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Abstract

Hyperspectral imaging is a remote sensing technique widely used in a variety of military and

environmental applications. For example, hyperspectral images can be used to detect chemical

plumes invisible to the human eye, and to identify their chemical structure. A hyperspectral im-

age is a massive cube of data consisting of thousands of pixels each with dozens of observations

over a range of frequencies in the electromagnetic spectrum. Algorithms that use hypothesis

testing and assume independence over pixels have shown success in detecting gas clouds, but

often fail in identifying chemical components. We approach identification problems in hyperspec-

tral imaging as a variable selection problem, which can be solved robustly by taking advantage

of spatial information in the image. For this purpose we develop Bayesian spatial model selec-

tion algorithms which use mixtures of g-priors, Gaussian Markov Random Fields, and Gaussian

Process Priors to account for correlation among chemicals, to induce spatial dependence among

pixels, and to account for nonlinearities in pixel signals. To illustrate the performance of the

models we apply them to several partially synthesized hyperspectral images and show that our

method outperforms state-of-the-art algorithms, such as the LASSO and Fused LASSO.
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Chapter 1

Introduction

1.1 Remote sensing of gaseous plumes in hyperspectral

imagery

A hyperspectral sensor simultaneously measures the distribution of radiation over hundreds

of narrow and continuously spaced spectral bands in each pixel of an image (Schowengerdt,

2006). The resulting collection of images is organized as a“data cube” with pixels on the x- and

y-axes, and electromagnetic radiation wavelengths on the z-axis (see Figure 1.1). Hyperspectral

images often depict a natural scene captured from above, or from the side as shown in Figure 1.2.

The hardware of hyperspectral sensors typically consists of an optical system, a scanning system,

and a spectrometer. The optical and scanning systems take in light from the natural scene to

produce the spatial dimensions of the image, and also control the image’s pixel resolution. The

spectrometer uses a spectral response function to produce the spectrum of each pixel and to

control the image’s spectral resolution. For example, the image in Figure 1.1 was produced

using a “push broom” optical and scanning system with a prism-based spectrometer resulting in

a 128x700 pixel image with 1.1 mrad resolution per pixel, and a spectral range in the longwave

infrared (LWIR) region (8-13 µm) of the electromagnetic spectrum. For more on the mechanisms

of hyperspectral sensors see Hackwell et al. (1996), Farley et al. (2006), and Manolakis et al.

(2014).

Applications of hyperspectral sensing technology include environmental monitoring (Visser,
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Figure 1.1: Slices of a downward looking hyperspectral image of a large field over wavelengths in
LWIR. Captured by the Aerospace Corporation’s Saptially Enhanced Broadband Array Spectograph
System (SEABASS) hyperspectral imaging sensor at the Department of Energy’s Atmospheric Radiation
Measurement facility.

2000), agricultural monitoring (Thenkabail et al., 2012), food safety (Gowen et al., 2014; Lu and

Chen, 1999), and chemical warfare (Demirev et al., 2005). Hyperspectral sensors can be used to

remotely sense dangerous substances that are only observable in frequencies outside of the visible

spectrum. Hence, a particularly important application of hyperspectral imagery is the remote

sensing of gaseous plumes, which are usually undetectable to the naked eye. In this context, the

literature usually distinguishes among three different tasks, namely, detection (which involves

detecting if a gaseous plume is present), identification (which involves identifying exactly which

chemicals make up the plume), and quantification (which involves measuring the amount of each

chemical present in the plume). For a review, see Manolakis et al. (2014).

There is a well developed set of tools for detection of chemical plumes in hyperspectral

imagery. Examples include geometric methods such as the Mahalanobis distance (Manolakis

et al., 2001), and the generalized likelihood ratio test (GLRT), which is used widely and is

referred to as the match filter detector in the signal processing literature (Kay, 1998). Messinger

(2004) compares principal component analysis and projection pursuit methods to a spectral

matched filter, and Theiler et al. (2005) develop non-linear matched filter methods for detecting

plumes. Other variants of the matched filter are the adaptive match filter (AMF), and the

adaptive coherence estimator, or ACE (Scharf and McWhorter, 1996). Theiler and Foy (2008)

develop an elliptically-contoured GLRT detection method, and show that it has two limiting
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cases, which are AMF and ACE. Lastly, support vector machines have also been utilized for

detection (Gurram and Kwon, 2010).

Methods for identification are comparatively less well developed, and Manolakis et al. (2014)

show that methods based on the match filter often yield a high false positive rate when used for

identification, i.e., they can detect that a plume is present, but they identify chemicals in the

plume that are not actually part of its chemical structure. Many existing identification meth-

ods rely on tools for variable selection in linear models (e.g., Burr and Hengartner, 2006 and

Bioucas-Dias et al., 2012). These include penalization methods such as the least absolute shrink-

age and selection operator, or LASSO (Iordache et al., 2011; Tibshirani, 1996), and Bayesian

variable selection techniques (Burr et al., 2008). However, the accuracy of these techniques is

generally low, leading to a large number of false positives and false negatives. In particular,

these techniques usually struggle to differentiate between chemicals with similar hyperspectral

signatures.

For some applications fast algorithms for detection, identification, and quantification in hy-

perspectral imagery are necessary. For example, battlefield applications remotely sense danger-

ous substances in an area before a soldier enters the area. Such applications require algorithms

that can produce results in real time (Chai et al., 1999), i.e., algorithms that need only seconds

for processing time. Some methods discussed in this work are capable of near real time where

processing time takes minutes. Other methods that we develop are well suited for precision

agriculture applications, which detect diseases in crops (Mahlein, 2016) and predict crop growth

and yield variability (Mahlein et al., 2012). Such applications do not require real-time analysis.

Furthermore, forensic applications that detect chemicals in bioagents (Brewer et al., 2008) in

hyperspectral data and artwork restoration applications that use hyperspectral imaging (Fischer

and Kakoulli, 2006) also do not require real-time algorithms.

In this work we focus on developing supervised variable and model selection methodologies

that can simultaneously perform detection and identification. In the next section we discuss the

physical model of the signal entering the hyperspectral sensor that is the basis of our statistical

models. Then in Sections 1.3 to 1.4 we build off the phyisical model to describe an embedding

algorithm used to create partially synthesized datasets. In Section 1.5 we present the hyper-

spectral datasets that we will be analyzing in this manuscript, and in Section 1.6 we describe

the metrics we will use to evaluate the detection and identification methods proposed in this

3



work. In Chapter 2 we propose and evaluate supervised linear statistical methods that perform

detection and identification under the assumption that all pixels in a hyperspectral image are

independent. Next in Chapter 3 we again develop statistical methods for detection and identifi-

cation that are supervised and linear, but we incorporate spatial information in these methods.

We show that spatial methods outperform independent pixel-by-pixel methods. In Chapter 4

we build statistical models that are supervised and spatial, but now consider cases when non-

linearity in the signal must be accounted for. Then in Chapter 5 we discuss computational

considerations for implementing all the methods. Lastly in Chapter 6 we close wtih conclusions

and future work.

Figure 1.2: Hyperspectral sensors on planes or satellites can capture downward-looking images, while
grounded automobiles can capture side-looking images. Here, the hyperspectral sensors are capturing
a chemical plume within a natural scene.

1.2 Physical model

In this section we highlight key aspects of the physical model that underlies the hyperspectral

sensor; for a detailed review please see Manolakis et al. (2014), which we follow closely. Please

note that the discussion below focuses on a single pixel of the hyperspectral image and that we

have dropped any subscript indexing the pixel to simplify our notation.

Radiative transfer theory allows us to model at-sensor radiance fairly simply given certain

assumptions. Within the application at hand (remote sensing of chemical plumes), a hyperspec-

tral sensor captures signals coming from three light sources: the background (such as a field, or

4



building), the atmosphere, and the plume. We assume that the atmosphere and plume are free

of aerosols and particulate matter, that the background, plume, and atmosphere have their own

homogeneous temperatures, that the plume and atmosphere are homogeneous in composition,

that the distance between the background and plume is small, and that the reflections off the

background from the plume and down-welling atmospheric radiance are ignorable.

Using Kirchhoff’s law (Thomas and Stamnes, 2002), a light source is a function of wavelength,

λ, and can be modeled as,

L(λ) = [1− τ(λ)]B(λ, T ), (1.1)

where τ(λ) is a dimensionless ratio between 0 and 1 that describes the light source’s transmit-

tance, and

B(λ, T ) =
2hc2

λ5

1

exp
(
hc
λkT

)
− 1

, (1.2)

is the Plank function, which describes radiation emitted by a blackbody at wavelength, λ, and

temperature, T . The parameters, h, k, and c are the Plank constant, Boltzmann constant, and

the speed of light respectively. Clearly, the physical model of any light source is non-linear,

which can be a challenge for detection and identification algorithms.

In the sequel, let Lp(λ) denote the plume signal at frequency, λ, Lb(λ) be the signal from

the background light, and La(λ) be the signal from the atmosphere’s light. The strength of the

signal recorded at the sensor depends upon the transmittance of the plume, denoted by τp(λ),

and that of the atmosphere, denoted by τa(λ) (see Figure 1.3). In particular, the at-sensor

radiance signal when the plume is not present is given by

Loff(λ) = La(λ) + τa(λ)Lb(λ), (1.3)

and when the plume is present it is given by,

Lon(λ) = La(λ) + τa(λ)Lp(λ) + τa(λ)τp(λ)Lb(λ). (1.4)

A key observation is that in LWIR, the atmosphere has high transmittance i.e., τa(λ) ≈ 1.
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Therefore the plume signal is primarily distorted by the background signal.

Figure 1.3: The hyperspectral sensor captures radiance from three layers, namely the atmosphere,
plume, and background represented by La, Lp, and Lb, respectively. τa and τp represent the transmit-
tance of the atmosphere and plume, respectively.

According to Beer’s Law (Thomas and Stamnes, 2002) the transmittance of the plume can

be expressed as

τp(λ) = exp

(
−

M∑
m=1

γmαm(λ)

)
, (1.5)

where M is the number of possible chemicals in the plume, γm ≥ 0 is the concentration of

chemical m in the plume, and αm(λ) is the spectral signature of chemical m at frequency λ.

Note that in LWIR many chemicals have unique spectral signatures, but are often correlated.

In summary, non-linearity in the light source and transmittance models, and the background

contamination of the plume make detection a difficult task. Lastly, correlation among chemical

spectral signatures poses additional challenges, especially for identification.

1.3 Embedding algorithm

Obtaining hyperspectral images with real plume releases is expensive, and difficult to obtain

due to security clearance requirements. Although there are publicly available hyperspectral

images with real chemical releases, the majority contain only a few plumes usually with only

one chemical, and therefore are not useful for evaluating identification algorithms. Therefore we

embed plumes with one or more chemicals on real plume-free hyperspectral images to create semi-

synthetic datasets that are more useful for evaluating the detection and identification algorithms
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developed in this work.

In this section we describe the algorithm for embedding plumes in a hyperspectral image.

We stress that embedding is a non-linear process that follows the physical model described in

Section 1.2. Using the model of a light source in (1.1), and the Plank function in equation (1.2),

we can rewrite equation (1.3) as,

Loff(λ) = (1− τa(λ))B(λ, Ta) + τa(λ)Lb(λ), (1.6)

while equation (1.4) can be expressed as,

Lon(λ) = (1− τa(λ))B(λ, Ta) + τa(λ)τp(λ)Lb(λ) + τa(λ)(1− τp(λ))B(λ, Tp). (1.7)

By adding and subtracting (1− τa(λ))B(λ, Ta)τp(λ) to the right-hand side of (1.7) we obtain,

Lon(λ) = τp(λ)[τa(λ)Lb(λ)(1− τa(λ))B(λ, Ta)]+

(1− τp(λ))[τa(λ)B(λ, Tp) + (1− τa(λ))B(λ, Ta)]. (1.8)

Finally, by noting that the term in the first set of brackets on the right-hand side of equation

(1.8) is exactly equal to Loff(λ) we can simplify Lon(λ) to,

Lon(λ) = τp(λ)Loff(λ) + (1− τp(λ))[τa(λ)B(λ, Tp) + (1− τa(λ))B(λ, Ta)], (1.9)

which is the form of Lon(λ) that is used for embedding.

1.4 Implementation of embedding algorithm

Matlab code for computing the embedding algorithm was provided to us by our collaborators

at MIT Lincoln Laboratory. To implement the algorithm, first we need to deicide where to

geographically embed plumes in the image. Then, all of the expressions and parameters on

the right-hand side of equation (1.9) need to be estimated or specified by the user, except for

Loff(λ), which is provided to us by the reference hyperspectral image on which plumes are being

embedded. Finally, we follow equation (1.9) to obtain the embedded signal.
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1.4.1 Specifying the embedded plume’s geographic location

In Figure 1.4 we show two pixel spectra associated with the plume free image shown in

Figure 1.1. The pixel spectrum on the left is from a portion of the image where the background

is composed of a field, whereas the pixel spectrum on the right is from a portion where the

background is composed of buildings. We can see that the left pixel spectrum is relatively “flat”

or smooth compared to the right pixel, which has sharp features. Plumes that are located on flat

backgrounds will be easier to detect and identify than plumes located on non-flat backgrounds,

which are noisier.

Figure 1.4: Left plot: Example of a background pixel spectrum that is flat. Right plot: Example
of a background pixel spectrum that is not flat.

1.4.2 Estimating the atmosphere’s transmittance, τa(λ), and temper-

ature, Ta

We estimate the atmospheric parameters, τa(λ) and Ta, from the reference image on which

the plume is being embedded. Estimating the transmittance of the atmosphere τa(λ) is a difficult

problem (Manolakis et al., 2014). However, if the hyperspectral image has a downward-looking

geometry (as is the case for the reference hyperspectral image used in our illustration), we can

use the method developed by Young et al. (2002) to obtain an estimate for τa(λ). For estimating

Ta, note that for the background hyperspectral image the minimum sampled wavelength was

8.0778 microns, and in this wavelength the atmosphere can be assumed opaque. This means
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that the radiance observed at this wavelength is well modeled by the Plank function in (1.2),

and we can use its inverse to estimate the atmosphere’s temperature in each pixel. The value

of Ta is then set to be the median atmospheric temperature over all pixels.

1.4.3 Specifying the plume’s transmittance, τp(λ), and temperature,

Tp

The plume transmittance, τp(λ), is a tuning parameter that must be specified by the user.

Recall that Beer’s law establishes that the plume’s transmittance can be expressed as,

τp(λ) = exp

(
−

M∑
m=1

γmαm(λ)

)
.

The parameter, αm(λ), is the spectral signature of the m-th chemical that the user wants to

include in the embedded plume. The Pacific Northwest National Laboratory (PNNL) chemi-

cal spectral database (Sharpe et al., 2004) provides a library of hundreds of chemical spectral

signatures in high spectral resolution. Note that the wavelengths at which these spectral sig-

natures are captured do not necessarily match those associated with the background, so they

typically need to be interpolated and down sampled. Because the original signatures have a

very high-resolution, linear interpolation is used with very little loss of accuracy.

The parameter, γm, is the concentration of the m-th chemical present in the plume, and must

be specified by the user. The values of γm control the dataset’s level of difficulty. Since γm = 0

implies chemical m is not present in the plume, values of γm that are too close to 0 may be

undetectable. Moderate values of γm also imply an optically thin plume whose transmittance

can be modeled as approximately linear as opposed to the exponential form of Beer’s law.

Specifically,
∑M
m γmαm(λ) � 1 when a plume is optically thin, and we can linearize Beers law

using the first term of it’s Taylor series expansion,

τp(λ) ≈ 1−
M∑
m

γmαm(λ). (1.10)

In Figure 1.5 we illustrate how well equation (1.10) (denoted by τ̃) approximates Beer’s law

(denoted by τ), for different values of γm. Note that in the illustration we use the high-resolution

spectral signature of chemical triethyl phosphate, or TEP, for αm(λ). We can see that the
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approximation does relatively well for small of values of γm, like 1 and 5. However, as γm

increases, and especially at γm = 20, the approximation is far away from Beers law. Therefore,

optically thin plumes can be easier to detect and identify than opaque plumes when γm takes

on a very large value.

Figure 1.5: Broken black line plots τp(λ) against τp(λ) and broken red lines plots τp(λ) against its
linear approximation, τ̃(λ). In subsequent sections we show that identification methods that assume
linearity of Beer’s law perform worse when γm = 20 versus when γm = 5, holding all other embedding
parameters constant. This suggests that models that take into account non-linearity may improve
results.

Also note that the concentration of chemical m can vary over the region of the embedded

plume. For example, we could choose γm to be uniform over the embedded plume region. Or we

can choose a Gaussian embedding shape where the concentration of chemical m is highest in the
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center of the plume and dissipates as the distance from the plume center increases. In the next

section under subsection 1.5.1 we describe semi-synthetic datasets where we embedded plumes,

and in these datasets the plumes are embedded such that γm is uniform over the embedding

region.

The value of the plume temperature also affects how difficult it will be to detect and identify.

If the temperature difference between the plume and background is small, the background signal

is flat, and the plume is optically thin, then the signal captured by the sensor is approximately

linear, which makes the tasks of detection and identification less challenging. Therefore, speci-

fying the plume temperature, Tp to be around 5◦K, will typically result in an easier embedding

scenario. However, notice that in equation (1.9) that the temperature of the background is not

a parameter that needs to be estimated. Therefore in practice we set the plume temperature to

be a certain number of degrees greater or less than the estimated atmosphere temperature, Ta.

1.5 Hyperspectral datasets

1.5.1 Semisynthetic datasets

In this section we describe three partially-synthesized hyperspectral images that we simulated

ourselves. The first semi-synthetic dataset we evaluate in this work embeds plumes into the

plume-free hyperspectral cube shown in Figure 1.1. Figure 1.6 shows the spectral mean (over

wavelengths) of the hyperspectral cube, and where we have geographically embedded plumes.

Note that the hyperspectral image has a total of J = 89, 600 pixels and I = 85 wavelengths

in LWIR. We embedded plumes in areas that have relatively flat background, for a total of 7

plumes, one for each possible combination of three different chemicals, triethyl phosphate (TEP,

commonly used in flame retardants and pesticides), dimethyl methylphosphonate (DMMP, also

used in flame retardants as well as in the manufacture of chemical weapons), and sarin (which

is classified as a weapon of mass destruction according to UN Resolution 687). Figure 1.7 plots

each chemical’s spectral signature, and Table 1.1 shows the correlation and cosine similarity

among the three chemicals. TEP and Sarin are relatively uncorrelated, and therefore, we would

expect a low occurrence of identification confusion between these two chemicals. However, we

would expect a higher rate of identification confusion between TEP and DMMP, since their

spectral signatures are similar. Finally, in the embedding algorithm we set the temperature of
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the plume to be 5◦K hotter than the atmosphere’s estimated temperature, and we set γm = 5

uniformly over the plume region if chemical m was present in the plume (and γm = 0 otherwise).

These values ensure that the signals from each pixel are approximately linear. Therefore in the

sequel we refer to this dataset as the closely linear dataset.

Figure 1.6: Partially synthesized hypersepctral image, with simulated plume regions marked, and
chemicals embedded noted for closely linear dataset

Figure 1.7: Interpolated spectral signatures of TEP, Sarin, and DMMP.

Correlation coefficient Cosine similarity

TEP Sarin DMMP
TEP 1.0000 0.0077 0.8220
Sarin 1.0000 -0.0553

DMMP 1.0000

TEP Sarin DMMP
TEP 1.0000 0.2501 0.8663
Sarin 1.0000 0.2421

DMMP 1.0000

Table 1.1: Linear correlation and cosine similarity among the three chemicals used in our synthesized
dataset.

The second semi-synthetic dataset that we will evaluate is unlike the first because we will

consider chemicals that are not actually present in the hyperspectral image. In this respect this
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dataset is more like the challenge dataset that we describe more in the next section, Section

1.5.2. The challenge dataset is meant to act as our “real” dataset even though the plumes are

also embedded in this image, but we did not do the embedding ourselves (recall that real plume

release hyperspectral images are expensive to capture and difficult to obtain due to necessary

security clearances). Therefore since this second semi-sythetic dataset is more like the challenge

dataset, we will refer to it as the “realistic” dataset. Figure 1.8 shows the embedding truth for

the realistic dataset. We embed one plume with TEP and DMMP which are highly correlated,

and a second plume with TEP and Sarin, which are less correlated (see Table 1.1). However,

unlike the closely linear dataset, which considered only TEP, Sarin, and DMMP as possible

chemicals, for the realistic dataset we consider TEP, Sarin, DMMP as well as two additional

chemicals, 1,1-Difluoroethane (DFE), and ammonia. DFE is used in refrigerants, aerosol sprays,

and automobiles. Ammonia can be found in fertilizer, cleaners, fuel, and lifting gases used to

fill weather balloons. We plot the spectral signatures for DFE and ammonia in Figure 1.9, and

show the correlation coefficients among all five chemicals in Table 1.2. Lastly, like the closely

linear dataset, we embed the two plumes such that linear assumptions hold.

Figure 1.8: Partially synthesized hypersepctral image, with simulated plume regions marked, and
chemicals embedded noted for realistic dataset

TEP Sarin DMMP DFE Ammonia
TEP 1.0000 0.0077 0.8220 -0.1019 0.1595
Sarin 1.0000 -0.0553 -0.0975 0.0425

DMMP 1.0000 -0.1491 0.0742
DFE 1.0000 0.0223

Ammonia 1.0000

Table 1.2: Linear correlation among 5 chemicals considered in the realistic dataset

The third semi-synthetic dataset that we will evaluate will help us explore how our models

perform when the signal captured by the sensor is not linear, and specifically when the embedded

plumes are not optically thin. This non-linear dataset is similar to the closely linear dataset.

We embed plumes on the same plume free image with the same number of plumes in the same
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locations, and with the same combinations of chemicals as shown in Figure 1.6. We also embed

the plumes to be 5◦K hotter than the estimated atmosphere temperature. However, we specify

γm = 20 uniformly over the plume region, if chemical m was present in the plume, and γm = 0

otherwise. In the sequel we refer to this dataset as the non-linear dataset.

Figure 1.9: Interpolated spectral signatures of DFE and Ammonia.

1.5.2 MIT Lincoln Laboratory Challenge Dataset

In April 2014, MIT Lincoln Laboratory released a set of six hyperspectral images with dif-

ferent chemical plumes embedded in them. These images were provided as an open challenge

Figure 1.10: Embedding truth corresponding to challenge data cube (left) and spectral mean of MIT
Lincoln Lab challenge data cube.

to the research community interested in developing identification algorithms. The datasets are
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Figure 1.11: Absolute value of the pairwise correlations for the spectral signatures of MIT Lincoln
Lab challenge data.

available to the wider research community at https://grassmann.math.colostate.edu/ATD/

ChemIDChallengeTrain.html. We consider these datasets “real” data since we did not simu-

late them ourselves. In this work we focus on one of the more difficult cubes in the challenge,

“GID Targ Mix JH”, whose spectral mean is shown in the right panel of Figure 1.10. The

dimensions of this cube are 150 × 320 × 129 for a total of J = 48, 000 pixels, with measure-

ments over I = 129 wavelengths in LWIR. Note that this cube is side-looking, as opposed to

the downward-looking geometry of the partially synthesized datasets described in the previous

section. For this challenge dataset there are 8 possible chemicals numbered 1-8. In the left

panel of Figure 1.10 we show the embedding truth of plume locations, where plume 1 contains

chemicals 1 and 3, plume 2 contains chemicals 5 and 6, and plume 3 contains chemicals 7 and 8.

The absolute value of the pairwise correlations among these chemicals is shown in Figure 1.11.

We expect that identifying plumes 2 and 3 in the challenge data cube will be especially difficult,

since chemicals 5 and 6 are highly correlated and chemicals 7 and 8 are also highly correlated.

However, we expect that identification of plume 1 will be relatively easy as chemical 3 has little

correlation with chemical 1. Note that in the sequel we refer to this dataset as the challenge

dataset.
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1.6 Performance metrics

To evaluate the performance of our algorithms we use multi-class classification performance

metrics. Therefore, we present detection and identification results using confusion matrices,

which are square matrices that tally the number of pixels correctly and incorrectly classified

over all chemical classes. Confusion matrices with more non-zero off-diagonal elements are

considered poorer classifiers. Metrics that can summarize a confusion matrix into one number

are useful, especially when the number of possible classes is large. In particular, we focus on

the accuracy (ACC), and Matthews correlation coefficient (MCC). ACC takes the ratio of the

number of correctly classified pixels over the total number of pixels, and can take on values

in the range [0,1], where a value close to 1 implies a good identifier, and a value close to 0

implies a poor identifier. The MCC is a multi-class extension of Pearson’s correlation coefficient

(Gorodkin, 2004) that can take on values in the range [-1,1]. Smilar to ACC, values of MCC

close to 1 imply a good identifier.

1.7 Parellel computation and MCMC convergence moni-

toring

All of our identification algorithms can be implemented on the hyperspectral datasets in

parallel over pixels to some degree depending on the identification method. For all of the

identification model implementations we use openMP in C++ on all cores of a 64-core Linux

server. Furthermore, for Bayesian methods which require Markov Chain Monte Carlo (MCMC),

we monitor convergence of the MCMC by assessing the (unnormalized) log posterior distribution.
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Chapter 2

Supervised linear variable and

model selection methods for

remotely sensing plumes in

hyperspectral imagery

In this chapter we review methods that approximate the relationship between the spectrum

associated with a pixel and the spectrum of chemicals by a linear regression, and treat the

detection/identification problem as one of variable or model selection. First in Section 2.1

we discuss linear assumptions that justify the use of a linear likelihood, which we derive in

Section 2.2. Then in Sections 2.3, and 2.4 we outline the least absolute shrinkage and selection

operator (LASSO), and Bayesian indicator model selection (BIMS) as techniques for detection

and identification. Then in Section 2.5 we present the detection and identification results of

each method on the closely linear dataset. Lastly, in Section 2.6 we discuss and compare the

overall performance of both methods, and their shortcomings.
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2.1 Linear assumptions

Under some physically plausible assumptions, we can simplify the non-linear phsyical model

from Section 1.2. As mentioned previously, if the plume is optically thin (i.e., τp(λ) is close to

1) then we can assume that
∑M
m=1 γmαm(λ) � 1 for all λ, and we can linearize Beer’s law by

using the first term of its Taylor expansion,

τp(λ) ≈ 1−
M∑
m=1

γmαm(λ).

Furthermore, if we assume the background signal is flat (i.e., that it does not have sharp features),

then Lb(λ) ≈ B(λ, Tb). Lastly, if the absolute difference in temperature between the plume (Tp)

and background (Tb) is small (usually less than 5◦K), then we can assume B(λ, Tp)−B(λ, Tb) ≈

CB∆(Tp − Tb), where CB is a constant independent of wavelength and temperature. Under

these assumptions and after some algebra, the on-plume radiance signal can be approximated

as,

Lon(λ) ≈
M∑
m=1

{CB∆Tγm}{τa(λ)αm(λ)}+ Loff(λ). (2.1)

This equation can be understood as a “signal-plus-clutter” model, where the background signal,

Loff(λ), is the clutter.

Hyperspectral sensors capture the at-sensor radiance signal as shown in equation (2.1) on

a series of I adjacent spectral bands centered at bandwidths λ1, . . . , λI and then processes

it through its spectral response function, RF (λ). The sensors then introduce noise, n(λ), to

produce the pixel spectrums in a hyperspectral image x = (x1, . . . , xn). It follows that

xi =

M∑
m=1

gmsm,i + vi,i = 1, . . . , I, (2.2)

where the unknown regression coefficients, gm = CB∆Tγm, are proportional to γm, which is

the concentration of the chemical. The covariates si,m = {[τa(λi)αm(λi)] ∗ RF(λi)} correspond

to the spectral chemical signatures, the error term vi = {Loff(λi) ∗ RF(λi)} + n(λi)} is the

background signal plus sensor noise, and ∗ denotes the convolution operator.

The linear model in (2.2) provides a general framework in which the detection, identification,

and quantification tasks can be cast. In particular, note that detection involves testing whether
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g = (gm, . . . , gm) is different from the zero-vector, identification involves testing which individual

elements in g are non-zero, and quantification involves estimating the exact values of the elements

in g.

2.2 Linear Likelihood

Let xj,i be the measurement from the hyperspectral sensor in pixel j = 1, . . . , J at bandwith

λi, i = 1, . . . , I and si,m be the hyperspectral signature of chemical m = 1, . . . ,M at the same

bandwith i. The structure of (2.2) suggests a likelihood of the form,

xj = Sgj + vj , vj ∼ N
(
µ, σ2

jΣ
)
, j = 1, . . . , J,

where we assume the background signal (plus sensor noise) follows a normal distribution. The

parameters µ and Σ correspond to the mean and variance structures associated with the back-

ground. In this manuscript we focus on supervised problems in which we need to detect/identify

chemicals from a finite set of pre-specified, application-specific candidates. Hence, the model

above is often referred to as a linear un-mixing model, because the goal is to un-mix the signal

into a set of chemicals.

For computational efficiency we proceed by replacing µ and Σ with point estimates µ̂ and Σ̂.

In particular, µ̂ corresponds to the mean signal over all pixels, while Σ̂ is robustly calculated

from the whole image using a dominant mode rejection procedure (Manolakis et al., 2009),

which uses only dominant eigenvalues and diagonal loading to ensure invertibility of Σ̂. As a

consequence, we can rewrite the observational model as

yj = Zgj + εj , εj ∼ N(0, σ2
j I), j = 1, . . . , J, (2.3)

where yj = Σ̂
−1/2

(xj − µ̂), Z = Σ̂
1/2
S, and εj = Σ̂

−1/2
vj .
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2.3 LASSO as state-of-the-art variable selection method

for detection and identification

Frequentist approaches to hypothesis testing based on p-values (Fisher, 1925) are widespread.

However, such methods require addressing the issue of multiple comparisons. Another variable

selection approach from the frequentist literature is the LASSO (Tibshirani, 1996), which belongs

to the class of penalized least squares methods. Other models that belong to this class are the

elastic net (Zou and Hastie, 2005), and the smoothed clipped absolute deviation (Fan and Li,

2001). The LASSO is a popular variable selection method because it is easy and fast to compute.

The LASSO performs variable selection by adding an `1 penalty on the coefficients of a linear

model, such as the one described in Section 2.2. Becasue an `1 penalty is non-differentiable at

zero, we can obtain exact zero estimates for the regression coefficients. In terms of detection

and identification, if a coefficient is estimated as zero, then the corresponding chemical is not

present in the plume. Furthermore if all coefficients are estimated as zero, then the signal is

composed of only the atmosphere and background. The level of shrinkage to zero in the LASSO

coefficient estimates is controlled by a scalar value, which is referred to as the LASSO penalty

parameter. A LASSO penalty parameter equal to zero will lead to the ordinary least squares

estimate, which can never be zero. Larger LASSO penalty parameter values will force more

coefficients to be excluded from the model.

From an estimation point of view, the LASSO has a Bayesian interpretation. Specifically,

the LASSO’s `1 penalty corresponds to an unnormalized double exponential prior, and the

corresponding point estimates are the the posterior mode of the model. However, as model

selection methods, the LASSO cannot be considered a Bayesian procedure.

2.3.1 The LASSO method

For each pixel, independent estimates of the vectors of regression coefficients are obtained

by solving,

min
gj
||yj − Zgj ||2 + ηj ||gj ||1, (2.4)
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for each j = 1, ..., J , where each pixel has its own LASSO penalty parameter, ηj . An alternate

approach would be to consider one common penalty parameter over all pixels, i.e., η1 = · · · = ηJ .

However, we have found that individual penalties for each pixel yields higher detection and

identification accuracy.

As mentioned previously, ηj controls the amount of shrinkage to zero in the coefficient esti-

mates in gj . There are several methods available for choosing the optimal value for ηj . A widely

use method is K-fold cross validation (Tibshirani, 1996). Criterions, such as the Akaike Infor-

mation Criterion (Akaike, 1973) can also be used. In our implementation we use the Bayesian

Information Criterion, or BIC (Schwartz, 1978) to choose the optimal value for the penalty pa-

rameter. Specifically, we consider a grid of penalty parameter values, {η̃(k)
j ; k = 1, ...,K}, and

choose the value that minimizes,

1

σ̂2
j

||yj − Zg̃
(k)
j ||+ log(I)Mj

(
η̃

(k)
j

)
, (2.5)

where σ̂2
j = I−1

∑I
i=1

(
yj,i − z′iĝj

)2
, and ĝj = (Z ′Z)−1Zyj are the maximum likelihood esti-

mates (MLE) of σ2
j and gj . The parameter, g̃

(k)
j is the LASSO estimate of gj using penalty

parameter, η̃
(k)
j . The grid of penalty parameters we use starts at η̃

(1)
j = 0, and the final value

in the grid, η̃
(K)
j , will shrink all elements in gj to be estimated as 0.

We use the split Bregman algorithm outlined in Ye and Xie (2011) to solve the LASSO

problem in (2.4). The algorithm constrains the optimization problem and iteratively reaches

the solution with the use of the augmented Lagrangian and soft thresholding. We explain the

computational algorithm in more detail in Chapter 5.

2.4 Bayesian model selection approach to detection and

identification

The fundamental tools of Bayesian model selection are Bayes factors and posterior model

probabilities. Berger and Pericchi (2001) discuss several advantages of taking a Bayesian ap-

proach to model selection. For example, p-values are not consistent, i.e., their accuracy in

evaluating evidence to support the null hypothesis does not increase with more data. In con-

trast, Bayes factors and posterior model probabilities are consistent. Also, unlike the classical
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approach, which treats model selection differently for two models (hypothesis testing) versus

more than two models (variable selection), the Bayesian approach is essentially the same for any

number of possible models. Scott and Berger (2006) show that Bayesian model selection does

not have the multiple comparison problem that affects multiple hypothesis testing. Lastly, hy-

pothesis testing and other non-Bayesian methods, like the LASSO, do not not take into account

colinearity among predictors. Bayesian model selection can address colinearity through the use

of certain priors.

One challenge of Bayesian model selection is that Bayes factors and posterior model prob-

abilities require calculation of the marginal likelihood. Closed form solutions of the marginal

likelihood are not always available. However, one way to deal with this is through reversible jump

Markov chain Monte Carlo (Green, 1995). The BIC can also be used to provide an asymptotic

approximation to the log of the marginal likelihood.

An alternative way to formulate Bayesian model selection is a method named by O’Hara and

Sillanpaa (2009), “Bayesian Indicator Model Selection” (BIMS). In the BIMS method indicator

variables for each regression coefficient are introduced. If a regression coefficient is different from

zero, then the corresponding indicator variable takes on a value of 1, and 0 otherwise. Under

this approach we are interested in making inference on the indicator variables. For example, if

an indicator variable is equal to 1, then the corresponding chemical is present in the pixel, and is

not present otherwise. Following standard Bayesian procedure, we place priors on the regression

coefficients and on the indicator variables. Kuo and Mallick (1998) suggest placing independent

priors on the regression coefficients and on the indicator variables, whereas Carlin and Chib

(1995) propose making the two sets of hyperparameters dependent in the prior. The method

of stochastic search variable selection (George and McCulloch, 1993) also suggests dependence

through the use of spike and slab priors.

In our implementation of BIMS we place a mixture of g-priors (Liang et al., 2008; Zellner,

1986) on the regression coefficients given the indicator variables. This prior takes into account

colinearity among predictors. Also for linear models this prior is computationally advantageous,

because we can avoid posterior sampling of the regression coefficients. We perform computations

for this model using an MCMC algorithm that updates blocks of parameters sequentially. This

algorithm is implemented in a parallel fashion to speed up computation. For details of the

algorithm see Chapter 5.
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2.4.1 The BIMS method

To describe the model we introduce, for each pixel j = 1, . . . , J , a set of latent indicator

variables ωj = (ω1,j , . . . , ωM,j)
′ such that ωm,j = 0 if gm,j = 0 and ωm,j = 1 otherwise.

Because our focus is on detection and identification problems, the vectors ω1, . . . ,ωJ are the

main parameters of interests, and the actual values of the regression coefficients g1, . . . gJ can

be considered nuisance parameters.

Conditionally on the indicator vector ωj and the variance σj , we assign the vector of regres-

sion coefficients, gj , a mixture of g-priors,

gj |cj , σ2
j ,ωj ∼ N

(
gj(ωj) | 0, cjσ2

j

{
Z ′(ωj)Z(ωj)

}−1
) ∏
m:ωm,j=0

δ0(gm,j), (2.6)

where gj(ωj) denotes the subvector of gj that corresponds to the entries where ωm,j = 1,

Z(ωj) is the submatrix of Z that only includes the columns where ωm,j = 1, δ0(·) denotes the

degenerate measure at zero, and cj ∼ IGam(.5, .5I). On the other hand, the variances σ2
1 , . . . , σ

2
J

are assigned independent Jeffreys priors, p(σ2
j ) ∝ 1

σ2
j
.

Note that the proposed priors for the variances σ1, . . . , σJ are improper. However, because

these parameters are shared across all potential models it is well known that they result in

well-calibrated posterior probabilities (e.g., see Berger and Pericchi, 2001). Furthermore, their

use along with that of mixtures of g-priors for gj | σ2
j has both computational and theoretical

advantages. From a computational perspective, these choices allow us to explicitly integrate out

the variances, σ2
j , and the regression coefficients, gj ,

p(y1, . . . ,yJ | ω1, . . . ,ωJ , c1, . . . , cJ) ∝
J∏
j=1

(cj + 1)−
∑M
m=1 ωm,j/2

(
y′j

[
I − cj

cj + 1
Z ′(ωj)

{
Z ′(ωj)Z(ωj)

}−1
Z(ωj)

]
yj

)−I/2
, (2.7)

which helps us avoid the need for Reversible Jump MCMC algorithms. From a theoretical

perspective, letting cj be random in the prior addresses the information paradox (Bartlett,

1957) and Barlett’s paradox (Berger and Pericchi, 2001). Furthermore, unlike LASSO penalties,

the g-prior incorporates information on the correlations among predictors, which should help

ameliorate any complication arising from multicolinearity.
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The model is completed by specifying a prior on the indicator vectors ω1, . . . ,ωJ . Following

Scott et al. (2010) we focus on priors of the form

p(ω1, . . . ,ωJ) =

J∏
j=1

Γ
(
a+

∑M
m=1 ωm,j

)
Γ
(
b+ J −

∑M
m=1 ωm,j

)
Γ (a+ b+ J)

, (2.8)

i.e., we assume that the number of chemicals present in pixel j follows a Beta-Binomial distri-

bution with mean a/(a + b). The structure of this prior can be derived by assuming that each

chemical is present on a given pixel independently with unknown probability θj , which is in turn

assigned a beta prior with parameters a and b. In our evaluations we set a = b = 1, which is

equivalent to assuming uniform priors on the θj ’s. The fact that θj is assigned a prior rather than

fixed in advance induces correlation between ωm,j and ωm′,j , which in turn allows the model to

automatically adjust for multiplicities. Using posterior samples of ωj , we then identify pixel j

corresponding to the chemical model that yields the maximum posterior probability among all

chemical models. More precisely, recall that ωj = (ω1,j , ..., ωM,j), and ωm,j = 1 if chemical m

is present in pixel j, and ωm,j = 0, otherwise. Let ω
(p)
j denote the p-th possible chemical model

for ωj , where there are p = 1, ..., 2M possible chemical models.

F
(p)
j =

K∑
k=1

1k(ωj = ω
(p)
j )

is the frequency at which model ω
(p)
j was visited for ωj over k = 1, ...,K posterior MCMC

samples (after convergence) where K is large. The chemical model, ω
(p)
j , that yields the highest

frequency, i.e., maxp F
(p)
j , will be the chemical model with the highest posterior probability for

ωj , and will be the identified chemical model for pixel j. This strategy can be used for any

value of M , i.e., for any number of possible chemical models.

In this work we follow the school of thought as shown in Scott et al. (2010) that taking a

Bayesian approach of placing priors on inclusion probabilities of predictors and on other model

parameters (i.e., the mean, variance, coefficients, etc.) will alleviate the issues of multiple

comparisons in model selection problems. However, we do recognize another school of thought

where false discovery rate (FDR) rules are needed to properly account for multiple comparisons

in Bayesian model selection methods (Muller et al., 2006; Wakefield, 2007; Whittemore, 2007).

FDR rules are especially important for Bayesian approaches where massive amounts of multiple
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comparisons arise especially in gene expression data. However, FDR implicitly assumes that

something is significant, for example, in neuroscience FDR would assume that points in the

same region of the brain are activated during an experiment. However, this type of logic does

not fit in well with the application at hand, since we cannot assume a plume is definitely present

somewhere in the image.

For our choice of prior on cj we followed Liang et al. (2008) closely where they performed

prior sensitivity analysis by exploring several alternative priors for cj . In particular they explored

Empirical Bayes (EB), and the hyper g-prior. They also evaluated the Zellner-Siow (ZS) prior,

which is the prior we use in our implementation. They prove that the ZS prior is consistent

under the null model, whereas EB and the hyper g-prior are not. They also show that the ZS

prior was robust to misspecification of cj and permits fast marginal likelihood calculations. As

for the prior we chose for ωj , it is a well established prior on models that avoids favoring medium

sized models. Furthermore we recommend a = 1 and b = 1 in the Beta-Binomial prior as default

values, unless substantive prior information about the likelihood of a chemical is available. We

did perform prior sensitivity analysis by exploring alternative hierarchical specifications for this

prior (e.g., letting the prior inclusion probability be the same for all pixels and gases, as well as

letting it vary with the gas rather than the pixel identity), but (2.8) yielded the best empirical

results.

2.5 LASSO and BIMS results on closely linear semi-synthetic

dataset

In this section we evaluate the performance of the LASSO and BIMS method on the semi-

synthetic image that is closely linear (see Section 1.5). When fitting the models we assume

that TEP, Sarin, DMMP are the only possible chemicals that could be in the image. Figure

2.1 displays the confusion matrices for each of the methods, and Table 2.1 shows the ACC and

MCC values for each of the methods.

In general BIMS performs better than the LASSO as it has higher ACC and MCC values.

Looking at the confusion matrices, the LASSO does relatively well in classifying pixels with

“None”, “All”, and one chemical classes. However, it tends to overestimate the number of

chemicals present in plumes that have 2 chemicals. BIMS on the other hand is able to classify
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Figure 2.1: Confusion matrices for the LASSO and BIMS.

LASSO BIMS
ACC 0.9311 0.9982
MCC 0.8654 0.9859

Table 2.1: ACC and MCC values for the simulated dataset.

Figure 2.2: Trace plot of log posterior distribution under BIMS for the closely linear dataset for
2 MCMC chains, where one chain is represented by red x’s, and the second chain is represented by
blue dots. Using the first 5,000 iterations it each chain, a Gelman and Rubin statistic of 1.0005 was
calculated, implying convergence was reached.

2-chemical pixels with higher accuracy, even for the TEP and DMMP plume, where these two

chemicals have highly correlated spectral signatures. In fact BIMS classifies more pixels correctly

than the LASSO over all classes, except the “All” class. Indeed, while the LASSO makes
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substantially more false positive mistakes than BIMS (i.e., it tends to identify more chemicals

than are really present), BIMS makes slightly more false negative mistakes than the LASSO (in

the sense of identifying pixels that are chemical-present as background pixels). Therefore the

LASSO does a decent job of detection, i.e., detecting where plume is and is not, but struggles

to identify the correct chemical structure in plumes.

Since both the LASSO and BIMS assume independence among pixels, we can implement

these methods over all pixels in parallel allowing for fast processing times. For the closely linear

dataset, the LASSO took 3.54 minutes to solve. Recall that we solve the LASSO over a grid of

possible LASSO penalty values and use the BIC to choose the optimal LASSO value for each

pixel (see Section 2.3.1). In particular we considered 59 LASSO penalties from 0 to 5.8, where

5.8 shrank all coefficients to 0. Therefore in 3.54 minutes the LASSO was solved 59 times for

a total of 89,600 pixels. As the number of pixels increases, solve time for the LASSO will also

increase, but not dramatically due to the use of parallel computing.

The BIMS method requires implementation of an MCMC algorithm to obtain posterior

samples. We ran the MCMC for 10,000 iterations with a burn-in of 5,000 iterations for inference.

It took 2.8 hours or 1.03 seconds per iteration. Considering that there are 89,600 pixels in the

image, parallel computing greatly increases the speed of the BIMS algorithm. We note that

there is room for some improvements in the C++ code to increase efficiency and speed further.

We ran a second MCMC chain for 10,000 iterations, and we show the log posterior distribution

values over iterations for both chains in Figure 2.2. Using the first 5,000 iterations in each of

the two MCMC chains we obtained a Gelman and Rubin R-statstic of 1.0005, where a value

of 1.2 or less implies convergence. The time needed to complete one iteration of BIMS over

all pixels will increase as the number of pixels in an image increases, but like the LASSO, not

dramatically due to the use of parallel computing, and this will be true for any hyperspectral

image. However, increasing the number of chemicals that we consider as possibly present in the

image will have a bigger effect on runtime. This is true for BIMS, LASSO, as well as for other

spatial and nonparametric methods that we discuss in future sections. Since BIMS is a fairly

simple Bayesian model, convergence of the MCMC algorithm is fast. In future sections we will

describe more complex Bayesian models used for identification that require more time to reach

convergence.

27



2.6 Discussion

In this chapter we evaluated supervised model selection methods that assumed the pixel

signals in an image are linear. Futhermore, we implemented the methods on a dataset that was

partially synthesized to have pixel signals that were close to linear. Despite this, the LASSO

method struggled to identify chemicals correctly, however it was able to detect gas pixels from

no-gas pixels relatively well. Although the LASSO is used as a variable selection method, at it’s

Figure 2.3: Identification results mapped onto the area covered by the synthesized data.

core it is truly an estimation method. In addition, the LASSO treats coefficients as indepen-

dent and it does not take into account co-linearity among spectral signatures. To remedy these

issues we turned to a Bayesian approach, BIMS, that takes into account model uncertainty, and

through the use of g-priors accounted for colinearity among chemicals. This explains the higher

classification accuracy obtained by BIMS. However, both of these methods share a common

weakness as illustrated by Figure 2.3, which maps the detection and identification results of the

closely linear semi-synthetic dataset on the area covered by the original image. The classifi-

cation mistakes committed by both the LASSO and BIMS appear more or less random in the

image. Indeed, both methods are implemented pixel-by-pixel, i.e., independence among pixels

is assumed. This suggests that models that take into account spatial structure in the image,
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and especially in plumes, can improve detection and identification results.
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Chapter 3

Incorporating spatial information

in hyperspectral images

In this chapter we develop methods that are essentially spatial extensions of the LASSO and

BIMS approaches discussed in Chapter 2. For these spatial models pixels are not independent,

and instead it is assumed that neighboring pixels have similar signals. We justify this approach

by the fact that gas plumes are spatially continuous, i.e., pixels that have plume tend to be

adjacent. In Section 3.1 we explain the Fused LASSO, which is a spatial extension of the LASSO,

as a detection and identification algorithm. Then in Section 3.2 we develop a novel Bayesian

model selection method that incorporates spatial information through the use of Markov Random

Fields (MRF). We then evaluate the performance of these methods in Section 3.4 on the closely

linear dataset. We also evaluate each method on the challenge dataset and compare them to

their pixel-by-pixel counterparts, the LASSO and BIMS, in Section 3.6. Lastly in Section 3.7

we discuss strengths and weaknesses of the methods.

3.1 Adding spatial information to the LASSO

Continuity of plumes has been previously exploited in the literature by incorporating fused

LASSO penalties (Tibshirani et al., 2005b), also known as total variation norm penalties (e.g., see

Guo et al., 2009; Iordache et al., 2012). Like the LASSO, the FL is a penalized regression method.
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The FL generalizes the regular LASSO by placing an `1 penalty on regression coefficients,

and a second `1 penalty on the differences between neighboring coefficients. Note that unlike

the LASSO, the FL treats pixels as dependent through one common LASSO penalty over all

observations. Furthermore, the FL also enforces spatial continuity through the FL penalty.

Since both the LASSO and FL penalties are non-differentiable at zero, we can obtain exact

zero estimates for the coefficients as well as exact zero difference estimates between neighboring

coefficients. In principle each penalty has different effects on the coefficients. The LASSO

penalty controls how aggressively the algorithm will exclude chemicals from the model, where

larger LASSO penalty values lead to all coefficients to be shrunk to zero. The FL penalty on

the other hand controls how much information is borrowed between neighboring pixels. Large

FL penalty values will lead to all coefficients to be estimated as equal to each other producing

a smoothing effect. However, the two penalties interact with each other. For example, very

large FL penalty values can cause equal and zero coefficient estimates even with moderate

LASSO penalty values. Therefore, the FL performs variable selection while simultaneously

forcing neighboring pixels to be similar.

Land and Friedman (1996) explored penalizing coefficient differences, but without a penalty

on the regression coefficients themselves. The FL was popularized by Tibshirani et al. (2005a),

and has been used in many applications, such as change-point detection in temporal data (Rojas

and Wahlberg, 2014). In this set up a neighboring observation would be an observation in the

time period before or after. For the case of imagery data, a neighborhood needs to be defined

over pixels, which induces a two-dimensional space. Thus, for a first order neighborhood, a

pixel’s neighbors would be those directly to the left, to the right, above, and below. Higher order

neighborhoods can be considered, however we focus only on the first order version. Neighborhood

information is contained in the J×J neighborhood matrix, W . More specifically, the estimators

are defined by the solution to the following optimization problem,

min
g1,...,gJ

J∑
j=1

I∑
i=1

(
yj,i − z′igj

)2
+ ξ

J∑
j=1

M∑
m=1

|gm,j |+ ζ

J∑
j=1

J∑
j′=1,j′ 6=j

M∑
m=1

wj,j′ |gm,j − gm,j′ | , (3.1)

where wj,j′ = 1 if pixel, j′, is a first order neighbor to pixel, j, otherwise wj,j′ = 0. The

parameter, ξ is the common LASSO penalty, and ζ is the FL penalty. When ζ = 0, (3.1) is

equivalent to the LASSO problem (see equation (2.4)) with η1 = ... = ηJ = ξ. Note that unlike
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the LASSO, the FL is a non-convex optimization problem. One novelty of our approach is that

we solve the FL problem using the split Bregman algorithm (Goldstein and Osher, 2009; Osher

et al., 2005). In particular we use the split Begman for large scale FL as outlined in Ye and Xie

(2011). We discuss the algorithm in more detail in Chapter 5.

We perform a two-step process to choose ξ, and ζ. First, we ignore ζ, and find the optimal

value of ξ over a grid of values, ξ̃(1), ..., ξ̃(K), starting at ξ̃(1) = 0 to the final value, ξ̃(K), which

forces all coefficients in all pixels to be 0. Similar to the implementation of the LASSO, we

choose the value of ξ that minimizes the BIC,

1

σ̂2

J∑
j=1

I∑
i=1

(
yj,i − z′ig̃

(k)
j

)2

+ log(I ∗ J)M(ξ̃(k)), (3.2)

where σ̂2 = (I ∗ J)−1
∑J
j=1

∑I
i=1

(
yj,i − z′iĝj

)2
, and ĝj = (Z ′Z)−1Z ′yj , are the MLE’s of σ2

over all pixels, and of gj , respectively. The parameter, g̃
(k)
j , is the fused LASSO estimator with

ξ = ξ̃(k), ζ = 0, and M(ξ̃(k)) is the total number of non-zero estimates in g̃
(k)
1 ...g̃

(k)
J . Let the

value of ξ that optimizes the BIC in equation (3.2) be denoted as ξ∗. We then find the optimal

value of ζ, over a grid of values, ζ̃(1), ..., ζ̃(N), starting with ζ̃(1) = 0 to ζ̃(N) = 5. We choose the

value of ζ that maximizes the BIC,

1

σ̂2

J∑
j=1

I∑
i=1

(
yj,i − z′ig̃

(n)
j

)2

+ log(I ∗ J)M(ξ∗, ζ̃(n)), (3.3)

where g̃
(n)
j is the FL estimate of gj using penalty parameter values ξ∗, and ζ̃(n), and M(ξ∗, ζ̃(n))

is the total number of non-fused groups in g̃
(1)
1 , ..., g̃

(N)
J , which provides an unbiased estimate

for the degrees of freedom under the FL (Tibshirani and Taylor, 2010).

3.2 Bayesian spatial approach for detection and identifi-

cation

In this section we extend the BIMS method described in Section 2.4 to incorporate spa-

tial information. We call the resulting method Spatial BIMS (SBIMS). In addition to placing

mixtures of g-priors (Liang et al., 2008; Zellner, 1986) on the regression coefficients given the
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chemicals in the plume, Markov random fields (Besag, 1974) are used to define priors on the in-

clusion probabilities for each chemical. This prior captues our prior assumption that plumes are

made of contiguous pixels. Full Bayesian estimation of our hierarchical model for the inclusion

probabilities allows us to automatically account for multiplicities (Scott and Berger, 2006; Scott

et al., 2010) while allowing for additional flexibility in modeling the actual concentration level of

each chemical (when compared to that afforded by fussed LASSO penalties for the coefficients).

On the other hand, the use of mixtures of g-priors for the regression coefficients allows us to

more effectively deal with chemicals with highly correlated spectral signatures.

The problem of creating spatially dependent prior distributions for Bayesian model selection

for a set of related regression models has been previously addressed using priors based on the

Ising model (Ising, 1925), or its multi-class generalization, the Potts model (Potts, 1952); for

example, see Li et al. (2012), Eches et al. (2011), and Zhang et al. (2014). However, joint

estimation of the hyperparameters associated with these types of priors (which is key to ensure

automatic multiplicity corrections) is challenging because of the lack of closed-form formulas

for the normalizing constants of the priors. Instead, we impose spatial structure by using a

clipped Gaussian Markov random field (cGMRF) (Berrett and Calder, 2012; De Oliveira, 2000;

Weir and Pettitt, 2000), which dramatically simplifies the computational implementation of our

hierarchical model.

Like the FL regression, cGMRF priors are defined in terms of a J×J symmetric neighborhood

matrix, Υ such that υj,j′ = 1 if and only if pixels j and j′ are to be considered neighbors,

and υj,j′ = 0 otherwise. As before, we concentrate on a first-order neighborhood matrix in

which a neighborhood is composed of the horizontally and vertically adjacent pixels, but more

general neighborhoods are possible. As the name suggests, the prior is defined hierarchically by

“clipping” a Gaussian Markov random field. More specifically, for each chemical m we introduce

a vector of (dependent) latent variables `m = (`m,1, . . . , `m,J) such that

`m,j | `m,1, · · · , `m,j−1, `m,j+1, · · · , `m,J , αm, ρm, um ∼

N

(
{1− ρm}αm + ρm

∑
j′ 6=j υj,j′`m,j∑
j′ 6=j υj,j′

,
1

um
∑
j′ 6=j υj,j′

)
, (3.4)
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and then let

ωm,j |`m,j =


1 if `m,j > 0,

0 if `m,j ≤ 0.

(3.5)

The prior in (3.4) and (3.5) incorporates spatial information by shrinking `m,j towards the

value of its neighbors. The hyperparameters ρm and um control the level of spatial smoothing. In

particular ρm = 0 implies that pixels are treated as independent a priori, and the spatial model

reduces to an exchangeable model similar to the one discussed in Section 2.4. Futrhermore, by

setting 0 < ρm < 1 we ensure that the joint prior in (3.6) is proper, which is necessary to ensure

that the posterior distribution of our model is also proper.

The cGMRF is a direct extension of the probit data augmentation scheme introduced in Al-

bert and Chib (1993). Unlike a spatial probit generalized linear mixed model (e.g., see Banerjee

et al., 2004), it imposes spatial structure directly on the latent variables. Indeed, note that the

full conditional distributions defined by (3.4) imply a joint distribution of the form,

p(`1, . . . , `M | am, um, ρm) =

M∏
m=1

N
(
αm1, {um(DΥ − ρmΥ)}−1

)
, (3.6)

where `m = (`m,1, . . . , `m,J) and DΥ = diag
{∑

j 6=1 υj,1, . . . ,
∑
j 6=J υj,J

}
. The use of this parsi-

monious structure is particularly important given the limited information available in a spatial

binary process, especially in those that are not themselves directly observed (e.g., see Gelfand

et al., 2000 and Berrett and Calder, 2012).

Under the cGMRF prior, the marginal prior probability that chemical m is present in pixel

j is simply

θm,j = Φ

(
u

1/2
m αm

q
1/2
m,j,j

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal and qm,j,j is the

j-th diagonal element of the matrix Qm = {DΥ − ρmΥ}−1
. As in Section 2.4, we are interested

in allowing the model to automatically adjust for multiplicities by making these probabilities

random. Hence, we assign αm, ρm and um prior distributions of the form

αm ∼ N
(
α0, φ

2
)
, um ∼ Gam (ψ1, ψ2) , ρm ∼ Uni{0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.999}.
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To match the approach discussed in Section 2.4 we select the hyperparameters of the prior

to ensure that θm,j are approximately uniform. In particular, the hyperparameters are chosen

so that

ηm =
u

1/2
m αm(

1
J

∑J
j=1 qm,j,j

)1/2

has mean 0 and variance 1. For first-order neighborhoods, this leads to α0 = 0, φ = 1, ψ1 = 2

and ψ2 = 8. Alternatively, if prior information about the likelihood of a specific chemical is

available, it can be incorporated through different specifications of the hyperparameters (e.g.,

we could use a smaller mean for αm if we believe that chemical m is unlikely to be present in

the sample).

Having an approximately uniform prior on the chemical inclusion probabilities provides one

constraint for the choices of the hyperparameters, α0, φ, ψ1, and ψ2 in the priors for αm and um.

We chose α0 = 0 and φ = 1 to match the probit scale of the αm parameters. Prior sensitivity

analysis was performed by considering different values of ψ1 and ψ2, and although performance

did not change much (even for different scenarios) we found that ψ1 = 2, and ψ2 = 8 yielded

good empirical results. The prior choice on ρm did not undergo prior sensitivity analysis because

it was motivated by Gelfand and Vounatsou (2003). They show that ρm < 1 is necessary for

propriety, and that ρm > 0 is necessary for inducing spatial dependence. Furthermore, they

show that values of ρm near 1 are needed for even moderate spatial dependence, which is why

the uniform prior on ρm that we use has more values closer to one.

3.3 Parallel Implementation for Spatial Methods

Since realistic applications of our work involve a large number of pixels (∼80,000) and spec-

tral bands (∼100) we implemented our methods in a parallel environment using openMP. For the

pixel-by-pixel methods, like the LASSO and BIMS that assume independence over all pixels,

an embarrassingly parallel algorithm can be used by distributing computation over all pixels

simultaneously. As for the spatial methods, specifically the FL, and SBIMS (and spatial non-

parametric BIMS, which we introduce in Chapter 4), these algorithms can be parallelized using

a “checkerboard” approach (e.g., see Landau, 2005), which greatly reduces processing time. To

understand how this scheme works, consider labeling the pixels in the image as “red” or “black”
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in an alternating pattern similar to that on a checkerboard (see Figure 3.1). Under a first-order

neighborhood structure, pixels will either be labelled as “red” or “black”. The “red” pixels are

conditionally independent from each other given those of the corresponding “black” pixels, and

vice versa. Hence, an embarrassingly parallel implementation is again possible by distributing

computation for the “red” pixels first, and once these have been updated, distributing computa-

tion for the “black” pixels. A similar approach can be employed for higher order neighborhood

structures by partitioning the pixels into a larger number of subgroups/colors.

Figure 3.1: For spatial methods, we can consider labeling a hyperspectral image like checkerboard
where each pixel is either “red” or “black”. We can see that “red” pixels are conditionally independent
given the “black” pixels, and vice versa. Therefore we can first update “red” pixels in parallel holding
the “black” pixels fixed, then we can update the “black” pixels in parallel holding the “red” pixels fixed.

3.4 Evaluation of FL and SBIMS on closely linear dataset

In this section we evaluate the performance of the FL and SBIMS on the closely linear dataset

described in Section 1.5. As in Section 2.5, we assume that TEP, Sarin, and DMMP are the only

possible chemicals in the image. Figure 3.2 shows the confusion matrices for the FL and SBIMS.

Unlike the performance of the LASSO and BIMS discussed in Section 2.5, neither the FL nor

SBIMS makes false positives in the sense of identifying pixels with no gas as plume present. The

FL makes no false negatives, in the sense of identifying plume present pixels as having no gas,

whereas SBIMS only makes 2 false negative mistakes. Hence, these spatial methods are excellent

detection methods in that the can easily distinguish between plume present pixels and no plume

present pixels. However, it is clear that SBIMS is the superior identification method in terms
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of classifying most pixels into their correct chemical class. We can see that the FL identifies

all pixels in the “TEP/DMMP” class incorrectly as having all gasses, and slightly struggles

classifying some of the pixels in the “All” class. As mentioned previously, SBIMS makes only 2

false negatives, and impressively, those are the only mistakes SBIMS makes at all.

Figure 3.2: Confusion matrices for the FL and SBIMS.

LASSO BIMS FL SBIMS
ACC 0.9311 0.9972 0.9875 0.9998
MCC 0.8654 0.9859 0.9369 0.9999

Table 3.1: ACC and MCC values for the simulated dataset.

In Table 3.1 we provide the ACC and MCC values of the FL and SBIMS, plus those of the

LASSO and BIMS for reference. We can see that SBIMS has higher ACC and MCC values than

all other methods. Since the ACC looks at only diagonal elements in a confusion matrix while

the MCC also looks at off-diagonal elements (see section 1.6), it is typically harder for a given

method to attain an MCC value that is higher than its ACC value. However, we can see that in

fact the SBIMS method does attain a higher MCC value attesting to its superior performance.

We can also see that the non-spatial method, BIMS, has higher ACC and MCC values than the

FL, even though FL takes into account spatial information. Figure 3.3 paints a more nuanced

picture. We see that the FL no longer has the random mistakes that the BIMS (and LASSO)

make, and therefore in that sense, one could argue that the FL is still a better detector (i.e.,

detecting gas from no-gas pixels) than the BIMS. Lastly, Figure 3.3 clearly shows the smoothing
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Figure 3.3: Identification results mapped onto the area covered by the synthesized data.

effects that the FL and SBIMS have on identification results.

Figure 3.4: Trace plot of log posterior distribution under SBIMS for the closely linear dataset for
two chains, where one chain is represented by red x’s, and the second chain is represented by blue
dots. Using all 150,000 iterations in each of the two chains a Gelman and Rubin statistic of 1.0038 was
calculated implying convergence was reached.

For both the FL and SBIMS on the closely linear dataset we implemented the checkerboard

scheme described in section 3.3. The FL took 4 days to solve. Recall from section 3.1 that

we solve the FL over a grid of LASSO penalties and a grid of FL LASSO penalties to find the

optimal common LASSO penalty and optimal FL LASSO penalty using BIC. Because the FL is
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a much more complex optimization problem than the LASSO, for one pair of penalties it takes

around 2 hours for the FL to solve. The Split Bregman algorithm (see Chapter 5) used to solve

the FL requires specification of certain parameters that could be fine tuned to increase the FL’s

run time efficiency.

Like with BIMS, SBIMS requires an MCMC algorithm to obtain posterior samples. SBIMS

on the closely linear dataset converged after 150,000 iterations which took 3.125 days or 1.8

seconds per iteration. We then ran the MCMC for 10,000 more iterations which we used for

inference. The time per iteration for SBIMS is not drastically greater than the time per iteration

for BIMS. However the total time for SBIMS is much greater than BIMS because SBIMS requires

much more iterations to reach convergence due to greater complexity. We again verified MCMC

convergence by running two MCMC chains and we show the log posterior distribution values

for each in Figure 3.4. Using all 150,000 iterations from the two chains, we obtained a Gelman

and Rubin diagnostic value of 1.0038, which is less than 1.2, and therefore implies convergence

was reached.

3.5 Evaluation of methods on realistic dataset

We now evaluate all methods, the LASSO, BIMS, FL, and SBIMS, on the realistic dataset

described in Section 1.5. Figure 3.5 shows identification results for the four identification meth-

ods, and Table 3.2 displays confusion matrix metrics. From the top two left plots in Figure

3.5 we can see that in general the LASSO and BIMS perform worse than on the closely linear

dataset mainly because we are considering two additional chemicals (DFE and Ammonia) that

we did not consider for the closely linear dataset. We see a lot more speckled mistakes under

both methods. However, like the closely linear dataset the BIMS method is outperforming the

LASSO for no gas pixels as well as for plume pixels. One reason for BIMS’ better performance

can be attributed to the fact that it takes into account colinearity among chemical signatures.

Like with the closely linear dataset, we can see in Figure 3.5 that both the FL and SBIMS

have spatial smoothing effects. However, apart from a line object, which we describe more in the

next paragraph, SBIMS is better able to smooth out no-gas pixels than FL, and it is especially

better at smoothing out plume pixels than the FL. Interestingly looking at Table 3.2 the FL

yields higher ACC and MCC values than SBIMS, and this is mainly because SBIMS is detecting
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a line object that the FL is not. However, based on the results of the LASSO and BIMS we argue

that SBIMS is providing results that are closer to the truth. Of course, SBIMS and FLASSO

are different in several ways, however a few reasons that SBIMS is performing better than the

FL is because like BIMS, it takes into account colinearity among chemicals, and secondly, it

places spatial dependence on the prior chemical inclusion probabilities whereas the FL places

spatial dependence on chemical coefficients.

Something that is immediately apparent is that there is a line object being detected by the

LASSO, BIMS, and SBIMS in an area of the image in which we did not embed any plumes. The

reason for this is because of the particular simulation setting, specifically the possible chemicals

that we are considering. Recall from subsection 1.5.1 that for the closely linear dataset we embed

plumes with combinations of TEP, Sarin, and DMMP, and we consider only TEP, Sarin, and

DMMP as possible chemicals that could be present in the closely linear image. For the realistic

dataset we also embed plumes with combinations of TEP, Sarin, and DMMP, but we consider

TEP, Sarin, DMMP, plus DFE, and ammonia as possible chemicals in the realistic image, where

DFE and ammonia were not embedded. The right plots of Figure 3.5 (except for the FL plot)

show that it is mainly DFE that is being identified in this line object. Therefore, the spectral

composition of these pixels are naturally similar to the spectral composition of DFE. Since we

did not include DFE as a possible chemical when analyzing the closely linear dataset, we did

not detect the line object in Figures 2.3 and 3.3.

Interestingly, the FL does not detect the line object, as shown in third pair of plots down

in Figure 3.5. Recall that the FL is a spatial penalization method that can shrink coefficients

to zero and produce a spatial effect by shrinking the difference between neighboring pixels. Of

course, SBIMS is a also a spatial method that smooths neighboring pixels to be similar and can

indirectly through the use of the indicator variables, ωm,j , shrink coefficients to zero. However,

the reason why the FL is not detecting the line object, whereas SBIMS does, is because since

the FL places spatial dependence directly on regression coefficients, it tends to over smooth.

SBIMS on the other hand places spatial dependence on chemical inclusion probabilities. We will

again see FL’s tendency to over smooth when we analyze the challenge dataset in Section 3.6.

To dive deeper into the results of the realistic dataset, we now discuss a series of tables

meant to convey similar information in a confusion matrix. Note that since we are considering

five possible chemicals it is hard to present a confusion matrix in its traditional form. Table 3.3
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Figure 3.5: Left plots show the identification results for the LASSO, BIMS, FL, and SBIMS. Right
plots explain that the line detected across the bottom of the image is identifying DFE, a chemical we
did not include as a possible chemical for the closely linear dataset. However FL does not detect the
line object because it has a tendency to over smooth.

LASSO BIMS FLASSO SBIMS
ACC 0.9304 0.9721 0.9903 0.9864
MCC 0.4138 0.6636 0.8370 0.7998

Table 3.2: ACC and MCC values for the realistic dataset.

tallies the number of no-gas pixels that identified zero chemicals, 1 chemical, 2 chemicals, etc

over the four methods. The last row of Table 3.3 shows that there were a total of 87, 404 pixels

that had no gas. In general we can see that the vast majority of no-gas pixels were identified

correctly as having no chemicals. We can then see that the number of pixels tallied decreases as

the number of identified chemicals increases for all methods, with the exception of BIMS which

identifies more pixels as having 5 chemicals than 4 chemicals. For the no gas pixels it looks like

SBIMS is the closest to the truth because it only identifies no gas pixels as having 0 chemicals
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or 1 chemical.

Number of chemicals identified for no gas pixels
0 1 2 3 4 5

LASSO 82118 4120 892 194 71 9
BIMS 85075 2165 130 20 4 10

FL 86669 535 184 11 5 0
SBIMS 86190 1214 0 0 0 0
Truth 87404 0 0 0 0 0

Table 3.3: Tally of pixels by number of chemicals identified for no gas pixels in realistic dataset. Note
that each row should sum up to the same number of pixels.

Table 3.4 is similar to Table 3.3 except that it tallies pixels in the TEP/Sarin plume (left

outlined plume in Figure 1.8, which corresponds to the left rectangular green regions in plots of

Figure 3.5) by the number of chemicals identified. We can see that for all methods either two or

more chemicals were identified in TEP/Sarin pixels, which is a positive result since the truth is

that all pixels in the TEP/Sarin plume have 2 chemicals. For the LASSO we again see that the

number of tallied pixels decreases as the number of identified chemicals increases. The BIMS

on the other hand identifies one more pixel as having 5 chemicals than four chemicals. The FL

and SBIMS were able to identify the correct number of chemicals for all TEP/Sarin pixels.

Number of chemicals identified for TEP/Sarin pixels
0 1 2 3 4 5

LASSO 0 0 788 324 101 11
BIMS 0 0 1119 86 9 10

FL 0 0 1224 0 0 0
SBIMS 0 0 1224 0 0 0
Truth 0 0 1224 0 0 0

Table 3.4: Tally of pixels by number of chemicals identified for TEP/Sarin pixels in realistic dataset.
Note that each row should sum up to the same number of pixels.

Table 3.5 is similar to tables 3.3 and 3.4 except that it tallies pixels in the TEP/DMMP

plume (right outlined plume in Figure 1.8, which corresponds to the right rectangular green

regions in plots of Figure 3.5) by the number of chemicals identified. We again see that for all

methods either two or more chemicals were identified in TEP/DMMP pixels. And both the

LASSO and BIMS have similar behavior to the TEP/Sarin results as the number of identified

chemicals increases. However, unlike the TEP/Sarin pixels, the FL mistakenly identifies some

pixels as having three or four chemicals. SBIMS on the other hand identifies all TEP/DMMP
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pixels correctly. One reason the FL performs perfectly for the TEP/Sarin plume, but not

for the TEP/DMMP plume is because the FL does not take into account colinearity among

chemical signatures, and TEP and DMMP are highly correlated, whereas TEP and Sarin are

less correlated.

Number of chemicals identified for TEP/DMMP pixels
0 1 2 3 4 5

LASSO 0 0 461 403 86 22
BIMS 0 0 903 56 6 7

FL 0 0 842 103 27 0
SBIMS 0 0 972 0 0 0
Truth 0 0 972 0 0 0

Table 3.5: Tally of pixels by number of chemicals identified for TEP/DMMP pixels in realistic dataset.
Note that each row should sum up to the same number of pixels.

Table 3.6 shows the number of no gas pixels in which no chemicals were identified, TEP was

identified, Sarin was identified, etc. We see that DFE was incorrectly identified the most for all

methods except the FL because of the line object. However, apart from that there does not seem

to be a clear pattern regarding which chemicals are being incorrectly identified in no-gas pixels.

We do see that SBIMS does not identify TEP, sarin, or ammonia in any of the no-gas pixels.

Furthermore, with the exception of 3 pixels incorrectly identified as having DMMP, the SBIMS

method is identifying no-gas pixels as having either no gas, or DFE. Furthermore, looking at

Figure 3.5 the no-gas pixels that SBIMS incorrectly identifies as having DFE are mainly located

in the line object.

Chemicals identified for no gas pixels
None TEP Sarin DMMP DFE Ammonia

LASSO 82118 301 1154 858 2704 1762
BIMS 85075 34 107 316 1297 797

FL 86669 311 255 270 90 30
SBIMS 86190 0 0 3 1211 0
Truth 87404 0 0 0 0 0

Table 3.6: Tally of pixels by identified chemcials for no gas pixels in realistic dataset. Note that the
classes in each column are not mutually exclusive and therefore each row does not necessarily need to
add up to the same number of pixels.

The left side of Table 3.7 shows that for all methods, TEP and Sarin was identified in all

pixels in the TEP/Sarin plume, but for some pixels additional chemicals to TEP and Sarin were
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also identified. The BIMS is able to identify significantly more TEP/Sarin pixels correctly than

the LASSO, whereas both the FL and SBIMS methods perform perfectly. The right side of

Table 3.7 shows information for only the TEP/Sarin pixels that were identified as having TEP,

Sarin, and other chemicals. Specifically the information shown is the pixel count for DMMP,

DFE, and Ammonia. We see that all three chemicals are incorrectly showing up for the LASSO

and BIMS, and no other clear pattern emerges.

Chemicals identified Chemicals identified for
for TEP/Sarin pixels TEP, Sarin, +other chem pixels

TEP, Sarin TEP, Sarin,
only +other chems

LASSO 788 436
BIMS 1119 105

FL 1224 0
SBIMS 1224 0
Truth 1224 0

DMMP DFE Ammonia
LASSO 126 241 192
BIMS 17 37 80

FL 0 0 0
SBIMS 0 0 0
Truth 0 0 0

Table 3.7: Left table shows that for all methods pixels in the TEP/Sarin plume (left plume) were
labeled as having only TEP/Sarin or having TEP/Sarin and other chemicals. Right table tallies the
number of pixels by the additional chemical identified for pixels in the TEP, Sarin + other chems class
from the left table. Rows in the left side should add up to the same number of pixels, whereas rows on
right side do not need to add up to the same number of pixels.

Table 3.8 is similar to Table 3.7 except it is for the TEP/DMMP plume. Like the TEP/Sarin

plume, we again see that all methods are able to identify TEP and DMMP in the TEP/DMMP

plume, but some additional chemicals are being identified in some of the pixels. Interestingly we

see that the BIMS outperforms the FL for TEP/DMMP pixels, and the SBIMS method performs

perfectly. Also the LASSO identifies more pixels as having additional chemicals than having

only TEP and DMMP present. Again, one reason for the comparatively better performance of

the Bayesian approaches is because they consider correlation among chemical signatures. The

right side of Table 3.7 shows the number of pixels that identified Sarin, DFE, and Ammonia for

the TEP/DMMP pixels that were identified as having additional chemicals to TEP and DMMP.

We can see that all additional chemicals are being incorrectly identified in TEP/DMMP pixels

for the LASSO, BIMS, and FL.

The LASSO was solved over 194 LASSO penalties from 0 to 19.3 and took 8.7 minutes. We

solved the FL over 26 LASSO and FL penalty pairs, which took 3 days to complete. For BIMS

we ran one MCMC chain of 10,000 iterations with a burn in of 5,000, and for SBIMS we ran

one MCMC chain for 160,000 iterations with a burn in of 150,000. Although we do not run two
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Chemicals identified Chemicals identified for
for TEP/DMMP pixels TEP, DMMP, +other chem pixels

TEP, DMMP TEP, DMMP,
only +other chems

LASSO 461 511
BIMS 903 69

FL 842 130
SBIMS 972 0
Truth 972 0

Sarin DFE Ammonia
LASSO 409 130 102
BIMS 10 23 56

FL 85 49 23
SBIMS 0 0 0
Truth 0 0 0

Table 3.8: Left table shows that for all methods pixels in the TEP/DMMP plume (right plume) were
labeled as having only TEP/DMMP or having TEP/DMMP and other chemicals. Right table tallies
the number of pixels by the additional chemical identified for pixels in the TEP, DMMP + other chems
class from the left table. Rows in the left side should add up to the same number of pixels, whereas
rows on right side do not need to add up to the same number of pixels.

Figure 3.6: Trace plot of posterior distribution under BIMS (left plot) and SBIMS (right plot) for the
realistic dataset.

MCMC chains for the Bayesian methods, we ran each method for the same number of iterations

that reached convergence under the closely linear dataset. Total computation time for BIMS

was 3 hours or 1.2 seconds per iteration, and SBIMS took 3.6 days in total or 2.1 seconds per

iteration. We show log posterior values under BIMS for the last 5,000 iterations, and for 150,000

iterations under SBIMS in Figure 3.6. Note that BIMS and SBIMS run times for the realistic

dataset are longer than those for the closely linear dataset because we are considering 5 possible

chemicals in the realistic dataset, but only 3 possible chemicals for the closely linear dataset.
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3.6 Evaluation of methods on the MIT Lincoln Lab Chal-

lenge Data

In this section we evaluate all four methods (LASSO, BIMS, FL, and SBIMS) on the Chal-

lenge dataset described in Section 1.5.2. It is important to note that in this evaluation we

consider eight possible chemicals that could be present in the image, as opposed to the three

for the closely linear dataset, and as opposed to five in the realistic dataset. Therefore, this will

increase the level of detection and identification difficultly.

Figure 3.7: Identification results for all four classification methods mapped onto the area covered by
the MIT Lincoln Lab challenge data.

LASSO BIMS FLASSO SBIMS
ACC 0.8817 0.9101 0.9239 0.9370
MCC 0.1070 0.2941 0.0000 0.4747

Table 3.9: ACC and MCC values for the MIT Lincoln Lab challenge data.

Figure 3.7 presents the results of the four models mapped onto the area covered by the MIT

Lincoln Lab challenge data, while Table 3.9 presents the summary metrics of the associated
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confusion matrices. Relative to the semi-synthetic data in Sections 2.5, 3.4, and 3.5 all methods

demonstrate lower accuracy for the challenge data cube. In particular, we see a large number

of misclassified background pixels under BIMS and LASSO. However we do see that the BIMS

outperforms the LASSO as it makes less mistakes (note the higher ACC and MCC values), and

it is somewhat better at detecting the presence of plumes 2 and 3 and identifying the chemicals

in cloud 1. In fact, the LASSO is unable to identify any pixels correctly in plume 1. We can also

see that the inclusion of spatial information in the Bayesian setting substantially improves the

results. Indeed, under SBIMS the number of false positives associated with background pixels

decreases substantially, and gas identification improves substantially particular in plume 1 (and

to a lesser degree, on plume 3). On the other hand, FLASSO has a very poor performance in

this example as it over-smooths and is therefore unable to detect any of the plumes. Lastly we

highlight the gray ring of misclassified plume pixels as background pixels that is very clear in

the BIMS and SBIMS results especially for plume 1 (bottom right plume) and plume 3( bottom

left plume). Since we did not embed the plumes ourselves we do not know the value of the

embedding parameters (i.e., chemical concentrations, plume temperatures, embedding masks,

etc.) that were inputted into the embedding algorithm. However, due to the gray rings we

hypothesize that a Gaussian embedding mask was used for the embedded plumes (see Section

1.3).

Presenting a confusion matrix for the challenge dataset is especially difficult because it would

have dimension 256×256. Therefore, like the realistic dataset we present tables to convey similar

information that would be presented in a confusion matrix. In Table 3.10 we tally the number

of pixels that identified zero chemicals, 1 chemical, 2 chemicals, and up to 8 chemicals, which

is the total number of possible chemicals considered for the challenge dataset. In general we do

see that the number of pixels decreases as the number of identified chemicals increases, with the

exception of the LASSO which classifies more 8-chemical pixels than 6- and 7-chemical pixels.

Interestingly no method identifies 7 chemicals for the no gas pixels, and this is true for the plume

pixels as shown in Tables 3.11 - 3.13. We also see that the majority of no-gas pixels are being

identified as having zero chemicals, with FL identifying all no gas pixels correctly. However, we

know from Figure 3.7, that the FL identifies all pixels as having no gas. SBIMS is able to classify

almost all no-gas pixels correctly except for 50 no gas pixels which are identified as having only

1 chemical present.
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Number of chemicals identified for no gas pixels
0 1 2 3 4 5 6 7 8

LASSO 41756 2195 311 44 12 15 3 0 11
BIMS 43320 891 100 17 8 1 0 0 10

FL 44347 0 0 0 0 0 0 0 0
SBIMS 44297 50 0 0 0 0 0 0 0
Truth 44347 0 0 0 0 0 0 0 0

Table 3.10: Tally of pixels by number of chemicals identified for no gas pixels in challenge dataset.
Note that each row should sum up to the same number of pixels.

We show the same information in Table 3.11 as in Table 3.10 except for the pixels in plume

1 (bottom right plume). We can immediately see that the LASSO does a poor job of detecting

that a plume is present in the plume 1 region. This result is unlike the results for the closely

linear dataset and especially the realistic dataset (see Table 3.4) where LASSO (and all other

methods) does a good job of detecting that gas is present in plume regions. BIMS performs

better than the LASSO in detecting where gas is present, but it still detects more pixels as

having no gas than having at least 1 chemical present. SBIMS on the other hand does the best

job in identifying the correct number of chemicals present in plume 1.

Number of chemicals identified for plume 1 pixels
0 1 2 3 4 5 6 7 8

LASSO 739 44 8 9 12 19 42 0 229
BIMS 499 127 407 50 13 2 0 0 4

FL 1102 0 0 0 0 0 0 0 0
SBIMS 348 95 659 0 0 0 0 0 0
Truth 0 0 1102 0 0 0 0 0 0

Table 3.11: Tally of pixels by number of chemicals identified for plume 1 pixels in challenge dataset.
Note that each row should sum up to the same number of pixels

Interestingly the LASSO does a better job in identifying the correct number of chemicals

for pixels in plume 2 (top right plume) than for the pixels in plume 1 (bottom right plume) as

shown in Table 3.12. BIMS on the other hand is performing worse in terms of identifying the

correct number of chemicals in plume 2 pixels than in plume 1 pixels. And SBIMS is not able

to identify any plume 2 pixels as having the correct number of chemicals. SBIMS is identifying

either 0 chemicals or 1 chemical for the plume 2 pixels. In comparison to plume 1 and plume

3 (see Table 3.13) all methods are poor detectors as they detect more plume 2 pixels as having

no gas than having at least 1 chemical.
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Number of chemicals identified for plume 2 pixels
0 1 2 3 4 5 6 7 8

LASSO 1297 139 51 20 5 16 3 0 2
BIMS 1149 355 22 6 1 0 0 0 0

FL 1533 0 0 0 0 0 0 0 0
SBIMS 982 551 0 0 0 0 0 0 0
Truth 0 0 1533 0 0 0 0 0 0

Table 3.12: Tally of pixels by number of chemicals identified for plume 2 pixels in challenge dataset.
Note that each row should sum up to the same number of pixels

Although all methods struggle to identify the correct number of chemicals for plume 3 pixels

as shown in Table 3.13, they are better at detecting gas present pixels in plume 3 (bottom left

plume) than in plume 2. This is especially true for the BIMS and SBIMS methods which identify

more plume 3 pixels as having at least 1 chemical than having zero chemicals.

Number of chemicals identified for plume 3 pixels
0 1 2 3 4 5 6 7 8

LASSO 558 158 82 29 43 75 36 0 27
BIMS 441 534 35 4 3 0 0 0 1

FL 1018 0 0 0 0 0 0 0 0
SBIMS 344 654 20 0 0 0 0 0 0
Truth 0 0 1018 0 0 0 0 0 0

Table 3.13: Tally of pixels by number of chemicals identified for plume 3 pixels in challenge dataset.
Note that each row should sum up to the same number of pixels

In Table 3.14 we tally the number of no gas pixels that identified no chemicals, chemical

1, chemical 2, etc over the four methods. For the LASSO there are some chemicals that are

being incorrectly identified more than other chemicals. However, for BIMS the number of pixels

identified in each of the chemical classes seems to be more uniform. The fact that there is not

really a clear pattern for the incorrectly classified gas pixels under the LASSO and BIMS is

evidence that these methods are making random mistakes because they assume all pixels are

independent. SBIMS on the other hand is identifying almost all no-gas pixels correctly, and

only identifies chemicals, 1, 2, and 4 in incorrectly classified no gas pixels.

In Table 3.15 we tally the number of pixels over chemical classes of interest for plume 1.

Only the Bayesian methods (BIMS and SBIMS) are able to correctly classify pixels in plume

1. BIMS is able to classify about 34% of plume 1 pixels correctly, whereas SBIMS is able to

correctly identify about 60% of plume 1 pixels correctly. Interestingly for the plume 1 pixels in
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Chemicals identified for no gas pixels
C0 C1 C2 C3 C4 C5 C6 C7 C8

LASSO 41756 33 1347 11 349 11 375 1027 25
BIMS 43320 91 267 145 264 133 90 156 113

FL 44347 0 0 0 0 0 0 0 0
SBIMS 44297 45 1 0 4 0 0 0 0
Truth 44347 0 0 0 0 0 0 0 0

Table 3.14: Tally of pixels by identified chemicals for no gas pixels in challenge dataset. Since classes
in columns are not mutually exclusive, it is not necessary that all rows add up to the same number of
pixels.

which SBIMS detected gas, only chemicals C1 and C3 were identified, i.e. no other extraneous

chemicals are identified under SBIMS. However for the LASSO and BIMS methods chemicals

other than C1 and C3 are being identified. We did look closer into which additional chemicals

are being identified for the LASSO and BIMS, however no clear pattern emerged except for the

fact that each extraneous chemical, namely C2, C4, C5, C6, C7, and C8, were identified in at

least one pixel for plume 1 under the LASSO and BIMS.

Chemicals identified for plume 1 pixels that contains C1 and C3
C1, C3, Chems

no C3 no C1 C1, C3, other
C1 + other C3 + other C1, C3 + other than

None only chems only chems only chems C1, C3
LASSO 739 1 26 0 8 0 277 51
BIMS 499 33 2 80 42 376 56 14

FL 1102 0 0 0 0 0 0 0
SBIMS 348 17 0 78 0 659 0 0
Truth 0 0 0 0 0 1102 0 0

Table 3.15: Tally of pixels by identified chemicals class for plume 1 (bottom right plume) pixels in
challenge dataset. Note that each row should sum up to the same number of pixels

Only the BIMS method is able to identify one pixel correctly in plume 2 as shown in Table

3.16. The SBIMS method identifies plume 2 pixels as having either no gas or having only

chemical C6 present, even though the truth is that both chemicals C6 and C5 are present.

Similar to plume 1, the SBIMS method is not identifying any other additional chemicals to

chemical C6 (and C5). The LASSO and BIMS on the other hand are identifying extraneous

chemicals, and we also did not find a clear pattern of which extraneous chemicals are being

identified, except that each chemical other than C5 and C6 are being identified in some of the

plume 2 pixels.
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Chemicals identified for plume 2 pixels that contains C5 and C6
C5, C6, Chems

no C6 no C5 C5, C6, other
C5 + other C6 + other C5, C6 + other than

None only chems only chems only chems C5, C6
LASSO 1297 0 0 99 86 0 2 49
BIMS 1149 106 5 183 12 1 0 77

FL 1533 0 0 0 0 0 0 0
SBIMS 982 0 0 551 0 0 0 0
Truth 0 0 0 0 0 1533 0 0

Table 3.16: Tally of pixels by identified chemicals class for plume 2 (top right plume) pixels in challenge
dataset. Note that each row should sum up to the same number of pixels

For plume 3 we can see that only BIMS and SBIMS can correctly identify pixels, but for

a very low number of pixels as shown in Table 3.17. SBIMS only identifies chemicals that are

actually present in plume 3, specifically chemicals C7 and C8. LASSO and BIMS on the other

hand are identifying chemicals that are not actually present in plume 3. As with plumes 1 and

2, there was no evident pattern among extraneous chemicals being identified, except that all

chemicals were identified over the plume 3 pixels under the LASSO and BIMS.

Chemicals identified for plume 3 pixels that contains C7 and C8
C7, C8, Chems

no C8 no C7 C7, C8, other
C7 + other C8 + other C7, C8 + other than

None only chems only chems only chems C7, C8
LASSO 558 154 112 0 23 0 157 14
BIMS 441 202 17 327 15 4 3 9

FL 1018 0 0 0 0 0 0 0
SBIMS 344 18 0 636 0 20 0 0
Truth 0 0 0 0 0 1018 0 0

Table 3.17: Tally of pixels by identified chemicals class for plume 2 pixels in challenge dataset. Note
that each row should sum up to the same number of pixels

We evaluated the LASSO in 55 minutes over 868 LASSO penalty values from 0 to 0.0867 at

which all coefficients were shrunk to zero. Recall for the closely linear dataset that it took a

LASSO penalty value of 5.8 to shrink all coefficients to zero. This suggests that the coefficients

for the challenge dataset are much smaller than those for the closely linear dataset. The FL

was evaluated over 121 LASSO and FL penalty pairs, which took 12 hours to complete. The

FL takes less time for the challenge dataset than the closely linear and realistic dataset due to
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Figure 3.8: Trace plots of log posterior distribution under BIMS (left plot) and SBIMS (right plot) for
the challenge dataset. Under each method 2 chains were run, where one chain is represented by red x’s,
and the second chain is represented by blue dot’s. Using the first 5,000 iterations in the 2 chains under
both BIMS, and all 180,000 iterations in the 2 chains under SBIMS, both methods produced Gelman
and Rubin statistics less than 1.2, which implies both methods reached convergence.

the nature of the challenge dataset. Although the challenge dataset has less pixels than the

realistic or closely linear datasets, it will take BIMS and SBIMS longer to reach convergence for

the challenge dataset because we are considering 8 possible chemicals in the challenge dataset,

whereas we only considered 3 and 5 possible chemicals in closely linear and realistic datasets,

respectively. We ran the MCMC algorithm under BIMS for 10,000 iterations with a burn-in

of 5,000 for inference, which took 7.7 hours in total or 2.8 seconds per iteration. We ran two

MCMC chains for BIMS, and we show log posterior distribution values for both chains in Figure

3.8. Using the first 5,000 iterations in each of the two chains, we calculated a Gelman and

Rubin statistic of 1.0012, which implies convergence since it is less than 1.2. Since the SBIMS

method is more complex than BIMS, SBIMS reached convergence in 180,000 iterations which

took a total computational time of 6.25 days, or 3 seconds per iteration. We then ran SBIMS for

an additional 10,000 iterations which were used for inference. We also ran two MCMC chains

for SBIMS, and we show log posterior distribution values in the Figure 3.8. Using all 180,000

iterations, the two chains yielded a Gelman and Rubin statistic less than 1.2, specifically, 1.1162,

which implies convergence was reached.
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3.7 Discussion

Our illustrations in Chapters 2 and 3 clearly show the advantages of both using Bayesian

model selection and of including spatial information for the detection and identification of chem-

ical plumes in hyperspectral images. There are several important differences between the FL

and SBIMS, including that FL is a penalization method, and SBIMS is a Bayesian method that

uses priors and takes into account collinearity among chemicals. However, from a purely spatial

modeling perspective, another important difference between the two methods is that SBIMS

places spatial information indirectly through the prior inclusion probability of each variable

rather than directly through the prior on the coefficients (as is implicitly done with the fussed

LASSO). This spatial difference as well as other differences between the FL and SBIMS yields

more accurate estimators under the SBIMS method. Furthermore, the use of a clipped Gaussian

Markov random field to induce a prior on the inclusion probabilities proved to be flexible.

Among the three datasets considered in this chapter and in Chapter 2, we recognize that

in general all methods performed the best on the closely linear dataset, performed less well on

the realistic dataset, and yielded the poorest results on the challenge dataset. The differences

in results among the three datasets can be attributed to several reasons, including the geog-

raphy of the hyperspectral image (i.e., downward looking images vs side looking images), the

size of the library of possible chemicals (i.e., three for closely linear dataset, five for realistic

dataset, and eight for challenge dataset), and chosen embedding parameters for the different

semi-synthetic datasets. In particular side viewing data cubes can be more difficult to analyze

since the estimate of the atmosphere’s transmittance is typically less reliable for side-viewing

cubes than for downward looking cubes. This is because for downward looking images the atmo-

sphere’s transmittance can be estimated directly from the data cube (see Section 1.3), whereas

this is not possible for side viewing cubes. In the case of side-viewing hyperspectral images,

“cookie-cutter” estimates for the atmosphere’s transmittance are typically used. The results of

the realistic dataset in comparison with the closely linear dataset do show that considering a

larger library of possible chemicals does affect detection and identification accuracy, especially

for the LASSO, BIMS, and FL methods. Furthermore regarding embedding parameters, we

mentioned previously that we hypothesize that the plumes in the Challenge dataset were em-

bedded using a Gaussian mask which can make it more difficult to yield accurate detection and
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identification results than a uniform embedding mask. Note that we used uniform embedding

masks for the plumes in the closely linear and realistic datasets. Additionally, it is also possi-

ble that the plumes for the challenge dataset were embedded at plume temperatures and with

chemical concentration levels that were more challenging than values we used for the embedding

parameters in the closely linear and realistic datasets.

One of the main shortcomings of our methodology is that it relies on a linear approximation

to non-linear physical phenomena. Although the assumptions underlying this approximation

are often valid in many practical circumstances, it is clear that future work will need to consider

methods that can cover scenarios where a plume is not optically thin, where the background is

not flat, or where the temperature difference between the plume and background is large. In

particular, we examine methods that can address cases when the plume is not optically thin in

the next chapter.
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Chapter 4

Supervised non-linear model

selection methods for chemical

plume detection and

identification in hypserspectral

imagery

In this chapter we develop a novel Bayesian approach to detection and identification when

linearizing assumptions (see Section 2.1) cannot be considered valid. Without linear assump-

tions a convenient linear unmixing model, as discussed in Section 2.2, is no longer applicable,

and instead we must un-mix a nonlinear signal composed of light coming from the plume and

the background. To perform nonlinear un-mixing we borrow ideas from the uncertainty quan-

tification literature and propose modeling the signal as a non-parametric regression, where we

place a prior on the regression function. In particular we propose placing a Gaussian Process

(GP) prior on the regression function that is centered on the linear un-mixing model. With

this approach we have two variance terms, one that explains linear variance in the signal, and

one that explains nonlinear variance. Furthermore, variable selection is incorporated in the GP
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prior by carefully structuring the prior on the covariance function. Similar to the BIMS and

SBIMS models (see sections 2.4 and 3.2), we place a mixture of g-priors on the coefficients of

the linear model that serves to center our nonparametric formulation. Furthermore, we use the

Jefferey’s prior on the linear model variance, and employ Markov Random Fields to enforce

spatial structure in the model. Therefore the models we evaluate in this section extend BIMS

and SBIMS to be non-parametric, and in the sequel we will refer to them as non-parametric

BIMS (NPBIMS), and spatial non-parametric BIMS (SNPBIMS).

Gaussian processes priors have a long history in many areas of statistics, especially in spatial

statistics, where such methods are referred to as “kriging” (Matheron, 1963). Neal (1997) and

Rasmussen (2004) are standard references for the use of GP priors in regression, however we

can see GP priors placed on regression functions as early as O’Hagan and Kingman (1978).

When using GP priors, a covariance function between data points must be specified. The use

of different covariance functions, and the different ways to specify parameters within covariance

functions, give GP priors the flexibility to fit a wide variety of curves, especially non-linear curves.

Abrahamsen (1997) gives a thorough review of covariance functions in GP’s and their properties.

For the application of detection and identification, we use a covariance function that can be

adapted for model selection, e.g. see Linkletter et al. (2006a); Sacks et al. (1989). Additionally

this form of covariance function makes the NPBIMS and SNPBIMS computationally feasible

via MCMC sampling.

4.1 Non-linear likelihood

Recall the equation of the at-sensor radiance model when a plume is present from Section

1.2,

Lon(λ) = La(λ) + τa(λ)Lp(λ) + τa(λ)τp(λ)Lb(λ). (4.1)

Non-linearities in the model exist in the light source models, La, Lp, and Lb, which are modeled

using the Plank function (see equation (1.2)). The transmittance of the plume is also a non-linear
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function known as Beers law,

τp(λ) = exp

(
−

M∑
m=1

γmαm(λ)

)
,

where αm(λ) are high resolution chemical spectral signatures, and γm is the concentration of

chemical m present in the plume. By adding and subtracting τa(λ)Lb(λ) to the right hand side

of equation 4.1, we can rewrite the radiance model as,

Lon(λ) = τa(λ)(Lp(λ)− {1− τp(λ)}Lb(λ)) + Loff(λ), (4.2)

where Loff(λ) = La(λ) + τa(λ)Lb(λ), and is the at sensor-radiance model when no plume is

present, i.e, the background (see section 1.2 for more details). Equation (4.2) is also a signal

plus clutter model, where the first term on the right hand side is the signal, and as before, the

light from the background is the clutter. Unlike in Section 2.1, the signal no longer takes on a

convenient linear form. To address this we model the pixel spectrum as a general function. As

before, the hyperspectral sensor captures the at-sensor radiance signal as shown in equation (4.1)

on a series of I adjacent spectral bands centered at wavelengths, λ1, ..., λI , and then processes

it through its spectral response function, RF (λ) and introduces noise, n(λ) to produce the pixel

spectrums in a hyperspectral image, x = (x1, ..., xI), which we now model as

xi = f(s1,i, ..., sM,i) + vi, i = 1, ..., I. (4.3)

In other words, the pixel spectrum is modeled as some function of the down sampled chemical

spectral signatures, sm,i = αm(λi)∗RF (λi), plus the background and sensor noise, vi = Loff(λi)∗

RF (λi) + n(λi). Let fi = f(s1,i, ..., sM,i), and note that in a hyperspectral image we have J

pixels. Then we can rewrite model in (4.3) in vector form for one pixel as,

xj = f j + vj , vj ∼ N(µ, σ2
jΣ), (4.4)

where we assume the error term is normally distributed. As before, µ is the background mean,

and Σ is the background covariance. To ease computation, we proceed by using point estimates

for µ and Σ, µ̂ and Σ̂. As before, µ̂ is the mean signal over all pixels, while Σ̂ is estimated
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from the whole image using dominant mode rejection (Manolakis et al., 2009).

4.2 Nonparametric BIMS

In this section we discuss the NPBIMS method. To build NPBIMS first recall from Section

2.2 that the mean of the linear model minus the background mean is Sgj , which can be under-

stood as the linear plume signal. The matrix, S, has dimension I ×M and its columns are the

unwhitened downsampled chemical spectral signatures, and gj = (g1,j , ..., gM,j) are the corre-

sponding regression coefficients for pixel j. Also recall that for the BIMS method we introduced

latent variabes, ωj = (ω1,j , ..., ωM,j) for each pixel j = 1, ...J , where ωm,j = 0 if gm,j = 0, and

ωm,j = 1, otherwise. We proceed by placing a GP prior on the function f j in the likelihood in

equation (4.4) that is centered on the linear plume signal,

f j |ωj ∼ GP(S(ωj)gj(ωj), κjσ
2
jC(ψj ,ωj)). (4.5)

For a finite sample the prior in (4.5) implies the joint normal prior,

f j = S(ωj)gj(ωj) + νj , νj ∼ N(0, κjσ
2
jC(ψj ,ωj)). (4.6)

The matrix, S(ωj) includes only the columns of S where ωm,j = 1, and gj(ωj) is the subvector

of gj corresponding to the non-zero values in ωj . The parameter, κj can be interpreted as the

ratio between the observational noise and the variance of the GP prior around its mean. Note

that when κj = 0 for all j we return to the BIMS model.

In our model, the correlation function, C(ψj ,ωj) takes the form,

Ch,i(ψj ,ωj) =
∏

ωj,m=1

ψ
2βm,j |sh,m−si,m|βm,j
m,j , (4.7)

where ψm,j can take on values in (0, 1]. Values close to 1 imply that the process in pixel j

does not depend on chemical, m. For this reason, we use a spike-and-slab prior (George and

58



McCulloch, 1993) on ψj ,

p(ψj |ωj) =

M∏
m=1

ωm,j1(0 < ψm,j < 1) + (1− ωm,j)δ1(ψm,j), (4.8)

where δ1 is the Dirac delta function at 1. The parameter, βm,j controls the smoothness of the GP

prior. For example, βm,j = 2 leads to realizations that are mean-square infinitely differentiable.

Because this parameter is difficult to estimate, we set βm,j = 1.9 for all m = 1, ..M and all

j = 1, ..., J in to avoid computational issues that can arise from setting βm,j = 2.

To gain more intuition into the covariance function, Ch,i, note that it will produce an I × I

covariance function. For simplicity, imagine we are only considering one chemical, i.e., M = 1,

and assume that its corresponding indicator variable, ωm,j , is equal to 1. We can now drop

the product operator in (4.7). Therefore, the resulting I × I covariance matrix will express the

covariance between each element in the one chemical signature, sm, that we are considering.

If ψm,j = 1, then we will obtain a rank-1 covariance matrix. For more details please refer to

Linkletter et al. (2006b).

We continue by placing mixtures of g-priors on gj to address colinearity among chemical

signatures,

gj |cj , σ2
j ,ωj ∼ N

(
gj(ωj) | 0, cjσ2

jS
′(ωj)Σ̂

−1S(ωj)
) ∏
m:ωm,j=0

δ0(gm,j), (4.9)

and we place the Jeffrey’s prior on σ2
j , p(σ

2
j ) ∝ 1

σ2
j
. These choices of priors on f j , gj , and σ2

j

allows us to integrate out these parameters resulting in a likelihood of the form,

p(x1, ...,xJ |κ1, ..., κJ , c1, ...., cJ ,ω1, ....,ωJ ,ψ1, ...,ψJ) ∝
J∏
j=1

L−1/2(κj ,ψj , cj ,ωj)
(
(xj − µ̂)′L−1(κj ,ψj , cj ,ωj)(xj − µ̂)

)− I2 , (4.10)

where L(κj ,ψj , cj ,ωj) = Σ̂ + κjC(ψj ,ωj) + cjS(ωj)
(
S′(ωj)Σ̂

−1S(ωj)
)−1

S′(ωj).

As with BIMS, we again assume that chemical inclusion probabilities on a given pixel are

independent and uniform, which is equivalent to assuming independent Beta-Binomial priors on

ωj as shown in (2.8). Also similar to BIMS, we place an inverse gamma prior on cj , p(cj) =
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IGam(.5, .5I). Lastly, we place an inverse gamma prior on κj , p(κj) = IGam(aκ, bκ), where

extensive prior sensitivity analysis was performed for prior choices for aκ, and bκ. In general

the prior choices of aκ and bκ depends on the hyperspectral image being analyzed. We explored

making bκ random while fixing aκ = 11, however we encountered identifiability issues with bκ

under such a setup. We discuss the prior choices of aκ and bκ further in results sections 4.4, and

4.5.

4.3 Spatial NPBIMS

Like the LASSO and BIMS methods (see Chapter 2), an obvious shortcoming of NPBIMS

is that pixels are treated as independent and spatial information in the image is ignored. In

this section we describe the Spatial NPBIMS (SNPBIMS) model, which extends NPBIMS to

incorporate spatial dependence among pixels.

We proceed in the same manner as in Section 3.2 where we described the SBIMS method

that extended the BIMS method to incorporate spatial information. As before, we consider a

first order neighborhood structure in the neighborhood matrix, Υ, where υj,j′ = 1 if an only

if pixels j and j′ are neighbors, and υj,j′ = 0, otherwise. We then introduce latent variables,

`m = (`m,1, ..., `m,J), on which we place a clipped Gaussian Markov random field prior,

`m,j | `m,1, · · · , `m,j−1, `m,j+1, · · · , `m,J , αm, ρm, um ∼

N

(
{1− ρm}αm + ρm

∑
j′ 6=j υj,j′`m,j∑
j′ 6=j υj,j′

,
1

um
∑
j′ 6=j υj,j′

)
, (4.11)

then let ωm,j |`m,j = 1 if `m,j > 0, and ωm,j |`m,j = 0, otherwise. Again, this prior incorpo-

rates spatial information by smoothing neighboring `m,j ’s to be similar. The amount of spatial

smoothing is controlled by ρm and um, where a value of ρm = 0 implies no spatial dependence,

and we are are returned to a model similar to NPBIMS. We set 0 < ρm < 1 to ensure the joint

prior,

p(`1, . . . , `M | am, um, ρm) =

M∏
m=1

N
(
αm1, {um(DΥ − ρmΥ)}−1

)
,

implied by equation (4.11), is proper. This also guarantees that the posterior distribution of the

model is proper. The matrix, DΩ, is defined as DΥ = diag
{∑

j 6=1 υj,1, . . . ,
∑
j 6=J υj,J

}
.
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Recall that under this setup the marginal prior probability that chemical m exists in pixel j

is,

θm,j = Φ

(
u

1/2
m αm

q
1/2
m,j,j

)
,

where Φ(·) is the standard normal cumulative distribution function, and qm,j,j is the j-th diagonal

term of Qm = {DΥ − ρmΥ}. To account for multiplicities we treat this probability as random

by assigning priors on αm, ρm, and um. In particular we assign,

αm ∼ N (0, 1) , um ∼ Gam (2, 8) , ρm ∼ Uni{0.5, 0.75, 0.9, 0.95, 0.975, 0.99, 0.999}.

These choices ensure an approximately uniform prior on the chemical inclusion probabilities,

θm,j . For more details see Section 3.2.

It is important to note that NPBIMS and SNPBIMS are more computationally demanding

than their parametric counterparts, BIMS and SBIMS. We discuss this and other computational

considerations more in Chapter 5.

4.4 Performance evaluation on nonlinear dataset

To evaluate NPBIMS and SNPBIMS we will first implement them on the nonlinear dataset

described in Section 1.5. We focus on the nonlinear dataset as opposed to the closely linear

and realistic datasets since we embedded plumes in the nonlinear dataset such that linear as-

sumptions do not hold, specifically linearization of Beer’s Law (see Section 1.4.3). As will be

explained in more detail later on in this section, our nonparametric identification methods are

very computationally burdensome and require long run times to reach convergence. For the

nonlinear dataset (which has 89,600 pixels) we estimate it would take months for SNPBIMS

to reach convergence. In Chapter 6, we discuss that developing ways to improve NPBIMS and

SNPBIMS’ computationally efficiency is part of future work. Hence, we will evaluate the non-

parametric methods on the nonlinear dataset in a two stage process. First we will implement

BIMS and SBIMS on the whole nonlinear dataset. This will act as a first-pass detection that

will detect no-plume regions and target plume regions. We will then implement NPBIMS and

SNPBIMS on only the target plume regions.

61



4.4.1 First pass detection via BIMS and SBIMS on nonlinear dataset

Figure 4.1 shows the identification results under BIMS in the left panel, and the identification

results under SBIMS in the right panel. We also show the results in confusion matrix form in

Figure 4.2. Note that we ran BIMS for 10,000 MCMC iterations and SBIMS for 150,000 MCMC

iterations, which was the number of iterations that reached convergence for the closely linear

dataset. BIMS took 2.78 hours to complete, or 1 second per iteration, and SBIMS took 3 days

to complete, or 1.7 seconds per iteration. We used the last 5,000 iterations of the BIMS MCMC

algorithm for inference. Whereas for SBIMS we ran an additional 10,000 iterations, which were

used for inference. We show log posterior values over the iterations under both BIMS and SBIMS

in Figure 4.3, and in particular we ran two chains for SBIMS.

Figure 4.1: Identification results for BIMS and SBIMS on nonlinear dataset mapped onto the area
covered by the synthesized data. Two plumes that have room for improvement are pointed out in the
right plot.

Figure 4.2: Confusion matrices for BIMS and NPBIMS on the nonlinear dataset.

We would like to highlight the fact that BIMS and SBIMS perform worse on the nonlinear

dataset than on the closely linear dataset (see the bottom panel of Figure 2.3 and bottom panel
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Figure 4.3: Trace plots of log posterior distribution under BIMS (left plot) and SBIMS (right plot)
for nonlinear dataset.

of Figure 3.3). BIMS attained ACC and MCC values of 0.9972 and 0.9859, respectively on the

closely linear dataset, whereas for the nonlinear dataset BIMS attained ACC and MCC values

of 0.9531 and 0.7471, respectively. Furthermore, SBIMS preformed practically perfectly for the

closely linear dataset where ACC and MCC values of 0.9998 and 0.9999 were attained, but

under the nonlinear dataset SBIMS only attained ACC and MCC values of 0.9744 and 0.8627,

respectively. This difference in performance is clearly related to the use of a non-linear regime

for the embedding process (see discussion in Section 1.4).

As expected, we see that SBIMS performs better than BIMS on the nonlinear dataset. In

fact SBIMS is able to identify some plumes perfectly despite nonlinearity in the plumes. On

the other hand, we point out two plumes in the right panel of Figure 4.1 that have room for

improvement. The first pointed out plume on the left contains both TEP and DMMP, and recall

that these two chemicals have spectral signatures with high correlation (see section Figure 1.7,

and Table 1.1 in Section 1.5). The second pointed out plume on the right contains TEP only.

As the second stage of our process, we analyze these two plumes under NPBIMS and SNPBIMS

to evaluate the effectiveness of the nonparametric identification methods. Note that although

the gray region in the right panel of Figure 4.1 is an embedded plume, NPBIMS identified most

of these pixels as having no plume, which might explain why SBIMS smoothed the entire plume

region as having no gas. Therefore, we cannot realistically consider it as a plume region needing
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improvement.

4.4.2 NPBIMS on the Nonlinear TEP and DMMP Plume

We first start with the plume that had room for the most improvement. Since we performed a

first pass detection in the previous section, we can already improve results in two ways. First, we

can re-estimate Σ and µ. Recall that Σ and µ are the background covariance and background

mean, and prior to any detection or identification, their estimates, Σ̂ and µ̂, are calculated

using all pixels (see Section 2.2) and are therefore contaminated by plume present pixels. After

the first detection pass with BIMS and SBIMS, we can now get less contaminated estimates by

using only the no-plume detected pixels to calculate Σ̂ and µ̂. Secondly, since we are analyzing

a region that we know has plume, we can give the no gas model zero probability in the prior.

With these improvements we will analyze the TEP/DMMP plume region from the nonlinear

dataset under the nonparametric methods, NPBIMS and SNPBIMS, as well as the parametric

methods, BIMS and SBIMS, for comparison.

In Figure 4.4 we show identification results for BIMS and two versions of NPBIMS. NPBIMS

5% assumes in the prior that nonlinearities can explain 5% of the variance in the pixel signal.

Specifically for NPBIMS 5% we set bκ = 0.5 and aκ = 11 for the Inverse Gamma prior on κj

(see Section 4.2). NPBIMS 20% on the other hand assumes in the prior that 20% of the variance

in the pixel signal can be explained by non-linearities, and specifically we assign bκ = 2.0 and

aκ = 11. We can see significant improvement of NPBIMS 5% over BIMS and slight improvement

of NPBIMS 20% over NPBIMS 5%. The improvement of NPBIMS over BIMS is also evidenced

by the ACC confusion matrix metrics provided in the plot titles. In particular BIMS was able to

correctly identify about 84% of pixels correctly, whereas NPBIMS 5% and NPBIMS 20% were

able to correctly identify 94% of pixels, and 97% of pixels, respectively. Note that each of the

models identified pixels as either having TEP and DMMP (green pixels) or having all chemicals

(blue pixels). The white pixels are background pixels that are not part of the target plume

region, as explained previously, but we include them in the plots for better visual appearance

of the figure. Also note that since there are only two types of chemical combinations that were

identified, we do not show confusion matrices and feel the plots and ACC metrics in Figure 4.4

are sufficient.

For the results in Figure 4.4 we ran each model for 10,000 MCMC iterations with a burn-in of
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Figure 4.4: Identification results of BIMS and two versions of NPBIMS on the TEP/DMMP target
plume region from the nonlinear dataset.

5,00 iterations for inference. Keep in mind that this particular target region has only 1,066 total

pixels, whereas the full nonlinear dataset has 89,600 pixels in total. We show the log posterior

values under each model for the last 5,000 iterations in Figure 4.5. For BIMS it took a total

of 16.67 minutes, or 0.1 seconds per iteration to complete. Both NPBIMS 5% and NPBIMS

20% took 2.5 hours in total, or .9 seconds per iteration to complete. Notice that NPBIMS

is much more computationally burdensome than BIMS mainly because there are large matrix

multiplication operations necessary for the NPBIMS model, but are not required under BIMS.

Therefore, as mentioned previously, NPBIMS has the disadvantage of needing long run times.
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Figure 4.5: Trace plots of BIMS and two version of NPBIMS for the TEP and DMMP target plume
from the challenge dataset.

4.4.3 SNPBIMS on the Nonlinear TEP and DMMP Plume

In Figure 4.6 we show identification results for SBIMS, and two versions of SNPBIMS on the

same TEP/DMMP plume region from the nonlinear dataset. We can see that SBIMS performs

perfectly, i.e., it is able to correctly identify 100% of pixels in the target area. On the hand,

the SNPBIMS models are making some mistakes, which are all located at the bottom boundary

of the plume. SNPBIMS 5% is the spatial extension of NPBIMS 5% (see section 4.3), and

we can see it performs slightly worse than SBIMS as it able to correctly identify only 98.12%

66



of pixels correctly. Similarly, SNPBIMS 20%, which is the spatial extension of NPBIMS 20%,

also performs slightly worse than SBIMS by correctly identifying only 98.22% of pixels. Note

that both SNPBIMS model versions identify pixels as having either the correct combination of

chemicals (TEP and DMMP) as represented by green pixels, or having only TEP as represented

by blue pixels. Recall from Figure 4.4 that NPBIMS 5% and NPBIMS 20% identified pixels

as either TEP and DMMP present, or as having all chemicals present. So under SNPBIMS

the incorrect chemical, Sarin, is being smoothed out. However, for some pixels located at the

boundary of the plume, DMMP, which is actually present, is also being smoothed out.

For the SBIMS results in Figure 4.6 we ran the MCMC for 20,000 iterations with a burn in of

10,000 for inference. We show log posterior distribution values in the top left panel of Figure 4.7.

SBIMS took 1 hour to complete, or 0.36 seconds per iteration. We ran both SNPBIMS models

for 50,000 MCMC iterations with a burn in of 40,000 for inference. Log posterior distribution

Figure 4.6: Identification results of BIMS and two versions of NPBIMS on the TEP/DMMP target
plume region from the nonlinear dataset.
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Figure 4.7: Trace plots for SBIMS and two versions of SNPBIMS on the TEP/DMMP target plume
region from the nonlinear dataset.

values under the SNPBIMS models are also shown in Figure 4.7. Both SNPBIMS 5% and

SNPBIMS 20% took 13 hours to complete, or .99 seconds per iteration. Note how much longer

the nonparametric method, SNPBIMS, takes when compared to its parametric counterpart,

SBIMS, in terms of both total time and time per iteration. Similar to NPBIMS, SNPBIMS

needs long run times because it requires large matrix-matrix operations that are not needed

under SBIMS.
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Figure 4.8: Identification results of BIMS, NPBIMS 10% and NPBIMS 20% on the TEP target plume
region from the nonlinear dataset.

4.4.4 NPBIMS on the Nonlinear TEP Plume

In this section we evaluate the TEP plume target area from the nonlinear dataset using

NPBIMS. As explained in Section 4.4.2, we again implement two improvements. First we use

less contaminated estimates of Σ and µ, and we give the chemical model with no gasses zero

probability in the prior. In Figure 4.8 we show the identification results of BIMS, NPBIMS

10%, and NPBIMS 20% for the TEP target plume. NPBIMS 10% assumes in the prior that

nonlinearities can explain 10% of the variance in the pixel signal, and specifically we set bκ = 1.0
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Figure 4.9: Trace plots for BIMS, NPBIMS 10%, and NPBIMS 20% on the TEP target plume region
from the nonlinear dataset.

and aκ = 11 for IG(aκ, bκ) prior on κj . And as in the previous section, NPBIMS 20% assumes

in the prior that 20% of the pixel signal variance can be explained by nonlinearities, and we

assign bκ = 2.0 and aκ = 11. BIMS attains a very high ACC value, i.e., it can identify 97.48%

of pixels correctly. NPBIMS 10% has a similar performance to BIMS, and yields the same ACC

value of BIMS. NPBIMS 20% performs somewhat better than BIMS as it identifies 98.11% of

pixels correctly. Note that all 3 models identified pixels as either having TEP only (green pixels),

which is the correct model for all pixels, having TEP and Sarin (blue pixels), or having TEP

and DMMP (purple pixels).

For the TEP plume region we ran BIMS, NPBIMS 10%, and NPBIMS 20% each for 10,000

MCMC iterations with a burn in of 5,000 for inference. We show log posterior values over the

iterations in Figure 4.9 for the last 5,000 iterations under each model. Similar to the BIMS
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implementation on the TEP/DMMP target plume, BIMS on the TEP plume took about 16

minutes to complete or .1 seconds. Note that the TEP plume has a total of 1,271 pixels,

whereas the TEP and DMMP Plume had a total have 1,066 pixels. NPBIMS 10% and NPBIMS

20% on the other hand both took about 2.7 hours to complete or 1 second per iteration to

complete.

4.4.5 SNPBIMS on the Nonlinear TEP Plume

In Figure 4.10 we show the identification results of SBIMS, SNPBIMS 10%, and SNPBIMS

20% on the TEP target plume, and we can see that all methods perform perfectly, meaning all

methods are able to identify 100% of pixels correctly. Recall from Figure 4.8 that incorrectly

classified pixels were identified as having TEP plus an extraneous chemical. Now both spatial

parametric and spatial nonparametric methods are able to correctly smooth out the extraneous

chemicals. Unlike the results of SNPBIMS on the TEP and DMMP plume in Figure 4.10, we do

not see issues of over smoothing for the TEP plume. One reason for this is because the no-gas

model has zero probability in the prior.

SBIMS was run for 20,000 with a burn in of 10,000 for inference. We show the log posterior

distribution values under SBIMS in the top left panel of Figure 4.11. Similar to the implemen-

tation of SBIMS on the TEP and DMMP target plume, SBIMS took 1 hour to complete, or .36

seconds per iteration. We ran the SNPBIMS models each for 50,000 iterations with a burn in

of 40,000 for inference. We also show log posterior distribution values for the two SNPBIMS

models in the top right and bottom panels of Figure 4.11. Both versions of SNPBIMS took

about 14 hours to complete, or about 1 second per iteration.

4.5 Performance evaluation on challenge dataset plumes

In this section we will evaluate NPBIMS and SNPBIMS on the challenge dataset. Like the

previous section we also perform a two-stage process to avoid long run times. However, unlike

the non-linear dataset, we now assume that a perfect first-pass detection was performed, where

plumes 1, 2 and 3 in Figure 1.10 are detected as target plume regions, and the rest of the pixels

are detected as having no plume. We will then implement the nonparametric methods on the

plume target regions. Specifically, we will analyze plume 1 and plume 3 from the challenge
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Figure 4.10: Identification results of SBIMS, SNPBIMS 10% and SNPBIMS 20% on the TEP target
plume region from the nonlinear dataset.

dataset, where plume 1 contains chemicals 1 and 3, which have low correlation, and plume 3

contains chemicals 7 and 8, which are highly correlated (see Section 1.5.2). Recall that for the

challenge dataset we consider 8 possible chemicals, and we will do the same for the target plume

regions. Also like the previous section, since we are analyzing target plume regions and a perfect

first pass detection was performed, we can use uncontaminated estimates of µ and Σ, and we

can give the no chemical model zero probability in the prior.
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Figure 4.11: Trace plots for SBIMS, SNPBIMS 10%, and SNPBIMS 20% on the TEP target plume
region from the nonlinear dataset.

4.5.1 NPBIMS on challenge dataset plume 1

In Figure 4.12 we show the identification results of BIMS and 3 versions of NPBIMS. NPBIMS

1% assumes in the prior that nonlinearities can explain 1% of the pixel signal variance, and

specifically for the parameters for the IG prior on κj we choose aκ = 11 and bκ = 0.1. BIMS

attains an ACC of .5109, meaning it is able to correctly classify about 51% of pixels in plume

1 correctly. On the other hand, NPBIMS 1% performs poorly since it classifies zero pixels

correctly. Looking at Table 4.1 we can see that BIMS identifies two chemicals or one chemical

in most pixels, however NPBIMS 1% identifies most pixels as having either 1 chemical, or all 8

chemicals. Furthermore looking at Table 4.2, we can see that BIMS identifies relatively more

pixels as having chemical 1 and chemical 3 as compared to the other chemicals. In contrast,

NPBIMS is almost uniformly finding all chemicals over all the pixels in the plume. The poor
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result of NPBIMS 1% suggests that the pixel signals in plume 1 of the challenge dataset are

truly linear, i.e., no amount of nonlinearity can help explain the variance in the pixel signals.

As a sanity check we test the performance of NPBIMS as we push the prior mean of κj to zero.

NPBIMS 1−6% assumes 0.000001% of the variance can be explained by non-linearities, where

we set aκ = 10, 001 and bκ = 0.0001. Lastly NPBIMS 1−13% assumes 0.0000000000001% of the

variance can be explained by non-linearities and we assign aκ = 100, 000, 001 and bκ = 0.0000001.

We can see improvement with NPBIMS 1−6%, and the result of NPBIMS 1−13% is essentially

the same as BIMS. Also the distribution of pixel counts in Tables 4.1 and 4.2 become closer to

the BIMS results as the NPBIMS prior mean on κj gets closer to zero.

Number of Chemicals
1 2 3 4 5 6 7 8

BIMS 383 623 72 14 5 0 0 5
NPBIMS 1% 335 24 2 1 0 0 2 738

NPBIMS 1−6% 332 435 63 13 1 0 0 258
NPBIMS 1−13% 428 596 38 11 0 0 0 29

Truth 0 1102 0 0 0 0 0 0

Table 4.1: Tally of pixels by number of chemicals identified for each model. For example, BIMS
identified 383 pixels as containing only 1 chemical.

Chemical
c1 c2 c3 c4 c5 c6 c7 c8

BIMS 746 50 849 51 72 108 50 40
NPBIMS 1% 740 746 740 781 783 940 784 797

NPBIMS 1−6% 724 274 841 300 333 414 316 310
NPBIMS 1−13% 763 68 814 52 77 118 57 61

Truth 1102 0 1102 0 0 0 0 0

Table 4.2: Tally of pixels by chemical type for each model. For example, BIMS identified 746 pixels
as containing chemical 1.

We ran BIMS for 10,000 iterations with a burn in of 5,000 iterations for inference, which took

about 30 minutes or .18 seconds per iteration to complete. The NPBIMS methods took about

16 hours or about 5 seconds per iteration to complete 10,000 MCMC iterations, again with a

burn in of 5,000 iterations for inference. Note that plume 1 of the challenge dataset contains a

total of 1,102 pixels, however 8 possible chemicals are considered for this dataset, which slows

down computation compared to target plumes from the nonlinear dataset where we were only

considering 3 possible chemicals. We show log posterior distribution values over the last 5,000
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Figure 4.12: Identification results for BIMS and different versions of NPBIMS for the plume 1 target
region from the challenge dataset.

iterations under each model in Figure 4.13.

4.5.2 SNPBIMS on challenge dataset plume 1

For completeness in Figure 4.14 we show results for SBIMS and SNPBIMS 1−13%, which is

the spatial version of NPBIMS 1−13%, on plume 1 of the challenge dataset. We expect these

two methods to be essentially equivalent since the prior mean on κj is very close to zero under

SNPBIMS 1−13%. We did not implement SNPBIMS 1−6% or SNPBIMS 1% on plume 1 since

we found in the previous section that pixel signals in plume 1 are very linear. We can see that
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Figure 4.13: Trace plots for BIMS and different versions of NPBIMS for the plume 1 target region
from the challenge dataset.

the two models yield very similar results when comparing the two plots in Figure 4.14. We can

see in Table 4.3 that both methods have a smoothing effect such that only 1 or 2 chemicals are

being identified in the pixels (with the exception of 1 pixel under SNPBIMS 1−13% that is being

identified as having 3 chemicals). Furthermore looking at Table 4.4 we can see that SBIMS is

identifying only the correct chemicals in the pixels, and we also see this under SNPBIMS 1−13%

with the exception of 2 pixels.

SNPBIMS is very computationally burdensome to implement. For any version of SNPBIMS

on plume 1 of the challenge dataset it takes about 6 seconds per MCMC iteration even with the
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Figure 4.14: Identification results for SBIMS and SNPBIMS 1e−13% for the plume 1 target region
from the challenge dataset.

Number of Chemicals
1 2 3 4 5 6 7 8

SBIMS 405 697 0 0 0 0 0 0
SNPBIMS 1−13% 387 714 1 0 0 0 0 0

Truth 0 1102 0 0 0 0 0 0

Table 4.3: Tally of pixels by number of chemicals identified for each model. For example, SBIMS
identified 405 pixels as containing only 1 chemical.

Chemical
c1 c2 c3 c4 c5 c6 c7 c8

SBIMS 803 0 996 0 0 0 0 0
SNPBIMS 1−13% 816 1 1000 0 0 0 0 1

Truth 1102 0 1102 0 0 0 0 0

Table 4.4: Tally of pixels by chemical type for each model. For example, SBIMS identified 803 pixels
as containing chemical 1.

use of parallel computing. For the results in Figure 4.14 we ran SNPBIMS 1−13% for 40,000

iterations with 30,000 burn in for inference, which took about 3 days to complete. On the other

hand we ran SBIMS for 30,000 iterations with burn in of 15,000 iterations for inference, which

took about 2.5 hours to complete, or .3 seconds per iteration. In the left panel of Figure 4.15

we show the log posterior distribution under SBIMS for two chains for 30,000 iterations, where

we have plotted the first MCMC as blue dots and the second one as red x’s. Lastly, in the right

panel of Figure 4.15 we show the log posterior distribution under SNPBIMS 1−13% for the last

20,000 MCMC iterations.
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Figure 4.15: Trace plots for SBIMS and SNPBIMS 1e−13% for the plume 1 target region from the
challenge dataset.

4.5.3 NPBIMS on challenge dataset plume 3

We now will discuss the performance of NPBIMS on target plume 3 of the challenge dataset.

In Figure 4.16 we show the results for BIMS, NPBIMS 1%, and NPBIMS 5%. In general all

methods are able to identify only a small percentage of pixels correctly, and this is because

chemicals 7 and 8, which are the true chemicals present in all pixels in plume 3, are highly

correlated with each other. However, NPBIMS 1% is able to correctly identify twice as many

pixels than BIMS, and NPBIMS 5% has slightly better performance over NPBIMS 1%. Looking

at Table 4.5 all methods are mostly identifying only one chemical in the the plume 3 pixels, even

though there are actually two chemicals present. Furthermore in Table 4.5 we can see that for

the majority pixels chemical 7 is identified, or chemical 8 is identified. Therefore the methods

are able to identify at least one of the present chemicals.

Number of Chemicals
1 2 3 4 5 6 7 8

BIMS 932 71 10 3 0 0 0 2
NPBIMS 1% 922 68 7 3 1 4 1 12
NPBIMS 5% 923 74 8 3 0 2 1 7

Truth 0 1018 0 0 0 0 0 0

Table 4.5: Tally of pixels by number of chemicals identified for each model for plume 3 target region
of challenge datasets. For example, BIMS identified 982 pixels as containing only 1 chemical.

We ran BIMS on plume 3 of the challenge dataset for 10,000 iterations with burn in of 5,000
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Figure 4.16: Identification results for BIMS and different versions of NPBIMS for the plume 3 target
region from the challenge dataset.

Chemical
c1 c2 c3 c4 c5 c6 c7 c8

BIMS 42 45 74 51 40 48 345 487
NPBIMS 1% 12 23 14 101 84 75 396 518
NPBIMS 5% 7 15 8 93 84 71 388 516

Truth 0 0 0 0 0 0 1018 1018

Table 4.6: Tally of pixels by chemical type for each model for plume 3 target region of challenge
datasets. For example, BIMS identified 42 pixels as containing chemical 1.

iterations for inference, which took about 28 minutes to complete, or about .168 seconds per

iteration. Note that plume 3 has a total of 1,018 pixels. We ran both NPBIMS 1% and NPBIMS

5% each for 10,000 iterations with 5,000 burn-in for inference. Both methods took about 14.5

hours to complete, or about 5.2 seconds per iteration. We show the log posterior distribution

values under each of the three methods for the last 5,000 iterations in Figure 4.17.
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Figure 4.17: Trace plots for BIMS and different versions of NPBIMS for the plume 3 target region
from the challenge dataset.

4.5.4 SNPBIMS on challenge dataset plume 3

In Figure 4.18 we present results for SBIMS, SNPBIMS 1%, and SNPBIMS 5% on plume 3 of

the challenge dataset. These spatial methods perform significantly better than their nonspatial

counterparts (see Section 4.5.3). Furthermore we see improvement of both SNPBIMS versions

over SBIMS, with SNPBIMS 1% showing the most improvement. Examining table 4.7 we can

see that pixels in plume 3 are being identified as either having 1 chemical or 2 chemicals, with
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the majority of pixels being identified as having only 1 chemical. Interestingly looking at Table

4.8 for the SNPBIMS methods, we can see that only chemicals 7 and 8 are being identified,

and chemical 8 is identified in all pixels. Therefore both SNPBIMS models are identifying

pixels correctly as having both chemicals 7 and 8, or having only chemical 8. SNPBIMS 5% is

performing slightly worse than SNPBIMS 1% even though NPIMS 5% performed slightly better

than NPBIMS 1%. We posit this is happening for a two reasons. First, it is the nature of the

particular plume region. And secondly, the combination of accounting for spatial structure and

placing a larger nonlinear percentage term, such as 5% versus 1%, is causing over smoothing.

Figure 4.18: Identification results for SBIMS and different versions of SNPBIMS for the plume 3
target region from the challenge dataset.

Number of Chemicals
1 2 3 4 5 6 7 8

SBIMS 914 104 0 0 0 0 0 0
SNPBIMS 1% 844 174 0 0 0 0 0 0
SNPBIMS 5% 885 133 0 0 0 0 0 0

Truth 0 1018 0 0 0 0 0 0

Table 4.7: Tally of pixels by number of chemicals identified for each model for plume 3 target region
of challenge datasets. For example, SBIMS identified 914 pixels as containing only 1 chemical.

We ran BIMS for 30,000 iterations with 15,000 burn-in for inference, which took about 1.8
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Chemical
c1 c2 c3 c4 c5 c6 c7 c8

SBIMS 0 1 1 0 0 0 336 784
SNPBIMS 1% 0 0 0 0 0 0 174 1018
SNPBIMS 5% 0 0 0 0 0 0 133 1018

Truth 0 0 0 0 0 0 1018 1018

Table 4.8: Tally of pixels by chemical type for each model for plume 3 target region of challenge
datasets. For example, SBIMS identified 0 pixels as containing chemical 1.

Figure 4.19: Trace plots for SBMS and different versions of SNPBIMS for the plume 3 target region
from the challenge dataset.

hours to complete, or .2 seconds per iteration. Log posterior distribution values under BIMS are

shown in Figure 4.19 for the last 15,000 iterations. We ran both SNPBIMS models for 50,000

iterations with 40,000 burn in for inference. Both models took a little over 3 days to complete,

or about 5.25 seconds per iteration. For both SNPBIMS models we show the log posterior
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distribution for the last 25,000 in Figure 4.19.

4.6 Discussion

For the target plumes from the nonlinear dataset we saw that there was improvement of

NPBIMS over BIMS, and this was especially true for the TEP/DMMP dataset. However we saw

that because SNPBIMS takes into account nonlinearities and spatial structure it can be prone

to over smoothing. We saw similar behavior for plume 3 from the challenge dataset, but for this

target plume region, we actually saw some improvement of SNPBIMS over SBIMS. On the other

hand, plume 1 from the challenge dataset presented a scenario where NPBIMS and SNPBIMS

could at best perform only equally as well as their parametric counterparts, BIMS and SBIMS,

by choosing a prior mean on κj that is essentially zero. Hence, plume 1 pixels from the challenge

dataset are very linear and there was no benefit in taking into account nonlinearity. Although we

did see improvement of NPBIMS over BIMS, SNPBIMS performed worse, equivalently, or only

somewhat better than SBIMS. Therefore, we find that it is more important to take into account

spatial structure in the image versus taking into account nonlinearity within pixel signals.

83



Chapter 5

Computational Algorithms

5.1 Computational algorithm for LASSO and FL

For the LASSO and FL discussed in Sections 2.3 and 3.1, the main goal is to infer which

elements in gj are zero and which are non-zero for each pixel, j = 1, ..., J . To do this we obtain

the LASSO and FL estimates of gj using the Split Bregman algorithm outlined in Ye and Xie

(2011). First we outline the Split Bregman for the LASSO in Section 5.1.1, and then we do the

same for FL in section 5.1.2.

5.1.1 Split Bregman for the LASSO

The Split Bregman algorithm for the LASSO first turns the unconstrained LASSO optimiza-

tion problem in equation (2.4) to a constrained one,

min
gj
||yj −Zgj ||2 + ηj ||gj ||1

s.t. aj = gj . (5.1)

The augmented Lagrangian of equation (5.1) is

L (gj ,aj , rj) = ||yj −Zgj ||2 + ηj ||gj ||1 + r′j(gj − aj) +
p

2
||gj − aj ||2, (5.2)
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where rj is a dual variable corresponding to the linear constraint, aj = gj , and the last term

on the right hand side is a penalty term for violating the constraint, aj = gj . Note that we

set p = 1. For details on how to choose p see Ye and Xie (2011). We then find the saddle

point, (g∗j ,a
∗
j , r
∗
j ) s.t. L (g∗j ,a

∗
j , rj) ≤ L (g∗j ,a

∗
j , r
∗
j ) ≤ L (gj ,aj , r

∗
j ). It can be shown that g∗j

is an optimal solution for the LASSO optimization problem in equation (2.4). We solve for the

saddle point (g∗j ,a
∗
j , r
∗
j ) in an iterative fashion. First we choose initial values, g0

j ,a
0
j , r

0
j , then

we repeat the following steps until convergence.

1. gk+1
j = (Z ′Z + pI)−1(Z ′yj − rkj + pakj )

2. ak+1
j =

(
t η
p
(gk+1

1,j +
rm,j
p ), ..., t η

p
(gk+1
M,j +

rkM,j
p )

)
3. rk+1

j = rkj + δ
(
gk+1
j − ak+1

j

)
where te(q) = sgn(q) max(0, |q| − e), which is the well known soft-thresholding operator. The

step for updating rj uses gradient descent with step size, δ = 1. Let Ok = ||yj −Z
′gj ||2. The

iterative algorithm above reaches convergence when |O
k+1−Ok|
|Ok| < 10−4. Note that we implement

the Split Bregman for the LASSO independently and in parallel over all J pixels.

5.1.2 Split Bregman for the FL

Let Y be an I × J matrix where the columns of Y are (y1, ...,yJ). Let G be an M × J

matrix whose columns are (g1, ..., gJ). Then we can rewrite the FL optimization problem in

equation (3.1) as

min
G

tr(Y −ZG)′(Y −ZG) + ξ||G||1 + ζ||GN ||1 (5.3)

where if N is an C × D matrix, then ||N ||1 =
∑C
c=1

∑D
d=1 |Nc,d|. GN rewrites the term∑J

j=1

∑J
j′=1,j′ 6=j

∑M
m=1 wj,j′ |gm,j − gm,j′ | from the FL optimization problem in equation (3.1).

N has dimension M × Q and it defines a first order neighborhood among the differences of

neighboring regression vectors, g1, ...gJ . Similar to Section 5.1.1, we can rewrite the optimization

in equation (5.3) as a constrained optimization problem by adding constraints, A = G and

B = GN . The augmented Lagrangian of the constrained FL optimization problem is,

L (G,A,B,R,V ) = tr(Y −ZG)′(Y −ZG) + trR′(G−A) + trV ′(BN −G)
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+
p1

2
tr(G−A)′(G−A) +

p2

2
tr(GN −B)′(GN −B), (5.4)

where R and V are dual variables corresponding to the constraints, A = G, and B = GN ,

respectively, and the last two terms on the right hand side are penalties for violating these

constraints. In can be shown that G∗ in the saddle point (G∗,A∗,B∗,R∗,V ∗) such that

L (G∗,A∗,B∗,R,V ) ≤ L (G∗,A∗,B∗,R∗,V ∗) ≤ L (G,A,B,R∗,V ∗) is the optimal solution

to the FL optimization problem in equation (5.3). Again, we solve for the saddle point in a

recursive fashion. First we initialize, G0,A0,B0,R0,V 0, then repeat the following steps until

convergence. Set, Gk+1 = Gk then,

1. Gk+1
m,j =

Y ′jZm−G
k+1
j,(−m)

Z′−mZm−Rkm,j−NjV
′k
m+p1A

k
m,j−p2G

k+1
m,(−j)N(−j)N

′
j+p2NjB

′k
m

Z′mZm+p1+p2NjN−j

2. Ak+1
m,j = t η

p1
(Gk+1

m,j +
Rkm,j
p1

)

3. Bk+1
m,q = t η2

p2

((Gk+1N)m,q +
V km,q
p2

)

4. Rk+1
m,j = Rkm,j + δ1(Gk+1

m,j −A
k+1
m,j )

5. V k+1
m,q = V km,q + δ2((Gk+1N)m,q −Bk+1

m,q )

Convergence is reached when max
∣∣∣Gk+1 −Gk

∣∣∣ ≤ 10−12. Note that step 1 can be repeated

until another convergence value is reached before moving on to step 2. This results in faster

convergence.

5.2 Bayesian MCMC algorithms

For detection and identification purposes we are interested in the marginal posterior distribu-

tion of the indicator vectors, ω1, . . . ,ωJ . In particular, chemical m is declared to be present in

pixel j if Pr(ωm,j = 1 | y1, . . . ,yJ) is above a given threshold (usually, 1/2). The model that in-

cludes covariates that satisfy this condition is sometimes called the “median probability model”

in the literature (Barbieri and Berger, 2004). Note, however, that no closed-form expression is

available for this marginal posterior distribution of interest. Furthermore, although this posterior

distribution lives in a finite discrete space, the number of possible configurations is exponen-

tially large (more specifically, 2M ). Hence, we proceed to explore p(ω1, . . . ,ωJ | y1, . . . ,yJ)
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using Markov chain Monte Carlo algorithms (Robert and Casella, 2005). The algorithm al-

ternates between sampling from the full conditional distribution of each ωm,j given the rest of

the parameters using a random-walk Metropolis Hastings algorithm, and sampling from the full

conditional distributions of all other parameters given the indicators ω1, . . . ,ωJ . Details of the

algorithms for each Bayesian method, namely BIMS, NPBIMS, and their spatial extensions, are

provided in the following sections.

5.2.1 BIMS Full Conditional Distributions

• For the mixing parameters of the hyper-g priors:

p(cj | · · · ) ∝ (cj + 1)−M(ωj)/2{
y′j

(
I − cj

cj + 1
Z ′(ωj){Z ′(ωj)Z(ωj)}−1Z(ωj)

)
yj

}−I/2
c−1.5
j exp {−(.5I)/cj}

• For the gas indicators:

p(ωj | · · · ) ∝ (cj+1)−M(ωj)/2

{
y′j

(
I − cj

cj + 1
Z ′(ωj){Z ′(ωj)Z(ωj)}−1Z(ωj)

)
yj

}−I/2
Γ

(
1 +

M∑
m=1

ωm,j

)
Γ

(
1 +M −

M∑
m=1

ωm,j

)

5.2.2 SBIMS Full Conditional Distributions

• For the mixing parameters of the hyper-g priors:

p(cj | · · · ) ∝ (cj + 1)−M(ωj)/2{
y′j

(
I − cj

cj + 1
Z ′(ωj){Z ′(ωj)Z(ωj)}−1Z(ωj)

)
yj

}−I/2
c−1.5
j exp(−(.5I)/cj)

• For the joint of the latent cGMRFs and the gas indicators can be factorized as:

p(ωm,j | · · · ) ∝ (cj+1)−M(ωj)/2

(
y′j

(
I − cj

cj + 1
Z ′(ωj){Z ′(ωj)Z(ωj)}−1Z(ωj)

)
yj

)−I/2

Φ

√um∑
j′ 6=j

υj,j′

[
{1− ρm}αm + ρm

∑
j′ 6=j υj,j′`m,j∑
j′ 6=j υj,j′

]ωm,j
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1− Φ

√um∑
j′ 6=j

wj,j′

[
{1− ρm}αm + ρm

∑
j′ 6=j wj,j′`m,j∑
j′ 6=j wj,j′

]
1−ωm,j

and

p(`m,j | ωm,j , · · · ) ∝


exp

(
−um2 (`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
I`m,j≥0 ωm,j = 1

exp
(
−um2 (`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
I`m,j<0 ωm,j = 0

• For the means of the cGMRFs:

p(αm| · · · ) ∝ exp

(
−um1′(DΥ − ρmΥ)1 + τ0

2

(
αm −

um`
′
m(DΥ − ρmΥ)1 + τ0α0

um1′(DΥ − ρmΥ)1 + τ0

)2
)

• For the precisions of the cGMRFs:

p(um| · · · ) ∝ uau+J/2−1
m exp

(
−
(
bu +

1

2
(`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
um

)

• For the spatial autocorrelation of the cGMRFs:

p(ρm| · · · ) ∝ |DΥ − ρmΥ|1/2 exp
(
−um

2
(`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)

5.2.3 NPBIMS Full Conditional Distributions

With the addition of the GP prior, for NPBIMS we must sample the gas indicators, g-prior

mixing parameters, plus the nonlinear variance term, κj , and the GP covariance term, ψj . We

borrow ideas from Savitsky et al. (2011) for MCMC sampling strategies under NPBIMS. Recall

that L = L(κj ,ψj , cj ,ωj) = Σ̂ + κjC(ψj ,ωj) + cjS(ωj)
(
S′(ωj)Σ̂

−1S(ωj)
)−1

S′(ωj).

• We sample the gas indicator parameters and the GP covariance function parameters jointly.

p(ωj , ψj |....) ∝ |L|−1/2
(
(xj − µ̂)′L−1(xj − µ̂)

)−I/2
Γ

(
1 +

∑
m

ωm,j

)
Γ

(
1 +M −

∑
m

ωm,j

)
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• Then we sample the g-prior mixing parameter and the non-linear variance parameter

joinlty.

p(cj , κj |...) ∝ |L|−1/2
(
(xj − µ̂)′L−1(xj − µ̂)

)−I/2
κ−12
j exp(−0.1/κj)c

−I−1
j exp(−.5I/cj)

5.2.4 SNPBIMS Full Conditional Distirbutions

Under SNPBIMS we note that we are implicitly performing Reversible Jump MCMC.

• The g-prior mixing parameter and the non-linear variance parameter are sampled jointly.

p(cj , κj |...) ∝ |L|−1/2
(
(xj − µ̂)′L−1(xj − µ̂)

)−I/2
κ−12
j exp(−0.1/κj)c

−I−1
j exp(−.5I/cj)

• The joint of the latent cGMRFs, the gas indicators, and the GP covariance parameters

can be factorized as:

p(ωm,j , ψm,j | · · · ) ∝ |L|−1/2
(
(xj − µ̂)′L−1(xj − µ̂)

)−I/2
Φ

√um∑
j′ 6=j

υj,j′

[
{1− ρm}αm + ρm

∑
j′ 6=j υj,j′`m,j∑
j′ 6=j υj,j′

]ωm,j

1− Φ

√um∑
j′ 6=j

υj,j′

[
{1− ρm}αm + ρm

∑
j′ 6=j υj,j′`m,j∑
j′ 6=j υj,j′

]
1−ωm,j

and

p(`m,j | ωm,j , · · · ) ∝



exp
(
−um2 (`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
I`m,j≥0 ωm,j = 1,

ψm,j < 1

exp
(
−um2 (`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
I`m,j<0 ωm,j = 0,

ψm,j = 1
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• For the means of the cGMRFs:

p(αm| · · · ) ∝ exp

(
−um1′(DΥ − ρmΥ)1 + τ0

2

(
αm −

um`
′
m(DΥ − ρmΥ)1 + τ0α0

um1′(DΥ − ρmΥ)1 + τ0

)2
)

• For the precisions of the cGMRFs:

p(um| · · · ) ∝ uau+J/2−1
m exp

(
−
(
bu +

1

2
(`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
um

)

• For the spatial autocorrelation of the cGMRFs:

p(ρm| · · · ) ∝ |DΥ − ρmΥ|1/2 exp
(
−um

2
(`m − αm1J)′(DΥ − ρmΥ)(`m − αm1J)

)
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Chapter 6

Conclusion

Our illustrations in this work have proven several things. First, Bayesian variable selection

methods, like BIMS, outperforms penalized ordinary least squares approaches to variable se-

lection, like the LASSO. In particular under BIMS we account for colinearity among chemical

signatures, but the LASSO does not. Spatial methods, like FL and SBIMS provide more ro-

bust results than pixel-by-pixel methods, i.e., LASSO and BIMS. Spatial methods are especially

beneficial when spatial dependence is imposed in the prior on chemical inclusion probabilities,

e.g., SBIMS, as opposed to imposing spatial dependence on regression coefficients, which is the

strategy of the FL. We saw slight improvement with the use of GP priors under NPBIMS, which

accounts for nonlinearities in pixel signals. However, the benefit of using GP priors and GMRF’s

to account for spatial dependence is questionable. The computational burden for our methods

are in general quite high. However, with the use of parallel computing we can implement the

LASSO, FL, BIMS, and SBIMS in a reasonable amount of time. On the other hand for NPBIMS

and SNPBIMS, parallel computing helped only to certain extent. And especially for SNPBIMS,

even with parallel computing we were not able to obtain enough MCMC iterations to reach

convergence within a reasonable amount of time.

6.1 Future Work

Currently we are focused on implementing popular detection methods to compare to the

LASSO, FL, BIMS and SBIMS. Popular detection methods include the Mahalanobis distance,

91



the generalized likelihood ratio test, principal component analysis, projection pursuit methods,

the match filter (and its variants), and support vector machines. We are considering these

methods as a suggestion by JRSS referees in response to a paper we submitted. We have

employed the help of Bradyn Ward to produce results for these methods.

An obvious next step would be to implement SNPBIMS on faster machines so that we can

properly interpret its results. The computational performance of NPBIMS and SNPBIMS sug-

gest the need to explore alternative computational approaches. For example stochastic gradient

Langevin methods (Welling and Teh, 2011), Hamiltonian Monte Carlo (Neal et al., 2011), and

variational approximations (Salimans et al., 2015). We can also explore alternative formulations

of the GP prior to improve performance. For example tapered versions of the covariance function

(Furrer et al., 2006), and specifications of the GP through basis function (Wikle and Cressie,

1999).
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