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Variational Excitations in Real Solids:
Optical Gaps and Insights into Many-Body Perturbation Theory

Luning Zhao1 and Eric Neuscamman1,2,∗
1Department of Chemistry, University of California, Berkeley, CA, 94720, USA

2Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
(Dated: June 19, 2019)

We present an approach to studying optical band gaps in real solids in which quantum Monte
Carlo methods allow for the application of a rigorous variational principle to both ground and
excited state wave functions. In tests that include small, medium, and large band gap materials,
optical gaps are predicted with a mean-absolute-deviation of 3.5% against experiment, less than
half the equivalent errors for typical many-body perturbation theories. The approach is designed to
be insensitive to the choice of density functional, a property we exploit in order to provide insight
into how far different functionals are from satisfying the assumptions of many body perturbation
theory. We explore this question most deeply in the challenging case of ZnO, where we show that
although many commonly used functionals have shortcomings, there does exist a one particle basis
in which perturbation theory’s zeroth order picture is sound. Insights of this nature should be useful
in guiding the future application and improvement of these widely used techniques.

The quantitative study of electronic excitations in
solids remains a central topic in condensed matter theory
due to their importance the spectroscopic characteriza-
tion of materials and in technological applications such as
light harvesting. For many semiconductors, approaches
based on many-body perturbation theory (MBPT) in
the form of GW 1 and Bethe-Salpeter equation2 (BSE)
methods have been particularly successful3 and these
and related methods remain a highly fruitful topic of
research.4–11 However, there remain many materials of
great technological interest, especially within the tran-
sition metal oxides, whose low-energy excitations are
poorly described by density functional theory (DFT) and
MBPT.

Although MBPT does not in principle need to rely on
input from DFT, some of its most widely used practi-
cal incarnations (e.g. G0W0) assume a zeroth order pic-
ture in which electronic excitations are simple particle-
hole transitions between the one-particle eigenstates of
Kohn-Sham DFT with transition energies given by dif-
ferences between these Kohn-Sham orbitals’ energies. In
this picture, the lowest excited state corresponds to a
single open-shell Slater determinant in which one elec-
tron has been promoted from the valence band maximum
(VBM) orbital to the conduction band minimum (CBM)
orbital. Although the DFT orbital energy difference is
known to underestimate the corresponding band gap,3,12

this zeroth order picture is nonetheless quite close to
reality when solids like C diamond and Si are treated
with standard LDA13 or GGA14 density functionals. In
these situations, the DFT orbitals closely resemble the
excited electron and hole states and the orbital energy
differences, although not perfect, are close enough to re-
ality that MBPT variants that perturb around them can
be quite accurate.15 The story can be strikingly differ-
ent when a solid/functional pairing produces one-particle
states that differ significantly from the true electron and
hole states and/or the orbital energy differences stray too
far from reality. The success of hybrid functionals16,17

in improving gap predictions in areas where pure func-
tionals perform poorly18,19 implies that one or both of
these issues can be sensitive to the fraction of exact ex-
change. It is therefore not surprising that the reliability
of MBPT can be strongly dependent on the choice of
functional and what degree of self-consistency is sought
in the GW equations. Were it possible to inspect the
properties of the true excitonic wave function in chal-
lenging solids, one could hope to gain insight into why
certain density functionals satisfy MBPT’s assumptions
better than others, and make the modeling of difficult
materials’ spectra substantially more predictive.

In this Letter, we present a variational formalism that
enables accurate and systematically improvable predic-
tions of a material’s lowest excited state wave function
and the corresponding optical gap, which can be used as a
standalone predictive tool and as a window into the rela-
tionship between density functionals and the assumed ze-
roth order picture of MBPT. Our approach combines re-
cent advances in excited state variational principles20–23

with a wave function ansatz suitable for both the ground
and the VBM→CBM state. Crucially, the ansatz can de-
scribe both nontrivial BSE-like superpositions of particle-
hole excitations and the dynamic polarizations of the
electron cloud found in the vicinity of an exciton. We
stress that this approach employs energy differences be-
tween neutral states and thus probes optical gaps, and
so exciton binding energies (EBE) must be considered
when comparing to fundamental gaps. Gap comparisons
aside, the fact that the method yields an explicit wave
function for the VBM→CBM excitation allows us to di-
rectly inspect how well a given density functional satis-
fies MBPT’s zeroth order picture and thus how likely it
is that accurate predictions will result.

Just as the energy E = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 can be mini-
mized to find a “variationally best” ground state within
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a given ansatz, we find our excited state by minimizing

Ω (ω,Ψ) =
〈Ψ|ω −H|Ψ〉
〈Ψ|(ω −H)2|Ψ〉

=
ω − E

(ω − E)2 + σ2
(1)

whose global minimum is not the ground state but the
H-eigenstate with energy immediately above the chosen
value ω,20 which we place within the band gap to target
the first excited state and thus predict the optical gap.
To mitigate the difficulty of dealing with the H2 term,
our QMCPACK24 implementation evaluates Ω via vari-
ational Monte Carlo (VMC)20,25 and minimizes it using
the linear method.20,26,27 For a more detailed discussion
of how this approach is kept size extensive22 and balanced
between states,21 as well as computational details and the
addressing of finite size effects, we refer the reader to the
Supplemental Material (SM) at the end of this document.

We pair this variational approach with a multi-Slater
Jastrow28,29 ansatz

Ψ(~r) = eU(~r)
∑
I

CIΦI(~r) (2)

where U(~r) is a correlation factor24

U(~r) =
∑
ip

Vp(rip) +
∑
i<j

W (rij) (3)

detailed in the SM. This configuration interaction (CI)
of the Slater determinants ΦI is used to accommodate
the basic structure of each state and account for state-
specific polarization effects. For the ground state, we
include the closed shell Kohn-Sham determinant for the
basic ground state structure plus all single particle-hole
excitations, which represent the leading order terms in
a Taylor expansion of the orbital rotation that would
transform the Kohn-Sham determinant into whichever
determinant minimizes Ω in the presence of the corre-
lation factor. For the excited state, we would like to
include all single particle-hole excitations as in the BSE
approach as well as the closed shell determinant and all
double particle-hole excitations. This would again al-
low us to capture the leading order effects of an orbital
rotation30,31 that would in this case accommodate repo-
larizations of the electron cloud in the vicinity of the ex-
citon. However, as it is prohibitively expensive to include
all double excitations in real materials, we approximate
orbital relaxations by first minimizing Ω for singles and
the closed shell term and then adding only those doubles
that contain a singles component with coefficient larger
than 0.1.

As seen in Figure 1 and Tables I and II, the approach
in which we include both singly and doubly excited con-
figurations in the excited state (VMC-CISD) is quite ef-
fective for predicting optical gaps in small (Si), medium
(C, LiH, ZnO), and large (LiF) band gap materials. Its
mean-absolute-deviation (MAD) from experimental val-
ues across these five systems is just 3.5%, compared to
MADs more than twice this large for the optical gaps

obtained by subtracting the known exciton binding ener-
gies from G0W0 and self-consistent GW gaps. Of course,
MBPT is highly effective in Si, C, and LiH, and so we
expect that in these cases the zeroth order DFT wave
function is sound. The analysis in Figure 2 confirms this
expectation by showing that over 90% of the VMC-CISD
wave function is accounted for by LDA’s VBM→CBM
transition. Thus, in these three cases, LDA provides good
zeroth order wave functions and we can confirm that the
accuracy of MBPT derives from the appropriateness of
its approximation.

The story is quite different in LiF and ZnO, where Fig-
ure 2 reveals that LDA’s zeroth order picture accounts for
less than 80% of the high-level wave function. At a min-
imum, this implies that LDA’s VBM and CBM orbitals
are not the correct shape for the real exciton’s particle
and hole, a point we will return to in our discussion of
ZnO. Figure 2 also reveals that in these two systems, the
fraction of exact exchange can have a significant effect on
how closely DFT’s zeroth order wave function matches
the VMC prediction. Although there are also the orbital
energies to consider (see ZnO discussion below), these
findings help explain why MBPT can be so sensitive to
the choices made in its practical application.43–45 Work
by Sommer et al46 reveals that these issues can carry over
to the BSE approach, which fails to provide a satisfactory
correction to GW in LiF, although vertex-corrected solu-
tions to Hedin’s equations can help in that case.47,48 Note
that these issues do not necessarily imply a failure of one-
particle theory in these systems, as there may exist a one
particle basis in which the true exciton really does look
like the simple VBM→CBM transition. Indeed, in ZnO,
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FIG. 1. VMC-CISD optical gap predictions plotted against
experimental results. See Table I for more details.
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TABLE I. Band gaps in eV. The quasiparticle gaps of DFT
and the GW methods should be reduced by the EBE when
comparing to the VMC and experimental optical gaps.

C Si LiH LiF
LDA 3.93 0.47 2.68 8.60
G0W0 5.5015 1.1215 4.6432 13.2715

GW 5.9915 1.2815 4.7533 15.1015

VMC-CIS 5.68(6) 1.41(6) 5.01(6) 14.6(1)
VMC-CISD 5.55(6) 1.20(6) 4.65(6) 12.7(1)
Experiment 5.5034 1.1734 4.9035 12.636

EBE 0.0737 0.01538 0.139 1.636

TABLE II. ZnO band gaps and EBE in eV.

LDA 0.83
PBE0 3.0340

G0W0-LDA 2.1415

GW -LDA 3.2015

G0W0-PBE0 3.2440

VMC-CIS(LDA) 3.9(2)
VMC-CIS(PBE0) 4.6(2)
VMC-CISD(LDA) 3.9(2)
VMC-CISD(PBE0) 3.9(2)
Experiment 3.641

EBE 0.0642

to which we will now turn our attention, we will provide
an analysis showing that such a basis does indeed exist.
Thus, while Figure 2 makes plain that commonly used
density functionals struggle to meet the needs of MBPT
in both ZnO and LiF, the insights gleaned from system-
atically improvable wave function methods should help
resolve this difficulty in future.

ZnO represents a particularly difficult case for MBPT,
especially when considering its low-order and highly-
efficient G0W0 variant.15,43 The left hand side of Figure
3 makes clear that the accuracy of this low order per-
turbative treatment is highly sensitive to the inclusion of
exact exchange. In contrast, we see that the VMC-CISD
results are insensitive to whether we employ the LDA,
PBE0, or even the Hartree Fock (HF) one-particle basis
sets. The reasons for this success are two-fold. First, the
wave function was designed so as to be able to approxi-
mate an orbital rotation in order to counteract shortcom-
ings in the starting DFT orbitals. Indeed, if we remove
this ability by removing the doubles excitations from the
excited state and the singles from the ground state, the
resulting VMC-CIS results are more sensitive and less ac-
curate overall, as seen in Tables I and II. Second, VMC
takes the issue of the DFT orbital energies off the table
entirely, as it directly evaluates the energy expectation
value of its wave function using the full ab initio Hamil-
tonian so that the only dependence on DFT is via the
shapes of the one-particle orbitals.

Using our DFT-insensitive VMC methodology as a
guide, one can investigate how commonly used density
functionals’ zeroth order pictures deviate from reality in

ZnO and whether it is even possible to construct a one
particle picture upon which MBPT should be reliable
in this material. First, we stress that although Figure
2 revealed that G0W0’s sensitivity to exact exchange is
likely due in part to the varying quality of the zeroth
order wave functions, the right hand side of Figure 3 em-
phasizes the importance of the zeroth order transition
energies and how they are also quite sensitive to exact
exchange. By considering zeroth order wave functions
and transition energies together, we gain an appreciation
for how challenging this system is for density functional
theory. Indeed, HF theory with its 100% exact exchange
gives better orbitals for the purpose of describing the first
excited state, but its transition energies are grossly too
high, whereas PBE0 has better transition energies but
worse orbitals. Among the three options of LDA, PBE0,
and HF, PBE0 clearly makes for the best compromise
between wave function and transition energy accuracies,
but our results suggest that both its energetics and or-
bitals would be improved in ZnO with a higher fraction
of exact exchange.

With an explicit high-level wave function in hand, we
can ask highly detailed questions about the exciton, such
as to what degree the O 2p and Zn 3d orbitals hybridize
in the hole state. Indeed, metal-oxide over-hybridization
has been pointed out as a key deficiency in LDA and other
pure functionals.43 We approach this question by per-
forming a density matrix difference analysis49 in which
the difference between the one-body density matrices of
our VMC-CISD excited and ground state is diagonalized.
As occurs for any excited state consisting of a single
one-particle transition of the type assumed in MBPT’s
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FIG. 2. Here we investigate the appropriateness of various
one-particle orbital sets for MBPT by plotting VMC-CISD’s
residual weight fraction, which we define as the sum of squared
CI coefficients on all configurations other than the primary
VBM→CBM transition when working in a particular orbital
basis. In cases where degeneracy in the VBM leads to multiple
equal-energy VBM→CBM configurations, the sum excludes
all such configurations.
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zeroth order picture,49 the resulting eigenvalues are all
close to zero (absolute values less than 0.1) except for one
with a value near 1 and one with a value near -1. The
eigenvectors corresponding to these two large eigenval-
ues are the attachment and detachment orbitals, respec-
tively, and represent the particle and hole orbitals that
most closely represent the transition between a correlated
many-body ground state and excited state. By plotting
the hole density from this detachment orbital in the vicin-
ity of the Zn atom alongside the hole densities predicted
by the VBM of different density functionals, Figure 4
makes clear that, compared to our high-level VMC re-
sults, LDA does indeed include too much Zn character
in the VBM through over-hybridization. More surpris-
ingly, we see that although LDA+U50 with the U value
used previously43 does decrease the degree of hybridiza-
tion, our detachment density is even less hybridized, with
LDA+U bringing us only about halfway in between the
LDA and VMC extremes. Another important point that
the detachment orbital reveals is that some hybridiza-
tion is definitely present, just not so much as common

FIG. 3. Optical gap and single-particle transition energy data
for ZnO. On the left, we compare G0W0 fundamental gaps
using one-particle starting points that employ different frac-
tions of exact exchange with our VMC-CISD optical gaps
based on the same starting points. For the various i → a
transitions, we plot on the right histograms of the differ-
ences Dia = ∆DFT

ia −∆VMC
ia between the DFT estimates (i.e.

the orbital energy differences ∆DFT
ia = εa − εi) for the en-

ergy cost of promoting an electron from orbital i to orbital
a and the analogous quantities ∆VMC

ia , which are the VMC
energy differences between the i→ a excited and the ground
state Jastrow-modified Slater determinants. G0W0 data from
Fuchs.40 Experimental result from Lauck.41

density functionals, even those specifically designed to
address this issue, predict.

Although it is frustrating that current functionals face
the various difficulties discussed above, the fact that the
VMC density difference analysis strongly resembles a
simple single-particle transition suggests that it should
be possible to design a functional that delivers an excel-
lent zeroth order starting point for MBPT. To make this
idea more concrete, we can test whether such an orbital
basis exists by applying an orbital rotation to our wave
function (starting with the optimized VMC-CISD state
in the PBE0 orbitals) in order to minimize the resid-
ual weight fraction of the exciton. As seen in Figure
2, this rotated PBE0 one-particle basis matches the as-
sumptions of MBPT in ZnO almost as well as the LDA
basis does for Si or diamond. This finding also serves to
reassure us that the error we do see in VMC-CISD’s op-
tical gap prediction (and its moderate disagreement with
previous projector Monte Carlo estimates51–53) is most
likely due to the imperfect nature of our finite size cor-
rection rather than to the appropriateness of our wave
function approach, as it validates the assumption that
the excitonic state is dominated by single particle-hole
transitions with the doubles only contributing small cor-
rections. While a good one-particle basis is just a start
(density functionals must also produce reasonable zeroth
order transition energies) the insights we now have from
VMC paint a bright picture for the prospects of increas-
ing the accuracy and reliability of MBPT in cases like
ZnO.

We have shown that an excited state variational prin-
ciple can be combined with simple, physically-motivated
wave function approximations to evaluate optical band
gaps in a way that is both insensitive to the DFT starting
point and informative about the assumptions of MPBT.
Given the dominant role that MBPT plays in the theo-

LDA

PBE0

LDA+U

HF

VMC

FIG. 4. A cut along ZnO’s (1̄21̄0) plane in which we investi-
gate the lowest energy excitation’s hole density in the vicinity
of the Zn atom. For each method, we plot the contour along
which the number of holes per Å3 is equal to 1.2.
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retical interpretation of materials spectroscopy, a method
that is able to improve its predictive power has the po-
tential to be highly impactful. Even in cases where
exciton-induced repolarization effects are large and it is
not possible to identify a density functional that yields
a one-particle basis appropriate for describing both the
ground and the low-lying conduction band states, the
ability to provide variational predictions of band-edge
energies, perhaps even in a k-point-by-k-point fashion,
would create the possibility of developing first-principles-
based scissors corrections for the BSE Hamiltonian, a
practice that at present can be quite effective when per-
formed empirically.42,54 In molecular excitations, varia-
tional excited states20–23 and MBPT55 have so far been
explored separately, but the same potential for strong
synergies is present. In both molecules and solids, our
approach also provides a reasonably black-box route to
producing high-quality nodal surfaces for excited states
in diffusion Monte Carlo, which even with less sophisti-
cated VMC preparations has already shown promise in
evaluating band gaps.53,56–60 The prospects for increased
accuracy and scalability in this area are especially bright
in light of recent progress in VMC methods for optimizing
the one-particle basis61,62 and achieving compact repre-
sentations of excited states,63,64 not to mention the rapid
progress in selective CI methods that synergize strongly
with multi-Slater VMC.65–72 With this wide range of
promising connections, we look forward to further ex-
ploring the role that variational approaches can play in
deciphering and designing molecular and materials spec-
tra.
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Supplemental Material

Optimizing Ω

Between linear method steps in the minimization of Ω,
we gradually relax22 ω so that at convergence we achieve
ω = E − σ and a result that is equivalent to that of a
size-extensive minimization73 of the energy variance σ2.
Crucially, each linear method step seeks to minimize the
function Ω in which ω is simply a constant, which guar-
antees that we target the state with energy just above
ω. This differs from a direct minimization of σ2, which
is not state-specific. Note that we also use Ω to evaluate
the ground state, as this is known20 to provide a more
balanced treatment for energy differences than optimiz-
ing one state with Ω and the other with E. To further
improve balance so as to maximize cancellations of er-
ror, we also follow the recent approach21 of adjusting the
flexibility of one of the wave functions in order to en-
sure that, as measured by σ2, the ground and excited
wave functions are of equal quality. While this variance
matching could be achieved by limiting the flexibility of
either the ground or the excited state, we have done so
in this study by withholding enough high energy singles
from the ground state such that its variance matches that
of the excited state.

Computational details

We have implemented our method within a develop-
ment version of QMCPACK,24 in which we have adapted
the fast multi-Slater method28,29 to work with the cu-
bic B-spline representation24 of Kohn-Sham orbitals im-
ported from Quantum ESPRESSO.74,75 We also cus-
tomized the linear method optimizer to support complex
numbers. For the correlation factor U in the main text,
QMCPACK represents the one-dimensional functions V
and W by 10-point cubic B-splines of the electron-nuclear
(rip) and electron-electron (rij) distances.24 Note that in-
dependent spline parameters are used for each chemical
element and for same- and opposite-spin electron pairs,
and that the parameters are optimized alongside the con-
figuration interaction coefficients during the minimiza-
tion of Ω.

To avoid the unnecessary simulation of low-energy
core electrons, we used Burkatzki-Filippi-Dolg (BFD)
pseudopotentials76 for Li, C, F, and Si, the norm-
conserving pseudopotential of Shin et al77 for O, and the
semi-core-included pseudopotential of Krogel et al78 for
Zn. All DFT calculations were performed with QUAN-
TUM ESPRESSO 5.3.0 using a 350-Ry kinetic energy
cutoff and a 4×4×4 k-point grid. All lattice constants
were chosen based on experimental values, with an fcc
lattice structure used for LiH and LiF with lattice con-
stants of 7.716 and 7.625 Bohr, respectively. The dia-
mond cubic structure was used for both C diamond and
Si with lattice constants of 6.740 and 10.263 Bohr, respec-

tively. The wurtzite structure was used for ZnO with lat-
tice constants set to a = 3.250 Bohr and c = 5.207 Bohr.
For ZnO, a 4-atom unit cell was used for DFT, while all
other systems used a 2-atom unit cell for DFT.

VMC calculations for LiH and LiF were performed in
simulation cells containing 2, 4, 8, 16, and 24 atoms, after
which 1/N extrapolations were used to predict the band
gap in the bulk limit. The same approach was used for C
diamond and Si, but with 8, 16 and 24 atom simulations
cells. See Figure 5 for an example extrapolation.

Due to the high cost of simulating the semi-core elec-
trons of Zn, which was necessary to produce physically
reasonable results, we were limited by our current soft-
ware implementation to a maximum of 8 atoms in our
simulation cell for ZnO, which did not permit us to per-
form the same type of finite size correction as for the
systems above. Instead, we have derived a simple finite
size correction based on previous diffusion Monte Carlo
(DMC) work53 in which nodal surfaces for both the CBM
and VBM were constructed using a simple single-Slater
model. The previous study reports results for a 48 atom
simulation cell, and so we have performed the equivalent
single-Slater DMC calculations for our 8 atom cell and
used the difference in the DMC gap at these two cell sizes
to provide an approximate finite size correction for our
8 atom VMC gap. Note that this approach has no ef-
fect on our conclusions with regard to either the nature
of the first excited state under different density function-
als or the insensitivity of our VMC gap predictions to
the choice of functional, as these properties are entirely
determined within our 8 atom VMC evaluations.
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56 J. Kolorenč and L. Mitas, Phys. Rev. Lett. 101, 185502
(2008).

57 L. Mitas and J. Kolorenč, Rev. Mineral. Geochem. 71, 137
(2010).

58 M. Abbasnejad, E. Shojaee, M. Mohammadizadeh,
M. Alaei, and R. Maezono, Appl. Phys. Lett. 100, 261902
(2012).

59 E. Ertekin, L. K. Wagner, and J. C. Grossman, Phys. Rev.
B 87, 155210 (2013).

60 L. K. Wagner and P. Abbamonte, Phys. Rev. B 90, 125129
(2014).

61 C. Filippi, R. Assaraf, and S. Moroni, J. Chem. Phys. 144,
194105 (2016).

62 R. Assaraf, S. Moroni, and C. Filippi, J. Chem. Theory
Comput. 13, 5273 (2017).

63 N. S. Blunt and E. Neuscamman, J. Chem. Phys. 147,
194101 (2017).

64 N. S. Blunt and E. Neuscamman, J. Chem. Theory Com-
put. (2018), DOI: 10.1021/acs.jctc.8b00879.

65 P. J. Knowles, Mol. Phys. 113, 1655 (2015).
66 W. Liu and M. R. Hoffmann, J. Chem. Theory Comput.

12, 1169 (2016).
67 J. B. Schriber and F. A. Evangelista, J. Chem. Phys. 144,

161106 (2016).
68 N. M. Tubman, J. Lee, T. Y. Takeshita, M. Head-Gordon,

and K. B. Whaley, J. Chem. Phys. 145, 044112 (2016).
69 A. A. Holmes, N. M. Tubman, and C. J. Umrigar, J.

Chem. Theory Comput. 12, 3674 (2016).
70 S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and

C. J. Umrigar, J. Chem. Theory Comput. 13, 1595 (2017).

71 P. M. Zimmerman, J. Chem. Phys. 146, 104102 (2017).
72 Y. Ohtsuka and J.-y. Hasegawa, J. Chem. Phys. 147,

034102 (2017).
73 C. J. Umrigar and C. Filippi, Phys. Rev. Lett. 94, 150201

(2005).
74 P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fab-
ris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougous-
sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, J. Phys. Condens. Matter 21, 395502 (2009).

75 P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B.
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
M. Cococcioni, N. Colonna, I. Carnimeo, A. D. Corso,
S. de Gironcoli, P. Delugas, R. A. D. Jr, A. Ferretti,
A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerst-
mann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H.-
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