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ARTICLE

Accelerated knowledge discovery from omics data
by optimal experimental design
Xiaokang Wang1,2, Navneet Rai2,3, Beatriz Merchel Piovesan Pereira2,4, Ameen Eetemadi2,3 &

Ilias Tagkopoulos 2,3✉

How to design experiments that accelerate knowledge discovery on complex biological

landscapes remains a tantalizing question. We present an optimal experimental design

method (coined OPEX) to identify informative omics experiments using machine learning

models for both experimental space exploration and model training. OPEX-guided exploration

of Escherichia coli’s populations exposed to biocide and antibiotic combinations lead to more

accurate predictive models of gene expression with 44% less data. Analysis of the proposed

experiments shows that broad exploration of the experimental space followed by fine-tuning

emerges as the optimal strategy. Additionally, analysis of the experimental data reveals 29

cases of cross-stress protection and 4 cases of cross-stress vulnerability. Further validation

reveals the central role of chaperones, stress response proteins and transport pumps in

cross-stress exposure. This work demonstrates how active learning can be used to guide

omics data collection for training predictive models, making evidence-driven decisions and

accelerating knowledge discovery in life sciences.
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The scientific method of formulating, testing, and ultimately
accepting hypotheses has been the way we have advanced
science for centuries1–3. Through hypothesis-driven and

discovery-based science, we have been able to study an organism’s
physiology intimately, fueled by technological advances in
structural biology4, omics5, automation6, computational model-
ing, and big data analysis7,8. In computational science, we are
witnessing the age of predictive and prescriptive analytics in a
wide spectrum of disciplines, including biology, biotechnology,
and medicine, with large, consistent, and informative datasets
being essential for computational learning9–16.

Through human history, data are viewed as a means to test
hypotheses or discover associations and phenomena, and less as a
means to train computational methods across the various biolo-
gical dimensions17. In the era of prediction, experimental design
methods, such as those based on optimal experimental design
(OED), also known as active learning, have the potential to
accelerate scientific exploration18–20. OED is a class of algorithms
originating from the 1950s that aims to guide data collection21.
OED methods usually formulate a sampling problem as an
optimization problem, which aims to identify the next experiment
(s) to perform so that a specific objective is maximized, and a set
of constraints are met22. These methods usually balance
exploration (global search, maximizing coverage of the experi-
mental space) and exploitation (local search, refining existing
solutions) objectives. Depending on the problem, mutual infor-
mation23, Fisher information24, predictive variance25, general-
ization error26,27, and margin28 have been used as part of the
objective function29. OED methods have been applied extensively
in various industries, including aerospace engineering30, seismic
source inversion31, sensor placement32, and more recently in
material science22,33,34. In biology, OED methods have recently
been used in protein design35, drug discovery36–39, assay panel
selection40, system biology41–47, and synthetic biology48. The
systems biology applications of OED have been largely focused on
uncovering the underlying gene regulatory or signaling network,
usually involving a few dozen genes49,50. In contrast, our focus is
on optimal training of predictive machine learning models from
genome-scale transcriptional profiling experiments, which aim to
capture the expression of thousands of genes. Although never
used for omics experiments, OED methods can be especially
useful in exploring the experimental space efficiently across a
multitude of design dimensions and providing a method to
produce training data that carry the maximum information
content for training a predictive model.

Towards this goal, we design an optimal experimental design
(coined OPEX) framework to guide omics experimentation by
selecting the most informative experiments to perform. OPEX
consists of two essential modules, a machine learning model and a
utility metric that evaluates the information of an unobserved
datapoint. Here we use Gaussian process (GP) as the model of
gene expression51, both because it is a nonparametric method and
it predicts a distribution rather than a point estimate. From the
predicted distribution, we use two metrics, entropy, and mutual
information32, to evaluate the utility of each candidate experiment.

In its core, OPEX assesses the information content distribution
and model uncertainty across the experimental space to identify
the next batch of experiments (Fig. 1). We apply OPEX in the
exploration of the transcriptional interplay in Escherichia coli
when exposed to biocides and antibiotics and demonstrate how it
traverses experimental space in a way that the model achieves the
same predictive performance with fewer experiments. Further-
more, through analysis of the transcriptional profiling and fitness
results, we identify several cases of cross-stress protection (vul-
nerability), where E. coli treated with a biocide is more (less)
protected to antibiotics than expected52,53.

Results
Active learning accelerates discovery and model training. We
applied OPEX on the unexplored space of biocide and antibiotic
interactions, where we performed genome-wide transcriptional
profiling of E. coli under sequential biocide–antibiotic stress
combinations (see “Methods”). We selected four antibiotics based
on their diverse mechanisms of action and ten biocides based on
their widespread use in hospitals and households (Fig. 2a). GPs
were trained to model the genome-wide gene expression for all
combinations and then used OPEX to guide 30 cycles of
experimentation (i.e., the gene expression dataset in Supple-
mentary Data 1). Each OPEX cycle resulted in a different
biocide–antibiotic combination to explore (Fig. 2a), with the GP-
based model being retrained with each new dataset obtained.
OPEX used 44% less data to achieve the same accuracy early on
(iteration 15 vs. 27, p value= 2:2 ´ 10�16, Fig. 2b, Supplementary
Fig. 1) and led to a better model (22% less mean average error,
p value= 6:7 ´ 10�97, Fig. 2c) compared to when the experiments
were picked at random or by expert sampling (see “Random
sampling and expert sampling” section of “Methods”). OPEX was
found to be robust to noise, batch size, and dataset heterogeneity
(see Section 4.1.2 of Supplementary Information, Supplementary
Figs. 2–9, and Supplementary Data 2). Similar results were
observed when running OPEX on all the genes of E. coli (Section
4.2.5 in Supplementary Information, Supplementary Figs. 10–13)
or implementing OPEX by a Query-by Committee approach
(Supplementary Table 2). The performance of expert sampling
was always worse than that of random sampling (Supplementary
Fig. 14) regardless of the level of exploration.

Broader exploration followed by fine-tuning as a strategy. We
inspected how OPEX selects the next experiment to perform and
the reason for its superior performance. We found that the distance
amongst gene expression profiles for consecutively selected condi-
tions first increases (the first ten conditions, R2= 0.31, p value
<0.046) and then rapidly decreases (R2= 0.77, p value= 6.7 × 10−7,
Fig. 2e). No such pattern was observed with random or expert
sampling (Fig. 2d and Supplementary Figs. 15, 16). OPEX works by
balancing the need to explore under-sampled experimental neigh-
borhoods to that of picking conditions to sample for which the
model is less confident, even when those are in a well-sampled area.
The gain from a broader exploration and then a fine-tuning strategy
is maximized when a balanced trade-off between exploration and
exploitation exists (Section 4.2.3 of Supplementary Information,
Supplementary Fig. 17). We investigated the behavior of OPEX
without exploration as the prediction error goes up at the last few
iterations. For details, see Supplementary Figs. 18–20.

OPEX accelerates the discovery of gene expression clusters.
Next, we applied OPEX to evaluate how previous exposure to
biocides would affect E. coli’s survival in four antibiotics with
diverse modes of action. We found that biocide–antibiotic com-
binations are clustered in three groups based on their conditions,
with two of those clusters corresponding to Rifampicin and
alcohols, respectively (Fig. 3a, b, and Supplementary Fig. 21).
OPEX-guided modeling was able to predict the gene expression
profile and cluster membership of the unobserved conditions
accurately early on (accuracy of 96.5% ± 1.9% using OPEX vs.
93.3% ± 3.3% using random sampling at iteration 15, p value=
2.4 × 10−6), hence accelerating knowledge discovery and out-
performing models that were trained based on either random or
expert sampling (Fig. 3c).

Exposure to biocides confers cross-stress protection. Interest-
ingly, both strong cross-stress protection and cross-stress
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vulnerability were observed (Fig. 4 povidone-iodine/kanamycin
and norfloxacin/chlorophene). Cross-stress protection (vulner-
ability) is the phenomenon where exposure of an organism to a
given stressor increases (decreases) its fitness when subsequently
exposed to a different stressor53,54. Here, we introduce the cross-
stress protection index (CSPI) to indicate any cross-stress pro-
tection or vulnerability (see “Methods”). Out of 40 cross-stress
combinations, we identified cross-stress protection in 29 cases
(avg. fitness increase by 38.4 ± 10.4%), and cross-stress vulner-
ability in 4 cases (avg. fitness decrease by 2.3 ± 0.44%), as shown
in Fig. 4.

Chaperons and membrane proteins are involved in cross-stress.
To establish the potential DEGs contributing to cross-stress

behavior between biocides and antibiotics, we analyzed the
extreme condition pairs, with the highest and lowest fitness in our
dataset. The povidone-iodine/kanamycin combination had the
highest cross-stress protection (13.0 ± 2.1% fitness increase), with
only five DEGs (htpG, dnaK, groL, groS, and clpB) with a mini-
mum two-fold increase over the control, all of which were cha-
perones (Fig. 5a, b). Both antimicrobials target cell proteins
(Supplementary Table 1). Povidone-iodine acts non-selectively on
cell proteins, resulting in oxidation, coagulation, and loss of
function54, while kanamycin, an aminoglycoside, interferes with
protein synthesis by binding to ribosomes55. Hence, a response
focused on assisting protein refolding and ensuring functional
conformation would act synergistically to increase fitness in such
antimicrobial combination. Our results are in accordance with
previous reports that the upregulation of chaperones facilitates
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cell survival against aminoglycosides56. We further validated the
genetic basis of cross-stress protection by single knockouts (p
values of 0.007–0.021, Fig. 5c). The knockout of cpxP, a chaper-
one54, which was not differentially expressed in povidone-iodine
and kanamycin combination, was used as a negative control.

Similarly, the most striking case of cross-stress vulnerability was
the application of chlorophene succeeded by norfloxacin (2.7 ±
2.2% fitness decrease). We identified 12 upregulated and 9
downregulated genes exclusively in such combination (Fig. 5d, e).
We focused on downregulated genes (gstA, dadA, yhiI, gorA, and
cspD) that have been shown previously to interfere with the cellular

states, including inhibition of DNA replication, stress response,
drug detoxification, and export57–63. Given their importance in cell
protection and stress response, such downregulation could be
driving the lower fitness (cross-stress vulnerability) observed
compared to other antimicrobial combinations. Knockout mutant
experiments validate their statistically significant role in the
observed cross-stress vulnerability cases (Fig. 5f; gstA, p value=
0.0043; dadA, p value 0.0007; yhiI, p value= 0.004). The knockout
of baeS, a gene involved in adaption to envelope stress61, which was
differentially expressed in the chlorophene and norfloxacin
combination, was used as a negative control.
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Discussion
Our results argue that active learning and optimal experimental
design can be applied to omics data collection to accelerate bio-
logical discovery significantly. We present an active learning
method, OPEX, which can prioritize experimentation of unex-
plored neighborhoods over experimental conditions with high
confidence in its predictions. When applied to unobserved
combinations of antiseptics and antibiotics, OPEX led to a more
accurate model faster and accelerated the process of discovering
knowledge about the clustering of the 40 culture conditions.
OPEX can be applied to cases where culture conditions are
defined by continuous variables to encode for effects such as
dosage and temporal changes, as we demonstrated with the use of
synthetic data how this can be achieved with OPEX (Sections
2.5.1 and 2.5.3 in Supplementary Information). OPEX out-
performed random sampling despite various levels of skewness
and noise in synthetic gene expression data (Section 4.1.2 in
Supplementary Information). We envision that OPEX can be
generalized to other studies in which the relationship between
cultural conditions and biological assays is of interest (e.g., to find
the optimal culture condition for maximizing the production of
specific enzymes).

The modular design of OPEX allows the integration of dif-
ferent machine learning models and OED sampling strategies. To
that end, we used OPEX with different query-by committee
strategies together with various machine learning methods
(neural networks, linear regression, and support vector regres-
sion) and achieved comparable results (Sections 2.1 and 4.2.6 in
Supplementary Information). This work has demonstrated how
active learning can be applied in omics experimentation and can
be a precursor of predictive techniques that will guide

experimentation, data processing, and discovery in life sciences at
a faster pace. Considering the increase in data-driven biological
research, and ease of access to corresponding data from public
databases, paradigm-shifting applications of OPEX-like frame-
works in biotechnology are on the horizon.

Methods
Culture conditions, RNA extraction, and transcriptomics. Escherichia coli
MG1655 was grown in minimal media (M9) with 0.4% w/v glucose for 12 h (mid to
late exponential growth, optical densitiy (OD600) ~0.8) at 37 °C. Next, 30 µL were
added to 3 mL M9 0.4% glucose tubes containing one of ten biocides or no biocide.
The concentrations used were sub-inhibitory. After 7–12-h growth, when cells
reached mid to late exponential phase (OD600 0.6–1.0), the appropriate volume of
one out of four antibiotics was added, and the tubes were incubated for an addi-
tional hour. Tubes without any antimicrobial (antibiotic or biocide) served as
controls. To stop bacterial growth and stabilize cellular RNA, 1.5 mL of ice-cold
Phenol/Ethanol (5% (v/v) phenol in ethanol) was added to per 3 mL sample. The
cells were pelleted by centrifugation at 3166 g at 4 °C for 10 min and stored at
−80 °C until further use. All experiments were performed in triplicate.

Total RNA was extracted from the bacterial samples using the RNeasy mini kit
(Qiagen), and any possible DNA contamination was removed by performing on-
column DNAse digestion (Qiagen). mRNA was enriched by removing ribosomal
RNA using the capture oligonucleotide mix (MICROBExpress, Invitrogen). RNA-
Seq libraries were prepared using the KAPA Stranded RNA-Seq Library Preparation
Kit for Illumina platforms (Kapa Biosystems), and instructions suggested by the
manufacturer were followed. Double size selection of libraries was performed using
Agencourt AMPure XP magnetic beads (Beckman Coulter), where cDNA fragments
ranging from 200 to 500 bp were enriched. The concentration for each sample
library was determined with Qubit 2.0 fluorometer (Invitrogen). The DNA
concentration of the final pooled library was determined with the Bioanalyzer DNA
high sensitivity assay (Agilent, DNA Technologies Core, UC Davis). Sequencing was
performed with HiSeq4000 SR50 (DNA Technologies Core, UC Davis).

RNA-Seq data analysis. Adapters and low-quality reads were removed from the
raw reads by Trimmomatic64 followed by alignment to the reference genome of E.
coli MG1655 by Bowtie265. Then, the bam files generated by Bowtie2 were fed into
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FeatureCounts66, yielding the number of transcripts for each gene in any given
biological replicate. The number of transcripts for each gene was then converted to
count per million (CPM) after dividing by the library size of the replicate. Finally,
the gene CPM values for each replicate were normalized using the means of the
corresponding gene CPM values from the control sample replicates. In all figures
related to the performance of OPEX except Supplementary Figs. 10–13, only the
genes that have CPM larger than 100 in half of the replicates were used67.

Modeling gene expression using GPs. We modeled the expression level of a gene
under an experimental condition by a GP, considering that gene expression levels
under similar conditions are similar. When predicting expression level under a new

experimental condition, a GP model generates a probability density function. The
function is then used by OPEX, to calculate a utility score to estimate the utility of
performing wet-lab experiments for this new condition to improve model pre-
dictions. For mathematical details, see Section 1.2.1 in Supplementary Information.
The mlegp package is used to train the GP presented here68. We also tested other
data-driven models for gene expression prediction including feed-forward neural
network, linear regression, and support vector regression (Section 2.1 in Supple-
mentary Information).

OPEX algorithm. OPEX was initialized with 15 randomly selected conditions and
their corresponding gene expression profiles. We ensured to include each antibiotic
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and biocide at least once in the initial dataset. In each iteration, OPEX trains a
predictive model for predicting gene expression levels for all the remaining con-
ditions. Next, utility scores (based on entropy or mutual information) are calcu-
lated for each condition using the predicted distribution of gene expression levels.
OPEX can switch between exploration (conditions are randomly selected) and
exploitation (conditions are selected by using a predictive model). In this work, we
use GP as the predictive model, and consecutive switching between exploration and
exploitation strategies in OPEX, with different switching frequencies also explored
(Section 4.2.3 of Supplementary Information). We also tested other OED
approaches by replacing the predictive model and the utility function of OPEX
with alternative choices (Sections 2.1 and 4.2.5 in Supplementary Information).

Random sampling and expert sampling. For comparison with the OPEX strategy,
we considered a random sampling strategy and three different expert sampling
strategies by consulting independent chemists and biologists. Random sampling
and the top performing expert sampling strategy are used as the baseline for
evaluating the performance of OPEX. The utility functions used by the three expert
sampling strategies are: (a) the pairwise structural similarity among the ten biocides
and four antibiotics, (b) the similarity in the biological mechanism of the biocides
and antibiotics, and (c) the relative dominance among the antibiotics and biocides.
The expert sampling strategy (a) had the best performance (Supplementary Fig. 14)
and was used as a benchmark in Fig. 2. These strategies follow the same workflow
as described above for OPEX except that the utility function is either random
sampling function or informed by expert knowledge and not by the GP model. In
the random sampling strategy, the following culture condition is selected randomly
from unobserved conditions. In expert sampling, the devised utility function cal-
culates condition similarities based on their molecular fingerprints, biological mode
of action, or the expected level of impact from the antibiotic on cellular tran-
scription. After condition similarities are calculated, the condition that is most
dissimilar to observed conditions is selected for the next iteration. For details, see
Sections 2.2 and 2.3 in Supplementary Information.

Fitness measurements. Fitness experiments were performed with E. coli MG1655
in sublethal concentrations of all four antibiotics, pretreated with and without any
of the ten biocides, in three replicates. Briefly, fresh colonies of MG1655 were
transferred to 1-ml LB broth and grown overnight at 37 °C in an incubator shaker.
The subsequent day, 5-µl culture was transferred to 2 ml of 0.4% glucose
M9 minimal medium and grown for 12 h at 37 °C in an incubator shaker. After
12 h, 5 µl culture was transferred to 0.4% glucose M9 supplemented with or
without biocide and then were grown overnight at 37 °C. The next day, 5 µl of
grown culture was transferred to 195 µl of 0.4% glucose M9 medium supplemented
with or without antibiotic, in a 96 well plate. Growth profiles were measured at
37 °C in a plate reader (BioTek HTX) at 600 nm. At 16 h, ODs reached stationary
phase. The OD values at 0 and 16 h were used to calculate the CSPI.

Cross-stress protection index (CSPI). We introduce the CSPI as the normalized
ratio of fitness (measured by OD at 16 h) between the treated and untreated cells to
capture the effect of cross-stress protection:

Cross� stress protection index ¼ ODbiocide treated16hð Þ
ODbiocide treated0hð Þ � ODbiocide untreated16hð Þ

ODbiocide untreated0hð Þ :
A CSPI larger than 1 corresponds to cases where the fitness, measured here by

growth curves, of biocide-exposed cells is higher in the presence of the antibiotic to
cells that have not been exposed to the biocide (i.e., a case of cross-stress protection).
In a similar fashion, a CSPI of <1 corresponds to a cross-stress vulnerability.

Statistical validation. To evaluate the hypothesis that GP model achieves average
MAE of 0.147 for GE predictions earlier when using OPEX compared to random
sampling (as illustrated in Fig. 2b top left), we used a one-sided paired t test with 50
degrees of freedom corresponding to 50 different random initial conditions. To
evaluate the hypothesis that MAE of predicted GE for a given gene across
remaining conditions is lower for OPEX compared to when random sampling is
employed (as illustrated in Fig. 2c), we used a one-sided paired t test where the
degrees of freedom is equal to the number of genes. To evaluate the significance of
trends observed in Fig. 2e (increase in exploration of GE landscape until iteration
10 followed by decrease), we used the F-test value corresponding to the fitted linear
models. When evaluating the hypothesis that predicted cluster memberships for
remaining conditions are more accurate when OPEX is used compared to random
sampling (Fig. 3c), we used a one-sided paired t test with 50 degrees of freedom
corresponding to 50 different random initial conditions. To evaluate the hypothesis
that relative fitness is lower for the knockout strain compared to wild-type (Fig. 5c,
f), we used a one-sided Wilcoxon rank-sum test with nine samples each.

Data availability
The RNA-Seq data are available in Gene Expression Omnibus under the ID GSE144604.

Code availability
The R code for OPEX is available at https://github.com/IBPA/OPEX.
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