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Abstract
Landauer’s Principle states that the energy cost of information processing must exceed the
product of the temperature, Boltzmann’s constant, and the change in Shannon entropy of
the information-bearing degrees of freedom. However, this lower bound is achievable only
for quasistatic, near-equilibrium computations—that is, only over infinite time. In practice,
information processing takes place in finite time, resulting in dissipation and potentially unre-
liable logical outcomes. For overdamped Langevin dynamics, we show that counterdiabatic
potentials can be crafted to guide systems rapidly and accurately along desired computational
paths, providing shortcuts that allow for the precise design of finite-time computations. Such
shortcuts require additional work, beyond Landauer’s bound, that is irretrievably dissipated
into the environment. We show that this dissipated work is proportional to the computation
rate as well as the square of the information-storing system’s length scale. As a paradigmatic
example, we design shortcuts to create, erase, and transfer a bit of information metastably
stored in a double-well potential. Though dissipated work generally increases with operation
fidelity, we show that it is possible to compute with perfect fidelity in finite time with finite
work. We also show that the robustness of information storage affects an operation’s ener-
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17 Page 2 of 34 A. B. Boyd et al.

getic cost—specifically, the dissipated work scales as the information lifetime of the bistable
system. Our analysis exposes a rich and nuanced relationship between work, speed, size of
the information-bearing degrees of freedom, storage robustness, and the difference between
initial and final informational statistics.

Keywords Thermodynamic computing · Optimal transport · Landauer’s bound · Entropy

1 Introduction

Information processing requires work. For example, no less than kBT ln 2 of work must be
supplied in order to erase a single bit of information at temperature T [1]. More generally,
Landauer’s Principle bounds the work investment by the change in the memory’s Shannon
entropy [2]:

〈W 〉 ≥ kBT ln 2 (H[Y0] − H[Yτ ]) . (1)

Here, Y0 and Yτ are random variables describing initial and final memory states with equal
free energies, and H[Y ]= − ∑

y Pr(Y=y) log2 Pr(Y=y) denotes the uncertainty in bits of a
random variable Y .

Mathematically, information processing is described by a communication channel [3]
that maps an initial distribution Pr(Y0) to a final distribution Pr(Yτ ). Physically, a memory is
realized by a system whose thermodynamically-metastable states encode logical states {y}.
The simplest example is a Brownian particle in a double-well potential, with two deep wells
representing the y = 0 and y = 1 states of a single bit of information. More generally, the
collection of all possible memory states Y = {y} represents a mesoscopic coarse-graining
of the space of explicit physical microstates X = {x} of the memory device. Information
processing is implemented by varying the system’s energy landscape so as to drive the flow of
probability between memory states in a controlled fashion, to achieve a desired computation.

A computation can be implemented to achieve the Landauer bound, Eq. (1), by varying
the energy landscape infinitely slowly, so that the system remains in metastable equilibrium
from beginning to end [4,5]. Such quasistatic computations, however, take infinitely long
to implement. For computations performed in finite time the underlying physical system is
driven out of equilibrium, resulting in the irretrievable dissipation of energy into thermal
surroundings. This dissipation has been explored in the near-equilibrium linear-response
regime, showing intriguing dependence on the rate of computation [6–11], length scale [11],
and on the distance between the initial and final distribution [7].Many of these results employ
the tools of geometric thermodynamic control tominimize the dissipation of near-equilibrium
systems [6–9].

Here, we address the separate design problem of implementing a computation rapidly and
faithfully, allowing the system to be far-from-equilibrium. That is, we show how to design
protocols that vary a system’s energy landscape, so as to produce a desired computation in a
given time interval, no matter how short its duration. In effect, we place a premium on speed
of computation rather than on energy efficiency. That said, we then proceed to analyze the
energetic costs of rapid computation, reproducing many of the dependencies observed for
linear response. However, the results we obtain are not limited to that regime—they remain
valid even when the system is driven far-from-equilibrium during information processing.

To achieve rapid and precisely-controlled information processing, we use recently devel-
oped tools from the field of shortcuts to adiabaticity [12]. Specifically, we adapt the methods
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of counterdiabatic control of classical overdamped systems [13], originally inspired by pio-
neering experiments on the engineered swift equilibration of a Brownian particle [14], to the
task of general information processing. Though the rate dependence of dissipation in coun-
terdiabatic protocols and in other far-from-equilibrium thermodynamic control has been
explored previously [15–23] we find further dependencies by applying the techniques to
metastable information processing. While restricting to metastable distributions prevents
fully optimal control, it respects the inherent information storage capacity of the physical
system and leads to intriguing relationships between information storage robustness, time,
space, and the type of computation. Within the framework of metastable computing, we
demonstrate a wide range of computational design.

For concreteness, we show how to apply counterdiabatic control to create, erase, and
transfer a single bit of information rapidly and accurately. That said, our approach addresses
general information processing, which we illustrate by analyzing thermodynamic controls
for creating and transferring bits.

To embed the memory states Y physically, we consider a one-dimensional position space
X governed by overdamped Fokker–Planck dynamics. The energy landscape at the beginning
and end of the protocol is the double-well potential shown in Fig. 2, with a barrier sufficiently
high to prevent the leakage of probability between the twowells. Thus, the landscape provides
a means of storing information in metastable mesoscopic states. As we will show, counter-
diabatic control of the potential can be used to drive any initial distribution over the memory
states to any desired final distribution in finite time—in fact, arbitrarily rapidly. Mirroring
results in geometric control, we show that the work required to perform this counterdiabatic
process decomposes into a change in free energy, which captures Landauer’s change in state
space cost, plus an additional contribution that scales as the rate of computation and the
square of the length scale of the information-storing potential [7]. This additional work is
proportional to the global entropy production and so quantifies thermodynamic inefficiency.

Our approach reveals additional trade-offs beyond that between computation rate, length
scale, and thermodynamic efficiency. We show that dissipation also increases with the differ-
ence between initial and final bit distributions of the computation and with the robustness of
information storage. In this way, we give a more complete picture of metastable information
processing beyondLandauer’s bound. Rather than a tradeoff between information and energy,
more complex tradeoffs are revealed between information, energy, statistical bit-bias differ-
ence, speed, size of the memory states, and information robustness. This is accomplished
within a single, unified framework that, in many respects, is markedly more tractable than
previous approaches.

2 Thermodynamic Computing

What is physical computing? At the outset, information must be encoded in collections
of microscopic states X of a physical system. Let Y denote these information-containing
microstate groups—the accessiblememory states [24,25]. By manipulating the physical sys-
tem, a microstate collection evolves, transforming the information it contains. Generally, an
information processor has only partial control over the underlying microstates of its physi-
cal implementation, because the energy landscape has limited tunable parameters. Similarly,
information processors only have partial knowledge of the microstates, which are coarse-
grained into observable macrostates. We now consider how such information processing can
be modeled by stochastic dynamics governed by a controlled potential.
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17 Page 4 of 34 A. B. Boyd et al.

2.1 Memory States and Symbolic Dynamics

There are many ways to form memory states out of physical microstates. Here, we choose a
framework for information erasure and general information processing in which the physical
degrees of freedom X participate in metastable equilibria. Each metastable equilibrium is a
microstate distribution that corresponds to a memory state y ∈ Y . For example, we can have
memory states Y = {0, 1}, such that they are stable for intermediate, if not asymptotically
long, time scales. The coarse-graining c : X → Y of physical states to form the informational
states specifies the memory alphabetY = {c(x)|x ∈ X }. This translates a distribution Pr(Xt )

over physical microstates x ∈ X to a distribution Pr(Yt ) over informational states y ∈ Y . In
this way, controlling a physical system determines not only its raw physical dynamics, but
also the symbolic dynamics of the informational states.1

We use random variable notation, Pr(Xt ) = {(x,Pr(Xt = x)), x ∈ X }, common in
symbolic dynamics [27], rather than ρ(x, t), which is more standard in stochastic thermo-
dynamics, due to its specificity and flexibility. The probability of being in microstate x at
time t is expressible in both notations Pr(Xt = x) = ρ(x, t), but the random variable
notation works with many different distributions over the same microstate space X . And
so, rather than specify many different probability functions, we specify their random vari-
ables. Other advantages of this choice is that it readily expresses joint probabilities, such as
Pr(Xt = x, Xt+τ = x ′), and entropies:

H[Xt ]= −
∑

x∈X
Pr(Xt=x) log2 Pr(Xt=x). (2)

While not all of the potential functionality is used in the following, a number of recent results
in stochastic thermodynamics have used the power of this notation to express stochastic
processes to great effect [4,28].

2.2 Overdamped Fokker–Planck Dynamics

The first challenge of thermodynamic computing is to control a system’s Hamiltonian over
the physical degrees of freedom X such that the induced microstate distribution Pr(Xt ) at
time t matches a desired distribution Pr(Xd

t ), where Xt and Xd
t are the random variables for

the actual physical distribution and desired physical distribution, respectively, at time t , each
realizing states x ∈ X . The second challenge, which we come to later, is to associate the
microstate distributions with mesostate distributions that support the desired information-
storing and -processing.

We consider a Hamiltonian controlled via a potential energy landscape V (x, t) over the
time interval t ∈ (0, τ ), where x ∈ X . We will demonstrate that one can exactly guide an
overdamped Fokker–Planck dynamics in one dimension along the desired time sequence
of distributions Pr(Xd

t = x), resulting in a powerful tool for thermodynamic control and
information processing.

In fact, overdamped stochastic systems are a promising and now common framework for
elementary thermodynamic information processing [29,30]. With a single physical degree of
freedomX = R, one information processing task is to change the initial distribution to a final

1 Symbolic dynamics is a long-lived subfield of dynamics systems [27]. Our use of it here is relatively simple,
highlighting (i) howmesoscopic symbols capture (or not) collections of microscopic states and (ii) the concern
of proper coarse-graining to locate information storage and processing. Fully deploying the symbolic dynamics
for thermodynamic computingmust wait for a different venue. Early results, however, do develop the symbolic
dynamics of thermally-activated (noisy) systems [57].
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distribution in finite time. The actual microstate distribution Pr(Xt ) obeys the Fokker–Planck
equation:

∂ Pr(Xt = x)

∂t
= μ

∂

∂x

(

Pr(Xt = x)
∂V (x, t)

∂x

)

+ μkBT
∂2 Pr(Xt = x)

∂x2
, (3)

where V (x, t) is the potential energy landscape at time t , T is the temperature of the thermal
environment, and μ is the inverse friction coefficient.

We can use these stochastic dynamics to design a computation by evolving particle distri-
butions. It is useful to recognize that, for appropriately bounded energy landscapes V (x, t),
the stationary distribution for the Fokker–Planck equation is a normalized Boltzmann equi-
librium distribution, if the potential is held fixed at time t :

Pr(X eq
t = x) = e−V (x,t)/kBT

Z(t)
, (4)

with partition function Z(t) ≡ ∑
x e

−V (x,t)/kBT . That is, substituting into the righthand side
of Eq. (3) yields:

∂ Pr(X eq
t = x)

∂t
= 0.

Wecan therefore use this equilibriumdistribution as a guidepost for designing thermodynamic
computations as described in greater detail in Sec. 3.

3 Work Production During Counterdiabatic Protocols

Next, we identify how the evolution of the physical distribution yields useful changes in
memory states that robustly store a computation’s result. We break the development into two
parts.

This section considers counterdiabatic Hamiltonian control of the physical states x ∈ X
such that they follow specified distributions Pr(Xd

t ) over the time interval t ∈ (0, τ ) [13].
The goal of such counterdiabatic driving is to fast-forward a mapping between an initial
and final equilibrium distribution—a process that would take infinitely long if we followed
the equilibrium distribution for the entire protocol. For the resulting finite-time protocol, we
determine the work production and show that it increases with both the size of the memory
states and the speed of operation, if the overall computational task is fixed. This holds for
any counterdiabatically-controlled computation.

The subsequent section addresses the particular computational task of information erasure
in a bistable potential well. Such computational processes require metastable storage of
information that, in turn, rely on potentially nonequilibrium initial and final distributions—
in this way, extending the framework of counterdiabatic computation. While the analytical
and numerical results there do not explicitly generalize to other computational tasks, they
introduce general relationships between dissipatedwork, information storage robustness, and
computation fidelity that hold broadly.

3.1 Inverse Problem for Thermodynamic Control

For a specified potential V (x, t), the Fokker–Planck equation Eq. (3) evolves an initial distri-
bution Pr(X0) to a density Pr(Xt ) at any later time in the control interval t ∈ (0, τ ). Together,
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the probability density and potential determine the average energy expended as work 〈W 〉
by the protocol on the physical system [25]:

〈W 〉 =
∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)∂t V (x, t). (5)

What if, rather than starting with an initial distribution and control protocol, we are given
a desired trajectory of probability distributions Pr(Xd

t ) over some time interval t ∈ [0, τ ]—
a distribution trajectory—and are tasked to determine the control protocol that yields the
trajectory? This challenge—the inverse problem of reconstructing dynamical equations of
motion from distributions over trajectories—falls within purview of state-space reconstruc-
tion [31,32] and computational mechanics [33] which provide principled approaches for
inferring generators of observed time series. Broadly speaking, our challenge here is to
reconstruct dynamical equations of motion for evolving distributions that perform computa-
tions and, then, to show how the work cost relates to the computation’s effectiveness. The
setting here is both more constrained and more challenging than state-space reconstruction.

Generally, as with most inverse problems, determining the control protocol from a dis-
tribution trajectory does not lead to a unique solution. Many different dynamical systems
can generate the same observed distributions [34]. Moreover, these inverse problems can
be so challenging that machine learning represents one of the few promising candidates for
effective solutions [35].

In this light, counterdiabatic techniques provide a constructive method for determining
control protocolsV (x, t) that produce the desired distribution trajectory Pr(Xd

t ). This strategy
has been applied to one-dimensional systemswith a ring topology [36], or rate equations with
arbitrarily many cycles in the topology [37], to determine the methods and corresponding
cost of quickly transforming systems. These solutions are still not unique, since cycles in the
topology lead to various possible control trajectories and corresponding energy costs for a
particular computation.

However, for the specific case of overdamped Fokker–Planck dynamics in a single dimen-
sion X = R, Appendix A shows that the distribution trajectory Pr(Xd

t ) uniquely determines
the control protocol V (x, t) up to a baseline energy E(t) that is constant in position and so
adds no force. This baseline energy can be any spatially uniform energy function and it will
preserve the stochastic dynamics of the Brownian particles when added to V (x, t). Moreover,
if Pr(Xd

t ) characterizes our desired computation then, up to a readily-recovered change in
baseline energy E(τ ) − E(0), the work is uniquely determined for that computation. Thus,
by designing a single protocol that guides the system along the desired distribution trajectory,
we find both the unique protocol and the unique work investment required for that trajectory.

When τ is very large, a control protocol can be determined by assuming the system
remains approximately in equilibrium at all times: Pr(Xt = x) ≈ Pr(X eq

t = x). This follows
from the system’s natural relaxation timescale τ eq that determines how long it takes to reach
equilibrium, if the energy landscape is held fixed. When τ � τ eq, the changes in the energy
landscape are so slow that the control protocol is quasistatic (adiabatic) and determined from
the quasistatic potential:

V Q(x, t) ≡ Feq(t) − kBT ln Pr(Xd
t = x), (6)

where the equilibrium free energy:

Feq(t) = −kBT ln Z(t)

= −kBT ln
∫ ∞

−∞
dxe−V Q(x,t)/kBT (7)
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(A)

(B)

(C)

Fig. 1 Counterdiabatic control of the energy landscape V (x, t) (solid gray curve) at times along the interval
t ∈ [0, τ ] guides the probability distribution Pr(Xt = x) (dashed blue curve) along a desired trajectory
Pr(Xd

t = x) in finite time τ . The system starts in equilibrium in stage (A) and ends in equilibrium at stage (C),
meaning that V (x, 0) = V Q(x, 0) and V (x, τ ) = V Q(x, τ ) are the quasistatic potentials for the initial and
final distributions, respectively. However, at intermediate times, in stage (B), the necessary control protocol
V (x, t) required to guide the system along the desired distribution changes as we change the speed of the
protocol. If the timescale of equilibration is relatively very small τ eq � τ , then the control protocol must be in
equilibriumwith the desired distribution, such that the control potential is described by the quasistatic potential
V (x, t) = V Q(x, t), as shown in the lower half of stage (B). Otherwise, an additional counterdiabatic term
VCD(x, t) is added to the potential energy, which pushes the system out of equilibrium, as shown in the upper
half of stage (B)

is the baseline energy E(t). Note that Pr(Xd
t ) is the equilibrium distribution corresponding

to V Q(x, t), see Eq. (4). In the large-τ case, the system follows this equilibrium distribution,
as shown in Fig. 1, and the quasistatic protocol provides the unique solution to our control
problem. Moreover, the work invested is the change in equilibrium free energy:

〈WQ〉 = �Feq. (8)

If τ is not much larger than τ eq, however, then evolution under the quasistatic potential
V Q(x, t), definedbyEq. (6), does not drive the systemalong the desired trajectory distribution
Pr(Xd

t ). Rather, the actual distribution Pr(Xt ) deviates from the desired distribution as the
system is pushed away from equilibrium.

Fortunately, recent results [13] describe how to construct a counterdiabatic protocol that
achieves the desired evolution, Pr(Xt ) = Pr(Xd

t ), for all t ∈ (0, τ ). In this approach the
overdamped system evolves under a potential:

V (x, t) = V Q(x, t) + VCD(x, t), (9)
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consisting of both the quasistatic term V Q(x, t) and a counterdiabatic potential V CD(x, t).
The latter is constructed to guarantee that the actual distribution tracks the desired distribution,
Pr(Xt ) = Pr(Xd

t ), as illustrated in Fig. 1.
By Eq. (6) Pr(Xd

t ) is the equilibrium distribution corresponding to the quasistatic potential
V Q(x, t), but it is not the equilibrium distribution corresponding to the total potential V (x, t)
given by Eq. (9). Thus, when the system evolves under the counterdiabatic protocol, it is out
of equilibrium with respect to the instantaneous potential V (x, t) at intermediate times t ∈
(0, τ ). However, to ensure that the system starts and ends in equilibrium, we choose Pr(Xd

t )

such that ∂t Pr(Xd
t ) vanishes at the protocol’s start and end. This way the counterdiabatic

potential vanishes at the endpoints of the protocol: VCD(x, t ∈ {0, τ }) = 0. And so, the
potential energy becomes the quasistatic potential at the start V (x, t = 0) = V Q(x, t = 0)
and end V (x, t = τ) = V Q(x, t = τ), as shown in Fig. 1.

3.2 Counterdiabatic Control of Stochastic Systems

Reference [13] showed that the counterdiabatic potential VCD(x, t) is constructed from the
desired distribution Pr(Xd

t ) by integrating a velocity flow field v(x, t), defined shortly:

VCD(x, t) = − 1

μ

∫ x

0
v(x ′, t)dx ′. (10)

The lower limit of integration is set to 0 for convenience. In fact, it may take any value,
as the physics is unchanged by the addition of an arbitrary function f (t) to the potential.
For instance, Eq. (10) admits the solution for the velocity field described in Ref. [38]. Most
generally, the velocity flow field:

v(x, t) = ∂x

∂t

∣
∣
∣
∣
C=const

= − ∂tC

∂xC

is the velocity of constant values of the cumulative distribution function:

C(x, t) =
∫ x

−∞
Pr(Xd

t = x ′)dx ′.

Combining results, we have, explicitly:

VCD(x, t) = 1

μ

∫ x

0

∫ x ′

−∞
∂t Pr(Xd

t = x ′′)
Pr(Xd

t = x ′)
dx ′′dx ′, (11)

for t ∈ (0, τ ). For t /∈ (0, τ ) we set VCD(x, t) = 0, hence V (x, t) = V Q(x, t) outside of
the control interval. As a result, the system begins in the equilibrium distribution at t = 0
and it ends (and subsequently remains) in equilibrium at t ≥ τ .

Since the potential energy V (x, t) consists of quasistatic and counterdiabatic terms, we
can similarly decompose the work in Eq. (5) into two contributions:

〈W 〉 =
∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)∂t V

Q(x, t) +
∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)∂t V

CD(x, t)

= 〈WQ〉 + 〈WCD〉
= �Feq + 〈WCD〉. (12)
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The first term 〈WQ〉 is the amount of work that would be performed if the protocol were
executed quasistatically, i.e., reversibly. This quasistatic work is simply the change in equi-
librium free energy, as follows by direct substitution of Eq. (6) into the first line above. This
contribution depends only on the initial and final potential and not on either (i) the sequence
of intermediate distributions or (ii) the duration of the protocol.

The second contribution 〈WCD〉 is the counterdiabatic work, and it is proportional to the
global entropy production 〈�〉. Specifically, when the system begins and ends in equilibrium
we have [39]:

T 〈�〉 = 〈W 〉 − �Feq

= 〈WCD〉, (13)

where 〈�〉 ≥ 0 quantifies the net change in the system’s entropy and its thermal surround-
ings. Previous analyses of counterdiabatic protocols recognized this additional work as the
dissipated work [20].

In Eq. (12), the quasistatic work is fixed and the counterdiabatic work gives the path-
dependent dissipated work:

〈WCD〉 = 〈Wdiss〉
required to complete the transformation in finite time. Throughout, the counterdiabatic and
dissipated works are treated as the same. Thus, all dependence on intermediate details is
captured by 〈WCD〉. This quantity is our principal focus and, as we now show, it scales
particularly simply with system size and computation time.

We note that Eqs. (12) and (13), along with the inequality 〈�〉 ≥ 0, generalize to
transformations between nonequilibrium states, with �Feq replaced by the recoverable
nonequilibrium free energy �Fneq; see Refs. [2,40,41] for details. We use this generalized
result in Sec. 4 when discussing counterdiabatic erasure.

While we derived our results within Ref. [13]’s framework, similar results were obtained
in other contexts. Reference [42] argued that a flow field, like our v(x, t), could be designed
to force a system to follow a target equilibrium distribution; see Eq. (15) therein. Reference
[17], establishing a refinement of the second law of thermodynamics, also exploited a deter-
ministic velocity field; their Eq. (2) is equivalent to our Eq. (10). And, Ref. [20] developed
a counterdiabatic method they call “shortcuts to isothermality”; their Eq. (12) is equivalent
to our Eq. (11).

Finally, we obtain a compact expression for the counterdiabatic work:

〈WCD〉 =
∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)∂t V

CD(x, t)

= −
∫ τ

0
dt

∫ ∞

−∞
dx ∂t Pr(Xt = x)VCD(x, t)

= μ

∫ τ

0
dt

∫ ∞

−∞
dx

[
∂x V (x, t)Pr(Xt = x) + kBT ∂x Pr(Xt = x)

]
∂x V

CD

= μ

∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)

[
∂x V

CD
]2

= μ−1
∫ τ

0
dt

〈
[v(x, t)]2

〉
. (14)

Here, we integrated by parts in time to get to the second line and in space to get to the third
line. Then, we used Eqs. (6), (9), and (10) to complete the calculation.
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Equation (14) is a slight permutation of the expression for entropy production found in
Ref. [43]. It is also equivalent to Eq. (2.20) of Ref. [17], where this result was used to obtain
the minimally dissipative protocol for transforming from a given initial distribution Pr(X0)

to a given final distribution Pr(Xτ ), at fixed τ . Namely, the minimally dissipative protocol is
one for which the trajectories generated by the flow field v(x, t) evolve linearly with time.
The velocity of level curves of the cumulative distribution function stay constant, meaning
that thermodynamically optimal control yields linear interpolation from the initial C(x, 0)
to final C(x, τ ); see Refs. [17,44] for further details.

3.3 Time Reversal Symmetries

Decomposing potential energy and work into quasistatic and counterdiabatic components
leads to terms with different time-reversal symmetries. To reverse a computation—creating,
for example, a bit rather than erasing one—we choose the reverse trajectory distribution
Pr(X reverse

t = x) = Pr(Xd
τ−t = x). Substituting this into the quasistatic potential in Eq. (6)

leads to reverse temporal ordering:

V Q
reverse(x, t) = V Q(x, τ − t). (15)

However, substituting into the counterdiabatic potential of Eq. (11) and setting t ′ = τ − t in
the integration leads to a flipped sign:

VCD
reverse(x, t) = −VCD(x, τ − t). (16)

Then, putting each of these into Eq. (12)’s expression for work production shows that the
change in free energy is inverted:

�Feq
reverse = −�Feq, (17)

as expected. The counterdiabatic dissipated work is the same, though, since signs cancel:

〈WCD
reverse〉 = 〈WCD〉. (18)

Thus, while the Landauer contribution to the work investment changes sign under reversed
computation, since state-space contraction becomes expansion, the actual dissipation—
unrecoverable component of work investment—remains the same for finite-time operations.

3.4 System-Size and Computation-Rate Dependence

A protocol’s duration τ is the time over which the Hamiltonian varies. For our one-
dimensional system, we define a characteristic system length L reflecting the extent of the
desired probability distribution’s support. Since we wish to capture only the distribution’s
bulk and not the support’s absolute extent, there are many ways to define this length. A
candidate is the initial variance:

L =
√

∫ ∞

−∞
dx Pr(Xd

0=x)x2 −
(∫ ∞

−∞
dx Pr(Xd

0=x)x

)2

.

The particular form is somewhat arbitrary. All we ask is that L scale appropriately when
transforming the distribution.With these definitions in hand, we can analyze how the protocol
and dissipation change under rescalings.
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Consider the probability trajectory {Pr(Xd
t = x) : t ∈ (0, τ )} and a system of length L ,

yielding the control protocol V (x, t) = V Q(x, t) + VCD(x, t). To preserve the probability
trajectory shape while changing the duration to τ ′ and length to L ′, we introduce a new
desired trajectory:

Pr(Xd′
t =x) = Pr(Xd

τ t/τ ′=Lx/L ′) L
L ′ .

This stretches the original distribution’s support by a factor L ′/L and increases the compu-
tation rate by a factor τ/τ ′.

In the expression for the resulting counterdiabatic control protocol:

V ′(x, t) = V ′Q(x, t) + V ′CD(x, t),

we define a new quasistatic potential as the similarly-scaled version of the original:

V Q′(x, t) = V Q(Lx/L ′, τ t/τ ′).

The associated equilibrium free energy is expressed in terms of the original free energy:

Feq′(t) = −kBT ln Z ′(t)

= −kBT ln
∫ ∞

−∞
dxe−V Q′(x,t)/kBT

= −kBT ln
∫ ∞

−∞
dx ′ L ′

L
e−V Q (x ′,τ t/τ ′)/kBT

= kBT ln
L

L ′ + Feq(τ t/τ ′), (19)

where the third line comes from substituting x = x ′L ′/L . Equation (19) implies:

�Feq′ = Feq′(τ ′) − Feq′(0) = �Feq.

Hence, the quasistatic work is the same for protocols with different durations and lengths:

〈WQ′〉 = 〈WQ〉.
The counterdiabatic contributions, however, yield meaningful differences when changing

system length or protocol duration. Substituting the rescaled probability trajectory into the
expression for counterdiabatic potential in Eq. (11), we find:

VCD′(x, t) = 1

μ

∫ x

0

∫ x ′

−∞
∂t Pr(Xd′

t = x ′′)
Pr(Xd′

t = x ′)
dx ′′dx ′

= 1

μ

∫ x

0

∫ x ′

−∞

∂t Pr(Xd
τ t/τ ′ = Lx ′′/L ′)

Pr(Xd
τ t/τ ′ = Lx ′/L ′)

dx ′′dx ′

= 1

μ

L ′2

L2

∫ Lx/L ′

0

∫ x ′′′

−∞
∂t ′ Pr(Xd

t ′ = x ′′′′)∂t t ′

Pr(Xd
t ′ = x ′′′)

dx ′′′′dx ′′′

= τ L ′2

τ ′L2 V
CD(Lx/L ′, τ t/τ ′),

using the substitutions t ′ = τ t/τ ′, x ′′′ = Lx ′/L ′, and x ′′′′ = Lx ′′/L ′. Thus, the counter-
diabatic potential scales as the square of the length of the information storage device and
as the inverse of the protocol duration. Equivalently, the additional nonequilibrium force
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FCD(x, t) = −∂x V CD(x, t) applied to the system scales as the computation rate and square
of the system size.

For the counterdiabatic work we similarly find:

〈WCD′〉 =
∫ τ ′

0
dt

∫ ∞

−∞
dx Pr(Xd′

t = x)∂t V
CD′(x, t)

= τ L ′2

τ ′L2

∫ τ ′

0
dt

∫ ∞

−∞
dx

L

L ′ Pr
(

Xd
τ
τ ′ t

= L

L ′ x
)

∂t V
CD

(
L

L ′ x,
τ

τ ′ t
)

= τ L ′2

τ ′L2

∫ τ

0

τ ′

τ
dt ′

∫ ∞

−∞
L ′

L
dx ′ L

L ′ Pr(X
d
t ′ = x ′)∂t V CD(x ′, t ′)

= τ L ′2

τ ′L2

τ ′

τ
(∂t t

′)
∫ τ

0
dt ′

∫ ∞

−∞
dx ′ Pr(Xd

t ′ = x ′)∂t ′VCD(x ′, t ′)

= τ L ′2

τ ′L2 〈WCD〉.
And so, too, the dissipated counterdiabatic work scales as system length squared and linearly
with computation rate.

Dissipation has been shown to scale with driving rate in far-from-equilibrium operations
[15,17–21] and the counterdiabatic potential was shown to scale similarly [20]. The length-
squared scaling has also been observed in the linear-response regime, when systems are close
to equilibrium [11]. That said, the simultaneous scaling far-from-equilibrium of both the
dissipation and counterdiabatic potential are novel and appear here in a unified framework.
This work, in turn, is proportional to the entropy production, so we find that the entropy
production obeys a similar scaling:

〈�′〉 = 〈WCD′〉
T

= τ L ′2

τ ′L2 〈�〉. (20)

3.5 Efficient Protocols

When changing the protocol duration τ → τ ′ and system length L → L ′ of a desired
distribution trajectory {Pr(Xd

t )}, the counterdiabatic control becomes:

V ′(x, t) = V Q
(
L

L ′ x,
τ

τ ′ t
)

+ τ L ′2

τ ′L2 V
CD

(
L

L ′ x,
τ

τ ′ t
)

,

where V Q(x, t) and VCD(x, t) are the original quasistatic and counterdiabatic potential
energies. This leads to the work investment:

〈W ′〉 = �Feq + τ L ′2

τ ′L2 〈WCD〉,

where �Feq is the original change in free energy and 〈WCD〉 is the original nonequilibrium
addition to work.

The above scaling relation is suggestive, and it is worth considering how it applies to max-
imally efficient computations. While the following does not recount the steps described by
Aurell et al. to determine these minimally dissipative protocols [16,17], one can nevertheless
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see how such protocols change as time and length scales change. We use a simple counter-
factual argument, described below, to show that the minimum cost of computing scales as
L2/τ .

The first step in addressing minimum dissipation protocols is to recognize that counter-
diabatic protocols in X = R are uniquely determined by the distribution trajectory. Since a
computation maps an initial equilibrium distribution Pr(X0) to a final one Pr(Xτ ), there are
many compatible distribution trajectories that evolve continuously from the initial to the final
distribution. A minimally-dissipative distribution trajectory Pr(Xt,min) has a corresponding
Vmin(x, t) = V Q

min(x, t) + VCD
min (x, t) that yields the minimum work:

〈WCD〉min = min{〈WCD〉 : Pr(Xd
0,τ ) = Pr(X0,τ )}.

Since quasistatic work is identical for all such protocols, up to an instantly recoverable
additional energy, this condition also minimizes invested work.

Changing protocol duration τ → τ ′ and initial and final system length—viz., Pr(X ′
0 =

x) = Pr(X0 = Lx/L ′) and Pr(X ′
τ ′ = x) = Pr(Xτ = Lx/L ′)—we can determine how the

minimally-dissipative distribution trajectory changes, as well the minimum dissipation. A
natural guess for the minimally-dissipative trajectory is to take the scaled minimal distribu-
tion:

Pr(X ′
t = x) = Pr(Xτ t/τ ′,min = Lx/L ′) L

L ′ ,

which satisfies:

〈
WCD′〉 = τ L ′2

τ ′L2

〈
WCD 〉

min.

(See Sect. 3.4.)
If this proposed trajectory is not minimally dissipative, then there is another trajectory

{Pr(X ′
t,min)} that dissipates work 〈WCD′〉min < 〈WCD′〉. However, if this were the case, then

we could reverse the duration and size scalings τ ′ → τ and L ′ → L on that trajectory to
generate the dissipation:

τ ′L2

τ L ′2
〈
WCD′〉

min <
τ ′L2

τ L ′2
〈
WCD′〉

= τ ′L2

τ L ′2
τ L ′2

τ ′L2

〈
WCD 〉

min

= 〈
WCD 〉

min.

This is a contradiction, since it states that it is possible to dissipate less than the minimal
dissipation for the original computation that evolves the distribution between Pr(X0) and
Pr(Xτ ). We conclude that the spatially- and temporally-scaled minimally dissipative distri-
bution trajectories are themselves minimally dissipative.

This agrees nicely with the minimally-dissipative mass transport described by Ref. [17],
in which probability mass takes a linear path between initial and final positions. Paralleling
other approaches in the restricted near-equilibrium regime [7,45], we showed that optimal
control discussed above and derived in Ref. [17], if found in one setting, can be scaled to
express optimal control given other constraints on space and time. Moreover, it gives the
temporal scaling of the minimally-dissipative control protocol:

V ′
min(x, t) = V Q

min(Lx/L
′, τ t/τ ′) + τ L ′2

τ ′L2 V
CD
min (Lx/L ′, τ t/τ ′), (21)
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and of the minimum work production:

〈W ′〉min = �Feq + τ L ′2

τ ′L2 〈WCD〉min. (22)

The second term in Eq. 22 is the dissipated (counterdiabatic) work and, once again, agrees
with Ref. [17]’s optimal transport results, that derived an inverse relationship between the
dissipation and the time scale of computation.

Equation 22 matches independent analyses on the scaling of dissipated work for optimal
control [7]. However, the present results apply more generally: without restricting control
parameters—all potential landscapes are allowed—and, crucially, beyond linear response.
This perhaps explains the puzzle that the results derived assuming linear response [6,7]
appeared to work outside of those constraints.

Additional, key differences should be highlighted. First, under geometric control the same
control path (through the space of potential landscapes) is followed regardless of τ . As a result,
the minimally-dissipative control simply scales as [6]:

V ′
min(x, t) = Vmin(x, τ t/τ

′). (23)

By contrast, Eq. (21) reveals a different scaling for the minimally-dissipative counterdiabatic
protocol, in which the magnitude of the counterdiabatic potential VCD

min is enhanced by a

factor τ/τ ′, relative to the quasistatic potential V Q
min.

Moreover and constructively, counterdiabatic protocols allow a control engineer to specify
exact initial and final conditions. This flexibility is key to, for instance, matching gate outputs
to gate inputs when composing logic circuits. In other treatments, such as the geometric
control setting, initial and final conditions cannot be set arbitrarily, but must be inferred from
dynamics—a rather awkward requirement for design.

In short, counterdiabatic control of Fokker–Planck dynamics in one dimension gives
precise control over distributions and yields constructive methods for designing control pro-
tocols. The resulting energetic costs depend simply on overall system temporal and spatial
scales, revealing a tradeoff beyond that between a computation’s information processing and
energy cost.

4 Counterdiabatic Erasure

We now apply the counterdiabatic approach to the paradigmatic example of erasing a bit
of information in a metastable system. The analysis exposes new elements in the resource
tradeoffs that arise in thermodynamic computing.

4.1 Nonequilibrium Information Storage

Quickly shifting probability distributions in one-dimensional nonlinear Langevin systems
gives a physical implementation of fast logical operations. For instance, erasure is an essential
part of most computations and can be achieved by controlling a double-well potential land-
scape [46,47]. Landauer stated that erasure requires dissipating at least kBT ln 2 of work—a
cost deriving from the microstate space contraction induced by the logically irreversible
operation [1]. This bound is indeed achievable in the present setting, but only in the limit
of quasistatic operations, where zero entropy is produced globally. That is, it is achievable
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only in infinite time. For finite-time processes, there is dissipation and, thus, additional work
required for erasing a bit of information [7,46,47].

We will now derive the same additional cost for finite-time erasure, departing from prior
treatmentswithin the framework of geometric control in linear response [6–8]. The latter finds
thermodynamically efficient paths between different control parameters; in our case given
by the potential energy landscape V (x, t). In these cases, it is assumed that systems are near-
enough to equilibrium that the distribution—in our case Pr(Xt )—is nearly determined by the
Boltzmann distribution. In this, erasure fidelity is approximately inferred rather than designed
into the system. Instead, paralleling optimal transport under Fokker–Planck dynamics [16,
17,38,44], we start by determining the initial and final distributions and, in this way, exactly
specify the fidelity of erasure, instead of merely recreating it. This strategy allows one to
depart arbitrarily far from equilibrium in the path between initial and final states.

This section provides a detailed analysis of thermodynamic resources for a desired
accuracy level of information processing. However, unlike the strategy of optimal trans-
port [16,17,38,44], that allows for any distribution trajectory, we limit our consideration to
metastable distributions. As described shortly, these distributions use the system’s natural
information storing capacity. While this restriction leads to dissipation beyond that achiev-
able through optimal transport, it leads to a decomposition of the dissipation into functionally
relevant terms. Within this class of computations, it is possible to design a protocol that gives
perfect erasure in finite time and at finite cost. This demonstrates that, while alternate com-
putational frameworks have a divergent error-dissipation tradeoff [28,48], counterdiabatic
computing allows for zero-error logical operations without divergent energy costs.

The expression for the counterdiabatic potential Eq. (11) specifies how to design a protocol
V (x, t) that maintains the distribution Pr(Xt ) exactly in a desired distribution Pr(Xd

t ) over
the interval t ∈ (0, τ ). However, we must also consider how to use the map to informational
states c : X → Y to perform useful and robust computation.

One strategy is to design the energy landscape such that physical states x ∈ X in one
informational state y ∈ Y rarely transition to different informational states y′ = y. This
allows the information processing device to remain in a passive “default” state while retaining
the information of its computation for long times, regardless of the outcome.

In contrast, if a computation is designed such that the equilibrium distribution Pr(X eq
t )

exactly matches the desired distribution Pr(Xd
t ) after the computation, with t > τ , then

the energy landscape is given by V (x, t) = Feq(t) − kBT ln Pr(Xd
t ) for t ≥ τ . Hamiltonian

control of the system is the external driving of the system, determined in experimental systems
perhaps by a preprogrammed virtual potential [47] or time varying magnetic fluxes applied
to the system [48]. Thus, the potential energy landscape can be thought of as the external
configuration of our memory storage device, which the experimenter can control directly.

If the distribution is allowed to relax to equilibrium, the relevant information about the
computation is stored in the memory device’s external configuration V (x, t) (our control).
This means that it is unnecessary to track the actual physical distribution Pr(Xt ). By choosing
a default energy landscape for which metastable physical distributions persist in time, the
computational device can robustly store information as shown in Fig. 2. This avoids explicitly
encoding the computation’s outcomedistribution in the energy landscape and thus the external
configuration. In this way, information in an initial distribution can be preserved through a
sequence of metastable computations and ultimately influence the output.

To experimentally test Landauer’s prediction [1], Ref. [47] employed a protocol that starts
and ends in a symmetric double-well potential, where each well is interpreted as a distinct
mesoscopic informational state: Yt = 0 or Yt = 1. Such a potential stores informational states
determined by the probability Pr(Yt = 0) to realize the informational state 0. Following this
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Fig. 2 Default energy landscape: A double-well potential that stores many different distributions Pr(Yt ) over
the informational states Yt ∈ {0, 1}. For protocols that process the information in the distributions over the
times t ∈ (0, τ ), the energy landscape is set to be the same at the beginning and end, shown by the gray
curve V (x, 0) = V (x, τ ). The equilibrium distribution, delineated by the dashed blue curve, gives equal
probabilities for the informational states: Pr(Y0 = 0) = Pr(Y0 = 1) = 1/2. This is the initial distribution
for the system Pr(X0) in this case. It stores H[Pr(Y0)] = 1 bit of information, where H[Z ] is the Shannon
information of random variable Z [49]. The red curve Pr(Xτ = x) gives unit probability of informational
state 0 (Pr(Yτ = 0) = 1) and is the distribution of the system after an effective erasure protocol. Its Shannon
information vanishes and so the initial and final distributions represent bit erasure. The final distribution Pr(Xτ )

is out of equilibrium, but the energy barrier between the two informational states keeps it nearly fixed for short
times. This distribution, as well as many other nonequilibrium distributions, are metastable and will slowly
relax to equilibrium

setup, if we start and end in a symmetric bistable potential:

V (x, 0) = V (x, τ )

= αx4 − κx2, (24)

then, at a temperature T , the equilibrium distribution:

p(x) ≡ Pr(X eq
{0,τ } = x)

= e−V (x,0)/kBT

Z
, (25)

is bimodal; see the blue dashed curve in Fig. 2. While this distribution is exactly stationary
(when the potential is held fixed), we can construct other distributions that are (temporarily)
effectively stationary, such as that given by the dotted red curve shown in Fig. 2. This has the
same shape as the equilibrium distribution over the interval (−∞, 0), but vanishes outside.
By specifying a time-dependent bit bias probability Pr(Yt = 0) = b(t), we fully specify a
metastable physical distribution [50]:

Pr(Xmet
t = x) =

{
p(x) · 2b(t) if x ≤ 0

p(x) · 2(1 − b(t)) if x > 0
. (26)

We take this distribution to be our desired distribution Pr(Xd
t ), which in turn defines the

quasistatic potential V Q(x, t).
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(A)

(B)

(C) (E)

(D)

Fig. 3 Counterdiabatic information processing in three steps: Distribution Pr(Xt = x) shown with blue
dashed curves and energy landscapes V (x, t) shown by the gray curves. First, the information landscape is
instantaneously changed to fit the starting distribution from stage (A) to stage (B). These share the same
distribution but have different energy landscapes. Second, the counterdiabatic protocol is applied to take the
system from the equilibriumdistribution at stage (B) to that shown in stage (D), passing through nonequilibrium
distributions driven fromequilibriumby the counterdiabatic potential; such as that shown in stage (C).Third, the
last quench step instantaneously takes the system from equilibrium stage (D) to the nonequilibriummetastable
stage (E). All three transitions are labeled with the associated work investment

Figure 2 shows the metastable distributions before (blue dashed curve) and after (red
dotted curve) an erasure protocol, where the initial distribution is unbiased b(0) = 1/2 and
the final distribution is totally biased b(τ ) = 1. The energy barrier between informational
states 0 and 1 inhibits large probability flow between the two local equilibria. That is, these
distributions relax to a global equilibrium very slowly, depending on barrier height relative
to kBT [50]. Thus, these metastable states robustly store nonequilibrium informational states
and provide a basis for information processing by a controlled double-well potential.

4.2 Counterdiabatic Information Processing

Wenow consider how to use counterdiabatic driving to steer the system through a sequence of
metastable states specified by a given time-dependent bit bias b(t), with the symmetric initial
and final energy landscape of Eq. (24). Despite the symmetric initial and final configurations
of the memory device, this modified counterdiabatic control allows for b(0) = 1/2 and
b(τ ) = 1/2.

Since the initial and final metastable states are out of equilibrium with respect to the
symmetric potential V (x, 0) = V (x, τ ) = αx4 − κx2 (Fig. 2), we must modify the coun-
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terdiabatic protocol described in Sec. 3.2, as it was developed for transitions between initial
and final equilibrium distributions. Two additional steps are needed, each a quench, as shown
in Fig. 3. (Quench here means a nearly instantaneous change in the Hamiltonian [51], as
opposed to a nearly instantaneous change in temperature, as often intended.) These quenches
are added to make the quasistatic potential V Q(x, t) match the equilibrium distribution of
the desired metastable distribution Pr(Xmet

t ) over the open time interval t ∈ (0, τ ).
Specifically, for t ∈ (0, τ ) we set:

V Q(x, t) = Feq(t) − kBT ln Pr(Xmet
t = x).

Hence, at t = 0 the energy landscape undergoes a quench from the symmetric potential
V (x, 0) to the asymmetric potential V Q(x, 0). We then add the counterdiabatic term:

VCD(x, t) = 1

μ

∫ x

0

∫ x ′

−∞
∂t Pr(Xmet

t = x ′′)
Pr(Xmet

t = x ′)
dx ′′dx ′,

such that the overall potential becomes:

V (x, t) = V Q(x, t) + VCD(x, t).

For t ∈ (0, τ ) the system evolves through the desired sequence Pr(Xmet
t = x), corresponding

to the equilibrium states of V Q(x, t). At the end of the protocol the system undergoes another
quench, from the asymmetric potential V Q(x, τ−) to the symmetric potential V (x, τ ). In
this way, we drive the system through a sequence of metastable distributions with precise
control of the bit bias b(t).

Although the protocol just described pertains to the specific case of a double well, the
procedure of quenching, controlling counterdiabatically, and then quenching again is a gen-
eral technique for evolving between nonequilibrium distributions in finite time. For such a
computation, the total work simplifies to the net change in nonequilibrium free energy plus
the counterdiabatic work:

〈W 〉 = �Fneq + 〈WCD〉, (27)

as shown in Fig. 3. The change in nonequilibrium free energy is given by the sum of the qua-
sistatic work and the quenching work [2,40]. For the metastable distributions we discussed,
where each informational state contributes the same local free energy, �Fneq reduces to the
change in the Shannon entropy of the information variable [2]:

�Fneq = kBT ln 2 (H[Y0] − H[Yτ ]) . (28)

Since 〈WCD〉 = T 〈�〉 ≥ 0 (see Sect. 3.2), Eqs. (27) and (28) produce the generalized form
of Landauer’s bound [2,52,53]:

〈W 〉 ≥ kBT ln 2 (H[Y0] − H[Yτ ]) , (29)

which takes on the familiar form, 〈W 〉 ≥ kBT ln 2, when starting with fully randomized bits,
b(0) = 1/2 and when the operation’s fidelity is perfect, b(τ ) = 1. As we shall see, even
if the Landauer bound cannot be achieved in finite time, perfect fidelity can be achieved in
finite time with finite work.

The amount of entropy produced—〈�〉 = 〈WCD〉/T—reflects the additional cost beyond
Landauer’s bound to implement a computation in finite time. For metastable erasure in a
symmetric double well, this additional cost depends on duration, system length scale, bit
bias difference, and information lifetime—a measure of information storage robustness. We
have already seen (Sect. 3.4) that the value of 〈�〉 scales as the inverse of the protocol

123



Shortcuts to Thermodynamic Computing... Page 19 of 34 17

duration τ and the square of the system characteristic length scale L . We now show how bit
bias difference and information lifetime lead to additional energy costs.

Metastability simplifies the expression for the counterdiabatic potential, leading to simple
relationships between the work, bit bias difference, and robustness of information storage.
As shown in Appendix B, the counterdiabatic potential can be expressed as a product of a
piecewise-continuous function and a function that depends only on the equilibrium distribu-
tion:

VCD(x, t) = h(x) ×
{

−∂t ln b(t) if x ≤ 0

−∂t ln(1 − b(t)) if x > 0
, (30)

where:

h(x) = 1

μ

∫ |x |

0
dx ′ 1

p(x ′)

∫ −|x ′|

−∞
dx ′′ p(x ′′)

and p(x) = Pr(X eq
0 = x) is the equilibrium distribution for the symmetric, bistable potential

of Eq. (25). This result allows us to design protocols for evolving a metastable distribution
from an initial bit bias b(0) = bi to any final bit bias b(τ ) = b f , given a bistable potential.
For instance, the choices bi = 1/2 and b f = 1 correspond to perfect erasure, where the
system ends entirely in the left well.

4.3 Tradeoffs in Metastable Symmetric Erasure

As discussed above, the equilibrium distribution p(x) and bit bias b(t) determine both the
desired metastable distribution trajectory of Eq. (26) and the counterdiabatic potential of
Eq. (30) that generates this evolution. Appendix B shows that the functions p(x) and b(t)
are multiplicatively separable in the expression for counterdiabatic work. Specifically:

〈WCD〉 = f1[p(·)] f2[b(·)],
where:

f1[p(·)] = 2

μ

∫ ∞

0
dx p(x)

∫ x

0
dx ′ 1

p(x ′)

∫ −x ′

−∞
dx ′′ p(x ′′)

f2[b(·)] =
∫ τ

0
dt

(∂t b(t))2

b(t) − b(t)2
. (31)

This separability follows from the metastability and symmetry of the potential energy land-
scape. Notably, it leads to additional tradeoffs between dissipation, bit bias difference, and
information lifetime. These go beyond the thermodynamic costs of computation rate and
spatial scale.

Functional f1 depends on the equilibrium distribution p(x) that, in turn, is determined
by the bistable potential V (x, 0). The shape of this potential (e.g., the height of the barrier
relative to the left and right minima) determines the expected “lifetime” of a stored bit, in
the absence of external driving. Thus, f1 contains all the dependence of the counterdiabatic
work on information storage robustness.

Functional f2 depends on the bit bias trajectory b(t). One can now entertain a variety of
bias trajectories, using this functional to determine how the counterdiabatic work changes.
However, note that one must restrict to paths for which the initial and final time-derivative
vanishes ∂t b(t)|t∈{0,τ } = 0, since ∂t Pr(Xt = x)t∈{0,τ } must vanish for the counterdiabatic
potential itself to be zero initially and finally.
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Note too that f1 and f2 contain the system length and protocol duration dependence,
respectively. If we rescale the system spatially and the protocol temporally, we obtain the
new equilibrium distribution and bias trajectory:

p′(x) = L

L ′ p(Lx/L
′) and

b′(t) = b(τ t/τ ′).

Plugging these in, we find the new functionals:

f1[p′(·)] = L ′2

L2 f1[p(·)] and
f2[b′(·)] = τ

τ ′ f2[b(·)].
To further separate dependencies, we introduce unitless functionals of both bias and the

default equilibrium distribution:

F1[p(·)] = f1[p(·)]/L2 and

F2[b(·)] = f2[b(·)]τ.
F2 captures the difference between initial and final bias without dependence on computation
rate. F1 captures the depth between left and right wells without dependence on the spatial
scale, which also affects how long a bistable system can robustly store information.

In short, the counterdiabatic work is expressed as the product of four factors:

〈WCD〉 = L2

τ
F1[p(·)]F2[b(·)].

Since F1 and F2 are independent of duration and system length, this implies a five-way
tradeoff between the main dependencies of computation: dissipation, duration, length, F1,
and F2. We next study how F1 and F2 depend on properties of the erasure protocol, leading
to a practical consequence.

4.4 Perfect Erasure in Finite Time with FiniteWork

Let us consider control protocols for which the bit bias trajectory is given by:

b(t) = bi cos
2(π t/2τ) + b f sin

2(π t/2τ). (32)

This schedule takes the system monotonically from b(0) = bi to b(τ ) = b f , as shown in
Fig. 4. Since ∂t b = 0 at t = 0 and t = τ , the counterdiabatic potential vanishes at the initial
and final times, except in the special cases that bi or b f are either 0 or 1.

As shown in Eq. (30), the multiplicative contribution of the bias trajectory to the coun-
terdiabatic potential is −∂t ln b(t) = −∂t b(t)/b(t), if x ≤ 0, and −∂t ln(1 − b(t)) =
∂t b(t)/(1 − b(t)), if x > 0. If b(t) is 0 or 1, then one diverges. And, in the case where
∂t b(t) is zero, such as when t = 0 or 1, using L’Hopital’s rule to evaluate the undefined ratio
0/0, leaves a term proportional to ∂2t b(t)/∂t b(t). This diverges since ∂2t b(t) = 0.

The counterdiabatic potential in this case is:

VCD(x, t) = h(x)

2τ
×

⎧
⎨

⎩

− (b f −bi )π sin(π t/τ)

bi cos(π t/2τ)2+b f sin(π t/2τ)2
if x ≤ 0

(b f −bi )π sin(π t/τ)

1−bi cos(π t/2τ)2−b f sin(π t/2τ)2
if x > 0

. (33)
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Fig. 4 Nonlinear protocol for driving between initial bit bias b(0) = bi and final bias b(τ ) = b f . The nonlinear
protocol b(t) (blue curve) has zero slope initially and finally such that the counterdiabatic potential vanishes
at the protocol’s beginning and end

Fig. 5 Counterdiabatic potential for the nonlinear erasure protocol of Fig. 4 that takes a bistable potential well
from an initial bias b(0) = 0.5 to a final bias b(τ ) = 0.95. For this protocol we set τ = 1, μ = 1, kBT = 1,
α = 1, and κ = 2. The counterdiabatic potential vanishes at the beginning and end, so that the system begins
and ends in equilibrium

Note that the explicit dependence on duration factors out, yielding the prefactor τ−1, as
expected. Calculating h(x) numerically, Fig. 5 plots the counterdiabatic potential VCD(x, t).
The nonlinear protocol begins and ends with zero counterdiabatic potential, hence the distri-
bution begins and ends in equilibrium. This guarantees that when instantaneously changing
back to the default bistable potential landscape, the work investment beyond the counterdia-
batic work equals the change in nonequilibrium free energy.

Equation (30) indicates that any protocol starting or ending with all probability in a single
well (bi = 0, bi = 1, b f = 0, or b f = 1) has divergent counterdiabatic potentials, since either
b(t) or 1 − b(t) vanishes. A vanishing numerator ḃ(t) is no compensation, since under any
number of applications of L’Hopital’s rule to evaluate convergence the numerator becomes
nonzero first; it is the derivative of the denominator. We also see divergent energies in the
quasistatic potential, which is proportional to −kBT ln b(t) before the quench.

Despite this discomforting divergent energy, the situation of perfect erasure is not inac-
cessible. In much the same way that quasistatic perfect erasure requires only kBT ln 2
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Fig. 6 Dissipated work to execute a logical operation changes with initial bit bias bi and final bias b f :
Dissipated work is proportional to F2[b(·)] when the duration τ and equilibrium distribution p(·) are held
fixed. (Left) Initial bit bias bi = 0.0: as the probability b f of informational state 0 increases the cost of erasure
increases steadily to a maximum at b f = 1.0. (Center) Similar behavior for an initial bias bi = 0.25. (Right)
Fair initial distribution bi = 0.5. These plots highlight the finite costs for finite-time basic bit operations. The
pink triangle identifies the finite dissipation of perfect erasure, changing from an initially uniform distribution
over 0 and 1 to all 0. The green square identifies creating an uncertain bit from a certain bit state 0. Since it
is the reverse of perfect erasure, this exhibits the same dissipated counterdiabatic work. Last, the red circle
identifies the dissipation cost of transferring a bit from 1 to 0

average work production, we find through numerical calculations that a counterdiabatic
potential VCD(x, t) that starts and ends at zero can perform perfect erasure in finite
time with finite work, because the probability of high-energy states vanishes. If the
thermodynamic-computing designer wishes to avoid a divergent final potential, they can
approach perfectly faithful erasure asymptotically while keeping the final state in equilib-
rium, because VCD(x, τ ) = 0 for all b f = 0, 1. As the final bias b f approaches 1, the
resulting work approaches a constant value but the system approaches perfect erasure, as
shown in the rightmost plot of Fig. 6.

To study the dependence of dissipatedworkon initial andfinal bias,bi andb f ,we substitute
the nonlinear bias function, Eq. (32), into functional F2[b(·)]. This functional is proportional
to the dissipated work with the default distribution p(x) and duration fixed. This allows us
to determine the thermodynamic cost of the basic computations on a single bit.

Figure 6 shows numerical estimates of F2[b(·)] for three different initial biases bi = 0.0,
0.25, and 0.5. We see that the dissipation increases with the magnitude of the bias difference
|bi −b f |. However, we also see that the dissipatedwork is bounded, since F2[b(·)] is bounded
by π2. This means that a variety of single-bit operations can be executed in finite time with
finite dissipation, including perfect erasure.

Figure 6 highlights three points corresponding to perfect erasure, bit creation, and bit
transfer. Perfect erasure, identified by the pink triangle, corresponds to starting with an
unbiased state (bi = 0.5), then increasing the final bias to b f = 1.0. Since F2[b(·)] converges
to≈ 2.89, perfect erasure can be executed with finite work in finite time. Perfect bit creation,
extracting a random bit (b f = 0.5) from a fixed bit (bi = 0.0), has the reverse distribution
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trajectory of perfect erasure. So, the dissipated counterdiabatic work is the same 〈WCD
create〉 =

〈WCD
erase〉. Finally, the maximally-dissipative protocol, labeled with a red circle, corresponds

to transferring a stored 1 (bi = 0.0) to a stored 0 (bi = 1.0) with perfect fidelity—perfect
bit transfer. It should be noted that this transfer, while mapping 1 to 0, does not map 0 to 1.
That is, it is not a swap operation.

Thus, we see that the basic and useful 1-bit operations can be implemented in finite time
with these counterdiabatic protocols using finite dissipated work and at high fidelity. The
general behavior of the dissipation is, for each starting bias bi , that it increases with the
difference between initial final bias. However, a more precise characterization in terms of a
distancemeasure between probability distributions was indicated in past work, which nicely
matches these results.

Note that these plots are intentionally designed in a way similar to Fig. 3 of Ref. [7] and
reveal similar dependence on initial and final bias. Quantitatively, the values are proportional.
Reference [7] showed that optimal control in the linear response regime requires dissipated
heat proportional to the square of the Hellinger distance:

K 2(bi , b f ) =
(√

bi − √
b f

)2 + (√
1 − bi − √

1 − b f
)2

2
. (34)

Though our chosen bit bias trajectory is not optimal, as App. B notes, numerical integration
shows that the contribution to the dissipated work can be expressed:

F2[b(·)] = π2K 2(bi , b f ), (35)

where the proportionality constant π2 comes from analytical results for the special case when
bi = 0.0 and b f = 1.0. Thus, we see that the dissipated work is proportional to a measure
of the distance between initial and final distributions for this class of control protocols.

While we do not yet have an explanation of the correspondence between our far-from-
equilibrium counterdiabatic estimate and the linear-response geometric-control estimate of
dissipated work in finite time, the results’ similarity is suggestive. We should point out,
though, that other bias trajectories could be chosen that do not produce dissipation pro-
portional to the square of the Hellinger distance and may be less dissipative. It may be a
coincidence that our chosen bit bias trajectory yielded results similar to Ref. [7]’s linear
response analysis.

4.5 Robust Information Storage RequiresWork

With a potential V (x, 0) = αx4 − κx2 that stores information in metastable distributional
states, that information has a finite lifetime. In this symmetric double well, with one well
corresponding to informational state 0 and the other to 1, the lifetime can be quantified in
terms of the average time 〈τ0→1〉 it takes for a particle to switch between these states. In the
overdamped regime this information lifetime is given by [50,54]:

〈τ0→1〉 = 2π

μ
√

|V̈ (x0, 0)V̈ (xB , 0)|
e�EB/kBT , (36)

where by V̈ (x, 0) = ∂2x V (x, 0) we denote the curvature of the default potential energy
landscape, x0 = −√

κ/2α is the location of the minimum in the metastable 0 well, xB = 0
is the location of the barrier maximum, and �EB = V (xB , 0) − V (x0, 0) is the height of
the barrier above the minimum. The latter is a useful measure of the barrier’s energy scale
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and, thus, how robustly the potential stores information. By explicit calculation we obtain
V̈ (xB , 0) = −2κ , V̈ (x0, 0) = 4κ , and:

�EB = κ2

4α
. (37)

Hence, the information lifetime is:

〈τ0→1〉 = π

μκ
√
2
eκ2/4αkBT . (38)

Note that 〈τ0→1〉 scales as the system length L squared, due to the V̈ terms in Eq. (36)’s
denominator. The V̈ terms are also proportional to the scale of the energy landscape, which
we characterize with�EB . Beyond this, the information lifetime is strongly controlled by the
energy scale �EB in the exponential. Thus, the information lifetime has nearly exponential
dependence on this energy scale:

〈τ0→1〉
L2 ∝ e�EB/kBT

�EB
.

Thus, we can capture this dependence by evaluating the information lifetime and scaling by
the length. Comparing f1[p(·)] to 〈τ0→1〉—i.e., F1[p(·)] = f1[p(·)]/L2 to 〈τ0→1〉/L2—
reveals an interesting correspondence between dissipation and information lifetime, as well
as identifying a term that depends on the default potential’s well depth.

As illustrated in Fig. 7, with increasing well depth �EB the bistable distribution becomes
increasingly peaked at the local minima, and the information lifetime increases nearly expo-
nentially; as predicted by Eq. (36). Interestingly, f1[p(·)], which is proportional to the excess
work production required during erasure, scales at roughly the same rate as the information
lifetime. Thus, the dissipated work required to erase while maintaining metastable distribu-
tions is approximately proportional to the memory’s information lifetime:

〈WCD〉 ∝∼ 〈τ0→1〉.
The exception to this occurs for very small barrier heights, where the potential’s equilib-
rium distribution is not clearly bimodal and there is nearly unobstructed flow between the
information states.

Figure 7 also shows that the dissipated work increases nearly exponentially with the height
of the energy barrier between the wells:

〈WCD〉 ∝∼
e�EB/kBT

�EB
. (39)

The relationship between dissipation and information lifetime was studied in Ref. [55] for
an erasure model in which the right side of the bistable potential is instantaneously raised—
facilitating erasure to the left well—and then lowered. In contrast with our case where the
required work increases nearly exponentially with energy-barrier height, in Ref. [55] the
required work increases linearly with the energy barrier: ∂〈W 〉/∂�EB = 1. As a result,
as one increases information storage robustness—Ref. [55]’s “reliability”—the dissipated
work also scales as the barrier height. This implies a more forgiving scaling relationship
between dissipation and information lifetime than the onewe have derived for counterdiabatic
protocols.

Unlike counterdiabatic protocols, however, Ref. [55]’s erasure protocol is not designed to
precisely control the distribution and so does not allow separately identifying the dependence
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Fig. 7 Energy barrier dependence: (Top) Changing energy barrier height �EB relative to the thermal energy
scale kBT , f1[p(·)] and so the required dissipated work increase nearly exponentially. This corresponds to
an increase in the separation between the distribution in the 0 and 1 states, as shown by the six distributions
along the horizontal axis (Bottom). Increasing�EB , greater well separation, leads to more robust information
storage, as shown by the information lifetime 〈τ0→1〉 (Top). (Center) Moreover, the information lifetime,
which scales just below exponentially, appears to scale at the same rate as the dissipated energy when the
barrier is at least twice kBT . kBT = 1, α = κ/2 (preserving the location of the potential minima), and μ = 1
for these calculations, while κ is used to change the energy barrier �EB as in Eq. (37)

of dissipated work on fidelity and robustness, as done here. Thus, it is unclear how much
work is required to execute perfect erasure.

Nevertheless, the relationship between dissipation and robustness found in Ref. [55] sug-
gests that erasure efficiency may be enhanced by expanding beyond trajectory distributions
that are metastable at every time step. Such distributions require a persistent energy barrier
throughout the protocol. Explorations of counterdiabatic erasure protocols that eliminate the
local stability of certainmemory elements in ametastable systemby lowering energy barriers,
as done in experimental implementations of efficient Landauer erasure [47], yield less costly
erasure. This has been shown explicitly in Ref. [56], which considers “bit erasure under full
control”, and therefore without any constraint on intermediate probability distributions. The
results show that, rather than increasing with information lifetime, counterdiabatic work and
entropy production asymptote to a constant value as reliability increases.

However, full control is often inaccessible. For the metastable finite-time erasure shown
here, there is a clear energy cost to robust information storage–one proportional to the infor-
mation lifetime and multiplicatively separable from both the bias difference, as well as
protocol duration τ . Though we described how the excess work scales as the square of the
length scale L , this dependency is directly contained in the functional f1[p(·)]. This rein-
forces the relationship to the information lifetime 〈τ0→1〉, which also scales as the inverse
length scale, due to the term

√
|V̈ (x0, 0)V̈ (xB , 0)|. However, we also see the direct effect of

the energy-barrier height �EB through F1[p(·)] and its near proportionality to 〈τ0→1〉/L2.
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5 Conclusion

Counterdiabatic control is a new tool for thermodynamic computing that executes precisely-
controlled information processing in finite time at finite cost with high fidelity. It is
implemented via an additional term in the potential energy—the counterdiabatic potential—
that guides the microstate distribution along a path that results in the desired computation.
We analyzed the work required for counterdiabatic information processing, developing a
full suite of resource trade-offs. Since, as we showed, counterdiabatic protocols are the
unique control that guides the system distribution along a desired trajectory, these trade-offs
apply broadly to any Hamiltonian control in overdamped Fokker–Planck dynamics in one
dimension. Other than the expected technical complications, the overall control strategy will
generalize to higher-dimensional state spaces, as in Ref. [17].

We described how to deploy counterdiabatic protocols in combination with quenching as
a general strategy for finite-time metastable information processing. Since counterdiabatic
control exactly specifies the system’s final distribution, it is distinct from previous treatments
of finite-time information processing using geometric control, which focused on driving an
external (thermodynamic) parameter to a desired value with minimal work.

We showed that the work performed during a counterdiabatic protocol separates into the
change in equilibrium free energy �Feq and the counterdiabatic work 〈WCD〉, which is also
the dissipated work and, thus, proportional to the protocol’s entropy production. We showed
that 〈WCD〉 scales as the inverse of the protocol duration τ—reinforcing previous analyses
of finite-time thermodynamic processes that showed the work required for information pro-
cessing increases with computation rate [6,7,45]. We also showed that dissipated work scales
as the square of the system length scale L . That is, it is more difficult to move distributions
long distances in the same finite time. The time and distance dependence together imply that
going twice as far at the same speed takes twice the energy, rather similar to locomotive
machines traveling long distances. This is also in agreement with microscopic experiments,
such as a colloid dragged through water, for which the velocity scales as the force due to
linear damping, and so the work scales accordingly:

∫
dxF ∝ vL = L2/τ .

We then showed that counterdiabatic protocols can process information by adding
quenching at a protocol’s beginning and end. Quenching allows rapidly evolving between
nonequilibrium metastable states, which store information. Applying the approach, we con-
sidered a symmetric double-well system and calculated the work production for various
types of finite-time bit manipulation. This analysis demonstrated that, in addition to the
dependence on length scale and duration, counterdiabatic work depends on erasure fidelity
and information storage robustness.

Evaluating the multiplicative component F2[b(·)] of the counterdiabatic work, we found
that dissipation increaseswith the bit bias difference between the initial and final distributions.
More specifically, it is proportional to the Hellinger distance for our chosen class of con-
trol protocols. Given an initial equilibrium and unbiased metastable distribution, the closer
the final metastable distribution is to giving all-0 informational states—increased erasure
fidelity—the more the operation costs. However, there is an upper bound on the dissipated
work. Thus, it is possible to perform perfect erasure in finite time at finite cost. It is also
possible to transfer a bit in finite time with finite work, as shown in Fig. 7’s leftmost plot.
Perfect fidelity, though, does not mean results are held indefinitely.

The factor f1[p(·)] in the expression for the counterdiabatic work depends only on the
default equilibrium distribution and so it captures the dependence on information storage
robustness. That is, with increased well depth—and so metastable-state robustness—the
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dissipatedwork increases nearly exponentially.Numerical calculations demonstrate thatwork
scales at the same rate as the information lifetime, which is the Kramers estimate [50] of the
average time it takes to jump between wells.

A much richer and more detailed picture of resource tradeoffs in thermodynamic comput-
ing emerges. Most concisely, the required work decomposes as follows:

〈W 〉 = kBT ln 2(H[Y0] − H[Yτ ]) + L2

τ
F1[p(·)]F2[b(·)].

Landauer’s Principle for thermodynamic computing, the first term on the right, is the work
required to reversibly implement a change in metastably-stored information; it is equal to the
change in the physical processor’s nonequilibrium free energy. Counterdiabatic protocols
complement and extend this principle. They reveal, in the second term on the right, an
additional cost in the form of dissipated work that increases with the computation rate 1/τ ,
length scale squared L2, fidelity through F2[b(·)] ∝ K 2(bi , b f ), energy scale of information
storage �EB through F1[p(·)], and information lifetime through the product L2F1[p(·)] ∝∼〈τ0→1〉. Thus, to achievemore efficient erasure, onemust make tradeoffs by decreasing either
computation rate, fidelity, length (sacrificing information lifetime), or the energy barrier (also
sacrificing information lifetime). The result is a rather more complete picture of finite-time,
accurate thermodynamic computing.
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Appendix A: Uniqueness of Counterdiabatic Protocols

Typically, via the Perron-Frobenius operator, the equations of motion over a space X are
used to evolve the distribution Pr(Xt ) over states x ∈ X for a time interval t ∈ (0, τ )

from an initial distribution Pr(X0). The inverse problem, of determining the equations of
motion from the evolution of states, is more challenging. For overdamped Fokker–Planck
dynamics, Ref. [13] shows how to determine the counterdiabatic control protocol V (x, t) =
V Q(x, t)+VCD(x, t) directly from the desired evolution of Pr(Xd

t ) and, hence, determine the
equations of motion. The equations of motion are specified by a changing potential landscape
V (x, t). However, while the counterdiabatic potential is a solution to the inverse problem,
given distribution trajectory {Pr(Xd

t )}, such solutions a priori need not be unique. Here, we
show that the counterdiabatic protocol is the unique protocol that generates the distribution
trajectory.
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We start by assuming that V (x, t) induces the evolution of Pr(Xt ) over the time interval
(0, τ ). This means that it solves the Fokker–Planck equation:

∂ Pr(Xd
t = x)

∂t
= μ

∂

∂x

(

Pr(Xd
t = x)

∂V (x, t)

∂x

)

+ μkBT
∂2 Pr(Xd

t = x)

∂x2
. (A1)

If the potential is not the unique dynamic solving this equation, then there exists potential
energy landscape:

V ′(x, t) = V (x, t) + �V (x, t),

that also solves this equation with nonzero �V (x, t). That is:

∂ Pr(Xd
t = x)

∂t
= μ

∂

∂x

(

Pr(Xd
t = x)

∂[V (x, t) + �V (x, t)]
∂x

)

+ μkBT
∂2 Pr(Xd

t = x)

∂x2
.

Subtracting Eq. (A1) gives:

0 = μ
∂

∂x

(

Pr(Xd
t = x)

∂�V (x, t)

∂x

)

.

Solving for the difference between the two possible solutions leads to the conclusion that all
possible solutions for the difference have the form:

�V (x, t) = C(t) + K (t)
∫ x

0

dx ′

Pr(Xd
t = x ′)

,

where C(t) and K (t) can vary with time, but are constant in the positional variable x . C(t) is
an expected and trivial additional component: one can add an additional flat potential to any
protocol without physical consequence beyond the change in total potential between the start
and end:C(τ )−C(0). However, K (t) corresponds to an additional force—one that can have
meaningful effect on the work invested during a control protocol. Thus, it appears that there
are multiple ways to solve for potential energy underlying the state dynamics. However, if the
state spaceX is truly an unbounded spatial degree of freedom, topologically equivalent to the
real numbersR, then the additional solutions corresponding to nonzero K (t) are unphysical.

Framed another way, these additional components in possible alternative solutions corre-
spond to additions to the force field F ′(x, t) = F(x, t) + �F(x, t), where:

�F(x, t) = −∂�V (x, t)

∂x

= − K (t)

Pr(Xd
t = x)

,

and the force is defined F(x, t) ≡ −∂x V (x, t). While the strength of this force field varies
spatially, its sign is the same for all x at a given time, meaning that the forces at every point
are aligned in the same direction. This additional force corresponds to an addition to the drift
velocity v′

drift(x, t) = vdrift(x, t) + �vdrift(x, t), given by:

�vdrift(x, t) = μ�F(x, t),

where the drift velocity is vdrift ≡ μF(x, t). Finally, this adds to the probability current
J ′(x, t) = J (x, t) + �J (x, t). This turns out to be constant over position:

�J (x, t) = Pr(Xd
t = x)�vdrift(x, t)

= −μK (t). (A2)
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This constant probability current cannot be realized in an infinite positional variable since,
despite locally preserving the probability distribution, probability flows out at one extreme
end of the spatial degree of freedom.

To explicitly prove that an additional constant probability current is impossible in posi-
tional spaceX topologically conjugate to the real lineR, note that the Fokker–Planck equation
Eq. (A1) is the continuity equation ∂t Pr(Xt = x) = −∂x J (x, t). There is an integral form
of this equation, which relates the change in probability in a region [x0, x1] to the probability
current through the boundary of the region:

∂t

∫ x1

x0
dx Pr(Xd

t = x) = J (x0, t) − J (x1, t).

In order for J ′(x, t) to satisfy the Fokker–Planck equation, it must also satisfy ∂t
∫ x1
x0

dx Pr

(Xd
t = x) = J ′(x0, t) − J ′(x1, t). So far, there is no contradiction, since:

J ′(x0, t) − J ′(x1, t) = J (x0, t) − μK (t) − J (x1, t) + μK (t)

= J (x0, t) − J (x1, t).

However, in the special case with x0 = −∞—the region of interest is all x ≤ x1—then the
only boundary of the region is at x1, such that:

∂t

∫ x1

−∞
dx Pr(Xd

t = x) = −J (x1, t)

= −J ′(x, t).

For this to be true, K (t) must vanish, and so there cannot be any additional drift term. That
is, up to an additional flat potential C(t), the counterdiabatic control protocols are the unique
way to guide the system along a desired distribution trajectory {Pr(Xd

t )}.
This proof does not preclude additional solutionswith nonzero K (t) if the position variable

has circular topology on a finite range [x0, x1]. This wouldmean that x0 and x1 are effectively
adjacent such that there can be probability current at both points. In this case, there are always
at least two boundary surfaces for any region, so it is impossible to use the integral continuity
equation as above. The additional probability current K (t) is possible, due to probability
flow between x0 and x1, which was not possible between ∞ and −∞ in the previous case.
However, this additional probability current corresponds to a force that points in the same
direction along the loop, meaning that system is being driven cyclically. And so, the dynamics
cannot be implemented with Hamiltonian control andmust rely on some free energy resource
to be sustained.

Appendix B: Symmetric Metastable Erasure

In metastable erasure, we assume the system is in a metastable distribution of the initial
symmetric equilibrium potential V (x, 0) = V (−x, 0) during the entire protocol. If the two
metastable informational states are Y = 0, corresponding to x ∈ (−∞, 0], and Y = 1,
corresponding to x ∈ (0,∞), then we can describe a probability distribution trajectory as:

Pr(Xt = x) =
{
Pr(X eq = x)2 Pr(Yt = 0) if x ≤ 0

Pr(X eq = x)2 Pr(Yt = 1) if x > 0
.
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We can then reparametrize in terms of the bit bias, that is the probability of the Y = 0
informational state: b(t) = Pr(Yt = 0). As in Sec. 4.1, let p(x) = Pr(X eq = x) denote
the equilibrium distribution, which inherits the symmetry of the double well potential:
p(x) = p(−x). We then express the evolving metastable distribution as a function of control
parameter:

Pr(Xt = x) =
{
2p(x)b(t) if x ≤ 0

2p(x)(1 − b(t)) if x > 0
.

This expression allows us to simplify the counterdiabatic potential and counterdiabatic
work, as follows.

VCD(x, t) = 1

μ

∫ x

0
dx ′ 1

Pr(Xt = x ′)

∫ x ′

−∞
dx ′′∂t Pr(Xt = x ′′)

=
{

1
μ

∫ x
0 dx ′ 1

2bp(x ′)
∫ x ′
−∞ dx ′′2p(x ′′)ḃ if x ≤ 0

1
μ

∫ x
0 dx ′ 1

2(1−b)p(x ′) (
∫ 0
−∞ dx ′′2p(x ′′)ḃ

∫ x ′
0 dx ′′2p(x ′′)∂t (1 − b)) if x > 0

=
{

1
μ

∫ x
0 dx ′ 1

bp(x ′)
∫ x ′
−∞ dx ′′ p(x ′′)ḃ if x ≤ 0

1
μ

∫ x
0 dx ′ 1

(1−b)p(x ′) (
∫ 0
−∞ dx ′′ p(x ′′)ḃ − ∫ x ′

0 dx ′′ p(−x ′′)ḃ) if x > 0

=
{

1
μ

∫ x
0 dx ′ 1

bp(x ′)
∫ x ′
−∞ dx ′′ p(x ′′)ḃ if x ≤ 0

1
μ

∫ x
0 dx ′ 1

(1−b)p(x ′) (
∫ 0
−∞ dx ′′ p(x ′′)ḃ − ∫ 0

−x ′ dx ′′ p(x ′′)ḃ) if x > 0

=
{

1
μ

∫ x
0 dx ′ 1

bp(x ′)
∫ x ′
−∞ dx ′′ p(x ′′)ḃ if x ≤ 0

1
μ

∫ x
0 dx ′ 1

(1−b)p(x ′)
∫ −x ′
−∞ dx ′′ p(x ′′)ḃ if x > 0

=
{

1
μ

∫ x
0 dx ′ 1

bp(x ′)
∫ −|x ′|
−∞ dx ′′ p(x ′′)ḃ if x ≤ 0

1
μ

∫ x
0 dx ′ 1

(1−b)p(x ′)
∫ −|x ′|
−∞ dx ′′ p(x ′′)ḃ if x > 0

=
{

ḃ
b
1
μ

∫ x
0 dx ′ 1

p(x ′)
∫ −|x ′|
−∞ dx ′′ p(x ′′) if x ≤ 0

ḃ
1−b

1
μ

∫ x
0 dx ′ 1

p(x ′)
∫ −|x ′|
−∞ dx ′′ p(x ′′) if x > 0

,

where b = b(t) and ḃ = ∂t b(t). The second line follows from the first, since p(x ′′) =
p(−x ′′).

We can substitute u = −x ′ again since
∫ x
0

1
p(x ′)dx

′ = − ∫ −x
0 du 1

p(u)
. And so, if we

define:

h(x) = 1

μ

∫ |x |

0
dx ′ 1

p(x ′)

∫ −|x ′|

−∞
dx ′′ p(x ′′),

then:

VCD(x, t) = h(x) ×
{

− ḃ
b if x ≤ 0
ḃ

1−b if x > 0
. (B1)
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The resulting counterdiabatic work is:

〈WCD〉 =
∫ τ

0
dt

∫ ∞

−∞
dx Pr(Xt = x)∂t V

CD(x, t)

= 2
∫ τ

0
dt

∫ 0

−∞
dx p(x)b h(x)∂t

(−ḃ

b

)

+ 2
∫ τ

0
dt

∫ ∞

0
dx p(x)(1 − b)h(x)∂t

(
ḃ

1 − b

)

= 2
∫ ∞

0
dx p(x)h(x)

∫ τ

0
dt

(

b∂t

(−ḃ

b

)

+ (1 − b)∂t

(
ḃ

1 − b

))

= 2
∫ ∞

0
dx p(x)h(x)

∫ τ

0
dt

(

−b

(
∂2t b

b
− ḃ2

b2

)

+ (1 − b)

(
∂2t b

1 − b
+ (ḃ)2

(1 − b)2

))

= 2
∫ ∞

0
dx p(x)h(x)

∫ τ

0
dt

(

−∂2t b + (ḃ)2

b
+ ∂2t b + (ḃ)2

(1 − b)

)

= 2
∫ ∞

0
dx p(x)h(x)

∫ τ

0
dt

(
(ḃ)2

b
+ (ḃ)2

(1 − b)

)

= 2
∫ ∞

0
dx p(x)h(x)

∫ τ

0
dt

(ḃ)2

b − b2

= f1[p(·)] × f2[b(·)].
The second line follows from the first since p(x) and h(x) are symmetric. The functions
appearing on the last line are given by:

f2[b(·)] =
∫ τ

0
dt

(ḃ)2

b − b2

and:

f1[p(·)] = 2
∫ ∞

0
dx p(x)h(x)

= 2
∫ ∞

0
dx p(x)

1

μ

∫ |x |

0
dx ′ 1

p(x ′)

∫ −|x ′|

−∞
dx ′′ p(x ′′)

= 2

μ

∫ ∞

0
dx p(x)

∫ x

0
dx ′ 1

p(x ′)

∫ −x ′

−∞
dx ′′ p(x ′′).

Thus, the counterdiabatic work is the product of two factors: one dependent on the bias
trajectory b(t), containing all dependence on erasure fidelity, and the other dependent on the
equilibrium potential p(x), containing all dependence on information storage robustness—
the information lifetime.

One is tempted to use the functional f2 to find the bias trajectory thatminimizes dissipation.
f2 can be expressed as the integral of a Lagrangian:

f2[b(·)] =
∫ τ

0
L(b(t), b′(t))dt,

where:

L(b(t), b′(t)) = b′(t)2

b − b2
.

This implies that, for the optimal path satisfying the equation of motion:

∂L
∂b

= d

dt

∂L
∂b′ . (B2)
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Integrating these equations of motion, given the constraint of starting at initial bias b(0) = bi
and ending at final bias b(τ ) = b f , would determine the most thermodynamically efficient
path b(t) for transiting between different metastable distributions. However, this is challeng-
ing and remains unsolved. So, instead, consider a simpler protocol.

We choose a bias trajectory:

b(t) = b(0) cos(tπ/2τ)2 + b(τ ) sin(tπ/2τ)2,

with vanishing derivative at the protocol’s beginning and end, such that the desired distri-
bution Pr(Xd

t ) has zero time derivative at the initial and final times. This means that the
counterdiabatic potential energy is zero at the protocol’s beginning and end. As a result, the
system is in equilibrium at the beginning and end of the counterdiabatic step in the protocol.

Substituting this into the expression for f2[b(·)] above, we evaluate numerically and see
that the counterdiabatic work is proportional to the square of the Hellinger distance K (·, ·):

f2[b(·)] = π2

τ
K 2(b(0), b(τ )),

where:

K 2(b, b′) =
(√

b − √
b′

)2 + (√
1 − b − √

1 − b′)2

2
.

The proportionality’s form is forced since (i) the τ dependence factors out of the functional
f2[b(·)], as stated in the main text, and (ii) for the extreme bit-transfer case—b(0) = 0.0 and
b(τ ) = 1.0—there is an analytic solution.

For bit transfer, the bias trajectory becomes b(t) = sin(tπ/2τ)2 = (1 − cos(tπ/τ))/2.
This leads to an expression for the functional:

f2[b(·)] =
∫ τ

0

(
π
2τ sin(tπ/τ)

)2

1−cos(tπ/τ)
2 −

(
1−cos(tπ/τ)

2

)2 dt

= π2

τ
.

Substituting our chosen bias trajectory into the expression for optimality in Eq. (B2), we see
that it does not satisfy the equality, and so is not optimal.
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