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Summary of Recent Advances 

  Conventional organic fluorophores suffer from poor photo stability, narrow 

absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other 

hand, are highly photo-stable with broad absorption spectra and narrow size-tunable 

emission spectra. Recent advances in the synthesis of these materials have resulted in 

bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. 

Commercial availability facilitates their application in a variety of unprecedented 

biological experiments, including multiplexed cellular imaging, long-term in vitro and in 

vivo labeling, deep tissue structure mapping and single particle investigation of dynamic 

cellular processes. Semiconductor nanocrystals are one of the first examples of 

nanotechnology enabling a new class of biomedical applications.     

Introduction 

Semiconductor nanocrystals, also called quantum dots (QDs), are a new class of 

fluorescent biological labels. Originating from quantum confinement of electrons and 

holes within the nanocrystal core material, the fluorescence from QDs is unique 

compared to that from traditional organic fluorophores. For example, QDs exhibit high 

photo stability, broad absorption and narrow and symmetric emission spectra, slow 

excited state decay rate and large absorption cross section [1]. Their emission color can 

be continuously tuned from ultraviolet to visible and infrared wavelengths by changing 

the size and chemical composition of the semiconductor core nanocrystal. Growing a 

semiconductor shell with a larger band gap improves the quantum confinement resulting 

in very bright and highly stable, chemically as well as optically, semiconductor 
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fluorophores [2,3]. QDs offer an exciting potential to overcome many of the limitations 

encountered by traditional organic dyes and genetically engineered fluorescent proteins. 

Since their introduction into biological imaging in 1998 [4,5], an enormous body of 

research has emerged focusing on the synthesis, photophysical property characterization 

and bioconjugation [6-9] of QDs. Advanced molecular and cellular imaging with QDs 

has also been realized [10,11]. 

Biocompatible QDs find utility not only as a basic bio-labeling tool, but also as a 

key building block for complex multi-functional bio-probes. Their large surface area may 

be tailored to bind both target selective molecules and therapeutic molecules, enabling 

spontaneous delivery of treatments to a probed disease area. Complex nanostructures 

formed by linking QDs and gold nanoparticles through DNA hybridization or 

streptavidin-biotin interaction have also been realized [12-14] and applied in sensing bio-

molecular concentration [14]. Although QDs have been utilized in a broad range of 

imaging applications to date, their versatility for advanced biomedical applications 

remains to be fully explored. In this article, we will focus on applications in biological 

imaging, with a brief introduction about their unique optical properties, followed by a 

discussion of recent progresses in both in vitro and in vivo imaging as well as their 

application in neurobiology. Toxicity issues are also addressed.    

Optical Properties 

The size dependent optical properties of QDs result from their quantum-confined 

electronic states [15]. Just as in the “ particle in a box” model, excitons in smaller 

nanocrystals experience stronger quantum confinement, resulting in larger 

photoluminescence energy. Figure 1 shows the typical absorption and emission spectra of 
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water-soluble QDs. Their emission wavelength can be continuously tuned from 400 nm 

to 2000 nm by changing both the nanocrystal size and composition [16].  

In contrast to conventional fluorophores, QDs have broad absorption and narrow 

and symmetric emission spectra. These features allow concurrent imaging of multiple 

entities in a single biological experiment, a quite difficult task with standard fluorophores 

since their relatively narrow excitation and broad emission spectra often result in spectra 

overlap [2]. Another advantage of QDs is that they are highly resistant to metabolic 

degradation and are hundreds of times more photo stable than conventional fluorophores. 

In addition, QDs often have a large Stokes shift, that is, a large separation between the 

excitation wavelength and the emission maxima, this has the effect of reducing 

autofluorescence, resulting in a several fold increase in sensitivity versus organic 

fluorophores [17].  

For QDs, quantum yields can be as high as 0.89 at room temperature [18]; molar 

extinction coefficients, about 105-106 M-1cm-1, are 10 to 100 times larger than most 

organic dyes [19]; and they have orders of magnitude larger two-photon absorption cross 

section [20]. Optical properties of QDs are usually unaffected by conjugation to bio-

molecules. Thus they are both highly stable and bright probes, especially suitable for 

photon-limited in vivo studies and continuous tracking experiments over extended time 

periods. A more extensive discussion of photophysical properties of QDs is presented by 

Grecco et al. [21]. 
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In Vitro Imaging 

QDs have been very successful in immunofluorescent labeling. With continuous 

efforts in developing high quality biocompatible QDs, nanoparticles conjugated to 

antibodies, peptides and DNA have been prepared and targeted to cells and tissues 

specifically, allowing multiplexed labeling and long term studies that can not be achieved 

by using standard dyes [22-29].  Although QDs and organic dyes can have comparable 

quantum yields, the larger absorption cross-section of the nanocrystal results in a much 

stronger photoluminescence signal. The sustained strong signal from a single 

nanoparticle was used to track dynamic cellular processes over time scales unavailable 

using organic fluorophores [10]. Recently, Dahan et al. developed a method to study 

single nanocrystal fluorescence patterns using defocused microscopy [30]. By relating 

these patterns to the structures of the nanocrystal emission dipoles they were able to 

determine the three-dimensional orientation of the nanoparticles, and successfully applied 

this technique to track the orientation of single membrane receptor in live cells (Figure 

2). With continuous efforts in elucidating the photophysics of single QDs, there will be 

increasing interest in their application as fluorescent emitters for studying dynamic 

biophysical processes. For example, Yildiz and Selvin demonstrated that total internal 

reflection microscopy used in conjunction with organic fluorophores can produce 

fluorescence imaging with one nanometer accuracy (FIONA) [31]. In this technique, a 

large number of photons are collected over time from a single dye molecule, allowing 

researchers to locate the center of the fluorescent pattern with high precision. This 

technique has been applied to unravel the walking mechanism of the molecular motors 

myosin V, myosin VI and kinesin. Although the presented experimental results were 
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from an organic dye, the authors believed that using QDs would provide at least a 10-fold 

improvement in time resolution and are extending the applications of FIONA in motor 

movements with QDs. 

        QDs can be uptaken by live cells with no need of any functionalization, possibly due 

to the characteristic size range and good biocompatibility. Pellegrino et al. studied the 

phagokinetic tracks left on a homogenous layer of silanized CdSe/ZnS, and demonstrated 

that QDs can be used as a two-dimensional in vitro invasion assay for discriminating 

between non-invasive and invasive cancer cell lines [32]. This technique provides a new 

tool for qualifying tumor cell invasiveness. Internalized QDs are also powerful probes for 

long-term studies of cell-cell interactions. They have been used to examine the 

interactions of human mammary epithelial tumor cells with normal cells growing in a 3-

D culture system. The tumor cell behavior around polarized normal cell clusters was 

clearly demonstrated when labeling tumor cells and normal cells with nanocrystals of 

different emission colors. The high photostability of the QDs is critical in the tracking 

and imaging of these cocultures for extended time periods (up to 14 days) and cannot be 

replaced by organic fluorophores (Figure 3, RM Boudreau, unpublished results).    

Applying semiconductor nanoparticles for in vitro labeling allows fluorescent and 

electron microscopy [10,18,33] imaging of the same probe, so that information on both 

temporal dynamics and high-resolution cellular localization can be obtained [10]. The 

fluorescence and electron density properties of QDs were also utilized by Nisman et al. to 

label a nuclear protein on cell sections and to correlate the fluorescence and TEM data. 

They also employed QDs in conjunction with immunogold to colocalize proteins at the 

ultrastructure level. Moreover, by obtaining cadmium elemental maps of CdSe/ZnS 
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distributed on a nuclear structure, the authors demonstrated the potential of using 

quantum dots as tags for electron spectroscopic imaging to colocalize multiple proteins 

[33].  

In vivo Imaging  

The extreme brightness of QDs and their resistance to photobleaching enable 

continuous exposure under laser illumination for an extended period of time, making 

them especially useful for in vivo imaging. Progress in nanocrystal synthesis, coating and 

surface modification has significantly enhanced their applications in tracking and 

imaging. Efforts in optimizing the surface coating for in vivo imaging have shown that 

specific polyethylene glycol (PEG) coatings result in longer circulation time [18,34], 

enhanced stability [18], and minimal nonspecific deposition [18,35], which are essential 

elements for in vivo imaging. 

 While the first in vivo targeting experiment imaged the histological sections of 

mouse organs after intravenous injection of peptide conjugated QDs, recent applications 

primarily focus on live animal imaging combined with multi-photon microscopy or with 

the use of near infrared nanocrystals.  

The large two-photon absorption cross section of QDs allows for more efficient 

probing of thick specimens by multiphoton excitation microscopy [36]. With the use of 

this technique, fluorescence signals were able to be detected hundreds of microns deep 

through the skin of live mice [20] and thick tissue specimens [37]. Stroh and colleagues 

recently explored the use of QDs in anatomical imaging with multiphoton microscopy. 

Unlike traditional fluorescence labeled dextran vessel markers, the nanocrystals distinctly 
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differentiate tumor vessels from perivascular cells and matrix. This group also assessed 

the ability of nanocrystals to monitor tumor and cell trafficking [38]. These findings show 

the potential uses of QDs in designing drug delivery particles and tumor 

pathophysiological studies. 

Tracking and imaging nanocrystals in live animals has been achieved by Nie’s 

group. QDs were conjugated to the antibody specific for the prostate cancer cell marker 

PSMA. After injection into mice that had been transplanted with human prostate cancer 

cells, the quantum dot-tagged PSMA antibodies recognized and bound at the tumor site 

and were clearly imaged in vivo. Due to the large absorption coefficient and long lifetime, 

in vivo images of nanoparticles were much brighter and more sensitive than images with 

green fluorescent protein [34].  

One challenge in live animal imaging is the significant autofluoresent 

background. Several strategies can be applied to solve this problem. One approach is to 

use spectral imaging or emission scanning microscopy to separate the nanocrystal 

fluorescence signal from background noise [34,37]. Since nanocrystals have narrow 

emission bands, this method also allows for multicolor tracking of up to five different 

nanoparticles in vivo [37]. An even more effective solution is to move from visible light 

to near infrared (NIR) since most tissue chromophores absorb weakly at such long 

wavelengths. Another advantage of NIR imaging is deeper penetration. Kim and co-

workers first demonstrated the use of NIR QDs to map sentinel lymph nodes (SLN) 

during surgical procedures [11]. The nanoparticles, after intradermal injection into the 

animal, entered the lymphatic system, and were followed using an intraoperative imaging 

system. The surgeon followed the flow of nanocrystals in real time with NIR image 



 - 9 - 

guidance, and quickly identified the position of the SLN in a precise and rapid surgical 

procedure. NIR nanocrystal imaging of blood vessels and beating heart through 1-2 mm 

of skin and tissues were also reported [39].  

Semiconductor Nanocrystals for Neurobiology 

One common approach to studying neurotransporters involves the use of 

radiolabeled substrates or antagonists that can be monitored with high sensitivity. 

However, the cost and complexity involved in using radiolabeled material is high. 

Additionally, real time monitoring of the transporter activity is not possible. In contrast, a 

fluorescence based approaches allow for the localization and direct monitoring of real-

time activities.  

Owing to their high degree of photostability and brightness, QDs are more 

suitable probes than organic dyes for studies of neuronal protein or receptor dynamics 

over an extended period of time. Semiconductor nanoparticles have been used to track 

individual glycine receptors, a major inhibitory neurotransmitter receptor, on the surface 

of cultured spinal neurons [10] (Figure 5). Compared to Cy3 dye, fluorescent 

nanoparticles had significant higher signal-to-noise ratio and allowed for tracking of 

single glycine receptors for at least 20 min, which is 200 times longer than Cy3 dye. 

Also, due to their small dimensions, nanoparticles are able to access dense synaptic 

regions and provide dynamical analysis that cannot be achieved with the use of 500 nm 

latex beads, one of the probes typically used for studying single molecule properties in 

live cells. 
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Besides single molecule studies of neurotransmitters, QDs have been used to 

study neurotransmitter localization and signal pathways. Nanocrystals conjugated with 

peptides, antibodies, or other small molecules have been shown to recognize their target 

cell surface receptors [25,40-42]. It has also been shown that nanocrystal probes, after 

binding to their targets, can modulate receptor functions by either inhibiting ligand 

transportation [41] or activating downstream signaling [25,42].  

Rosenthal and co-workers used nanocrystals conjugated with the neurotransmitter 

serotonin to target serotonin transporters on transfected cells [41]. Serotonin labeled 

nanocrystals specifically interacted with the serotonin receptor, and also inhibited the 

transportation of free serotonin in a way similar to antagonists. 

Recently, Mason and coworkers studied norepinephrine (NE) and dopamine (DA) 

transporter (NET and DAT) locations and activities with semiconductor nanocrystal 

linked antibodies and peptides [40]. With streptavidin-biotin interaction, nanocrystals can 

specifically bind to NET in transfected cells as well as surface protein Limbic Associated 

Membrane Protein (LAMP) in hippocampal cultures. Since the activity of Ang II receptor 

is closely correlated with NET, the authors studied the localization of this receptor using 

nanocrystal-neuropeptide Ang II conjugates. This approach would allow for future study 

of Ang II receptor redistribution and dynamics in relation to NET activity in real-time. 

To investigate whether QDs can serve as fluorescent nano-devices to evoke 

specific cell physiological responses, Vu et al. linked beta the subunit of neuron growth 

factor (βNGF) to the nanocrystal surface and used this complex to target tyrosine kinase 

A (TrkA) receptors of PC12 cells [42]. They reported that nanocrystal-βNGF activated 
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TrkA receptor initiated downstream signaling that resulted in conversion of PC12 cells to 

a neural phenotype.  

These experiments show that QD-ligand conjugates are promising imaging probes 

for studying receptor-mediated activities and will have a wide range of applications in 

pharmaceutics and therapeutics.   

Toxicity 

Cadmium and selenium are known to be toxic [24]. Therefore, concerns have 

arisen about semiconductor nanocrystal toxicity and their environmental impact. Most of 

the above cell and animal experiments showed that when properly capped by both ZnS 

and hydrophilic shells, no obvious CdSe nanocrystal toxicity was observed under normal 

experimental conditions. Several groups have varied parameters such as synthesis, 

surface coating and incubation concentration to further investigate the potential toxicities 

of nanocrystals [24,43-45]. Cytotoxicity was observed when Cd2+ or Se2+ ions were 

released. This occurred when the nanoparticle surface coating was not stable, exposing 

the CdSe to oxidization by air or UV damage [24,45]. Surface molecules also play a role 

in QD cytotoxicity [44,45]. While cells can tolerate PEG-silica coated QDs at 

concentrations up to 30 µM, mercaptopropionic acid coated QDs have deleterious effect 

at ~ 6 µM [45].  

Besides cytotoxicity, the degradation and metabolism of nanocrystals in the body 

remains to be investigated and there are reports that injected nanocrystals can accumulate 

in kidney, liver and spleen [34,35]. Whether nanocrystals can ultimately be cleared from 
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the body is not known. More research in this area must be completed before they can be 

used as probes for diagnostic applications.  

Conclusions 

  In the past several years, there has been increasing amount of interest in using 

QDs in an expanding variety of biological applications. Although they will not replace 

traditional fluorophores in biological imaging, QDs have been gradually accepted as a 

better alternative probes with enhanced signal-to-noise, extremely high stability, and 

improved specificity suitable for studying important biological problems.   
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Figure Legend 

Figure 1. (a) Excitation (dashed) and fluorescence (solid) spectra of fluorescein (A) and 

a typical water-soluble QD sample (B) in PBS. The nanocrystals have a much narrower 

emission (32 nm compared with 45 nm at half maximum and 67 nm compared with 

100 nm at 10% maximum), no red tail, and a broad, continuous excitation spectrum. (b) 

A, Size- and material-dependent emission spectra of several surfactant-coated QDs in a 

variety of sizes. The blue series represents different sizes of CdSe QDs with diameters of 

2.1, 2.4, 3.1, 3.6, and 4.6 nm (from right to left). The green series is of InP QDs with 

diameters of 3.0, 3.5, and 4.6 nm. The red series is of InAs QDs with diameters of 

2.8, 3.6, 4.6, and 6.0 nm. B, A true-color image of a series of silica-coated core (CdSe)-

shell (ZnS or CdS) nanocrystal probes in aqueous buffer all illuminated simultaneously 

with a handheld ultraviolet lamp. Reproduced with permission from [4]. 

Figure 2. Defocused microscopy images of QD coupled glycine receptor in the 

membrane of a Hele cell. The contour intensities (dotted lines) can be fitted (solid lines) 

to determine the orientation (Θ, Φ) of each QD. Reproduced with permission from [30]. 

Figure 3. QDs were used to study mixed cell interactions in a 3-D Matrigel culture 

system. (A) Human mammalian epithelial MCF 10A cells (labeled with green emitting 

silica coated QDs) form acini structures after growing in growth-factor reduced matrigel 

for 10 days. (B) After the acini were formed, human breast tumor MDA-MB- 

231 cells (labeled with red-emitting silica coated QDs) were added to the culture. After 
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14–16 h of incubation, the tumor cells had attached to the acini. (C) The contact was fatal 

to the tumor cells, which were found dead surrounding the MCF 10A acinus. Most of the 

tumor cells had lysed, leaving transparent ghosts loosely attached to the acinus, but a few 

newly attached cells still retained red-emitting QDs. (D) The MCF-10A acini and all 

invading tumor cells; it is a superimposition of all sections, displaying the sharp edge of 

each cell followed by a projection of color-coded depth information so that red is the 

uninvolved lower portion of the MCF-10A acini and the tumor cells are shades of orange 

through green.  Bar = 10 µm. From manuscript in preparation. 

Figure 4. Near infrared (NIR) QD sentinel lymph node mapping in the mouse. The 

mouse was injected intradermally with 10pmol of NIR QDs in the left paw. Left, pre-

injection NIR autofluorescence image; middle, 5 min post injection white light color 

video images; right, 5 min post-injection NIR fluorescence image. An arrow indicates the 

putative axillary sentinel lymph node. Reproduced with permission from [11]. 

Figure 5. QDs as marker for glycine receptor (GlyR) localization in neurons. QD labeled 

GlyR (red) was detected over the somatodendritic compartment identified by 

microtubule-associated protein-2 (green). Arrows mark clusters of QD labeled GlyRs 

located on dendrites. Reproduced with permission from [10]. 
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