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Abstract

We investigate the extent to which human genetic data are incorporated into studies that 

hypothesize novel links between genes and metabolic disease. To lower the barriers to using 

genetic data, we present an approach to enable researchers to evaluate human genetic support for 

experimentally determined hypotheses.
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Introduction

Human genetic “experiments of nature” are a powerful resource to identify or evaluate genes 

involved in human disease (Claussnitzer et al., 2020). Disease-associated genetic variants 

represent causal links between molecular perturbations and disease risk, complementing data 

from animal- or cell-based experimental models that often have uncertain fidelity to human 
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disease. Consequently, there has been an increasing appreciation that human genetics can 

help prioritize genes identified through experimental models – in particular, new candidate 

drug targets (Plenge et al., 2013).

Although large-scale human genetic studies have been established for over a decade, their 

analysis requires expertise – a potential barrier to their use by researchers not trained in 

their interpretation. Here, we investigate the frequency with which published experimental 

studies regarding type 2 diabetes (T2D) or glucose homeostasis incorporate human genetic 

data. To increase the use of human genetic data in such studies, we propose a series of 

simple guidelines to interpret human genetic support for hypotheses about the involvement 

of genes or proteins in human disease. We demonstrate this approach by evaluating recently 

published hypotheses about genes relevant to T2D and glucose homeostasis.

The current use of human genetics to evaluate genes hypothesized as 

relevant to glucose homeostasis

We reviewed articles that mention “diabetes”, “glucose”, or “insulin” in their abstracts, were 

published between January 2017 and October 2020 in five highly cited journals (Cell, Cell 
Metabolism, Nature, Nature Metabolism, and Science), and which did not describe genome-

wide genetic analyses. We curated genes hypothesized in these articles as involved in human 

T2D or glucose/insulin metabolism, identifying 35 publications and 52 genes (Table 1). 

Five (14%) of these articles cited human genetic evidence for five (10%) genes: three cited 

previously published genetic associations, and two conducted novel genetic association tests.

Why do so few experimental studies incorporate human genetic data? One reason is that, 

historically, genetic association results have been hard to access. Fortunately, over the 

past decade, human genetic research communities have shifted toward prioritizing data 

sharing (Flannick and Florez, 2016): web-based catalogs of associations now exist for 

genome wide association studies (GWAS) and whole exome sequence (WES) studies. The 

common metabolic diseases knowledge portal (CMDKP), maintained by our group, provides 

a genetic association resource focused on common metabolic disorders.

A second challenge is that genetic associations can be difficult to interpret. For example, 

a 2017 study of Sin3a knockout mice proposed a novel interaction between SIN3A and 

FOXO1 (Langlet et al., 2017) that might suggest an effective treatment for hyperglycemia in 

humans. If the study authors were to query SIN3A and FOXO1 in the CMDKP, they would 

observe (a) an association nearby SIN3A (p=9.96×10−9) in one of the largest T2D GWAS to 

date (Mahajan et al., 2018a) and (b) a nominally significant (p=0.04) association for FOXO1 
in one of the largest T2D WES studies to date (Flannick et al., 2019). While these data 

seem to support the involvement of these two genes in T2D, the degree of support is unclear 

absent clear guidelines for interpreting the data.
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Considerations when evaluating genetic support for hypothesized links 

between genes and disease

How can scientists incorporate human genetic data into their research? While no automated 

methods or resources can (today) directly evaluate genetic support for a hypothesis, and 

while researchers should employ a genetic analyst when this question is central to a study, 

there are some fundamental principles for using genetic data that any researcher can follow. 

These principles apply to any complex disease with GWAS or WES data available.

Principle 1. Use public GWAS resources.

The largest collections of genetic associations come from GWAS, which have produced 

common variant associations for thousands of traits. Web-based GWAS association 

resources include the GWAS Catalog (https://www.ebi.ac.uk/gwas), the GWAS Atlas 

(https://atlas.ctglab.nl), and PheWeb (https://pheweb.org), which contain associations across 

many complex traits, while the CMDKP (https://cmdkp.org) contains a larger collection 

of GWAS associations for common metabolic disorders. Each resource allows queries 

of the GWAS associations “nearby” (typically within 50kb-250kb) a gene. Researchers 

should determine which human phenotype(s) should show a GWAS association under their 

hypothesis and query if any associations (with p<5×10−8) have been observed near their 

gene of interest. If so, their hypothesis has some human genetic support.

Principle 2. Don’t over-interpret an association.

Proximity of a gene to a GWAS association does not necessarily imply that the gene 

is responsible for the association. On average, seven genes lie “nearby” each GWAS 

association, and thus (absent further information) each such gene has about a 15% (~1/7) 

chance of mediating the association. Additional information about the genomic region and 

regulatory elements surrounding a gene can link it to an association with more confidence. 

Although rigorous methods for doing so are in their infancy, a few simple analyses are 

possible today: (a) if the gene harbors a significant coding variant association, the likelihood 

it mediates the association increases to ~50% (Mahajan et al., 2018b), (b) if the gene is the 

nearest gene to the strongest associated SNP in the region, the likelihood increases to ~70% 

(Stacey et al., 2019), and (c) if the gene harbors a coding variant association stronger than 

any other association in the region, the likelihood increases to >95% (Mahajan et al., 2018b).

Principle 3. Use WES associations to complement GWAS associations.

Rare coding variant associations from WES studies directly implicate human disease genes, 

even if they are usually less significant than GWAS associations. Public resources of 

WES associations (calculated by aggregating rare variants at the “gene-level”) include the 

CMDKP (for 25 metabolic traits) and GeneBass (for ~4,000 traits within the UK Biobank; 

https://genebass.org). Exome-wide significant gene-level associations (p<2.5×10−6) provide 

very high (>95%) genetic support for a hypothesis. Nominally significant associations 

(p<0.05 after correcting for the number of rare variant tests performed) provide lesser 

support – roughly equivalent (for datasets in the CMDKP) to the support provided by 
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a nearby GWAS association (this estimate follows from the application of a previously 

developed equation for association statistics (Wakefield, 2008)).

Principle 4. Consider related traits.

Although researchers should specify human phenotypes of interest prior to conducting any 

queries, associations with related traits (e.g. fasting glucose levels as opposed to T2D) add 

some genetic support to a hypothesis. If such associations exist, they should be reported with 

transparency about the number of traits interrogated.

Principle 5. Absence of evidence does not imply evidence of absence.

A lack of association for a gene does not necessarily provide evidence against its 

involvement in disease – negative evidence requires confidence that the genetic variants 

observed for the gene (a) are “impactful” (i.e. they significantly affect its function), and 

(b) exhibit evidence of no association (e.g. an estimated effect size near zero with high 

confidence) rather than simply a lack of association. It is challenging to confidently identify 

impactful common noncoding variants, and it is unusual (with current WES datasets) to 

identify rare coding variant associations with narrow confidence intervals. Some genes 

do harbor enough predicted loss-of-function variants to produce evidence against the 

gene, although it remains possible that different gene perturbations could cause different 

phenotypic effects.

Proposed human genetic evidence (HuGE) guidelines

To summarize genetic support for a hypothesis about the involvement of a gene in human 

disease, we propose a HuGE score (Figure 1) that combines evidence from GWAS and WES 

associations. The score can be calculated for any complex disease with publicly available 

genetic associations and is representable as either a qualitative category of evidence (ranging 

from “anecdotal” to “compelling”) or an “order of magnitude” quantitative probability of 

true association. It is derived by (a) assuming 5% of genes are involved in T2D (Satterstrom 

et al., 2020); (b) using equations from Bayesian statistics to represent each probability 

estimate in Principles 2 and 3 as “Bayes Factors” that convert the 5% “prior” to an updated 

probability (“posterior”); and (c) multiplying the common and rare variant Bayes Factors 

under the assumption that GWAS and WES associations are independent. The quantitative 

probabilities can be estimated under either conservative (5% of genes involved in disease 

(Satterstrom et al., 2020)) or optimistic (20% of genes with supporting mouse data involved 

in disease (Flannick et al., 2019)) scenarios. Document S1 provides a more thorough 

description of HuGE scores and step-by-step instructions to calculate them; an automated 

tool that calculates HuGe scores for 341 common metabolic disorders is also available 

online (https://hugeamp.org/hugecalculator.html).

To illustrate the use of HuGE scores, we analyzed eight genes targeted by current T2D drugs 

(Flannick et al., 2019). Six (75%) have some human genetic support: four (GLP1R, PPARG, 
KCNJ11, and ABCC8) have “compelling” and two (INSR and IGF1R) have “very strong” 

support. The other two genes (DPP4 and SLC5A2) emphasize that, for reasons of statistical 
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power or evolutionary happenstance, even viable drug targets can lack genetic support – the 

WES associations for these two genes fall just below our threshold for anecdotal evidence.

Next, using HuGE scores to quantitatively interpret T2D association evidence for SIN3A 
and FOXO1 (our motivating example genes), we find “moderate” support for both: SIN3A 
is nearby a GWAS association (but has no coding variant association and is not the gene 

closest to the strongest association), while FOXO1 has only a nominal (p=0.04) rare coding 

variant association. Under the “optimistic” scenario where a researcher trusts the mouse data 

for SIN3A and FOXO1, moderate support corresponds to a ~45% probability that these 

genes are relevant to T2D, a substantial increase over the baseline of 20% from mouse data 

alone (Flannick et al., 2019).

Evaluating all 52 genes curated from our literature search (Table 2), we find that (including 

SIN3A and FOXO1) 12 (23%) have some degree of human genetic support. Eleven (21%) 

of the 52 genes rise above “anecdotal” evidence, two with “strong” and two (ATG16L1 
and PTEN) with “extreme” evidence. The majority, however, lack any level of genetic 

support for a role in T2D. Most genes simply have “absence of evidence”, although some 

appear to have “evidence of absence”. For example, contrary to the hypothesis that GPNMB 
is relevant to T2D (based on observations that Gpnmb regulates lipolysis in mice), 21 

rare human predicted loss-of-function variants in the CMDKP have (in aggregate) a small 

estimated effect on T2D risk (95% confidence interval 0.74 – 1.85 for T2D odds-ratio). As 

WES datasets increase in size, it may be possible to systematize these sorts of analyses and 

use human genetic evidence of absence to limit costly investment in genes unlikely to be 

involved in disease.

Discussion

Despite the vast number of human genetic associations now publicly available, and despite 

the widely recognized value of human genetics to identify human disease-susceptibility 

genes (Plenge et al., 2013), few (~14%) recent studies reporting novel links between genes 

and T2D reference human genetic data. We suspect that this trend is true for other diseases 

as well.

The guidelines we propose for evaluating genetic support (Figure 1) are intended to be 

simple to follow and implementable using only public resources. With simplicity comes 

caveats: the guidelines omit features that could more accurately link common variant 

associations to genes (e.g. epigenomics or transcriptomics), they measure the presence of 

an association but not its directionality or mechanism (e.g. whether it suggests protein 

inhibition or activation should reduce disease risk), and they are limited by the amount of 

data currently available.

Nonetheless, caveats are not unique to genetic data, and it is notable that the majority of 

genes hypothesized in recent years as involved in T2D have no genetic support under our 

guidelines. We believe that readers of the original journal articles describing these genes 

would have benefitted from this information, as prioritizing the study of genes that do 

harbor human genetic associations is expected to increase the success of future research 
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efforts (Plenge et al., 2013). We suggest that – in the future – journals might pilot some 

sort of “genetic reporting guidelines” akin to those used today for statistical analyses and 

data sharing. This will require additional work by investigators to learn how to query 

public genetic resources, but this is a small and – in our opinion – worthwhile investment: 

increasing the use of genetic data in biological research should have a positive effect on the 

translatability of experimental findings to human disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Human Genetic Evidence (HuGE) guidelines.
To use our proposed HuGE guidelines to evaluate genetic support for a gene, we 

independently evaluate evidence from common variant associations (leftmost column) 

and rare variant gene-level associations (bottom row). Evidence from common variant 

associations, which can be obtained from any one of several public resources described 

in the main text, falls into one of five tiers. The lowest tier (“No evidence”) applies to 

genes not within 100kb of a genome-wide significant (p<5×10−8) association. If a gene 

is within 100kb of an association, we then identify the strongest association (i.e. with the 

lowest p-value) in the region and use it to determine the tier: “Causal coding variant” 

applies to genes that harbor a coding variant with the strongest association in the region, 

“Nearest gene” applies to genes that are the closest among genes in the region to the 

strongest association, “Coding variant” applies to genes that harbor a coding variant that 

does not have the strongest association, and “GWAS locus” applies to all other genes within 

100kb of an association. The “GWAS locus” tier assumes that seven genes lie within 100kb 

of the association (the average value across the genome); for loci with more or fewer 

genes near the association, the support could be more accurately calculated according to 

the actual number of genes near the association. Evidence from rare variant gene-level 

associations, also available from multiple public resources, falls into one of five tiers 

determined by the association p-value: “Exome-wide” (p<2.5×10−6), “Strong” (p<1×10−3), 

“Nominal” (p<0.05), “Weak” (p<0.1), and “No evidence” (p>0.1). We combine the two 

sources of evidence to yield the values in the cell corresponding to the relevant row and 

column. The cells show qualitative descriptions of evidence strength and the estimated 

probability (rounded to nearest 5%) that the gene is involved in disease under conservative 

(no supporting experimental evidence, left of bar) and optimistic (supporting experimental 

evidence, right of bar) scenarios. Both the qualitative and the quantitative values follow 

by applying rules from Bayesian statistics together with literature estimates of evidence 

strength as described in the main text. Further information regarding these derivations 

is available on the common metabolic diseases knowledge portal (CMDKP). Document 

S1 includes step-by-step instructions for using the CMDKP or other public resources 
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to evaluate HuGE scores, and an automated tool implementing them for 341 common 

metabolic diseases can be found on the CMDKP (https://hugeamp.org/hugecalculator.html).
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Table 1.
Genes recently hypothesized as relevant to diabetes, glucose metabolism, or insulin 
metabolism.

The table lists articles that hypothesize a novel relationship between a gene or protein and type 2 diabetes or 

a diabetes-related phenotype. For complexes that are encoded by multiple genes (e.g. PIK3), all genes were 

analyzed. In all cases, human orthologs are listed. Dashes (−) indicate that the article did not include any 

human genetic data.

Gene PMID/Citation Journal Type of Evidence Incorporation of Human 
Genetics

PPARGC1A 28340340 Cell mouse, cell culture -

STUB1 28431247 Cell C elegans, Drosophila melanogaster, cell culture -

TBK1 29425491 Cell mouse, cell culture -

ZMPSTE24 29526462 Cell yeast, cell culture Novel finding

LEPR 29670283 Nature mouse, cell culture -

VDR
BRD9
BRD7

29754817 Cell mouse, cell culture Cite previous study

PIK3CA
PIK3CB
PIK3CG
PIK3CD
PTEN

30051890 Nature mouse, cell culture -

PIK3CA
PIK3CB
HRAS
NRAS
KRAS

30982732 Cell Metabolism mouse, cell culture -

ALOX12 31353262 Cell Metabolism human study, mouse, cell culture -

PAX6 31607563 Cell Metabolism human study, mouse, cell culture -

EIF2AK3 31543404 Cell Metabolism mouse, cell culture -

CPT1A
SLC25A20

31378464 Cell Metabolism human study, Cell Culture -

GSK3A
GSK3B

30879985 Cell Metabolism human study, mouse, cell culture -

VDAC1 30293774 Cell Metabolism human study, cell culture -

C3
ATG16L1

30293775 Cell Metabolism human study, mouse, rat, cell culture -

PRKCE 30318338 Cell Metabolism mouse -

OR4M1 31230984 Cell Metabolism mouse, cell culture -

TREM2 31257031 Cell mouse -

CERS6
MFF

31150623 Cell mouse, cell culture -

FOXK1
FOXK2

30700909 Nature mouse, cell culture -

Cell Metab. Author manuscript; available in PMC 2022 June 04.
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Gene PMID/Citation Journal Type of Evidence Incorporation of Human 
Genetics

SLC25A5 31528845 Nature Metabolism human study, mouse, cell culture -

HAS2
HAS3

31602424 Nature Metabolism mouse, cell culture -

TGFB2 31032475 Nature Metabolism human study, mouse, cell culture -

ITPR1 32132708 Nature mouse, rats, cell culture -

PGRMC2 31748741 Nature mouse, cell culture

CD81 32615086 Cell human study, mouse, cell culture

GDF3 32941798 Cell Metabolism mouse, cell culture Cite previous study

PRKCE 32882164 Cell Metabolism human study, rats -

TXNIP 32726606 Cell Metabolism mouse, cell culture -

PGR4 32413335 Cell Metabolism mouse, cell culture Cite previous study

SCOT 32275862 Cell Metabolism mouse, cell culture -

TAZ 31708444 Cell Metabolism mouse, cell culture -

RIPK1 32989316 Nature Metabolism human study, mouse, cell culture Novel finding

GPNMB 32694855 Nature Metabolism mouse, cell culture -

HSL
ChREBP
ELOLV6

32694809 Nature Metabolism human study, mouse, cell culture -

Cell Metab. Author manuscript; available in PMC 2022 June 04.
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Table 2.
Genetic support for genes recently hypothesized as relevant to diabetes and glucose 
homeostasis.

We analyzed each gene in Table 1 using the HuGE guidelines outlined in this essay. Dashes (−) indicate 

absence of data and/or evidence. Common Variation: evidence tier in the HuGE framework based on common 

variant (GWAS) associations. Rare Variation: evidence tier in the HuGE framework based on rare variant 

(WES) associations. Category: qualitative measure of genetic support. Updated Probability: quantitative 

measures of genetic support under conservative (5% prior) and optimistic (20% prior) scenarios.

Gene Common Variation Rare Variation Category
Updated Probability

5% prior 20% prior

ALOX12 GWAS LOCUS - MODERATE 15% 40%

ATG16L1 NEAREST NOMINAL EXTREME 90% 95%

BRD7 - - - - -

BRD9 - - - - -

C3 - - - - -

CD81 GWAS LOCUS - MODERATE 15% 40%

CERS6 - - - - -

CHREBP - - - - -

CPT1A - - - - -

EIF2AK3 - - - - -

ELOVL6 - - - - -

FOXK1 NEAREST - VERY STRONG 70% 90%

FOXK2 - - - - -

FOXO1 - NOMINAL MODERATE 15% 40%

GDF3 - - - - -

GPNMB - - - - -

GSK3A - - - - -

GSK3B - WEAK ANECDOTAL 5% 25%

HAS2 - - - - -

HAS3 - - - - -

HRAS - - - - -

HSL - - - - -

ITPR1 - - - - -

KRAS - - - - -

LEPR NEAREST - VERY STRONG 70% 90%

MFF - - - - -

NRAS - - - - -

OR4M1 - - - - -

PAX6 - - - - -

PGR4 GWAS LOCUS - MODERATE 15% 40%

PGRMC2 - - - - -

PIK3CA - - - - -

Cell Metab. Author manuscript; available in PMC 2022 June 04.
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Gene Common Variation Rare Variation Category
Updated Probability

5% prior 20% prior

PIK3CB - - - - -

PIK3CD - - - - -

PIK3CG - - - - -

PPARGC1A - - - - -

PRKCE - NOMINAL MODERATE 15% 40%

PTEN NEAREST NOMINAL EXTREME 90% 95%

RIPK1 - - - - -

SCOT - - - - -

SIN3A GWAS LOCUS - MODERATE 15% 40%

SLC25A20 - - - - -

SLC25A5 - - - - -

STUB1 - - - - -

TAZ - NOMINAL MODERATE 15% 40%

TBK1 - - - - -

TGFB2 - - - - -

TREM2 - - - - -

TXNIP - - - - -

VDAC1 - - - - -

VDR - - - - -

ZMPSTE24 - - - - -
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