 1)),

(xC(t), yC(t)) = (x(3t+ 2), y(3t+ 2)− 1 mod x(3t+ 2)).

(5.1)

Here we use y − 1 mod x denotes y − 1 if y > 0 and x − 1 if y = 0. It can be checked from
the definition of Q that these sequences are contained in Q. Let qD(t) be a (xt, yt)-bounded
reduction from D to E.

We construct a reduction of length by 3(T + 2) from A + B + C + D to E, by, for
each 1 ⩽ t ⩽ T + 2 letting

q(3t− 2) := 0 + qB(t− 1) + qC(t− 2) + qD(t)

q(3t− 1) := qA(t) + 0 + qC(t− 2) + qD(t)

q(3t) := qA(t) + qB(t− 1) + 0 + qD(t),

where we put qX(t) := 0 for X ∈ {A,B,C,D} whenever t ⩽ 0 or t > T .
We first show that this is a well-defined reduction to E. Let f = fA+fB+fC+fd denote the

hidden codeword. Similar to Lemma 4.1, it suffices to prove that f(q(1)), . . . , f(q(3t)) uniquely
determines the subqueries

fA(qA(t)), fB(qB(t− 1)), fC(qC(t− 2)), fD(qD(t))

for each 1 ⩽ t ⩽ T+2. We will show this by induction on t. For any given 1 ⩽ t ⩽ T+2, we may
assume that we have already determined fA(qA(s)) for all s < t, fB(qB(s)) for all s < t − 1,
and fC(qC(s)) for all s < t − 2. Observe that it is sufficient to determine fD(qD(t)), as the
answers to the remaining subqueries then can be extracted by linear algebra. In particular, this
trivially holds for any t such that y(t) > 0 as then fD(qD(t)) = 0.

We will resolve the cases where y(t) by considering the congruence of t modulo 3. If t = 3s,
then as qA(t) is (xA(t), yA(t))-predictable, we can determine uniquely the congruence class
of fA(qA(t)) = fA(qA(3s)) modulo 2yA(s) = 2x(3s)−1 = 2x(t)−1 from past subqueries. In partic-
ular, as

−f(q(3t− 2) + f(q(3t− 1) + f(q(3t)) = 2 · fA(qA(t)) + fD(qD(t)),

this allows us to determine uniquely fD(qD(t)) mod 2x(t), and as 0 ⩽ fD(qD(t)) ⩽ 2x(t) − 1,
this uniquely determines fD(qD(t)).

Similarly, the cases t = 3s + 1 and t = 3s + 2 can be resolved by using the predictability
of qB(t) and qC(t) together with

f(q(3t− 2)− f(q(3t− 1) + f(q(3t)) = 2 · fB(qB(t− 1)) + qD(t),
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f(q(3t− 2) + f(q(3t− 1)− f(q(3t)) = 2 · fC(qC(t− 2)) + qD(t).

We conclude that q(t) is a well-defined reduction to E.
Finally, we need to check that q(t) is (x(t), y(t))-predictable, that is, f(q(3t)) mod 2y(t)

is uniquely determined from f(q(1)), . . . , f(q(3t − 1)). Note that this is a trivial statement
if y(t) = 0. For any t ⩾ 1 such that y(t) > 0 we know that fD(qD(t)) = 0 and again by
case distinction on t mod 3, one can see that f(q(1)), . . . f(q(3t − 1)) uniquely determine the
congruence class of fA(qA(t)), fB(qB(t − 1)) or fC(qC(t − 2)) mod 2y(t)−1. The statement
follows as before by linear algebra.
Proposition 5.4. Let Q be as above, let T, S ⩾ 1 and let A,B and C be sets of query games.
The following holds:

(i) If A T−→
Q

B and B
S−→
Q

C, then A
T+S−−→
Q

C,

(ii) if A T
=⇒
Q

B and B
S
=⇒
Q

C and T is divisible by three, then A
T+S
===⇒

Q
C.

Proof. Let (x(t), y(t)) ∈ Q be given. Observe that any linear shift ((x(t + a), y(t + a)) is
also contained in Q. For (i) we concatenate a (x(t), y(t))-bounded reduction from A to B with
a ((x(t+T ), y(t+T ))-bounded reduction from B to C. For (i) we concatenate a ((x(t), y(t))-
predictable strategy from A to B with a (x(T/3 + t), y(T/3 + t))-predictable strategy from B
to C.

We now turn to proving Theorem 5.2. Let An be any sequence of sets of query games such
that

An
β·n−−→
Q

A⌈n/2⌉ +A⌊n/2⌋,

and A1
β−→
Q

∅ for some β ⩾ 1. Similarly, as before, we define the preprocessed game Pn

according to

Pn :=

{
∅ if n ⩽ 3,

P⌈⌈n/2⌉/2⌉ +P⌊⌈n/2⌉/2⌋ +P⌈⌊n/2⌋/2⌉ +A⌊⌊n/2⌋/2⌋ if n ⩾ 4.

The following statement is proven identically to Claim 4.3, using Proposition 5.4 to concate-
nate the strategies.

Claim 5.5. For any n ⩾ 1, An
8βn−7β−−−−→

Q
Pn.

Secondly, we can show that Pn has an Q-predictable solution in 8β(n− 1) time in the same
way as Claim 4.4 but replacing Lemma 4.1 by Lemma 5.3. Note that the latter lemma adds 6
additional queries to the length of the combined reduction, but the inequalities at the end of
Claim 4.4 has room to spare for this.

Claim 5.6. For any n ⩾ 1, Pn
8β(n−1)
=====⇒

Q
∅. .

By concatenating the reductions from the two claims above, we conclude that An has a so-
lution of length 8βn − 7β + 8β(n − 1) = 16βn − 15β, which concludes the proof of Theo-
rem 5.2.
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6. Conclusion

In conclusion, we have demonstrated the versatility of the framework presented in Section 2 for
finding optimal solutions to a wide range of guessing games over integers. Hopefully, this paper
can act as a guide to finding solutions to further games in the future.

While this paper has focused on proving the existence of solutions, with little discussion on
how these may look, it is worth noting that any solution given by Theorems 2.5 and 2.6 can be
efficiently implemented, provided that the elementary reductions have efficient implementations.
More precisely, in order to show that a solution given by either of these theorems has a poly-
nomial time implementation, it is sufficient to show that there is an efficient way to implement
the reductions (q(t))Tt=1, the pairs of query games A + B produced by the reductions, and the
maps φ,Φ. In fact, the map Φ is only needed to ensure that decoding the codeword can be done
efficiently.

Additionally, while we have not optimized constants in our solutions, it would be interesting
to see how close the lower bounds one can push these constructions. For example, for black-peg
Mastermind with n colors and positions, the argument in the paper shows that the minimum
number of queries needed lies between n and 129n + o(n). It seems likely that the length of
the optimal solution for this problem grows as c · n for some small constant c > 1. Resolving
this completely may be difficult due to the long-standing remaining factor 2 gap for adaptive
coin-weighing, but it would be interesting to see how much this gap could be narrowed.

In our main technical results, Theorems 2.5 and 2.6, we require the splitting operation to
divide An exactly in half (up to rounding). It is natural to ask whether the same conclusion
holds if we can only ensure an inexact split

An
α·n
⇝

⌊(1−ε)n⌋⋃
k=⌈εn⌉

(Ak +An−k) ,

for some 0 < ε ⩽ 1
2
. Indeed, to show this, we can define

Bn :=
⋃

n1+n2+···=n

(An1 +An2 + . . . ) ,

where (n1, n2, . . . ) go over all integer compositions of n. By iteratively applying the inex-
act splitting for An we obtain a bounded reduction Bn

O(ε−1α·n)
⇝ B⌈n/2⌉ + B⌊n/2⌋, which im-

plies Bn
O(ε−1α·n)−−−−−−→ ∅, and thus An

O(ε−1α·n)−−−−−−→ ∅.
Another way the main technical results can be strengthened is to consider what happens if

the solution to A1 has a high weight, say A1
β
⇝ ∅ for some large β > 0. In this case, we can

still use the solution provided by Theorem 2.6 of length O(α · n) to reduce An to n ·An. Then
using Proposition 3.2, we can solve this sum using O(β · n/ log n) additional queries. In other
words, in order to show that An

O(n)−−−→ ∅, the bound on the reduction A1 ⇝ ∅ can be relaxed
from O(1) to O(log n).

Finally, we note that the query game framework presented in this article is reminiscent of a
communication theory problem introduced by Chang and Weldon [CW79], in which multiple
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independent users want to communicate by sending bits over a channel that adds up their answers.
The schemes derived in this paper may be of independent interest within this line of investigation.
In particular, the solution derived in Remark 4.2 can be directly reinterpreted as a coding scheme
in this setting where the i:th user transfers information at rate Θ(1/i).
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