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ABSTRACT OF THE THESIS 

 

Design and Manipulation of On-Chip Bragg Couplers for Side Lobe 

Suppression 

 

by 

 

Sushant  Kumar 

Master of Sciences in Electrical Engineering (Photonics)  

University of California  San Diego, 2018 

Professor Yeshaiahu Fainman, Chair 

 

Contra-directional Bragg couplers are an integral part of many present and 

future on-chip optical systems. Suppression of side lobes of such filters is 

important for near and long term practical applications of optical devices in 
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multiple disciplines. This thesis investigates the apodization of Bragg devices for 

side lobe suppression and points out some flaws in the design approach. Post 

numerical analysis, a method of cascaded coupler design is developed. Through 

numerical simulations, it is demonstrated that the cascaded coupler approach is 

a superior method for maintaining spectral purity of the coupled optical signal. A 

roadmap for device design to withstand fabrication errors and make the device 

tunable is also suggested.
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Introduction and Motivation 

 Optical devices are becoming a mainstay in various applications ranging 

from communications to mobile spectroscopy etc. Considering the ever-

increasing need for bandwidth leading to the requirement for better signal to 

noise ratio (SNR), lo signal crosstalk. faster modulation speeds and mass 

production potential; silicon photonic devices appear to be the most logical way 

forward. Silicon devices offer high index contrast leading to better confinement 

and smaller device sizes; in addition to being compatible with the 

Complementary Metal Oxide Semiconductor (CMOS) foundry processes, which 

would allow for leveraging of the billions of dollars already invested on the 

electronics side of the industry. Contra-directional Bragg couplers offer 

broadband and tunable solution for multidisciplinary applications in the field of 

photonics. But, in order to achieve a high SNR and low crosstalk in the coupled 

optical fields the side lobes of the coupling spectra of the Bragg devices need to 

be suppressed.  

Apodization of contra-directional Bragg couplers is the most prevalent 

method of accomplishing this goal. But, this approach acts only to smoothen the 

spectrum of the Bragg device and doesn’t actually filter out power from the side 

lobes. As such I may in fact increase the crosstalk between closely spaced 

channels or channel groups. This may prove to be problematic in case of dense 
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wavelength division multiplexing (DWDM) or on chip laser-based applications, 

where spectral purity and low channel crosstalk are of utmost importance.  

 Hence, a better design for side lobe suppression of contra-directional 

Bragg couplers is needed. Considering this a point of departure, the method of 

cascaded Bragg couplers is presented as a solution in this thesis.  Chapter 1 

contains a theoretical description of inter-modal coupling via Bragg devices. This 

chapter contains a derivation of the coupled mode theory starting from Maxwell’s 

equations. Chapter 2 furthers Chapter 1, by providing analytical and numerical 

analysis of the coupled mode equations of the contra-directional two-port Bragg 

devices. The viability of transfer matrix method to obtain solutions to coupled 

mode equations is also discussed.  Chapter 3 presents numerical analysis of 

four-port Bragg coupler devices via transfer matrix method. This chapter also 

discusses apodized contra-directional Bragg devices and points out the points of 

failure of such designs. Chapter 4 describes the method of cascaded Bragg 

devices for the purpose of side-lobe suppression. In this chapter, full FDTD 

simulations of these devices are presented. Chapter 5 contains a quick 

comparison of the two approaches and points out advantages and disadvantages 

of the cascaded device method versus the apodization method. Chapter 6 points 

to the future roadmap for design and fabrication of the cascaded contra-

directional Bragg coupler devices. 
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1. Theory of Bragg Couplers 

1.1 Maxwell’s Equations  

 The mathematical and physical theory of any Bragg device begins with 

Maxwell’s equations that describe the electromagnetic fields in any medium. The 

equations (Eqs.) are general knowledge in scientific community [1] [2]and are as 

follows: 

𝛻 ⋅ 𝑫 = 𝜌 , 

          (1.1) 

𝛻 × 𝑯 −
𝜕𝑫

𝜕𝑡
= 𝑱 , 

          (1.2) 

𝛻 × 𝑬 +
𝜕𝑩

𝜕𝑡
= 0 , 

(1.3) 

𝛻 ⋅ 𝑩 = 0 , 

(1.4) 

Where E  and H  are vector electric and magnetic fields. D and B  are electric 

displacement and magnetic induction fields vectors, while 𝝆  is electric charge 
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density and J  is the electric current density. In any material D and B  can be 

related to the E  and H  fields using the following equations: 

𝑬 = 휀𝑬 = 휀0𝑬 + 𝑷    𝑩 = 𝜇𝑯 = 𝑢0𝑯+𝑴 

(1.5)      (1.6) 

Where P  is electric polarization and M  is magnetization. These are material 

properties and can be real or complex and range from zero in case of non-

electronic and magnetic materials; to positive or negative. These properties can 

be in tensor form to model more nuanced material properties such as non-

linearities, hysteresis etc.  

1.2 Source and Divergence Free Maxwell’s Equations  

 If simple CMOS martials like Silicon and Silicon Oxide with almost non-

existent anisotropy and non-linearity are in consideration. The  휀 and 𝜇 can be 

taken as scalar constants and the impressed charge densities 𝜌 and impressed 

current 𝑱 densities are negligible. Provided the above conditions are met; a 

simplified version of electromagnetic wave equations can be obtained by 

applying the curl operator to Eqs. (1.2) and (1.3) to get: 
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𝛻 × (𝛻 × 𝑯) + 휀
𝜕

𝜕𝑡
(𝛻 × 𝑬) = 0 

 (1.7) 

𝛻 × (𝛻 × 𝑬) + 𝜇
𝜕

𝜕𝑡
(𝛻 × 𝑯) = 0 , 

 (1.8) 

Then, Eqs. (1.3) and (1.2) can be substituted into Eqs. (1.7) and (1.8) to separate 

the variables and get:  

𝛻 × (𝛻 × 𝑯) + 𝜇휀
𝜕2𝑯

𝜕𝑡2
= 0 

(1.9) 

𝛻 × (𝛻 × 𝑬) + 𝜇휀
𝜕2𝑬

𝜕𝑡2
= 0 

(1.10) 

Utilizing the following vector identity: 

𝛻 × (𝛻 × 𝑨) = 𝛻(𝛻 ⋅ 𝑨) − 𝛻2𝑨 

(1.11) 
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And also observing that Eqs. (1.1) and (1.4) equate to zero due to almost non-

existent source charges and currents in the material; the divergence free vector 

equations can be obtained:  

𝛻2𝑯 = 𝑢휀
𝜕2𝑯

𝜕𝑡2
=
𝑛2

𝑐2
𝜕2𝑯

𝜕𝑡2
 

(1.12) 

𝛻2𝑬 = 𝑢휀
𝜕2𝑬

𝜕𝑡2
=
𝑛2

𝑐2
𝜕2𝑬

𝜕𝑡2
 

(1.13) 

𝑐 = 1
√휀0𝜇0
⁄  

(1.14) 

𝑛 = √휀𝜇

√휀0𝜇0
⁄  

(1.15) 

Here, 𝑐 is the speed of light in vacuum and 𝑛 is the refractive index of the 

material (Silicon or Silicon Oxide for the purpose of this thesis).  
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In bulk material, Eqs. (1.12) and (1.13) result in plane wave solutions for 

Cartesian coordinate systems. Presence of additional boundary conditions; like a 

waveguide wherein a Silicon core is surrounded by Silicon Oxide. The solutions 

represent guided modes with a propagation constant 𝛽 . Sine the devices in 

consideration are planar in nature, the materials can be considered to be 

homogeneous in z-direction for the coupled mode theory considerations. In this 

case, permittivity and permeability can assume the form: 

휀(𝑥, 𝑦, 𝑧, 𝑡) = 휀(𝑥, 𝑦) 

(1.16) 

𝜇(𝑥, 𝑦, 𝑧, 𝑡) = 𝜇(𝑥, 𝑦) 

(1.17) 

Where 𝑥, 𝑦 and 𝑧 are cartesian coordinates while 𝑡 is the time coordinate. When 

Eqs. (1.16) and (1.17) are applied to the Maxwell’s wave equations (1.12) and 

(1.13). The solutions of the wave equations become of the form: 

𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒{𝑯𝒎(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.18) 
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𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒{𝑬𝒎(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.19)  

Where 𝜔 is the angular frequency of the optical field, the subscript 𝑚 signifies 

the 𝑚th mode of the waveguide and 𝛽𝑚 refers to the propagation constant of 

the 𝑚th mode along 𝑥; which is the direction of propagation in this case. In most 

cases the modes subscripts are discrete due to the quantized nature of guided 

modes in slab or in this case, strip waveguides. It is pertinent to know that 

analytical solutions to the wave equations are known for multiple geometries and 

boundary conditions. But, in most cases; the solutions are computed numerically 

using any of the various computer software at hand.   

 

1.3 Orthonormalization of Electromagnetic Modes 

 For systems where permittivity and permeability are invariant along the 

direction of propagation, it can be demonstrated that modes of the form of Eqs. 

(2.18) and (2.19) are orthogonal in nature. This can be done by considering the 

spatial characteristics of the electromagnetic fields. Since the modes are 

eigenvalue solutions, to the Maxwell’s wave equations; they must be invariant 

along direction of propagation given non-existent field-loss and invariant 
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permittivity and permeability profiles. If multiple modes are excited in a system, 

the total electric and magnetic fields present in the system can be described by: 

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝑬𝒎
𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.20) 

𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝑯𝒎

𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.21) 

Time averaged power is defined as: 

𝑷 = ∫ ∫ [𝑬(𝑥, 𝑦, 𝑧, 𝑡)] × [𝑯(𝑥, 𝑦, 𝑧, 𝑡)]∗  ⅆ𝑦 ⅆ𝑧 

(1.22) 

Replacing (1.20) and (1.21) into (1.22), we can get time averaged power; since 

the conjugate in the 𝑯 field cancels out the exponential term in the expression of 

𝑷 . Leading to a time averaged value of power.  

𝑷 = ∬
1

2
𝑅𝑒 {[∑𝑬𝒏(𝑦, 𝑧) 𝑒𝑥𝑝(−ⅈ𝛽𝑚𝑥)

𝑚

] × [∑𝑯𝒏
∗ (𝑦, 𝑧) 𝑒𝑥𝑝(ⅈ𝛽𝑛𝑥)

𝑛

] ⋅ 𝒏𝒙} ⅆ𝑦 ⅆ𝑧

−∞

−∞
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𝑷 =
1

2
𝑅𝑒

{
 
 

 
 

∑∑𝑒𝑥𝑝 [ⅈ(𝛽𝑛 − 𝛽𝑚)] ∬𝑬𝒎(𝑦, 𝑧) × 𝑯𝒏
∗ (𝑦, 𝑧) ⋅ 𝒏𝒙 ⅆ𝑦 ⅆ𝑧

∞

−∞

𝑛𝑚 }
 
 

 
 

 

(1.23) 

Where 𝒏𝒙 is unit vector along the direction of propagation 𝑥. Considering the 

condition of continuous and constant power-flow, equation (1.23) becomes: 

0 =
𝜕𝑷

𝜕𝑥
=
1

2
𝑅𝑒

{
 
 

 
 

∑∑𝑒𝑥𝑝 [ⅈ(𝛽𝑛 − 𝛽𝑚)] ∬𝑬𝒎(𝑦, 𝑧) × 𝑯𝒏
∗ (𝑦, 𝑧) ⋅ 𝒏𝒙 ⅆ𝑦 ⅆ𝑧

∞

−∞

𝑛𝑚 }
 
 

 
 

 

(1.24) 

Upon close inspection it is evident that power in each mode is continuous, 

leading to the following orthonormalization condition for the fields: 

|
1

2
𝑅𝑒 {∬𝑬𝒎(𝑦, 𝑧) × 𝑯𝒏

∗ (𝑦, 𝑧) ⋅ 𝒏𝒙 ⅆ𝑦 ⅆ𝑧

∞

−∞

}| = 𝛿𝑚𝑛 

(1.25) 

where 𝛿𝑚𝑛 is the Kronecker delta i.e. the integral is non-zero only if 𝑚 = 𝑛 . 

The Kronecker delta is taken to have the units of power and modes are 

normalized to unity. The absolute value is included because the sign of power-

flow depends on the direction of propagation.   
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 From the above relation of electromagnetic power-flow, additional 

information with regards to constrains between electric and magnetic fields can 

be derived. Similar to decoupling of electric and magnetic fields shown in Eqs. 

(1.9) and (1.10), the equality in power-flow can be expressed as: 

1

2
 휀|𝑬|2 =

1

2
 𝜇|𝑯|2 

(1.26) 

The full derivation for the above expression can be found in references [1] [2].  

 It should be kept in mind, that the above energy and power-flow equalities 

are valid only if the permittivity and permeability distributions are homogeneous 

and their gradient is negligible. The orthonormalization condition is a direct result 

of the modal solutions to Maxwell’s equations and the fact that modal energy 

may only be scaled by any factor for all modes together and not individual 

modes. Since, the energy may be normalized arbitrarily; either the electric or 

magnetic fields can be normalized to unity.   
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1.4 Lorentz Reciprocity Theorem 

 The most general approach to electromagnetic mode coupling in general 

relies on the well-known Lorentz Reciprocity Theorem [3]. The theorem is derived 

by considering arbitrary solutions to Maxwell’s equations for a pair of distinct 

waveguides with distinct modes. The electric and magnetic fields in the individual 

modes in source-free, non-magnetic dielectric media can be denoted by 𝑬𝟏, 𝑯𝟏 

and 𝑬𝟐, 𝑯𝟐 respectively. Solving the Maxwell’s Eqs (1.2) and (1.3).  

𝛻 × 𝑯𝟏 = ⅈ𝜔휀𝑬𝟏 , 

𝛻 × 𝑬𝟏 = −ⅈ𝜔𝜇𝑯𝟏  

(1.27) 

𝛻 × 𝑯𝟐 = ⅈ𝜔휀𝑬𝟐 , 

𝛻 × 𝑬𝟐 = −ⅈ𝜔𝜇𝑯𝟐  

(1.28) 

Applying the following vector identity to the above Eqs.:  

𝛻 ⋅ (𝑨 × 𝑩) = 𝑩 ⋅ (𝛻 × 𝑨) − 𝑨 ⋅ (𝛻 × 𝑩) 

(1.29) 
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We get the following equation pairs: 

𝛻 ⋅ (𝑬𝟏
∗ ×𝑯𝟐) = 𝑯𝟐 ⋅ 𝛻 × 𝑬𝟏

∗ − 𝑬𝟏
∗ ⋅ 𝛻 × 𝑯𝟐 = 𝑯𝟐 ⋅ ⅈ𝜔𝑯𝟏

∗ + 𝑬𝟏
∗ ⋅ ⅈ𝜔휀2𝑬𝟐 

𝛻 ⋅ (𝑬𝟐 × 𝑯𝟏
∗ ) = 𝑯𝟏

∗ ⋅ 𝛻 × 𝑬𝟐 − 𝑬𝟐 ⋅ 𝛻 × 𝑯𝟏
∗ = 𝑯𝟏

∗ ⋅ ⅈ𝜔𝑯𝟐 + 𝑬𝟐 ⋅ ⅈ𝜔휀1𝑬𝟏
∗  

(1.30) 

The addition of the above pair leads to Lorentz Reciprocity theorem:  

𝛻 ⋅ (𝑬𝟏
∗ × 𝑯𝟐) +  𝛻 ⋅ (𝑬𝟐 ×𝑯𝟏

∗ ) =  −ⅈ𝜔(휀2 − 휀1)𝑬𝟏
∗ ⋅ 𝑬𝟐  

(1.31) 

The above is applicable not only for differing sets of permittivity but also different 

sets or permeability or any combination of these material properties. Application 

of Lorentz Reciprocity in the case of waveguides, requires integration on each 

side of Eq. (1.31) over an arbitrary volume and application of Gauss’ theorem as 

follows: 

∭𝛻 ⋅ 𝝓ⅆ𝑉

𝑉

=∬𝝓 ⋅ ⅆ𝑠

𝑠

 

(1.32) 

Where 𝑉 and 𝑆 are the desired volume and surface of integration. The 

application of (1.32) on (1.31) leads to: 
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∬(𝑬𝟏
∗ × 𝑯𝟐

∗ + 𝑬𝟐 ×𝑯𝟐
∗) ⋅ ⅆ𝑠

𝛻𝑆

= −ⅈ𝜔∭(휀2 − 휀1)𝑬𝟏
∗ ⋅ 𝑬𝟐 ⅆ𝑉

𝑉

 

(1.33)  

Considering the case of guided modes and utilizing the knowledge that in 

transverse direction, the integration is taken at infinity such that all the power in 

all possible modes is taken into account and the integral in the direction of 

propagation is infinitesimally small. Considering 𝑥 to be the direction of 

propagation, the guided modes vanish far away from the waveguide core; since 

the fields decay exponentially away from the core and the integral reduces to: 

 

∬
𝜕

𝜕𝑥
(𝑬𝟏

∗ × 𝑯𝟐
∗ + 𝑬𝟐 × 𝑯𝟐

∗ ) ⋅ ⅆ𝑆

𝑆

= −ⅈ𝜔∬(휀2 − 휀1)𝑬𝟏
∗ ⋅ 𝑬𝟐 ⅆ𝑆

𝑆

 

(1.34) 

Form the above set of equations, coupled mode equations can be derived. This 

is done in the proceeding section. 

1.5 Coupled Mode Theory 

 The modes described by (1.20) and (1.21) form a complete basis set, 

such that any arbitrary field can be expressed as:   



15 
 

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝐴𝑚𝑬𝒎
𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.35) 

𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝐴𝑚𝑯𝒎

𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.36) 

Where 𝐴𝑚 is a constant term reflecting the weight of each basis mode and the 

mode coefficient 𝑚 is summed over all mode indices. In the propagation media, 

if a perturbation of permittivity 𝛥휀 such that: 

휀(𝑥, 𝑦, 𝑧) = 휀(𝑦, 𝑧) + 𝛥휀(𝑥, 𝑦, 𝑧) 

(1.37) 

In the preceding formulation, where no perturbation was present the fields could 

be expressed purely in terms of unperturbed modes where the mode weights 

𝐴𝑚 were invariant in the direction of propagation. In presence of perturbed 

permittivity in the direction of propagation, the modes can still be expressed in 

terms of unperturbed modal basis. However, since the eigenmode basis of the 

perturbed region are not the same as those of the unperturbed region; the 
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weighting coefficients 𝐴𝑚 must become dependent in the direction of 

propagation 𝑥.  

𝑬(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝐴𝑚(𝑥)𝑬𝒎
𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.38) 

𝑯(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒 {∑𝐴𝑚(𝑥)𝑯𝒎

𝒎

(𝑦, 𝑧) 𝑒𝑥𝑝[ⅈ(𝜔𝑡 − 𝛽𝑚𝑥)]} 

(1.39) 

Due to the nature of derivation, Eqs. (1.38) and (1.39) still follow Maxwell’s 

equations. The coupled mode equations can be derived by applying Lorentz 

Reciprocity to Eqs. (1.38) and (1.39), which produces:  

 

∑[ⅈ(𝛽𝑛 − 𝛽𝑚)𝐴𝑚(𝑥) +
ⅆ𝐴𝑚(𝑥)

ⅆ𝑥
] 𝑒𝑥𝑝[ⅈ(𝛽𝑛 − 𝛽𝑚)𝑥]∬ (𝑬𝒏

∗ ×𝑯𝒎 + 𝑬𝒎 ×𝑯𝒏
∗ ) ⋅ 𝑛𝑥 ⅆ𝑦 ⅆ𝑧  

𝑚

 

=∑[−ⅈ𝜔𝐴𝑚(𝑥)] 𝑒𝑥𝑝[ⅈ(𝛽𝑛 − 𝛽𝑚)𝑥]∬ 𝛥휀(𝑬𝒎
∗ ⋅ 𝑬𝒏

∗ ) ⅆ𝑦 ⅆ𝑧  

𝑚

 

(1.40) 
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The above expressions were derived by associating the perturbed and 

unperturbed modal decompositions and utilizing the assumption that the 

perturbation is small enough such that the change in the basis weighting 

coefficients 𝐴𝑚(𝑥)  is almost non-existent between the perturbed and 

unperturbed regions. It should be kept in mind, that coupled mode equations in 

general are valid even if the perturbations aren’t small. Appropriate expressions 

can be derived from original Maxwell’s equations for larger perturbations 

provided the above approximation is not made while deriving the expressions.  

 The expression for electric fields can be further simplified using the 

normalization condition (1.25), to obtain: 

  
ⅆ𝐴𝑛(𝑥)

ⅆ𝑥
=∑

�̇�𝜔

2
𝐴𝑚(𝑥)exp [ⅈ(𝛽𝑛 − 𝛽𝑚)𝑥]

∫ ∫ 𝛥𝜀(𝑬𝒎
∗ ⋅𝑬𝒏

∗ )ⅆ𝑦 ⅆ𝑧  

∫ ∫ 𝑬𝒏×𝑯𝒏
∗  ⋅𝒏𝒙 ⅆ𝑦ⅆ𝑧𝑚

   

(1.41) 

The above expression provides us with a differential equation describing the 

coupling of power between two sets of modes indexed by 𝑚 and 𝑛 respectively. 

In simple words, the above expression describes coupling between one set of 

modes with another set of modes due to small perturbations in permittivity. It 

should be noted that similar expressions can be obtained for small perturbations 

in permeability or the for magnetic fields.  
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1.6 Modal Coupling in Bragg Devices 

 Bragg devices achieve coupling of power between otherwise orthogonal 

modes via periodic perturbation. Conveniently, for a periodic perturbation in 𝑥 

direction; the permittivity can be decomposed into a Fourier series, resulting in:  

𝛥휀(𝑥, 𝑦, 𝑧) =∑휀𝑙(𝑦, 𝑧) 𝑒𝑥𝑝 (−ⅈ𝑙
2𝜋𝑥

𝛬
)

𝑙

− ⅈ𝛿 

(1.42) 

Where 𝛬 is the period of the perturbation, 𝑙 indicates the order of the Fourier 

series term in consideration and 𝛿 accounts for almost all physical sources of 

losses in a waveguide. Substituting this Fourier series into the coupled mode 

Eqs. (1.41), the following expression can be obtained: 

ⅆ𝐴𝑛(𝑥)

ⅆ𝑧
=
𝛽𝑛𝛼𝑛
2|𝛽𝑛|

𝐴𝑛(𝑥) − ⅈ
𝛽𝑛
|𝛽𝑛|

∑∑𝑘𝑙𝑛𝑚𝐴𝑚(𝑥)exp [ⅈ (𝛽𝑛 − 𝛽𝑚 − 𝑙
2𝜋𝑥

𝛬
) 𝑥]

𝑚
𝑙

 

(1.43) 

𝑘𝑙𝑛𝑚 =
𝜔∬ 휀𝑙(𝑦, 𝑧)(𝑬𝒎

∗ ⋅ 𝑬𝒏
∗ ) ⅆ𝑦 ⅆ𝑧   

2 ∬ 휀(𝑬𝒎
∗ ⋅ 𝑯𝒏

∗ ) ⅆ𝑦 ⅆ𝑧 
 

(1.44) 
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Where 𝑘𝑙𝑛𝑚 describes the strength of coupling between the 𝑛th mode and the 

𝑚th mode due to 𝑙th Fourier term. The coefficient 𝛼𝑛 represent the linear power 

loss of the 𝑛th mode as it propagates in the waveguide. These losses account 

not only due to the imaginary part of the propagation constant, but also due to 

any other physical phenomena.  It should be noted that the coupled mode 

equations take different forms depending on the direction of propagation, this is 

made clear by the ratio of the propagation constant to its magnitude. Given the 

nature of the phenomenon, every mode interacts with every other mode. But, 

over a long length of interaction between the any pair of modes; in case of phase 

mismatch the exponential term washes out the exchange of power. Therefore, 

significant power is exchanged between any pair of modes only when the modes 

are phase matched. That is, the term in the exponential present in the coupled 

mode equation (1.43) goes to zero: 

𝛽𝑛 − 𝛽𝑚 − 𝑙
2𝜋𝑥

𝛬
= 0 

(1.45) 

 So, the periodicity of the perturbation determines which modes interact strongly; 

leading to a significant exchange of power between the said pair of modes. 
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2. Two-Port Bragg Devices 

2.1 Coupled Mode Analysis of Two-Port Bragg Devices 

 The phenomenon of coupling between contra directional modes can be 

most simply demonstrated in two-port Bragg device. Such devices are most 

commonly used as integrated mirrors or band-rejection filters in on-chip and fiber 

optic applications. But, anti-reflection coatings operate on the same exact 

theoretical basis and are possibly the most prevalent application utilizing Bragg 

reflection phenomena.  

 In general, such devices can be modelled using the first order coupling 

coefficients calculated using the first order Fourier series term. It is the case, 

because the second order terms are minimal in magnitude and lead to 

insignificant coupling over the length of the device and lead to only second order 

errors in theoretical calculations, which can be easily ignored in these devices. 

Also, the following calculations considering lossless modes, that is; the loss 

coefficients 𝛼𝑛 corresponding to each mode are considered to be negligible and 

hence are ignored. 

 Considering a waveguide, the coupling between a forward propagating 

mode (denoted by the subscript 𝑓) and a backward propagating mode (denoted 
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by the subscript 𝑏) arising from the first order coupling coefficient can be 

described using the following coupled mode equations [1]: 

ⅆ𝐴𝑛(𝑥)

ⅆ𝑥
= −ⅈ𝑘𝑓𝑏𝐴𝑏(𝑥)𝑒

𝑖∆𝛽𝑥   

(2.1) 

ⅆ𝐴𝑏(𝑥)

ⅆ𝑥
= ⅈ𝑘𝑏𝑓𝐴𝑏(𝑥)𝑒

1𝑖∆𝛽𝑥   

(2.2) 

𝛽𝑓 − (−𝛽𝑏) − 𝑙
2𝜋𝑥

𝛬
= ∆𝛽 

(2.3) 

In the above expressions, 𝑙 = 1 since only the first order Fourier coefficients are 

taken into account, but this can be done for any number of Fourier orders. It 

should also be kept in mind that the following relation exists between the 

coupling coefficients:  

𝑘𝑏𝑓 = 𝑘𝑓𝑏
∗  

(2.4) 

Which is a consequence of the definition of coupling coefficients between a pair 

of modes (1.44) and the relationship between Fourier coefficients (1.42).  The 
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above pair of equations can be solved utilizing standard method for eigen-value 

problems.  

Figure 2.1: A typical Two-port Bragg device. The arrows indicate the amplitudes 
of the forward and backward propagating modes. 

 

Taking the above approach, the amplitudes of the forward and backward 

propagating modes can be assumed to have the general expression as follows: 

𝐴𝑓(𝑥) = 𝑒𝑥𝑝 (
𝑗𝛥𝛽𝑥

2
) [𝐶1 𝑒𝑥𝑝(𝑠𝑥) + 𝐶2 𝑒𝑥𝑝(−𝑠𝑥)] 

(2.5) 
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𝐴𝑏(𝑥) = 𝑒𝑥𝑝 (
−𝑗𝛥𝛽𝑥

2
) [𝐷1 𝑒𝑥𝑝(𝑠𝑥) + 𝐷2 𝑒𝑥𝑝(−𝑠𝑥)] 

(2.6) 

𝑠 = √𝑘𝑓𝑏𝑘𝑏𝑓 − (
𝛥𝛽

2
)
2

 

(2.7) 

Where 𝐶1, 𝐶2, 𝐷1 and 𝐷2 are constants determined by initial condition of the 

fields.  

 If forward propagating field is considered to be the input. Then it can be 

normalized to unity and every other field every other field can be derived as a 

fraction of that. If the above case is applied, the following boundary conditions 

can be imposed: 

𝐴𝑓(0) = 1 

(2.8) 

𝐴𝑏(𝐿) = 0 

(2.9) 
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Where 𝐿 is the length of the Bragg device. Applying Eqs. (2.5), (2.6) in addition 

to the boundary conditions (2.8) and (2.9) to the coupled mode equations (2.1) 

and (2.2) result in:   

𝐶1 =
(𝑠 −

ⅈ𝛥𝐵
2
) 𝑒𝑥𝑝(−𝑠𝑥)

ⅈ𝛥𝛽 𝑠ⅈ𝑛ℎ(𝑠𝐿) + 2𝑠 𝑐𝑜𝑠ℎ(𝑠𝐿)
 

(2.10) 

𝐷1 =
ⅈ𝑘𝑓𝑏 𝑒𝑥𝑝(−𝑠𝐿)

ⅈ𝛥𝛽 𝑠ⅈ𝑛ℎ(𝑠𝐿) + 2𝑠 𝑐𝑜𝑠ℎ(𝑠𝐿)
 

(2.11) 

The values of reflection amplitude 𝑟𝑓𝑏 and transmission amplitude 𝑡𝑓𝑏 can be 

determined by combining the coefficients as solutions to the coupled mode 

equations. 

𝑟𝑓𝑏 =
𝐴𝑏(0)

𝐴𝑓(0)
=

−2ⅈ𝑘𝑓𝑏 𝑠ⅈ𝑛 ℎ(𝑠𝐿)

ⅈ𝛥𝛽 𝑠ⅈ𝑛ℎ(𝑠𝐿) + 2𝑠 𝑐𝑜𝑠ℎ(𝑠𝐿)
 

(2.12) 
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𝑡𝑓𝑓 =
𝐴𝑓(𝐿)

𝐴𝑓(0)
=

2𝑠 𝑒𝑥𝑝 (
𝑗𝛥𝛽𝐿
2
)

ⅈ𝛥𝛽𝑠𝑖𝑛ℎ(𝑠𝐿) + 2𝑠 𝑐𝑜𝑠ℎ(𝑠𝐿)
 

(2.13) 

2.2 Transfer Matrix Analysis of Two-Port Bragg Devices 

 The set of coupled mode equations describing two-port Bragg devices 

{Eqs. (2.1) and (2.2)} can also be numerically analyzed using transfer matrix 

formalism [4], [5]. This can be done by representing the coupled mode equations 

in the form: 

�̇�(𝑥) = 𝐴 𝐸(𝑥) → 𝐸(𝑥) = 𝑇(𝑥 ,  𝑥0)𝐸(𝑥0) 

(2.14)   

𝐸(𝑥) =  [
𝐴𝑓(𝑥)

𝐴𝑏(𝑥)
] 

(2.15)   

 

𝑇(𝑥 ,  𝑥0) =  𝑒𝑆1(𝑥 −𝑥0)𝑒𝑆1(𝑥 −𝑥0) 

(2.16)   
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𝑆1(𝑥 − 𝑥0) =  (
𝑗∆𝛽 0
0 −𝑗∆𝛽

) 

(2.14)   

  

𝑆2(𝑥 − 𝑥0) =  (
−𝑗∆𝛽2 0
0 𝑗∆𝛽2

) 

(2.14)   

The above approach is valid only for small perturbations, since the coupled mode 

equations that lead to the above matrices are themselves limited by the 

assumption of small perturbation in permittivity or permeability. 

 This approach is very convenient for numerical calculations and 

simulations due to its matrix approach, allowing for easier discretization in the 

real space or frequency domain. The use of matrices also simplifies numerical 

simulation of more complicated structures like, a resonant cavity formed by 

cascading multiple two-port devices [6]. The matrix equation (2.14) was solved 

using MATLAB.  
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2.3 Results 

  

Figure 2.2: Spectral characteristic of a typical Two-port Bragg device.  

 

 

Figure 2.3: Comparison of the analytical and numerical (Transfer Matrix) 
analysis of the Spectral characteristic of a typical Two-port Bragg device. 
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Figure 2.2 demonstrates a typical spectral response of a lossless two-port Bragg 

device. It should be noted that the power in both modes always adds up to unity 

at all frequencies. This is what makes the device lossless.  

For Figure 2.3 a four hundred period two-port Bragg device was 

numerically simulated in MATLAB using transfer matrix approach and compared 

to the frequency response obtained from the above derived expression (2.12). As 

can be seen, both the transfer matrix and the analytical approach lead to results 

that match exactly. This reinforces the eligibility of transfer matrix approach for 

coupled mode analysis of more complicated systems, which tend to be have very 

cumbersome analytical solutions. It should also be noted that if the coupling 

coefficients are purely real then the inclusion of conjugate doesn’t have any 

effect on Eqs. (2.4). This is a very plausible case in lossless considerations, and 

as such; from this point on, all the coupling coefficients are considered purely 

real.     

 Ideally, flat side-bands are desired in the spectral response of a mirror or a 

band-pass filter. But, Bragg devices are not ideal for such application even when 

they are lossless. As seen in Figures 2.2 & 2.3, they tend to have side-lobes that 

can be very significant at times. Methods for suppression of these undesired 

characteristics are discussed in Chapter 3 and 4.   
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3. Four-Port Bragg Devices and Apodization 

Four-port Bragg devices are very commonly used for coupling of power 

between dissimilar waveguides. Co-directional waveguide couplers and ring 

resonator couplers are the two other most common approaches to coupling 

power between waveguides. But, co-directional waveguide couplers suffer from 

sensitivity towards the frequency composition of the input signal and the length of 

coupling. The cyclic nature of energy exchange over the interaction length and its 

dependence on frequency almost make co-directional waveguide couplers 

monochromatic in design and highly susceptible to fabrication errors. Ring 

resonator couplers on the other hand, are robust to fabrication errors to some 

degree, but display either high degree of losses or very small Free Spectral 

Range (FSR). If the ring resonators are designed for big FSR, they show high 

losses due to small turn radius leading to power leaking into undesired modes 

and slab modes. However, if low losses are desired, the rings can be designed 

with large turning radii. In that case, they end up with a very small FSR and offer 

very little to no wavelength selectivity.     

The control over location of the coupled spectrum via control pf the 

periodicity, in addition to the frequency specific nature of the design give Bragg-

couplers and advantage over co-directional waveguide couplers and ring 

resonator couplers.  Thus, thorough understanding of Bragg-couplers for future 

development of integrated optics is important.  
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3.1 Transfer Matrix Analysis of Four-Port Bragg Devices 

 

Four-port Bragg devices can be visualized as a pair of dissimilar 

waveguides, such that their unperturbed modes are not phase matched and 

hence no significant coupling happens in absence of perturbation.   

Figure 3.1: A typical Four-port Bragg coupler. 

 

The system can be seen as having pairs of forward and backward 

propagating modes in each of the waveguides. Hence, the system can be 

described using the following coupled mode formulation[4], [5], [6]: 
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ⅆ𝐴1

ⅆ𝑥
= −𝑗𝑘11𝐴2𝑒

𝑗2∆𝛽1𝑥 −𝑗𝑘21𝐵2𝑒
𝑗(∆𝛽1+∆𝛽2)𝑥 

(3.1) 

ⅆ𝐵1

ⅆ𝑥
= −𝑗𝑘12𝐴2𝑒

𝑗(∆𝛽1+∆𝛽2)𝑥 − 𝑗𝑘22𝐵2𝑒
𝑗2∆𝛽2𝑥 

(3.2) 

ⅆ𝐴2

ⅆ𝑥
= 𝑗𝑘11

∗ 𝐴1𝑒
−𝑗2∆𝛽1𝑥 + 𝑗𝑘12

∗ 𝐵1𝑒
−𝑗(∆𝛽1+∆𝛽2)𝑥 

(3.3) 

ⅆ𝐵1

ⅆ𝑥
= 𝑗𝑘12

∗ 𝐴1𝑒
−𝑗(∆𝛽1+∆𝛽2)𝑥 + 𝑗𝑘22

∗ 𝐵1𝑒
−𝑗2∆𝛽2𝑥 

(3.4) 

Where 𝐴1 & 𝐵1 are forward propagating modes in each waveguide, while 𝐴2 

& 𝐵2 are backward propagating modes. As seen in (1.44), the strength of 

coupling between a pair of modes is determined by the overlap of the fields from 

the modes in consideration and the value of the Fourier coefficient being 

accounted for. The modes must also be phase matched (1.45) for the exchange 

of power to take place. The above equations present a significant challenge in 
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terms of analysis. But, the above Eqs. (3.1 – 3.4) can also be presented in the 

transfer matrix formulation:   

�̇�(𝑥) = 𝐴 𝐸(𝑥) → 𝐸(𝑥) = 𝑇(𝑥 ,  𝑥0)𝐸(𝑥0) 

(3.5) 

where 

𝐸(𝑥) =  [

𝐴1(𝑥)
𝐵1(𝑥)
𝐴2(𝑥)
𝐵2(𝑥)

]   𝑇(𝑥 ,  𝑥0) =  𝑒𝑆1(𝑥 −𝑥0)𝑒𝑆1(𝑥 −𝑥0)  

(3.6)             (3.7) 

And  

𝑆1(𝑥 − 𝑥0) =  (

𝑗∆𝛽1 0
0 𝑗∆𝛽2

0          0
0          0

0       0
0       0

−𝑗∆𝛽1 0
0 −𝑗∆𝛽2

) 

(3.8) 
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𝑆1(𝑥 − 𝑥0) = 

 

(

 
 

−𝑗∆𝛽1                                      0
0                                  −𝑗∆𝛽2

−𝑗𝑘11𝑒
𝑗2∆𝛽1(𝑥−𝑥0) −𝑗𝑘12𝑒

𝑗(∆𝛽1+∆𝛽2)(𝑥−𝑥0)

−𝑗𝑘12𝑒
𝑗(∆𝛽1+∆𝛽2)(𝑥−𝑥0) −𝑗𝑘22𝑒

𝑗2∆𝛽2(𝑥−𝑥0)

𝑗𝑘11𝑒
−𝑗2∆𝛽1 (𝑥−𝑥0) 𝑗𝑘12𝑒

−𝑗(∆𝛽1+∆𝛽2)(𝑥−𝑥0)

𝑗𝑘12𝑒
−𝑗(∆𝛽1+∆𝛽2)(𝑥−𝑥0) 𝑗𝑘12𝑒

−𝑗∆𝛽2(𝑥−𝑥0)

𝑗∆𝛽1                                                 0
0                                               𝑗∆𝛽2 )

 
 

 

(3.9) 

The above matrix equation was solved using MATLAB for devices with six 

hundred periods and periodicity such that the forward propagating mode from the 

first waveguide (𝐴1) is phase matched with the backward propagating mode 

(𝐵2)  in the second waveguide. Since the spectrum for Bragg devices are 

symmetric about the central wavelength, only one half of the spectrum was 

simulated to minimize computation time. It should also be noted, that all the 

coupling coefficients taken into consideration were purely real and hence the 

conjugate from 2.4 was excluded from the coupled mode and transfer matrix 

formulations. In case the coupling coefficients are not purely real, the system can 

still be modelled using transfer matrix formulation, since the underlying equations 

place no constraints on the values that the coupling coefficients can take.      

 As expected, due to the nature of the underlying theory and formulation. 

The contra directional coupling spectrum for a four-port Bragg device looks very 

much like the coupling spectrum for a two-port device (Figure: 2.3).   
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Figure 3.2: Spectra of Four-port Bragg couplers with different coupling 
coefficients. 

 

It should be noted that, for a simple four-port Bragg coupler, the main-lobe 

and side-lobe differ by almost -6dB in magnitude. Another point worth observing 

is that, a change in coupling coefficient leads to a noticeable change in the 

location of the minima for the main-lobe and the subsequent side-lobes. 

Physically, it means that a Bragg coupler with stronger coupling characteristics 

like; being closely spaced or more significant perturbations will have a more 

broadband response when compared to a device with weaker coupling 

characteristics [7].  
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3.2 Apodized Bragg Devices 

  As hinted in section 2.3, power in side-lobes is an undesirable 

characteristic for many applications of Bragg devices. Power in side lobe can be 

seen as undesired signal in spectroscopy or camera system applications and as 

cross-talk in optical communication applications. Therefore, removal of power 

from side-lobes can be considered an important improvement in the vanilla 

Bragg-coupler design.  

 The most prevalent approach for side-lobe suppression in Bragg couplers 

is the apodization of coupling coefficient profile along the length of the coupler. 

Apodization has its origin and most wide-spread usage in Digital Signal 

Processing (DSP), Diffractive Optics and later on Antennae Systems. In DSP, 

apodized time windows are used to avoid the high frequencies generated but the 

traditional square window. In diffractive optics, the aperture for a camera lens or 

any other optical element is apodized to avoid spatial side lobes and improve the 

Signal to Noise Ratio (SNR). Similarly, an antennae system uses apodization to 

improve the directionality of the antennae and improves its SNR and cross-talk. 

Even in the field of integrated optics, apodized Arrayed Waveguide Gratings 

(AWG) are a very common application of apodization for improvement in 

directionality of the structure.    

 For on-chip Bragg couplers, apodization is achieved through variation in 

coupling coefficient profile along the length of the coupler. This can be achieved 
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either by varying the amount of perturbation along the length of the coupler or by 

altering the spacing between the two waveguides. Both approaches are effective 

and produce similar results. 

 Analysis of apodized Bragg devices can be done using the coupled mode 

and transfer matrix formalisms used in section 3.1. For the purpose of 

demonstration, a Bragg device with six hundred periods was simulated using 

MATLAB. To model apodization, the structure was discretized into sections with 

a certain number of periods. Each section had a constant coupling coefficient, 

but the coupling coefficient for each section was varied as a function of 𝑥 to 

account for apodization. 

Figure 3.3: A linearly apodized Four-port Bragg coupler. The transparency 
indicates the strength of coupling in the region. 
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A linear apodization profile was chosen to demonstrate the effects of 

anodization in Bragg devices. Devices with five and ten discretized sections with 

different apodization slopes were simulated. 

Figure 3.4: Spectra for linearly apodized Four-port Bragg coupler. The different 
discretizations and slopes are shown in different colours.  

Figure 3.5: Spectra for linearly apodized Four-port Bragg couplers with and 
without apodization. Both discretized devices had ten discretized sections. 
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 It can be seen (Figure 3.4) that more discretized, filters display the effects 

of apodization more prominently; since the filter with five discrete sections has a 

spectrum more similar to a vanilla four-port Bragg device than a device with ten 

discrete sections. Also, it is to be noted that the slope of the apodization scheme 

has very little effect on the location of the side bands, but it does affect the 

amount of power coupled into the contra-directional mode, as evident from the 

difference in main lobe height in Figures 3.4 and 3.5.  

 Lastly and most importantly, it should be noted that apodization scheme 

shown here doesn’t actually filter out power from undesired frequencies (that is, 

the side-lobes). Apodization decidedly broadens the main lobe and smoothens 

out the spectrum, so that it appears as if the side lobes are suppressed, but in 

reality; the side lobes just become a part of the main lobe. Consequently, more 

power ends up being coupled into the undesired (side-lobe) frequencies than the 

original filter design. The results, although surprising are not entirely new. Similar 

results were obtained in a previous publication [8] based on purely theoretical 

and numerical analysis. It should also be noted that similar results were obtained 

by [9] even though, the device was carefully designed, simulated and fabricated. 

The device in [9] uses weakly coupled waveguides and Gaussian apodization 

profile. It is by far, one of the best specimens of apodized Bragg couplers. And 

yet, it suffers from the same issue of more power being coupled into the side-

lobe due to broadening of the main lobe. Therefore, apodization although very 

prevalent; is not a suitable approach for suppression of side lobes.  
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4. Cascaded Bragg Couplers  

 As shown in Chapter 3, apodization is not an effective method for 

elimination of power from undesired frequencies in the spectral response of a 

Bragg device. Considering the utility of contra-directional Bragg couplers in 

current and future integrated optical devices; a new approach for filtration of 

power from side lobes is needed. The approach of Cascaded Bragg Couplers 

takes advantage of the fact that the relative width of the min lobe can be tuned 

depending on the strength of coupling between the modes in consideration.  

Figure 4.1: Design of cascaded Bragg Devices. Relative electric field intensities 
of fundamental TE0 modes for each waveguide are shown. 

 

The filters were designed using three dissimilar 220nm thick Silicon 

waveguides, clad with SiO2 all around. Both the 500nm and 600nm waveguides 

had 50nm perturbations. It is plenty evident from the modal profiles of the 

fundamental TE0 modes (Figure 4.1) for each waveguide that, the mode in the 
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wider (600nm) waveguide is better confined that the mode in the narrower 

waveguide (500nm). Since both waveguides interact with the 400nm 

intermediary waveguide and have 50nm perturbations. Due to difference in 

modal overlap, the coupling strength for the 500nm – 400nm waveguide pair is 

stronger; than the coupling strength between the 400nm – 600nm pair.       

In cascading the Bragg couplers, the spectra of individual filters are tuned 

such that the first filter has a broader main lobe than the second filter. But, the 

design is done such that the minima of the main lobe from the first device is as 

close as possible to the maxima of the side lobes from the spectrum of the 

second device. This ensures that there is very little power at the frequencies 

where the side lobes of the second filter couple power. Ideally, if the minima of 

the first filter can be matched exactly with the maxima of the side lobes for the 

second filter, minimum possible power will be coupled into the side lobes at the 

final output.   

Figure 4.2: Spectrum of a single Bragg couplers (a) 400nm – 600nm waveguide 
pair; (b) 500nm – 400nm waveguide pair. 

 

(a) (b) 
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The cascaded filter design was simulated in LUMERICAL using FDTD 

method. As can be seen from the FDTD spectrum of the 400nm - 600nm pair 

versus 500nm – 400nm pair. The main lobe is wider for the 500nm – 400nm pair 

and the side lobes are higher indicating stronger coupling. It should be noted that 

(Figure 4.2 - a & b) for single stage Bragg devices, the side lobes are -6.5dB and 

-4.5dB lower than the main lobe for the 400nm – 600nm and 500nm – 400nm 

pair respectively.    

Figure 4.3: Spectrum of the device pre-second stage filtering (blue) and post 
second stage filtering (orange). 

 

 As evidenced from Figure 4.3, the side lobe is -12.5dB as compared to the 

best case -6.5dB (Figure 4.2-a). This is possible because by cascading the 

Bragg couplers, power is removed from the side-lobe regions. Therefore, the side 

lobes for the second stage have less than unity power to couple from while the 

main lobe can have power close to unit if the devices are long enough. 
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5. Conclusion and Roadmap  

 Chapter 4 provides evidence that while the concept of apodization is 

widely used, it doesn’t actually serve its purpose. It merely smoothens out the 

spectrum of the Bragg coupler while actually accentuating the power in the side 

lobes. Even state of the art apodized Bragg devices with very long interaction 

length and very weak coupling [9] don’t manage to filter out the power present in 

side lobes. It can be speculated that the application of apodization schemes in 

the case of Bragg devices doesn’t fit in the context of frequency filtering. In all 

other examples of apodized systems, there is a direct mapping between the 

domains of interest. In DSP the domains of time and frequency can be easily 

mapped using Fourier transformations. Similarly, in the fields of antennae and 

Arrayed Waveguide Gratings, the grating profile is manipulated in real space to 

get desired results in the Fourier space (since spatial frequencies are altered, 

leading to more directionality). Again, the two domains of interest can be easily 

mapped using Fourier transformations. But, in the application of Bragg couplers 

for frequency filtering; the device’s profile is altered in real space while observing 

results in frequency space. The two domains may not be linearly mapped with 

each other leading to the effects observed in case of apodization of Bragg 

couplers.      

 The cascaded Bragg device approach shows significantly between 

suppression of side lobe. The device design provides the frequency selectivity 
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and low loss properties of regular Bragg grating devices while also avoiding the 

natural pitfalls of the vanilla design. The cascaded coupler approach is also more 

resistant to fabrication errors than the apodization scheme. Since both 

waveguide pairs have 50nm perturbation, in case of fabrication error, the 

perturbations in both pairs will be affected in similar fashion and percentage. 

Since, the critical point of this approach depends on the widths of the main-lobes 

for each pair.  As long as both sets of waveguide pairs are affected in same 

fashion, the design should be able to function as intended.  

 The second point of emphasis for the cascaded filter approach is the 

selection of periodicity for the two filters.  

   Figure 5.1: Design for fabrication of the cascaded filter scheme. 
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The device is under fabrication at the NANO3 facility at UCSD. In case of 

fabrication errors and mismatch of periodicities of the two filters, heaters can be 

deposited on top of each pair. The change in temperature generates carriers in 

Si leading to a change in permittivity in the affected regions. The change in 

permittivity can shift the central wavelength of the main lobe. So, in case of 

fabrication errors, the heaters provide another avenue for adjustment; making the 

design more resistant. It should also be noted that in Figure 5.1, each of the filter 

sections are placed away from each other so as to minimize the thermal coupling 

between them; in case differential thermal tuning is required.    

 It should also be noted that in this case the filters were designed for 

fundamental TE00 modes. But, such Bragg devices can also be used for higher 

order modes as well [6]. Another point of development in the design would be for 

coupling between lower to higher order modes.      
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