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ABSTRACT OF THE DISSERTATION

A New Method for Air-Blast–Structure Interaction Based on an Immersed Approach

by

Georgios Moutsanidis

Doctor of Philosophy in Structural Engineering with a Specialization in Computational Science

University of California, San Diego, 2018

Professor Yuri Bazilevs, Chair

The numerical simulation of air-blast–structure interaction (ABSI) is a highly challenging and complicated

problem. It requires an accurate and robust fluid solver for the Navier-Stokes equations of compressible flow, an

advanced computational method that can capture possible structural disintegration, large inelastic deformations and

multi-body interaction, as well as a sophisticated fluid–structure interaction (FSI) technique that ensures the correct

coupling of the two subsystems.

In this work, a new immersed approach for ABSI is presented. The new method leads to an a-priori monolithic

FSI formulation with intrinsic contact detection between solid objects, and without formal restrictions on their motions.

The proposed formulation is verified against benchmark problems and experimental results, and is applied to the

simulation of a concrete wall subjected to blast loading. A new hyperbolic phase field model for brittle fracture,

which eliminates the well-known shortcomings of local damage models, is then developed and coupled with the ABSI

formulation. Several numerical examples that demonstrate the capabilities of the method are provided.
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Chapter 1

Introduction

Blast loading on structures can be a result of accidents or terrorist attacks and it can cause excessive structural

disintegration or human losses. From Ronan Point apartment’s collapse [1] to the Alfred P. Murrah Federal Building

(aka Oklahoma city bombing, Fig. 1.1) [2] it is evident that mitigating the effects of blasts on infrastructures is

imperative. Computational simulation of such events is a promising and reliable tool in order to predict the behavior and

protect from the hazardous implications. In this work we aim to develop accurate, robust, and practical computational

methodology, which is capable of modeling the dynamics of air blast coupled with the structure response, where the

latter involves not only large, inelastic deformations, but also disintegration into fragments, which typically occurs

during explosions.

Figure 1.1: The Alfred P. Murrah Federal Building after bombing

Air-blast–structure interaction (ABSI) is a very complicated process. The air flow is in the regime of high

Reynolds and Mach numbers, requiring the fluid mechanics numerical simulation to be accurate and robust. The solid

objects undergo large inelastic deformations, come in and out of contact with one another, and often fragment into

smaller pieces, which requires advanced modeling and discretization techniques for the solid itself, as well as the

1



management of the fluid mechanics domain and mesh. Moreover, at each time instant the solid and fluid need to have

kinematics and tractions in equilibrium to ensure correct coupling between the two subsystems, requiring appropriate

coupling at the space-discrete level, and an efficient solution strategy for the coupled system. Finally, the coupled

system undergoes rapid transients, which need to be accurately and efficiently captured.

To address the above challenges, we propose a novel ABSI formulation based on the immersed methodology.

Moving-mesh methods, such as the Arbitrary-Lagrangian Eulerian (ALE) method [3, 4, 5] are not pursued in the present

work because of the challenges they face in modeling fragmentation and structural disintegration. In the proposed

method, the Navier-Stokes equations of compressible flow are coupled with a large-deformation inelastic solid. Balance

equations for both media are written in the weak form on the current configuration, and the compatibility of kinematics

and tractions is established at a fully continuous level. Two discretizations, background and foreground, are employed

in the discrete formulation. Foreground discretization, which moves with the solid material particles, is employed to

track the solid current position, store the history-dependent variables needed in the solid formulation, and carry out

numerical quadrature for the solid terms in the coupled FSI formulation. Pressure-primitive variables [6, 7], which are

compatible with the solid degrees-of-freedom (DOFs), are employed to discretize the compressible-flow equations.

SUPG [8, 9, 10, 11, 12] and residual-based discontinuity capturing [13, 14, 15, 16, 17, 18] are used to stabilize the

compressible-flow formulation.

In this setting, since the background mesh does not track the fluid–solid interface, no formal restrictions on

the solid motion are imposed in the coupled formulation. In addition, due to the fact that the fluid and solid share the

same background-mesh DOFs, the resulting FSI formulation is a-priori monolithic, even in the case of explicit time

integration, which is what we do here to efficiently handle the fast dynamics of air-blast FSI. This a-priori monolithic

coupling is a major advantage over existing methods using explicit time stepping in combination with the so-called

“loosely-coupled” FSI, in which, unlike in the present formulation, there is no guarantee that the fluid and solid tractions

are in equilibrium during the time step.

The proposed methodology shares similarities with the existing immersed-type techniques, such as embedded

domain [19, 20, 21, 22, 23, 24, 25, 26], immersed boundary [27, 28], immersed finite element [29, 30], material point

method [31, 32], finite cell [33], and immersogeometric [34, 35, 36] methods.

The dissertation is outlined as follows. In chapter 2 we state the basic methodology of our new immersed

approach for ABSI. Chapter 3 focuses on a particular instantiation of the proposed framework which couples Isogeo-

metric Analysis (IGA) [37, 38] based on Non-Uniform Rational B-Splines (NURBS) [39, 40, 41] as the background

discretization, and the Reproducing Kernel Particle Method (RKPM) [42, 43, 44, 45] as the foreground discretization.

This combination is particularly attractive for the problem class of interest due to the higher-order accuracy and

higher degree of continuity inherent in both techniques, and the relative simplicity of RKPM in handling the solid

large-deformation and fragmentation scenarios. Higher-order accuracy and smoothness of the discretizations was
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shown to be beneficial for both fluid and solid/structural mechanics applications, both in terms of accuracy [46, 47]

and robustness [48] of the resulting discrete solutions. In addition, in the present framework, higher-order smoothness

of the background discretization yields a continuous representation of the strain rate, and thus precludes jumps in the

stress and other history variables as the Lagrangian particles cross the background-element boundaries. We note that the

strain-rate discontinuity across element boundaries is recognized as a shortcoming of FEM-based material-point-type

methods [49], which may be naturally overcome using IGA for the background discretization. The presented numerical

examples are compared to different computational techniques and experimental results. In chapter 4 we present the

basics of a concrete material implementation as well as a technique for high explosive modeling. The material is

modeled after LS-DYNA concrete material model 159 [50] which is a three invariant based model, with rate effects

and a local damage evolution law. A numerical example is presented and appears to capture all the major qualitative

features of concrete behavior well. Chapter 5 focuses on the treatment of the local damage model’s drawbacks presented

in chapter 4. A new phase field model of dynamic brittle fracture, in which material damage evolves according to a

hyperbolic partial differential equation, is presented. This model can be stably discretized using explicit time integration,

without imposing crippling time step restrictions with refinement in space. The model is derived from microforce

balance by including effects of microscopic inertia. Chapter 6 applies the formulation developed in chapter 5 to the

coupled isogeometric–meshfree ABSI formulation presented in chapters 2,3, where RKPM function spaces are used

to solve the phase field equation. The presented benchmark examples are verified against published literature, while

the ABSI examples seem to capture all the major qualitative features. Chapter 7 summarizes the presented work,

emphasizes on the important original contributions, and outlines future research directions and recommendations.
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Chapter 2

Immersed Air-Blast–Structure Interaction:

basic theory

In this chapter we present the core air-blast–structure interaction methodology.

2.1 Governing equations of fluid and solid mechanics, and their coupling

In this section we present the governing equations of compressible flow and inelastic solid, and their coupling.

All the developments in this section take place at the continuum level, and a weak form of the coupled FSI problem is

derived that is suitable for discretization using an immersed technique.

2.1.1 Compressible-flow formulation

The air blast phenomena are modeled using the Navier–Stokes equations of compressible flows, which may be

expressed as

U,t + Fi,i−S f = 0, (2.1)

where

U =


ρ f

ρ f u

ρ f etot

 (2.2)

are the so-called conservation variables [6], ρ f is the fluid density, u is the material-particle velocity, etot = e +
‖u‖
2 is the

total energy density, and e is the internal energy density given by e = cvT , where cv is specific heat at constant volume
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and T is the temperature. In Eq. (2.1), S f is the source term and Fi is the total flux that consists of advective, pressure,

and diffusive contributions, namely,

Fi = Fa
i + Fp

i −Fd
i . (2.3)

Here,

Fa
i = uiU, (2.4)

Fp
i =


0

p1i

u · p1i

 , (2.5)

and

Fd
i =


0

τττi

u ·τττi−qi,

 , (2.6)

where p is the pressure, 1i is the ith Cartesian basis vector in Rd, d is the space dimension, τττi derives from the viscous

stresses and is given by

τττi = 2µ∇su1i +λ(∇ ·u)1i, (2.7)

where µ is the fluid viscosity, λ = −2/3µ, and ∇s is the symmetric spatial gradient, and qi is the heat flux given by

qi = −κT,i, (2.8)

where κ is the fluid thermal conductivity. We assume that the fluid is an ideal gas with the equation of state given by

p = ρ f RT, (2.9)

where R is the specific gas constant. In the above formulas, i is the space dimension index, (·),i denotes a partial

derivative with respect to spatial coordinates x, and (·),t denotes a partial time derivative holding the spatial coordinates

fixed. Einstein’s summation convention is used throughout the manuscript.

2.1.2 Quasi-linear form of the compressible-flow equations

The Navier–Stokes equations of compressible flows may be written in a quasi-linear form using primitive

variables based on pressure [6] as follows

A f
0Y,t + Aa

i Y,i + Fp
i,i−Fd

i,i−S f = 0, (2.10)
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where Y denotes the set of pressure-primitive variables given by

Y =


p

u

T

 , (2.11)

A f
0 is the Jacobian of the mapping U(Y) given by

A f
0 =

∂U
∂Y

, (2.12)

and Aa
i is the Jacobian of the mapping Fa

i (Y) given by

Aa
i =

∂Fa
i

∂Y
. (2.13)

We also define the Jacobian matrix that takes the pressure terms into account, namely,

A f
i = Aa

i +
∂Fp

i

∂Y
. (2.14)

The above Jacobian matrices may be analytically derived (see [6] for details). Here we provide an explicit expression

for A f
0 ,

A f
0 =


ρ f βT 0T −ρ fαp

ρ f βT u ρ f I −ρ fαpu

ρ f βT etot ρ f uT ρ f (−αpetot + cv)

 , (2.15)

where I is a d×d identity matrix, βT = 1/p and αp = 1/T . Explicit expressions for Aa
i ’s and A f

i ’s may be found in [6].

Remark The choice of primitive variables based on pressure to discretize the Navier–Stokes equations of com-

pressible flows in this work is based on two factors: a. This variable set, or a subset thereof, is typically employed for

the discretization of the equations of solid and structural mechanics, and thus presents a convenient variable choice for

the discretization of the coupled FSI problem; b. The Jacobian matrices have a well defined incompressible limit, which

presents a pathway to a unified formulation for both compressible and incompressible flows [51].
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2.1.3 Updated Lagrangian formulation of an inelastic solid

We consider an inelastic solid, and state the point-wise balance of mass and momentum written in the updated

Lagrangian form [52] as

ρs
0−ρ

sJ = 0, (2.16)

ρsu̇−∇ ·σσσ− s = 0. (2.17)

In Eqs. (2.16)-(2.17), u, as before, is a material particle velocity, ρs and ρs
0 are the solid densities in the current and

reference configurations, respectively,σσσ is the Cauchy stress, s is the source term, ˙(·) is used to denote the material time

derivative, that is, time derivative holding material coordinates X fixed, and J = det ∂x
∂X .

Standard J2 flow theory with isotropic hardening [53, 54], which is suitable for metals, is considered in this

work. The solid constitutive equations, written in the rate form at a material point, are summarized in what follows:

• Additive decomposition of the rate-of-deformation tensor:

D = ∇su =
1
2

(∇u +∇uT ) = De + Dp, (2.18)

where De and Dp are its elastic and plastic components, respectively.

• Stress-rate constitutive relation:

σσσ∇J =CCC : De =CCC : (D−Dp), (2.19)

where CCC is the constitutive material tensor, and σσσ∇J is the objective Jaumann rate of the Cauchy stress [52] given

by

σσσ∇J = σ̇σσ−σσσωωωT −ωωωσσσ, (2.20)

where σ̇σσ is the material time derivative of the Cauchy stress, and

ωωω =
1
2

(∇u−∇uT ) (2.21)

is the spin tensor.
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• Yield surface:

f (σσσ, ε̄ p) = σ̄(σσσ)−σY (ε̄p) = 0, (2.22)

where σ̄ is the equivalent or von Mises stress given by

σ̄(σσσ) =

√
3
2
σσσ′ :σσσ′, (2.23)

σσσ′ =σσσ−
1
3

(tr σσσ) I, (2.24)

and σY is the yield stress assumed dependent on the equivalent plastic strain ε̄p.

• Flow rule:

Dp = ˙̄εp
∂ f
∂σσσ

, (2.25)

which corresponds to associative plasticity [53, 54] and states that the plastic flow occurs in the direction

orthogonal to the yield surface. For the von Mises yield criterion the partial derivative in the associative flow rule

equation may be computed explicitly and becomes

∂ f
∂σσσ

=

√
3
2
σσσ′

‖σσσ′‖
. (2.26)

• Consistency condition:

ḟ =
∂ f
∂σσσ

: σ̇σσ−
∂ f
∂ε̄p

˙̄εp = 0, (2.27)

which, in combination with the associative flow rule, leads to the following expression for the equivalent

plastic-strain rate:

˙̄εp =

∂ f
∂σσσ :CCC : D

H +
∂ f
∂σσσ :CCC : ∂ f

∂σσσ

. (2.28)

Remark Note that the key quantity appearing in the above constitutive model is ∇u, the spatial velocity gradient. It is

the time history of this quantity that “drives” the evolution of the solid Cauchy stress.

Remark In the present work we consider the solid as isothermal. However, introducing thermal coupling by making the

Cauchy stress temperature-dependent and adding the energy-balance equation to the system given by Eqs. (2.16)-(2.17)
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does not present a conceptual difficulty and will be pursued in the future work.

2.1.4 Quasi-linear form of the inelastic solid equations

Solid linear-momentum balance given by Eq. (2.17) may be written in a quasi-linear form consistent with that

of the Navier–Stokes equations of compressible flows as

As
0Ẏ−Fσi,i−Ss = 0, (2.29)

where Y is the set of primitive variables from Eq. (2.11),

As
0 =


0 0T 0

0 ρsI 0

0 0T 0

 , (2.30)

Fσi =


0

σσσ1i

0

 , (2.31)

and

Ss =


0

s

0

 . (2.32)

It is convenient to express the material time derivative in Eq. (2.29) using its spatial counterpart and a convection term

as

Ẏ = Y,t + uiY,i, (2.33)

in which case the quasi-linear form of Eq. (2.17) may be written as

As
0Y,t + As

i Y,i−Fσi,i−Ss = 0, (2.34)

where

As
i =


0 0T 0

0 ρsuiI 0

0 0T 0

 . (2.35)
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Note that, in this formulation, because the time derivatives in the fluid and solid mechanics governing equations take on

the same meaning, one can naturally define a time integration scheme that consistently accounts for the fluid and solid

parts of the the coupled FSI problem.

2.1.5 Weak form of the coupled FSI problem

Let Ω denote the combined fluid and solid domain, and let Ω f and Ωs denote the individual, time-dependent

fluid and solid subdomains in the spatial configuration, such that Ω f ⋃Ωs = Ω and Ω f ⋂Ωs = ∅. Let Γ f s denote their

interface, which also evolves in time. We define the following semilinear forms and linear functionals corresponding to

the weak forms of the fluid and solid subproblems:

M f
ω(W,Y) =

∫
ω

W ·A f
0Y,t dω, (2.36)

B f
ω(W,Y) =

∫
ω

W ·Aa
i Y,i dω−

∫
ω

W,i · (F
p
i −Fd

i ) dω, (2.37)

F f
ω(W) =

∫
ω

W ·S f dω+

∫
Γ

f
H

W ·H f dΓ, (2.38)

Ms
ω(W,Y) =

∫
ω

W ·As
0Y,t dω, (2.39)

Bs
ω(W,Y) =

∫
ω

W ·As
i Y,i dω+

∫
ω

W,i ·Fσi dω, (2.40)

F s
ω(W) =

∫
ω

W ·Ss dω+

∫
Γs

H

W ·Hs dΓ, (2.41)

where Y and W, the vector-valued trial and test functions, respectively, are the members of S andV, the corresponding

trial and test function spaces, respectively, defined on all of Ω, Γ
f
H and Γs

H are the subsets of the fluid- and solid-domain

boundaries where natural boundary conditions are imposed, and H f and Hs contain the prescribed values of the natural

boundary conditions. Note that in Eqs. (6.2)-(6.7) the subscript ω on the semilinear forms and linear functionals denotes

the domain of integration.
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With the above definitions, the coupled FSI problem maybe stated as: Find Y ∈ S, such that ∀W ∈ V,

M f
Ω f (W,Y) + B f

Ω f (W,Y)−F f
Ω f (W)

+

Ms
Ωs (W,Y) + Bs

Ωs (W,Y)−F s
Ωs (W)

=

0, (2.42)

where we assume that functions in S andV have sufficient regularity for the coupled FSI problem given by Eq. (6.1) to

be well-posed, and are continuous across Γ f s.

Examination of the Euler–Lagrange conditions for the above coupled problem reveal that the fluid and solid

governing equations hold on the interior of their respective domains, namely,

R f (Y) = A f
0Y,t + Aa

i Y,i + Fp
i,i−Fd

i,i = 0 in Ω f , (2.43)

and

Rs(Y) = As
0Y,t + As

i Y,i−Fσi,i−Ss = 0 in Ωs, (2.44)

and the natural boundary conditions hold on their respective boundaries, namely,

−Fp
i n f

i + Fd
i n f

i −H f = 0 on Γ
f
H , (2.45)

and

Fσi ns
i −Hs = 0 on Γs

H , (2.46)

where n f
i and ns

i are the cartesian components of the outward unit normal vector to the fluid and solid domains,

respectively, in the current configuration. In addition, at the fluid–solid interface, the following compatibility condition

holds,

−Fp
i n f

i + Fd
i n f

i + Fσi ns
i = 0 on Γ f s, (2.47)

which is a consequence of the test-function continuity at the fluid–solid interface. Equation (2.47) implies that the fluid
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and solid tractions are in equilibrium at the fluid–solid interface, namely,

−pn f
i +τi jn

f
j +σi jns

j = 0 on Γ f s. (2.48)

In addition, the energy-equation component of Eq. (2.47) yields the following condition at the fluid–solid interface

−puin
f
i + uiτi jn

f
j −qin

f
i = 0 on Γ f s, (2.49)

which is a consequence of not considering thermal coupling in the solid mechanics formulation. In case thermal

coupling is added to the solid mechanics formulation, Eq. (2.47) would naturally lead to the equilibrium of heat fluxes

at the fluid–solid interface.

Remark Using the additive property of integrals, the coupled FSI formulation given by Eq. (6.1) may be re-written as:

Find Y ∈ S, such that ∀W ∈ V,

M f
Ω

(W,Y) + B f
Ω

(W,Y)−F f
Ω

(W)

+

Ms
Ωs (W,Y) + Bs

Ωs (W,Y)−F s
Ωs (W)

−

M f
Ωs (W,Y) + B f

Ωs (W,Y)−F f
Ωs (W)

=

0, (2.50)

where the integration over the fluid mechanics domain is replaced by integration over the combined domain minus that

over the solid domain. This form of the coupled problem, which at the continuous level is equivalent to the original

formulation given by Eq.(6.1), is convenient for the application of an immersed approach to the discretization of the

coupled FSI equations (see, e.g., [34]).

2.2 Discrete formulation and algorithmic aspects

Here we present the discretization of the continuous FSI formulation developed in the previous section. We

briefly cover a stabilized formulation with discontinuity capturing employed for the compressible-flow equations, state

the semi-discrete immersed FSI formulation, and present time discretization of the coupled FSI problem, including the
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stress update algorithm.

2.2.1 Stabilization of the compressible-flow equations

To discretize the compressible-flow equations we make use of the SUPG formulation [8, 9, 10, 11, 12]

augmented with a discontinuity-capturing operator [13, 14, 15, 16, 17, 18]. The latter is important to ensure stability

for high-Mach-number flows, which is the case in the present work. We briefly summarize the SUPG and discontinuity-

capturing operators in what follows. The reader is referred to [55] for the details of the compressible-flow formulation

employed in the present work.

The SUPG stabilization operator for compressible flows may be expressed by means of the following semilinear

form:

Bst
ω(W,Y) =

∫
ω̃

(A f
i )T W,i ·τττR f (Y) dω̃, (2.51)

where it is assumed that ω is discretized into elements, ω̃ is a collection of element interiors, the integral
∫
ω̃

is taken

element-wise, and τττ is a (d + 2)× (d + 2) stabilization matrix. We make use of the following definition of τττ,

τττ = (A f
0 )−1τ̂ττ, (2.52)

where τ̂ττ is a stabilization matrix defined for conservation variables (see, e.g., [6, 7]). Premultiplication of τ̂ττ by (A f
0 )−1

gives an appropriate transformation of the stabilization matrix between the two variable sets.

The discontinuity-capturing operator is also designed for conservation variables with a transformation to the

pressure-primitive variables, leading to the following definition,

Bdc
ω (W,Y) =

∫
ω̃

W,i · ν̂νν
dcA f

0Y,i dω̃, (2.53)

where ν̂ννdc is a diagonal (d + 2)× (d + 2) matrix of shock-capturing parameters defined for conservation variables (see

e.g., [15, 16, 17, 18, ?]) and A f
0 gives the transformation to the primitive-variable formulation. The design of ν̂ννdc makes

use of the compressible-flow-equation residuals, which renders the discontinuity-capturing operator consistent.

Remark In compressible-flow computations in the blast regime one often makes use of the classical von Neumann–

Richtmyer artificial viscosities (see, e.g., [56, 57].) No such viscosities are employed in the present formulation, and the

numerical results presented later in the article indicate that shock-capturing given by Eq. (2.53) is sufficient to stabilize

the formulation in the high-Mach-number regime of blast waves.
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2.2.2 Coupled FSI formulation at the semi-discrete level

Taking the coupled FSI formulation at the continuous level given by Eq. (2.50) as a starting point, and using the

SUPG and discontinuity-capturing operators to stabilize the compressible-flow equations, the semi-discrete immersed

FSI formulation may be stated as: Find Yh ∈ Sh, such that ∀Wh ∈ Vh,

M f
Ω

(Wh,Yh) + B f
Ω

(Wh,Yh)−F f
Ω

(Wh) + Bst
Ω(Wh,Yh) + Bdc

Ω (Wh,Yh)

+

Ms
Ωs (Wh,Yh) + Bs

Ωs (Wh,Yh)−F s
Ωs (Wh)

−

M f
Ωs (Wh,Yh) + B f

Ωs (Wh,Yh)−F f
Ωs (Wh) + Bst

Ωs (Wh,Yh) + Bdc
Ωs (Wh,Yh)

+∫
Γ̃ f
βh [[wh

,ini]] · [[uh
, jn j]] dΓ̃

=

0. (2.54)

Here, Yh and Wh, the discrete trial and test functions, respectively, and Sh andVh, the corresponding discrete function

spaces, are defined on the background domain Ω. As a result, the unknown degrees of freedom (DOFs) are defined

completely on the background mesh. Equal-order discretization is employed for all the unknowns in the variable set Yh.

In Eq. (6.26) the integrals are computed using numerical quadrature. The terms on the first and fourth lines on

the left-hand-side of Eq. (6.26) are computed using quadrature rules defined on the background domain, while the terms

on the second and third lines are computed using foreground-domain quadrature rules. To carry out integration on the

foreground mesh, the background mesh quantities need to be evaluated at the locations corresponding to the quadrature

points of the foreground mesh. These locations are found through a simple inverse mapping.

Remark It is well known that solid near incompressibility may lead to volumetric locking, which is especially

pronounced for lower-order elements. To alleviate this phenomenon, we adapt a B-bar methodology [58, 59, 60] to

the solid mechanics part of the present immersed FSI formulation. In the evaluation of the velocity and test-function

gradients, the strain displacement matrix from the background discretization is replaced with its B-bar counterpart in a

standard fashion, wherein the dilatational part of the motion is projected to a lower-order space (see, e.g., [58, 61]).

In the present work, the B-bar methodology is only employed for C0-continuous linear FEM background discretizations.
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The last term on the left-hand-side of Eq. (6.26) is the so-called “ghost velocity” stabilization developed for im-

mersed FEM in [62]. In this term w is used to denote the linear-momentum components of the test function W, [[·]] is

the “jump” operator, Γ̃ f is the set of all edges in 2D and faces in 3D near the interface, h is the size of the local edge or

face, and β is the mesh-independent penalty parameter. Ghost velocity stabilization penalizes the jump in the velocity

gradient near the fluid–solid interface and significantly improves the stability of the velocity solution.

Remark The edge or face over which the ghost velocity stabilization is applied is such that both elements shar-

ing that edge or face are either covered by the structure or cut by the interface. This condition excludes edges or faces

that are on the exterior of the cut-element set.

Remark For a thermally coupled solid, an analogous stabilization technique may be employed also for the tem-

perature variable.

Remark Note that the ghost velocity stabilization terms are active only in the case when a C0-continuous back-

ground discretization is employed. When smooth splines are used, this term vanishes due to the basis-function derivative

continuity across element boundaries. Although stability of spline discretizations may be further improved by penalizing

higher-order velocity and temperature derivatives at cut-element edges or faces, this is not done in the present work.

2.2.3 Time discretization

An explicit version of the Generalized-α method [63, 64, 65] is employed for the time discretization of

Eq. (6.26). In this case the discrete residual RRR is thought of as a function of the background nodal or control-point

unknown vectorYYY and its time derivative ẎYY, namely,

RRR(ẎYY,YYY) =MMMẎYY+NNN(YYY). (2.55)
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In Eq. (2.55), to set the stage for an explicit time integration algorithm, the discrete residual is decomposed into the

parts containingYYY and ẎYY. Also in Eq. (2.55),

[MMM]ab
AB =

∫
Ω

NA[A f
0 ]abNB dΩ

+∫
Ωs

NA[As
0]abNB dΩ

−∫
Ωs

NA[A f
0 ]abNB dΩ, (2.56)

are the components of the coupled mass matrix, A,B are the nodal or control-point indices, a,b are the local DOF indices,

and N’s are the basis function coming from the background discretization. The residual vectorNNN(YYY) is comprised of

the remaining terms in the coupled FSI formulation given by Eq. (6.26), and its components may be expressed as

[NNN(YYY)]a
A =B f

Ω
(NAEa,Yh)−F f

Ω
(NAEa) + Bst

Ω(NAEa,Yh) + Bdc
Ω (NAEa,Yh)

+

Bs
Ωs (NAEa,Yh)−F s

Ωs (NAEa)

−

B f
Ωs (NAEa,Yh)−F f

Ωs (NAEa) + Bst
Ωs (NAEa,Yh) + Bdc

Ωs (NAEa,Yh)

+∫
Γ̃ f
βh [[NA,ini1b(a)]] · [[uh

, jn j]] dΓ̃, (2.57)

where Ea is the ath Cartesian basis vector in Rd+2, and 1b, as before, is the bth Cartesian basis vector in Rd, with

b(a) = a−1 and 10 = 1d+1 = 0.

The Generalized-α technique applied to Eq. (2.55) amounts to collocating the discrete residual at the intermediate

locations within a time step as follows: GivenYYYn and ẎYYn, findYYYn+1 and ẎYYn+1, such that,

RRR(ẎYYn+αm ,YYYn+α f ) = 0, (2.58)

where the intermediate solution time levels are defined as

(·)n+α = (·)n +α((·)n+1− (·)n), (2.59)
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and the relationship between the solution and its time derivative in the time-discrete setting is given by the Newmark

formula

YYYn+1 =YYYn +∆t((1−γ)ẎYYn +γẎYYn+1). (2.60)

Here, αm, α f , and γ are real-valued parameters chosen based on the second-order accuracy and unconditional stability

requirements of the Generalized-α method. See [63, 64, 65] for more details.

Predictor-multicorrector algorithm

To solve the nonlinear system given by Eqs. (2.58)-(2.60) we adopt an explicit version of a two-stage predictor-

multicorrector algorithm presented in what follows.

Predictor stage. Given the solution at time level tn, initialize the time-level tn+1 solution as

ẎYY
0
n+1 =

γ−1
γ
ẎYYn,

YYY0
n+1 =YYYn. (2.61)

In addition, the foreground solid domain position at time level tn+1 is initialized as follows:

a0
n+1 =

γ−1
γ

an,

u0
n+1 = un,

d0
n+1 = dn +∆tun +

∆t2

2
((1−2β)an + 2βa0

n+1), (2.62)

where a, u, and d denote the solid nodal or control-point values of the acceleration, velocity and displacement, and β

is the additional Newmark parameter of the Generalized-α scheme. The displacement variable d is used to place the

foreground solid mesh in the appropriate configuration for the purposes of numerical integration.

Multicorrector stage. Compute the solution at time level tn+1 by repeating the following steps:

1. Evaluate the iterates at intermediate time levels on the background mesh,

ẎYY
l
n+αm = ẎYYn +αm(ẎYYl

n+1−ẎYYn),

YYYl
n+α f

=YYYn +α f (YYYl
n+1−YYYn), (2.63)
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and on the foreground mesh,

dl
n+α f

= dn +α f (dl
n+1−dn), (2.64)

where l is the multicorrector iteration counter.

2. Use the intermediate solution values to assemble the discrete residual of the coupled FSI problem and solve for

the increment of the solution time derivative,

∆ẎYY
l
n+1 = −(αmMMM)−1 RRR(ẎYYl

n+αm ,YYY
l
n+α f

). (2.65)

In the above equation, in the interest of efficiency,MMM may approximated by its lumped counterpart given by

MMM≈MMML,

[MMML]ab
AB = (

∑
C

[MMM]ab
BC)δAB, (2.66)

where δAB is the Kronecker delta.

3. Update the solution on the background mesh,

ẎYY
l+1
n+1 = ẎYY

l
n+1 +∆ẎYY

l
n+1,

YYYl+1
n+1 =YYYl

n+1 +γ∆t∆ẎYYl
n+1, (2.67)

and on the foreground mesh,

ul+1
n+1 = IYYYl+1

n+1,

al+1
n+1 =

ul+1
n+1−un

γ∆t
−

1−γ
γ

an,

dl+1
n+1 = dn +∆tun +

∆t2

2
((1−2β)an + 2βal+1

n+1), (2.68)

and increase the Newton-iteration counter l by one. Note that, just like in the predictor stage, the update of the

foreground mesh kinematics entails the velocity projection from the background mesh, denoted by the symbol I

above, followed by the reconstruction of the remaining kinematic quantities via the Newmark formulas.

Remark Computation of the solution-time-derivative increment in Eq. (2.65) using a lumped mass matrix requires

computing the inverse of a (d + 2)× (d + 2) matrix at each background-mesh node or control point. It is possible to
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develop a vector representation of the lumped-mass matrix of the form

[MMML]ab
A = [A0]ab

∫
Ω

NA dΩ, (2.69)

where A0 is the equivalent Jacobian matrix associated with node or control point A. The matrix A0 has an inverse, which

may be derived analytically (see [66]) and programmed directly, leading to modest improvements in the computational

efficiency of the time-integration algorithm.

Remark In the last step of the multicorrector algorithm, once the solution is obtained on the background mesh,

kinematic quantities are transferred to the foreground mesh and the solid is moved to a new position. This procedure is

also employed in the particle finite element method (PFEM) [67, 68].

Stress update

Computation of the discrete residual In Eq. (2.65) requires evaluation of the solid Cauchy stress at the

quadrature points of the foreground mesh, which act as material points in the current formulation. The Cauchy stress

may be advanced within a time step as follows,

σσσn+1 =σσσn +∆t σ̇σσn+α f =σσσn +∆t (σσσ∇J +ωωωσσσ+σσσωωωT )n+α f , (2.70)

where the objective Jaumann stress rate is employed, and, for consistency with the Generalized-α time integration

algorithm, the material time derivative of the stress is taken at the time level tn+α f . To carry out the above stress update,

at each multicorrector iteration of the Generalized-α algorithm, we repeat following steps:

1. Rotate the Cauchy stress to the time level tn+α f as

σ̃σσl
n+α f

=σσσn +α f ∆t (ωωωl
n+α f

σσσn +σσσn(ωωωl
n+α f

)T ), (2.71)

where l is the iteration counter of the multicorrector stage, and the spin tensor at time level tn+α f is computed

from the background discretization as

ωωωl
n+α f

=
1
2

(∇ul
n+α f
− (∇ul

n+α f
)T ). (2.72)

2. Update the Cauchy stress at time level tn+α f as

σσσl
n+α f

= σ̃σσl
n+α f

+∆σσσl
n+α f

, (2.73)
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where ∆σσσn+α f = ∆t σσσ∇J
n+α f

is the stress increment coming form the radial return mapping scheme [52].

3. Rotate the Cauchy stress to the time level tn+1 as

σσσl
n+1 =σσσl

n+α f
+ (1−α f )∆t (ωωωl

n+α f
σσσl

n+α f
+σσσl

n+α f
(ωωωl

n+α f
)T ). (2.74)

Remark The above stress update is a modification of the well-known half-step rotation technique [69, 70]. The resulting

Cauchy stress in Step 2 is used in the computation of the solid contribution to the discrete residual in Eq. (2.65), while

the stress in Step 3 is saved for the purposes of performing the stress update in the next time step.

2.3 Conclusions

A computational framework for air-blast FSI based on an immersed approach is proposed. The framework

couples compressible flow in the high-Mach-number regime with inelastic structures. The discrete formulation employs

the background and foreground discretization as follows. Background discretization is fixed and provides the discrete

trial and test function spaces for the coupled FSI problem. Foreground discretization is moving with the solid material

particles and is employed to track its current position, store history-dependent variables, and perform numerical

quadrature.

The compressible-flow equations are discretized using pressure-primitive variables for compatibility with the

solid DOFs and stabilized using residual-based SUPG and discontinuity-capturing techniques. These appear to be

sufficient to produce a robust computational methodology for air blast without resorting to classical shock viscosities,

which are not consistent and often tend to produce overly diffusive results.

The proposed immersed approach has the advantage over existing embedded domain methods in that a

monolithic FSI formulation is naturally obtained, even if the governing equations are advanced in time using an explicit

algorithm. In addition, no restrictions on the solid motion is imposed in the framework, which enables handling of

the domain topological changes with relative ease. Although, due to the utilization of an immersed approach, fluid

mechanics accuracy near the solid surfaces is not as high as in a moving-mesh technique, preliminary comparisons with

an ALE-based approach suggest that in the regime of air blast the overall accuracy of the coupled simulations does not

suffer significantly. This is likely due to the fact that because of the fast dynamics of air blast, fluid boundary layers,

which require higher mesh resolution near solid walls for good accuracy, do not have a chance to develop fully.
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Chapter 3

Immersed Air-Blast–Structure Interaction:

coupling of isogeometric and meshfree

discretizations

This chapter focuses on a particular instantiation of the proposed ABSI framework, which couples isogeometric

analysis with reproducing-kernel particle method, which is a meshfree technique.

3.1 NURBS-based IGA

In this section we briefly recall the basics of IGA [37, 38] based on NURBS [39, 40, 41]. NURBS are

convenient for free-form surface modeling, and can represent exactly all conic sections. In addition, they exhibit

excellent mathematical properties, such as derivative-continuity across element boundaries, optimal approximation [71],

and the ability to be refined through knot insertion and degree elevation. We note that in the present effort NURBS-based

IGA is employed to provide a smooth background-mesh discretization, which has significant benefits compared to

C0-continuous approximations in many applications [38, 47, 72, 71, 73, 74]. In the present work we do not directly

take advantage of the geometric flexibility of IGA, although one may envision cases where background discretization

conforming to geometrically-complex fluid-mechanics domains may be desirable.
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3.1.1 B-splines

NURBS are built from B-splines. A necessary component for the construction of B-splines is the knot vector.

A knot vector in 1D is a non-decreasing set of coordinates in the parametric domain written as Ξ = {ξ1, ξ2, . . . , ξn+p+1},

where ξi ∈ R is the ith knot, i is the knot index, i = 1,2, . . . ,n + p + 1, p is the polynomial order, and n is the number of

B-spline basis functions. Knots divide the parametric domain into elements.

For a given knot vector, the B-spline basis functions are defined recursively starting with piecewise constants

(p = 0):

Ni,0(ξ) =


1 if ξi ≤ ξ < ξi+1,

0 otherwise.
(3.1)

For p = 1,2,3, . . . , they are defined by

Ni,p(ξ) =
ξ− ξi

ξi+p− ξi
Ni,p−1(ξ) +

ξi+p+1− ξ

ξi+p+1− ξi+1
Ni+1,p−1(ξ), (3.2)

which is the Cox-de Boor recursion formula [75, 76].

Knot vectors may be open or closed. In an open knot vector the first and last knot values appear p + 1 times.

B-spline basis functions constructed using an open knot vector are interpolatory at the endpoints of the parametric

interval, which facilitates imposition of boundary conditions. In general, B-splines are not interpolatory at interior

knots. Only open knot vectors are employed in the present work.

Basis functions of order p have p−mi continuous derivatives at knot ξi, where mi is the multiplicity of the

knot ξi in the knot vector.

The B-spline basis functions are pointwise non-negative, satisfy the partition of unity, that is,

n∑
i=1

Ni,p(ξ) = 1 ∀ξ ∈ Ξ, (3.3)

and the support of each basis function Ni,p is compact and contained in the interval [ξi, ξi+p+1].

3.1.2 NURBS

Geometric entities in Rd are obtained by a projective transformation of B-spline curves in Rd+1, where d is

the space dimension. Conic sections may be exactly constructed by projective transformations of piecewise quadratic

curves. This projective transformation gives rise to NURBS basis functions with the following structure:

Rp
i (ξ) =

Ni,p(ξ)wi

W(ξ)
, (3.4)
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where W(ξ) is the weighting function given by

W(ξ) =

n∑
i=1

Ni,p(ξ)wi, (3.5)

where wi’s are positive weights. As is evident from the above expressions, unlike B-spline or standard FEM basis

functions that are piecewise polynomials, NURBS are piecewise rational functions.

NURBS curves are constructed using a linear combination of NURBS basis functions as

C(ξ) =

n∑
i=1

Rp
i (ξ)Bi, (3.6)

where Bi ∈ R
d are the control points. Given additional knot vectors H = {η1,η2, . . . , ηm+q+1} and Z = {ζ1, ζ2, . . . , ζl+r+1},

NURBS basis functions in 2D and 3D may be defined as

Rp,q
i, j (ξ,η) =

Ni,p(ξ)M j,q(η)wi, j∑n
î=1

∑m
ĵ=1

Nî,p(ξ)M ĵ,q(η)wî, ĵ
, (3.7)

and

Rp,q,r
i, j,k (ξ,η,ζ) =

Ni,p(ξ)M j,q(η)Lk,r(ζ)wi, j,k∑n
î=1

∑m
ĵ=1

∑l
k=1 Nî,p(ξ)M ĵ,q(η)Lk̂,r(ζ)wî, ĵ,k̂

, (3.8)

respectively, where wî, ĵ and wî, ĵ,k̂ are the corresponding weights.

Following the properties of B-splines, NURBS basis functions in all dimensions are pointwise nonnegative,

form a partition of unity, are compactly supported, and reduce to B-splines if all the weights are equal.

Analogously to NURBS curves, NURBS surfaces and volumes are defined as

S(ξ,η) =

n∑
i=1

m∑
j=1

Rp,q
i, j (ξ,η)Bi, j (3.9)

and

V(ξ,η,ζ) =

n∑
i=1

m∑
j=1

l∑
k=1

Rp,q,r
i, j,k (ξ,η,ζ)Bi, j,k, (3.10)

respectively, where Bi, j’s and Bi, j,k form a control mesh.

3.1.3 Analysis framework

We write N̂(ξξξ) and N(x) to refer to a generic NURBS basis function defined on the parametric and physical

domains, respectively. We also make use of a single-index notation, and let indices A,B,C, . . . label the NURBS basis
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functions. In this setting, the geometry mapping may be expressed as

x(ξξξ) =

nnp∑
A=1

xAN̂A(ξξξ), (3.11)

where nnp denotes the number of control points in the mesh with coordinates given by xA’s. This mapping may be

restricted to a NURBS patch or element.

The IGA solution in the parametric domain, taken to be scalar-valued for the purposes of illustration, is

assumed to be governed by the same NURBS basis functions, and may be expressed as

ûh(ξξξ) =

nnp∑
A=1

uAN̂A(ξξξ), (3.12)

where uA’s are the control variables or degrees of freedom (DOF). The IGA solution in the physical domain is defined

as a push-forward of its parametric counterpart given by Eq. (3.12) by the geometrical mapping given by Eq. (3.11),

and may be expressed as

uh(x) =

nnp∑
A=1

uANA(x), (3.13)

where

NA(x) = N̂A(ξξξ−1(x)). (3.14)

Equations (3.11)-(3.14) constitute the well-known isoparametric construction widely used in FEM and IGA. The above

construction guarantees optimal approximation properties of NURBS spaces as shown in [71, 77].

The first and second partial derivatives of the basis functions in Eq. (3.14) with respect to physical coordinates,

which are employed in the weak formulation of the FSI problem presented in chapter 2, are computed using the

chain rule in a manner similar to FEM. To carry out the background-domain weak-form integrals, standard Gaussian

quadrature is employed. It should be noted that more efficient quadrature rules for IGA have been recently proposed

(see, e.g., [78, 79]) and may be employed for better efficiency of the computational procedures. Dirichlet boundary

conditions in IGA may be imposed strongly by selecting appropriate values of control variables belonging to essential

boundaries, or weakly by means of Nitsche-like methods [80]. Because of the variational structure of IGA, Neumann

boundary conditions are enforced weakly as in standard FEM.

3.2 RKPM-based Meshfree methods

Like IGA, Meshfree methods is a class of numerical methods that solve partial differential equations. They

retain the useful characteristics of the FEM, such as good approximation properties and compact support of shape
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functions, but attempt to overcome some of the disadvantages, like mesh entanglement, material distortion, mesh

dependency, and difficulty in constructing approximations with arbitrary order of continuity [42]. Meshfree methods

share a common feature that no standard mesh data structures are required to define the discrete approximation spaces,

which are constructed based on scattered points (or particles). These methods provide considerable advantages over

traditional FEM for solving problems involving large deformations, damage, h-adaptive refinement, and evolving

discontinuities. The Reproducing Kernel Particle Method (RKPM) [43, 44, 45, 81] is a prominent representative of a

class of Meshfree methods, and is presented in what follows.

3.2.1 RKPM

We assume that the problem domain (in our case, the solid domain Ωs) is discretized by a set of nnp Lagrangian

particles. An RKPM basis function associated with a given particle A, ΨA(x), is constructed by multiplying a kernel

function Φa(x−xA) with a correction function C(x,x−xA) as

ΨA(x) = C(x,x−xA)Φa(x−xA). (3.15)

The function C(x,x−xA) may be expressed as

C(x,x−xA) =
∑
|ααα|≤p

(x−xA)αααbααα(x)

= pT (x−xA)b(x), (3.16)

where p(x−xA) is the pth-order monomial basis vector, b(x) is the unknown coefficient vector, ααα is a multi-index, and

|ααα| is its norm. The unknown coefficient vector b(x) is determined by imposing pth-order polynomial reproducing

conditions on the space spanned by RKPM basis functions, namely,

nnp∑
A=1

ΨA(x)xαααA = xααα, |ααα| ≤ p, (3.17)

or, equivalently,
nnp∑
A=1

ΨA(x)p(x−xA) = p(0). (3.18)

Substituting the expression for ΨA(x) from Eq. (3.15) into Eq. (3.18), and solving for b(x), gives

b(x) = M−1(x)p(0), (3.19)
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where the moment matrix M(x) is given by

M(x) =

nnp∑
A=1

p(x−xA)pT (x−xA)Φa(x−xA). (3.20)

The moment matrix is invertible at location x if the reproducing conditions given by Eq. (3.17) are linearly indepen-

dent [82, 81]. An explicit form of the RKPM basis functions is obtained by substituting the result from Eq. (3.19) into

Eq. (3.15):

ΨA(x) = pT (0)M−1(x)p(x−xA)Φa(x−xA). (3.21)

For the kernel function we choose a radial cubic B-spline, namely,

Φa(x−xA) = Φ̃a(s) =



2
3 −4s2 + 4s3, 0 6 s 6 1

2

4
3 (1− s)3, 1

2 6 s 6 1

0, otherwise

, (3.22)

where

s =
‖x−xA‖

a
(3.23)

and a is the support radius. More discussion on the choice of the kernel function may be found in [43]. Note that

the continuity of the RKPM discretization is inherited by that of the kernel function, and thus arbitrarily smooth

discretizations that are independent of the order of approximation may be easily constructed.

The discrete RKPM solution uh(x) is given by

uh(x) =

nnp∑
A=1

ΨA(x)uA (3.24)

where uA’s are the unknown DOFs associated with Lagrangian particles. As in the case of NURBS-based IGA, RKPM

basis functions are generally non-interpolatory at the Lagrangian-particle locations.

3.2.2 Domain integration for RKPM

As shown in the previous section, the RKPM basis functions are constructed directly in the physical domain

without the requirement of an underlying mesh and the corresponding data structures. While this flexibility makes

RKPM attractive for approximating large deformation and fragmentation of the material, it also leads to challenges

associated with domain integration. The fact that the RKPM basis functions are non-polynomial (see Eq. (3.18) for

their structure) leads to additional challenges for domain integration.
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Domain integration in RKPM is usually carried out using either Gaussian quadrature or nodal integration.

To carry out Gaussian quadrature one needs to generate a background mesh, which, in some sense, goes against the

philosophy of Meshfree methods. In addition, in order to reap the full benefits of Gaussian quadrature, the integration

cells need to be aligned with the supports of the RKPM basis functions, which is not easily accomplished.

On the other hand, pure nodal integration, despite its efficiency, exhibits low convergence rates and rank

instability [83]. Special techniques have been developed for RKPM in recent years to circumvent these issues.

These include Stabilized Conforming Nodal Integration (SCNI) [84], Stabilized Non-Conforming Nodal Integration

(SNNI) [85], Variationally Consistent Integration (VCI) [84, 86, 87], and Naturally Stabilized Nodal Integration

(NSNI) with VCI correction [88] techniques, among others. The main idea of the SCNI technique is to “smooth” the

basis-function gradient over conforming integration cells that partition the problem domain. The smoothed gradient ∇̃

in each integration cell ΩA is computed using the divergence theorem as follows

∇̃ΨB(xA) =
1
|ΩA|

∫
ΩA

∇ΨB dΩ =
1
|ΩA|

∫
∂ΩA

ΨBndΓ, (3.25)

where |ΩA| is the area in 2D or volume in 3D of the integration cell corresponding to node A, n is the unit outward normal

to the cell boundary ∂ΩA, and index B points to all RKPM basis functions that are supported in ΩA. The conforming

integration with strain smoothing satisfies the so-called integration constraint, which ensures that the patch tests are

satisfied. Strain smoothing also avoids taking direct derivatives at the Lagrangian nodes. (Doing so in the Lagrangian

setting yields instability in the Galerkin solution due to severe underestimation of the strain energy of short-wavelength

modes.) While SCNI preserves first-order exactness, for problems involving very large deformation or fragmentation

the requirement of conforming cells is challenging to maintain because these need to be periodically regenerated during

the simulation. For these reasons, SNNI was introduced in [85], and presents a simplification of SCNI in that the

smoothing zones, which are typically simple geometric shapes, are no longer required to be conforming. However,

relaxation of the conforming-cell condition can yield non-convergent solutions, because the integration constraint, and

thus the linear exactness in the Galerkin solution, are no longer satisfied. Recently, in [88], the authors developed the

NSNI technique that overcomes the instabilities of nodal integration by introducing a first-order Taylor expansion of the

strains in the internal virtual-work terms. This approach introduces higher-order derivatives in the formulation, which

may be accommodated in the RKPM and IGA frameworks since both employ smooth discretizations. An implicit

gradient [89] has been introduced in NSNI to avoid taking higher-order derivatives of the shape functions.
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3.3 Numerical aspects of IGA-RKPM coupling

In this section we focus on the numerical aspects of air-blast FSI that specifically pertain to the IGA-RKPM

coupling. We repeat the semi-discrete formulation of the coupled problem from chapter 2 of this paper for convenience:

Find Yh ∈ Sh, such that ∀Wh ∈ Vh,

M f
Ω

(Wh,Yh) + B f
Ω

(Wh,Yh)−F f
Ω

(Wh) + Bst
Ω(Wh,Yh) + Bdc

Ω (Wh,Yh)

+

Ms
Ωs (Wh,Yh) + Bs

Ωs (Wh,Yh)−F s
Ωs (Wh)

−

M f
Ωs (Wh,Yh) + B f

Ωs (Wh,Yh)−F f
Ωs (Wh) + Bst

Ωs (Wh,Yh) + Bdc
Ωs (Wh,Yh)

+∫
Γ̃ f
βh [[wh

,ini]] · [[uh
, jn j]] dΓ̃

=

0, (3.26)

where Yh is the discrete vector-valued trial function corresponding to pressure-primitive variables, Wh is the discrete

vector-valued test function, and Sh and Vh are the associated discrete function spaces. We remind the reader that

superscript f refers to the fluid, and s to the solid parts of the problem, and Ω is the background domain occupied by

the fluid and partially covered by the Lagrangian particles of the solid domain Ωs.

We summarize the important IGA-RKPM coupling aspects in what follows:

• The spaces of discrete trial and test functions are defined on the background domain Ω, resulting in the FSI

problem DOFs residing on the background mesh. Equal-order NURBS discretization is employed for all the

unknowns in the variable set Yh.

• The terms on the first line of Eq. (6.26) are evaluated over the entire background NURBS domain using Gaussian

quadrature with p + 1 points in each tensor-product direction. More efficient quadrature rules are also possible

(see [78, 79] for recent advances in numerical integration for IGA).

• The terms on the second and third lines of Eq. (6.26) are evaluated using RKPM domain-integration techniques.

Nodal integration is performed using the RKPM Lagrangian points with two options for the background NURBS

basis-function gradient evaluation: 1. Direct evaluation at the location corresponding to that of the Lagrangian
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particle; 2. Smoothed definition as per Eq. (3.25) with the smoothing zone of simple shape constructed around

each Lagrangian particle in the spirit of SNNI. We found that Option 1 is more economical and delivers stable

results in the present setting. We are, however, aware of the potential instabilities and inaccuracies associated

with this type of integration, and plan to explore an NSNI-type approach in the future work.

• The terms on the fourth line, which correspond to ghost-velocity stabilization [62], are identically zero because

the basis functions employed in our discretization are smooth. In principle, the generalization of ghost penalties to

higher-order bases involves jumps of higher derivatives, leaving nonzero terms even for spline spaces of maximal

continuity. (See, e.g., Remark 1 in [90] or Eq. (11) in [91].) Although we are aware of this generalization, we did

not find penalization of jumps in higher derivatives necessary in the present framework.

• Domain integration of the terms on the second and third lines of Eq. (6.26) require the evaluation of the

determinant of the deformation gradient from the solid reference to its current configuration at a Lagrangian-node

location XA, which is the nodal quadrature point. In this work the deformation gradient is taken directly from the

foreground RKPM discretization, and may be expressed as

F(XA) =
∂x
∂X

(XA) =

nnp∑
B=1

xB
∂ΨB

∂X
(XA), (3.27)

where the above sum is performed only over the RKPM basis functions supported at location XA in the reference

configuration. Note that only the current position of the Lagrangian particle xB and the RKPM basis-function

gradient with respect to the spatial coordinates of the reference configuration X are required to evaluate the above

expression. In our computations, the RKPM basis-function gradient is replaced by its smoothed counterpart over

the integration cell in the reference configuration as per Eq. (3.25), and is computed only once in the beginning of

the simulation for efficiency.

As an alternative approach, the determinant of the deformation gradient may be computed from the generating

equation for F (see, e.g., [52])
∂F
∂t

∣∣∣∣∣X = ∇u F, (3.28)

or for the determinant itself,
∂J
∂t

∣∣∣∣∣X = ∇ ·u J. (3.29)

Definitions in Eqs. (6.28) and (3.29) do not rely on the discretization of the solid domain and may be better suited

when fragmentation scenarios are simulated.

• Stress update described in chapter 2 is performed at the Lagrangian nodes of the foreground discretization where

the history variables are stored. If damage is included in the modeling, which is not the case in the present paper,
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the corresponding history variables would also be stored at the same locations.

3.4 Numerical examples

In this section we present one 1D and five 2D computational examples that demonstrate the capabilities,

robustness, and accuracy of IGA-RKPM coupling for air-blast FSI. The computational examples are: Sod shock tube,

Sedov blast, Taylor bar impact, chamber detonation, flexible panel subjected to a shock load, and detonation with

multiple objects. The first three examples test the accuracy of standalone compressible-flow and solid mechanics

formulations. Examples four and five are the same as in reference Kazem. The former example demonstrates the

ability of the proposed framework to produce convergent FSI solutions under mesh refinement, while the latter example

validates the formulation using experimental data. The final example, which is similar to the one presented in reference

Kazem, shows the ability of the proposed methodology to handle blast in the presence of multiple objects without

restriction on their motion and including contact between the objects. C1-continuous quadratic NURBS and RKPM

functions with linear consistency and kernel given by Eq. (3.22) are employed in all computations. Unless otherwise

stated, in all computations the fluid is assumed to have properties of air with constant viscosity µ = 1.81×10−5 kg/(m s),

Prandtl number 0.72, and adiabatic index γ = 1.4. The time step for each problem is selected from considerations of

stability and two-to-four explicit corrector passes are employed in the computations.

3.4.1 Sod shock tube problem

We compute a 1D Sod shock tube problem [92], which is an inviscid hydrodynamics example. At the initial

time, two material states are prescribed on each half of a unit-length domain. As time evolves, a rarefaction wave,

contact discontinuity and shock discontinuity are formed in the domain. On the left, the initial conditions are ρ = 1.0,

v = 0.0, and p = 1.0, while on the right, the initial conditions are ρ = 0.1, v = 0.0, and p = 0.125. (The problem is

specified in non-dimensional units.) The discretization consists of 300 uniform elements, and the numerical results at

time t = 0.2 are compared to the analytical solution in Figure 3.1. As can be seen in the figure, the numerical results

have no oscillations, and match the exact solution very well.

3.4.2 Sedov blast problem

We compute the 2D inviscid Sedov blast problem [93] on a square domain with edge length L = 1.1. A sudden

release of energy at the origin creates an expanding shock wave. The initial conditions of the problem consist of zero

velocity field and a Dirac-delta distribution of the internal-energy density at the origin so the total energy is equal to

0.25. (The problem is also specified in non-dimensional units.) The initial density is set to ρ = 1, the temperature is set

consistent with the internal energy density, and pressure is set consistent with the ideal gas law. Meshes of 64×64,
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(a) Pressure (b) Velocity

(c) Density (d) Internal Energy

Figure 3.1: Sod shock tube problem in 1D. Solution at time t = 0.2

Figure 3.2: Sedov blast problem in 2D. Density contours at time t = 1.0.

128×128, and 256×256 elements are employed in the computations. Figure 3.2 shows the density contours at time

t = 1.0 on the mesh of 256×256 elements. The solution appears to be smooth, stable, and radially symmetric. Figure 3.3

shows the scatter plot of density vs. distance from the origin at time t = 1.0 for all three meshes. Convergence to the
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Figure 3.3: Sedov blast problem in 2D. Scatter plot of density vs. radial coordinate for the three meshes employed.
The exact solution is also plotted to illustrate convergence with mesh refinement.

Table 3.1: Taylor bar impact. Material properties.
Young’s modulus E 200 GPa

Poisson’s ratio ν 0.30
Density ρ 2700 kg/m3

Yield stress σy 0.29 GPa
Hardening modulus h 0.1 GPa

analytical result is evident from the plot. Very little scatter in the data is also observed, suggesting the methodology has

excellent symmetry preservation properties.

3.4.3 Taylor bar impact

We simulate a steel bar impacting a rigid wall at the initial velocity of 227 m/s. The bar has an initial height of

32 mm, width of 6.4 mm, and is discretized using 250×150 particles. The background domain has a height of 36 mm,

width of 21 mm, and is discretized using 77×45 elements.

No-penetration and zero tangential-stress boundary conditions are applied at the bottom wall. The bar is also

assumed to be placed in vacuum, that is, only the solid mechanics equations are solved without contributions from the

surrounding fluid. Figure 3.4 shows the problem setup while Figure 3.5 shows the background and foreground problem

meshes. The material properties are summarized in Table 3.1.

Results of the immersed approach are compared with those obtained by solving the problem using a Lagrangian

RKPM formulation. The Taylor-bar height and width time histories are plotted in Figure 3.6. Excellent agreement

between the two computations is achieved for these quantities. Figure 3.7 shows the final deformed shape of the Taylor

bar with a zoom on the impact region where most of the deformation occurs. The immersed and RKPM computations

are in very good agreement with each other, demonstrating that the immersed methodology is capable of accurately
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Figure 3.4: Taylor bar impact. Problem setup.

Table 3.2: Chamber detonation. Material properties of a steel bar.
Young’s modulus E 200 GPa

Poisson’s ratio ν 0.29
Density ρ 7870 kg/m3

Yield stress σy 0.4 GPa
Hardening modulus h 0.1 GPa

capturing the solid plastic deformations.

3.4.4 Chamber detonation

In this coupled FSI example, a steel bar is subjected to a detonation blast load. A bar with dimensions 0.2 m

× 0.1 m is placed at the center of a closed chamber with dimensions 0.4 m × 0.4 m. The bar thickness is set to

3.5 mm. Figure 3.8 shows the problem description. The bar material properties correspond to those of steel, and are

summarized in Table 3.2. The air in the chamber is initially at rest with T = 270 K and p = 100,000 Pa. The detonation

is initiated by setting higher-than-ambient values of the pressure, p = 6,746,268.65 Pa, and temperature, T = 1,465 K,

in a semi-circular region centered on the left wall and with radius of 6.1 mm. Free-slip and no-penetration boundary
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Figure 3.5: Taylor bar impact. Background and foreground problem meshes.

Table 3.3: Shock wave impacting an elastic panel. Material properties of the steel panel.
Young’s modulus E 220 GPa

Poisson’s ratio ν 0.33
Density ρ 7600 kg/m3

conditions are assumed at the chamber walls.

Four problem discretizations with increasing mesh refinement levels are considered: 1) Fluid: 40×40 elements;

Solid: 53×26 particles; 2) Fluid: 80×80 elements; Solid: 105×53 particles; 3) Fluid: 120×120 elements; Solid:

158×79 particles; 4) Fluid: 160×160 elements; Solid: 210×105 particles. Figure 3.9 shows the air pressure at different

time instants and the final, deformed shape of the bar computed on the finest mesh. Note the “mushrooming” at the left

edge of the bar and very large deformation at the bar corners. Also note the permanent indentation on the right edge of

the bar resulting from shock waves bouncing off the right wall and impacting the specimen.

Figure 3.10 shows the time history of the bar center-of-mass displacement, and pressure at the detonation

center (Point 1 in the figure) and right-wall center (Point 2 in the figure). The results exhibit good convergence with

mesh refinement, and are in good agreement with the ALE results from reference Kazem. Shock waves bouncing

between the right wall and moving bar are captured very well in the simulations.
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(a)

(b)

Figure 3.6: Taylor bar impact. Comparison of the time history of Taylor bar height (a) and width (b) between the
immersed and Lagrangian RKPM simulations.

3.4.5 Shock wave impacting an elastic panel

In this example, a thin steel panel is impacted by a planar shock wave in air. The problem setup is shown

in Figure 3.11. The panel thickness is 1 mm, and it extends 40 mm from a mounting point with forward-facing step

geometry where it is clamped. The fluid domain has dimensions 600 mm × 80 mm. The step has a height of 15 mm and

starts 335 mm from the left boundary. Inflow boundary conditions are applied on the left side while rigid-wall boundary

conditions are applied elsewhere. In this example the panel material is assumed to be elastic with the properties given
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Figure 3.7: Taylor bar impact. Overlapping, deformed configurations of the Taylor bar from the immersed (blue)
and RKPM (red) simulations. Zoom on the region near the impact where most of the deformation occurs.

Figure 3.8: Chamber detonation. Problem setup and dimensions.

in Table 3.3. The shock is placed at 330 mm from the left wall and travels into air at rest with density ρ = 1.2 kg/m3

and pressure p = 100 kPa. Behind the shock the density is ρ = 1.6458 kg/m3, the pressure is p = 156.18 kPa, and the

horizontal velocity v = 112.61 m/s. The background mesh has 480×64 elements, while the panel foreground mesh

makes use of 10×500 Lagrangian particles. The step is modeled in an immersed fashion with zero velocity assigned
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(a) 0.1 ms (b) 0.4 ms

(c) 0.7 ms (d) Final configuration

Figure 3.9: Chamber detonation. Pressure at different time instants and final, deformed configuration of a steel bar.

to the block of control points corresponding to the step location. The problem has been previously investigated both

experimentally and numerically in [94, 95], and is also computed in reference Kazem.

Figure 3.12 shows the pressure field and panel displaced configuration at different time instants. After the

initial impact of the shock wave the panel begins to oscillate. Figure 3.13a shows a comparison of the computed

and measured panel-tip displacement time histories. The two quantities are in good agreement, both in terms of the

oscillation magnitude and frequency, suggesting that the background mesh is sufficiently fine to provide the appropriate

level of the panel through-thickness resolution. Figure 3.13b shows a comparison of the computed and measured

pressure time histories at the pressure-sensor position. Very good agreement is obtained in this case as well, suggesting

that the complex dynamics of shocked flow is well captured in the simulation.
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(a) (b)

(c)

Figure 3.10: Chamber detonation. (a) Horizontal displacement of the bar center of mass; (b) Pressure at the center
of detonation; (c) Pressure at the center of the right wall.

Figure 3.11: Shock wave impacting an elastic panel. Problem setup.

3.4.6 Detonation with multiple objects

This last example shows the ability of the proposed method to naturally handle scenarios of detonation in

the presence of multiple objects. Several rectangular objects are placed in a rectangular chamber with dimensions

1.2 m × 0.8 m, and are subjected to a detonation load. Figure 3.14 shows the problem setup. The largest objects have

dimensions 0.26 m × 0.075 m, the smallest ones 0.0375 m × 0.05 m, and the rest 0.075 m × 0.1 m. The detonation

is initiated by assuming air at rest with T = 270 K and p = 100,000 Pa, and elevating the pressure to p = 11.0 MPa
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(a) 70 µs (b) 150 µs

(c) 200 µs (d) 570 µs

(e) 1000 µs (f) 1245 µs

Figure 3.12: Shock wave impacting an elastic panel. Pressure field and deflected panel at different time instants.

and temperature to T = 1,550 K in the zone of radius 0.05 m. All objects are assumed to have the material properties

of steel, and are modeled as elastic. Slip boundary conditions are applied at the chamber walls. Uniform mesh with

dimension 0.006 m for the air and 0.0034 m for the solid objects is employed for the problem discretization.

Figure 3.15 shows the air speed and the solid deformed configuration at different instants after the detonation is

initiated. The solid objects contact each other, impact the chamber walls, and, in general, move without any restrictions

under the action of blast waves. The flow solution remains stable with crisp resolution of the shock waves throughout

the computation.

3.5 Conclusions

A computational framework for ABSI based on an immersed approach, which models the interaction of

compressible flow in the high-Mach-number regime with inelastic solids and structures, is discretized using the IGA-

RKPM coupling. The NURBS-based isogeometric background discretization is fixed and provides the discrete trial

and test function spaces for the coupled FSI problem. The RKPM-based foreground discretization is moving with the

solid material particles and is employed to track its current position, store history-dependent variables, and perform

numerical quadrature.

Several attributes of the coupled IGA-RKPM formulation are exploited to improve the accuracy and robustness

of the immersed air-blast FSI framework. Most notably, the higher-order accuracy and smoothness of the background
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(a)

(b)

Figure 3.13: Shock wave impacting an elastic panel. Time history of (a) Panel tip displacement; (b) Pressure at the
sensor location. Computational results from [95] are also shown for comparison.

discretization delivers high-quality compressible-flow solutions with shocks. In addition, the higher-order smoothness

of the background basis functions gives a continuous representation of the strain-rate field, which greatly improves

the quality of the solid mechanics solution. Finally, the ghost velocity stabilization needed for the stability of the

C0-continuous case presented in chapter 2 is completely obviated.
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Figure 3.14: Detonation with multiple objects. Problem setup.
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(a) 0.01 ms (b) 0.2 ms

(c) 0.4 ms (d) 0.6 ms

(e) 0.8 ms (f) 1.0 ms

(g) 1.2 ms (h) 1.4 ms

Figure 3.15: Detonation with multiple objects. Air speed and solid in the current configuration at different instants
during the simulation.
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Chapter 4

Modeling concrete structures subjected to

blast loadings

Concrete is a very common construction material when it comes to civil structures. Blast loading on civil

structures is a multi-physical process that involves the initiation of a detonation, a shock wave propagation, and an

air-blast structure interaction that can result in damage, fragmentation, progressive collapse of the concrete structure,

and even in human casualties. In this chapter we present the basics of a concrete model as well a high explosive

modeling technique. At the end of the chapter a numerical example is presented and demonstrates that the approach is

capable of reproducing all the major qualitative characteristics of blast on concrete structures.

4.1 Concrete constitutive modeling

A three invariant smooth cap model based on [96, 50] is presented here. This model has been shown to be

capable of adequately modeling damage-based softening and modulus reduction, shear compaction, and strain rate

effects [97]. The key points of the model are summarized below:

• Additive decomposition of the rate-of-deformation tensor:

D = ∇su =
1
2

(∇u +∇uT ) = De + Dp, (4.1)

where De and Dp are its elastic and plastic components, respectively.
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• Stress-rate constitutive relation:

σσσ∇J =CCC : De =CCC : (D−Dp), (4.2)

where CCC is the constitutive material tensor, and σσσ∇J is the objective Jaumann rate of the Cauchy stress [52] given

by

σσσ∇J = σ̇σσ−σσσωωωT −ωωωσσσ, (4.3)

where σ̇σσ is the material time derivative of the Cauchy stress, and

ωωω =
1
2

(∇u−∇uT ) (4.4)

is the spin tensor.

• Yield surface:

The model is a cap model with a smooth intersection between the failure surface and the hardening cap. The

shape of the yield surface in the meridonal plane is shown in Figure 4.1. A multiplicative decomposition that

combines the shear surface and the hardening compaction surface smoothly and continuously is used. The smooth

intersection helps alleviate the numerical complexity of treating the compressive corner between the shear surface

and the cap. The yield surface is a function of all three stress invariants, J1, J
′

2, and J
′

3, that correspond to the first

invariant of the stress tensor, the second invariant of the deviatoric stress tensor, and the third invariant of the

deviatoric stress tensor respectively.

J1 = 3P (4.5)

J
′

2 =
1
2

tr(σσσ
′2) (4.6)

J
′

3 = det(σσσ
′

) (4.7)

where

P =
1
3

(tr(σσσ)) (4.8)

and
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σσσ
′

= σσσ−PI (4.9)

Then the three invariant yield function is defined as:

f (J1, J
′

2, J
′

3, κ) = J
′

2−R2F2
f Fc (4.10)

F f is the shear failure surface, Fc is the hardening cap, R is the so-called Rubin scaling factor [96], and κ is the

cap hardening parameter and corresponds to the pressure invariant value at the intersection of the cap with the

shear failure surface. The multiplicative form of the equation allows the shear surfaces and the cap to take on the

same slope at their intersection. The shear failure surface is defined as:

F f (J1) = α−λexp(−βJ1) + θJ1 (4.11)

The values of α, β, λ, θ are parameters that depend on the particular concrete strength that is being used and their

values can be found in [50]. The purpose of the cap is to model plastic volume change related to pore collapse.

The cap surface function is defined as

Fc(J1, κ) = 1−
(J1−L(κ))(|J1−L(κ)|+ J1−L(κ))

2(X(κ)−L(κ))2 (4.12)

The details of the parameters in the above equation can be found in [50].

• Flow rule

Dp = γ̇
∂ f
∂σσσ

, (4.13)

where γ̇ is the so-called consistency parameter [54] that needs to be determined.

• Consistency condition:

ḟ =
∂ f
∂σσσ

: σ̇σσ = 0, (4.14)

The time discrete counterpart of the consistency parameter ∆γ is determined iteratively through the cutting plane

algorithm developed by Simo and Hughes [54].
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Figure 4.1: General shape of the concrete model yield surface in two dimensions in the meridonal plane [50]
.

• Viscoplastic rate effects

Concrete has been shown to have higher strength and stiffness when the loading rate is very high, which is the

case of blast loading. Rate effects are modeled through a viscoplastic formulation that interpolates between the

elastic trial stress and the plastic stress without rate effects. The viscoplastic stress is then defined as

σσσvp = (1−γ)σσσT +γσσσp (4.15)

where σσσvp is the viscoplastic stress with rate effects, σσσT is the elastic trial stress, and σσσp is the plastic stress

obtained from the return mapping algorithm. The details of calculating the value of parameter γ can again be

found in [50].

• Damage formulation

σσσd = (1−d)σσσvp (4.16)

The damage formulation models both strain softening and modulus reduction. The scalar parameter d transforms

the viscoplastic stress tensor without damage σσσvp, to the stress tensor with damage σσσd. The damage parameter

ranges from zero for intact specimens to 1 for fully damaged ones. Damage initiates and accumulates when strain-

based energy terms exceed the specified damage thresholds. Two damage formulations exist; one corresponding

to brittle damage and the other corresponding to ductile damage. Brittle damage accumulates when the pressure

(P) is tensile while ductile damage accumulates when the pressure is compressive. For more details on the
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damage thresholds and on the softening functions that correspond to brittle and ductile damage the interested

reader should consult [50].

4.2 High explosive (HE) modeling

The HE modeling process starts with a chemical reaction that converts the explosives into gas products at high

pressure and temperature. The process has three zones that can be seen in Figure 4.2 and in [98]; the original high

explosive zone, the reaction zone, and the detonation-produced explosive gas zone. The detonation is the propagation

of the reactive wave through the explosive with constant velocity, the detonation velocity. In this work it is assumed that

the chemical reaction and the entire detonation process have already taken place and all the explosives are assumed to

have already been converted to gaseous products in their entirety. According to [99] the pressure transient behind the

detonation wave is given by:

P(x) =
16
27

ρ0

D

( x
2t

+
D
4

)3
(4.17)

where D is the detonation velocity, ρ0 is the initial density of the explosive, t is the current time and t = 0

corresponds to the initiation of the detonation. In this work D = 6930 m/s and ρ0 = 1630 kg/m3. The pressure profile is

calculated through (4.17) assuming that the detonation front has reached the end of the explosive. The temperature is

then calculated through the equation of state (EOS) of the explosives. In the current work we simply use the ideal gas

EOS given by

P = (γ−1)ρCv T (4.18)

where Cv is the specific heat coefficient at constant pressure, γ is the ratio of the specific heats and T is the

temperature.We set Cv = 143.3 J/kgK and γ = 3 according to [99].

4.3 Modeling of a concrete slab subjected to explosive loading

The example presented here is similar to the one found in [100]. A concrete slab is loaded with a plane wave

generator which consists of an inner cone of TNT and an outer cone of Composition B. The slab has a thickness of

0.32 m and an area of 1.2 m ×1.2 m and is discretized with ∼ 1900000 particles. The explosive cone has a diameter of

0.103 m, a height of 0.075 m, and is discretized with ∼ 100000 particles. Both the slab and the explosives are immersed

into a background mesh with dimensions 1.8 m × 1.8 m × 1.8 m, that is discretized with 3375000 isogeometric elements.

The compressive strength of the concrete is 48 MPa and the rest of the parameters can be found in [100]. The initial
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Figure 4.2: High explosive detonation zones [98]

pressure and temperature distributions are calculated from (4.17) and (4.18) and are applied as initial conditions along

the height of the explosive cone assuming uniform distribution in the radial direction. Up to the point of computed

results, there is qualitative agreement between the current computation and the one in [100] (this is still ongoing work),

as can be seen in Figures 4.3,4.4,4.5. Figure 4.3 shows the full concrete specimen, while Figures 4.4 and 4.5 show the

specimen with successive cuts along its length, to clearly show the damage evolution. Furthermore, as pointed out

in [100], due to the large scatter in the experimental data, only qualitative predictions can be made for the problem

under consideration. It should also be pointed out that the damage on the slab exhibits some checkerboard pattern.

This is a well known phenomenon in computational mechanics and is associated with local damage models and strain

localization. In the following chapters we propose a method to introduce a degree of non-locality to our formulation

and improve the well-posedness of the problem.
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(a)

(b)

(c)

(d)

Figure 4.3: Concrete slab subjected to explosive loading. Evolution of damage. Full specimen.
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(a)

(b)

(c)

(d)

Figure 4.4: Concrete slab subjected to explosive loading. Evolution of damage. Cut at half length of specimen.
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(a)

(b)

(c)

(d)

Figure 4.5: Concrete slab subjected to explosive loading. Evolution of damage. Cut and quarter length of specimen.
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Chapter 5

Hyperbolic Phase Field Modeling of Brittle

Fracture: main theory

In this chapter, we begin a discussion on treating the shortcomings of the local damage model presented in the

previous chapter, by introducing a newly developed non-local damage model based on a phase-field approach.

Phase field models for brittle fracture (reviewed in [101]) have recently become popular, in academic circles,

for finite element and isogeometric simulations of solid mechanics. Phase field models represent material integrity on

a continuous scale from zero (the fully damaged phase) to one (the fully intact phase). The phase field of material

integrity over a body is governed by a partial differential equation, which introduces a degree of nonlocality: the

damage state at one point depends (through derivative information) on the states of neighboring points. This improves

well-posedness relative to local damage models, in which history information at each point of the body determines

the level of damage at that point. The use of a well-posed mathematical model ensures that sequences of discrete

approximations converge to a definite limit. Finite element discretizations of local damage models typically fail to

exhibit mesh independence. Local models can be partly salvaged by tuning ad hoc mechanisms, though, and remain

widely implemented in commercial finite element packages.

A criticism frequently leveled at phase field models is that they are more computationally expensive than local

damage models. In phase field models, an elliptic partial differential equation (PDE) must be solved for the damage

parameter at every time step of a simulation. This adds computational cost, and makes such models incompatible

with the lumped-mass explicit dynamics frameworks frequently used to efficiently simulate extreme events involving

material rupture. Similar considerations apply to gradient-enhanced damage models [102], which, mathematically, are

close cousins of phase field fracture models [103].

While some phase field models include time dependence (e.g., [104]), it typically results in a parabolic
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PDE governing the phase field. Such PDEs cannot be efficiently discretized using explicit time integration. Explicit

discretizations would be subject to Courant–Friedrichs–Lewy (CFL) stability restrictions [105] of the form

∆t . ∆x2 , (5.1)

where ∆t and ∆x are time and length scales associated with the discretization. Adhering to such requirements becomes

essentially intractable for large-scale computations in the limit of ∆x→ 0. Other factors may hide this behavior in

pre-asymptotic regimes; Ziaei-Rad and Shen [106] report acceptable performance results while using explicit time

integration of a parabolic phase field model [106, Appendix B]. However, their critical time step analysis [106, Section

3.3] indicates that a CFL condition of the form (5.1) should dominate time step selection after sufficient refinement in

space. Fully-resolving smoothed cracks in space may be necessary for direct numerical simulation of spatially-complex

fracture dynamics, like microbranching instabilities [107]. If we could enforce some speed limit on the propagation of

nonlocal damage effects, we could expect the usual hyperbolic stability condition of

c∆t . ∆x , (5.2)

where c is the wave speed. If we could model nonlocal damage effects using a hyperbolic equation, with a speed limit

of the same order as (or slower than) the acoustic wave speed in the solid under consideration, then we could make

highly-resolved phase field modeling more accessible in fully explicit computations.

Elliptic and parabolic phase field models may also be considered objectionable on the grounds that it is

unphysical to have instant nonlocal communication in a material. For most purposes, it should suffice to consider the

material’s pressure wave speed (and, in classical linear elastic fracture mechanics, the slower Rayleigh wave speed) to

be an upper bound on the rate of crack propagation. While it is now widely believed that supersonic fracture is possible,

this phenomenon is exotic enough to have remained controversial for the entire 20th century [108], and it relies on

physical mechanisms outside the scope of most, if not all, continuum damage and phase field fracture models, including

those with instant nonlocal communication. The prevailing theoretical explanation for supersonic fracture is that a

nonlinear hyperelastic material law locally increases the sound speed near crack tips [109].

Here we derive a hyperbolic phase field model for brittle fracture, by extending the microforce balance theory

of Borden et al. [110, Section 2.3] to include microscopic inertia. We provide guidelines for the choice of parameters,

based on an analogy to the conditions under which the related telegrapher’s equation satisfies a maximum principle; this

allays concerns that “wave-like” nonlocal damage models might lead to unphysical rippling of damage across an object,

or the emergence of negative damage states with unclear physical interpretations.
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5.1 As an extension of existing models

In this section, we propose a hyperbolic extension of an existing parabolic phase field model, based on heuristic

reasoning. We will show how to derive this extension from more basic ideas in Section 5.2. However we first proceed

with the present, less-principled approach, to provide the reader with a general overview of our idea, and to expose

some of the issues that come up. Our point of departure is the model proposed by Kuhn and Müller [104], in which the

damage parameter evolves according the the following equation of motion:

1
M

ṡ + 2sW(εεε)−Gc

(
2ε∆s +

1− s
2ε

)
= 0 , (5.3)

where s is the phase field damage parameter, εεε is the linearized engineering strain, W is the un-damaged strain energy

functional, Gc is the fracture energy (from Griffith’s theory [111]), i.e., the amount of energy required to open a unit

area of crack surface (in the quasi-static limit), and ε is a length scale over which cracks are smoothed. M is a parameter

controlling the rate at which local damage information diffuses into the bulk material. Standard quasi-static phase field

fracture models (e.g., [112]) that regularize Griffith’s criterion (and their straightforward generalizations to dynamic

fracture, e.g., [110]) correspond to the limit M→∞. The Kuhn–Müller model (5.3) serves to bridge the gap between

these quasi-static models and the earlier dynamic phase-transition models of crack growth that originated in physics,

based on an analogy to the Ginzburg–Landau theory of phase transitions in superconductors [113, 114]. See [101] for a

more comprehensive review of the history of phase field fracture models.

A difficulty with the model (5.3) is that the phase field is governed by a parabolic heat-equation-like PDE with

an unfavorable CFL condition and physically-unrealistic instantaneous communication. Noting that (5.3) is similar to

the heat equation, we extend it by analogy to the so-called “telegrapher’s equation”, which is sometimes used to model

heat conduction with a finite speed limit. In particular, we propose to add a second-order time derivative:

1
M

ṡ +
2Gcε

c2 s̈ + 2sW(εεε)−Gc

(
2ε∆s +

1− s
2ε

)
= 0 , (5.4)

where c is a speed limit on the propagation of the phase field through the undamaged material. We propose to set c to

the speed of pressure waves, as this is the maximum speed at which information can be transmitted through the material.

For an isotropic linear elastic material with shear modulus G, bulk modulus K, and mass density ρ,

c =

√
K + 4

3G

ρ
. (5.5)

A possible cause for concern is that s will evolve in a wave-like manner if M is too large. Conceptually, we want s to be

governed by “diffusion with a speed limit”, not “wave propagation with some damping”. M should be sufficiently small
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to ensure that the system is “overdamped”, in the sense that, if the damage parameter is initially positive, it can never

become negative. Proceeding heuristicially, we can estimate the necessary upper bound on M by thinking about the

damped harmonic oscillator

1
M

ẋ +
2Gcε

c2 ẍ = −

(
2W(εεε) +

Gc

2ε

)
x + (external forces) (5.6)

and requiring that it be overdamped. Thus one might suppose that a sufficient condition for s to maintain a maximum

property would be
(2ζω0)2

4ω2
0

> 1 , (5.7)

where

ω2
0 =

c2

Gcε
W(εεε) +

c2

4ε2 (5.8)

and

2ζω0 =
c2

2MGcε
, (5.9)

in which ω0 is the undamped resonant frequency and ζ is the canonical damping ratio. Substituting definitions and

simplifying, this imposes the upper bound

M <
c

2
√

4GcεW(εεε) +G2
c

. (5.10)

Remarkably, a more rigorous analysis of maximum principles for the telegrapher’s equation also supports this bound,

under periodicity assumptions in space and time. In summary, Ortega and Robles-Pérez [115] analyze equations of the

form

s̈− s′′+Cṡ−λs = f , (5.11)

and conclude that there exists some ν such that, if f ≥ 0, then s ≥ 0, as long as 0 < −λ ≤ ν. They show that ν is bounded

above and below like
C2

4
< ν ≤

C2

4
+

1
4

. (5.12)

Thus we can ensure s ≥ 0 by enforcing −λ <C2/4. For our problem, the analogous equation to (5.11) is

s̈− c2s′′+
c2

2GcεM
ṡ +

(
c2W(εεε)

Gcε
+

c2

4ε2

)
s =

Gc

2ε
. (5.13)

Because the dimensions of coefficients for ṡ and s (i.e. our “C” and “−λ”) are 1/time and 1/(time)2, we can re-scale the

length units to make the coefficient of the s′′ term equal to unity without affecting the condition −λ <C2/4. Making the
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necessary substitutions, one obtains exactly the condition (5.10), which was derived from more heuristic considerations.

Remark 1. An alternative approach to avoiding a negative phase field might be to simply include an inequality constraint

that s ≥ 0, which would allow M to be selected independently. However, this would complicate the mathematical

structure of the problem and introduce difficulties in the discretized setting, so, in the present work, we have not pursued

the constraint-based approach to phase field non-negativity.

5.2 Derivation from microforce balance

To arrive at a suitable model for large-displacement analysis, we now approach the problem more systematically,

from the standpoint of nonlinear continuum mechanics and Gurtin’s concept of “microforce balance” [116]. Microforce

is a rather abstract concept but can be thought of as an auxiliary scalar field, π, that does work needed to rearrange the

microscopic configuration of matter in a system. This microscopic configuration is characterized at each point by the

phase field s, and πṡ is the rate of work done per unit volume, at the microscopic level, as s changes. In other words,

ṡ is rate-of-work conjugate to the microforce density. This is analogous to how f · ẋ is the rate of work done by an

ordinary force f acting on a particle with position x.

The derivation of standard phase-field fracture models from microforce balance in [117, Section 2.3] does

not accommodate phase field evolution equations of the form (5.4). However, if we include an extra “microscopic

inertia” term in the balance equations, the second time derivative emerges naturally. A similar idea has been considered

previously in the context of continuum damage modeling by [118], but is largely dismissed therein as a mathematical

curiosity, citing practical concerns of wave-like damage propagation [118, Remark 1 in Section 3.3]. These concerns

are rendered unnecessary by enforcing a lower bound on the damping coefficient to ensure positivity of the phase field,

as explained in Section 5.1. The role of microscale inertia in void growth has been investigated in detail by Ortiz and

Molinari [119]. However, in the present work, we do not attempt to motivate the inclusion of microscopic inertia by

appealing to any particular physical process; it is simply a phenomenological device introduced to limit the speed at

which non-local damage effects propagate.

We now derive our phase field equation of motion from microforce balance, borrowing heavily from [117].

For simplicity, we assume an isothermal setting. The usual laws of linear and angular momentum balance apply; in a

concise differential form, in the Lagrangian description, these are

∇ · (FS) + B = ρ0Ü , S = ST , (5.14)

where U is the displacement, F = I +∇U is the deformation gradient, S is the second Piola–Kirchhoff stress, and B is

a body force density. All spatial derivatives are understood to be taken with respect to Cartesian coordinates of the

57



reference configuration. To incorporate damage, we supplement these standard laws with a microforce balance law. In

integral form, the conservation law for the scalar microforce density π on some arbitrary material region Ω0 of a solid

continuum is ∫
∂Ω0

ξξξ ·N dΓ+

∫
Ω0

l dΩ+

∫
Ω0

π dΩ =
D
Dt

∫
Ω0

ρs ṡ dΩ0 , (5.15)

where ξξξ is a microforce flux vector, N is the normal to ∂Ω0, and l is a volumetric microforce source term. For simplicity,

the physical parameter ρs > 0 is assumed to be constant. The corresponding differential form of this modified balance

law is

∇ · ξξξ+π+ l = ρs s̈ . (5.16)

The additional term in this balance law implies that ongoing damage has some tendency to continue its progression.

This is not altogether implausible; one might expect widening micro-cracks to continue widening in the absence of

external forces, due simply to the inertia of the surrounding material. With the modified microforce balance law, energy

balance is

D
Dt

∫
Ω0

(
1
2
ρ0|U̇|2 +

1
2
ρs ṡ2 +ρ0e

)
dΩ

=

∫
∂Ω0

(FSN) · U̇ dΓ+

∫
Ω0

B · U̇ dΩ+

∫
∂Ω0

(ξξξ ·N) ṡ dΓ+

∫
Ω0

lṡ , (5.17)

where e is internal energy. Note the presence of an extra “microscopic kinetic energy” term. Using (5.15) and

momentum balance, (5.17) implies

ρ0ė =
1
2

S : Ċ + ξξξ · ∇ṡ−πṡ , (5.18)

where C = FT F is the right Cauchy–Green deformation tensor. The Clausius–Duhem inequality implies (under

isothermal conditions) that energy change bounds the rate-of-change of Helmholtz free energy, ψ:

ρ0ψ̇ ≤ ρ0ė . (5.19)

Expanding this inequality, under the assumption that ψ can depend on C, s, and ∇s,

∫
Ω0

ρ0ψ̇ dΩ =

∫
Ω0

(
ρ0
∂ψ

∂C
: Ċ +ρ0

∂ψ

∂s
ṡ +ρ0

∂ψ

∂∇s
· ∇ṡ

)
dΩ

≤

∫
Ω0

(
1
2

S : Ċ + ξξξ · ∇ṡ−πṡ
)

dΩ . (5.20)
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Because this inequality must hold for arbitrary admissible histories of C, s, ∇s, and their time derivatives, we get that

2ρ0
∂ψ

∂C
= S , (5.21)

ρ0
∂ψ

∂∇s
= ξξξ , (5.22)

and, considering only ṡ ≤ 0 admissible, i.e., forbidding crack healing,

(
π+ρ0

∂ψ

∂s
+λ

)
≥ 0 , (5.23)

where λ is a Lagrange multiplier for the constraint ṡ ≤ 0, satisfying the dual feasibility and complementary slackness

conditions,

λ ≥ 0 , (5.24)

λṡ = 0 , (5.25)

the second of which ensures that λ = 0 whenever the phase field is decreasing. Interpreted in the context of microforces,

λ is a constraint microforce, but the complementary slackness condition ensures that λ does no microscopic work, and

therefore does not affect the energy balance equation stated before formulating the constraint. We may re-write the last

inequality as

π+ρ0
∂ψ

∂s
+λ+βṡ = 0 , (5.26)

where β ≥ 0 is some function of C, s, and/or ∇s that encapsulates additional dissipative effects of damage processes.

Using (5.16) to replace π in (5.26), then using (5.22) to replace ξξξ, we get a PDE governing the time evolution of s:

∇ ·

(
ρ0

∂ψ

∂∇s

)
+ l−ρ0

∂ψ

∂s
−λ = ρs s̈ +βṡ . (5.27)

Following Borden [117], we assume that l = 0 and choose

ρ0ψ = g(s)W+ + W−+Gc

(
(1− s)2

4ε
+ε|∇s|2

)
, (5.28)

where W+ and W− are stored energy functionals corresponding to the tensile and compressive responses of the

undamaged material and g(s) is the degradation function, which allows the phase field to damage the tensile material

response. Unless stated otherwise, this work assumes that

g(s) = s2 . (5.29)
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Note, in particular, that g(1) = 1 in the undamaged state, and g(0) = 0 in the completely damaged state. Other possible

choices of degradation function are discussed in [120, Section 4.1].

Remark 2. In many other papers on phase field fracture, the degradation function g(s) is replaced with

gη(s) = (1−η)g(s) +η or gη(s) = g(s) +η , (5.30)

where 0 ≤ η� 1 is a small dimensionless parameter, to provide additional residual strength in the fully damaged state.

The claim is that this extra residual strength provides stability, although we have found that η = 0 is typically sufficient,

and η > 0 can lead to much worse results in certain dynamic fracture problems (with or without time derivative terms in

the phase field equation of motion).

5.3 A complete model with approximate irreversibility

We now spell out the details of implementing the model derived in Section 5.2, assuming an isotropic

St. Venant–Kirchhoff constitutive model for the elastic regime. We relax the constraint that ṡ < 0 by using a strain

history functional to approximately enforce non-healing of fractures.

5.3.1 Constitutive modeling

To derive the terms W+ and W− in the free energy functional (5.28), we first choose a desired constitutive

model for the un-damaged material with strain energy W, then additively decompose it like

W = W+ + W− . (5.31)

This decomposition is not unique; the particular choice affects how cracks nucleate and propagate. The effective

damaged strain energy functional determining the stress–strain response with fixed s is then

W̃ = g(s)W+ + W− , (5.32)

such that the second Piola–Kirchhoff stress is S = 2∂W̃/∂C.

In this work, we take the simplest route to extending the linear-elastic framework of [110] to handle large

rotations. We select the un-damaged free energy to be that of the St. Venant–Kirchhoff model:

W =
1
2
λ (trE)2 +µtr

(
E2

)
, (5.33)
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where λ and µ are the Lamé parameters. This essentially uses the Green–Lagrange strain E = 1
2 (C− I) in place of the

engineering strain in the model of [110].

Remark 3. The St. Venant–Kirchhoff model has well-known shortcomings in the case of strong compression [121,

Section 6.5, Exercise 4]. Borden et al. [117, Section 3.1] suggest an alternative using the Hencky strain, but report

convergence difficulties. For many cases of interest, though, compressive deformations are not sufficient to induce the

unstable behavior of the St. Venant–Kirchhoff model. An important caveat is that, when using this model, the strain

energy must remain undamaged in compression. Some phase field fracture models, e.g. that of [122], have used the

trivial “split” of W+ = W, which relies on W →∞ as detF→ 0 and a regularized degradation function of the form

discussed in Remark 2 to prevent damaged material from collapsing to zero volume under compression. The potential

(5.33) does not possess the property of diverging under compression and, if its response to compression is damaged, the

resulting instability may become significant.

Further pursuing the substitution of εεε→ E throughout the formulation of [110], we assign1

W+ =
1
2
λ {trE}2+ +µtr

(
E+E+) (5.34)

and

W− =
1
2
λ {trE}2−+µtr

(
E−E−

)
, (5.35)

where {·}± selects the ± part of its argument, i.e.,

{x}± =


x x ∈ R±

0 otherwise
, (5.36)

and E± are determined by diagonalizing E and isolating portions corresponding to positive and negative eigenvalues. In

particular, let

E = PΛΛΛPT , (5.37)

where ΛΛΛ = diag(λ1,λ2,λ3) has the eigenvalues of E on its diagonal and P has the corresponding eigenvectors as its

columns. Then

E+ = PΛΛΛ+PT , (5.38)

E− = PΛΛΛ−PT , (5.39)

where

ΛΛΛ± = diag({λ1}±, {λ2}±, {λ3}±) . (5.40)
1N.b. that {trE}± , tr

(
E±

)
.
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The second Piola–Kirchhoff stress can then be computed by differentiating W̃ with respect to E:

S = g(s)S+ + S− , (5.41)

where

S± =
∂W±

∂E
= λ{trE}±I + 2µE± . (5.42)

5.3.2 Approximate enforcement of irreversibility

To simplify the mathematical structure of the problem, we remove the Lagrange multiplier λ used to enforce

the constraint ṡ ≤ 0 in Section 5.2. However, to have a practical model, we still need some mechanism to ensure that

fractures do not heal. Following Borden [120, Section 3.6.1], we introduce a strain history functional

H(X, t) = max
τ≤t

(
W+(F(X, τ))

)
, (5.43)

to be used in place of the tensile strain energy W+ in the phase field’s governing equation. Essentially, we are making

the approximation

λ ≈ g′(s)
(
H −W+) . (5.44)

While the use of a history functional may not strictly follow from the microforce derivation, it has several practical

advantages in computations, as discussed by Borden in [120, Section 3.6.1]. An alternative approach is that of Wheeler

et al. [123], in which the Lagrange multiplier field is computed using augmented Lagrangian iteration. In explicit

computations, one might also consider simply applying the constraint explicitly at each time step, but we have not

studied that alternative in detail.

5.3.3 Weak form and finite element discretization

Pulling together the ideas from previous sections, we now state the weak form of the coupled nonlinear

elastic and hyperbolic phase field equations, assuming the St. Venant–Kirchhoff elasticity model and approximating

irreversibility with the strain history functional. The weak problem is: Find displacement y ∈ Sy and phase field s ∈ Ss

such that, for all w ∈ Vy and r ∈ Vs,

(ρ0ÿ− f,w)L2(Ω0) + (S,DwE)L2(Ω0)− (h,w)L2((Γh)0)

+

((
2Gcε

c2 s̈ +
1
M

ṡ + g′(s)H +
Gc(s−1)

2ε

)
,r

)
L2(Ω0)

+ (2εGc∇s,∇r)L2(Ω0) = 0 , (5.45)
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where Ω0 is the reference configuration of the body, ρ0 is the mass density in the reference configuration, f is a body

force, S is the second Piola–Kirchhoff stress given by (5.41),

DwE =
d
dε

E(y + εw)
∣∣∣∣∣
ε=0

, (5.46)

h is a prescribed traction on the Neumann boundary (Γh)0 ⊂ ∂Ω0, Gc is the fracture energy, ε is the phase field length

scale parameter, and H is the history parameter defined in (5.43). Based on the heuristic exposition of Section 5.1,

using g(s) = s2, we choose the phase field speed limit parameter c according to (5.5) and M according to

M = CM
c

2
√

4GcεH +G2
c

. (5.47)

In principle, we should select CM ∈ (0,1). As a default value in computations, we use CM = 1, unless otherwise

specified, to avoid excessive artificial damping.2 The question of whether or not this ensures that the phase field remains

non-negative remains open, but we do not observe significant negative values of s in any of our numerical experiments

(beyond levels attributable to discretization error, as seen also with models not involving s̈). We elaborate in the sequel

how one might alternatively select c in a phenomenological way, to model empirically-observed rate toughening effects,

but a careful investigation of that possibility is left for future research.

Remark 4. Note that, for different choices of degradation function, M should be selected differently. The coefficient of

the reaction term (corresponding to −λ in the model problem (5.11) of [115]) would become nonlinear in the phase

field, i.e.,
g′(s)

s
H , (5.48)

rather than 2H . For reasons of numerical stability, (5.48) should be simplified based on the analytical expression for

g′(s), to avoid dividing by s, which we expect to become very small.

The weak problem (5.45) can be stably discretized in space using the Bubnov–Galerkin approach, i.e., posing

(5.45) directly on finite-dimensional subspaces of the test and trial spaces. In the present paper, we use standard

Lagrange finite element spaces, to clearly separate new modeling (i.e., alteration of the PDE used for phase field fracture

analysis) from new discretization techniques.

We discretize in time using the generalized-α method [63]. This is an implicit, second-order accurate time

integration scheme which evaluates displacements, velocities, and accelerations at intermediate “α-levels” between

time steps, based on a collection of parameters α f , αm, β, and γ that are uniquely-determined by a scalar ρ∞ ∈ [0,1].

The parameter ρ∞ is the spectral radius of the method’s amplification matrix as the time step, ∆t, goes to infinity. As

2To satisfy purists, one might formally say that CM = 1− ε, to agree with the non-inclusive upper bound, then take ε smaller than machine
precision.
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explained in [124], the implicit method of [63] can be extended to an explicit predictor–multi-corrector scheme by

using a fixed number of Newton iterations with an approximate tangent matrix to resolve the implicit nonlinear problem,

regardless of convergence.3 We refer to [65] for a detailed account of the generalized-α method in the notation used

here. The only non-standard aspect of applying this approach to the present problem is the treatment of the strain history

functional, H . The most natural approach is to evaluate H at the same intermediate time level as the displacement

when assembling the residual of the nonlinear implicit problem:

Hn+α f = max
{
Hold ,

(
W+)n+α f

}
, (5.49)

where
(
W+)n+α f is computed from the α f -level structural strain state andHold is the previous maximum value of W+.

Once the solution for the n + 1-level displacement field yn+1 is obtained,Hold is updated toHold←Hn+α f .

For explicit computations using the quadratic degradation function g(s) = s2, we employ the following

approximate tangent form:

D{∆yn+1,∆sn+1}Res
(
yn+α f , ẏn+α f , ÿn+αm , sn+α f , ṡn+α f , s̈n+αm ,w,r

)
≈

αm

β∆t2

(ρ0∆yn+1,w
)

L2(Ω0)
+

(
2Gcε

c2 ∆sn+1,r
)

L2(Ω0)


+
α f γ

β∆t

(
1

Mn+α f
∆sn+1,r

)
L2(Ω0)

+α f

((
2Hn+α f +

Gc

2ε

)
∆sn+1,r

)
L2(Ω0)

, (5.50)

where Res(y, ẏ, ÿ, s, ṡ, s̈,w,r) is the residual of the weak problem (5.45) and D{∆yn+1,∆sn+1} indicates directional differ-

entiation with respect to yn+1 and sn+1, in the directions ∆yn+1 and ∆sn+1 (cf. (5.46)). (All α-level quantities can be

considered to be functions of these (n+1)-level unknowns; see [65] for detailed formulas.) The CFL conditions emanate

mainly from omitting the spatial derivative terms

D{∆yn+1,∆sn+1}

{(
Sn+α f ,DwEn+α f

)
L2(Ω0) +

(
2εGc∇sn+α f ,∇r

)
L2(Ω0)

}
(5.51)

from the tangent form. Matrix representations of (6.27) in finite element bases have the discrete structure of mass

matrices; one might expect improved computational speed (and possibly greater stability) from applying standard

mass lumping techniques [126, Section 7.3.2]. However, explicitly-integrated computations in this paper leave these

mass-like matrices in consistent form to isolate the effects of omitting (5.51) on the CFL stability condition.

3If a single corrector pass is used in structural dynamics problems and the approximate tangent is the mass matrix, optimal generalized-α
parameters are provided in [125]. These differ from those derived from ρ∞ in the implicit scheme. However, in the present work, we solve a different
PDE system, use a different approximate tangent, apply multiple corrector passes, and use the parameter selection from the implicit scheme.
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5.4 Conclusions

Using a hyperbolic PDE system to model dynamic brittle fracture appears to be an attractive option. Pathologi-

cal wave-like damage propagation can be avoided by including an appropriately-tuned dissipation mechanism. Our

proposed model admits two interpretations:

1. A further regularization of the traditional elliptic phase field model that one obtains from a Mumford–Shah style

approximation of Griffith fracture. (The limit of c→∞ clearly corresponds to the elliptic model and, under

additional simplifying assumptions, the limit of ε→ 0 in the elliptic model (Γ-)converges to Griffith fracture

[127].)

2. A constitutive model, in which ε > 0 and c < ∞ might be tuned to capture macroscopic process zone size,

deterministic size effect [128], and rate toughening. One might also use this rate-toughening effect with a length

scale larger than the true process zone size, to model energy dissipation through small branches that cannot be

practically resolved. Microbranching is discussed as a rate-toughening mechanism in [129, Section III.C].

In the present proof-of-concept study, we selected the phase field propagation speed in terms of other parameters

of the problem, for convenience, and with the goal of having a similar CFL condition to elastodynamics. Such a

mathematically-motivated parameter selection is more in line with the first interpretation. However, in view of the

available experimental data, converged solutions resulting from this simple-minded approach are not obviously less

valid than those from the elliptic model. Further work may attempt to fine-tune the selection of the phase field speed

limit parameter, to model rate toughening effects.

In the next chapter, the model developed here will be implemented within the isogeometric–meshfree hybrid

framework for air-blast–structure interaction analysis presented in the previous chapters.. In that setting, accuracy

considerations for compressible flow and elastodynamics drive the time step down to a size for which explicit simulation

using a lumped mass matrix is much more efficient than implicit time integration. By using a hyperbolic phase field

model in this setting, we will be able to avoid slowing this framework down by adding a linear solve at each time step,

as would be needed with an elliptic model, or extreme reduction of the time step as the spatial discretization is refined,

as would be needed for explicit time integration of a parabolic model.
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Chapter 6

Hyperbolic Phase Field Modeling of Brittle

Fracture: immersed IGA-RKPM coupling

for ABSI

In this chapter we present the coupling of the ABSI formulation developed in chapters 2 and 3 with the

phase-field damage model developed in chapter 5.

6.1 Mathematical modeling

This section states how we represent compressible fluid interacting with a brittle solid as a system of PDEs.

To facilitate the development of variational numerical methods, we state the PDE system in a weak form. Our basic

modeling assumptions are that the solid behaves as described in chapter 5, and the fluid is as modeled in [55, 124, 130],

namely, a compressible flow with Newtonian viscosity, equal thermodynamic and mechanical pressures, and an ideal

gas equation of state. Standard kinematic and dynamic compatibility conditions are assumed at the fluid–structure

interface.

6.1.1 Weak form of the coupled FSI–phase field problem

Let Ω ⊂ Rd denote a region of d-dimensional space occupied by compressible fluid and brittle solid. Let Ω f

and Ωs denote the individual, time-dependent fluid and solid subdomains, such that Ω f ⋃Ωs = Ω and Ω f ⋂Ωs = ∅. Let

Ωso denote the solid subdomain in the reference configuration, such that x = φ(X, t), where x is a material point Ωs, X is
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the corresponding material point in the reference configuration Ωso, and φ defines the motion of the body. ∇x denotes

differentiation with respect to coordinates of the current configuration, and ∇X denotes differentiation with respect to

coordinates of the reference configuration.

Find a vector of Eulerian velocity, pressure, and temperature fields Y ∈ Sy and a scalar phase field s ∈ Ss such

that, for all test functions W ∈ Vy and r ∈ Vs,

M f
Ω f (W,Y) + B f

Ω f (W,Y)−F f
Ω f (W)

+ Ms
Ωs (W,Y) + Bs

Ωs (W,Y)−F s
Ωs (W)

+ KΩso (r, s) = 0, (6.1)

where S(·) andV(·) are trial solution and test function spaces, forms superscripted f correspond to the fluid subproblem,

forms superscripted s correspond to the structure subproblem, the form K defines the phase field subproblem, and

subscripts on forms indicate the domain over which they are integrated. Note that functions in the spaces Sy andVy

are defined on all of Ω. The spaces Ss andVs, on the other hand, consist of functions defined on the reference solid

domain, Ωso. The various forms appearing in (6.1) are defined as follows:

M f
ω(W,Y) =

∫
ω

W ·
(
A f

0Y,t
)

dω, (6.2)

B f
ω(W,Y) =

∫
ω

W ·
(
Aa

i Y,i
)

dω−
∫
ω

W,i · (F
p
i −Fd

i ) dω, (6.3)

F f
ω(W) =

∫
ω

W ·S f dω+

∫
Γ

f
H

W ·H f dΓ, (6.4)

Ms
ω(W,Y) =

∫
ω

W ·
(
As

0Y,t
)

dω, (6.5)

Bs
ω(W,Y) =

∫
ω

W ·
(
As

i Y,i
)

dω+

∫
ω

W,i ·Fσi dω, (6.6)

F s
ω(W) =

∫
ω

W ·Ss dω+

∫
Γs

H

W ·Hs dΓ, (6.7)
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Kω(r, s) =

∫
ω

r ·
(

2Gcε

c2 s̈ +
1
M

ṡ + g′(s)H +
Gc(sh−1)

2ε

)
dω+

∫
ω

(2εGc∇Xr · ∇Xs) dω (6.8)

The repeated index i is implicitly summed over the range 1, . . . ,d, and the subscript “ , i ” indicates partial differentiation

of a quantity in the direction i. Γ
f
H and Γs

H are the subsets of the fluid- and solid-domain boundaries where natural

boundary conditions are imposed, and H f and Hs contain the prescribed values of the natural boundary conditions. The

Euler Jacobians A f
0 , Aα

i , As
0, and As

i , fluxes Fp
i , Fd

i , and Fσi , and source terms S f , Ss, H f , and Hs for the Eulerian fluid

and solid subproblems are defined in [124]. Gc is the fracture energy (from Griffith’s theory [111]), i.e., the amount of

energy required to open a unit area of crack surface (in the quasi-static limit), ε is a length scale over which cracks

are smoothed, M is a parameter controlling the rate at which local damage information diffuses into the bulk material,

H is a strain history variable driving damage evolution, and g is the so-called degradation function, which modulates

material strength. Throughout the current paper, the quadratic degradation function is used:

g(s) = s2 . (6.9)

Further details on the selection and interpretation of phase field subproblem parameters can be found in Part I.

6.1.2 Solid constitutive modeling

The fluxes Fσi appearing in the solid subproblem involve the solid’s Cauchy stress, σσσ. This stress is determined

as in chapter 5: we choose a desired hyperelastic constitutive model for the un-damaged material, with strain energy W,

then additively decompose it into tensile (+) and compressive (-) parts:

W = W+ + W− . (6.10)

The effective damaged strain energy functional determining the stress–strain response with fixed s is then

W̃ = g(s)W+ + W− . (6.11)

In Part I, we selected the un-damaged free energy to be that of the St. Venant–Kirchhoff model, and determined

the split into tensile and compressive parts based on the eigenvalues of the Green–Lagrange strain tensor. However,

the St. Venant–Kirchhoff model exhibits significant instabilities in the case of strong compression [121, Section 6.5,

Exercise 4]. For this reason, a neo-Hookean material model (cf. [117]) is used for the coupled air-blast–structure

interaction examples presented in the current work, where strong compression induced by the blast loading is expected.

For a neo-Hookean material with bulk modulus K and shear modulus µ, deformed with deformation gradient F, W+
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and W− are given by

W+ =


U(J) + W(b) J ≥ 1

W(b) J < 1
(6.12)

and

W− =


0 J ≥ 1

U(J) J < 1
(6.13)

where

U(J) =
1
2

K
(

1
2

(
J2−1

)
− lnJ

)
, (6.14)

W(b) =
1
2
µ
(
trb−3

)
, (6.15)

J = detF , (6.16)

b = FFT , (6.17)

and

b = J−2/3b . (6.18)

We can obtain the Cauchy stress as follows:

σσσ =
2
J

b
∂W̃
∂b

. (6.19)

σσσ = J−1FSFT (6.20)

For the given form of the strain energy, this results in the following expression:

σσσ =
2
J

b


g(s)

(
U′(J) ∂J

∂b +
∂W(b)
∂b

)
J ≥ 1

U′(J) ∂J
∂b + g(s) ∂W(b)

∂b J < 1
(6.21)

The necessary derivatives can be computed as follows:

U′(J) =
1
2

K
(
J− J−1

)
. (6.22)

∂J
∂b

=
∂
√

detb
∂b

=
1
2

Jb−1 . (6.23)
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∂W
∂b

=
∂W

∂b
∂b
∂b

=
J−2/3

2
µ

(
I−

1
3

(trb)b−1
)

. (6.24)

Substituting these into the definition of the Cauchy stress, we get

σσσ =


g(s)

{
1
2 K

(
J− J−1

)
I + J−5/3µ

(
b− 1

3 (trb)I
)}

J ≥ 1

1
2 K

(
J− J−1

)
I + g(s)

{
J−5/3µ

(
b− 1

3 (trb)I
)}

J < 1 .

(6.25)

6.2 Numerical implementation

In order to obtain a numerical method, we pose the weak FSI–phase field problem over finite-dimensional

subspaces Sh
(·) andVh

(·) of S(·) andV(·). Pulling together the constructions from [124, 130] and chapter 5, the spatially-

discretized weak form is: Find Yh ∈ Sh
y and phase field sh ∈ Sh

s such that, for all Wh ∈ Vh
y and rh ∈ Vh

s ,

M f
Ω

(Wh,Yh) + B f
Ω

(Wh,Yh)−F f
Ω

(Wh) + Bst
Ω(Wh,Yh) + Bdc

Ω (Wh,Yh)

+ Ms
Ωs (Wh,Yh) + Bs

Ωs (Wh,Yh)−F s
Ωs (Wh)

−
(
M f

Ωs (Wh,Yh) + B f
Ωs (Wh,Yh)−F f

Ωs (Wh) + Bst
Ωs (Wh,Yh) + Bdc

Ωs (Wh,Yh)
)

+ KΩso (rh, sh) = 0 . (6.26)

We emphasize several important departures from the original weak problem. Note first that the semi-discrete fluid

subproblem contains additional terms superscripted st (for “stabilization”) and dc (for “discontinuity capturing”).

These are incorporated to enhance stability of the numerical method in the presence of advection and shocks. Precise

definitions of these terms may be found in [55]. Secondly, the seemingly-redundant notation of adding, then subtracting

the fluid suproblem terms on Ωs reflects our numerical quadrature procedure: integration over Ω is approximated

with a quadrature rule defined on a background mesh, while integration over Ωs is approximated with quadrature over

the foreground meshfree discretization. Integration over Ω f is accomplished by taking the difference of these two

quadrature rules.

We select isogeometric splines for the background spaces Sh
y andVh

y , and RKPM meshfree spaces for Sh
s and

Vh
s in the foreground. In particular, the background spaces are chosen as equal-order non-uniform rational B-splines

(NURBS), the details of which can be found in reference [40]. A brief review of this technology, with emphasis on

aspects needed in the present work, can be found in [130, Section 2]. An account of the RKPM basis functions and

quadrature rules used in this work can be found in [130, Section 3]. For all computations in this paper, we use C1

quadratic B-splines for IGA. For RKPM, we use a cubic B-spline kernel with rectangular support and enforce linear

reproducing conditions.
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To obtain a fully-discrete problem, we discretize the semi-discrete problem (6.26) in time, using the lumped-

mass explicit generalized-α predictor–multi-corrector detailed in [124, Section 3.3]. Extending this to include the phase

field’s dynamics, the “mass matrix” associated with that subproblem is obtained by assembling the bilinear form1

αm

(
2Gcε

c2 ∆s̈n+1,r
)

L2(Ωso)
+α f γ∆t

(
1

Mn+α f
∆s̈n+1,r

)
L2(Ωso)

+α f β∆t2
((

2Hn+α f +
Gc

2ε

)
∆s̈n+1,r

)
L2(Ωso)

(6.27)

using nodal quadrature and row-sum mass-lumping. The form’s arguments ∆s̈n+1 and r are trial and test functions in

Vh
s . For details concerning notation for the time integration procedure (e.g., definitions of α f , β, γ, etc.), consult [124,

Section 3.3]. The form (6.27) is consistent with the approximate tangent used for explicit finite element computations

in chapter 5, but written for the acceleration-based predictor–multi-corrector of [124], as suggested by the choice of

symbol for the trial function argument.

A crucial difference between the present computational framework and that of [130] is the treatment of the

structure’s deformation gradient, F. The deformation gradient is needed in a number of contexts: (1) to obtain the

quadrature weights for integrals over Ωs, (2) to compute W+, when updatingH , and (3) to compute the Cauchy stress,

σσσ. In [130], F was computed from a Lagrangian displacement field defined on the RKPM foreground discretization.

This definition is obviously unsuitable for simulations involving fragmentation of the foreground structure. In the

present work, the deformation gradient is treated as a history variable, stored at RKPM nodes, and is computed from the

formula
∂F
∂t

∣∣∣∣∣X = ∇xu(φφφ(X)) F(X) , (6.28)

where u is the Eulerian fluid–structure velocity field, whose components belong to the vector Y introduced earlier. In

particular, we use the following finite difference approximation of (6.28):

Fn+1−Fn

∆t
= ∇xun+α f Fn+α f , Fn+α f = Fn +α f (Fn+1−Fn) (6.29)

⇒ Fn+1 = Fn +∆t (∇xun+α f (Fn +α f (Fn+1−Fn))) (6.30)

⇒ Fn+1 = (I−α f ∆t∇xun+α f )−1(Fn +∆t∇xun+α f (Fn−α f Fn)) . (6.31)

This method of updating F appears to be very robust, even for extreme deformations of totally-damaged material. One

might also consider applying ideas from semi-Lagrangian RKPM analysis [85], but this would require substantial

reformulation and/or modification of the Lagrangian theory developed in Part I, so we defer exploration of that possibility

to future studies.
1Note that this formula is specialized to our choice of degradation function, g(s) = s2.
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6.3 Framework verification

To verify the accuracy of the proposed IGA–RKPM discretization, we apply it to two well-known dynamic

fracture problems. The problems selected illustrate a number of important fracture phenomena that have been observed

in experiments. The purpose of these solid-only problems is to verify that the proposed standalone phase-field fracture

formulation works. Therefore, as in [130], it is assumed that air does not play any role and is thus excluded. Fluid

verification was performed in [130], and is thus not necessary here.

6.3.1 Dynamic crack branching

A plate with an initial crack is placed in tension, causing the crack to extend, then branch into two cracks.

According to the immersed nature of the approach described in this paper, two geometries are discretized, for the

foreground and background. To prevent communication between meshfree nodes on either side of the initial crack,

the foreground solid geometry is approximated with a finite-thickness crack. For refinement level N, the foreground

reference geometry is

Ωso
N = ((0.01L,0.11L)× (0.01L,0.05L)) \ ((0.01L,0.06L)× (0.02L−WN ,0.02L + WN)) , (6.32)

where L = 1 m, WN = W0×2−N is half the width of crack, and W0 is the full width of the crack at level N = 1.

These geometries converge toward a zero-thickness crack as N→∞. The background domain Ω is taken to be

Ω = ((0,0.12L)× (0,0.06L)) . (6.33)

The structure subproblem uses the St. Venant–Kirchhoff model presented in Part I with E = 32×109 Pa and ν = 0.2.

The fracture energy is Gc = 3 Jm−2, and the length scale is ε = 2.5×10−4 m.

We consider three discretizations, labeled MN, at refinement levels N = 1,2,3. M1 has 150×75 elements for

the background grid and ∼ 200×81 particles for the foreground grid. M2 has 300×150 elements for the background

and ∼ 400×162 particles for the foreground. M3 has 600×300 background elements and ∼ 800×324 foreground

particles.2 Figure 6.1 shows the background and foreground discretizations corresponding to M2. The time step used

with discretization MN is ∆t = 5×10−8×21−N s.

Figure 6.2 shows several snapshots of the phase field on M1–M3. The minor asymmetry observed, especially

on M3, is explained as a physical instability in [131]. Figure 6.3 compares the speed of the cracks. We define crack

speed in our phase field model of this problem to be: The rate of change with respect to time of the X1 coordinate of the

2These foreground particle counts are approximate, because they do not account for removal of particles falling in the finite-size initial crack built
into Ωso

N . The true particle counts are slightly lower.
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Figure 6.1: Discretization M2 used for the dynamic crack branching problem.

furthest-right point in the half-space X2 > 0 of the phase field level curve at s = 0.1. Again, the solution on M1–M3

appears to converge towards slower crack speeds than the solutions documented by Borden et al. [110, Figure 10c]. The

physical reason for this difference is discussed in [131]. For comparison purposes, the crack speed of the finest mesh

(M3) of [131] is included in Figure 6.3. Overall, the results are both qualitatively and quantitatively in good agreement

with the respective results of [131].

Remark 5. Very similar results can be obtained for this problem using the neo-Hookean model, but these results are

omitted for the sake of brevity.

6.3.2 Shear loading

We reproduce the results of an experiment by Kalthoff and Winkler [132], in which a projectile impacts a

pre-notched slab of steel, resulting in fracture of the steel slab. Only the lower-velocity impact cases of the experiment

are considered, in which the steel slab failed in a brittle manner.

We model the steel slab as a St. Venant–Kirchhoff material with mass density ρ0 = 8000 kg/m3, Young’s

modulus E = 190× 109 Pa, and Poisson ratio ν = 0.3. We set the fracture energy to Gc = 2.213× 104 J/m2 and the

phase field length scale to ε = 1.95× 10−4 m. Plane strain is assumed. The initial notch is again modeled with a

resolution-dependent thickness, and the reference structure geometry at refinement level N is taken to be

Ωso
N = ((−0.05L,0.05L)× (−0.025L,0.075L)) \ ((−0.05L,0)× (−WN ,+WN)) , (6.34)
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M1:

M2:

M3:

Figure 6.2: Snapshots of phase field solutions to the dynamic crack branching problem with discretizations M1–M3
at 50×10−6 s (left) and 90×10−6 s (right).
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Figure 6.3: X1-components of crack velocity over time, with discretizations M1–M3.

where L = 1 m, WN = W0×2−N is half the width of crack at refinement level N, and W0 is the full width of the crack at

refinement level N = 1. The geometry of the Eulerian background domain is

Ω = (−0.06L,0.06L)× (−0.03L,0.08L) . (6.35)

The vertical component of velocity is constrained along x2 = −0.025L, and the following velocity Dirichlet

condition is imposed for x1 ∈ (−0.06L,−0.045L), x2 ∈ (−0.03L,0):

v =


t

T0
v0 t ≤ T0

v0 otherwise

e1 , (6.36)

where T0 = 10−6 s and v0 = 16.5 m/s. All other boundaries are traction-free.

We compute solutions to this problem on three discretizations, labeled MN, with refinement levels N = 1,2,3.

M1 has 120×110 elements for the background grid and ∼ 201×201 particles for the foreground grid. M2 has 240×220

elements for the background grid and ∼ 401×401 particles for the foreground grid. M3 has 480×440 elements for the

background grid and ∼ 801×801 particles for the foreground grid.3 M2 is depicted in Figure 6.4. The time step used

with MN is ∆t = 5×10−8×21−N s.
3As in Section 6.3.1, the initial crack is explicitly modeled in the geometry, and the true number of particles is slightly smaller.
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The crack propagation in the resulting solutions matches the experimentally-observed behavior of a crack

propagating at an angle of ∼ 70◦ from the X1-axis, as shown by the snapshots in Figure 6.5. The results are also in good

agreement with [131] and with [110].

Remark 6. Although previous studies [133] have suggested using a mesh size smaller than half the length scale

parameter, the computations of this section illustrate how this condition is not strictly necessary, especially if modeling

uncertainty is substantial, and only qualitatively-accurate results are expected, as is frequently the case in simulations of

extreme events.

Figure 6.4: Discretization M2 used for the shear loading problem.

6.4 Blast loading and fragmentation

In this section, we apply the proposed framework to air-blast–structure interaction problems. In particular, we

consider three examples that demonstrate the applicability of the model to extreme events modeling. As mentioned in

Section 6.1.2, the inability of the St. Venant–Kirchoff model to withstand the high compression from blast loads leads

us to use the neo-Hookean model throughout this section.

6.4.1 Detonation enclosed in hollow square block

In this example, a detonation is initiated at the center of a hollow square block. Taking into account the doubly

symmetric nature of the problem data, only one quarter of the problem is computed. The foreground reference geometry

is considered to be

Ωso = ((0,0.3L)× (0.3L,0.4L))∪ ((0.3L,0.4L)× (0,0.4L)) (6.37)
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M1:

M2:

M3:

Figure 6.5: Snapshots of phase field solutions to the shear loading problem on M1–M3 at time 88×10−6 s.
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and the Eulerian domain is set to

Ω = (0,1.0L)× (0,1.0L) , (6.38)

where L = 1 m. We model the solid as having a mass density ρ0 = 8000 kg/m3, Young’s modulus E = 190×109 Pa,

and Poisson ratio ν = 0.3. We set the fracture energy to Gc = 6.0× 105 J/m2 and the phase field length scale to

ε = 2.5×10−3 m. Plane strain is assumed.

The air in the computational domain is initially at rest, with temperature T = 270 K and pressure p = 10000 Pa.

The detonation is initiated by setting higher-than-ambient values of pressure, p = 6746268.65 Pa, and temperature,

T = 1465 K, in a quarter-circular region centered at the origin of the computational domain, with radius 0.15 m.

Symmetry boundary conditions are applied along the lines of symmetry, and open boundaries are specified elsewhere.

We compute solutions to this problem on three discretizations, labeled M1, M2, and M3. M1 has 10000

elements for the background grid and 6600 particles for the foreground grid. M2 has 40000 elements for the background

grid and 26000 particles for the foreground grid. M3 has 160000 elements for the background grid and 103200 particles

for the foreground grid. The time step used with MN is ∆t = 4×10−7×21−N s. M1 is shown in Figure 6.6.

Figure 6.6: Discretization M1 used for the detonation enclosed in hollow square box.

The results for the three meshes are shown in Figures 6.7, 6.8, and 6.9 respectively. The air-speed is depicted

on the background grid while the phase field is shown on the particles. A zoomed-in view of the solution on M3

during crack propagation is provided in Figure 6.10. As expected, a crack nucleates at the stress singularity caused by

the reentrant inside corner of the hollow box. The crack initially propagates diagonally, then accelerates, broadens,
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and branches, much like the crack from the problem considered in Section 6.3.1. Due to the nature of the immersed

framework, fully-damaged particles are able to move inside the computational domain without the severe mesh distortion

that would occur in a finite element foreground discretization. Although neither experimental nor prior computational

results exist for this problem, the qualitative behavior is physically-reasonable. Further, the solutions from M1–M3

appear to converge toward some fixed limit, unlike discretizations of ill-posed local damage models, which often suffer

from mesh dependency.

6.4.2 Detonation enclosed in hollow cylinder

A detonation is initiated at the interior of a hollow cylinder with a variable outer radius. Taking into account the

doubly symmetric nature of the geometry, only one quarter of the problem is simulated. The purpose of this qualitative

example is to demonstrate that the formulation developed in this paper is capable of representing complex fragmentation

due to blast loads. The Eulerian fluid–structure domain is

Ω = (0,1.0L)× (0,1.0L) , (6.39)

where L = 1 m. Figure 6.11 illustrates the geometry of the solid reference domain, Ωso.

We model the solid material as having mass density ρ0 = 8000 kg/m3, Young’s modulus E = 190×109 Pa,

and Poisson ratio ν = 0.3. We set the fracture energy to Gc = 6.0× 105 J/m2 and the phase field length scale to

ε = 6.25×10−4 m. Plane strain is assumed.

The air in the computational domain is initially at rest with T = 270 K and p = 10000 Pa. The detonation is

initiated by setting higher-than-ambient values of pressure, p = 6746268.65 Pa, and temperature, T = 1465 K, in a

quarter-circular region centered at the origin of the computational domain, with radius 0.15 m. Symmetry boundary

conditions are applied along the lines of symmetry, and open boundaries are specified elsewhere.

We discretize this problem using a background grid with 57600 elements, 45900 foreground particles, and

a time step of ∆t = 5×10−8 s. The results are shown in Figure 6.12. Air-speed is depicted on the background grid

while phase field is plotted on the particles. The inside of the ring initially enters a state of uniform tension, but, as the

stress crosses a critical crack nucleation threshold (determined by the fracture length scale, as analyzed in [110]), this

configuration becomes unstable, and damage localizes as this instability is triggered by the non-radially-symmetric

discretization. After stress waves reach the outer surface, cracks also nucleate at the reentrant corners and begin

to propagate inward. Cracks propagate radially until the cylinder fragments into pieces, roughly determined by the

non-uniformity of the outer radius. The immersed and meshfree nature of our discretization allows these fragments to

fly apart on independent trajectories, without any problematic mesh distortion.
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(a) (b)

(c) (d)

(e) (f)
Figure 6.7: Detonation enclosed in hollow square box. Discretization M1. Air speed and phase field in the current
configuration at different instants during the simulation. aaa 0.05 ms. bbb 0.325 ms. ccc 0.45 ms. ddd 0.65 ms. eee 1.2 ms.
fff 2.0 ms.
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(a) (b)

(c) (d)

(e) (f)
Figure 6.8: Detonation enclosed in hollow square box. Discretization M2. Air speed and phase field in the current
configuration at different instants during the simulation. aaa 0.05 ms. bbb 0.325 ms. ccc 0.45 ms. ddd 0.65 ms. eee 1.2 ms.
fff 2.0 ms.
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(a) (b)

(c) (d)

(e) (f)
Figure 6.9: Detonation enclosed in hollow square box. Discretization M3. Air speed and phase field in the current
configuration at different instants during the simulation. aaa 0.05 ms. bbb 0.325 ms. ccc 0.45 ms. ddd 0.65 ms. eee 1.2 ms.
fff 2.0 ms.
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(a) (b)

(c) (d)
Figure 6.10: Detonation enclosed in hollow square box. Zoomed-in view of solution from M3. Phase field in the
current configuration at different instants during the simulation. aaa 0.25 ms. bbb 0.325 ms. ccc 0.45 ms. ddd 0.525 ms.

Figure 6.11: Hollow cylinder geometry
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(a) (b)

(c) (d)

(e) (f)
Figure 6.12: Detonation enclosed in hollow cylinder. Air speed and phase field in the current configuration at
different instants during the simulation. aaa 0.05 ms. bbb 0.25 ms. ccc 0.275 ms. ddd 0.325 ms. eee 0.5 ms. fff 1.3 ms.
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6.4.3 Blasting-induced fracture in PMMA specimens

In this example, we model the experiment reported in [134] where fracture plane control under blasting in

PMMA is studied. The model consists of a charge hole (right) and a guide hole with notches (left), as shown in Figure

6.13. The foreground reference geometry is considered to be

Ωso = (0.01L,0.11L)× (0.02L,0.22L) (6.40)

and the Eulerian fluid–structure domain is

Ω = (0,0.11L)× (0,0.24L) , (6.41)

where L = 1 m. The radius of the charge and guide hole is 0.0075 m. More details on the geometry can be found in

[134].

Figure 6.13: Blasting-induced fracture in PMMA. Problem setup and discretization

We model the solid material as having mass density ρ0 = 1188 kg/m3, Young’s modulus E = 5.39×109 Pa, and
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Poisson ratio ν = 0.33. We set the phase field length scale to ε = 1.0×10−3 m. Plane strain is assumed. As described

in [135], microscopic inhomogeneity plays a significant role in PMMA fracture propagation and fragmentation. We

therefore set the fracture energy to have randomized fluctuations over the domain:

Gc(X) = Gbase
c + w(X) , (6.42)

where Gbase
c = 300 J/m2 and w(X) is randomly selected from a uniform distribution on the interval (−100J m−2,100J m−2)

at each point X ∈Ωso.

The air in the computational domain is initially at rest with T = 270 K and p = 105 Pa. The detonation is

initiated by setting pressure, p = 4.5×105 Pa, and temperature, T = 450 K, in a semi-circular region concentric to the

charge hole, with radius 0.0035 m. These initial conditions attempt to mimic the PETN explosives used in [134].

A symmetry boundary condition is applied on the right face of the Eulerian domain, while traction–free

boundary conditions are applied on the other faces.

We discretize the problem with 73200 elements for the background grid and 318123 particles for the foreground

grid. The time step used is ∆t = 5×10−8 s. The problem setup and discretization are shown in Figure 6.13.

The results are shown in Figure 6.14. The current computations reproduce the major qualitative features of the

experiments depicted in Figure 6.14 and in [134, Figure 18]: the region immediately surrounding the charge hole is

heavily damaged, with several distinct cracks emanating from it, while an additional fracture propagates in a roughly

straight line from the notched guide hole toward the charge hole.

6.5 Conclusions

We presented a computational framework for simulating extreme events involving dynamic brittle fracture

of materials subjected to blast loading. This novel approach combines the hyperbolic model for phase field fracture

from chapter 5 with the IGA–RKPM framework for air-bast–structure interaction presented in chapters 2 and 3. In

simulations of explosions, the need to resolve stress waves propagating through the material drives the time step down to

a size for which explicit time integration of elastodynamics and compressible flow is much more efficient than implicit

integration. The use of a hyperbolic phase field model allows us to explicitly integrate the phase field’s governing PDE

as well, without introducing the severe time step restrictions associated with parabolic models.

The results of fracture analyses performed using the proposed formulation match solutions calculated with

standard finite element methods, as presented in [131]. Although neither experimental nor computational results exist

for the first two air-blast–structure interaction problems presented in this work, the IGA–RKPM simulations reproduce

phenomena expected from the underlying fluid, structure, and fracture mechanics, and exhibit qualitative convergence
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Figure 6.14: Blasting-induced fracture in PMMA. Phase field in the current configuration at the end of the computa-
tion (left), experiment from [134] (right).
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toward physically-stable solution features under mesh refinement. In addition, the last air-blast–structure interaction

example demonstrates qualitative agreement with the reference experimental results.
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Chapter 7

Conclusions

In the current dissertation, a new immersed approach for air-blast–structure interaction is developed. Com-

pressible flow in the high-Mach number regime is coupled with inelastic structures. Two discretizations are employed;

a fixed background discretization that provides the discrete trial and test function spaces for the coupled FSI problem

and a foreground discretization that moves with the solid material particles. The foreground discretization is used to

track the current position of the structure, store history-dependent variables, and perform numerical quadrature. At first,

the core formulation is presented. Then, a particular instantiation that couples isogeometric analysis with meshfree

particles is developed and applied to benchmark problems and to a problem involving blasting of a concrete slab. In

addition, the particles are equipped with RKPM basis functions that provide the discrete trial and test function spaces

for the approximation of the hyperbolic phase field equation for brittle fracture modeling.

The formulation has the advantage over existing embedded domain methods in that a monolithic formulation

is naturally obtained. Additionally, no restrictions on the solid motion are imposed, which enables handling any domain

topological changes with relative ease. The higher-order accuracy and smoothness of the background discretization

delivers high quality compressible flow solution with shocks and also gives a continuous representation of the strain-rate

field, which greatly improves the quality of the solid mechanics solution. The non-local damage model presented in the

end eliminates the shortcomings of local damage models such as loss of well-posedness, while its implementation within

the ABSI framework provides a powerful tool for simulating structural disintegration and fragmentation that results

from a mathematically well-posed damage evolution approach triggered by the blast loads applied on the structures.

Finally, the hyperbolic nature of the damage evolution equation allows for an efficient explicit time integration that is

not subjected to severe time step restrictions and is compatible with the explicit lumped-mass type approach adopted for

the coupled ABSI problem.
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