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Abstract 
 

 A divergence-free, parameter-free, path-based 
discrete-time quantum dynamics is designed to not only 
enlarge the achievements of general relativity and the 
standard particle model, by approximations at spacetime 
scales far above Planck scale while far below Hubble scale, 
but to allow tackling of hitherto inaccessible questions. 
“Path space” is larger than and precursor to Hilbert-space 
basis. The wave-function-propagating paths are action-
carrying structured graphs—cubic and quartic structured 
vertices connected by structured “fermionic” or “bosonic” 
“particle” and “nonparticle” arcs. A Planck-scale path step 
determines the gravitational constant while controlling all 
graph structure. The basis of the theory’s (zero-rest-mass) 
elementary-particle Hilbert space (which includes neither 
gravitons nor scalar bosons) resides in particle arcs. 
Nonparticle arcs within a path are responsible for energy 
and rest mass. 
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  Although fundamental status for Planck scale has been widely conjectured 
throughout the past century by both physicists and cosmologists, accommodation by 
continuous quantum dynamics has proved elusive. We here summarize a proposed 
dynamics based on Planck-scale-stepped  (classical) action-carrying spacetime paths that 
in important respects resemble Feynman graphs. These “graph-paths”, located within a 
discretized “path spacetime”, define (by “connecting to”) an elementary-particle Hilbert 
space attached to spacelike surfaces that constitute a tiny portion of path spacetime. 
(Spacing between successive wave-function surfaces is large on atomic scale although 
tiny on Hubble scale.) The wave-function propagator between successive wave-function 
surfaces (the “global S matrix”) adapts the Dirac-Feynman rule (1) to the actions of path 
portions—open graphs that connect these surfaces. Path action depends only on the 3 
(dimensionful) parameters h, c and path step. The proposed approach promises not only 
to enlarge the achievements of general relativity and the standard particle model, through 
approximations at spacetime scales much larger than Planck scale while much smaller 
than Hubble scale, but to illuminate hitherto-inaccessible puzzles such as “measurement”.    
 “Path spacetime”, the product of a discrete 1-dimensional “age space” and a 
continuous 3-dimensional “boost space”, is a portion of the interior of a forward 
lightcone-- the set of points whose Minkowski distance from lightcone vertex is a 
positive-integral multiple of a Planck-unit δ (δ ~ 10–43 sec). In other words, path 
spacetime comprises the set of (3-dimensional) hyperboloids whose “age” (since “big 
bang”) is Nδ, with N = 1, 2 … (“Time arrow” is built into path spacetime.) “Wave 
function spacetime” will below be defined as a subset of these hyperboloids. 
“Homogeneity of 3-space” amounts to equivalence of point collections related by Lorentz 
transformations—an idea of Milne. (2)  
 The “local frame” of a spacetime point is the frame in which that point’s positive-
timelike 4-vector displacement from lightcone vertex is purely timelike. In local frame an 
infinitesimal spatial displacement dx on Hyperboloid N relates to an infinitesimal boost-
space displacement dβ by dx = Nδc dβ. Boost space has curvature of order unity but 
deviation from flatness is small for spatial displacements small compared to Nδc (small 
on Hubble scale). Although all statements in this paper recognize curvature of 3-space—
i.e., finiteness of N--physics (“here and now”) usually deals with almost-flat spatial 
regions in the logarithmic age neighborhood of ~1060 Planck units. 
 Any path is a set of directed and labeled loops of successive c-velocity steps in 
path spacetime, each step spanning an age interval ±δ (forward or backward). The label is 
6-valued—a product of 2- and 3-valued labels, a choice that doubles our covering of the 
Lorentz group while representing electric charge and energy. Outcomes supporting this 
label choice are chiral isospin, a 30° elementary Weinberg angle, 3 colors and 3 
generations of fermions. (3) Closing of loops means 6 locally-conserved quantum 
numbers. However, only 2 (one of these being electric charge) are superselectedly carried 
exclusively by elementary particles. 
 Path-loop constraints tailored to the 3-dimensionality of space require any age-
monotonic loop segment (of 2 or more steps) to be accompanied over the entire 
monotonic-segment extent by exactly 3 other age-monotonic loop segments that are 
“almost parallel” in the sense that the center of such a path segment quartet is spatially 
straight (in boost space). Two quartet members move forward in age while the remaining 
two members move backward. Transverse spatial displacements between quartet 
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members, specified by the path step and N, come in 2 patterns, respectively called 
“fermionic” and “bosonic”, that are described in Reference (3). We shall refer to such a 
quartet of loop segments as a “structured arc” (or, more often, simply as “arc”). Any arc’s 
spatially straight central axis has a local-frame velocity magnitude dependent only on N--
smaller than c by a fraction of order N–2.    

“Structure of an arc” refers not only to the transverse spatial pattern of 4 path 
segments but to the quartet of 6-valued labels attached thereto. References (3) and (4) 
place on label patterns constraints (certain of which are relevant to what follows) 
required by consistency with Hilbert space and representation of energy, rest mass, 
chirality and photon coupling to electric charge. The total number of allowed arc label 
patterns thereby drops below 64 by roughly one order of magnitude. 

“Structure of a vertex” refers to the spacetime pattern of connections between 3 or 
4 path-segment quartets which there meet. At a cubic vertex 2 arcs are fermionic while 1 
is bosonic. At a quartic vertex either all 4 arcs are bosonic or all 4 are fermionic. 
Reference (4) exhaustively catalogues vertex structures.  

Despite vertex structure, vertex spacetime location enjoys precise meaning as the 
intersection between spatially straight central axes of those arcs joined by the vertex. 
Longitudinal arc orientations at a vertex constrain (structured-arc) transverse  
orientations. (4) (Vertex location functionally resembles the spacetime label shared by 
those local fields whose product constitutes one term of a field-theoretic polynomial 
Lagrangian density; arc transverse orientation functionally resembles a field’s spin label.) 

The action of a path is the sum of actions separately attached to arcs and vertices. 
Vertex actions are 0, ±1 in units πh /2 chosen (see below) to conform to Planck’s relation 
between energy and classical angular velocity (“frequency”). An arc carries Poincaré-
invariant electromagnetic and gravitational “action at a distance” that is below prescribed 
through arc orientation and length, relative spacetime separations from other arcs and arc 
electric charge and energy. (Gravitational constant is implicit in the energy unit.) Path-
loop labels define arc electric charge, while below-described “trivial” vertices perpetuate 
spatial straightness in “trivially-extended” arcs and discretely attach energy thereto.  

“Electromagnetic vertices”, defined by termination thereon of bosonic arcs called 
“photonic” that are identified by a combination of labeling and termination structure, (4) 
are unique in carrying no action. (Although itself actionless, an electromagnetic vertex 
“inserted” into a charged arc affects electromagnetic action in replacing the single 
charged arc by a pair of charged arcs that are differently oriented.) 

Graph-path action at a distance is lifted from Wheeler and Feynman’s (“W-F”) 
fieldless representation of classical electromagnetism (5). Action of an arc-step is a sum of 
Poincaré-invariant contributions from past and future “source” arc-steps. Denoting the 
spacetime locations of beginning and end of arc-step-s central axis by the 4-vector 
symbols sb and se, the s displacement in spacetime,  
                                                   ls ≡ se – sb,                                                                      (1) 
is a positive-timelike 4-vector. The backward lightcone with vertex at se “intersects” 
another arc step within the same path if the end of the latter step is outside this lightcone 
and the beginning inside. Employing the symbol sr to designate such a “retarded-source” 
arc step and the 4-vector symbol sr

b to designate the spacetime-location of sr beginning, 
we define the positive-timelike 4-vector,  
                                                  xs

r ≡ se – sr
b.                                                                   (2) 
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          Denoting arc-step electric charges by the symbols Qs and Qs
r, the W-F increment of 

action at a distance carried by arc-step s due to the retarded source-step sr is 
   –½ Qs Qs

r ls • ls
r
  / xs

r • ls
r.                                                             (3) 

In graph-path dynamics the symbol Qs may take values 0, ±⅓, ±⅔, ±1 in units of order h½ 
which a separate paper will specify by “grand unification” of electromagnetic arc action 
with weak and strong vertex action. 

The formula for an increment of “advanced” action is similar to (3) with the 
retarded superscript r replaced by an advanced superscript a. All 4-vectors in the 
advanced-action formula continue to be positive timelike, with 
      xs

a ≡ sa
e – sb .                                                               (4) 

 The W-F device works also for gravity. Gravitational action is given by a formula 
analogous to (3), where the product of electric charges is replaced by a (positive) 
Lorentz-invariant inner-product of below-defined energy-momentum 4-vectors that each 
belongs to a spatially-straight “trivially-extended arc”—a succession of “continuing” arcs 
separated by “trivial” vertices that is below called a “t ” element of the graph. The 
aggregate of all t elements encompasses all arc steps without multiple counting. 

Wave-function spacetime comprises the subset of path-spacetime hyperboloids of 
age Nw (Mδ), where Nw = 1,2, … and M is a huge integer enjoying a stepped-dynamics 
“fundamental” status like the scale interval spanned by inflation in standard cosmology. 
Eventually number theory needs to indicate a unique value for the integral ratio M 
between wave-function step and path step. (An example of how number theory can 
identify a special huge prime is provided by the Mersenne prime sequence, 22-1=3, 
 23-1=7, 27-1=127, 2127-1.)  

S-matrix interpretation for the wave-function step requires Mδ to be large on 
atomic scale, although tiny on Hubble scale, and characterizable as “setting the scale of 
measurement” (presumably, thereby, below the scale of “observer consciousness”). A 
value for M in the logarithmic neighborhood of 1038 (Mδ ~ 10–5 sec) appears satisfactory. 
(For a continuous-time field approximation where δ would serve as “ultraviolet-
divergence cutoff”, Mδ would provide “infrared cutoff”.) Because the (Nw = 1) initial 
wave function of the universe has age Mδ, a relation between M and the scale interval of 
cosmological inflation is plausible. 

The “global S Matrix” connecting 2 successive wave functions (belonging to 
successive values of Nw) is built by adapting the Dirac-Feynman rule to the actions of 
open-graph portions of closed-graph paths—open graphs located within the (simply-
connected) spacetime region between 2 successive wave-function hyperboloids. The 
“ends” of these open graphs are the truncated arcs cut by wave-function hyperboloids. 
Path constraints forbid graph vertices from locating on wave-function surfaces.  

A zero-rest-mass elementary-particle (S-matrix) Hilbert space is based on the 
intersections between path-graph arcs and wave-function hyperboloids. Bosonic and 
fermionic quartets of labeled points in (3-dimensional) boost space, each (Planck-scale) 
structured quartet with a center and with a spatial orientation, provide coordinate basis for 
a Fock space: “Pauli symmetrized” functions of SL(2,C) group parameters represent 
zero-rest-mass vector bosons and spin-½ fermions with standard-model quantum 
numbers. (3) A conjugate basis labeled by group invariants (Casimirs) related to particle 
momentum and angular momentum in local frame, is provided by Fourier-like analysis of 
wave-function dependence on Lorentz parameters. (6) Bosonic “particle” arcs enjoy 
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structures allowing “contact” with elementary vector bosons; the structures of fermionic 
particle arcs permit contact with elementary fermions.    

Certain arcs, identifiable by label structure, are forbidden to cross wave-function 
hyperboloids. Those bosonic arcs in the “nonparticle” category are called “inertial” 
because, as explained below, they enable (through “trivial” vertices) the momentum  
content of graph paths. (Path momentum and wave-function momentum become 
approximately related by stationary action.) Nonparticle fermionic arcs are called “zbw” 
because of enabling (through quartic fermionic vertices, as discussed below) the 
zitterbewegung that underpins fermion rest mass. 
 Any arc (particle or nonparticle, bosonic or fermionic) may connect 
“continuously” at a “trivial” vertex to another identically-structured arc of the same 
longitudinal orientation. The members of such a “trivially-continuing” arc pair (both 
incoming, both outgoing or one incoming and the other outgoing) differ in transverse 
orientation—by 90° if bosonic and by 180° if fermionic. “Handedness” (left or right) of 
bosonic-arc (discrete) rotation at a trivial vertex is determined by arc structure. The action 
attached to any trivial vertex (bosonic or fermionic) is – πh /2.     
 A nontrivial-vertex-bounded spatially-straight succession t of (nt + 1) trivially-
continuing arcs connected by nt trivial vertices we call a “trivially-extended” arc. The age 
difference between t end points (ending age minus beginning) in δ units is another 
nonnegative integer Nt, while the positive-timelike 4-vector symbol xt denotes the 
spacetime displacement between t central-axis endpoints. The 4-vector,  
                                         pt ≡ [ntπh /2(Ntδ)2] xt,                                                   (5)  
is the “energy-momentum” of the trivially-extended arc. In the local frame of t midpoint, 
the energy Et is (almost) the rational number nt /Nt times the Planck energy unit πh /2δ. 
For bosonic t, the frequency associated to Et is the mean angular velocity of rotating 
transverse-orientation. Gravitational action, attached both to individual particle and to 
individual nonparticle trivially-extended arcs, is determined by the energy-momentum of 
such arcs, as defined by (5).   
 A trivial vertex is cubic if the continuing arc pair is fermionic and quartic if the 
continuing pair is bosonic. (A quadratic kinetic energy term within a field-theoretic 
Lagrangian density fulfills some of the functions of a trivial vertex.) At a cubic trivial 
vertex the single other arc is inertial while at a quartic trivial vertex both other arcs are 
inertial, each terminating at (not “continuing through”) the trivial vertex. The unique set 
of labels identifying an inertial arc not only endows this arc with zero values for all 6 
conserved quantum numbers but distinguishes it from all particle bosonic arcs. (3,4) 

Although a path graph displays many features of a Feynman graph, the latter lacks 
inertial arcs that terminate in trivial vertices. (The energy-momentum attached to a 
Feynman-graph arc is an extra label that does not derive significance from the graph 
itself.) Nonetheless the wave-function-propagating continuous paths (not Feynman 
graphs) of standard (Hamiltonian) quantum dynamics (7) share the discretized graph-path 
feature of traversing a (coordinate-momentum) phase space. Our essential innovation is a 
path space with nonparticle “dimensions”--inertial arcs and zbw arcs—that are 
unrepresented in Hilbert space.      

A standard-theory analog to inertial arcs is found in the graviton arcs of a 
Feynman graph. Although our Hilbert space contains no elementary gravitons it does 
include photons and inertial arcs share certain structural features with photonic  
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arcs. (4) In a Feynman graph, photon arcs and graviton arcs enjoy parallel status.  
How does an inertial arc resemble a graviton? (a) Inertial arcs that are trivially 

extended by trivial vertices (connecting 4 inertial arcs) themselves carry energy-
momentum and associated gravitational action. (b) Stationary action, together with 
nontrivial vertices that alter longitudinal arc direction, is expected at large scales to select 
out “gravitationally-curved” paths. The notion that inertial arcs “generate” energy by 
“terminating on other arcs” implies a graviton-suggestive converse “path-bremstrahlung” 
notion: The larger the energy of a (stationary-action) “accelerating arc”, the larger is such 
an arc’s “emission rate” of inertial arcs. (“Emitted” inertial arcs, even though never 
manifested through particles, are not “locally reabsorbed” within the graph-path; 
“extendable” by intersections with other inertial arcs, they traverse “macroscopic” spatial 
intervals.)    
 Label-defined nonparticle zbw fermionic arcs (carrying zero values for the 2 
superselected conserved quantum numbers carried by elementary particles), play a role at 
quartic fermionic vertices that parallels the participation of inertial arcs at quartic bosonic 
vertices. (All quartic fermionic vertices involve zbw arcs.) The analog of a trivial quartic 
vertex is a “zitterbewegung vertex” in which 2 zbw arcs terminate while two 
“continuing” fermionic arcs relate to each other by opposite longitudinal directions and 
“chirally-reversed” labels. Chirality reversal, defined in Reference (3), corresponds to 
L↔R interchange in the standard model (where the triplet of W bosons couples to L 
fermions). A zbw vertex resembles a standard-model fermion-Higgs Feynman-graph 
vertex—a zbw arc pair playing the role of a Higgs scalar. (Our Hilbert space does not 
include elementary scalar bosons.) There are however 9 different label structures for zbw 
arcs, even though zbw vertex actions are always ±πh /2.  
  Chirality reversal accompanies helicity reversal for an elementary fermion. 
Dirac’s fermion wave function with nonzero rest mass is a direct sum of opposite-
helicity, opposite-velocity zero-rest-mass (Majorana) wave functions—a composition 
often described as “zitterbewegung”. Presuming the action of zbw vertices to generate 
fermion rest mass, graph-path dynamics implies calculability of the observed quark-
lepton mass matrix (in Planck-energy units) without need for arbitrary parameters.    
 All vertices, apart from electromagnetic, zbw and quark-W vertices, enjoy a 
“Chan-Paton structure” yielding SU(N) symmetries for strong (N=3), weak (N=2) and  
GUT (N=5) action. (4) Rules for the signs of vertex actions imitate the (Yang-Mills) gauge 
symmetry of local field theory. Although all graph-path vertices share certain important 
structural features, an exact Planck-scale supersymmetry would clash with the difference 
in spacetime structure of fermionic and bosonic arcs. 
            All vertices exhibit CPT symmetry but a remarkable aspect of W-quark vertex 
structure is a bosonic asymmetry under inversion of path direction. In all other vertices 
bosonic arcs maintain equivalent postures under this inversion. Because path-direction 
inversion corresponds to a CP transformation, a special role may be anticipated for W-
quark interaction in the breaking of CP symmetry. The initial (global) wave function is 
our theory’s repository for “spontaneous symmetry breaking”—an issue to which no 
serious thought has yet been given. 
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This enterprise was engendered by extended 1983-84 discussions with V. 
Poénaru. Almost-daily conversations with Henry Stapp over the subsequent two decades 
contributed enormously to details of our proposal. Criticism from Jerry Finkelstein has 
been extremely valuable. The author would also like to acknowledge the impact on his 
thinking from the series of renormalization-group-based essays in Physics Today by 
Frank Wilczek. These essays suggested the postulate of universal magnitude for vertex 
(trivial or nontrivial) action. The only parameters of our theory are h, c and δ. Contact 
between experimental data and the “fundamental” Planck-scale dynamical laws that we 
are proposing will require computations borrowing heavily from renormalization-group 
methods. 
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