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Abstract

Background: A family of secreted cathepsin L proteases with differential activities is essential for host colonization and
survival in the parasitic flatworm Fasciola hepatica. While the blood feeding adult secretes predominantly FheCL1, an
enzyme with a strong preference for Leu at the S2 pocket of the active site, the infective stage produces FheCL3, a unique
enzyme with collagenolytic activity that favours Pro at P2.

Methodology/Principal Findings: Using a novel unbiased multiplex substrate profiling and mass spectrometry
methodology (MSP-MS), we compared the preferences of FheCL1 and FheCL3 along the complete active site cleft and
confirm that while the S2 imposes the greatest influence on substrate selectivity, preferences can be indicated on other
active site subsites. Notably, we discovered that the activity of FheCL1 and FheCL3 enzymes is very different, sharing only
50% of the cleavage sites, supporting the idea of functional specialization. We generated variants of FheCL1 and FheCL3
with S2 and S3 residues by mutagenesis and evaluated their substrate specificity using positional scanning synthetic
combinatorial libraries (PS-SCL). Besides the rare P2 Pro preference, FheCL3 showed a distinctive specificity at the S3 pocket,
accommodating preferentially the small Gly residue. Both P2 Pro and P3 Gly preferences were strongly reduced when Trp67
of FheCL3 was replaced by Leu, rendering the enzyme incapable of digesting collagen. In contrast, the inverse Leu67Trp
substitution in FheCL1 only slightly reduced its Leu preference and improved Pro acceptance in P2, but greatly increased
accommodation of Gly at S3.

Conclusions/Significance: These data reveal the significance of S2 and S3 interactions in substrate binding emphasizing the
role for residue 67 in modulating both sites, providing a plausible explanation for the FheCL3 collagenolytic activity
essential to host invasion. The unique specificity of FheCL3 could be exploited in the design of specific inhibitors selectively
directed to specific infective stage parasite proteinases.
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Introduction

The common liver fluke F. hepatica, together with F. gigantica,

are the causative agents of fascioliasis, a zoonosis causing huge

global losses in the agricultural section by infecting more than

700 million ruminants worldwide. The disease is also recognized

by the WHO as an important emerging neglected disease of

humans, particularly in areas of South America, Asia, Iran and

Egypt [1]. Infection with this parasite is acquired by the ingestion

of plants contaminated with metacercariae, a resistant cystic form

that emerges as a newly excysted juvenile (NEJ) in the duodenum,

and after traversing the gut wall migrates to the liver. The

parasites spend 8–12 weeks feeding on, and severely damaging,

the liver parenchyma before they move into the bile ducts and

become obligate blood-feeders by sucking blood through punc-

tures in the duct walls. As in other parasites the invasion and

establishment is mediated by a delicate crosstalk between

molecules generated by the parasite and the host, with proteolytic

enzymes being major players in this interaction [2]. Tissue

migration and feeding is facilitated by the abundant secretion of

proteolytic enzymes, most particularly cathepsin L cysteine

proteases [3,4].
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F. hepatica possesses an expanded multigene family of cathepsin

L-like proteases that includes at least 5 different Clan CA (papain-

like) members that are developmentally regulated and play pivotal

roles in parasite survival by facilitating migration, immune evasion

and feeding [5,6]. Transcriptomic and proteomic studies have

demonstrated that the infective NEJ express and secrete cathepsin

L3 (FheCL3) indicating that this is critical to enabling the parasite

penetrate the intestinal wall [7,8,9,10]. By contrast, the blood-

feeding adult expresses predominantly cathepsinL1 (FheCL1), to a

lesser extent, cathepsin L2 (FheCL2) and to a relatively minor

extent FheCL5. FheCL1 can be involved in parasite feeding, since

in vitro experiments showed it can digest hemoglobin; both

FheCL1 and FheCL2 have been implicated in immune evasion

based in their in vitro ability to cleave native immunoglobulins [11].

Correlating with the macromolecular substrates the parasite

encounters at these different locations, the cathepsin L members

exhibit distinct substrate specificities [4,11].

For papain-like proteases, the evidence points to the S2 subsite

as being most critical to defining substrate selectivity [12]. We

have shown that the juvenile FheCL3 is unusual in having a

particular preference for Pro residues in the P2 position of peptide

substrates. By stark contrast, FheCL1 has a marked preference for

aliphatic and aromatic residues in the P2 substrate position and

does not readily accept Pro. FheCL2, on the other hand, exhibits

an substrate preference in between these two enzymes by

preferring P2 aliphatic and aromatic residues but also accepting

Pro, although much less efficiently than FheCL3. Most interest-

ingly, we have previously demonstrated that the preference for P2

Pro confers FheCL3 and FheCL2 with the rare ability to cleave

native collagen [13,14]. Only two other cysteine proteases,

mammalian cathepsin K, which is involved in bone resorption

by osteoclasts [15], and the ginger rhizome cysteine proteases (CP-

II or zingipain, GP2 and GP3) also exhibit this high affinity for Pro

in P2 and collagenolytic activity [16,17].

Comparison of crystallographic structures of several Clan CA

cysteine proteases allowed the identification of residues that make

up the active site cleft with the selective S2 pocket being

delimitated by residues 67, 133, 157, 158 and 205 (papain

numbering) [18,19,20,21,22,23,24]. While variations occur in

several of these positions within the F. hepatica cathepsin L family

the residue at position 67 has been primarily implicated in P2 Pro

accommodation by stabilizing interactions with the planar ring of

Pro in the peptide substrate [20,25]. In FheCL3 and zingipain this

position is occupied by the large aromatic residue Trp while in

FheCL2 and cathepsin K a Tyr is present. Structural comparisons

and molecular dynamic simulations performed by us suggested

that the substrate selectivity observed in FheCL3 might be due to

steric restrictions imposed by the bulky aromatic residues not only

at the S2 subsite but also within the S3 pocket [13,14]. The

remarkable convergence between FheCL3 and zingipain is not

only restricted to Trp67 but also the close-by position 61 at the

bottom of the S3 pocket is occupied by a large His residue. This

suggested to us that together these two active site moieties could

influence the capacity of the enzymes to best accommodate Pro

over other aliphatic residues, and hence account for their

collagenolytic activity.

To get a clear picture of the substrate specificity of the major

proteases of F. hepatica, we used a recently developed method

involving multiplex substrate profiling and mass spectrometry

(MSP-MS), that provides for unbiased subsite profiling of

proteases across the entire active site [26]. In addition, the P1–

P4 subsite specificities were determined by Positional Scanning-

Synthetic Combinatorial Libraries of fluorogenic tetrapeptides

(PS-SCL), a well-established technology to study protease

substrate specificity [20,27,28,29]. To test the relevance of active

site positions 61 and 67 in selectivity we prepared recombinant

variants of FheCL3 with the specific alterations in the S2 and S3

subsites, mimicking those present in FheCL1, and the reciprocal

variants of FheCL1 in an attempt to confer this protease with

collagenolytic activity. All the approaches highlight the unusual

and marked preference of FheCL3 for P2 Pro, and additionally

reveal that the P3 pocket has a less marked but distinctive

preference for Gly. The mutational analysis emphasizes the dual

role of residue 67 in modulating interactions with both P2 and P3

substrate residues and its crucial importance in juvenile FheCL3

specificity and activity. Our findings provide structural insights

into the molecular determinants of active site preferences of two

proteases that are vital for parasite development, which might in

turn prove useful in the design of strategies to control parasite

infection.

Methods

Generation of the FheCL1 and FheCL3 active site pocket
variants

Six FheCL3 and FheCL1 variants bearing substitutions at

the S2 and S3 active site pockets were constructed by site-

specific mutagenesis using the QuikChange Site-Directed

Mutagenesis Kit (Stratagene) as indicated in Table S1. Briefly,

different pairs of complementary oligonucleotides containing

the base pair substitutions to be introduced in the cathepsin

gene sequences were generated and used in an outside PCR

reaction employing as templates clones of FheCL1 or FheCL3

in the X4-Mfa-ScPas3 expression plasmid (kindly provided by

Dr. R.J.S. Baerends and Dr. J.A.K.W. Kiel, Molecular Cell

Biology Lab, Groningen Biomolecular Sciences and Biotech-

nology Institute, University of Groningen, The Netherlands).

Double variants were obtained by using plasmids bearing the

single mutations as templates. The amplified modified plasmids

were propagated in bacteria, sequenced to confirm the

presence of the desired mutations, and then electroporated in

the Hansenula polymorpha yeast strain for production as

previously described [30].

Author Summary

The flatworm Fasciola hepatica is responsible for fascio-
losis, one of the most common parasitic diseases of
livestock worldwide, with increased incidence of human
cases. When contaminated plants are ingested, infective
larvae are released and transverse the gut wall before
migrating to the bile ducts within the liver. Migrating liver
flukes erode host tissue while adults feed on blood and
they mature and release thousands of eggs. Several
developmentally-regulated cathepsin L like proteolytic
enzymes (FheCLs) are essential to the migrating and
feeding processes. Despite being similar in structure and
sequence these enzymes show specialization attacking
preferentially different substrates and taking part in the
diverse process of invasion, immune evasion and feeding.
Our analyses reveal unique differences in activity between
the major infective juvenile (FheCL3) and adult (FheCL1)
enzymes, and demonstrate that the juvenile enzyme has a
particular active site that allows it to degrade collagen, the
main component of connective tissues. We demonstrate
that a single position on the active site, residue 67, is
essential to this collagenolytic activity critical for parasite
invasion.

Active Site of              Collagenolytic Cathepsin L
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Production of FheCL1, FheCL3 and the enzyme variants
in yeast

FheCL1 and FheCL3 recombinant proenzymes were produced

in the yeast Hansenula polymorpha as previously described [13,14].

Briefly, yeast transformants were cultured in 500 ml BMGY broth

at 37uC to an OD600 of 2–6, harvested by centrifugation at 2000 g

for 10 min and induced by resuspending in 50 ml of buffered

minimal media (0.67% yeast nitrogen base; 0.1M phosphate buffer

pH 6.0;1% methanol) for 36 hs at 30uC. Recombinant propepti-

dases were secreted to the culture media, and recovered by 20–30

fold concentration of culture supernatants by ultrafiltration with a

10 kDa cut-off membrane. The proenzymes were autocatalytically

activated to the mature form by incubation for 2 h at 37uC in 0.1

M sodium citrate buffer (pH 5.0) with 2 mM DTT and2.5 mM

EDTA, dialyzed against PBS pH 7.3 and stored at 220uC. The

protein concentration was assessed by the BCA method [31]. The

proportion of functionally active recombinant enzyme was

determined by titration against E-64c. The enzymes variants were

obtained with the same protocol used for production of FheCL1

and FheCL3.

Multiplex substrate profiling by mass spectrometry (MSP-
MS)

The enzymatic activity of FheCL1 and FheCL3 were compared

by MSP-MS, a procedure designed for unbiased profiling of

protease activity [26]. A highly diversified peptide library

consisting of 124 synthetic tetradecapeptides containing all

possible amino acid pairs and near neighbor pairs, was used to

test enzymatic activity. All peptides had unmodified termini and

consist of natural amino acids except Met that was substituted by

norleucine and Cys omitted because of potential disulfide bond

formation. The library was distributed into three pools consisting

of 52, 52 and 20 peptides and diluted to 1 mM in 25 mM sodium

phosphate, pH 6.0, 1 mM DTT, 1 mM EDTA. An equal volume

of FheCL1 or FheCL3 in the same buffer was added to the peptide

pools such that the final concentration of each enzyme was 10 nM.

An enzyme-free assay was set up as a control. Assays were

incubated at room temperature and aliquots were removed after 5,

15, 60, 240 and 1200 minutes. All reactions were acid quenched to

pH 3.0 or less with formic acid (4% final), evaporated to dryness

and reconstituted to the original volume in 0.1% formic acid. Ten

ml of each time point were injected onto a 15060.3 mm Magic

C18AQ column (Michrom Bioresources) connected to a Thermo

Finnigan LTQ ion trap mass spectrometer equipped with a

standard electrospray ionization source. Peak lists were generated

from the raw files using PAVA software (UCSF) and searched

against a database consisting of all 124 peptides using Protein

Prospector. Newly formed cathepsinL1 or L3 cleavage products

were identified by comparison with control assays.

P1–P4 specificity testing using a PS-SCL
The substrate specificities of FheCL1, FheCL3 and all the

variants were determined using a PS-SCL [26]. Assays were

performed in 0.1 M sodium phosphate buffer pH 6.0, 1 mM

DTT, 1 mM EDTA, 0,01% PEG-6000 and 0.5% Me2SO (from

the substrates) at 25uC. Aliquots of 12.5 nmol in 0.5 ml from

each of the 20 sub-libraries of the P1, P2, P3 and P4 libraries

were added to the wells of a 96-well Microfluor-1 flat-bottom

plates. The final concentration of each compound of the 8,000

compounds per well was 15.62 nM in a 100 ml final reaction

volume. The assays were performed in triplicate, the reaction

was initiated by addition of the enzyme diluted in the above

buffer and monitored with a SpectraMax Gemini fluorescence

spectrometer (Molecular Devices) with excitation at 380 nm,

emission at 460 nm and cutoff at 435 nm.

Enzymatic assays using synthetic fluorogenic peptides
Kinetic parameters were determined in a reaction buffer

containing 0.1 M sodium phosphate buffer, pH 6.0, 1 mM DTT

and 1 mM EDTA at 25uC; typically final enzyme concentrations

were in the 1029M range, and the substrate was added after

10 min. of incubation of enzyme in reaction buffer. Enzyme

concentration was determined by active-site titration with E-64c.

Enzyme activity was monitored by the hydrolysis of 7-amino-4-

methyl coumarin (AMC) from the synthetic peptide substrates Z-

VLK-AMC and Tos-GPR-AMC. Reaction rates with different

substrate concentrations (5–100 mM) were measured in duplicate

as the slope of the progress curves obtained by continuous

recording in a FluoStar spectrofluorimeter at 345 excitation and

440 emission wavelengths, using an AMC standard curve for

product concentration calculation. Kinetic constants, kcat and KM,

were estimated by non-linear regression analysis of the Michaelis–

Menten plot using the OriginPro 6.1 software.

Digestion of type I collagen
Protein digestion was analyzed by incubating 10 mg of type I

collagen from rat tail (Sigma) with 5 mM enzyme in PBS pH 7.3,

1 mM DTT and 1 mM EDTA for different times at 28uC.

Digestion reactions were stopped by adding 10 mM of E64c to the

reaction mixture. Fragments were separated by SDS-PAGE gels

(8% acrylamide) under reducing conditions and stained with

Coomassie Brilliant BlueR-250.

Homology modeling
Homology models of FheCL3 were generated with SwissModel

[32] using as principal template the crystal structure of FheCL1

(2066). Template and models were superimposed for visualization

with Swiss PDBViewer version 4.1. (http://www.expasy.org/

spdbv/) [33] Active site residues were identified based on the

literature and confirmed by structural alignment with human

cathepsin L (1MHW), human cathepsin K (1ATK) and papain

(5PAD). The FheCL3 rotamers and the W67L mutant were

generated with the mutate function in the PDBViewer, and

selected based on rotamer score and visual inspection.

Results/Discussion

FheCL1 and FheCL3 multiplex substrate profiling by mass
spectrometry (MSP-MS)

MSP-MS is a novel method designed to profile protease activity,

based on the cleavage of a library of 124 tetradecapetides,

providing theoretically unbiased information on preferences at

both sides of the cleavage point [26]. The extended nature of the

tetradecapeptides allow a much more natural interaction across

the protease active site providing a detailed picture of the

contribution of the S and S’ subsites that accommodate the

substrate. The characteristics of the S’ sites are generally poorly

known mainly because most substrates used for enzymatic

profiling place a fluorophore or chromophore in the P19 position,

a moiety very unlike any amino acid that the enzyme can normally

accept in that pocket.

FheCL1 or FheCL3 were added separately to the library and all

the cleaved peptides were identified at time intervals by mass

spectrometry. While both enzymes cleaved at more than 170 sites

after one hour incubation, FheCL1 had produced approximately

75% within five minutes of the reaction and .95% by 15 minutes.

Notably, compared to FhCL1, FheCL3 produced relatively fewer

Active Site of Collagenolytic Cathepsin L
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cleavages at early time-points, while minor cleavages still occur for

up to 20 hours of reaction, indicating differences in the ability to

accommodate substrates (Figure 1 A and Figure S1). Significantly,

only approximately half of the cleavage sites identified at any time

were cleaved by both enzymes, leaving many that were exclusive

for either FhCL1 or FhCL3 (Figure 1 B, C). A good example of

this differential cleavage is offered by Peptide#38 where FheCL1

cleaves once between T‘F (EAWMT‘FIVPPRSAG) but FheCL3

cleaves twice between W‘M and R‘S (EAW‘MTFIVPPR‘SAG)

and never cleaves between T‘F even after 1200 minutes incuba-

tion (data not shown).

The positional analysis indicate that the substrate specificity

in both FheCL1 and FheCL3 is dominated by the amino acid

at P2 consistent to what is known about clan CA cysteine

proteases [12] (Figure 2). The substrate signature at this

position showed that besides aliphatic residues that can be

accommodated by both enzymes, FheCL1 can readily accept

Phe at P2 but has very low tolerance for Pro, while FheCL3 is

the opposite (Figure 1B–C). In fact the preferred amino acids

at this position are Leu and Pro for FheCL1 and FheCL3,

respectively, confirming our previous studies using short

fluorogenic peptides [13,14]. The profile also shows that both

enzymes share a strong selection against charged P2 residues

(Figure 2). Also on the non-prime side, the juvenile enzyme,

has a slight preference for Gly in the S3 pocket (Figure 2). This

S3 preference is more noticeable at early digestion times

(5 min. reaction), while other residues can be progressively

accommodated at this site as the length of the incubation

increases (Figure S1).

On the prime side of FheCL3, substrate preference is

dominated by the P19 site and shows a preference for Ser, Gly

and to a lesser extent Met (norleucine) and Ala (Figure 2). Previous

reports using internally quenched penta or heptapeptide substrates

investigated the prime side preferences for papain and mammalian

cathepsins B, L, S and K and showed that a broad range of amino

acids were accommodated in these subsites [34,35,36]. However,

while subtle differences were noted between the enzymes none of

them can be considered as major contributions to specificity,

except for a slight preference of hydrophobic moieties in papain

P39 [34], and a general avoidance of Pro at P19 [36]. Our data

confirmed the avoidance of Pro, and highlights the preference of

FheCL3 for Gly and Ser, a feature that might be relevant for the

enzyme’s ability to degrade collagen helical domains.

FheCL1 and FheCL3 active site preferences based on PS-
SCL

Whereas the MSP-MS assay offers a more ‘‘natural’’ way of

determining substrate specificity because the longer linear peptides

are more like the loop regions found in protein substrates,

Positional Scanning- Synthetic Combinatorial Libraries (PS-SCL)

offer increased diversity for the study of P4 to P1 interactions since

they comprise a collection of all possible fluorogenic tetrapeptides.

This methodology has been widely used in the characterization of

cysteine proteases [27,28], and profiles of adult liver fluke

proteases are known [20,29]. The PS-SCL profile for the

recombinant FheCL1 used in this work is practically identical

with that reported by Stack et al. [20], independently supporting

the accuracy of this tool in assessing enzyme specificity (Fig. S1).

Figure 1. Differential cleavage of FheCL1 and FheCL3 using a multiplex combinatorial library (MSP-MS). (A). Proportional Venn
diagrams showing the number of shared and exclusive cleavage sites for FheCL1 (blue) and FheCL3 (red) obtained by MSP-MS at different incubation
times (5, 15, 60, 120 and 2400 min, (time axis scale is log2). (B) A list of all substrates containing Phe in the S2 position cleaved by either FheCL1 (blue)
and/or FheCL3 (red) The time that cleavage was first observed is illustrated by the corresponding bar charts (C) List of all substrates cleavage points
containing Pro in the S2 position cleaved by either FheCL1 (blue) and/or FheCL3 (red) at different times as indicated.
doi:10.1371/journal.pntd.0002269.g001
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Furthermore, despite the differences in the methodological

approaches, the PS-SCL results are generally consistent with the

MSP-MS observations.

FheCL1 displays a typical papain-like cysteine protease profile

with S2 predominance, i.e. marked preferences for aliphatic

residues, particularly Leu, at this position. Some minor selectivity

can be found for the S1 interactions, where the basic residues Arg

and Lys, together with Gln, Thr and Met are preferred. In

contrast, the S3 and S4 pockets show a broad specificity completing

a picture similar to that found by the MSP-MS analysis (Figure 3).

The most obvious difference between FhCL1 and FheCL3 are

the very distinct profiles observed for the P2 and P3 residues. The

FheCL3 S2 pocket can accommodate Pro very readily, accepting it

twice better than Val and four times better than Leu. In addition,

unlike most known cysteine proteinases, the S3 pocket of FheCL3

demonstrates selectivity, specifically for Gly (Figure 3). Consistent

with the PS-SCL data the MSP-MS results at 5 min of digestion

shows FheCL3 has a preference for Gly in P3 (Figure 2), and as the

reaction proceed other amino acids are also accommodated in S3

as indicated by an increased frequency in later times. This effect is

expected since in the MSP-MS assay all peptides are mixed and

assayed together, consequently the preferential cleavages would be

observed early in the reaction. Selectivity at S3 is relatively rare,

although PS-SCL studies have shown that the plant enzymes

papain and bromelain have a noticeable preference for Pro at P3

[27].

Our previous studies showed that FheCL2 also has a slightly

increased preference for Gly at P3, and an augmented acceptance

of Pro at P2 although maintaining Leu as the preferred residue in

this position [20]. Therefore, FheCL2 active site appears to have

intermediate characteristics between FheCL1 and FheCL3, both

at S2 and S3 subsites (compare Figure 3 with that of Stack et al.

[20] http://www.jbc.org/content/283/15/9896.full.pdf+html).

The PS-SCL profile of FheCL5, an enzyme secreted in very low

abundance by adult F. hepatica, has also been reported and is more

similar to FheCL1 with strong Leu preference at P2, although it

has the unique ability to accept Asp [29]. These results support the

idea of functional divergence and specialization of the different

members of the liver fluke cathepsin L family occurred following

several gene duplications as proposed by phylogenetic analysis

[5,6].

FheCL3 variants in S2 and S3 active site pockets
Since non-prime side differences in specificity between Fasciola

cathepsin Ls are mainly restricted to S2 and S3, we investigated the

contribution of the variable residues lining those sites by mutation

analysis. These pockets differ only at three positions: 61, 67 and

205 located at the bottom of the S3 pocket, at the hinge of subsites

S2 and S3, and at the bottom of the S2 subsite, respectively

(Figure 4). The first two variations involve amino acids with

different properties, while the third involves a substitution between

similar aliphatic moieties. Based on these observations, we

changed residues 61 and 67 of FheCL3, for those present in

FheCL1, generating the variants FheCL3 H61N, FheCL3 W67L

and a double mutant bearing both substitutions. Their preferences

at P2 and P3 were assessed with the PS-SCL approach. FheCL3

H61N showed only a subtle change in enzyme specificity,

decreasing Gly preference in relation to the other amino acids as

has been predicted (Figure 5 B). The FheCL3 W67L variant

resulted in a marked reduction in the preference for Pro at P2

compared to FheCL3, while simultaneously increasing the

aliphatic residues preferences and making Val the most favorably

accommodated residue. Importantly, we found that the FheCL3

W67L variant also altered P3 specificities, changing the Gly

preference to an increased preference for Leu (Figure 5 C).The

double mutant enzyme, FheCL3 H61N/W67L, presented S2 and

Figure 2. Profiling of the P4–P49 substrate specificity of FheCL1 and FheCL3 using a multiplex combinatorial library (MSP-MS).
Frequency of amino acids found at positions P4–P49 of cleavage sites after 5 min incubation with FheCL1 (top) or FheCL3 (bottom). Results are
expressed as percentage per site. The amino acid frequency at each position within the tetradecapetide library ranges from 4.2% to 6.8%. Met is
substituted by norleucine in the library.
doi:10.1371/journal.pntd.0002269.g002

Figure 3. Profiling of the P1–P4 substrate specificity of liver fluke cathepsin Ls using PS-SCL libraries. The activity against the substrates
is represented relative to the highest activity of the library with each enzyme (namely Leu and Pro at P2 for FheCL1 and FheCL3, respectively,
n = norleucine). The error bars display the standard deviation from triplicate experiments.
doi:10.1371/journal.pntd.0002269.g003

Active Site of              Collagenolytic Cathepsin L
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Figure 4. Residues contributing to substrate binding. Model of mature FheCL3 showing the S2 and S3 subsites of the active site: the His61 and
Trp67 residues that were mutated in the present study are highlighted as sticks. The E64 inhibitor complexed with human cathepsin K (1ATK) was
superimposed to facilitate viewing the active site cleft. The image was generated wth SPDBviewer [33] The residues constituting the active site S2 and
S3 subsites of FheCL1 and FheCL3 are indicated below the molecular representation.
doi:10.1371/journal.pntd.0002269.g004

Figure 5. PS-SCL Profiling of the P2 and P3 substrate specificity of FheCL3 to FheCL1 enzyme variants. The activity against the
substrates is represented in the y axis relative to the highest activity of the library, whereas the x axis shows the different amino acids using the one-
letter code (n = norleucine). Error bars display the standard deviation from triplicate experiments. (A) FheCL3, (B) FheCL3 H61N (C) FheCL3 W67L (D)
FheCL3 H61N W67L.
doi:10.1371/journal.pntd.0002269.g005
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S3 profiles similar to the single FheCL3 W67L change (Figure 5

D).

Effect of FheCL1 active site pocket residue mutations
To complete the picture, we engineered the FheCL1 S2

pocket to resemble that of FheCL3 by replacing the key

residues at positions 61 and 67 (Figure 4). Based on the PS-

SCL neither of the changes introduced could modify FheCL1’s

preference for Leu at P2, nor increase significantly its

acceptance of Pro in that position (Figure 6). However, the

substitution of Leu67 to Trp did slightly increased FheCL1’s

acceptance of Gly in P3, either in the single change variant

(Figure 6 C) or in the double mutant (Figure 6 D).

Furthermore, in these Trp-containing variants (FheCL1

L67W, and FheCL1 N61H/L67W), the preference for Pro at

P3 increase in comparison with the wild type enzyme (Figure 6

C–D), suggesting that the change is restricting S3 to small

residues. The N61H single change imparts minor effects on S3

selectivity, suggesting that the entrance and not the bottom of

the S3 pocket is crucial for selectivity (Figure 6 B).

Taken together our data shows that a single change at

position 67 is sufficient to strongly reduce the unique

specificities of FheCL3 at both S2 and S3 sites, and moreover,

rearrange the whole active site pockets contribution to

substrate recognition. Modifications at this position in FheCL1

had little effect on substrate specificity. Therefore FheCL1’s

preference for Leu at P2 seems to be robust and does not

depend only on the residues lining the S2 or S3 pocket that

were evaluated in this work. Different effects of modifications

at position 67 have already been reported, in mammalian

cathepsins [25,37] and in the liver fluke proteases [29,38] but

these studies in general did not analyzed the possible

contributions of the residues occupying the S3 pockets.

Kinetic analysis of the cathepsin mutants
To support the data we observed with PS-SCL, we investigated

the enzyme kinetics of the parent enzymes and their variants using

two fluorogenic tripeptide substrates, Z-VLK-AMC and Tos-

GPR-AMC, which are representative of the FheCL1 and FheCL3

subsite preferences. The calculated kinetic parameters KM, kcat and

kcat/KM and the variation imposed by the diverse variants

examined are presented in Table 1. We found that substitutions

made at the active site residue 67 of FheCL3 resulted in a marked

reduction in enzyme efficiency for both substrates (this was also

seen with the PS-SCL). Compared to the parent enzyme, FheCL3

W67L exhibited a drastic diminution in specificity towards Tos-

GPR-AMC (1440-fold), predominantly due to a major reduction

in the catalytic turnover constant kcat. A less pronounced, though

also large (35-fold) decrease in specificity towards Z-VLK-AMC

(Table 1) was observed. The double variant FheCL3 H61N/

W67L presented a profile very similar to the FheCL3 W67L single

mutant, suggesting a minimal contribution from the H61 in the S3

subsite.

When analyzing the variations in the S2 pocket of FheCL1 we

found that the variant FheCL1 L67W showed a decrease in

specificity for peptides with Leu in P2 (Z-LR-AMC or Z-VLK-

AMC). These were 8 times lower predominantly due to a decrease

in the kcat of the modified enzyme. This substitution only slightly

increased the activity of FheCL1 towards Tos-GPR-AMC and

hence the FheCL1 L67W variant did not nearly approach the

specificity observed by FheCL3 for this substrate (Table 1). The

FheCL1 S3 pocket replacement, FheCL1 N61H (like in FheCL3)

did not alter the specificity of the enzyme towards Z-VLK-AMC

and resulted in a slight increase (1.4-fold) in its activity towards

Tos-GPR-AMC, likely due to a better accommodation of Gly at

P3 which would be consistent with the observations of the PS-SCL

analysis (Figure 6).

Figure 6. Profiling of the P2 and P3 substrate specificity of FheCL1 to FheCL3 enzyme variants using PS-SCL libraries. The activity
against the substrates is represented relative to the highest activity in each sub-library (hydrolysis rate for Leu and Met fixed peptide pools at P2 and
P3, respectively, are taken as 100%), whereas the x axis shows the different amino acids using the one-letter code (n = norleucine). The bar
corresponding to Gly is highlighted to assist visualization. Error bars display the standard deviation from triplicate experiments. (A) FheCL1, (B)
FheCL1 N61H (C) FheCL1 L67W (D) FheCL1 N61H L67W.
doi:10.1371/journal.pntd.0002269.g006
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Consequently, despite finding the expected variations in Z-

VLK-AMC and Tos-GPR-AMC activity in FhCL1mutants, these

changes are not enough to absorb the more than 200-fold

difference in specificity that FheCL1 has for these two types of

substrates and the enzymes still prefer substrates with P2 Leu

(Table 1). Previously, Stack et al. [20] found that the L67Y

change in FheCL1 did not significantly modify the activity

towards Tos-GPR-AMC which is consistent with our studies.

However, a 13-fold increase on the activity towards this substrate

was observed when a similar L67Y change was introduced into

FheCL5 [38]. FheCL5 active site is more restricted at both the S2

and S3 pockets than FheCL1 due to the presence of the bulkier

Leu157 and Tyr61 residues respectively. The L67Y change

would impose a further restriction in the active site such that

small residues at P3 and P2 would be favored. Consequently, the

improved acceptance of Tos-GPR-AMC could be explained by

the presence of the adjacent Gly and Pro positioned at P3 and P2

respectively, rather than by the modest rise in activity towards

Pro at P2 as originally proposed [38]. The same rationale explains

the recent observation that a FheCL5 L67F mutation increased

activity towards Tos-GPR-AMC, and the inverse FheCL2 Y69L

variant reduced P2 Pro acceptance [29].

Functional collagenolytic assay of FhCL3 mutants
Given the unusual characteristic of FheCL3 to efficiently

degrade native type I collagen, we assessed the efficacy of the

parent FheCL3 and its variants to hydrolyze type I collagen in vitro.

Unlike wild type FheCL3, both FheCL3W67L and FheCL3

H63N/W67L variants were unable to cleave collagen at neutral

pH and 28uC, conditions that preserve its native structure

(Figure 7). The reduced activity of FheCL3 mutants indicate that

Trp67 might be crucial for the enzyme activity that might be

centered in cleaving substrates enriched in small amino acids (Gly,

Pro) like collagen.

Our findings agree with previous observations that the

substitutions Y67L and L205A in human cathepsin K (for residues

present in human cathepsin L), abolish its collagenolytic activity

[37]. This human cathepsin K variant acquires the S2 preferences

of human cathepsin L, and the reciprocal replacements to human

cathepsin L conferred it with a specificity similar to cathepsin K

Table 1. Kinetic parameters of FheCL1, FheCL3 and the modified enzymes over two different substrates.

Enzyme Z-VLK-AMC Tos-GPR-AMC

kcat (s21) KM (uM)
kcat/KM (M
s21) kcat (s21) KM (uM) kcat/KM (M s21)

VLK/GPR kcat/KM

ratio

FheCL1 2.3260.120 3.9460.93 588889 0.035060.0060 15.1066.70 2355 250:1

FheCL1 N61H 5.4460.280 8.9461.39 608391 0.038060.0040 11.7664.30 3227 188:1

FheCL1 L67W 0.7860.060 10.5862.40 73378 0.034060.0050 10.9064.60 3148 23:1

FheCL1 N61H
L67W

1.3060.130 12.0162.90 108243 0.031060.0001 3.2060.08 9615 11:1

FheCL3 W67L 0.0360.003 44.80610.60 590 0.005360.0005 5.2061.80 1017 1:2

FheCL3 H61N
W67L

0.0360.004 28.7068.60 1037 0.007260.0005 6.7061.90 1072 1:1

FheCL3* 0.3360.010 15.7061.80 20760 6.000060.4800 4.1060.90 1464300 1:70

*FheCL3 kinetic parameters were taken from Corvo et al, 2009 [14].
doi:10.1371/journal.pntd.0002269.t001

Figure 7. Collagen cleaving activities of recombinant F. hepatica FheCL3 and the FheCL3 enzyme variants W67L and H61N/W67L.
Type I collagen was incubated with 5 mM of each enzyme for different lengths of time in PBS pH 7.3 at 28uC and separated by SDS-PAGE.
doi:10.1371/journal.pntd.0002269.g007
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[25]. We have also prepared a double variant of FheCL1 at the

same positions, i.e. FheCL1 L67Y/L205A but this did not exhibit

collagenolytic activity (data not shown). This lack of correlation

with human cathepsin L and K mutants behavior is surprising,

although differences at other positions within the active sites exist

between the mammalian and fluke enzymes that must also be

important in determining collagenolytic ability. These differences

in turn might prove useful in the design of specific inhibitors or

drugs for the parasite enzymes over host homologues.

Homology modeling of FhCL3 active site
Our analysis of active site variants highlights the role of residue

67 which is determining by its gate-keeper position not only the

conformation of the S2 subsite, but also of the S3 pocket. Using

molecular modeling we analyzed the possible conformations of

Trp67 in the active site of FheCL3 as compared to FheCL1

(Figure 8). The most stable rotamer protrudes and partially

occludes the S2 subsite (Figure 8 B). An alternative conformer

places the indole ring towards the S3 subsite reducing this site

volume (Figure 8 C), while a third low energy rotamer is coaxial

with the active site cleft leaving two more open but narrow active

site pockets (Figure 8 D). The rotation of this residue might be

fundamental to accommodating the distinct substrates of FheCL3,

defining the nature of the amino acids that can be accepted in

these subsites. The planar ring of Pro occupying the P2 subsite can

be stabilized by stacking interactions with the aromatic heterocycle

of Trp. Furthermore, aliphatic moieties can also be accommodat-

ed at this site due to the hydropobic nature of FheCL3 S2 pocket.

However, at the same time than stabilizing some interactions the

bulky Trp can be imposing steric hindrances in the neighbor

subsite thus favoring small residues.

Based on this observation we reanalyzed the MSP-MS data

looking at the amino acid pairs present at S3-S2. We noticed that

FhCL3 can accommodate different residues at P3 if P2 is occupied

by Pro, and that tiny Gly is slightly preferred at early times

combined either with Pro or aliphatic moieties. In fact if small

residues are present in P3, other residues can be placed in P2

excepting aromatic ones, which are disfavored in any combination

by FheCL3 (data not shown). These combined preferences for Pro

and to a lesser extent for Gly residues by FheCL3, can explain why

native collagen, that is rich in these amino acids is an appropriate

substrate for this enzyme.

Conclusions
We have characterized the FheCL3 cysteine protease of the

infective larval stage of F. hepatica that exhibits a particular

collagenolytic activity and analyzed the differential contribution of

active site residues involved. Our results highlight that a Trp

residue strategically located at the gatekeeper position between the

S2 and S3 active site pockets is vital to this activity and contributes

to narrow and constrained pockets that can best accommodate

small residues, particularly, Pro at P2 and Gly at P3. These

peculiarities are not shared by other known cysteine proteases,

suggesting that the enzyme may be a good target for the

development of small molecule inhibitors for parasite control.

Furthermore, our mutation analyses reveal the under-appreciated

Figure 8. Different rotamers of Trp67 have different effects on active site pocket sizes. Comparison of FheCL1 (A) and FheCL3 active site
pockets showing the three favoured rotamers (B, C and D) of Trp67 in FheCL3. The active site pockets S2 and S3 are indicated.
doi:10.1371/journal.pntd.0002269.g008
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significance of interactions at P3 that together with those at P2

contribute to modulating cysteine protease specificity. Novel

extended peptide libraries provide first glimpses of other interac-

tions particularly at the prime side of the active site cleft, showing

noticeable differences whose contributions to specificity and

selectivity need to be assessed in future studies.

Supporting Information

Figure S1 Time course of peptide degradation by
FheCL1 and FheCL3 analyzed by MSP-MS. Top panel:

total amount of cuts obtained by the different enzymes at 5 min,

15 min, 1 h, 4 h and 20 h incubation. Bottom panels: amino acids

found at positions P3 and P2 of the cleaved peptides at different

times of incubation with FheCL1 (top, blue) or FheCL3 (bottom,

red) at 5, 15, and 60 min. Results are expressed as percentage per

site. The amino acid frequency at each position within the

tetradecapetide library ranges from 4.2% to 6.8%. Met is

substituted by norleucine in the library.

(TIF)

Table S1 Generation of active site mutants by site
directed mutagenesis. Oligonucloetide primers and templates

used are indicated.
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